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利用蛋白質結構預測蛋白質內的重要功能位置 

 

學生：于松桓         指導教授：黃鎮剛 

 

國立交通大學生物資訊研究所碩士班 

摘 要       

第一章－活性位置（active site） 

由於現在結構基因組學（structural genomics）的研究以驚人的速度發展，

相當多的蛋白質結構已被解出並存放於蛋白質資料銀行（Protein Data 

Bank - PDB）這個資料庫中。因著前面說到的情形，逐漸出現許多不知道

功能的蛋白質，而發展利用蛋白質結構直接預測蛋白質內活性位置的方法

也變得日漸重要。有許多特性與蛋白質的活性位置有關聯，例如：越密集

的區域（higher packing density）、越靠近蛋白質幾何中心（structural 

centrality）、熱擾動（thermal fluctuations）越低的殘基（residues），

越有可能是活性位置，根據這些特性我們發展出一個簡單的方法來預測蛋

白質的活性位置。若我們給予這些方法所計算出來的結果一個合適的闕值

（threshold），我們可以在 760 個非同源性酵素（nonhomologous enzyme）

中預測到 76%的活性位置，並且只有 27%的假陽性（false positive）。倘

若我們加入蛋白質序列（sequence）的資訊，用此資訊來加權原來的資料，

可以預測到 80%活性位置，只有 20%的假陽性。我們的方法不需要序列或結

構的比對（alignment），或利用結構模版庫（structural template 

library），此方法也避免了繁雜的溶劑表面易溶性（solvent accessible 

surface）和分子力學（molecular mechanical）的計算。 我們相信我們

的方法會是一個預測蛋白質活性位置相當有用的方法，並且比其他的方法

還要完整。 
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第二章－金屬離子鍵結位置（metal binding site） 

金屬離子在生物體中扮演相當重要的角色，例如：幫助酵素催化、調節

生物體內機能、提高結構穩定性等。由於目前蛋白質結構快速增加的現代，

預測蛋白質內金屬離子的鍵結位置也就日趨重要。我們知道若是要讓金屬

離子穩定的存在在蛋白質中，必須產生螯合物（chelate）。而要形成螯合

物其中有一個因素非常重要，就是金屬離子周圍必須有足夠的原子與它產

生配位（coordinate）。這個特性非常類似我們第一章提到的依賴距離之接

觸點數（distance-dependent protein contact-number 簡稱 CN）的模型，

即指明若有許多能夠與金屬離子反應的原子在一個殘基的周圍，此殘基就

極有可能是金屬離子鍵結位置。一般來說，會與金屬離子產生螯合物的原

子為－氮（N）、硫（S）、氧（O）。根據這個想法，我們利用 CN 模型的想法，

但是將 Cα換成像氮（N）、硫（S）、氧（O）的原子，用此方法來預測金屬離

子鍵結位置。此方法可以在 Sodhi 的資料組中正確預測 72.4%鈣離子、94.7%

銅離子、86.5%鐵離子、77.6%鎂離子、88.5%錳離子和 91.5%鋅離子的鍵結

位置。 
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Prediction of functional sites of proteins from protein structures 
 

Student: Sung-Huan Yu       Advisor: Jenn-Kang Hwang 

 

Institute of Bioinformatics 

National Chiao Tung University 

ABSTRACT 

Chapter 1 – active site 

Due to the tremendous advances in structural genomics research, an incredible 

number of protein structures has been solved and deposited in PDB. As a result, 

the number of structures with unknown function also climbs up accordingly. It 

becomes increasingly important that one can predict functional sites directly 

from protein structures. Based on the distinct properties associated with the 

active-site residues such as higher packing density, proximity to structural 

centrality and smaller thermal fluctuations, we developed a simple method for 

detection of the active sites of enzymes to compute profiles based on the 

aforementioned properties. Using proper threshold values for the profiles, we are 

able to detect up to 76% of catalytic residues with 27% of false positives for a 

data set comprising 760 nonhomologous enzymes. If additional sequence 

information is included, the sequence-weighed profile method can be improved 

to detect 80% of catalytic residues with 20% of false positives. Our method does 

not require sequence or structural alignment, or a structural template library, and 

it avoids solvent accessible surface or molecular mechanical calculations. We 

believe that our method will be a useful tool for detection of possible active sites 

from protein structures to complement other existing methods. 
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Chapter 2 – metal binding site 

Metal ions are crucial role in organisms. They participate in enzyme catalysis, 

play regulatory roles, and help maintain protein structure. In this era, there is 

incredible number of protein structures solved. So, the importance of predicting 

metal binding site is increased. We all know that if there are metal ions stable 

existed in protein, the metal ions should form chelate. One of the important 

factors to form chelate is there should be enough atoms to coordinate with metal 

ion. The characteristic is very similar as distance-dependent protein 

contact-number model (CN) that we introduced in chapter 1. This means that if 

there are more atoms that are high probability to interact with metal ion around 

the residue, that would be probably metal binding residue. In general, the atoms 

that have high probability to interact with metal are such as N, S, O. Base on the 

thought, we follow the aspect of CN but use the atoms, like N, S, O, to replaced 

Cα to predict metal binding residues. This method can detect Ca – 72.4%, Cu – 

94.7%, Fe – 86.5%, Mg – 77.6%, Mn – 88.5%, and Zn – 91.5% in Sodhi’s 

dataset. 
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CHAPTER 1 – ACTIVE SITE 

1. INTRODUCTION 

Due to the enormous advances made in recent years in structural biology, the number of 

protein structures deposited in Protein Data Bank (PDB) has increased from 13622 in 2000 to 

around 49620 as of March 11, 2008 – the total number nearly quadrupled during this period. 

The vast number of structures provides a great opportunity to study the structure-function 

relationship directly from the protein structures. It becomes especially important nowadays 

due to an increasing number of structures with unknown function being deposited in PDB. 

Currently, a number of methods1; 2; 3; 4; 5; 6; 7; 8; 9, based on the observation that most catalytic 

site structures are highly conserved between remotely related enzymes, predict protein 

function by searching protein structures for the known three-dimensional catalytic templates. 

For example, Thornton and co-workers5; 6 developed a methodology, utilizing a library of 

three-dimensional structural templates composed of small number of residues, to detect 

catalytic sites and ligand binding sites of proteins. Lu et al.4 developed a local fragment 

transformation method to detect the ligand-binding sites based on a loosely defined structural 

template. This method is useful for detecting DNA-binding sites, which are usually of highly 

variable conformations10; 11; 12. The effectiveness of these methods depends on whether the 

pre- defined templates will provide a fairly thorough coverage of the known structures6. These 

methods are unable to detect novel catalytic residue conformation that is not matched by any 

known structural templates in the library. There are other methods for prediction of protein 

function based on distinct structural or dynamical properties associated with active-site 

structures13; 14; 15; 16. For example, Amitai et al.13 transformed the protein structure into residue 

interaction graphs with each amino acid residue represented as a graph node and the 

interaction between them as a graph edge, from which they compute network closeness of 

each residue. They were able to identify active site residues in 70% of 178 representative 
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structures by computing residues' closeness together with their solvent surface accessibility. 

Ben-Shimon and Eisenstein14 observed that the catalytic residues are usually located in small 

fractions of the exposed residues closest to the protein centroid. They developed a novel 

algorithm called EnSite to detect the active sites of enzymes. EnSite examines only 5% of the 

exposed surface closest to the centroid, instead of identifying all the cavities or depressions on 

the enzyme surface. Ensite clusters these surface segments, which are then ranked by their 

area size for possible active sites. Recently, Sacquin-Mora et al.16 computed the force 

constants of moving any given amino acid with respect to other residues in the protein. They 

found that the force constants associated with the catalytic residues are usually higher than 

those of other non-catalytic residues. Choosing an appropriate threshold value, they are able 

to detect potential active-site residues using Brownian dynamics simulations. The distinct 

property of large force constant associated with active-site residues is consistent with the 

recent reports17; 18 that the catalytic residues usually have lower B-factors than other 

non-catalytic residues. Since the B- factor is a measure of the atomic mean-square 

displacement, a residue with smaller B-factors will be more rigid and, hence, be associated 

with a larger force constant. There are recent reports19; 20 that the atom's B-factor is linearly 

proportional to its squared distance from the protein centroid. In other word, the residues in 

proximity to the protein centroid will have smaller thermal fluctuations or more rigid than 

those farther away from the protein centroid. In addition, a recent study21 shows that the 

atom's thermal fluctuations is in linear inverse proportion to the number of noncovalent 

neighboring atoms (or protein contact number) of this atom. Here we will develop some 

simple methods for catalytic sites to compute the profiles based on the properties like contact 

number, residue centrality and B-factors.  

2. METHODS 
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2.1. The B-factor profile 

The X-ray B-factor profile of a protein is denoted as ),,( 21 Nbbb …=b , where bi  is the 

B-factor of the Cα atom of the ith  residue taken from the PDB file and N  is the number of 

residues of the protein. We will also normalize the B-factor profiles to the corresponding 

z-scores: bi
b
i bbz σ/)( −= , where b  and σ b are the mean and standard deviation of the 

B-factors. We will refer to the normalized B-factor profile as the zb -profile or the BF profile. 

