17 30 FRETFRIFEG R hE BP0}
Prediction of functional sites of proteins from

protein structures

Fopo4 T e

T R YT e

PR R4 L E R



f17 30 FRETRIS FRAERAG Y

Prediction of functional sites of proteins from

protein structures

S e A O 1 Student : Sung-Huan Yu
dn FFAR R AR Advisor : Jenn-Kang Hwang
Bl o= < i < F

4 g TR g
A Ak, >

A Thesis
Submitted to Department of Computer and Information Science
College of Electrical Engineering-and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Bioinformatics
June 2008

Hsinchu, Taiwan, Republic of China



FI* 30 TR I FRDER S 2}

F4:7je dh SR F N

B il 4 B4 B TR AT

# £

- % —#M=R (active site)
d I A Fle § (structucalygenomics ) s 3 14 B4 ik R R
g P hkd TRl iz dir 32ess k& F R R&F (Protein Data
Bank — PDB) i&® FALE ¢ & FlFan g Ee0f2) » %brd F § 7 s
ﬁﬁﬁ}ﬁ?’ﬁﬁfﬂ?}w SR BRI D TN B E e 2
4%“5' BER o FFIHMERY T Ous el g M el AXR R
1% ¥ (higher packmg density)N A& it dv 7A@ ¢ & (structural
centrality )~ #3f % (thermal fluctuations) #4% 2% L (residues)
ARG VR AEE Y > Ryt AP R - B E S R
BOREEM R o FAPSI B et kg k- B L ORE
(threshold) » 24/ # 2 & 760 B2k L% % (nonhomologous enzyme )
¢OARRIE] T6heE g o T E R g 2T%eniEIE 1 (false positive) e i
F A4 » v F A 7| (sequence) eI 0 * gL F A K AR R enFoRL
T AR T 0% AL R 0 B 20%hEE o S 2 2 % R B AR A
et # (alignment ) » & I * B4 o & (structural template
library) > ¢+ 3 2% ® a3 L3 Hd o 5203 'b‘ (solvent accessible
surface) o4 + 4 & (molecular mechanical ) &3t & o s ipgp i 24 i
72 g E - BRI Y FRBEEEARE P T I H R 52
BE R

™

y



R — &SRy (metal binding site)

G+ AP BEAAE ERDEd o Blde FIBEEE R A S
4*,,,@&]:\ i B BHARLE o d P W G TR R P
RGP 2R g s P BLE - i\ mariEr L 2R ER
BT AR TP 'Eé_iéﬁwiﬂ (chelate) = @ & 7)< 4 &
pRe G- BREAFER f%ﬁ% Y SRS T EN- LY
4 fei= (coordinate) o i& B AF P2 F FF AP 5 - F R I DRIFIER2 &
f§ 28 (distance-dependent protein contact-number # # CN) 3] »
TP EFFINE AR F DR - BAASDE R Lbﬁ;%;i};,
B3 PR BRI EE o - kR R ERRFI ALK LS DR

=% (N)~#(S)~ 3% (O)o%ﬁﬁi%fﬁi&ié v ON i3] g iz o
E—:n—j&Ca:}ﬁz& % (N) R (S)~F (0) e 3 > % b= 2 kARl & g
F4ERR R ot 22 ¥ 1 & Sodhi m?ﬁ‘i P i FE IR T2, A%AT S ~94. T%

S+~ 86. DB AT ~ TT. 6%453E T ~ 8BuDUAEAEF r 91, DYdrdp+ it

-1

il



Prediction of functional sites of proteins from protein structures

Student: Sung-Huan Yu Advisor: Jenn-Kang Hwang

Institute of Bioinformatics

National Chiao Tung University

ABSTRACT

Chapter 1 — active site

Due to the tremendous advances in structural genomics research, an incredible
number of protein structures has been;solved and deposited in PDB. As a result,
the number of structures with unknownsfunction also climbs up accordingly. It
becomes increasingly importantithat one can predict functional sites directly
from protein structures. Based on:therdistinct: properties associated with the
active-site residues such as higher. packing density, proximity to structural
centrality and smaller thermal fluctuations, we developed a simple method for
detection of the active sites of enzymes to compute profiles based on the
aforementioned properties. Using proper threshold values for the profiles, we are
able to detect up to 76% of catalytic residues with 27% of false positives for a
data set comprising 760 nonhomologous enzymes. If additional sequence
information is included, the sequence-weighed profile method can be improved
to detect 80% of catalytic residues with 20% of false positives. Our method does
not require sequence or structural alignment, or a structural template library, and
it avoids solvent accessible surface or molecular mechanical calculations. We
believe that our method will be a useful tool for detection of possible active sites

from protein structures to complement other existing methods.

il



Chapter 2 — metal binding site

Metal ions are crucial role in organisms. They participate in enzyme catalysis,
play regulatory roles, and help maintain protein structure. In this era, there is
incredible number of protein structures solved. So, the importance of predicting
metal binding site is increased. We all know that if there are metal ions stable
existed in protein, the metal ions should form chelate. One of the important
factors to form chelate is there should be enough atoms to coordinate with metal
ion. The characteristic is very similar as distance-dependent protein
contact-number model (CN) that we introduced in chapter 1. This means that if
there are more atoms that are high probability to interact with metal ion around
the residue, that would be probably metal binding residue. In general, the atoms
that have high probability to interact with metal are such as N, S, O. Base on the
thought, we follow the aspect of CN but use the atoms, like N, S, O, to replaced
Ca to predict metal binding residues. This method can detect Ca — 72.4%, Cu —
94.7%, Fe — 86.5%, Mg — 77.6%;-Mn —.88:5%, and Zn — 91.5% in Sodhi’s

dataset.
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CHAPTER 1-ACTIVESITE

1. INTRODUCTION

Due to the enormous advances made in recent years in structural biology, the number of
protein structures deposited in Protein Data Bank (PDB) has increased from 13622 in 2000 to
around 49620 as of March 11, 2008 — the total number nearly quadrupled during this period.
The vast number of structures provides a great opportunity to study the structure-function
relationship directly from the protein structures. It becomes especially important nowadays
due to an increasing number of structures with unknown function being deposited in PDB.
Currently, a number of methods
site structures are highly conserved between remotely related enzymes, predict protein
function by searching protein structures:for the known three-dimensional catalytic templates.
For example, Thornton and co-workers™ ® developed ‘a methodology, utilizing a library of
three-dimensional structural templates composed-of small number of residues, to detect
catalytic sites and ligand binding sites of proteins.. Lu et al.* developed a local fragment
transformation method to detect the ligand-binding sites based on a loosely defined structural
template. This method is useful for detecting DNA-binding sites, which are usually of highly

. . 10511 12
variable conformations

. The effectiveness of these methods depends on whether the
pre- defined templates will provide a fairly thorough coverage of the known structures’. These
methods are unable to detect novel catalytic residue conformation that is not matched by any
known structural templates in the library. There are other methods for prediction of protein
function based on distinct structural or dynamical properties associated with active-site
structures'> % 1% 1° For example, Amitai et al." transformed the protein structure into residue
interaction graphs with each amino acid residue represented as a graph node and the

interaction between them as a graph edge, from which they compute network closeness of

each residue. They were able to identify active site residues in 70% of 178 representative



structures by computing residues' closeness together with their solvent surface accessibility.
Ben-Shimon and Eisenstein'* observed that the catalytic residues are usually located in small
fractions of the exposed residues closest to the protein centroid. They developed a novel
algorithm called EnSite to detect the active sites of enzymes. EnSite examines only 5% of the
exposed surface closest to the centroid, instead of identifying all the cavities or depressions on
the enzyme surface. Ensite clusters these surface segments, which are then ranked by their

area size for possible active sites. Recently, Sacquin-Mora et al.'

computed the force
constants of moving any given amino acid with respect to other residues in the protein. They
found that the force constants associated with the catalytic residues are usually higher than
those of other non-catalytic residues. Choosing an appropriate threshold value, they are able
to detect potential active-site residues using Brownian dynamics simulations. The distinct
property of large force constant associated with active-site residues is consistent with the

17; 18
recent reports

that the catalytic.residues usually have lower B-factors than other
non-catalytic residues. Since the-B- factor-is—a measure of the atomic mean-square
displacement, a residue with smaller B-factors will be more rigid and, hence, be associated

. 19; 2
with a larger force constant. There are recent reports'” >

that the atom's B-factor is linearly
proportional to its squared distance from the protein centroid. In other word, the residues in
proximity to the protein centroid will have smaller thermal fluctuations or more rigid than
those farther away from the protein centroid. In addition, a recent study”' shows that the
atom's thermal fluctuations is in linear inverse proportion to the number of noncovalent
neighboring atoms (or protein contact number) of this atom. Here we will develop some

simple methods for catalytic sites to compute the profiles based on the properties like contact

number, residue centrality and B-factors.

