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中文摘要 

  近年來的研究顯示 RNA 分子在細胞內有多樣且重要的生物功能。

以演化的角度而言，RNA 分子結構的保留性會比其分子序列訊息來的

高而不容易改變，因此偵測 RNA 分子三維結構的相似度將有助於了解

RNA 分子本身的功能以及演化關係，而這些關係是無法單靠序列訊息

就可以偵測出來的。然而，在目前存入 PDB 與 NDB 資料庫中 RNA 三

維結構的數量愈來愈多且大小愈來愈大，這些都將造成人工方式去比較

分析這些 RNA 三維結構的困難度。因此，開發出一個快速且精確的自

動化工具程式就變得愈來愈重要。 

  在本研究中，我們利用向量量子化 (vector quantization) 的分群方

法推導出一個含有 23 個核苷酸結構字元的結構字元集，接著利用此結

構字元集將 RNA 三維結構轉成一維的結構字元序列，最後再利用傳統

的序列比對的方法來比較這些結構字元的一維序列，進而判斷出原 RNA 

分子三維結構的相似度。除此之外，根據上述的方法，我們也開發出一

個稱之為 SARSA 的工具程式可供使用者作線上的分析。在 SARSA 中，

我們提供了兩個工具：可比對兩個 RNA 三維結構的 PARTS 與可比對多

個 RNA 三維結構的 MARTS。特別的是在 PARTS 中，我們針對不同的

應用實作出四種比對的方法：(1)用於判斷整個結構相似程度的全域比

對；(2)用於偵測結構模組的半全域比對；(3)用在尋找相似子結構的區域

比對；(4)可去除區域比對中馬賽克效應的正規化區域比對。PARTS 與
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MARTS 接受 PDB 格式的 RNA 三維結構作為輸入的資料，同時在輸出

結果中，它們都提供圖形的顯示以便使用者可以目視、旋轉、放大與縮

小所比對出來的 RNA 三維的重疊結構。除此之外，我們的實驗結果也

顯示出由 PARTS 產生的比對結果是可以與 DIAL 的結果相互比較的，而

且 PARTS 的計算效能也優於 DIAL。實際上在一些例子中，PARTS 比

DIAL 更能夠產生出較正確的全域、半全域、與區域的兩兩比對結果。

SARSA 的 工 具 可 連 結 到 以 下 網 址 使 用

http://bioalgorithm.life.nctu.edu.tw/SARSA/ 
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Abstract 

Recently, it has become clear that RNA molecules have a variety of 

important biological functions in cells. Since structures are typically more 

evolutionarily conserved than sequences, detecting structural similarities 

among RNA three-dimensional (3D) structures can bring more significant 

insights into their functional and even evolutionary relationships that would 

not be detected by sequence information alone. However, the number and 

size of RNA 3D structures deposited in the PDB and NDB databases have 

been substantially and rapidly increasing recently, making it difficult and 

time-consuming to manually compare and analyze these RNA 3D structures. 

Therefore, it has become more and more crucial to develop automatic tools 

that are able to efficiently and accurately perform RNA structural 

comparison. 

In this study, we first use the vector quantization approach to derive a 

structural alphabet (SA) of 23 nucleotide conformations, and then transform 

RNA 3D structures into 1D sequences of SA letters, and finally utilize 

classical sequence alignment methods to compare these 1D SA-encoded 

sequences for determining their structural similarities. In addition, based on 

such an SA-based approach, we have developed a novel web-based tool, 

called SARSA, for public online analysis. In SARSA, we provide two RNA 

structural alignment tools, PARTS for pairwise alignment of RNA 3D 

structures and MARTS for multiple alignment of RNA 3D structures. 

Particularly in PARTS, we have implemented four kinds of pairwise 
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alignments for a variety of practical applications: (a) global alignment for 

comparing whole structural similarity, (b) semiglobal alignment for 

detecting structural motifs, (c) local alignment for finding locally similar 

substructures, and (d) normalized local alignment for eliminating the mosaic 

effect of local alignment. Both tools in SARSA take as input RNA 3D 

structures in the PDB format and in their outputs provide graphical display 

that allows the user to visually view, rotate and enlarge the superposition of 

aligned RNA molecules. In addition, our experiments have shown that the 

pairwise alignments produced by our PARTS were comparable to those 

obtained by DIAL and the performance computation of PARTS was 

generally faster than that of DIAL. In some cases, our PARTS can actually 

produce more accurate global, semiglobal and local pairwise alignments 

when compared with DIAL. SARSA is available online at 

http://bioalgorithm.life.nctu.edu.tw/SARSA/. 
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Chapter 1  

