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Abstract

Recently, it has become clear that RNA molecules have a variety of
important biological functions in cells. Since structures are typically more
evolutionarily conserved than sequences, detecting structural similarities
among RNA three-dimensional (3D) structures can bring more significant
insights into their functional and even evolutionary relationships that would
not be detected by sequence information alone. However, the number and
size of RNA 3D structures deposited in the:PDB and NDB databases have
been substantially and rapidly increasing recently, making it difficult and
time-consuming to manually compare‘and analyze these RNA 3D structures.
Therefore, it has become more‘and more cructal to develop automatic tools
that are able to efficiently and accurately perform RNA structural

comparison.

In this study, we first use the vector quantization approach to derive a
structural alphabet (SA) of 23 nucleotide conformations, and then transform
RNA 3D structures into 1D sequences of SA letters, and finally utilize
classical sequence alignment methods to compare these 1D SA-encoded
sequences for determining their structural similarities. In addition, based on
such an SA-based approach, we have developed a novel web-based tool,
called SARSA, for public online analysis. In SARSA, we provide two RNA
structural alignment tools, PARTS for pairwise alignment of RNA 3D
structures and MARTS for multiple alignment of RNA 3D structures.

Particularly in PARTS, we have implemented four kinds of pairwise
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alignments for a variety of practical applications: (a) global alignment for
comparing whole structural similarity, (b) semiglobal alignment for
detecting structural motifs, (c) local alignment for finding locally similar
substructures, and (d) normalized local alignment for eliminating the mosaic
effect of local alignment. Both tools in SARSA take as input RNA 3D
structures in the PDB format and in their outputs provide graphical display
that allows the user to visually view, rotate and enlarge the superposition of
aligned RNA molecules. In addition, our experiments have shown that the
pairwise alignments produced by our PARTS were comparable to those
obtained by DIAL and the performance computation of PARTS was
generally faster than that of DIALL In some.cases, our PARTS can actually
produce more accurate global, semiglobal.and local pairwise alignments
when compared with DIAL. SARSA “is available online at
http://bioalgorithm.life.nctu.edu.tw/SARSA/.
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Chapter 1
Introduction

Recently, it has become clear that RNA molecules have a variety of
important biological functions in cells, including protein synthesis (e.g.,
mRNAs, rRNAs and tRNAs), RNA ‘processing (e.g., ribozymes and small
nuclear RNAs (snRNAs)) and modification (e.g., small nucleolar RNAs
(snoRNAs)), gene regulation (€.g., riboswitches,;microRNAs (miRNAs) and
small interfering RNAs (siRNAs)), chromosome replication (e.g. telomerase
RNAs), and so on [1][2][3]. "Since " structures are typically more
evolutionarily conserved than sequences, detecting structural similarities
among RNA three-dimensional (3D) structures can bring more significant
insights into their functional and even evolutionary relationships that would
not be detected by sequence information alone. However, the number and
size of RNA 3D structures deposited in the Protein Data Bank [4], as well as
the Nucleic Acid Database [5], has been substantially and rapidly increasing
recently, making it difficult and time-consuming to manually compare and
analyze these RNA tertiary structures. Therefore, it has become more and
more crucial to develop automatic tools that are able to efficiently and

accurately perform RNA structural comparison.

Theoretically, detecting structural similarities in two RNA molecules at



the tertiary structure level is a difficult problem, since it has been shown to
be NP-hard to find a constant ratio approximation algorithm for computing a
pair of maximal substructures from two protein/RNA 3D structures with
exhibiting the highest degree of similarity, if the two proteins/RNAs being
compared lie in a general 3D metric (not necessarily Euclidean) space [8].
Therefore, currently available tools, such as ARTS [9][10] and DIAL [11],
are all based on some heuristic approaches and particularly they are all
dedicated to pairwise alignment/comparison of RNA tertiary structures. We
refer the reader to [9][11] for briefly reviewing these tools and their

approaches.

ARTS was implemented based on a.cubic time algorithm that proceeds
by a seed match followed by:a greedy extension to approximately compute
the largest common point set between-phosphate atoms of two RNA
molecules [9][10]. While ARTS"can serve as an excellent tool for detecting
structural motifs, it is still a little time-consuming job for ARTS to compare
large RNA molecules (e.g., ribosomal RNAs) due to its cubic time
complexity and sometimes the alignments produced by ARTS may be

incorrect, as were demonstrated in [11].

To overcome these problems, DIAL was then developed based on a
quadratic time dynamic programming algorithm by accounting for
torsion/pseudo-torsion angle, nucleotide and/or base-pairing similarities [11].
DIAL is a versatile tool of pairwise RNA structural alignment, because it can
perform three types of alignments: (a) global alignment, (b) local alignment
and (c) semiglobal alignment (i.e., a kind of global alignment without
penalizing those end gaps that appear in the beginnings and ends of the

alignment). However, we observed that the global, local and semiglobal



alignments obtained by DIAL may still be incorrect for some pairs of RNA

3D structures (for details see the Experimental Results chapter).