2.2. The protein contact-number profile 

2.2.1. The naive contact-number model 

The protein contact number is conventionally defined as the number of the neighboring 

residues that are within a cut-off radius of the central residue, which amounts to giving an 

equal unitary weight to every contacting atom regardless of its distance to the central atom. 

∑
≠

−=
N

ij
iji rrc )( 0δ                                    (1) 

where ijr  is the distance between Cα atoms of residue i  and j , and 1)( =xδ  if 0≥x  

and 0)( =xδ  if 0<x . The cut-off distance 0r  is usually defined in the range 10 to 12 Å. 

This definition ignores that an atom at a nearer distance will have a greater effect than the 

atoms farther sway. For convenience, we will refer to this as the naïve contact-number (nCN) 

model. 

2.2.2. The contact-number model 

To take into account the distance factor, we define a distance-dependent contact number in  

by weighing the integral contact number with the factor 2/1 ijr , which is the distance between 

Cα atoms of residue i  and j : 
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∑
≠

−=
N

ij ij
i r

n 2
1                                      (2) 

where N  is the total number of the residues of the protein. As in the case of the B-factor 

profile, we also normalize in  to its Z-score: ni
n
i nnZ σ/)( −= , where n  and nσ  are the 

mean and the standard deviation of n . Since the contact number is defined as a negative 

value (Eq. 2), we can directly compare the bz  profile with the nz  profile. For convenience, 

we will refer to this model as the contact-number (CN) model or the nz  model. 

2.2.3. The weighted contact-number model 

From the CN model (i.e., Eq. 2), we can further the weighted contact-number (WCN) model. 

∑
≠

−=
N

ij ij
ii r

w 2

1ν                                      (3) 

where, given that the residue i  is of type a , iw  is calculated by 

1)log( += ai cw                                  (4) 

where ac  is the frequency of a catalytic amino acid of type a . The addition of the constant 

1 is for making iw  positive. The weighted contact number iν  is normalized to 

ν
ν ννν /)( −= iiZ , where ν  and νσ  are the mean and the standard deviation of ν . This 

weighted contact-number model will be referred to as the νz  model. For illustration, we 

show schematically the nCN model, the CN model and the WCN model in Figure 1. 

2.3. The centroid-model profile 

The previous study20; 21 showed that there is a good correlation between the B-factor Bi  and 

the square of the centroid distance ri
2 ,  

)()( 00
2 rrrr −•−= iiir         (5) 

where ri is the coordinate of Cα atom of the ith  residue, and r0  is the centroid of the 
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protein, i.e., r0 = rii∑ /N . We will refer to this model as the centroid model (CM). For easy 

of comparison, we normalize ri
2  to zi

r 2

= (ri
2 − r 2 ) /σ

r 2 , where r 2  and σ
r 2  are the mean 

and the standard deviation of r2 . The normalized centroid-model (CM) profile will be 

referred to as the z
r 2 -profile.  

Similar to the WCN model, we will also define an amino-acid weighted centroid distance, 

ρi
2 = wi(sΔri

2 − Rmax
2 )       (6) 

where s = (Rmax
2 − Rmin

2 ) /(max{ri
2} − min{ri

2})  and Δri
2 = ri

2 − min{ri
2} .The seemingly 

complicated form of Eq. 6 is to normalize ρi
2  to the range between Rmin

2  and Rmax
2 . Here, 

Rmin
2  and Rmax

2  are set to 0.5 and 2.5. respectively. We will refer to this model as the 

weighted centroid model (WCM). The normalized WCN profile will be also referred to as the 

z
ρ2 -profile. 

2.4. Assessment indices 

To evaluate the quality of our predictions, we use the standard definitions of sensitivity and 

specificity16. Sensitivity Sn  is defined as the number of correctly predicted functional 

residues (i.e., true positives or TP ) divided by the total number of experimentally defined 

functional residues (i.e., T ). Specificity Sp  is defined as the number of correctly predicted 

non-functional residues (i.e., true negatives or TN ) divided by the total number of 

experimentally defined non-functional residues (i.e., F ). The false positive rate is defined as 

pS−=1α , and the false negative rate β =1− Sn.  

2.5. Data sets 

We selected the structures of enzymes from the Catalytic Site Atlas22 using blastclust 

from the collection of BLAST tools23. The pair sequence identity is set to ≤ 30%. The data 
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set comprises 760 x-ray structures, which include 333 monomeric enzymes and 427 

multimeric enzymes. We can also divide the dataset to two sub-datasets – the ligand binding 

cross chains or not. The ligands no cross chains are 715 in our dataset. 

3. RESULTS 

3.1. The frequency distribution of amino acid types in catalytic sites 

Figure 2 shows the frequency distribution of the 20 amino acid types occurring in the catalytic 

sites, compared with that of all structures in the data set. The top 5 amino acid types, i.e., D, H, 

E, R and K that occur in the catalytic sites account for 65% of catalytic residues and all are 

charged amino acids. The polar amino acids, i.e., C, S, N, Q, T and Y provide 27% of catalytic 

residues. In all, the charged and the polar amino acids account for around 92% of the catalytic 

residues, while the rest nonpolar amino acids account for only 8%. These results are similar to 

the analysis results of a previous report24 using a smaller data set. We use the information to 

calculate the weight and listed in Table 1. The weight is calculated through Eq. 4. 

3.2. The profiles distributions 

Figure 3A shows the comparison with catalytic residues and all residues of zb, zn and νz  . 

The mean of zb of the catalytic residues is –0.48, while that of all residues is 0.00. Using the 

t-test, we obtain the p-value < 2.2 ×10−16 , which indicates the difference is statistically 

significant. The catalytic residues tend to be near the negative side of the zb than the other 

non-catalytic residues do. For example, 38% of active residues are in the region of zb ≤ −1, 

compared with only 19% of total residues. These results are consistent with the previous 

reports17; 18 that the catalytic residues have smaller B-factors than the other non-catalytic 

residues. The mean of z
r 2  of the catalytic residues is –1.00 and that of all residues is 0.00. 

There are even more catalytic residues lying toward the negative side of z
r 2  -- 66% of active 
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residues in the region of zr2 ≤ −1, compared with 24% of total residues. The mean of 2ρ
z  of 

the catalytic residues is –1.54 and that of all residues is 0.00. There are even more catalytic 

residues lying toward the negative side of 2ρ
z  -- 77% of active residues in the region of 

12 −≤ρz , compared with 18% of total residues. The difference is more obviously than 2r
z . 

Figure 3B compares the distributions of zb, zn and νz of the catalytic residues and of all 

residues. The zb profile already analyses before. The mean of zn of the catalytic residues 

is –1.00 and that of all residues is 0.00. There are 70% of active residues in the region of 

1−≤nz , compared with 23% of total residues. The mean of νz  of the catalytic residues 

is –1.53, about half unit of the standard deviation shifted to the left, while that of all residues 

is 0.00. There are 76% of active residues in the region of 1−≤νz , compared with 17% of 

total residues. The difference is more obviously than nz . Taken together, we found that the 

catalytic residues tend to bias toward the negative z-scores in these profiles, i.e., they tend to 

be more rigid, near the centroid of the protein structure and in the more compact region. 

3.3. The performances of different models 

To discriminate the catalytic residues from the non-catalytic residues, we will determine the 

optimal cutoff value by minimizing the error function16 defined as ε = (1− Sn )2 + (1− Sp )2 . 

Figure 4 shows the curves of ε  against z-scores of different profile distributions. The 

optimal z-score cutoff values, at which the corresponding ε  is minimal, for the BF profile 

is –0.5, the CN profile –0.7, the CM profile –0.7, the WCN profile –0.9 and the WCM 

profile –0.9. 

3.4. Prediction of the active residues 

We followed Sacquin-Mora’s paper16 to generate ROC curves. Figure 5 compares the ROC 

curves with different models. Though the BF profiles can distinguish active residues from 
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non-active residues, it performs much worse than the other 4 models. While the CM performs 

better than the CN model, the WCM and the WCN model perform similarly. Table 2 compares 

predictive performances with the five models. 

3.5. Examples 

3.5.1. Examples of CN and CM 

As a typical example, figure 6A shows the profiles of 8-amino-7-oxononanoate synthase 

(PDB ID: 1bs0)25. It has 4 catalytical residues, i.e., H133, E175, D204 and K236. As shown in 

the zb profile, the z-scores D204 and K236 are close to the minima, indicating that they are 

quite rigid. But the z-scores H133 and E175 are higher, indicating that they are relatively 

flexible. On the other hand, as shown in the z
r 2  profile, the z-scores of the catalytic residues 

all coincide with the minima of the profile, indicating that these residues are all close to the 

centroid position of the protein structure. The zn profile shows that the catalytic residues are 

located in the compact regions of the structure. This is consistent with our recent finding21 

that protein centroid region is usually the protein's most compact region. Note that the shape 

of the z
r 2  profile of this particular example is very similar to the old zn  profile. The 

relationship between these 2 types of profiles is in fact a general one, as shown in our 

previous study21. Figure 6B shows the three-dimensional structure of 

8-amino-7-oxononanoate synthase with colors ramped according to the zb , z
r 2  and zn 

profiles, respectively. Another example is given by S-adenosylmethionine decarboxylase 

(PDB ID: 1jen)26, which has 5 catalytic residues C82, S229 and H243 (located in chain A), 

and E11 and E67 (located in chain B). Its profiles are shown in Figure 6C. All of the catalytic 

residues except E67 on chain B are quite rigid. All of them are close to the centroid position 

and are buried in the very compact regions. Notice again the similarity between z
r 2  and zn 

profiles in Figure 6C. The three-dimensional structure with colors mapped according to the 
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zb , z
r 2  and zn  profiles, respectively, are shown in Figure 6D. More examples 

phosphoenolpyruvate carboxylase (PDB ID: 1jqn)27, Acid beta-glucosidase  (PDB ID: 2f61)28 

are shown in Figure 6E-H respectively. 