Introduction 

Recently, it has become clear that RNA molecules have a variety of 

important biological functions in cells, including protein synthesis (e.g., 

mRNAs, rRNAs and tRNAs), RNA processing (e.g., ribozymes and small 

nuclear RNAs (snRNAs)) and modification (e.g., small nucleolar RNAs 

(snoRNAs)), gene regulation (e.g., riboswitches, microRNAs (miRNAs) and 

small interfering RNAs (siRNAs)), chromosome replication (e.g. telomerase 

RNAs), and so on [1][2][3]. Since structures are typically more 

evolutionarily conserved than sequences, detecting structural similarities 

among RNA three-dimensional (3D) structures can bring more significant 

insights into their functional and even evolutionary relationships that would 

not be detected by sequence information alone. However, the number and 

size of RNA 3D structures deposited in the Protein Data Bank [4], as well as 

the Nucleic Acid Database [5], has been substantially and rapidly increasing 

recently, making it difficult and time-consuming to manually compare and 

analyze these RNA tertiary structures. Therefore, it has become more and 

more crucial to develop automatic tools that are able to efficiently and 

accurately perform RNA structural comparison. 

Theoretically, detecting structural similarities in two RNA molecules at 
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the tertiary structure level is a difficult problem, since it has been shown to 

be NP-hard to find a constant ratio approximation algorithm for computing a 

pair of maximal substructures from two protein/RNA 3D structures with 

exhibiting the highest degree of similarity, if the two proteins/RNAs being 

compared lie in a general 3D metric (not necessarily Euclidean) space [8]. 

Therefore, currently available tools, such as ARTS [9][10] and DIAL [11], 

are all based on some heuristic approaches and particularly they are all 

dedicated to pairwise alignment/comparison of RNA tertiary structures. We 

refer the reader to [9][11] for briefly reviewing these tools and their 

approaches. 

ARTS was implemented based on a cubic time algorithm that proceeds 

by a seed match followed by a greedy extension to approximately compute 

the largest common point set between phosphate atoms of two RNA 

molecules [9][10]. While ARTS can serve as an excellent tool for detecting 

structural motifs, it is still a little time-consuming job for ARTS to compare 

large RNA molecules (e.g., ribosomal RNAs) due to its cubic time 

complexity and sometimes the alignments produced by ARTS may be 

incorrect, as were demonstrated in [11].  

To overcome these problems, DIAL was then developed based on a 

quadratic time dynamic programming algorithm by accounting for 

torsion/pseudo-torsion angle, nucleotide and/or base-pairing similarities [11]. 

DIAL is a versatile tool of pairwise RNA structural alignment, because it can 

perform three types of alignments: (a) global alignment, (b) local alignment 

and (c) semiglobal alignment (i.e., a kind of global alignment without 

penalizing those end gaps that appear in the beginnings and ends of the 

alignment). However, we observed that the global, local and semiglobal 
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alignments obtained by DIAL may still be incorrect for some pairs of RNA 

3D structures (for details see the Experimental Results chapter). 

In this study, we utilize the vector quantization (VQ) approach, a 

technique of high-dimensional clustering commonly used in classical signal 

processing [12], to derive an RNA structural alphabet of 23 letters that 

represent distinct and most common backbone conformations of residues in 

RNAs with known tertiary structures. Using this structural alphabet (SA), 

we reduce RNA 3D structures to 1D sequences of SA letters and then use 

classical and efficient sequence alignment algorithms to compare these 1D 

SA-encoded sequences and determine their structural similarities. Based on 

such an SA-based approach, we have developed a novel web-based tool, 

called SARSA (http://bioalgorithm.life.nctu.edu.tw/SARSA/), which 

provides two RNA structural alignment tools, PARTS for pairwise 

alignment of RNA tertiary structures and MARTS for multiple alignment of 

RNA tertiary structures. 

For a variety of practical applications, four kinds of pairwise 

alignments were implemented in PARTS: (a) global alignment [13] for 

comparing whole structural similarity, (b) semiglobal alignment [14] for 

detecting structural motifs, (c) local alignment [15] for finding locally 

similar substructures, and (d) normalized local alignments [16] for 

eliminating the mosaic effect of local alignment (i.e., removing poor internal 

fragments in a local alignment), and a multiple global alignment [17] in 

MARTS. It is worth mentioning that in SARSA we provide a number of 

features that are not available in DIAL and other RNA structural alignment 

tools, such as the normalized local pairwise structural alignment in PARTS 

and the multiple structural alignment in MARTS. In addition, our 
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experiments have shown that the pairwise alignments produced by our 