In this study, we utilize the vector quantization (VQ) approach, a
technique of high-dimensional clustering commonly used in classical signal
processing [12], to derive an RNA structural alphabet of 23 letters that
represent distinct and most common backbone conformations of residues in
RNAs with known tertiary structures. Using this structural alphabet (SA),
we reduce RNA 3D structures to 1D sequences of SA letters and then use
classical and efficient sequence alignment algorithms to compare these 1D
SA-encoded sequences and determine their structural similarities. Based on
such an SA-based approach, we have.developed a novel web-based tool,
called SARSA  (http://bioalgorithm.life.nctu.edu.tw/SARSA/),  which
provides two RNA structural alignment tools, PARTS for pairwise
alignment of RNA tertiary structures and MARTS for multiple alignment of
RNA tertiary structures.

For a variety of practical applications, four kinds of pairwise
alignments were implemented in PARTS: (a) global alignment [13] for
comparing whole structural similarity, (b) semiglobal alignment [14] for
detecting structural motifs, (c) local alignment [15] for finding locally
similar substructures, and (d) normalized local alignments [16] for
eliminating the mosaic effect of local alignment (i.e., removing poor internal
fragments in a local alignment), and a multiple global alignment [17] in
MARTS. It is worth mentioning that in SARSA we provide a number of
features that are not available in DIAL and other RNA structural alignment
tools, such as the normalized local pairwise structural alignment in PARTS

and the multiple structural alignment in MARTS. In addition, our



experiments have shown that the pairwise alignments produced by our
PARTS were comparable to those obtained by DIAL and the performance
computation of PARTS was generally faster than that of DIAL. In some
cases, our PARTS can actually produce more accurate global, semiglobal
and local pairwise alignments when compared with DIAL (for details refer

to the Experimental Results chapter).



Chapter 2

Methods

The basic idea we used in this study is as follows. We first use the vector
quantization approach to derive an RNA structural alphabet of 23 letters that
represent distinct and most common backbone conformations. According to
this structural alphabet, we:then transform RNA 3D structures to 1D
sequence of SA-encoded letters. Finally,-we utilize classical and efficient
sequence alignment algorithms to compare these 1D SA-encoded sequences
and determine their structural similarities. In this chapter, we will describe
the details of how to use the vector quantization approach to derive the
structural alphabet, how to transform RNA 3D structures into 1D sequences,
and how to derive the scoring matrices for aligning 1D SA-encoded
sequences, and how to utilize normalized local alignment in RNA 3D

structural comparison.

2.1 Structural alphabet

For protein backbones, two torsion (or dihedral) angles (¢ and y) are
sufficient to describe the conformation of each amino acid residue. In

contrast, RNA molecules have much higher dimensionality, since for each



nucleotide residue there are six backbone torsion angles (o, f, y, J, € and {)
and a torsion angle of the bond between base and ribose ring (y). Recently,
Hershkovitz et al. [19] have performed a statistical analysis of RNA
backbones to search for clusters in RNA conformational space using the
so-called vector quantization (VQ), a technique of high-dimensional
clustering commonly used in classical signal processing [18]. The advantage
of employing the VQ technique is that it allows all seven dimensions of
RNA conformation to be analyzed simultaneously, so that the smaller
number of clusters is needed to classify the RNA structure, as compared to
the manual binning method used previously in [20] by analyzing one torsion
angle at a time. By applying a modified VQ method to a dataset of 132 RNA
crystal structures with at least-3.0-Al resolution: or better, Hershkovitz et al.
[19] finally have reduced the full 7D torsion -angle space to a set of 26

clusters.

In fact, as was demonstrated in [19] by plotting torsion angle
distributions using a collection of 132 RNAs (please refer to [19] for their
detailed PDB and NDB ids), four torsion angles a, y, ¢ and { are sufficient
for specifying fundamental RNA conformations, since the others are either
dependent on these four angles or have distributions with a single peak
(Figure 2-1). Based on this property, Hershkovitz et al. [19] also utilized the
so-called scalar quantization (SQ), which can be considered as a special VQ
by treating torsion angles individually, to classify o, y, J and { torsion angles
(Table 2-1). As was shown in Table 2-1, the { torsion angles were partitioned
into three, rather than one, clusters, although they visually have a single peak

as shown in Figure 2-1.
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Figure 2-1. Distributions of the seven torsion angles using a dataset of 132
RNAs, where a, y and ¢ have clear multiple peaks, whereas B, € and y have
only a clear peak. Particularly note that the { torsion angles has a large tail
not present in the other distribution, although it visually contains a single
peak.

Here, we utilized the VQ approach, followed by a cluster merging, to
classify all the residues in the dataset of 132 RNA crystal structures, as was
used in [19], only according to their four torsion angles of o, y, ¢ and (.
Consequently, we divided a total of 9,826 residues into a collection of 23

conformational clusters, as was shown in Table 2-2. In addition, we



Table 2-1. Enumeration of the bins obtained by SQ and their boundaries, as

adapted from Table 2-2 in [19].