2. METHODS



2.1. The B-factor profile
The X-ray B-factor profile of a protein is denoted as b =(b,,b,,...0b,), where b, is the
B-factor of the Co. atom of the i" residue taken from the PDB file and N is the number of

residues of the protein. We will also normalize the B-factor profiles to the corresponding

z-scores: 20 =(b,—b)/c,, where b and o, are the mean and standard deviation of the

B-factors. We will refer to the normalized B-factor profile as the z°-profile or the BF profile.
2.2. The protein contact-number profile

2.2.1. The naive contact-number model
The protein contact number is conventionally defined as the number of the neighboring
residues that are within a cut-off radius of the central residue, which amounts to giving an

equal unitary weight to every contacting atom: regatdless of its distance to the central atom.

Gi :Zé‘(ro_rij) (D

j#i

where 1; is the distance between Co atoms of residue i and j, and o(x)=1 if x>0

and 5(x)=0 if x<O0. The cut-off distance r, is usually defined in the range 10 to 12 A.
This definition ignores that an atom at a nearer distance will have a greater effect than the
atoms farther sway. For convenience, we will refer to this as the naive contact-number (nCN)

model.

2.2.2. The contact-number model

To take into account the distance factor, we define a distance-dependent contact number n,
by weighing the integral contact number with the factor 1/ rij2 , which is the distance between

Ca atoms of residue | and j:



n=-3 @

j#i r-ij

where N is the total number of the residues of the protein. As in the case of the B-factor

profile, we also normalize n; to its Z-score: Z' =(n, —N)/o,, where N and o, are the

mean and the standard deviation of n. Since the contact number is defined as a negative
value (Eq. 2), we can directly compare the z, profile with the z, profile. For convenience,

we will refer to this model as the contact-number (CN) model or the z, model.

2.2.3. The weighted contact-number model

From the CN model (i.e., Eq. 2), we can further the weighted contact-number (WCN) model.

N1
Vi =W, Z_z (3)
=i Tj
where, given that the residue 1 isof type a, w, iscalculated by
w; =log(c,) +1 4)

where c, is the frequency of a catalyti¢iamineraeid of type a. The addition of the constant

a

1 is for making w, positive. The' weighted ‘contact number v; is normalized to
Z' =(v;,—-v)/v,, where v and o, are the mean and the standard deviation of v. This

weighted contact-number model will be referred to as the z, model. For illustration, we

show schematically the nCN model, the CN model and the WCN model in Figure 1.

2.3. The centroid-model profile

20; 21

The previous study showed that there is a good correlation between the B-factor B, and

the square of the centroid distance I7,

K =(r, —r)e(r,—r) (5

where T, is the coordinate of Co atom of the i" residue, and r, is the centroid of the



protein, i.e., I, = Ziri /N. We will refer to this model as the centroid model (CM). For easy

. . 2 p— -—
of comparison, we normalize I’ to zj =(r’-F*)/o., where F* and o, are the mean

and the standard deviation of r’. The normalized centroid-model (CM) profile will be

referred to as the Z, -profile.

Similar to the WCN model, we will also define an amino-acid weighted centroid distance,
P =W (SAR =R7 ) (0)

where s=(R: —R?

max min

Y/(max{r’} —min{r’}) and Ar’=r’-min{r’} .The seemingly

complicated form of Eq. 6 is to normalize p; to the range between R2. and R’ . Here,

min max *

R and R’ are set to 0.5 and 2.5. respectively. We will refer to this model as the

weighted centroid model (WCM). The normalized WCN profile will be also referred to as the

sz -profile.

2.4. Assessment indices

To evaluate the quality of our predictions, we use the standard definitions of sensitivity and

specificity'®. Sensitivity S, is defined as the number of correctly predicted functional

residues (i.e., true positives or TP) divided by the total number of experimentally defined

functional residues (i.e., T). Specificity S, is defined as the number of correctly predicted

non-functional residues (i.e., true negatives or TN ) divided by the total number of

experimentally defined non-functional residues (i.e., F). The false positive rate is defined as

a =1-3, and the false negative rate f=1-S,.

2.5. Data sets

We selected the structures of enzymes from the Catalytic Site Atlas® using blastclust

from the collection of BLAST tools®. The pair sequence identity is set to <30%. The data



set comprises 760 x-ray structures, which include 333 monomeric enzymes and 427
multimeric enzymes. We can also divide the dataset to two sub-datasets — the ligand binding

cross chains or not. The ligands no cross chains are 715 in our dataset.

3. RESULTS

3.1. The frequency distribution of amino acid types in catalytic sites

Figure 2 shows the frequency distribution of the 20 amino acid types occurring in the catalytic
sites, compared with that of all structures in the data set. The top 5 amino acid types, i.e., D, H,
E, R and K that occur in the catalytic sites account for 65% of catalytic residues and all are
charged amino acids. The polar amino acids, i.e., C, S, N, Q, T and Y provide 27% of catalytic
residues. In all, the charged and the polar amino acids account for around 92% of the catalytic
residues, while the rest nonpolar amino acids account for only 8%. These results are similar to
the analysis results of a previous report™ using'a smaller data set. We use the information to

calculate the weight and listed in Table-1.“The weight is.calculated through Eq. 4.

3.2. The profiles distributions

Figure 3A shows the comparison with catalytic residues and all residues of z,, z, and z, .
The mean of z, of the catalytic residues is —0.48, while that of all residues is 0.00. Using the
t-test, we obtain the p-value <2.2x107'°, which indicates the difference is statistically
significant. The catalytic residues tend to be near the negative side of the z, than the other
non-catalytic residues do. For example, 38% of active residues are in the region of z, <-1,
compared with only 19% of total residues. These results are consistent with the previous

17; 1
reports' ¥

that the catalytic residues have smaller B-factors than the other non-catalytic
residues. The mean of Z, of the catalytic residues is —1.00 and that of all residues is 0.00.

There are even more catalytic residues lying toward the negative side of z, -- 66% of active



residues in the region of z,, <—1, compared with 24% of total residues. The mean of Z of

the catalytic residues is —1.54 and that of all residues is 0.00. There are even more catalytic

residues lying toward the negative side of Z, - 77% of active residues in the region of

Z,, <—1, compared with 18% of total residues. The difference is more obviously than z ,.

Figure 3B compares the distributions of z,, z, and z, of the catalytic residues and of all
residues. The z, profile already analyses before. The mean of z, of the catalytic residues

is —1.00 and that of all residues is 0.00. There are 70% of active residues in the region of

z, <-1, compared with 23% of total residues. The mean of z, of the catalytic residues

is —1.53, about half unit of the standard deviation shifted to the left, while that of all residues
is 0.00. There are 76% of active residues in the region of z, <-1, compared with 17% of
total residues. The difference is more obviously than_z, . Taken together, we found that the
catalytic residues tend to bias toward the negative z-scores in these profiles, i.e., they tend to

be more rigid, near the centroid of the protein-structure and in the more compact region.

3.3. The performances of different models

To discriminate the catalytic residues from the non-catalytic residues, we will determine the

optimal cutoff value by minimizing the error function'® defined as 8=\/(1—Sn Y +(1—Sp)2 .

Figure 4 shows the curves of & against z-scores of different profile distributions. The
optimal z-score cutoff values, at which the corresponding ¢ is minimal, for the BF profile
1s 0.5, the CN profile —0.7, the CM profile —0.7, the WCN profile —0.9 and the WCM

profile —0.9.

3.4. Prediction of the active residues

We followed Sacquin-Mora’s paper'® to generate ROC curves. Figure 5 compares the ROC

curves with different models. Though the BF profiles can distinguish active residues from



non-active residues, it performs much worse than the other 4 models. While the CM performs
better than the CN model, the WCM and the WCN model perform similarly. Table 2 compares

predictive performances with the five models.