PARTS were comparable to those obtained by DIAL and the performance 

computation of PARTS was generally faster than that of DIAL. In some 

cases, our PARTS can actually produce more accurate global, semiglobal 

and local pairwise alignments when compared with DIAL (for details refer 

to the Experimental Results chapter). 
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Chapter 2  

Methods 

The basic idea we used in this study is as follows. We first use the vector 

quantization approach to derive an RNA structural alphabet of 23 letters that 

represent distinct and most common backbone conformations. According to 

this structural alphabet, we then transform RNA 3D structures to 1D 

sequence of SA-encoded letters. Finally, we utilize classical and efficient 

sequence alignment algorithms to compare these 1D SA-encoded sequences 

and determine their structural similarities. In this chapter, we will describe 

the details of how to use the vector quantization approach to derive the 

structural alphabet, how to transform RNA 3D structures into 1D sequences, 

and how to derive the scoring matrices for aligning 1D SA-encoded 

sequences, and how to utilize normalized local alignment in RNA 3D 

structural comparison. 

2.1 Structural alphabet 

For protein backbones, two torsion (or dihedral) angles (φ and ψ) are 

sufficient to describe the conformation of each amino acid residue. In 

contrast, RNA molecules have much higher dimensionality, since for each 
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nucleotide residue there are six backbone torsion angles (α, β, γ, δ, ε and ζ) 

and a torsion angle of the bond between base and ribose ring (χ). Recently, 

Hershkovitz et al. [19] have performed a statistical analysis of RNA 

backbones to search for clusters in RNA conformational space using the 

so-called vector quantization (VQ), a technique of high-dimensional 

clustering commonly used in classical signal processing [18]. The advantage 

of employing the VQ technique is that it allows all seven dimensions of 

RNA conformation to be analyzed simultaneously, so that the smaller 

number of clusters is needed to classify the RNA structure, as compared to 

the manual binning method used previously in [20] by analyzing one torsion 

angle at a time. By applying a modified VQ method to a dataset of 132 RNA 

crystal structures with at least 3.0-Å resolution or better, Hershkovitz et al. 

[19] finally have reduced the full 7D torsion angle space to a set of 26 

clusters. 

In fact, as was demonstrated in [19] by plotting torsion angle 

distributions using a collection of 132 RNAs (please refer to [19] for their 

detailed PDB and NDB ids), four torsion angles α, γ, δ and ζ are sufficient 

for specifying fundamental RNA conformations, since the others are either 

dependent on these four angles or have distributions with a single peak 

(Figure 2-1). Based on this property, Hershkovitz et al. [19] also utilized the 

so-called scalar quantization (SQ), which can be considered as a special VQ 

by treating torsion angles individually, to classify α, γ, δ and ζ torsion angles 

(Table 2-1). As was shown in Table 2-1, the ζ torsion angles were partitioned 

into three, rather than one, clusters, although they visually have a single peak 

as shown in Figure 2-1. 
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Figure 2-1. Distributions of the seven torsion angles using a dataset of 132 
RNAs, where α, γ and δ have clear multiple peaks, whereas β, ε and χ have 
only a clear peak. Particularly note that the ζ torsion angles has a large tail 
not present in the other distribution, although it visually contains a single 
peak. 

Here, we utilized the VQ approach, followed by a cluster merging, to 

classify all the residues in the dataset of 132 RNA crystal structures, as was 

used in [19], only according to their four torsion angles of α, γ, δ and ζ. 

Consequently, we divided a total of 9,826 residues into a collection of 23 

conformational clusters, as was shown in Table 2-2. In addition, we 
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Table 2-1. Enumeration of the bins obtained by SQ and their boundaries, as 
adapted from Table 2-2 in [19]. 

Bin Index 1 2 3 
α [0-115] [115-220] [220-360]
γ [0-120] [120-220] [220-360]
δ [50-118] [118-170]  
ζ [10-130] [130-220] [220-360]

calculated the center of each cluster (i.e., the average of all the residues in 

the cluster) and assigned it (and its corresponding cluster) a four-digit 

number nαnγnδnζ, where each digit represents the bin index, as listed in Table 

2-1, to which the corresponding torsion angle of the center belongs. For 

example, the first cluster in Table 2-2 was assigned a four-digit number of 

3113, because the torsion angle values of α, γ, δ and ζ of its center are in the 

bins indexed as 3, 1, 1 and 3, respectively, in Table 2-1. For our purpose of 

transforming RNA 3D structures into 1D sequences, we further assigned a 

letter to each of 23 clusters, as named in Table 2-2. We used the set of these 

23 letters as a structural alphabet (SA) and then encoded RNA 3D structures 

as 1D sequences of SA letters by assigning each residue in the RNA 

molecules with the letter of the cluster whose center is nearest to the residue 

being encoded, where the distance between the residue and each center is the 

square root of the sum of all squared torsion differences. Like ordinary 

nucleotide sequences, these SA-encoded 1D sequences can then be aligned 

using classical sequence alignment methods. 
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Table 2-2. 23 conformational clusters classified by VQ based on α, γ, δ and 
ζ torsion angles and their associated letters and four-digit numbers. 
Number Letter 4-Digit Number Number Letter 4-Digit Number