Bin Index 1 2 3
a [0-115] | [115-220] | [220-360]
y [0-120] |[120-220] | [220-360]
0 [50-118] | [118-170]
¢ [10-130] | [130-220] | [220-360]

calculated the center of each cluster (i.e., the average of all the residues in
the cluster) and assigned it (and its corresponding cluster) a four-digit
number n,n,nsn;, where each digit represents the bin index, as listed in Table
2-1, to which the corresponding torsion;angle of the center belongs. For
example, the first cluster in Table 2.2 was, assigned a four-digit number of
3113, because the torsion angle values of @, y, 0-and { of its center are in the
bins indexed as 3, 1, 1 and 3, respectively,iin Table 2-1. For our purpose of
transforming RNA 3D structures into. 1D sequences, we further assigned a
letter to each of 23 clusters, as named in Table 2-2. We used the set of these
23 letters as a structural alphabet (SA) and then encoded RNA 3D structures
as 1D sequences of SA letters by assigning each residue in the RNA
molecules with the letter of the cluster whose center is nearest to the residue
being encoded, where the distance between the residue and each center is the
square root of the sum of all squared torsion differences. Like ordinary
nucleotide sequences, these SA-encoded 1D sequences can then be aligned

using classical sequence alignment methods.



Table 2-2. 23 conformational clusters classified by VQ based on a, v, 6 and
C torsion angles and their associated letters and four-digit numbers.

Number | Letter | 4-Digit Number | Number | Letter | 4-Digit Number
1 A 3113 13 Y 1313
2 I 2213 14 P 2211
3 K 2113 15 \% 3313
4 E 3112 16 S 2121
5 R 3122 17 G 2122
6 L 1213 18 C 1123
7 Q 3121 19 H 3222
8 B 3111 20 W 1211
9 N 3123 21 D 1321
10 M 3213 22 X 3311
11 T 1113 23 Z 3211
12 F 1121

2.2 Hamming-distance-based'and BLLOSUM-like scoring matrices

For the accuracy of alignment, we derived a 23 x 23 scoring matrix in

which every possible identity and substitution, say X aligned with Y, is
assigned a score, denoted by score(X, Y), based on the Hamming distance
between the two 4-digit numbers, say xx,x3x4 and y1),)34, associated with X
and Y, respectively. The so-called Hamming distance A(X, Y) between X and
Y is defined to be the number of digits for which the corresponding numbers
are different, that 1s, A(X, Y) = |{i : x; # y; for 1 <i < 4}|. Then the score
between X and Y we used here equals to 4 — A(X, Y), that is, score(X, Y) =4
— A(X, Y). For instance, suppose that X = A and Y= K. Then A(X, Y) = A(A,
K) = A(3113, 2113) =1 and therefore score(A, K) =4 — A(A, K) = 3. The

complete scoring matrix is shown in Figure 2-2.
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Figure 2-2. Hamming-distance-based scoring matrix.

In addition to above Hamming-distance-based scoring matrix, we

b

constructed a log-odds matrix for SA-letter substitution using the statistical
a} the structural alphabet of 23 SA letters, and let f; be the observed
10

method that was used by Henikoff and Henikoff [21] to derive the
substitution frequency of SA-letter pair (a;, a;). Then the relative frequency

BLOSUM family of substitution matrices as follows. Denote by {a,, a, ...



Ji

q; of an SA-letter pair (a;, a) 18 ¢, = —5——
Zk:llelfkl

. The frequency of

23
k=1 k=i 9ik

occurrence of SA letter g; in an SA-letter pair (a;, @) 1S p; =q; + 5
The expected frequency e; for a substitution of an SA-letter pair (a; a)) 1s

then pp; for i = j and pp; + pjp; = 2p;p; for i #j. Finally, the logarithm of the

odds matrix 1s calculated by score(a; a;) = ilogz(ﬁ}, where A is a positive

i
scale factor. For the purpose of constructing this BLOSUM-like matrix, a
dataset of structurally similar RNA pairs was obtained from the SCOR
database (5, 6) based on the follewing critéria: (1) motifs must belong to a
structural family, (2) motifs must not-be fragmented, (3) motifs must have
length > 3 nt (4) motifs must-have specified starting and ending positions in
the chain, and (5) motif pairs must have no 100% sequence identity. In total,
2,152 RNA motif pairs from 102 'SCOR"subclasses were analyzed, which
accounted for 6,214 SA-letter pairs. The 4 value used in SARSA was set to

1.2 for the best performance, by testing various values ranging from 1 to 2.

2.3 Normalized local alignment

Currently, four different types of pairwise alignments, global, semiglobal,
local and normalized local alignments, as well as a multiple global
alignment, were implemented in our web server for a variety of practical
applications. Recall that the Smith-Waterman algorithm for the local

alignment was originally designed to discard non-similar initial and terminal

11
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Figure 2-3. BLOSUM-like scoring matrix.

fragments in the sequence alignment, but it was not able to exclude

non-similar internal fragments, leading to a so-called mosaic effect by

including poor internal fragments in a local alignment [13]. As was shown in

Figure 2-4 for an illustration, if a region of negative score —X is sandwiched

between two regions scoring more than X, then the Smith-Waterman

algorithm will join these three regions into a single alignment that may not

be biologically adequate. In fact, such a mosaic effect can be observed in the
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Figure 2-4. A mosaic effect with an inclusion of a poor internal region in an
alignment (adapted from [16]).

comparison of RNA tertiary structures, as illustrated in the Experimental

Results chapter.