3.5.2. Examples of WCN and WCM 

As typical examples, Figure 7 shows the three-dimensional structure of (A) prokaryotic 

phospholipase A2(1IT4)29, hydrolyzing the 2-acyl ester bonds of 

1,2-diacylalycero-3-phospholipids, has two catalytic residues, His-64 and Asp-85; (B) 

deoxyribose-5-phosphate aldolase (1P1X) 30 has three catalytic residues: Asp-102, Lys-167 

and Lys-201. It is the only known aldolase that uses aldehydes as both aldol donor and 

accepter molecules in the aldol reaction; (C) ASV integrase (1A5V)31 has three catalytic 

residues: Asp-64, Asp-121 and Lys-164. Avian sarcoma virus (ASV) is a retrovirus with many 

similarities to HIV. Integrase would help the cDNA inserted into the cellular DNA of host to 

form integrated proviral DNA; (D) rhinovirus 3C protease (1CQQ)32. The catalytic residues of 

the enzyme are His-40, Glu-71 and Cys-147. The 3C proteinase is a cysteine protease with a 

serine protease-like fold that are responsible for the bulk of polyprotein processing in the 

Picornaviridae. Most cleavages occur between Gln-Gly peptide bonds. 

The colors of these structures are ramped from red (negative Z -score) to white (positive 

Z -score) in accord with the νZ and 2ρ
z  profile, i.e., the residues of the most negative 

Z-score values are colored on the red end of the red-white spectrum, while the most positive 

Z-score values are colored on the other end of the red-white spectrum. As shown in the 

figures, most catalytic residues of these enzymes have more negative νZ  and 2ρ
z values. 

3.6. Comparison with other methods 
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Sacquin-Mora, Laforet and Lavery (SLL)16 have recently developed a method for detection of 

active-site residues to calculate force constants to move any given amino acid residue with 

respect to the other residues in the protein. Their results indicate that the catalytic residues are 

usually associated with higher force constants or, equivalently, they are more rigid than other 

non-catalytic residues. Using Brownian dynamics simulation, they detected 78% of catalytic 

residues with 26% of false positives for a dataset18 of 98 nonhomologous enzymes, which 

covers 6 EC classes: 93 monomeric enzymes and 5 multimeric enzymes. In Table 3, we 

compare the results of our methods with those of SLL. The results of νZ and 2ρ
z  models are 

significantly better than those of SLL. It is interesting to note that, though both SLL and the 

bZ  model are based on the rigidity of catalytic residues, SLL performs significantly better. In 

fact, all the profile models based on contact number and centroid distance outperform the bZ , 

despite that these properties are closely related to the B-factors. This may suggest that the 

X-ray B-factors are probably not a good measure of atomic rigidity as others. 

It is worth noting that, in the cases of ASV integrase (Fig. 4C) and rhinovirus 3C protease (Fig. 

4D), their catalytic residues are located on the protein surface. These two proteins are difficult 

to predict because that the catalytic residues of both these proteins locate on the surface, not 

within a cleft. SLL can identify one of three (1/3) in the former and two of four (2/4) in the 

latter, while we can detect all the active sites in these two protein. 

Ben-Shimon, and Eisenstein (BE)14 have recently shown that the active sites residues tend to 

lie near the protein centroid. They were able to detect around 74% active-site residues for 177 

hand annotated enzymes from CSA version 1.022. At the present, the enzymes in CSA have 

been expanded to 880 hand annotated enzymes and the original dataset is obsolete. We tested 

νZ -profile and 2ρ
z -profile method on this expanded CSA dataset and we able to detect about 

80% active-site residues. 
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3.7. Ligand cross chains 

We all know that not every ligand is interacted with the residues in one chain. There are some 

ligands which interacted cross two or more chains. So we selected the ligands that cross two 

or more chains to predict by WCN and WCM models. Table 4 is the result. We found results 

of using biological unit are better than one chain. Because the ligands that cross two or more 

chains are almost on the interface. So the functional unit is not one chain. That is why using 

biological unit is better. We also compared the datasets that include and exclude ligand cross 

multimer. Table 5 and 6 showed the results are almost the same. 

4. DISCUSSION 

Based on the distinct properties associated with catalytic residues, we developed a simple 

profiles based on these properties to discriminate between the catalytic residues and 

non-catalytic residues.  This method is easy to implement and computationally fast -- it 

needs only a single structure; it does not require sequence alignment or structural template 

search; and it does not compute solvent accessible surface or perform molecular mechanical 

calculation. Our method will be useful for prediction of active sites from protein structures.  

However, it is not clear why these properties (i.e., residue centrality, thermal fluctuations or 

protein packing density) are related to catalytic sites.  Warshel and co-workers33; 34; 35; 36 have 

long argued that enzyme catalysis mainly arises from smaller reorganization of the active site 

residues, i.e., catalytical residues usually maintain similar conformations in both the reactant 

and the transition states. To lower activation barrier, the enzyme structures are optimized 

through evolution to partially pre-organize the catalytical residues, thus reducing the 

reorganization energy required for reaching the transition state. As a result, the catalytic 

residues tend to be more rigid than other non-catalytic residues. Properties such as B-factors, 

packing density or residue centrality are all related to residue's rigidity. Interestingly, the 

profile based on B-factors does perform as well as those based on other properties. It is known 
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that various experimental factors such such as temperature, crystallization or structural 

refinement may affect the final B-factor values. Consequently, the B-factor profiles of similar 

structures may be quite different from each other. For example, Figure 8(A) compares the bz  

profiles of 3 X-ray structures of lysozyme with a root-mean-square-deviation of their 

structures in the range 0.6-0.8 Å. It is clear that their bz  profiles are all indeed very different. 

For comparison, (B) and (C) shows their νz  and 2r
z  profiles. The νz  and 2r

z  profiles 

overlap each other almost perfectly. 
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CHAPTER 2 – METAL BINDING SITE 

1. INTRODUCTION 

Metal ions are crucial for protein function. They participate in enzyme catalysis, play 

regulatory roles, and help maintain protein structure. Due to the enormous advances made in 

recent years in structural biology, the number of protein structures deposited in Protein Data 

Bank (PDB) has increased from 13622 in 2000 to around 49620 as of March 11, 2008 – the 

total number nearly quadrupled during this period. The vast number of structures provides a 

great opportunity to study the structure-function relationship directly from the protein 

structures. The importance is increased more and more for using structure to predict metal 

binding sites. Several computational methods have been explored for identifying and 

detecting metal-binding proteins. Some base on sequence searching37; 38; some are base on 

graph or structural information39; 40; 41, and some combine sequence and structural 

information42; 43. And there are also many methods that predicting metal binding residues by 

using machine learning43; 44. Jaspreet Singh Sodhi et al.43 developed a method called MetSite, 

represents a fully automatic approach for the detection of metal-binding residue clusters 

applicable to protein models of moderate quality. MetSite involves using sequence profile 

information in combination with approximate structural data. Several neural network 

classifiers are shown to be able to distinguish metal sites from non-sites with a mean accuracy 

of 94.5%. Kshama Goyal and Shekhar C. Mande41 use 3D-structural motifs to predict more 

than 1000 novel metal-binding sites in proteins using three-residue templates, and more than 

150 novel metal-binding sites using four-residue templates. 

In 2006, Hai Deng, et al. based on an aspect related to contact number to detect calcium 

binding sites45. He said if there are four O formed a clique, this region have high percentage 

be a calcium binding site. This aspect is very similar with CN model21 which constructed by 

computing how the residues crowed comparing all residues in the protein.  
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In 2007, Kasampalidis, I. N., et al. used statistics method to analysis the metal binding 

residues37. They proved that certain residues are preferred to bind to certain metals, such as 

Glu, Asp and His. They also established a statistically significant difference in conservation 

between metal-coordinating and non-coordinating residues. they mentioned that metal would 

form chelate with N, O, and S in protein37. 