1 A 3113 13 Y 1313 
2 I 2213 14 P 2211 
3 K 2113 15 V 3313 
4 E 3112 16 S 2121 
5 R 3122 17 G 2122 
6 L 1213 18 C 1123 
7 Q 3121 19 H 3222 
8 B 3111 20 W 1211 
9 N 3123 21 D 1321 
10 M 3213 22 X 3311 
11 T 1113 23 Z 3211 
12 F 1121    

 

2.2 Hamming-distance-based and BLOSUM-like scoring matrices 

For the accuracy of alignment, we derived a 23 × 23 scoring matrix in 

which every possible identity and substitution, say X aligned with Y, is 

assigned a score, denoted by score(X, Y), based on the Hamming distance 

between the two 4-digit numbers, say x1x2x3x4 and y1y2y3y4, associated with X 

and Y, respectively. The so-called Hamming distance Δ(X, Y) between X and 

Y is defined to be the number of digits for which the corresponding numbers 

are different, that is, Δ(X, Y) = |{i : xi ≠ yi for 1 ≤ i ≤ 4}|. Then the score 

between X and Y we used here equals to 4 − Δ(X, Y), that is, score(X, Y) = 4 

− Δ(X, Y). For instance, suppose that X = A and Y = K. Then Δ(X, Y) = Δ(A, 

K) = Δ(3113, 2113) = 1 and therefore score(A, K) = 4 − Δ(A, K) = 3. The 

complete scoring matrix is shown in Figure 2-2. 
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Figure 2-2. Hamming-distance-based scoring matrix.  

In addition to above Hamming-distance-based scoring matrix, we 

constructed a log-odds matrix for SA-letter substitution using the statistical 

method that was used by Henikoff and Henikoff [21] to derive the 

BLOSUM family of substitution matrices as follows. Denote by {a1, a2, …, 

a23} the structural alphabet of 23 SA letters, and let fij be the observed 

substitution frequency of SA-letter pair (ai, aj). Then the relative frequency 
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qij of an SA-letter pair (ai, aj) is 
∑ ∑= =

= 23
1 1k

k
l kl

ij
ij

f

f
q . The frequency of 

occurrence of SA letter ai in an SA-letter pair (ai, aj) is 
2

23
,1∑ ≠=+= ikk ik

iiij

q
qp . 

The expected frequency eij for a substitution of an SA-letter pair (ai, aj) is 

then pipj for i = j and pipj + pjpi = 2pipj for i ≠ j. Finally, the logarithm of the 

odds matrix is calculated by score(ai, aj) = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ij

ij

e
q

2logλ , where λ is a positive 

scale factor. For the purpose of constructing this BLOSUM-like matrix, a 

dataset of structurally similar RNA pairs was obtained from the SCOR 

database (5, 6) based on the following criteria: (1) motifs must belong to a 

structural family, (2) motifs must not be fragmented, (3) motifs must have 

length > 3 nt (4) motifs must have specified starting and ending positions in 

the chain, and (5) motif pairs must have no 100% sequence identity. In total, 

2,152 RNA motif pairs from 102 SCOR subclasses were analyzed, which 

accounted for 6,214 SA-letter pairs. The λ value used in SARSA was set to 

1.2 for the best performance, by testing various values ranging from 1 to 2. 

2.3 Normalized local alignment 

Currently, four different types of pairwise alignments, global, semiglobal, 

local and normalized local alignments, as well as a multiple global 

alignment, were implemented in our web server for a variety of practical 

applications. Recall that the Smith-Waterman algorithm for the local 

alignment was originally designed to discard non-similar initial and terminal 
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Figure 2-3. BLOSUM-like scoring matrix. 

fragments in the sequence alignment, but it was not able to exclude 

non-similar internal fragments, leading to a so-called mosaic effect by 

including poor internal fragments in a local alignment [13]. As was shown in 

Figure 2-4 for an illustration, if a region of negative score −X is sandwiched 

between two regions scoring more than X, then the Smith-Waterman 

algorithm will join these three regions into a single alignment that may not 

be biologically adequate. In fact, such a mosaic effect can be observed in the 
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Figure 2-4. A mosaic effect with an inclusion of a poor internal region in an 
alignment (adapted from [16]). 

comparison of RNA tertiary structures, as illustrated in the Experimental 

Results chapter. 