To overcome the mosaic effect in local alignment, Arslan et al. [16]
introduced the normalized local alignment problem that aims to find the
subsequences, say / and J, of two given sequences that maximizes S(/, J)/(|!|
+ |J|) among all subsequences Land J with {Z} + |J| > T, where S(/, J) is the
alignment score between / and J,.and 7'1s a threshold for the minimal overall
length of / and J. Note that the above length constraint of requiring |/|+|J] >
T is necessary, because length normalization favors short alignment but the
alignment should be sufficiently long to be biologically meaningful. As
illustrated in Figure 2-5, the long alignment has higher ordinary score,
whereas the short alignment has higher normalized score. Hence, if we use
ordinary scores as the similarity measure, then the long alignment with a
non-similar internal fragment will be chosen as an optimal local alignment.
However, if we use normalized scores instead, then the alignment to be
chosen will depend on the value of 7. If 7' <200, then the short alignment is
chosen as an optimal normalized local alignment; otherwise, the long
alignment 1s chosen. In [16], Arslan et al. have also proposed a
polynomial-time algorithm to solve the normalized local alignment problem.
Here, we have implemented such an algorithm for the normalized local

alignment of the SA-encoded sequences of two RNA 3D structures.
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Figure 2-5. Mosaic effect in a local pairwise sequence alignment (adapted
from [16]). Note that the numbers written in bold are the scores of
alignments identified by the corresponding rectangles, and the other
numbers are the side lengths of the rectangles. That is, the long alignment
(i.e., A1 with total length 600) has a score of 120, while the short alignment
(i.e., A2 with total length 200) has a score of 80.
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Chapter 3
Implementation of Software Tools

Based on the SA-based approach described in the previous chapter, we have
developed a novel web-based tool, 'called SARSA (short for Structural
Alignment of RNA using a Structural Alphabet) (see Figure 3-1), which
provides two RNA structural alignment tools that are PARTS (short for
Pairwise Alignment for RNA Tertiary Structures) for pairwise alignment of
RNA tertiary structures and MARTS (short for Multiple Alignment for RNA
Tertiary Structures) for multiple alignment of RNA tertiary structures. In the
following, we will describe the details of how to use PARTS and MARTS
for structural alignments of pairwise and multiple RNA 3D structures,

respectively.

3.1 Usage of PARTS

PARTS (refer to Figure 3-2) allows the user to compare two RNA 3D
structures by performing global, semiglobal, local, and normalized local

alignments. Below, we describe the details of its usage step by step.
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SARSA: A Web Tool for Structural Alignment of RNA Using a Structural Alphabet

« PARTS: Pairwise Alicnment of RNA Tertiarv Structures

PARTS is a tool for aligning two RNA tertiary structures, including global alignment for comparing
whole structural similarity, semiglobal alignment for detecting structural motifs, local alignment for
[finding similar common substructures, and normalized local alignments for finding more similar
common substructures by eliminating the mosaic effect of local alignment.

« MARTS: Multiple Aliecnment of RNA Tertiarv Structures

MARTS is a tool for globally aligning multiple RNA tertiary structures.

Figure 3-1. Interface of SARSA.

3.1.1 Input of PARTS

1. Enter the PDB/NDB id (4+/6-character code) or upload the file in the
PDB format, as well as its chain id:and starting and ending residue
numbers in sequence, for RNA-molecule 1. Note that PDB/NDB id or
uploading the file is mandatory, and others are optional but the user
has to specify a chain id, if the given RNA molecule has multiple

chains.

2. Enter the PDB/NDB id (4-/6-character code) or upload the file in the
PDB format, as well as its chain id and starting and ending residue
numbers in sequence, for RNA molecule 2. Note that PDB/NDB id or
uploading the file is mandatory, and others are optional but the user
has to specify a chain id, if the given RNA molecule has multiple

chains.

3. Just click "Run PARTS" button, if the user would like to run PARTS
with default parameters; otherwise, the user continues with the

following parameter settings.
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PARTS: Pairwise Alignment of RNA Tertiary Structures [Help, Examples]

Input RNA molecules:

+ RNA Molecule 1:
< PDB/NDB 1d: or upload PDB file: Browse... , chamnid: |, from: to:
o Example: PDB id: 1IEVV, chain id: A

+ RNA Molecule 2:
« PDB/NDB id: or upload PDB file: Browge... |, chainid: _ | from: to:
s Example: PDB id: 1ASZ, chain id: R, from 620 to 660

* Note: PDB/NDB id (or uploading PDB file) is mandatory and others are optional, but the user has to specify a chain
id, if the given RNA molecule has multiple chains.

Parameters:

« Alignment: Semiglobal alignment E|

» Substitution matrix: | BLOSUM-like_scoring_matrix E
« Gap open penalty: -5

» Gap extension penalty: 2

» Number of suboptimal alignment(s): 1

» Threshold of T for normalized local alignment:

[ Run PARTS | [ Reset || Back to SARSA |

Figure 3-2. Interface of PARTS.

4. Select a pairwise alignment that can be either global, semiglobal, local,

or normalized local alignment.