In our research, we use CN model and replaced Cα by using the atoms that have high 

probability interact with metal, such as N, O, S. We also consider that different metals would 

interact with different specific atoms and different residues to form chelate. So predict 

different kinds of metals should select specific atoms from some specific residues to do CN 

model. We thought that if there are more atoms that are high probability to interact with metal 

ion in the region where would be probably metal binding sites, because there is more 

opportunity to form chelate. We call this model mCN. Base on this thought, we use mCN to 

predict metal binding residues for Jaspreet Singh Sodhi’s dataset. He used NN to predict 

metal binding site in his non redundant dataset. We also use the same coding scheme as 

Sodhi’s, but training by SVM. No matter NN or SVM, mCN’s results are better than them. 

2. METHODS 

2.1. The contact-number model 

The conventional contact number is usually defined as the number of the neighboring residues 

that are within a cut-off radius of the central residue, which amounts to giving an equal 

unitary weight to every contacting atom regardless of its distance to the central atom. This 

definition ignores that an atom at a nearer distance makes a greater contribution than the 

atoms farther sway. To take the distance factor into account, we define the distance-dependent 

contact number ni  by weighing the integral contact number by the factor 1/ rij
2, which is the 

distance between Cα atoms of residue i  and j . is defined as 
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ni = −
1
rij

2
j≠i

N

∑         (1) 

where N  is the number of residues of the protein. Note that this contact number is defined as 

a negative value. This is for easy for comparing the contact number with the B-factor. We will 

refer to this model as the contact-number (CN) model. We will normalize ni  to its z-score 

defined as zi
n = (ni − n ) /σ n , where n  and σ n are the mean and the standard deviation of n . 

B-factor and CN model are quite similar. 

2.2. Using CN to compute metal binding residues – mCN model 

Like we mentioned before, metal would form chelate with N, O, and S. So, if we want to use 

CN to predict metal binding residues, we need to replace Cα to N, O and S. We also add the 

information that every kind of metals would prefer to interact with specific residues37; 41; 46, 

such as, Fe would interact with S in Cys, N in His, and O in hydrophilic residues’ side chain 

more probably. We use statistic method to analysis which residues should be selected, the 

results show in Figure 9. The conclusion listed in Table 7. Base on these changes we create 

the method – mCN. 

∑
≠

−=
M

ij ij
i r

m 2

1                                       (4) 

where M is how many atoms may interact with this metal of the protein. Then we choose the 

atom that the value is lowest of each residue to represent the residue. And get the Z-score. The 

low im  means that the neighboring residues around the thi position prefer to interact with 

the metal. If the Z-score is lower than the cut-off, the residue is high percentage be metal 

binding residue. 

2.3. Assessment indices 

To evaluate the quality of our predictions, we use the standard definitions of sensitivity and 

specificity16. Sensitivity Sn  is defined as the number of correctly predicted functional 
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residues (i.e., true positives or TP ) divided by the total number of experimentally defined 

functional residues (i.e., T ). Specificity Sp  is defined as the number of correctly predicted 

non-functional residues (i.e., true negatives or TN ) divided by the total number of 

experimentally defined non-functional residues (i.e., F ). The false positive rate is defined as 

pS−=1α , and the false negative rate β =1− Sn.  

2.4. Data sets 

We used Sodhi’s dataset43 which include six kinds of metal binding protein - Ca, Cu, Fe, Mg, 

Mn and Zn, and the sequence identity is %25≤ . There are total 982 proteins in this dataset 

which can divide into six subset according six different kinds of metal ions. There are 261 

proteins in Ca dataset, 45 proteins in Cu dataset, 49 proteins in Fe dataset, 216 proteins in Mg 

dataset, 104 proteins in Mn dataset, and 361 proteins in Zn dataset. The total number is not 

the same as the sum of the proteins in the six dataset, because there are some proteins interact 

not only one kind of metal ion. Our dataset has a little different with Sodhi’s dataset. 2stv, and 

1e53 are replaced by other proteins in PDB (2buk and 1z60). And 1iw7 have 485 Mg ion in 

the protein, 1f83 is obsolete Structure. So, we deleted the two structures. The metal binding 

residues are defined by PDBsum47. We use CN model, and mCN model to predict Sodhi’s 

dataset43 , and compare his results. 

3. RESULTS 

3.1. Comparison with metal binding residues and other residues 

In Figure 10 we compare the distribution with metal binding residues and other residues by 

using mCN and CN models. We use calcium for an example. The upper plot of Figure 10A 

shows the mCN profile of the calcium binding residues, compared with CN profile of the 

calcium binding residues. The mean of the Z-score ( mz ) of the calcium binding residues of 
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mCN profile is –1.40, while the Z-score ( nz ) of CN profile is -0.15. The difference is 

statistically significant (the p-value < 2.2 ×10−16). These results are showed that the calcium 

binding residues computed by mCN profile have smaller Z-score than that of CN profile, 

which means that using specific atoms compute contact number to predict calcium binding 

residues is better than using Cα. There are around 67% of calcium binding residues of mCN 

profile with 1−≤mz , compared with 23% of CN profile with 1−≤nz . The middle plot of 

Figure 10A shows the distribution of the calcium binding residues and all residues that 

compute by mCN profile. The mean of mz  of the calcium binding residues is –1.40, and the 

mean of mz  of all residues is 0.00. The difference is statistically significant (the p-value 

< 2.2 ×10−16 ). These results are showed that the calcium binding residues have smaller 

Z-score than all residues by using mCN model, which means that they are more crowed. 

There are 67% of calcium binding residues in the region of 1−≤mz , compared with 17% of 

total residues. The bottom plot of Figure 10A shows the distribution of the calcium binding 

residues and all residues that compute by CN profile. The mean of nz  of the calcium binding 

residues is –0.15. The difference is statistically significant (the p-value -8102.51×< ). There 

are 23% of calcium binding residues in the region of 1−≤nz , compared with 18% of total 

residues. In summary, the calcium binding residues tend to bias toward more negative 

Z -scores in mCN and CN profiles, but mCN is more obvious than CN. In other word, they 

tend to be more crowed, especially prefer to be located in the region of having the atoms that 

they are high probability to interact with metal. The other cases are similar and showed in 

Figure 10B-G. 

3.2. Optimize cutoff value 

To discriminate the metal binding residues from the other residues, we will determine the 

optimal cutoff value by minimizing the error function16 defined as ε = (1− Sn )2 + (1− Sp )2 , 
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which is equivalent to minimizing essentially both the false positives and false negatives. 

Figure 11 shows the curves of ε  against Z -scores of different kinds of metals for CN and 

mCN models. From this, we can determine the optimal cutoff values for different metals. We 

can see that although using the optimal cutoff value for CN, the ε  still larger than mCN. The 

optimal z-score cutoff values, at which the corresponding ε  is minimal, for the mCN profile: 

Ca –0.8, Cu –0.7, Fe –1.3, Mg –0.9, Mn –1.2, and Zn -0.1.  

3.3. The performances of mCN 

According to the optimal cutoff, we can get the best Sn and pS . The performance of CN and 

mCN listed in Table 8 and Table 9 which showed that the results are not bad by using CN 

model. This reveals that contact number really have some relationship with metal binding 

residues. The metal binding residues tend to locate on the high packing region. But some 

metal ions like Ca, Mg and Zn are not good enough by computing CN model. Because of that 

the metal can’t interact with Cα. If we compute by mCN model, the results are much better 

than CN model. This proves that the type of atoms and residues are also important factors 

should be considered. 

3.4. Examples 

Figure 12 is some examples that we computed by mCN model. The values below the cut-off 

are painted by green; these are the metal binding residues that we predicted. The experimental 

metal binding residues are represented by sticks. If mCN detect the metal binding residues, 

we painted red. 

(A) shows Psoriasin (PDB ID: 2PSR)48. The metal binding residues are D-62, N-64, D-66, 

K-68, and E-73. Psoriasin is a small calcium-binding protein first found in psoriatic lesions 

and also up-regulated in other inflammatory skin diseases and cancer tissues. The protein 

responds to transient changes in the cellular calcium concentration by binding yet unidentified 
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receptor molecules. (B) shows pseudoazurin (PDB ID: 1BQK)49. The metal binding residues 

are H-40, C-78, H-81 and M-86. pseudoazurin is type-I Blue copper-containing proteins. The 

role of type-I copper-containing redox proteins are to shuttle electrons from an electron donor 

to an electron acceptor in bacteria and plants. The contribution of the copper ion in 

pseudoazurin is the stability and the unfolding pathway50. (C) shows ferritin (PDB ID: 

1FHA)51. The metal binding residues are E-27, E-62, and H-65. Ferritin is important in iron 

homeostasis. Ferritin evolved as the only protein able to solve the problem of iron/oxygen 

chemistry and metabolism. Its twenty-four chains of two types, H and L, assemble as a hollow 

shell providing an iron-storage cavity. Ferritin molecules in cells containing high levels of 

iron tend to be rich in L chains, and may have a long-term storage function, whereas H-rich 

ferritins are more active in iron metabolism. (D) shows myosin (PDB ID: 1KQM chain B)52. 