To overcome the mosaic effect in local alignment, Arslan et al. [16] 

introduced the normalized local alignment problem that aims to find the 

subsequences, say I and J, of two given sequences that maximizes S(I, J)/(|I| 

+ |J|) among all subsequences I and J with |I| + |J| ≥ T, where S(I, J) is the 

alignment score between I and J, and T is a threshold for the minimal overall 

length of I and J. Note that the above length constraint of requiring |I|+|J| ≥ 

T is necessary, because length normalization favors short alignment but the 

alignment should be sufficiently long to be biologically meaningful. As 

illustrated in Figure 2-5, the long alignment has higher ordinary score, 

whereas the short alignment has higher normalized score. Hence, if we use 

ordinary scores as the similarity measure, then the long alignment with a 

non-similar internal fragment will be chosen as an optimal local alignment. 

However, if we use normalized scores instead, then the alignment to be 

chosen will depend on the value of T. If T ≤ 200, then the short alignment is 

chosen as an optimal normalized local alignment; otherwise, the long 

alignment is chosen. In [16], Arslan et al. have also proposed a 

polynomial-time algorithm to solve the normalized local alignment problem. 

Here, we have implemented such an algorithm for the normalized local 

alignment of the SA-encoded sequences of two RNA 3D structures. 
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Figure 2-5. Mosaic effect in a local pairwise sequence alignment (adapted 
from [16]). Note that the numbers written in bold are the scores of 
alignments identified by the corresponding rectangles, and the other 
numbers are the side lengths of the rectangles. That is, the long alignment 
(i.e., A1 with total length 600) has a score of 120, while the short alignment 
(i.e., A2 with total length 200) has a score of 80. 
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Chapter 3  

Implementation of Software Tools 

Based on the SA-based approach described in the previous chapter, we have 

developed a novel web-based tool, called SARSA (short for Structural 

Alignment of RNA using a Structural Alphabet) (see Figure 3-1), which 

provides two RNA structural alignment tools that are PARTS (short for 

Pairwise Alignment for RNA Tertiary Structures) for pairwise alignment of 

RNA tertiary structures and MARTS (short for Multiple Alignment for RNA 

Tertiary Structures) for multiple alignment of RNA tertiary structures. In the 

following, we will describe the details of how to use PARTS and MARTS 

for structural alignments of pairwise and multiple RNA 3D structures, 

respectively. 

3.1 Usage of PARTS 

PARTS (refer to Figure 3-2) allows the user to compare two RNA 3D 

structures by performing global, semiglobal, local, and normalized local 

alignments. Below, we describe the details of its usage step by step. 
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Figure 3-1. Interface of SARSA. 

3.1.1 Input of PARTS 

1. Enter the PDB/NDB id (4-/6-character code) or upload the file in the 

PDB format, as well as its chain id and starting and ending residue 

numbers in sequence, for RNA molecule 1. Note that PDB/NDB id or 

uploading the file is mandatory, and others are optional but the user 

has to specify a chain id, if the given RNA molecule has multiple 

chains.  

2. Enter the PDB/NDB id (4-/6-character code) or upload the file in the 

PDB format, as well as its chain id and starting and ending residue 

numbers in sequence, for RNA molecule 2. Note that PDB/NDB id or 

uploading the file is mandatory, and others are optional but the user 

has to specify a chain id, if the given RNA molecule has multiple 

chains.  

3. Just click "Run PARTS" button, if the user would like to run PARTS 

with default parameters; otherwise, the user continues with the 

following parameter settings.  
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Figure 3-2. Interface of PARTS. 

4. Select a pairwise alignment that can be either global, semiglobal, local, 

or normalized local alignment. 

5. Choose a scoring matrix that can be either BLOSUM-like scoring 

matrix (default) or Hamming-based scoring matrix.  

6. Key in two real values for gap open penalty and gap extension penalty, 

respectively, since the PARTS penalizes the gaps using the affine gap 

penalty function.  

7. Specify the number of suboptimal alignments (at least 1), if the user 

choose semiglobal, local or normalized local alignment to run PARTS.  

8. Specify the value of T whose default is 8, if the used alignment is a 

normalized local alignment. Basically, if T is small, then the obtained 
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normalized local alignments tend to be short; otherwise, they tend to 

be long normalized local alignments, in which may contain some 

non-similar internal fragments. 