5. Choose a scoring matrix that can be either BLOSUM-like scoring

matrix (default) or Hamming-based scoring matrix.

6. Key in two real values for gap open penalty and gap extension penalty,
respectively, since the PARTS penalizes the gaps using the affine gap
penalty function.

7. Specify the number of suboptimal alignments (at least 1), if the user

choose semiglobal, local or normalized local alignment to run PARTS.

8. Specify the value of 7 whose default is 8, if the used alignment is a

normalized local alignment. Basically, if 7" is small, then the obtained

17



normalized local alignments tend to be short; otherwise, they tend to
be long normalized local alignments, in which may contain some

non-similar internal fragments.

3.1.2 Output of PARTS

In the output page, PARTS will first show the details of input RNA
molecules, as well as user-specified parameters. Next, PARTS will show its
alignment result(s), including alignment score based on the pre-defined
scoring matrix, RMSD (root mean square deviation), and detailed alignment

of SA-encoded sequences and its corresponding alignment for original RNA

PARTS Result(s)

Input RIWA 3D Structures

o RMA molecule 1:

o 1L TURI0Z0 (FDE codeDE code), Length: 28, Chain ID: &, from 1 to 28, (view Backbone torsions)
s RENA molecule 2:

o 2443.TR0066 (FDB codeNDE code), Length: 26, Chain ID: & from 3 to 258, (view Backbone torsions)

Input Parameters

Aligrement: Global alignment

Gap open penalty: -5

Gap extension penalty: -2

Specified number of suboptimal alignments: |

»Alignment 1
Alignment score = 75, RMSD = 2398, Superposition displa
tlignment of BA-encoded REN& sequences:
Rha 1 1 Fasaas PTAAEVAAATODWASTAMALE - 28
FEEEEEE 1l | |
Rha 2 : ---TaMAPTAALELAAARQCRAALAMAAE 28
Alignment of original EMA sequences:
Rha 1 1 GECHCAGCACCATCCHCAGAMCAALCGE - 28
FEEEEEE 1l | |
Rha 2 3 - - -QUGGCACCHUCCOTTCARACARRCGE 28

Figure 3-3. The output page of PARTS.
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sequences. In addition, the user can click the "Superposition display" link to
visually view, rotate and enlarge the 3D structures of input RNAs and the
superposition of their aligned 3D structures in a Jmol window. Please refer

to Figure 3-3 for an example.

3.2 Usage of MARTS

MPARTS (refer to Figure 3-4) allows the user to compare multiple RNA 3D

structures. Below, we describe the details of how to use it step by step.

3.2.1 Input of MARTS

1. Input or paste multiple(at least two) RNA molecules in the format of
'<pdb|ndb id>:<chain id>:[residu€]3[residuc], where id items are
mandatory and residue items,. representing starting and ending
residues in the input RNA sequence, are optional. For example,
"IASZ:R" (meaning the structure of the R chain in 1ASZ),
"1ASZ:R:620-660" (meaning the substructure of the R chain of 1ASZ
beginning at residue 620 and ending at residue 660), "1 ASZ:R:620-"
(meaning the substructure of the R chain of 1ASZ beginning at
residue 620 and ending at the last residue), and "1ASZ:R:-660"
(meaning the substructure of the R chain of 1ASZ beginning at the

first residue and ending at residue 660) are all legal.

2. It is optional for the user to upload local PDB file(s) if any. MARTS
allows the user to upload at most 20 PDB files.
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MARTS: Multiple Alignment of RNA Tertiary Structures [Help]

Input at least two RNA molecules:

+ The user can input RNA 3D structures in the box below in the format of '<pdb|ndb id>:<chain id>:[residue]-[residue]’,
where id items are mandatory and residue items are optional [Help]. Examples: tRNAs, RNA pseudoknots

+ (Optional) The user can also upload local PDB file(s), if any.
+ If the user wants to upload more than three files, please first input the number of files here  (maximum 20) and | submit .

1. Browse... |, chianid:|_ |, from: to:

2. Browse... |, chianid:| |, from: to:

3. Browse... |, chianid:| |, from: to:
Parameters:

+ Substitution matrix: BLOSUM-like scoring matrix
+ Gap open penalty: |5
+ Gap extension penalty: -2

[ Run MARTS | | Reset || Back to SARSA |

Figure 3-4. Interface of MARTS.

3. Just click "Run MARTS" button, if the user would like to run
MARTS with default parameters; otherwise, the user continues with

the following parameter settings.

4. Choose a scoring matrix that can be either BLOSUM-like (default) or

Hamming-based.

5. Key in two real values for gap open penalty and gap extension penalty,
respectively, since the MARTS penalizes the gaps using the affine gap
penalty function.

3.2.2 Output of MARTS
In the output page, MARTS will first show the details of input RNA

molecules and user-specified parameters. Next, MARTS will show the
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resulting multiple global alignment of SA-encoded sequences and its
corresponding alignment for original RNA sequences. In addition, the user
can click the "Superposition display" link to visually view, rotate and enlarge
the 3D structures of input RNAs and the superposition of their aligned 3D

structures in a Jmol window. Please refer to Figure 3-5 for an example.