3.5. Examples

3.5.1. Examples of CN and CM

As a typical example, figure 6A shows the profiles of 8-amino-7-oxononanoate synthase
(PDB ID: 1bs0)*. It has 4 catalytical residues, i.e., H133, E175, D204 and K236. As shown in
the z, profile, the z-scores D204 and K236 are close to the minima, indicating that they are
quite rigid. But the z-scores H133 and E175 are higher, indicating that they are relatively
flexible. On the other hand, as shown in the Z.5 profile, the z-scores of the catalytic residues
all coincide with the minima of the profile; indicating that these residues are all close to the
centroid position of the protein structure. The -Z. profile shows that the catalytic residues are
located in the compact regions of the structure.“This is consistent with our recent finding®’
that protein centroid region is usually the protein's most compact region. Note that the shape
of the z, profile of this particular example is very similar to the old z, profile. The
relationship between these 2 types of profiles is in fact a general one, as shown in our
previous  study’’. Figure 6B  shows the three-dimensional structure  of
8-amino-7-oxononanoate synthase with colors ramped according to the z,, z, and Z,
profiles, respectively. Another example is given by S-adenosylmethionine decarboxylase
(PDB ID: 1ljen)®, which has 5 catalytic residues C82, $229 and H243 (located in chain A),
and E11 and E67 (located in chain B). Its profiles are shown in Figure 6C. All of the catalytic
residues except E67 on chain B are quite rigid. All of them are close to the centroid position

and are buried in the very compact regions. Notice again the similarity between z, and z,

profiles in Figure 6C. The three-dimensional structure with colors mapped according to the



Z,, Z, and z, profiles, respectively, are shown in Figure 6D. More examples
phosphoenolpyruvate carboxylase (PDB ID: 1jqn)*’, Acid beta-glucosidase (PDB ID: 2f61)*

are shown in Figure 6E-H respectively.

3.5.2. Examples of WCN and WCM

As typical examples, Figure 7 shows the three-dimensional structure of (A) prokaryotic
phospholipase A2(11T4)*, hydrolyzing the 2-acyl ester bonds of
1,2-diacylalycero-3-phospholipids, has two catalytic residues, His-64 and Asp-85; (B)
deoxyribose-5-phosphate aldolase (1P1X) * has three catalytic residues: Asp-102, Lys-167
and Lys-201. It is the only known aldolase that uses aldehydes as both aldol donor and
accepter molecules in the aldol reaction; (C) ASV integrase (1A5V)’' has three catalytic
residues: Asp-64, Asp-121 and Lys-164.Avian sarcoma virus (ASV) is a retrovirus with many
similarities to HIV. Integrase would-help the ¢DNA inserted into the cellular DNA of host to
form integrated proviral DNA; (D) thinoyirus'3C protease (1CQQ)*. The catalytic residues of
the enzyme are His-40, Glu-71 and Cys=147. The 3C proteinase is a cysteine protease with a
serine protease-like fold that are responsible for the bulk of polyprotein processing in the
Picornaviridae. Most cleavages occur between GIn-Gly peptide bonds.

The colors of these structures are ramped from red (negative z-score) to white (positive

z -score) in accord with the z,and Z profile, i.e., the residues of the most negative

Z-score values are colored on the red end of the red-white spectrum, while the most positive

Z-score values are colored on the other end of the red-white spectrum. As shown in the

figures, most catalytic residues of these enzymes have more negative z, and Z, values.

3.6. Comparison with other methods



Sacquin-Mora, Laforet and Lavery (SLL)'® have recently developed a method for detection of
active-site residues to calculate force constants to move any given amino acid residue with
respect to the other residues in the protein. Their results indicate that the catalytic residues are
usually associated with higher force constants or, equivalently, they are more rigid than other
non-catalytic residues. Using Brownian dynamics simulation, they detected 78% of catalytic
residues with 26% of false positives for a dataset'® of 98 nonhomologous enzymes, which

covers 6 EC classes: 93 monomeric enzymes and 5 multimeric enzymes. In Table 3, we

compare the results of our methods with those of SLL. The results of z, and sz models are

significantly better than those of SLL. It is interesting to note that, though both SLL and the
z, model are based on the rigidity of catalytic residues, SLL performs significantly better. In
fact, all the profile models based on contact number and centroid distance outperform the z,,
despite that these properties are closely. related to. the' B-factors. This may suggest that the

X-ray B-factors are probably not a good measure of atomic rigidity as others.

It is worth noting that, in the cases of AS Viintegrase (Fig. 4C) and rhinovirus 3C protease (Fig.
4D), their catalytic residues are located on the protein surface. These two proteins are difficult
to predict because that the catalytic residues of both these proteins locate on the surface, not
within a cleft. SLL can identify one of three (1/3) in the former and two of four (2/4) in the
latter, while we can detect all the active sites in these two protein.

Ben-Shimon, and Eisenstein (BE)'* have recently shown that the active sites residues tend to
lie near the protein centroid. They were able to detect around 74% active-site residues for 177
hand annotated enzymes from CSA version 1.0%2. At the present, the enzymes in CSA have

been expanded to 880 hand annotated enzymes and the original dataset is obsolete. We tested

z, -profile and Z -profile method on this expanded CSA dataset and we able to detect about

80% active-site residues.
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3.7. Ligand cross chains

We all know that not every ligand is interacted with the residues in one chain. There are some
ligands which interacted cross two or more chains. So we selected the ligands that cross two
or more chains to predict by WCN and WCM models. Table 4 is the result. We found results
of using biological unit are better than one chain. Because the ligands that cross two or more
chains are almost on the interface. So the functional unit is not one chain. That is why using
biological unit is better. We also compared the datasets that include and exclude ligand cross

multimer. Table 5 and 6 showed the results are almost the same.

4. DISCUSSION

Based on the distinct properties associated with catalytic residues, we developed a simple
profiles based on these properties to discriminate between the catalytic residues and
non-catalytic residues. This method is easy to implement and computationally fast -- it
needs only a single structure; it does not réquire sequence alignment or structural template
search; and it does not compute solvént accessible surface or perform molecular mechanical
calculation. Our method will be useful for prediction of active sites from protein structures.
However, it is not clear why these properties (i.e., residue centrality, thermal fluctuations or
protein packing density) are related to catalytic sites. Warshel and co-workers® ** > have
long argued that enzyme catalysis mainly arises from smaller reorganization of the active site
residues, i.e., catalytical residues usually maintain similar conformations in both the reactant
and the transition states. To lower activation barrier, the enzyme structures are optimized
through evolution to partially pre-organize the catalytical residues, thus reducing the
reorganization energy required for reaching the transition state. As a result, the catalytic
residues tend to be more rigid than other non-catalytic residues. Properties such as B-factors,
packing density or residue centrality are all related to residue's rigidity. Interestingly, the

profile based on B-factors does perform as well as those based on other properties. It is known

11



that various experimental factors such such as temperature, crystallization or structural
refinement may affect the final B-factor values. Consequently, the B-factor profiles of similar

structures may be quite different from each other. For example, Figure 8(A) compares the z,

profiles of 3 X-ray structures of lysozyme with a root-mean-square-deviation of their

structures in the range 0.6-0.8 A. It is clear that their z, profiles are all indeed very different.

For comparison, (B) and (C) shows their z, and z, profiles. The z, and z, profiles

overlap each other almost perfectly.
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CHAPTER 2 - METAL BINDING SITE

1. INTRODUCTION

Metal ions are crucial for protein function. They participate in enzyme catalysis, play
regulatory roles, and help maintain protein structure. Due to the enormous advances made in
recent years in structural biology, the number of protein structures deposited in Protein Data
Bank (PDB) has increased from 13622 in 2000 to around 49620 as of March 11, 2008 — the
total number nearly quadrupled during this period. The vast number of structures provides a
great opportunity to study the structure-function relationship directly from the protein
structures. The importance is increased more and more for using structure to predict metal
binding sites. Several computational methods have been explored for identifying and

. . . . . 37-38
detecting metal-binding proteins. Some, base on sequence searching’” >*; some are base on

39040141 “land “some - combine sequence and structural

graph or structural information
information***. And there are als6 many methods that predicting metal binding residues by
using machine learning* **. Jaspreet Singh Sodhi et al:*’ developed a method called MetSite,
represents a fully automatic approach for the detection of metal-binding residue clusters
applicable to protein models of moderate quality. MetSite involves using sequence profile
information in combination with approximate structural data. Several neural network
classifiers are shown to be able to distinguish metal sites from non-sites with a mean accuracy
of 94.5%. Kshama Goyal and Shekhar C. Mande*' use 3D-structural motifs to predict more
than 1000 novel metal-binding sites in proteins using three-residue templates, and more than
150 novel metal-binding sites using four-residue templates.

In 2006, Hai Deng, et al. based on an aspect related to contact number to detect calcium
binding sites”. He said if there are four O formed a clique, this region have high percentage

be a calcium binding site. This aspect is very similar with CN model*' which constructed by

computing how the residues crowed comparing all residues in the protein.
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In 2007, Kasampalidis, 1. N., et al. used statistics method to analysis the metal binding
residues®’. They proved that certain residues are preferred to bind to certain metals, such as
Glu, Asp and His. They also established a statistically significant difference in conservation
between metal-coordinating and non-coordinating residues. they mentioned that metal would
form chelate with N, O, and S in protein”.