The metal binding residues are D-28, D-30, D-32 and F-34. Myosins are a large family of 

motor proteins found in eukaryotic tissues. Myosins are almost composed of two domains – 

head domain and tail domain. The role of magnesium ion in myosin is critical for activating 

ATP hydrolysis. (E) shows Ribonuclease III (PDB ID: 1JFZ chain B)53. The metal binding 

residues are E-240, D-307 and E-310. Ribonuclease III (RNase III) belongs to the family of 

endoribonucleases that show specificity for double-stranded RNA (dsRNA). Manganese ion 

has significant impact on crystal packing, intermolecular interactions, thermal stability, and 

the formation of two RNA-cutting sites within each compound active center. (F) shows p300 

protein (PDB ID: 1L3E, chain B)54. The form of p300 protein like a triangle composed of four 

α-helices with three zinc binding sites. The metal binding residues are H-125, C-129, C-142 

and C-147 for first zinc; H-156, C-160, C-166 and C-171 for second zinc; H-180, C-184, 

C-189 and C-192 for third zinc. p300 can form a complex with CBP. They can interact with 

numerous transcription factors to increase the expression of target genes. The role of the zinc 

ions is to organize and stabilize the structural conformation. 
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3.5. Comparison with ROC curves and other methods 

Table 9 is the performance of mCN. Table 10 shows we use the standard – FPR 5% to 

compare with mCN model, Sodhi’s NN results43 and SVM results. Figure 13 compares with 

the ROC curves of the results of mCN model, Sodhi’s NN results and SVM results. In Table 

10, when FPR below 5%, the Zn’s result is not better than SVM. But Figure 13F reveal that 

when FPR higher than 7.5%, the Zn’s TPR grow rapidly. So, if the users want to get low FPR 

results, they may return to use SVM. If the users want to get high TPR results, they may 

return to use mCN. 

4. DISCUSSION 

Base on the contact-number and the residues frequency, we create a useful method to predict 

metal binding residues – mCN. The metal binding residues tend to locate on the high packing 

region or crowed part, and each metal ion has their preference to interact with specific atoms 

and residues. The more atoms that have high probability to interact with metal, the region are 

more high percentage to be metal binding site. The lowest sensitivity can reach to 72.4% (Ca), 

the highest is 94.7% (Cu). The lowest specificity is about 78.1% (Ca), the highest is 97.1% 

(Fe). And the highest error rate is 35.2% (Ca), the lowest is 10.1% (Cu). 

 In this method, there are some proteins that mCN model can’t predict. First, there are 

some metals are just select side chain, such as Cu, Fe and Zn. So, if there are some metal 

binding residues that interact with metal by their backbone, mCN can’t find it. Similar 

situation that if we just selected S from Cys and N from His, mCN can’t find the metal 

interact with N and S from other residues, such as Arg, Lys, Trp and Met. But these situations 

are very few. Then we analysis mCN’s results, we can see that if the metal would often 

interact with backbone, the results are not as well as the metal almost interact with side chain. 

Because of that the sum of the atoms of backbone interacts with metal are not many and they 
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dispersing to 20 amino acid types. So, let the FPR increase. 

 There are other cases that can’t predict very well. Some of the metal would use O of 

water to form chelate. For example, Peroxisome targeting signal 1 receptor 

pex5 (PDBID:1hxi)55. Figure 14 showed the three dimensional structure of this protein, and 

we can see that Calcium is stabilize by interact with E397 and five O of water. Because of that 

we didn’t select these five O from water, so we can’t detect the metal binding residues very 

well. There are also some other examples in dataset, especially Ca and Mg, but if we select O 

from water, these results would create too many false positive. There are many of this kind of 

proteins in Mg, Ca, some in Zn, Mn, very few in Cu, Fe. We analysis the mCN results and see 

that the performance of Ca and Mg is also not better than others. So, how to fix O from water 

is an important future work. 
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APPENDIX – A simple method predict active site by structure. 

According chapter 2, we thought we can use the same aspect to predict active site. Catalytic 

residues also interact with some specific residues – polar or charged residues. So, we go to 

check what kind of atoms that the ligands prefer to interact. Then we select O from backbone 

and side chain, N form side chain, and S from side chain. And using the method like mCN 

model to compute the contact-number of these selected atoms and set the lowest value of one 

residue to represent the residue’s contact number. Get Z-score to normalize the value. Finally 

follow the chapter 1 to set cutoff to get the predicted catalytic residues. We called this method 

aCN model. 

Dataset is the same as chapter 1. Assessment indices follow the chapter 1 and 2. To use 

specificity, sensitivity and error function to evaluate the accuracy of the method.  

The performance is showed in Table A1. We can see aCN results almost the same as the WCN 

model. The weight and selected atoms maybe have some relationship, because the weight and 

selected atoms both base on the probability that the residues can be catalytic residues. For 

WCN and WCM model, the probability is higher; the weight is bigger. For aCN model, the 

probability is higher; the more atoms are selected from the residue.  

We also use the seleced atoms to compute CM model, but the results are not better than WCM 

model. We thought that is because of that the position of centroid is not change very much. 

For example, the centroid shifts 1.1Å of 9pap, 0.68 Å of 1a0i, and just 0.15 Å of 4kbp. 

Then we compute ROC curve to compare with many models. The results are showed in 

Figure A1. Figure A2 also show some examples that aCN model can predict very well. We 

can found aCN model is a good and simple method to predict catalytic residues. 
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TABLE CAPTIONS 

Table 1: The left column is the amino acid type, the middle column is the fraction of each 

amino acid type (%) for our dataset, and the right column is the weight for each amino acid 

type ( w ). 

Table 2: The table shows sensitivity and specificity for our dataset. nS  means sensitivity, Sp  

means specificity, ε  means the value of error function, α  means false positive rate, and β  

means false negative rate. In WCN and WCM, the sensitivity is 78% ~ 80%, the specificity is 

about 80%, and the error rate is ~ 30%. The results are better than others. 

Table 3: In WCN and WCM, nS  is 80% ~ 82%, Sp  is about 80% ~ 81%, and ε  is 27%. 

We compare with the results that published by Sophie Sacquin-Mora et al in 2007. 

Table 4: We use 5 models to predict the catalytic residues that ligand cross two or more 

chains. Compare with the results by using one chain and biological unit to compute 5 models. 

We can see use biological unit is better than one chain. 

Table 5: The results that include the proteins that ligand cross two or more chains. 

Table 6: The results that exclude the proteins that ligand cross two or more chains. The results 

compare to Table 5 are almost the same. 

Table 7: The specific atoms selected for mCN. The atoms have high probability to interact 

with the six metals for Sodhi’s dataset. 

Table 8: The performances of using CN (selected Cα) predict metal binding residues. 

Table 9: The performances of using mCN (selected specific atoms see Table 7) predict metal 

binding residues. The results are much better than CN. 

Table 10: Using another standard – FPR = 5% to compare with CN, mCN, and Sodhi’s 

results (we also use his features to run SVM). And mCN is the much better than others expect 
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for Zn. 

Table A1: The results of aCN and aCM model and compare with the other 5 models 

mentioned in chapter 1. We found aCN almost the same as WCN and WCM model. 
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FIGURE CAPTION 

Figure 1: (A) The schematic illustration of the nCN model. The spheres represent the 

residues, and 0r  is the cut-off value for the nCN model. In this particular example, the 

contact-number of the central residue (the black sphere) is 2 (i.e., the 2 spheres in gray). The 

same sizes of the spheres indicate that they contribute equally. The contribution of residues 

outside the cut-off radius is ignored (spheres in white). (B) The CN model. The size of each 

sphere (gray) indicates its relative contribution to the central residue. No cut-off radius is used 

in the CN model. The contribution of each residue is scaled down by its reverse squared 

distance from the central residue. (C) The WCN model. The central residue is weighted by the 

statistical probability of its amino acid type occurring in the active site. In the left, the central 

residue is a Pro, which rarely occurs in an active site, and hence, is weighted by a smaller 

probability. In the right, the central residue is a Glu, which occurs more frequently than Pro, 

and is weighted by a larger probability 

Figure 2: the frequency distribution of the 20 amino acid types occurring in the catalytic sites, 

compared with that of all structures in the data set. We can see their distribution is very 

different. 

Figure 3: (A) The figure shows the histogram of active site and all residues of the bZ (upper), 

the 2r
z (middle) and the 2ρ

z  (bottom) models. The black bars are the residues of active site 

and the gray bars are all residues. (B) The figure shows the histogram of active site and all 

residues of the bZ (upper), the nz (middle) and the νz  (bottom) models. The black bars are 

the residues of active site and the gray bars are all residues. 

Figure 4: In the figure, five curve represented five models. When the threshold is -0.5, the 

error rate of BF would be lowest. When the threshold is -0.7, the error rate of CN and CM 

would be lowest. And we can see when the threshold is -0.9, the error rate of WCN and WCM 
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would be lowest. 

Figure 5: This figure shows the ROC curves of different models. WCN and WCM are almost 

the same, and they both better than CN, CM and BF. The result of BF is worst. 

Figure 6: (A) The profiles of 8-amino-7-oxononanoate synthase (PDB ID: 1bs0). The zb 

profile is shown on the top, the z
r 2  profile on the middle and the zn profile on the bottom. 