MARTS Result(s)

Input RN A 3D Structures

& EMA&A molecule 1:

o 1H4AZFEOOST (FDE code:NDE code), length: 67, chain ID: T, from 4 to 6% (view backbone torsions)
s FRIMNA molecule 2:

o 1ASZPTROOE (FDE codeMDE code), length: 40, chain ID: R, from 620 to 660 (wiew backbone torsions)
e EIMNA molecule 3:

o HLZ:PRO042 (FDE code:MDEB code), length: 75, chain ID: C, from 901 to 9764 (view backbone torsions)
e EMA&A molecule 4

o 203ZTFROIAL (PDE code MDE code), length: 75, chain [D: C, from 1 to 74 (riew backbone torsions)
* FMNA moleculs 5:

o 1EVV.TRO00Z (FDBE code MNDE code), length: 76, chain [D: A, from 1 to 76 (riew backbone torsions)
» FNA molecule &:

o 1JZB:FRO09E (FDE codeMDE code), length: 77, chain ID: C, from 901 to 977 (wiew backbone torsions)

Input Parameters

= Gap open penaltsy: -5
= Gap extension penalty: -2
= Subsitution matrie Hattuning, scoting imatrix

=Alignment result
fverage RM3D = 10.73, Buperpozition displa
Alignment of 38-encoded RMA zequences:

RMA 1 4 oo TIATEREAATAAT - ECHRUWAAAAAAAAAALLTRITYHAAAA L AARH]TAM
RMA 2 G20 - mem e ETATAASALATAATEAECHAAAAAAAAPTEY T4
RMA 2 901 ------- TAAAAANATEASA L - A YNNETARAAAAAA T AAMOARCHARAASAEAZT AAA
RMA 4 1 ThA----ALAAAEMEAAMYPELE- EVE - Y1AALAALAAAAAEASFLALAARWAFRTALLT
RMA 5 1 ------ LEAAABHEMEAAT TEC - CHMAY TAAARAAAAABAKY AAAALY AALINCET AAAL
RMA 6 901 LAAAAAAAMIAALIDWHMAAATERIAAAAARABATG- ----- LIYATAAAABALAITALLT

TAREARVIEAAADARLE- - - - - - 69

BATARTH - -~ <= - m e mm oo 660

SAEARTNAASLADAALALALALE Q76
STEABKEASAOTAATBEASAR-- 74
SAEARTNAAAOABAALSLOAAARY 76
SAEABVEGLAASATALALAAETE 977

Alignment of original ENMA seguences:

17T S E GEACTASCGTAGE - BT CEC AT TGS ACEAGE I 0T
RHE 2 G20 oo e CAGRATHGEC GG TCGCS TG AR oSG 0T
EWA 3 901 --o--- TCCHTGATASITIAL - TEEUCASAA TEGHCGCTTEICEOG TGCCAGA TCGEEE
RHA 4 1 GH-- - - COBCEUAGCTCAGCTG - GUC - AEABCGEGEATCTICA TALGUCCT AGEITCHGAGS
RME 5 1 --e--- GCGEATITAGCTCAGT- TG GAGAGCECCAGACTGAAGATCTIGEAGGTCC TG
EMG 6 901  GUGCCCEUGETCTAGTIGETCATGACHCCGUCCTT- - - - - ACGAGGUGEAGGTCCGEGG

G AGATCC AT - - - - - 0

TICAAT - - - = = mm oo mm o o 660

TMICALTICCCOGICECEGAGCCA  O76
TICGAGUCCITCCCGRCGCCAT- - 74
TICGATCCACAGALTTICGCACTS  T6
TICAAGUCCCOGCGEGECCCACTS 977

Figure 3-5. The output page of MARTS.
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Chapter 4
Experimental Results

In this chapter, we will describe some experimental results we obtained by
testing our PARTS and MARTS on seyeral instances of RNA 3D structures.
In addition, we will compare. our testing results of pairwise global,
semiglobal, and local structural alighments to those results obtained by using
DIAL. Unless otherwise specified, all the experiments were run using our

PARTS and MARTS, as well as DIAL, with their default parameters.

4.1 ROC curves

To assess the accuracy of our PARTS, we calculated its receiver operating
characteristic (ROC) curves, depicting the trade-off between true positive
rate (i.e., sensitivity) and false positive rate (i.e., 1 minus specificity), and
compared them with the best ROC curve of DIAL. By following the
procedure that was used by Ferr'e et al. [11] to compute DIAL" s ROC

curves, we obtained a filtered, non-redundant dataset that consisted of 51
families and altogether 186 non-fragmented motifs from the SCOR database

[22][23], which currently organizes many RNA structural motifs in a
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Figure 4-1. The ROC curves when using the pairwise semiglobal alignment
of PARTS to align RNA structural motifs from the SCOR database with two
different scoring matrices.

hierarchical classification system similar to the SCOP database for protein
domains [24]. According to this dataset, we computed the ROC curves using
the semiglobal alignment of PARTS with two different scoring matrices. As
illustrated in Figure 4-1, the ROC curve using BLOSUM-like scoring matrix
performed better than that using Hamming scoring matrix, where the AUC
(area under ROC curve) of the former ROC curve is 0.75, while the AUC of
the latter is just 0.66. In fact, the alignment results of our PARTS were still
comparable to those obtained by DIAL, because as demonstrated in [11] the
AUCs of the ROC curves computed by DIAL using the semiglobal
alignment method with different parameter settings are between 0.69 and
0.80 (refer to Figure 4-2). In addition, the performance computation of our

PARTS was faster than that of DIAL, even though DIAL was executed on a
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Figure 4-2. The ROC curves computed by DIAL using the semiglobal

alignment method with different parameter settings (derived from Figure 5
in [11]).