In our research, we use CN model and replaced Co by using the atoms that have high
probability interact with metal, such as N, O, S. We also consider that different metals would
interact with different specific atoms and different residues to form chelate. So predict
different kinds of metals should select specific atoms from some specific residues to do CN
model. We thought that if there are more atoms that are high probability to interact with metal
ion in the region where would be probably metal binding sites, because there is more
opportunity to form chelate. We call this model mCN. Base on this thought, we use mCN to
predict metal binding residues for-Jaspreet Singh Sodhi’s dataset. He used NN to predict
metal binding site in his non redundant dataset.-We also use the same coding scheme as

Sodhi’s, but training by SVM. No matter NN or SVM, mCN’s results are better than them.

2. METHODS

2.1. The contact-number model

The conventional contact number is usually defined as the number of the neighboring residues
that are within a cut-off radius of the central residue, which amounts to giving an equal
unitary weight to every contacting atom regardless of its distance to the central atom. This
definition ignores that an atom at a nearer distance makes a greater contribution than the

atoms farther sway. To take the distance factor into account, we define the distance-dependent

contact number N, by weighing the integral contact number by the factor 1/ rijz, which is the

distance between Ca atoms of residue i and j. is defined as
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i T L2 (1)

where N is the number of residues of the protein. Note that this contact number is defined as
a negative value. This is for easy for comparing the contact number with the B-factor. We will
refer to this model as the contact-number (CN) model. We will normalize n; to its z-score
defined as z'=(n,—N)/o,, where N and o, are the mean and the standard deviation of n.

B-factor and CN model are quite similar.

2.2. Using CN to compute metal binding residues — mCN model

Like we mentioned before, metal would form chelate with N, O, and S. So, if we want to use
CN to predict metal binding residues, we need to replace Ca to N, O and S. We also add the
information that every kind of metals would prefer to interact with specific residues’” *1 4,
such as, Fe would interact with S in,Cys, NinHis; and. O in hydrophilic residues’ side chain
more probably. We use statistic method to analysis which residues should be selected, the

results show in Figure 9. The conclusion listed‘in-Table 7. Base on these changes we create

the method — mCN.

m=-3 @

ji rij
where M is how many atoms may interact with this metal of the protein. Then we choose the
atom that the value is lowest of each residue to represent the residue. And get the Z-score. The
low m, means that the neighboring residues around the ith position prefer to interact with

the metal. If the Z-score is lower than the cut-off, the residue is high percentage be metal

binding residue.

2.3. Assessment indices

To evaluate the quality of our predictions, we use the standard definitions of sensitivity and

specificity'®. Sensitivity S, is defined as the number of correctly predicted functional
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residues (i.e., true positives or TP ) divided by the total number of experimentally defined
functional residues (i.e., T). Specificity S, is defined as the number of correctly predicted
non-functional residues (i.e., true negatives or TN ) divided by the total number of

experimentally defined non-functional residues (i.e., F). The false positive rate is defined as

a =1-3, and the false negative rate f=1-S,.

2.4. Data sets

We used Sodhi’s dataset® which include six kinds of metal binding protein - Ca, Cu, Fe, Mg,
Mn and Zn, and the sequence identity is<25% . There are total 982 proteins in this dataset
which can divide into six subset according six different kinds of metal ions. There are 261
proteins in Ca dataset, 45 proteins in Cu dataset, 49 proteins in Fe dataset, 216 proteins in Mg
dataset, 104 proteins in Mn dataset, and 361 proteins-in Zn dataset. The total number is not
the same as the sum of the proteins:in the six dataset, because there are some proteins interact
not only one kind of metal ion. Our‘dataset has-a-httle different with Sodhi’s dataset. 2stv, and
1e53 are replaced by other proteins in PDB.(2buk’ and 1z60). And 1iw7 have 485 Mg ion in
the protein, 1f83 is obsolete Structure. So, we deleted the two structures. The metal binding
residues are defined by PDBsum®’. We use CN model, and mCN model to predict Sodhi’s

dataset® , and compare his results.

3. RESULTS

3.1. Comparison with metal binding residues and other residues

In Figure 10 we compare the distribution with metal binding residues and other residues by
using mCN and CN models. We use calcium for an example. The upper plot of Figure 10A

shows the mCN profile of the calcium binding residues, compared with CN profile of the

calcium binding residues. The mean of the Z-score (z,,) of the calcium binding residues of
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mCN profile is —1.40, while the Z-score (z,) of CN profile is -0.15. The difference is
statistically significant (the p-value <2.2x107'°). These results are showed that the calcium
binding residues computed by mCN profile have smaller Z-score than that of CN profile,
which means that using specific atoms compute contact number to predict calcium binding
residues is better than using Ca. There are around 67% of calcium binding residues of mCN
profile withz  <-1, compared with 23% of CN profile withz, <—-1. The middle plot of
Figure 10A shows the distribution of the calcium binding residues and all residues that
compute by mCN profile. The mean of z_ of the calcium binding residues is —1.40, and the
mean of z_ of all residues is 0.00. The difference is statistically significant (the p-value
<2.2x107'%). These results are showed that the calcium binding residues have smaller
Z-score than all residues by using mCN model, which means that they are more crowed.
There are 67% of calcium binding residues in the region of z, <-1, compared with 17% of
total residues. The bottom plot of Eigure 10A 'shews the distribution of the calcium binding
residues and all residues that compute by:CNprofile. The mean of z_, of the calcium binding
residues is —0.15. The difference is statistically. significant (the p-value <2.51x10*). There
are 23% of calcium binding residues in the region of z, < -1, compared with 18% of total
residues. In summary, the calcium binding residues tend to bias toward more negative
Z -scores in mCN and CN profiles, but mCN is more obvious than CN. In other word, they
tend to be more crowed, especially prefer to be located in the region of having the atoms that
they are high probability to interact with metal. The other cases are similar and showed in

Figure 10B-G.

3.2. Optimize cutoff value

To discriminate the metal binding residues from the other residues, we will determine the

optimal cutoff value by minimizing the error function'® defined as &= \/(1 -S. Y+ —Sp)2 ,
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which is equivalent to minimizing essentially both the false positives and false negatives.
Figure 11 shows the curves of & against Z-scores of different kinds of metals for CN and
mCN models. From this, we can determine the optimal cutoff values for different metals. We
can see that although using the optimal cutoff value for CN, the & still larger than mCN. The
optimal z-score cutoff values, at which the corresponding ¢ is minimal, for the mCN profile:

Ca—0.8, Cu-0.7, Fe -1.3, Mg 0.9, Mn —1.2, and Zn -0.1.

3.3. The performances of mCN
According to the optimal cutoff, we can get the best S, and S . The performance of CN and

mCN listed in Table 8 and Table 9 which showed that the results are not bad by using CN
model. This reveals that contact number really have some relationship with metal binding
residues. The metal binding residuesstend to locate en the high packing region. But some
metal ions like Ca, Mg and Zn are not:good enough by computing CN model. Because of that
the metal can’t interact with Cao. If;we compute-byy mCN model, the results are much better
than CN model. This proves that the type-of atoms and residues are also important factors

should be considered.

3.4. Examples

Figure 12 is some examples that we computed by mCN model. The values below the cut-off
are painted by green; these are the metal binding residues that we predicted. The experimental
metal binding residues are represented by sticks. If mCN detect the metal binding residues,
we painted red.