3.1.2 Output of PARTS 

In the output page, PARTS will first show the details of input RNA 

molecules, as well as user-specified parameters. Next, PARTS will show its 

alignment result(s), including alignment score based on the pre-defined 

scoring matrix, RMSD (root mean square deviation), and detailed alignment 

of SA-encoded sequences and its corresponding alignment for original RNA 

 

Figure 3-3. The output page of PARTS. 
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sequences. In addition, the user can click the "Superposition display" link to 

visually view, rotate and enlarge the 3D structures of input RNAs and the 

superposition of their aligned 3D structures in a Jmol window. Please refer 

to Figure 3-3 for an example. 

3.2 Usage of MARTS 

MPARTS (refer to Figure 3-4) allows the user to compare multiple RNA 3D 

structures. Below, we describe the details of how to use it step by step. 

3.2.1 Input of MARTS 

1. Input or paste multiple (at least two) RNA molecules in the format of 

'<pdb|ndb id>:<chain id>:[residue]-[residue]', where id items are 

mandatory and residue items, representing starting and ending 

residues in the input RNA sequence, are optional. For example, 

"1ASZ:R" (meaning the structure of the R chain in 1ASZ), 

"1ASZ:R:620-660" (meaning the substructure of the R chain of 1ASZ 

beginning at residue 620 and ending at residue 660), "1ASZ:R:620-" 

(meaning the substructure of the R chain of 1ASZ beginning at 

residue 620 and ending at the last residue), and "1ASZ:R:-660" 

(meaning the substructure of the R chain of 1ASZ beginning at the 

first residue and ending at residue 660) are all legal.  

2. It is optional for the user to upload local PDB file(s) if any. MARTS 

allows the user to upload at most 20 PDB files.  
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Figure 3-4. Interface of MARTS. 

3. Just click "Run MARTS" button, if the user would like to run 

MARTS with default parameters; otherwise, the user continues with 

the following parameter settings.  

4. Choose a scoring matrix that can be either BLOSUM-like (default) or 

Hamming-based.  

5. Key in two real values for gap open penalty and gap extension penalty, 

respectively, since the MARTS penalizes the gaps using the affine gap 

penalty function.  

3.2.2 Output of MARTS 

In the output page, MARTS will first show the details of input RNA 

molecules and user-specified parameters. Next, MARTS will show the 
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resulting multiple global alignment of SA-encoded sequences and its 

corresponding alignment for original RNA sequences. In addition, the user 

can click the "Superposition display" link to visually view, rotate and enlarge 

the 3D structures of input RNAs and the superposition of their aligned 3D 

structures in a Jmol window. Please refer to Figure 3-5 for an example. 

 

Figure 3-5. The output page of MARTS. 
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Chapter 4  

Experimental Results 

In this chapter, we will describe some experimental results we obtained by 

testing our PARTS and MARTS on several instances of RNA 3D structures. 

In addition, we will compare our testing results of pairwise global, 

semiglobal, and local structural alignments to those results obtained by using 

DIAL. Unless otherwise specified, all the experiments were run using our 

PARTS and MARTS, as well as DIAL, with their default parameters. 

4.1 ROC curves 

To assess the accuracy of our PARTS, we calculated its receiver operating 

characteristic (ROC) curves, depicting the trade-off between true positive 

rate (i.e., sensitivity) and false positive rate (i.e., 1 minus specificity), and 

compared them with the best ROC curve of DIAL. By following the 

procedure that was used by Ferr`e et al. [11] to compute DIAL＇s ROC 

curves, we obtained a filtered, non-redundant dataset that consisted of 51 

families and altogether 186 non-fragmented motifs from the SCOR database 

[22][23], which currently organizes many RNA structural motifs in a 
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Figure 4-1. The ROC curves when using the pairwise semiglobal alignment 
of PARTS to align RNA structural motifs from the SCOR database with two 
different scoring matrices. 

hierarchical classification system similar to the SCOP database for protein 

domains [24]. According to this dataset, we computed the ROC curves using 

the semiglobal alignment of PARTS with two different scoring matrices. As 

illustrated in Figure 4-1, the ROC curve using BLOSUM-like scoring matrix 

performed better than that using Hamming scoring matrix, where the AUC 

(area under ROC curve) of the former ROC curve is 0.75, while the AUC of 

the latter is just 0.66. In fact, the alignment results of our PARTS were still 

comparable to those obtained by DIAL, because as demonstrated in [11] the 

AUCs of the ROC curves computed by DIAL using the semiglobal 

alignment method with different parameter settings are between 0.69 and 

0.80 (refer to Figure 4-2). In addition, the performance computation of our 

PARTS was faster than that of DIAL, even though DIAL was executed on a  
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Figure 4-2. The ROC curves computed by DIAL using the semiglobal 
alignment method with different parameter settings (derived from Figure 5 
in [11]). 