Linux cluster with 20 computational.nodes, ¢ach with double CPUs of 1.3-3
GHz and 2 GB RAM, while our PARTS was run only on a single Linux PC
with 2.8 GHz CPU and 3 GB RAM. Actually, in some cases as will be
demonstrated below, our PARTS produced more accurate global, semiglobal

and local pairwise alignments when compared with DIAL.

4.2 Pairwise global structural alignment

First of all, we used the tertiary structures of two riboswitches to test our
PARTS and DIAL for their capabilities of globally aligning two RNA 3D
structures. They are 1U8D (chain A) and 1Y26 (chain X), where 1U8D is
the aptamer domain of the guanine-specific riboswitch from the xpt-pbuX

operon of B. subtilis, and 1Y26 is the aptamer domain of the
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adenine-specific riboswitch from the V. vulnificus add gene. In fact, these
two riboswitches have nearly identical tertiary structure, although they share
only less than 60% sequence identity [25]. Consequently, both PARTS and
DIAL globally aligned their tertiary structures very well, as shown in Figure
4-3. To demonstrate the difference in global alignment accuracy of PARTS
and DIAL, we tested them again by using complete 1U8D:A structure and
incomplete 1Y26:X structure that ranges from 25 to 72 residues
(1Y26:X:25-72) (i.e., two similar RNA tertiary structures with a little
difference in length). As a result, our PARTS globally aligned 1U8D:A and
1Y26:X:25-72 with an RMSD of 1.70 A (Figure 4-4a), whereas DIAL
globally aligned them with an RMSD 0f12.03 A (Figure 4-4b). The reason
for DIAL’s result is that DIAL mis-aligned a fragment of 1Y26:X:68-72
with a fragment of 1U8D:A:76-80,as was illustrated in Figure 4-5b, but
actually it should be aligned with 1USD:X:68-72 as shown in Figure 4-5a.

Figure 4-3. Superposition display of (a) PARTS global alignment and (b)
DIAL global alignment between 1U8D:A and 1Y26:X.
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(a) (b)

Figure 4-4. Superposition display of (a) PARTS global alignment and (b)
DIAL global alignment between LU8D:Aland 1Y26:X:25-72.

(a) PARTS's global alignment between 1U8D:A and 1Y26:X:25-72:

15 GGACAUAUAAUCGCGUGGAUAUGGCACGCAAGUUUCUACCGGGCACCGUARAAUGUCCGACUAUGUCC 81
25 -——-—————- UCCUAAUGAUAUGGUUUGGGAGUUUCUACCAAGAGCCUUAAACUCUUG-——-—-———— 72

(b) DIAL's global alignment between 1U8D:A and 1¥26:X:25-72:

15 GGACAUAUAAUCGCGUGGAUAUGGCACGCAAGUUUCUACCGGGCACCGUAAAUGUCCGACUAUGUCC 81
25 -——-——-—-- UCCUAAUGAUAUGGUUUGGGAGUUUCUACCAAGAGCCUUAAAC————-—-——— UCUUG- 72

Figure 4-5. (a) PARTS global alignment and (b) DIAL global alignment
between 1U8D:A and 1Y26:X:25-72, where DIAL mis-aligned a fragment
of 1Y26 from 68 to 72 residues with a fragment of 1U8D ranging from 76 to
80 residues.

4.3 Pairwise semiglobal structural alignment

Note that Ferr'e et al. [11] were the first to utilize the semiglobal alignment,
a kind of global alignment without penalizing those end gaps appearing in
the beginnings and ends of the alignment, for the detection of structural

motifs in RNA 3D structures. In this experiment, we tested our PARTS, as
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well as DIAL, by using 1J5A:A with residues 2530-2536 as a query
structural motif and 1HR2:A with residues 103-260 as a target RNA
molecule. Consequently, our PARTS correctly detected the position of the
query structural motif in the target RNA molecule and also returned a
semiglobal alignment of 1J5A:A:2530-2536 and 1HR2:A:149-155 with an
RMSD of 1.63 A (Figure 4-6a). However, DIAL mis-aligned the query
structural motif with a different portion of the target RNA molecule (i.e.,
1HR2:A:234-240) and returned their semiglobal alignment with an RMSD
of 2.43 A (Figure 4-6b).