The catalytical residues, i.e., H133, E175, D204 and K236, are marked in empty circles. (B) 

The three-dimensional structures of 8-amino-7-oxononanoate synthase. The colors of the 

structures are ramped from blue (negative z-score) to red (positive z-score) according to the 

zb (top), z
r 2  (middle) and zn (bottom) profiles. (C) (D) The profiles and three-dimensional 

structures of S-adenosylmethionine decarboxylase (PDB ID: 1jen). The catalytic residues are 

C82, S229 and H243 (located in chain A), and E11 and E67 (located in chain B). (E) (F) The 

profiles and three-dimensional structures of phosphoenolpyruvate carboxylase (PDB ID: 

1jqn). The catalytic residues are H138, R196, R581, R699 and R713. (G) (H) The profiles and 

three-dimensional of Acid beta-glucosidase The catalytic residues are E235, E340 and 

C342 (PDB ID: 2f61). 

Figure 7: The three-dimensional structure of (A) phospholipase A2 (PDB ID: 1IT4), (B) 

deoxyribose-5-phosphate aldolase (PDB ID: 1P1X), and (C) ASV integrase (1A5V) and (D) 

rhinovirus protease (1CQQ). For each figure, the upper one is WCN model, the bottom one is 

WCM model. The catalytic residues are represented by the CPK model. The colors of the 

structures are ramped from red (negative Z-score) to white (positive Z-score) according to νz  

and 2ρ
z profile. 

Figure 8: (A) The bz  profiles and (B) the 2r
z  profiles of 3 lysozymes: 6lyt (thick solid), 

2bqo (dotted) and 2lzt (thin solid). 

Figure 9: The statistics of the metal binding residues for every amino acid type. (A) is 
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calcium, (B) is Copper, (C) is iron, (D) is magnesium, (E) is manganese, and (F) is zinc. 

Figure 10: The histograms of the proportion distributions of metal binding residues and all 

residues that computed by mCN and CN profile. The upper plot is compared with the metal 

binding residues that computed by mCN model and CN profile. The middle plot is compared 

with the metal binding residues and total residues by using mCN model. The bottom plot is 

compared with the metal binding residues and total residues by using CN model. (A) is the 

results of Ca, (B) is Cu, (C) is Fe, (D) is Mg, (E) is Mn, (F) is ZN and (G) is total proteins in 

the dataset. 

Figure 11: The error function ε  curves vs. Z-scores of different profile models. (A) is the 

optimal cutoff for CΝ and (Β) is the optimal cutoff for mCN. Although using the best cutoff 

for CN, the Err. (ε ) is still larger than mCN. 

Figure 12: (A) The upper plot is the three-dimensional structures of Psoriasin (PDB ID: 

2PSR). The green ball is calcium. The green part is the metal binding residues that predicted 

by mCN. The sticks are experimental metal binding residues (real metal binding residues). 

The red part is the metal binding residues and mCN detected. So, if the sticks are red, it means 

the metal binding residues are predicted by mCN (true positive). If the sticks are white, it 

means the metal binding residues are missed. The bottom plot is the line chart of mz . The 

circle is metal binding residues, almost lie on the wave trough. (B) The result of pseudoazurin, 

copper binding protein (PDB ID: 1BQK). (C) The result of Ferritin, iron binding protein 

(PDB ID: 1FHA). (D) The result of Myosin, magnesium binding protein (PDB ID: 1KQM, 

chain B). (E) The result of Ribonuclease III, manganese binding protein (PDB ID: 1JFZ, 

chain B). (F) The result of p300 protein, zinc binding protein (PDB ID: 1L3E, chain B). 

Figure 13: This figure shows the ROC curves of different metals that predict by 4 different 

models. (A) is the result of Ca, (B) is the result of Cu, (C) is the result of Fe, (D) is the result 
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of Mg, (E) is the result of Mn, (F) is the result of Zn. 

Figure 14: The three-dimensional structures of Peroxisome targeting signal 1 receptor pex5. 

The blue part is the metal binding residue of this protein. And we zoom in the metal binding 

site. The blue stick is metal binding residue – E397, and the small blue balls are water that 

would interact with magnesium ion, too. 

Figure A1: The ROC curve of many different models. aCN is almost the same as WCN and 

WCM model, but aCM is not better than WCM model. This reason is the centriod of WCM 

and aCM are not change very much. 

Figure A2: The three-dimensional structure of (A) Actinidin (PDB ID: 1AEC), (B) 

Endo-1,4-beta-xylanase (PDB ID: 1BVV), and (C) Ricin (PDB ID:1BR6) and (D) DNase I 

(PDB ID:1DNK). The catalytic residues are represented by the CPK model. The colors of the 

structures are ramped from red (negative Z-score) to white (positive Z-score) according to 

aCN model. 
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TABLES 

Table 1. The fraction and weight of each amino acid 
type 

Amino acid type 
The fraction of 
amino acid type 
(%) 

w  

ALA 1.43 1.16 
ARG 9.66 1.98 
ASN 3.58 1.55 
ASP 16.37 2.21 
CYS 5.11 1.71 
GLN 2.07 1.32 
GLU 12.95 2.11 
GLY 3.33 1.52 
HIS 16.33 2.21 
ILE 0.42 0.63 
LEU 0.71 0.85 
LYS 9.2 1.96 
MET 0.46 0.66 
PHE 1.56 1.19 
PRO 0.21 0.32 
SER 5.61 1.75 
THR 2.66 1.42 
TRP 1.73 1.24 
TYR 6.08 1.78 
VAL 0.21 0.32 
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Table 2. The performance of WCN & WCM models 

model nS  Sp  ε  α  β  cutoff 
z-score 

WCN 0.78 0.81 0.29 0.19 0.22 -0.9 
CN 0.69 0.74 0.40 0.26 0.31 -0.7 
WCM 0.80 0.80 0.28 0.20 0.20 -0.9 
CM 0.76 0.73 0.36 0.27 0.24 -0.7 
B-factor 0.62 0.65 0.52 0.35 0.38 -0.5 
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Table 3. Comparison with our methods and SLL 

Methods nS  Sp  ε  α  β  

WCN  0.8 0.81 0.27 0.19 0.2 
CN 0.71 0.74 0.39 0.26 0.29 
WCM 0.82 0.8 0.27 0.2 0.18 
CM 0.77 0.74 0.35 0.26 0.23 
B-factor 0.66 0.65 0.49 0.35 0.34 
SLL 0.78 0.74 0.35 0.26 0.22 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 37

Table 4. Ligand interact on the interface of multimer 

methods nS  Sp  ε  α  β  nS  

WCN (biological unit) 0.81 0.81 0.27 0.19 0.19 -0.9 
WCN (one chain) 0.74 0.71 0.39 0.29 0.26 -0.6 
CN(biological unit) 0.76 0.75 0.35 0.25 0.24 -0.8 
CN(one chain) 0.58 0.57 0.6 0.43 0.42 -0.2 
WCM (biological unit) 0.82 0.77 0.29 0.23 0.18 -0.8 
WCM (one chain) 0.77 0.76 0.34 0.24 0.23 -0.8 
CM(biological unit) 0.71 0.68 0.43 0.32 0.29 -0.6 
CM(one chain) 0.78 0.55 0.5 0.45 0.22 -0.3 
B-factor 0.64 0.64 0.5 0.34 0.34 -0.5 
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Table 5. The dataset include ligand that interact on the interface of multimer 

methods nS  Sp  ε  α  β  nS  

WCN (biological unit) 0.8 0.81 0.28 0.19 0.2 -0.9 
WCN (one chain) 0.78 0.81 0.29 0.19 0.22 -0.9 
CN(biological unit) 0.74 0.72 0.38 0.28 0.26 -0.7 
CN(one chain) 0.69 0.74 0.4 0.26 0.31 -0.7 
WCM (biological unit) 0.78 0.8 0.3 0.2 0.22 -0.9 
WCM (one chain) 0.8 0.8 0.28 0.2 0.2 -0.9 
CM(biological unit) 0.68 0.72 0.42 0.28 0.32 -0.7 
CM(one chain) 0.76 0.73 0.36 0.27 0.24 -0.7 
B-factor 0.62 0.65 0.52 0.35 0.38 -0.5 
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Table 6. The dataset exclude ligand that interact on the interface of multimer 

methods nS  Sp  ε  α  β  nS  

WCN (biological unit) 0.81 0.81 0.28 0.19 0.19 -0.9 
WCN (one chain) 0.79 0.81 0.28 0.19 0.21 -0.9 
CN(biological unit) 0.71 0.72 0.4 0.28 0.29 -0.7 
CN(one chain) 0.72 0.74 0.39 0.26 0.28 -0.7 
WCM (biological unit) 0.79 0.8 0.29 0.2 0.21 -0.9 
WCM (one chain) 0.81 0.8 0.28 0.2 0.19 -0.9 
CM(biological unit) 0.64 0.72 0.45 0.28 0.36 -0.7 
CM(one chain) 0.78 0.74 0.34 0.26 0.22 -0.7 
B-factor 0.62 0.65 0.52 0.35 0.38 -0.5 
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Table 7. The specific atoms for different metals. 