(A) shows Psoriasin (PDB ID: 2PSR)*. The metal binding residues are D-62, N-64, D-66,
K-68, and E-73. Psoriasin is a small calcium-binding protein first found in psoriatic lesions
and also up-regulated in other inflammatory skin diseases and cancer tissues. The protein

responds to transient changes in the cellular calcium concentration by binding yet unidentified
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receptor molecules. (B) shows pseudoazurin (PDB ID: 1BQK)™*. The metal binding residues
are H-40, C-78, H-81 and M-86. pseudoazurin is type-1 Blue copper-containing proteins. The
role of type-I copper-containing redox proteins are to shuttle electrons from an electron donor
to an electron acceptor in bacteria and plants. The contribution of the copper ion in
pseudoazurin is the stability and the unfolding pathway™. (C) shows ferritin (PDB ID:
1FHA)’'. The metal binding residues are E-27, E-62, and H-65. Ferritin is important in iron
homeostasis. Ferritin evolved as the only protein able to solve the problem of iron/oxygen
chemistry and metabolism. Its twenty-four chains of two types, H and L, assemble as a hollow
shell providing an iron-storage cavity. Ferritin molecules in cells containing high levels of
iron tend to be rich in L chains, and may have a long-term storage function, whereas H-rich
ferritins are more active in iron metabolism. (D) shows myosin (PDB ID: 1KQM chain B)*~.
The metal binding residues are D-28,4D-30, D-32"and F-34. Myosins are a large family of
motor proteins found in eukaryotic-tissues. Myosins are-almost composed of two domains —
head domain and tail domain. The role of magnesium ion in myosin is critical for activating
ATP hydrolysis. (E) shows Ribonuclease 1L (PDB.ID: 1JFZ chain B)>. The metal binding
residues are E-240, D-307 and E-310. Ribonuclease III (RNase III) belongs to the family of
endoribonucleases that show specificity for double-stranded RNA (dsRNA). Manganese ion
has significant impact on crystal packing, intermolecular interactions, thermal stability, and
the formation of two RNA-cutting sites within each compound active center. (F) shows p300
protein (PDB ID: 1L3E, chain B)**. The form of p300 protein like a triangle composed of four
a-helices with three zinc binding sites. The metal binding residues are H-125, C-129, C-142
and C-147 for first zinc; H-156, C-160, C-166 and C-171 for second zinc; H-180, C-184,
C-189 and C-192 for third zinc. p300 can form a complex with CBP. They can interact with
numerous transcription factors to increase the expression of target genes. The role of the zinc

ions is to organize and stabilize the structural conformation.
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3.5. Comparison with ROC curves and other methods

Table 9 is the performance of mCN. Table 10 shows we use the standard — FPR 5% to
compare with mCN model, Sodhi’s NN results* and SVM results. Figure 13 compares with
the ROC curves of the results of mCN model, Sodhi’s NN results and SVM results. In Table
10, when FPR below 5%, the Zn’s result is not better than SVM. But Figure 13F reveal that
when FPR higher than 7.5%, the Zn’s TPR grow rapidly. So, if the users want to get low FPR
results, they may return to use SVM. If the users want to get high TPR results, they may

return to use mCN.

4. DISCUSSION

Base on the contact-number and the residues frequency, we create a useful method to predict
metal binding residues — mCN. The metal binding residues tend to locate on the high packing
region or crowed part, and each metalion has their preference to interact with specific atoms
and residues. The more atoms that have high-probability to interact with metal, the region are
more high percentage to be metal binding site..The lowest sensitivity can reach to 72.4% (Ca),
the highest is 94.7% (Cu). The lowest specificity is about 78.1% (Ca), the highest is 97.1%

(Fe). And the highest error rate is 35.2% (Ca), the lowest is 10.1% (Cu).

In this method, there are some proteins that mCN model can’t predict. First, there are
some metals are just select side chain, such as Cu, Fe and Zn. So, if there are some metal
binding residues that interact with metal by their backbone, mCN can’t find it. Similar
situation that if we just selected S from Cys and N from His, mCN can’t find the metal
interact with N and S from other residues, such as Arg, Lys, Trp and Met. But these situations
are very few. Then we analysis mCN’s results, we can see that if the metal would often
interact with backbone, the results are not as well as the metal almost interact with side chain.

Because of that the sum of the atoms of backbone interacts with metal are not many and they
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dispersing to 20 amino acid types. So, let the FPR increase.

There are other cases that can’t predict very well. Some of the metal would use O of
water to form chelate. For example, Peroxisome targeting signal 1 receptor
pex5 (PDBID:1hxi)>. Figure 14 showed the three dimensional structure of this protein, and
we can see that Calcium is stabilize by interact with E397 and five O of water. Because of that
we didn’t select these five O from water, so we can’t detect the metal binding residues very
well. There are also some other examples in dataset, especially Ca and Mg, but if we select O
from water, these results would create too many false positive. There are many of this kind of
proteins in Mg, Ca, some in Zn, Mn, very few in Cu, Fe. We analysis the mCN results and see
that the performance of Ca and Mg is also not better than others. So, how to fix O from water

is an important future work.
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APPENDIX - A simple method predict active site by structure.

According chapter 2, we thought we can use the same aspect to predict active site. Catalytic
residues also interact with some specific residues — polar or charged residues. So, we go to
check what kind of atoms that the ligands prefer to interact. Then we select O from backbone
and side chain, N form side chain, and S from side chain. And using the method like mCN
model to compute the contact-number of these selected atoms and set the lowest value of one
residue to represent the residue’s contact number. Get Z-score to normalize the value. Finally
follow the chapter 1 to set cutoff to get the predicted catalytic residues. We called this method
aCN model.

Dataset is the same as chapter 1. Assessment indices follow the chapter 1 and 2. To use
specificity, sensitivity and error function to evaluate the accuracy of the method.

The performance is showed in Table Al. We can see'aCN results almost the same as the WCN
model. The weight and selected atoms.maybe have some-relationship, because the weight and
selected atoms both base on the probability-that-the residues can be catalytic residues. For
WCN and WCM model, the probability is higher; the weight is bigger. For aCN model, the
probability is higher; the more atoms are selected from the residue.

We also use the seleced atoms to compute CM model, but the results are not better than WCM
model. We thought that is because of that the position of centroid is not change very much.
For example, the centroid shifts 1.1A of 9pap, 0.68 A of 1a0i, and just 0.15 A of 4kbp.

Then we compute ROC curve to compare with many models. The results are showed in
Figure Al. Figure A2 also show some examples that aCN model can predict very well. We

can found aCN model is a good and simple method to predict catalytic residues.
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TABLE CAPTIONS
Table 1: The left column is the amino acid type, the middle column is the fraction of each

amino acid type (%) for our dataset, and the right column is the weight for each amino acid
type (W).

Table 2: The table shows sensitivity and specificity for our dataset. S, means sensitivity, S,
means specificity, & means the value of error function, o means false positive rate, and [

means false negative rate. In WCN and WCM, the sensitivity is 78% ~ 80%, the specificity is

about 80%, and the error rate is ~ 30%. The results are better than others.

Table 3: In WCN and WCM, S, is 80% ~ 82%, S, is about 80% ~ 81%, and ¢ is 27%.

p

We compare with the results that published by Sophie Sacquin-Mora et al in 2007.

Table 4: We use 5 models to predict - the catalytic residues that ligand cross two or more
chains. Compare with the results by-using one chain and biological unit to compute 5 models.

We can see use biological unit is better than-one.chain.

Table 5: The results that include the proteins that igand cross two or more chains.

Table 6: The results that exclude the proteins that ligand cross two or more chains. The results

compare to Table 5 are almost the same.

Table 7: The specific atoms selected for mCN. The atoms have high probability to interact

with the six metals for Sodhi’s dataset.

Table 8: The performances of using CN (selected Ca) predict metal binding residues.

Table 9: The performances of using mCN (selected specific atoms see Table 7) predict metal

binding residues. The results are much better than CN.

Table 10: Using another standard — FPR = 5% to compare with CN, mCN, and Sodhi’s
results (we also use his features to run SVM). And mCN is the much better than others expect

28



for Zn.

Table Al: The results of aCN and aCM model and compare with the other 5 models

mentioned in chapter 1. We found aCN almost the same as WCN and WCM model.
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FIGURE CAPTION

Figure 1: (A) The schematic illustration of the nCN model. The spheres represent the
residues, and r, is the cut-off value for the nCN model. In this particular example, the
contact-number of the central residue (the black sphere) is 2 (i.e., the 2 spheres in gray). The
same sizes of the spheres indicate that they contribute equally. The contribution of residues
outside the cut-off radius is ignored (spheres in white). (B) The CN model. The size of each
sphere (gray) indicates its relative contribution to the central residue. No cut-off radius is used
in the CN model. The contribution of each residue is scaled down by its reverse squared
distance from the central residue. (C) The WCN model. The central residue is weighted by the
statistical probability of its amino acid type occurring in the active site. In the left, the central
residue is a Pro, which rarely occurs in an_ actiye site, and hence, is weighted by a smaller
probability. In the right, the central residue isya:Glu, which occurs more frequently than Pro,

and is weighted by a larger probability

Figure 2: the frequency distribution 6f the 20 amino acid types occurring in the catalytic sites,
compared with that of all structures in the data set. We can see their distribution is very

different.