Linux cluster with 20 computational nodes, each with double CPUs of 1.3-3 

GHz and 2 GB RAM, while our PARTS was run only on a single Linux PC 

with 2.8 GHz CPU and 3 GB RAM. Actually, in some cases as will be 

demonstrated below, our PARTS produced more accurate global, semiglobal 

and local pairwise alignments when compared with DIAL. 

4.2 Pairwise global structural alignment 

First of all, we used the tertiary structures of two riboswitches to test our 

PARTS and DIAL for their capabilities of globally aligning two RNA 3D 

structures. They are 1U8D (chain A) and 1Y26 (chain X), where 1U8D is 

the aptamer domain of the guanine-specific riboswitch from the xpt-pbuX 

operon of B. subtilis, and 1Y26 is the aptamer domain of the 
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adenine-specific riboswitch from the V. vulnificus add gene. In fact, these 

two riboswitches have nearly identical tertiary structure, although they share 

only less than 60% sequence identity [25]. Consequently, both PARTS and 

DIAL globally aligned their tertiary structures very well, as shown in Figure 

4-3. To demonstrate the difference in global alignment accuracy of PARTS 

and DIAL, we tested them again by using complete 1U8D:A structure and 

incomplete 1Y26:X structure that ranges from 25 to 72 residues 

(1Y26:X:25-72) (i.e., two similar RNA tertiary structures with a little 

difference in length). As a result, our PARTS globally aligned 1U8D:A and 

1Y26:X:25-72 with an RMSD of 1.70 Å (Figure 4-4a), whereas DIAL 

globally aligned them with an RMSD of 12.03 Å (Figure 4-4b). The reason 

for DIAL’s result is that DIAL mis-aligned a fragment of 1Y26:X:68-72 

with a fragment of 1U8D:A:76-80,as was illustrated in Figure 4-5b, but 

actually it should be aligned with 1U8D:X:68-72 as shown in Figure 4-5a. 

 

Figure 4-3. Superposition display of (a) PARTS global alignment and (b) 
DIAL global alignment between 1U8D:A and 1Y26:X. 
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Figure 4-4. Superposition display of (a) PARTS global alignment and (b) 
DIAL global alignment between 1U8D:A and 1Y26:X:25-72. 

 
Figure 4-5. (a) PARTS global alignment and (b) DIAL global alignment 
between 1U8D:A and 1Y26:X:25-72, where DIAL mis-aligned a fragment 
of 1Y26 from 68 to 72 residues with a fragment of 1U8D ranging from 76 to 
80 residues. 

4.3 Pairwise semiglobal structural alignment 

Note that Ferr`e et al. [11] were the first to utilize the semiglobal alignment, 

a kind of global alignment without penalizing those end gaps appearing in 

the beginnings and ends of the alignment, for the detection of structural 

motifs in RNA 3D structures. In this experiment, we tested our PARTS, as 



 

 27

well as DIAL, by using 1J5A:A with residues 2530-2536 as a query 

structural motif and 1HR2:A with residues 103-260 as a target RNA 

molecule. Consequently, our PARTS correctly detected the position of the 

query structural motif in the target RNA molecule and also returned a 

semiglobal alignment of IJ5A:A:2530-2536 and 1HR2:A:149-155 with an 

RMSD of 1.63 Å (Figure 4-6a). However, DIAL mis-aligned the query 

structural motif with a different portion of the target RNA molecule (i.e., 

1HR2:A:234-240) and returned their semiglobal alignment with an RMSD 

of 2.43 Å (Figure 4-6b). 

 
Figure 4-6. Superposition display of (a) PARTS semiglobal alignment and 
(b) DIAL semiglobal alignment using 1J5A:A:2530-2536 as a query 
structural motif (red) and 1HR2:A:103-260 as a target RNA molecule 
(green). 
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4.4 Pairwise local structural alignment 

Here, we first used both PARTS and DIAL to locally compare two RNA 

pseudoknots 1L2X:A (a viral RNA pseudoknot) and 2A43:A (a luteoviral 

RNA pseudoknot). Consequently, both of them produced good local 

alignments for these two RNA pseudoknots as were demonstrated in Figure 

4-7. 

Next, to illustrate the difference in local alignment accuracy of PARTS 

and DIAL, we applied them to a complete structure of riboswitch 1U8D:A 

and a partial structure of riboswitch 1Y26:X ranging from 39 to 45 residues 

(1Y26:X:39-45). Basically, as mentioned above, both of 1Y26:X and 

1U8D:A have nearly identical tertiary structure and hence the partial 

structure 1Y26:X:39-45 should be aligned together with its corresponding 

substructure in 1U8D (i.e., 1U8D:A:39-45). 