Metal The atoms have high probability to interact with metal  

Ca O(backbone) O(side chain of ASP GLU ASN) 
Cu S(side chain),N(His),O(side chain) 
Fe S(Cys),N(His),O(side chain) 
Mg N(His),O(backbone) O(side chain of ASP GLU ASN THR SER) 
Mn N(His),O(backbone) O(side chain of ASP GLU ASN) 
Zn S(Cys),N(His),O(side chain) 
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Table 8. The performance of CN model 

metal selected atoms Sn Sp  ε  α  β  cutoff 
z-score

Ca Cα 0.53 0.54 0.66 0.46 0.47 -0.1 

Cu Cα 0.73 0.79 0.34 0.21 0.27 -0.9 

Fe Cα 0.77 0.74 0.35 0.26 0.23 -0.7 

Mg Cα 0.68 0.67 0.46 0.33 0.32 -0.5 

Mn Cα 0.76 0.71 0.38 0.30 0.24 -0.6 

Zn Cα 0.57 0.64 0.56 0.36 0.43 -0.4 
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Table 9. The performance of mCN model 

metal Selected atoms Sn Sp  ε  α  β  cutoff 
z-score

Ca 
O(backbone),  
O(side chain in Asp Glu Asn)

0.73 0.78 0.35 0.22 0.28 -0.8 

Cu 
S(side chain), N(His),  
O(side chain) 

0.95 0.92 0.10 0.09 0.05 -0.7 

Fe 
S(Cys), N(His),  
O(side chain) 

0.87 0.97 0.14 0.03 0.14 -1.3 

Mg 
N(His), O(backbone),  
O(side chain of Asp Glu Asn 
Thr Ser) 

0.78 0.81 0.29 0.19 0.22 -0.9 

Mn 
N(His),O(backbone),  
O(side chain of Asp Glu Asn)

0.89 0.89 0.16 0.11 0.12 -1.2 

Zn 
S(Cys),N(His),  
O(side chain) 

0.92 0.84 0.18 0.16 0.09 -0.1 
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Table 10. When FPR = 5%, TPR for four methods 

            metals      
methods 

Ca Cu Fe Mg Mn Zn 

Sodhi ( using NN ) 0.30 0.36 0.49 0.32 0.39 0.48 

Sodhi ( using SVM ) 0.30 0.40 0.49 0.35 0.56 0.67 

CN 0.07 0.31 0.31 0.13 0.23 0.16 

mCN 0.51 0.89 0.87 0.57 0.83 0.60 
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Table A1. The performance of aCN and aCM model 

methods Sn Sp  ε  α  β  cutoff 
z-score 

WCN  0.78 0.81 0.29 0.19 0.22 -0.9 
CN 0.69 0.74 0.4 0.26 0.31 -0.7 
WCM  0.8 0.8 0.28 0.2 0.2 -0.9 
CN 0.76 0.73 0.36 0.27 0.24 -0.7 
B-factor 0.62 0.65 0.52 0.35 0.38 -0.5 
aCN 0.78 0.81 0.29 0.19 0.22 -0.9 
aCM 0.74 0.81 0.32 0.19 0.26 -0.9 
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FIGURES 

 
Figure 1 : The diagrams of three methods – naive CN, CN and WCN model. 
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Figure 2 : The proportion of each amino acid type in active sites. 
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Figure 3 : The histograms of the comparison with BF, CM, CN, WCM and WCN models. 
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Figure 4 : The error function ε  curves vs. Z-scores of different profile models. 
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Figure 5 : The ROC curves of the BF, CM, CN, WCM and WCN models. 
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 (A)                             (B) 

 
(C) (D) 

 
Figure 6 : The examples of comparison with BF, CN and CM models. 
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(E)                                 (F) 

 
(G)                               (H) 

 
Figure 6 : The examples of comparison with BF, CN and CM models 
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(A)                                     (B) 

 

 
(C)                                         (D) 

 

 
Figure 7 : The examples of WCN and WCM models. (upper is WCN, bottom is WCM) 
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Figure 8 : The Z-score fluctuation of three lysozyme computed by BF, CN and CM 
models. 
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(A) 

 

(B) 

 

(C) 

 

Figure 9 : The proportion of each amino acid type be metal binding residues. 
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(D) 

 

(E) 

 

(F) 

 

Figure 9 : The proportion of each amino acid type be metal binding residues. 
 
 
 
 
 
 
 
 
 
 
 



 

 56

 (A)                                 (B) 

 

Figure 10 : The histograms of the comparison with CN and mCN models for each metal. 
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(C)                                   (D) 

 
Figure 10 : The histograms of the comparison with CN and mCN models for each metal. 
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(E)                                     (F) 

 

Figure 10 : The histograms of the comparison with CN and mCN models for each metal. 
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(G) 

 
Figure 10 : The histograms of the comparison with CN and mCN models for each metal. 
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 (A) 

 
(B) 

 
Figure 11 : The error function ε  curves vs. Z-scores of two profile models for each metal. 
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 (A)                                  (B) 

 

(C) (D) 

 
Figure 12 : The examples of mCN models for each metal. 
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(E)                                    (F) 

 
Figure 12 : The examples of mCN models for each metal. 
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(A)                                    (B) 

 
(C)                                     (D) 

 
(E) (F) 

 
Figure 13 : Using ROC curve to Compare with mCN model and other methods. 
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Figure 14 : Excepted case that water interact with metal. 
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 (A) 

 
(B) 

 

(C) 

 
Figure A1 : Comparison with aCN and other models by using ROC curve. 
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(A)                                      (B) 

 
(C) (D) 