Figure 3: (A) The figure shows the histogram of active site and all residues of the z, (upper),

the z, (middle) and the Z (bottom) models. The black bars are the residues of active site

and the gray bars are all residues. (B) The figure shows the histogram of active site and all

residues of the z, (upper), the z,(middle) and the z, (bottom) models. The black bars are

the residues of active site and the gray bars are all residues.

Figure 4: In the figure, five curve represented five models. When the threshold is -0.5, the
error rate of BF would be lowest. When the threshold is -0.7, the error rate of CN and CM

would be lowest. And we can see when the threshold is -0.9, the error rate of WCN and WCM
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would be lowest.

Figure 5: This figure shows the ROC curves of different models. WCN and WCM are almost

the same, and they both better than CN, CM and BF. The result of BF is worst.

Figure 6: (A) The profiles of 8-amino-7-oxononanoate synthase (PDB ID: 1bs0). Thez,
profile is shown on the top, the z, profile on the middle and the z, profile on the bottom.
The catalytical residues, i.e., H133, E175, D204 and K236, are marked in empty circles. (B)
The three-dimensional structures of 8-amino-7-oxononanoate synthase. The colors of the
structures are ramped from blue (negative z-score) to red (positive z-score) according to the
Z, (top), z, (middle) and z, (bottom) profiles. (C) (D) The profiles and three-dimensional
structures of S-adenosylmethionine decarboxylase (PDB ID: 1jen). The catalytic residues are
C82, S229 and H243 (located in chain A)jand Ell.and E67 (located in chain B). (E) (F) The
profiles and three-dimensional structures of phosphoenolpyruvate carboxylase (PDB ID:
1jgqn). The catalytic residues are H138, R196,R581, R699 and R713. (G) (H) The profiles and
three-dimensional of Acid beta-glucosidase The catalytic residues are E235, E340 and

C342 (PDB ID: 261).

Figure 7: The three-dimensional structure of (A) phospholipase A2 (PDB ID: 11T4), (B)
deoxyribose-5-phosphate aldolase (PDB ID: 1P1X), and (C) ASV integrase (1A5V) and (D)
rhinovirus protease (1CQQ). For each figure, the upper one is WCN model, the bottom one is

WCM model. The catalytic residues are represented by the CPK model. The colors of the

structures are ramped from red (negative Z-score) to white (positive Z-score) according toz,

and Z profile.

Figure 8: (A) The z, profiles and (B) the z, profiles of 3 lysozymes: 6lyt (thick solid),

2bqo (dotted) and 2Izt (thin solid).

Figure 9: The statistics of the metal binding residues for every amino acid type. (A) is
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calcium, (B) is Copper, (C) is iron, (D) is magnesium, (E) is manganese, and (F) is zinc.

Figure 10: The histograms of the proportion distributions of metal binding residues and all
residues that computed by mCN and CN profile. The upper plot is compared with the metal
binding residues that computed by mCN model and CN profile. The middle plot is compared
with the metal binding residues and total residues by using mCN model. The bottom plot is
compared with the metal binding residues and total residues by using CN model. (A) is the
results of Ca, (B) is Cu, (C) is Fe, (D) is Mg, (E) is Mn, (F) is ZN and (G) is total proteins in

the dataset.

Figure 11: The error function & curves vs. Z-scores of different profile models. (A) is the
optimal cutoff for CN and (B) is the optimal cutoff for mCN. Although using the best cutoff

for CN, the Err. (&) is still larger than mCNs

Figure 12: (A) The upper plot is-the threesdimensional structures of Psoriasin (PDB ID:
2PSR). The green ball is calcium. The green part is the metal binding residues that predicted
by mCN. The sticks are experimental‘metal binding ‘residues (real metal binding residues).
The red part is the metal binding residues and mCN detected. So, if the sticks are red, it means
the metal binding residues are predicted by mCN (true positive). If the sticks are white, it
means the metal binding residues are missed. The bottom plot is the line chart of z,. The
circle is metal binding residues, almost lie on the wave trough. (B) The result of pseudoazurin,
copper binding protein (PDB ID: 1BQK). (C) The result of Ferritin, iron binding protein
(PDB ID: 1FHA). (D) The result of Myosin, magnesium binding protein (PDB ID: 1KQM,
chain B). (E) The result of Ribonuclease III, manganese binding protein (PDB ID: 1JFZ,

chain B). (F) The result of p300 protein, zinc binding protein (PDB ID: 1L3E, chain B).

Figure 13: This figure shows the ROC curves of different metals that predict by 4 different

models. (A) is the result of Ca, (B) is the result of Cu, (C) is the result of Fe, (D) is the result
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of Mg, (E) is the result of Mn, (F) is the result of Zn.

Figure 14: The three-dimensional structures of Peroxisome targeting signal 1 receptor pex5.
The blue part is the metal binding residue of this protein. And we zoom in the metal binding
site. The blue stick is metal binding residue — E397, and the small blue balls are water that
would interact with magnesium ion, too.

Figure Al: The ROC curve of many different models. aCN is almost the same as WCN and
WCM model, but aCM is not better than WCM model. This reason is the centriod of WCM
and aCM are not change very much.

Figure A2: The three-dimensional structure of (A) Actinidin (PDB ID: 1AEC), (B)
Endo-1,4-beta-xylanase (PDB ID: 1BVV), and (C) Ricin (PDB ID:1BR6) and (D) DNase I
(PDB ID:1DNK). The catalytic residues are represented by the CPK model. The colors of the
structures are ramped from red (negative Z=score) to ‘white (positive Z-score) according to

aCN model.
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TABLES

Table 1. The fraction and weight of each amino acid
type

The fraction of

Amino acid type amino acid type w
(%)

ALA 1.43 1.16
ARG 9.66 1.98
ASN 3.58 1.55
ASP 16.37 2.21
CYS 5.11 1.71
GLN 2.07 1.32
GLU 12.95 2.11
GLY 3.33 1.52
HIS 16.33 2.21
ILE 0.42 0.63
LEU 0.71 0.85
LYS 9.2 1.96
MET 0.46 0.66
PHE 1.56 1.19
PRO 0.21 0.32
SER 5.61 1.75
THR 2.66 1.42
TRP 1.73 1.24
TYR 6.08 1.78

VAL 0.21 0.32
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Table 2. The performance of WCN & WCM models

model S, Sp . o cutoff
Z-score
WCN 0.78 0.81 0.29 0.19 0.22 -0.9
CN 0.69 0.74 0.40 0.26 0.31 -0.7
WCM 0.80 0.80 0.28 0.20 0.20 -0.9
CM 0.76 0.73 0.36 0.27 0.24 -0.7
B-factor 0.62 0.65 0.52 0.35 0.38 -0.5
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Table 3. Comparison with our methods and SLL

Methods S, S, & a B

WCN 0.8 0.81 0.27 0.19 0.2
CN 0.71 0.74 0.39 0.26 0.29
WCM 0.82 0.8 0.27 0.2 0.18
CM 0.77 0.74 0.35 0.26 0.23
B-factor 0.66 0.65 0.49 0.35 0.34

SLL 0.78 0.74 0.35 0.26 0.22
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Table 4. Ligand interact on the interface of multimer

methods S, S, & a y/j S,

WCN (biological unit) 0.81 0.81 0.27 0.19 0.19 -09
WCN (one chain) 0.74 0.71 0.39 0.29 0.26 -0.6
CN(biological unit) 0.76 0.75 0.35 0.25 0.24 -0.8
CN(one chain) 0.58 0.57 0.6 0.43 0.42 -0.2
WCM (biological unit) 0.82 0.77 0.29 0.23 0.18 -0.8
WCM (one chain) 0.77 0.76 0.34 0.24 0.23 -0.8
CM(biological unit) 0.71 0.68 0.43 0.32 0.29 -0.6
CM(one chain) 0.78 0.55 0.5 0.45 0.22 -0.3
B-factor 0.64 0.64 0.5 0.34 0.34 -0.5
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Table 5. The dataset include ligand that interact on the interface of multimer

methods S, Sy & a B Sh

WCN (biological unit) 0.8 0.81 0.28 0.19 0.2 -0.9
WCN (one chain) 0.78 0.81 0.29 0.19 0.22 -0.9
CN(biological unit) 0.74 0.72 0.38 0.28 0.26 -0.7
CN(one chain) 0.69 0.74 0.4 0.26 0.31 -0.7
WCM (biological unit) 0.78 0.8 0.3 0.2 0.22 -0.9
WCM (one chain) 0.8 0.8 0.28 0.2 0.2 -0.9
CM(biological unit) 0.68 0.72 0.42 0.28 0.32 -0.7
CM(one chain) 0.76 0.73 0.36 0.27 0.24 -0.7
B-factor 0.62 0.65 0.52 0.35 0.38 -0.5
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Table 6. The dataset exclude ligand that interact on the interface of multimer

methods S, S & B Sh

WCN (biological unit) 0.81 0.81 0.28 0.19 0.19 -0.9
WCN (one chain) 0.79 0.81 0.28 0.19 0.21 -0.9
CN(biological unit) 0.71 0.72 0.4 0.28 0.29 -0.7
CN(one chain) 0.72 0.74 0.39 0.26 0.28 -0.7
WCM (biological unit) 0.79 0.8 0.29 0.2 0.21 -0.9
WCM (one chain) 0.81 0.8 0.28 0.2 0.19 -0.9
CM(biological unit) 0.64 0.72 0.45 0.28 0.36 -0.7
CM(one chain) 0.78 0.74 0.34 026 0.22 -0.7
B-factor 0.62 0.65 0.52 0.35 0.38 -0.5
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Table 7. The specific atoms for different metals.