 

Figure 4-7. Superposition display of (a) PARTS local alignment and (b) 
DIAL local alignment for two RNA pseudoknots 1L2X:A (green) and 
2A43:A (red). 
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Figure 4-8. Superposition display of (a) PARTS local alignment and (b) 
DIAL local alignment between 1U8D:A (green) and 1Y26:X:39-45 (red), 
where DIAL mis-aligned 1Y26:X:39-45 with 1U8D:A:74-80. 

Consequently, our PARTS aligned them by shifting a residue position, 

producing a alignment of 1Y26:X:39-45 and 1U8D:A:40-46 with an RMSD 

of 0.70 Å (Figure 4-8a). However, DIAL completely mis-aligned 

1Y26:X:39-45 with 1U8D:A:74-80 in its local alignment that has an RMSD 

of 1.32 Å (Figure 4-8b). 

4.5 Pairwise normalized local structural alignment 

In fact, it can be observed that a long local alignment between two RNA 3D 

structures may contain some non-similar internal fragments (i.e., the 

so-called mosaic effect). For instance, Figure 4-9a displays the structural 

superposition for the optimal local alignment of two RNA pseudoknots 
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1L2X:A and 2A43:A that was obtained by our PARTS using Hamming 

scoring matrix with default parameters (RMSD = 2.40Å). As shown in this 

figure, the similar substructures in the initial and terminal regions were very 

well fitted, but the non-similar substructures in the internal region, ranging 

from residues 13 to 20, was not fitted well. This mosaic effect in the 

ordinary local alignment can actually be improved using the normalized 

local alignment method as implemented in PARTS. For instance, if we run 

PARTS normalized local alignment by using Hamming scoring matrix and 

specifying two for the number of suboptimal alignments and 16 for the value 

of T, then the substructures in the returned normalized local alignments, as 

shown in Figure 4-9b and Figure 4-9c, are fitted very well and have RMSDs 

of 0.20Å and 0.26Å, respectively. As mentioned before, the setting value of 

T can affect the results of normalized local alignments. For example, if T is 

set to a large value (e.g., T = 46), then PARTS returns a long normalized 

local alignment, similar to the one depicted in Figure 5a, with non-similar 

internal substructures. 

 
Figure 4-9. (a) Superposition display of (a) PARTS local alignment between 
two RNA pseudoknots 1L2X:A and 2A43:A, and their (b) best and (c) 
second best PARTS normalized local alignments. 
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4.6 Multiple global structural alignment 

We demonstrated the multiple alignment capability of our MARTS by 

applying it to six tRNA structures (i.e., 1H4S:T, 1ASZ:R:620-660, 1IL2:C, 

2CSX:C, 1EVV:A, and 1J2B:C) and five RNA pseudoknots (i.e., 1L2X:A, 

2AP5:A, 1KPY:A, 2AP0:A, and 1YG4:A). Consequently, our MARTS 

returned a global alignment of the six tRNA 3D structures with an RMSD of 

10.73 Å(Figure 4-10a) and a global alignment of the five RNA 

pseudoknotted structures with an RMSD of 5.89 Å(Figure 4-10b). Note that 

the RMSD we used here for the multiple RNA structural alignment is 

defined to be the square root of the average sum of all squared pairwise 

distances. 

 
Figure 4-10. Multiple structural alignments obtained by MARTS for (a) six 
tRNA 3D structures and (b) five RNA pseudoknots. 
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Chapter 5   

Conclusions 

In this study, we have used the SA-based approach to develop a web tool 

SARSA by providing two RNA structural alignment tools that are PARTS 

that can perform global, semiglobal, local and normalized local pairwise 

alignments of RNA 3D structures, and MARTS that can perform global 

multiple alignment of RNA 3D structures. The basic idea behind SARSA is 

that we use the vector quantization approach to derive a structural alphabet 

(SA) of 23 nucleotide conformations, via which we transform RNA 3D 

structures into 1D sequences of SA letters and then utilize classical sequence 

alignment methods to compare these 1D SA-encoded sequences and 

determine their structural similarities. It is worth mentioning that the 

pairwise normalized local structural alignment in PARTS and the multiple 

structural alignment in MARTS are not available in other RNA structural 

alignment tools. In addition, according to our experiments, our PARTS 

indeed can quickly produce global, semiglobal and local pairwise structural 

alignments that are comparable to those obtained by DIAL. Therefore, we 

believe that our SARSA can serve as a useful tool in the study of structural 

biology. 
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