 
Figure A2 : The examples of aCN models. 
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Table S1: Dataset for sequence identity <= 30% from CSA 
12as:A  1apt:E   1bgl:C  1cf2:Q  1dae:_   1e2t:F    1f7l:A    1ge7:A  1i19:A  
135l:_   1apx:A  1bh2:_  1cfr:_   1db3:A  1e3v:A   1f80:FCA 1geq:B  1i1e:A  
13pk:A  1apy:AB 1bhg:B  1cg2:C  1dbf:C   1e5q:E   1f8m:C   1get:BA 1i1i:P   
1a05:BA 1aq0:A  1bix:_   1cg6:A  1dbt:B   1e6e:A   1f8r:B    1gim:_  1i29:A  
1a0i:_   1aq2:_   1bjo:A  1cgk:A  1dci:A  1e7l:AB  1f8x:B    1gns:A  1i6p:A  
1a0j:C   1ar1:A   1bjp:C  1chd:_   1dco:C  1e7q:A   1fa0:A    1gog:_  1i78:B  
1a16:_  1arz:B   1bmt:A  1chk:B  1dd8:B  1eb6:A   1fc4:B    1goj:A  1i7q:AB 
1a26:_  1ast:_    1bo1:A  1chm:B  1de6:A  1ebf:A   1fcb:A    1gox:_  1i8d:C  
1a2t:_   1asy:A   1bol:A  1ci8:B   1dek:A  1ec9:C   1fcq:A    1gp1:B  1i9a:A  
1a30:AB 1at1:A   1boo:A  1cjy:A   1df9:B   1ecf:B    1fdy:C    1gp5:A  1idj:B   
1a4g:B  1aug:D  1bou:B  1ck7:A  1dfo:B   1ecl:_    1fgh:_    1gpa:A  1ig8:A  
1a4i:A  1aui:A   1bp2:_  1cl1:A   1dgs:B   1ecm:AB 1fgj:A    1gpj:A  1im5:A 
1a4l:A  1auk:_   1bqc:A  1cns:A  1dhf:B   1ecx:B   1fiq:C    1gpm:C 1ima:B  
1a50:B  1auo:A  1brm:B  1coy:_   1dhp:B  1eej:A    1fnb:_    1gpr:_  1inp:_  
1a65:A  1auw:AC 1brw:B  1cqj:AB 1dhr:_   1ef0:A   1foa:A    1gq8:A  1iph:A  
1a69:A  1avq:C   1bs0:A  1cqq:A  1di1:B   1ef8:A   1fob:A    1gqg:B  1ir3:A  
1a79:B  1aw8:AE 1bs4:A  1cs1:CA 1din:_   1eg7:B   1foh:D    1gsa:_  1it4:A  
1a8h:_  1ax4:B   1bs9:_  1ct9:D   1dio:L   1eh5:A   1fps:_    1gt7:A  1itq:B   
1a8q:_  1ay4:A  1bt1:A  1ctn:_   1diz:A   1eh6:A   1fq0:A    1gtp:L  1itx:A  
1a95:C  1azw:A  1btl:_   1ctt:_   1dj0:A   1ehk:AB  1fr2:B    1guf:B  1iu4:A  
1ab4:_  1b02:A  1bvv:_  1cv2:A  1djl:A   1ehy:A   1fr8:A    1gxs:C  1iyd:B  
1ab8:B  1b04:A  1bvz:A  1cvr:A  1djo:BA 1ei5:A    1fro:C    1gz6:A  1j00:A  
1abr:A  1b3r:B   1bwp:_  1cw0:A  1dl2:A   1elq:B    1fua:_    1h19:A  1j09:A  
1af7:_   1b57:A  1bwz:A 1cwy:A  1dli:A   1emd:_   1fug:BA  1h2r:L  1j49:B  
1afr:D   1b5q:B  1bxr:B  1cz0:A  1dmu:A  1eq2:A   1fui:E    1h3i:B  1j53:A  
1afw:B  1b5t:A   1bya:_  1cz1:A  1dnk:A  1esc:_   1fuq:BA  1h54:B  1j79:B  
1agm:_  1b65:D  1bzc:A  1czf:B   1dnp:A  1eso:_    1fva:B    1h7o:A  1j7g:A  
1agy:_  1b66:A  1bzy:B  1d0s:A  1do6:B  1et0:A    1fwk:D   1h7x:C  1jag:D  
1ah7:_  1b6b:B  1c0k:A  1d1q:B  1do8:A  1eug:A   1fy2:A    1hdh:B  1jch:A  
1ahj:CD 1b6g:_   1c2t:A  1d2r:E   1dod:_   1euu:_    1g0d:A   1hfe:M  1jdw:_  
1aj0:_   1b73:A  1c3c:BA 1d2t:A  1dpg:A  1euy:A   1g24:C   1hfs:_   1jen:AB 
1aj8:A  1b7y:A  1c3j:A  1d3g:A  1dqa:AB 1evy:A   1g64:B   1hiv:AB 1jfl:A   
1ak0:_  1b8f:A   1c4z:B  1d4a:B  1dqr:AB 1exn:A   1g6t:A    1hja:BC 1jh6:A  
1akd:_  1b8g:B  1c82:A  1d4c:A  1dqs:B   1ey2:A   1g72:A   1hka:_  1jhf:A  
1akm:A 1b93:A  1c9u:B  1d5r:A  1dtw:BA 1eyi:A    1g79:A   1hpl:A  1jkm:B  
1ako:_  1b9h:A  1ca0:CG 1d6m:A 1dup:A  1eyp:A   1g8f:A    1hqc:A  1jm6:A 
1al6:_   1bcr:AB 1ca2:_  1d6o:A  1dw9:FA 1ez1:A   1g8p:A   1hr6:BE 1jms:A  
1ald:_   1bd0:AB 1ca3:_  1d7r:A  1dxe:A  1ez2:A   1g99:A   1hrd:B  1jnr:AB 
1alk:A  1bd3:B  1cb7:D  1d8c:A  1dzr:A   1f2d:A   1ga8:A   1hrk:A  1jof:E   
1amo:A 1bf2:_   1cb8:A  1d8d:AB 1e0c:A  1f2v:A   1gal:_    1hto:B  1jqn:A  
1amp:_  1bfd:_   1cd5:A  1d8h:A  1e19:B  1f48:A   1gcb:_    1hv9:A  1js4:B  
1amy:_  1bg0:_   1cel:A  1d8t:A  1e1a:A  1f6d:B   1gcu:A   1hxq:B  1jxa:BC 
1aop:_  1bg6:_   1cev:A  1daa:A  1e2a:B   1f75:B   1gdh:B   1hzf:A  1jxh:A  
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1k0w:B 1luc:A   1nsf:_   1pja:A    1qmh:B   1slm:_  1v0y:A  2ace:_   2toh:A  
1k30:A  1lvh:A   1nsj:_   1pjb:A    1qpr:AB  1sml:A  1v25:B  2acy:_   2tps:A  
1k32:A  1lxa:_    1nsp:_   1pjh:A    1qq5:A   1smn:B 1vao:B  2adm:A  2ts1:_   
1k4l:A  1lya:AD  1nvm:G 1pkn:_    1qrg:A   1snn:A  1vas:A   2ahj:CD  2xis:_   
1k4t:A  1m21:B  1nvt:B   1pma:QA  1qrr:A    1sox:A  1vid:_   2amg:_   2ypn:A  
1k82:D  1m6k:A  1nw9:B  1pmi:_    1qsg:G   1ssx:A  1vie:_   2ayh:_   3cla:_   
1kae:A  1mas:A   1nww:A 1pnl:B    1qtn:A   1stc:E   1vlb:A   2bbk:L   3csm:A 
1kaz:_  1mbb:_   1nzy:C  1pow:A   1qum:A  1std:_   1vnc:_   2bhg:A   3mdd:A 
1kc7:A  1mdr:_   1o04:E  1ps1:B    1qv0:A   1szj:R   1vom:_  2bif:B    3nos:A  
1kcz:A  1mhl:CA 1o98:A  1ps9:A    1qx3:A   1t0u:B  1vzx:B  2bkr:A   3pca:N  
1kdg:A  1mht:A   1o9i:A  1psd:A    1qz9:A   1t4c:AB 1w0h:A  2bmi:A   3r1r:A  
1kez:C  1mhy:D  1oac:B  1pud:_    1r16:A   1t7d:A  1w1o:A  2bx4:A   4kbp:A  
1kfu:L  1mj9:A   1oas:A  1pvd:A   1r1j:A    1tde:_   1w2n:A  2cpo:_   5cox:D  
1kfx:L  1mka:BA 1oba:A  1pvi:B    1r30:A   1tdj:_   1wd8:A  2cpu:A   5cpa:_  
1kim:B  1mla:_   1odt:C   1pwh:C   1r4f:B    1thg:_   1wgi:A  2dhn:_   5enl:_   
1knp:A  1mlv:B   1oe8:B  1pwv:B   1r4z:A   1ti6:C   1wnw:C 2dln:_    5fit:_   
1kny:B  1mok:D  1ofd:A  1pxv:B    1r6w:A   1tml:_  1x7d:A  2dor:B   5rsa:_   
1kp2:A  1moq:_   1ofg:F   1pya:AFE 1r76:A   1tmo:_  1x9h:A  2ebn:_   7atj:A   
1kra:C  1mpx:C  1og1:A  1pyl:B    1ra2:_    1tox:A  1x9y:B  2eng:_   7odc:A  
1ksj:A  1mpy:B  1oh9:A  1pym:B   1rbl:A    1tph:1   1xgm:B  2f61:A   8tln:E   
1kws:A  1mqw:A 1oj4:B   1pz3:B    1rdd:_    1trk:A  1xik:A   2fok:B   9pap:_  
1kyq:B  1mro:AB 1ok4:H  1q18:B    1req:C   1tyf:I   1xny:AB 2gsa:A     
1kyw:F  1mrq:A   1okg:A  1q3n:A   1rgq:A   1tys:_   1xqw:A  2hdh:A     
1kzh:A  1muc:A  1onr:A  1q3q:C    1rhc:A   1tz3:A  1xrs:B   2hgs:A     
1l0o:B  1mud:A  1opm:A 1q91:A   1rhs:_   1u5u:B  1xtc:A   2isd:B     
1l1d:A  1mug:A  1or8:A  1qam:A   1rk2:C   1u7u:A  1xva:B  2jcw:_     
1l1l:D   1mvn:A  1ord:B  1qaz:A    1ro7:A   1u8v:C  1xvt:A   2lip:_      
1l1r:A   1myr:_   1oro:A  1qba:_    1roz:A   1uae:_  1xyz:A  2nac:A     
1l6p:A  1n20:A   1os7:B  1qcn:A    1rpt:_    1uag:_  1y9m:A  2nlr:A     
1l7n:B  1n8o:BC  1otg:C   1qd1:A   1rpx:C   1uam:A 1ybq:A  2nmt:A     
1l7q:A  1nba:B   1oya:_   1qd6:CD  1rql:B    1uaq:B  1ybv:A  2npx:_     
1l8t:A   1ndh:_   1oyg:A  1qdl:AB   1rtf:B    1uas:A  1ycf:A   2oat:C     
1lam:_  1ndi:A   1p1x:A  1qf6:A    1rtu:_    1uch:_  1ygh:B  2pda:A     
1lba:_   1ndo:AC  1p3d:A  1qfe:B    1ru4:A   1uf7:B  1ysc:_   2pec:_     
1lbu:_   1nf9:A   1p4n:A  1qfm:A   1rvv:A   1uk7:A  1yve:I   2pfl:A     
1lcb:_   1nhx:A   1p4r:B  1qgx:A   1s20:E   1ula:_   1z9h:B  2pgd:_     
1lci:_   1ni4:BC  1p5d:X  1qh9:A   1s2k:A   1un1:B  1ze1:A  2phk:A     
1ldm:_  1nid:_    1pa9:A  1qhf:B    1s3i:A    1uok:_  1zio:_   2pia:_      
1lij:A   1nir:A    1pfk:A  1qhg:A   1s76:D   1uqr:A  1zm2:F  2plc:_      
1lio:A   1nkk:C   1pfq:B  1qho:A   1s95:B   1uqt:B  1zrz:A   2pth:_      
1ljl:A   1nln:A   1pgs:_   1qj4:A    1s9c:B   1uro:A  1zym:B  2sqc:A     
1lml:_   1nlu:A   1pii:_   1qje:A    1sca:_    1ush:_  206l:_   2tdt:_      
1lnh:_   1nml:A   1pix:B   1qk2:B    1ses:B    1v04:A  2a0n:A  2thi:A      
1ltq:A   1nn4:B   1pj5:A  1qlh:A    1sll:_    1v0e:B  2abk:_   2tmd:B     
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