(a)

Figure 4-6. Superposition display of (a) PARTS semiglobal alignment and
(b) DIAL semiglobal alignment using 1J5A:A:2530-2536 as a query
structural motif (red) and 1HR2:A:103-260 as a target RNA molecule

(green).
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4.4 Pairwise local structural alignment

Here, we first used both PARTS and DIAL to locally compare two RNA
pseudoknots 1L2X:A (a viral RNA pseudoknot) and 2A43:A (a luteoviral
RNA pseudoknot). Consequently, both of them produced good local
alignments for these two RNA pseudoknots as were demonstrated in Figure

4-7.

Next, to illustrate the difference in local alignment accuracy of PARTS
and DIAL, we applied them to a complete structure of riboswitch 1U8D:A
and a partial structure of riboswitch 1Y26:X ranging from 39 to 45 residues
(1Y26:X:39-45). Basically, as.:mentioned above, both of 1Y26:X and
1U8D:A have nearly identical tertiary  structure and hence the partial
structure 1Y26:X:39-45 should be aligned together with its corresponding
substructure in 1U8D (i.e., 1U8D:A:39—45).

Figure 4-7. Superposition display of (a) PARTS local alignment and (b)
DIAL local alignment for two RNA pseudoknots 1L2X:A (green) and
2A43:A (red).
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Figure 4-8. Superposition display of (a) PARTS local alignment and (b)
DIAL local alignment between 1LU8D:A (green) and 1Y26:X:39-45 (red),
where DIAL mis-aligned 1Y26:X:39-45with 1U8D:A:74-80.

Consequently, our PARTS aligned them by shifting a residue position,
producing a alignment of 1Y26:X:39-45 and 1U8D:A:40-46 with an RMSD
of 0.70 A (Figure 4-8a). However, DIAL completely mis-aligned
1Y26:X:39-45 with 1U8D:A:74-80 in its local alignment that has an RMSD
of 1.32 A (Figure 4-8b).

4.5 Pairwise normalized local structural alignment

In fact, it can be observed that a long local alignment between two RNA 3D
structures may contain some non-similar internal fragments (i.e., the
so-called mosaic effect). For instance, Figure 4-9a displays the structural

superposition for the optimal local alignment of two RNA pseudoknots
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1L2X:A and 2A43:A that was obtained by our PARTS using Hamming
scoring matrix with default parameters (RMSD = 2.40A). As shown in this
figure, the similar substructures in the initial and terminal regions were very
well fitted, but the non-similar substructures in the internal region, ranging
from residues 13 to 20, was not fitted well. This mosaic effect in the
ordinary local alignment can actually be improved using the normalized
local alignment method as implemented in PARTS. For instance, if we run
PARTS normalized local alignment by using Hamming scoring matrix and
specifying two for the number of suboptimal alignments and 16 for the value
of T, then the substructures in the returned normalized local alignments, as
shown in Figure 4-9b and Figure 4-9¢, are fitted very well and have RMSDs
of 0.20A and 0.26A, respectively, As mentioned before, the setting value of
T can affect the results of notmalized local alighments. For example, if T is
set to a large value (e.g., T ="46), then PARTS returns a long normalized
local alignment, similar to the one ‘depicted in Figure 5a, with non-similar

internal substructures.

(a) (b)

Figure 4-9. (a) Superposition display of (a) PARTS local alignment between
two RNA pseudoknots 1L2X:A and 2A43:A, and their (b) best and (c)
second best PARTS normalized local alignments.
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4.6 Multiple global structural alignment

We demonstrated the multiple alignment capability of our MARTS by
applying it to six tRNA structures (i.e., 1H4S:T, 1ASZ:R:620-660, 11L2:C,
2CSX:C, 1EVV:A, and 1J2B:C) and five RNA pseudoknots (i.e., 1L2X:A,
2APS5:A, 1KPY:A, 2AP0:A, and 1YG4:A). Consequently, our MARTS
returned a global alignment of the six tRNA 3D structures with an RMSD of
10.73 A(Figure 4-10a) and a global alignment of the five RNA
pseudoknotted structures with an RMSD of 5.89 A(Figure 4-10b). Note that
the RMSD we used here for the multiple RNA structural alignment is
defined to be the square root of thelaverage sum of all squared pairwise

distances.

Figure 4-10. Multiple structural alignments obtained by MARTS for (a) six
tRNA 3D structures and (b) five RNA pseudoknots.
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Chapter 5
Conclusions

In this study, we have used the SA-based approach to develop a web tool
SARSA by providing two RNA structural alignment tools that are PARTS
that can perform global, semiglobal,-local. and normalized local pairwise
alignments of RNA 3D structures, and MARTS that can perform global
multiple alignment of RNA 3D structures. The basic idea behind SARSA is
that we use the vector quantization approach to derive a structural alphabet
(SA) of 23 nucleotide conformations, via which we transform RNA 3D
structures into 1D sequences of SA letters and then utilize classical sequence
alignment methods to compare these 1D SA-encoded sequences and
determine their structural similarities. It is worth mentioning that the
pairwise normalized local structural alignment in PARTS and the multiple
structural alignment in MARTS are not available in other RNA structural
alignment tools. In addition, according to our experiments, our PARTS
indeed can quickly produce global, semiglobal and local pairwise structural
alignments that are comparable to those obtained by DIAL. Therefore, we
believe that our SARSA can serve as a useful tool in the study of structural

biology.
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