Metal The atoms have high probability to interact with metal

Ca O(backbone) O(side chain of ASP GLU ASN)

Cu S(side chain),N(His),O(side chain)

Fe S(Cys),N(His),O(side chain)

Mg N(His),O(backbone) O(side chain of ASP GLU ASN THR SER)
Mn N(His),O(backbone) O(side chain of ASP GLU ASN)

Zn S(Cys),N(His),O(side chain)
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Table 8. The performance of CN model

metal selected atoms S Sy & a B cutoft
z-score
Ca Cao 0.53 0.54 0.66 0.46 0.47 -0.1
Cu Cao 0.73 0.79 0.34 0.21 0.27 -09
Fe Cao 0.77 0.74 0.35 0.26 0.23 -0.7
Mg Ca 0.68 0.67 0.46 0.33 0.32 -0.5
Mn Ca 0.76 0.71 0.38 0.30 0.24 -0.6

Zn  Coa 0.57 0.64 0.56 0.36 0.43 -0.4
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Table 9. The performance of mMCN model

cutoft
metal Selected atoms S, S, & a yii "
Z-score

O(backbone),

Ca ) . 0.73 0.78 0.35 0.22 0.28 -0.8
O(side chain in Asp Glu Asn)
S(side chain), N(His),

Cu ) : 0.95 0.92 0.10 0.09 0.05 -0.7
O(side chain)
S(Cys), N(His),

Fe ( y ) (, ) 0.87 0.97 0.14 0.03 0.14 -1.3
O(side chain)
N(His), O(backbone),

Mg  O(side chain of Asp Glu Asn 0.78 0.81 0.29 0.19 0.22 -0.9
Thr Ser)
N(His),O(backbone),

Mn ) ) 0.89 0.89 0.16 0.11 0.12 -1.2
O(side chain of Asp Glu Asn)
S(Cys),N(His),

Zn ) . 0.92 0.84 0.18 0.16 0.09 -0.1
O(side chain)
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Table 10. When FPR = 5%, TPR for four methods

metals
Ca Cu Fe Mg Mn Zn
methods
Sodhi (using NN ) 0.30 0.36 0.49 0.32 0.39 0.48
Sodhi (using SVM ) 0.30 0.40 0.49 0.35 0.56 0.67
CN 0.07 0.31 0.31 0.13 0.23 0.16
mCN 0.51 0.89 0.87 0.57 0.83 0.60
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Table Al. The performance of aCN and aCM model

methods Sn Sy & a B cutoft
z-score
WCN 0.78 0.81 0.29 0.19 0.22 -0.9
CN 0.69 0.74 0.4 0.26 0.31 -0.7
WCM 0.8 0.8 0.28 0.2 0.2 -0.9
CN 0.76 0.73 0.36 0.27 0.24 -0.7
B-factor 0.62 0.65 0.52 0.35 0.38 -0.5
aCN 0.78 0.81 0.29 0.19 0.22 -0.9
aCM 0.74 0.81 0.32 0.19 0.26 -0.9
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FIGURES

(A) (B)

(C)

Figure 1 : The diagrams of three methods — naive CN, CN and WCN model.
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Figure 8 : The Z-score fluctuation of three lysozyme computed by BF, CN and CM
models.
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Figure 10 : The histograms of the comparison with CN and mCN models for each metal.
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Figure 10 : The histograms of the comparison with-CN and mCN models for each metal.
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Figure 10 : The histograms of the comparison with CN and mCN models for each metal.
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Figure 11 : The error function & curves vs. Z-scores of two profile models for each metal.
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Figure 13 : Using ROC curve to Compare with mCN model and other methods.
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Figure 14 : Excepted case that water interactwith metal.
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Figure Al : Comparison with aCN and other models by using ROC curve
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Table S1: Dataset for sequence identity <= 30% from CSA

12as:A |lapt:E  |lbgl:C [1cf2:Q |ldae:  [le2t:F If71:A 1ge7:A |1i19:A
1351: [lapx:A [Ibh2: |lcfr:  [1db3:A [le3v:A [If80:FCA [Igeq:B [lile:A
13pk:A |lapy:AB |1bhg:B [lcg2:C [1dbf:C [le5q:E  [1f8m:C [Iget:BA|lili:P
1a05:BA|laq0:A |1bix:  |lcg6:A |1dbt:B [lebe:A  [1f8r:B Igim:  |1i29:A
la0i:  |lag2:  [Ibjo:A |lcgk:A [ldci:A |le7l:AB [1f8x:B Igns:A [li6bp:A
1a0j:C |larl:A |1bjp:C |lchd: |ldco:C |[le7q:A [I1fa0:A lgog: [1178:B
lal6:  |larzzB  |1bmt:A |lchk:B [1dd8:B |leb6:A |1fc4:B lgoj:A |1i7q:AB
la26:  |last: [Ibol:A |lchm:B [Ide6:A [lebf:A  [lfcb:A Igox: [1i8d:C
la2t:  |lasy:A [Ibol:A |1ci8:B [lIdek:A [lec9:C [lfcq:A lgpl:B [1i19a:A
1a30:AB|latl:A |lboo:A |[lcjy:A [1df9:B [lecf:B 1fdy:C Igp5:A |1id;:B
ladg:B |laug:D |lbou:B |lck7:A |ldfo:B [lecl: 1fgh: lgpa:A |[1ig8:A
ladi:A |laui:A  |1bp2: [lcll:A [1dgs:B |lecm:AB [1fgj:A lgpj:A |1im5:A
la4l:A |lauk:  |lbgc:A |[lens:A [1dhf:B  [lecx:B  [lfiq:C lgpm:C |lima:B
1a50:B |lauo:A |lbrm:B |lcoy:  [1dhp:B |[leej:A lfnb: lgpr:  |linp:
1a65:A |lauw:AC|1brw:B |l1cqj:AB [Idhr: [lef0:A  [Ifoa:A  [1gg8:A [liph:A
1a69:A |lavq:C |1bsO:A |lcqq:A |1dil:B [lef8:A  [Ifob:A lgqg:B |[1ir3:A
1a79:B |law8:AE|1bs4:A |lcsl:CA[ldin:_  [leg7:B  [Ifoh:D  |Igsa: [lit4:A
la8h: |lax4:B |1bs9: |1ct9:D |ldio:L [leh5:A  [I1fps: 1gt7:A [litq:B
la8q:_ |lay4:A |lbtl:A |[Ictn:  [1dizzA |leh6:A  [1fq0:A  [Igtp:L |litx:A
1a95:C |lazw:A |lbtl:  |lctt:  [1djO:A“|lehk:AB [1fr2:B Iguf:B [liud:A
lab4:  |1b02:A [Ibvv: |lcv2:A JIdjLA. [lehy:A  [1fr8:A 1gxs:C [liyd:B
lab8:B |1b04:A |lbvz:A |lcvr:Al [1djo:BA |lei5:A Ifro:C 1gz6:A |1j00:A
labr:A |1b3r:B  |1bwp:  [lcwO:A ' |1dI2:A {lelq:B 1fua: 1h19:A |1j09:A
laf7:  |[1b57:A [lbwz:A |lcwy:A [1dli:Aflemd: ~ [Ifug:BA |[lh2r:L ([1j49:B
lafr:D |1b5q:B |lbxr:B |[1cz0:A% |ldmu:A-fleq2:A. [lfui:E 1h3i:B |1j53:A
lafw:B |1b5t:A [lbya: |lczl:A {ldnk:A [lesc:i* 1fuq:BA (1h54:B [1;79:B
lagm: [1b65:D [lbzc:A |lczf:B [ldnp:Af‘{leso: 1fva:B 1h70:A [1j7g:A
lagy: |1b66:A |1bzy:B |1d0s:A |1do6:B [letO:A Ifwk:D  [Ih7x:C |ljag:D
lah7:  |1b6b:B |1cOk:A [1dlq:B [1do8:A |leug:A |[1fy2:A  |[lhdh:B |ljch:A
lahj:CD |1b6g:  |1c2t:A |1d2r:E |ldod:  [leuu:  [Ig0d:A [lhfe:M |1jdw:
1aj0: |1b73:A [1c3c:BA|1d2t:A  [Idpg:A [leuy:A [1g24:C [lhfs:  [ljen:AB
12j8:A |1b7y:A |1c3j:A |[1d3g:A |[ldga:AB|levy:A [1g64:B  [lhiv:AB|1jfl:A
lak0:  |1b&8f:A [Ic4z:B |1d4a:B [l1dqr:AB |[lexn:A  [Ig6t:A lhja:BC [1jh6:A
lakd: |1b8g:B [1c82:A |1d4c:A [ldgs:B [ley2:A [1g72:A |lhka: [Ijhf:A
lakm:A [1b93:A [1c9u:B [1d5r:A  |1dtw:BA|leyi:A 1g79:A  |lhpl:A [1jkm:B
lako:  |1b9h:A |lca0:CG|ldém:A [1dup:A [leyp:A [1g8f:A  [lhqc:A |1jm6:A
lal6:  |lbcr:AB [Ica2: |1d6o:A [Idw9:FA|lezl:A [1g8p:A [lhr6:BE[ljms:A
lald:  |1bd0:AB|lca3:  [1d7r:A [ldxe:A [lez2:A  [1g99:A  [lhrd:B |1jnr:AB
lalk:A |1bd3:B [Icb7:D |1d8c:A [ldzr:A |[1f2d:A  [Iga8:A  [lhrk:A [ljof:E
lamo:A |1bf2:  |1cb8:A |1d8d:AB|leOc:A [1f2v:A  [lgal: lhto:B [1jgn:A
lamp: [1bfd:  [lcd5:A |1d8h:A [1e19:B [1f48:A  |[lgcb:  |[1hv9:A |1js4:B
lamy: |[1bg0:  |lcel:A [1d8t:A |lela:A [1f6d:B Igcu:A  [1hxq:B |1jxa:BC
laop:  |lbg6:  |lcev:A |[ldaa:A [le2a:B |1f75:B  |lgdh:B  [lhzf:A |1jxh:A
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1kOw:B [lluc:A  |Insf:_ |Ipja:A Igmh:B [1slm:  |[1vOy:A |2ace:  [|2toh:A
1k30:A [1lvh:A  [Insj: [Ipjb:A Igpr:AB |Isml:A [1v25:B |2acy:  [2tps:A
1k32:A |llxa: Insp:_ |1pjh:A 1qq5:A  [Ismn:B |lvao:B |2adm:A |2tsl:

1k4l:A [llya:AD [Invm:G |1pkn: Iqrg:A  |lsnn:A [lIvas:A |2ahj:CD |2xis:

1k4t:A [Im21:B [Invt:B |lpma:QA [lqrr:A  |lsox:A [lvid:  |2amg:  |[2ypn:A
1k82:D [Im6k:A |Inw9:B |1pmi:_ 1gsg:G  |lssx:A |lvie:  [2ayh:  |(3cla:_

lkae:A |[lmas:A |[Inww:A |1pnl:B Igtn:A  |Istc:E  [Ivlb:A  |2bbk:L  |3csm:A
lkaz:  |[Imbb:  |Ilnzy:C |lpow:A |lqum:A |Istd:  |lvnc:  [2bhg:A |3mdd:A
1kc7:A |Imdr: [1004:E |1psl:B 1qv0:A  |1szj:R |lvom: [2bif:B  [3nos:A
lkcz:A |[Imhl:CA [1098:A |1ps9:A  [1gx3:A |1tOu:B |lvzx:B |2bkr:A  |3pca:N
lkdg:A |[Imht:A  |109i:A |lpsd:A 1qz9:A  |1t4c:AB|1wOh:A |2bmi:A  |3rlr:A
lkez:C [Imhy:D |loac:B [lpud: Ir16:A  |1t7d:A |lwlo:A [2bx4:A  [4kbp:A
Ikfu:L [Imj9:A |loas:A [lpvd:A  [Irlj:A Itde:  |1w2n:A |[2cpo:  |Scox:D
Ikfx:LL |[Imka:BA [loba:A [1pvi:B 1r30:A  |1tdj: . |1wd8:A [2cpu:A  [5cpa:
lkim:B [Imla:  |lodt:C |lpwh:C [1r4f:B Ithg: |1wgi:A [2dhn:  |Senl:

Iknp:A |[Imlv:B [loe8:B |lpwv:B |lrdz:A  [1ti6:C |1lwnw:C [2dIn:  [5fit:

lkny:B [Imok:D [lofd:A |1pxv:B Irow:A  |1tml:  [Ix7d:A |2dor:B  |5rsa:

lkp2:A |Imoq:_ [lofg:F |lpya:AFE [Ir76:A  |1tmo:  |1x9h:A |2ebn:_ |7atj:A

lkra:C [Impx:C |logl:A [Ipyl:B Ira2: Itox:A |1x9y:B |2eng:  |7odc:A
lksj:A  |Ilmpy:B [loh9:A |lpym:B  [lrbl:A Itph:1 [1xgm:B |2f61:A |8tln:E

lkws:A [Imgw:A [loj4:B |1pz3:B ledd: o Itrk:A  |1xik:A  [2fok:B  [9pap:
lkyq:B |[Imro:AB |lok4:H |1q18:B .+ {lreq:C {ltyfil |I1xny:AB|2gsa:A

lkyw:F |[Imrq:A |lokg:A |1@3n:A  {irgqiA  |ltys:  |Ixqw:A [2hdh:A

lkzh:A [Imuc:A |lonr:A [1q3q:C o [lthe:A < |1tz3:A [Ixrs:B  [2hgs:A

1100:B  [Imud:A |lopm:A [1q91:A' [1rhs:- luSwB |Ixtc:A [2isd:B

111d:A  [Imug:A |lor8:A [lgam:A. |1rk2:CT|lu7u:A |1xva:B [2jcw:

LD |[Imvn:A |lord:B [lgaz:A Iro7:A  [u8v:C |Ixvt:A [2lip:

Il1r:A  |[Imyr: [loro:A |lgba: Iroz:A" " “|luae: |Ixyz:A |2nac:A

116p:A [1n20:A [los7:B |lqen:A  |lrpt: luag:  |ly9m:A [2nlr:A

117n:B  [In80:BC |lotg:C [1qdl:A |[lrpx:C  [luam:A |lybq:A [2nmt:A

117q:A [Inba:B |loya: [1qd6:CD |lrql:B luaq:B [lybv:A [2npx:

118t:A  |Indh:  |loyg:A |lqdl:AB |[1rtf:B luas:A [lycf:A  [2oat:C

Ilam: [Indi:A [Iplx:A |1qf6:A Irtu: luch: |lygh:B [2pda:A

Ilba:  [Indo:AC |1p3d:A |l1qfe:B Irud:A  |1uf7:B |[lysc: |2pec:

Ilbu:_ [Inf9:A |1p4n:A |1gfm:A  [lrvv:A  |1uk7:A |lyvedl [2pfl:A

llcb:  [Inhx:A [lp4r:B |lqgx:A  [1s20:E  |lula:  [1z9h:B |2pgd:

llci:_ |Ini4:BC [1p5d:X |1gh9:A  [1s2k:A  |lunl:B |lzel:A [2phk:A

Ildm:  |Inid: Ipa9:A [1ghf:B 1s31:A luok: |lzio:  |2pia:_

1lij:A  |Inir:A Iptk:A |1ghg:A  [Is76:D  [luqr:A |1zm2:F |2plc:

Ilio:A  |Inkk:C [Ipfq:B |lgho:A  |1s95:B  [luqt:B |lzrz:A [2pth:

1A |Inln:A [Ipgs: |1gj4:A 1s9¢:B  |luro:A [lzym:B |2sqc:A

IIml:_ |Inlw:A  |lpii:_  |lqje:A Isca: lush:  [2061: [2tdt:

lInh:  [Inml:A [Ipix:B |1qk2:B Ises:B 1v04:A |2a0n:A [2thi:A

1ltq:A  |Inn4:B  [1pj5:A |1glh:A Isll: IvOe:B [2abk:  |2tmd:B
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