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摘 要       

  microRNA 是一小段可在生物體內自行合成的 RNA 序列，其主要

的功能是藉由與其 target 結合來控制基因的表現。近年來，越來越多的

microRNA 透過生物實驗被發現。目前已經有許多針對找尋 microRNA 

target 的預測軟體開發出來，像是 miRanda、RNAhybrid、TargetScan

和 PicTar 等都是常見的 microRNA target 預測軟體，這些軟體所用的預

測方式都不一樣，很難評斷哪一個軟體的預測結果準確性較高。因此，

為了提高 microRNA target 預測的準確性，在本研究中，我們提供了一

個系統化的 microRNA target 分析流程。其中我們結合了三個比較廣泛

被使用的 microRNA target 預測軟體，miRanda、RNAhybrid、TargetScan

來預測 microRNA target，並從一群已經過實驗證實的 microRNA target

資料中觀察一些共同的特徵當作過濾的條件，另外還收集了一些

microRNA 及其 target 的 microarray 資訊輔助我們的預測結果。藉由本

研究所提供的流程可讓生物學家更方便、快速的找到正確的 microRNA 

target。 
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ABSTRACT 

microRNA (miRNA) is a class of small non-coding RNA and the main 

function of miRNA is to regulate mRNA stability and translation by 

binding to specific target site of mRNA. Recently, more and more miRNA 

targets have been discovered by experiments. However, the experimental 

identification of miRNA target site is lab-intensive. Although there are 

several computational programs have been developed, such as miRanda, 

RNAhybrid, TargetScan and PicTar, for identifying miRNA targets.  The 

main method of these programs are different, it’s hard to define which tool 

has better performance. Therefore, in this work, to improve the accuracy of 

miRNA target prediction, we proposed a systematic method for identifying 

miRNA targets in human genome. We applied three commonly used 

programs to make predictions. Besides, we also define several useful 

criteria by observing the experimentally verified miRNA targets which are 

retrieved from TarBase to filter prediction results. Moreover, we also 

collected both miRNAs and its targets gene expression profiles to support 

our prediction results. Using this systematic method we proposed can help 
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biologists to find miRNA targets more convenient and accurate. 
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Chapter 1 Introduction 

1.1 Background 

1.1.1 Non-coding RNA 

As shown in Figure 1.1, the central dogma of molecular biology 

normally flows from DNA to RNA to protein. Recently, a large number of 

non-coding RNAs (ncRNAs), for example, microRNAs (miRNAs) [1-4], 

small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs) 

[5-7] have been discovered [8]. 

 

 

Figure 1.1 Central dogma of molecular biology. 
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These non-coding RNAs (ncRNA) are any RNA molecule encoded by 

genes that are transcribed from DNA but not translated into protein and it 

can separate into several classes. The descriptions and functions of each 

class of these non-coding RNAs was listed Table 1.1. 

 

Table 1.1 Methods and resources for miRNA target prediction. 

Class Description Function 

miRNA  microRNA Post-transcriptional regulation of transcripts 
from a wide range of genes 

Primary 
siRNA Small interfering RNA 

Binding to complementary target RNA; 
guide for initiation of RdRP-dependent 
secondary siRNA synthesis 

Secondary 
siRNA Small interfering RNA 

Post-transcriptional regulation of transcripts; 
formation and maintenance of 
heterochromatin 

tasiRNA Trans-acting siRNA Post-transcriptional regulation of transcripts 

natsiRNA 
Natural antisense 
transcript-derived 
siRNA 

Post-transcriptional regulation of genes 
involved in pathogen defense and stress 
responses in plants 

piRNA Piwi-interacting RNA 
Suppression of transposons and 
retroelements in the germ lines of flies and 
mammals 

 

1.1.2 microRNA 

Discovered in nematodes in 1993, microRNAs (miRNAs) are a class of 

small non-coding RNA of about 21~23nt in length which can control gene 

expression (regulating mRNA stability and translation) by binding to the 

3’-UTR of mRNA. 

The first miRNA, lin-4, was found in Caenorhabditis elegans in 

1993[9]. Lin-4 represses the expression of lin-14, which encodes a nuclear 

protein. The partial complementarity between lin-4 and the sites in the 

3’-untranslated region (3’-UTR) of lin-14 mRNA caused the negative 

regulation of lin-14 by lin-4 [10]. A few years later, the second miRNA, 
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let-7, was discovered, in worm again [11]. Let-7 represses the expression of 

the lin-41 and hbl-1 mRNAs by binding to their 3’-UTRs. Let-7 is 

conserved throughout metazoans and the discovery of let-7 brought out the 

subsequent large-scale searches for additional miRNAs, established 

miRNAs as a new and large class of gene regulators. At presents, more and 

more miRNAs were identified in several species but the main function of 

miRNAs is still unclear. 

 

1.1.3 microRNA Biogenesis 

The biogenesis of miRNAs is shown in Fig. 1.2 [4]. MiRNA genes first 

transcribe to pri-miRNAs by RNA polymerase II. The pri-miRNAs are 

processed to precursor miRNAs (pre-miRNAs) by the RNase endonuclease 

Drosha inside the nucleus. These pre-miRNAs are ~70 nucleotides with a 

hairpin structure. Pre-miRNAs are transported to cytoplasm by Exportin 5. 

The pre-miRNAs are then processed into miRNA:miRNA* duplexes by the 

Dicer. Only one strand of this duplex becomes a mature miRNA which is 

assembled into the RNA-induced silencing complex (RISC) and act on its 

target by translational repression or mRNA cleavage. 
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Figure 1.2 Biogenesis of microRNA (He, L. and G.J. Hannon, 2004). 

 

1.1.4 miRNA Functions 

miRNAs function in a broad range of biogenesis processes in plants and 

animals. It perform many cellular processes such as developmental timing, 

cell death, hematopoiesis and patterning of the nervous system in animals 

[12]. Lin-4 and let-7 of C. elegans play essential roles in controlling timing 

events during larval development. MiRNA miR-196 regulates the homebox 

transcription factors of HoxB8 which indicated its role in development [13]. 

Moreover, miR-1 plays a crucial role in the development of heart and 

skeletal muscle. All these examples above imply the importance of miRNA 

in cellular processes. 
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miRNAs regulate their target genes via two main mechanisms, target 

mRNA cleavage and transcriptional repression without RNA cleavage 

shown as Fig. 1.3. In plants, most of miRNAs have perfect or near perfect 

complementarity to their targets [14] and cleaving the mRNA y binding to 

their targets. Contrast to miRNAs in plant, miRNAs is imperfectly 

complementary to their targets which usually located in 3’-UTR of target 

genes. The complementarity between animal miRNAs and their targets are 

usually restricted to the 5’ region of miRNAs (nucleotides 2-8 or 2-7) [15, 

16]. The mRNA degradations were considered always happen in plants and 

translational regulations were always found in animals. However, mRNA 

degradations were also occurred in animals. 

 

 

Figure 1.3 miRNA regulation functions. 
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1.2 Motivation 

miRNAs play an important role in many cellular processes. 

Nevertheless, the specific function of most of miRNAs is still unknown. 

Presently, the research of miRNAs and its target becomes more and more 

popular. Several computational prediction programs, for example, 

miRanda[17], RNAhybrid[18, 19] and TargetScan[15], have been 

developed for identifying miRNA targets. However, for each of these 

programs, the main method which is used to predict miRNA target is very 

different. It is hard to decide which one has the better accuracy. Owing to 

increase the accuracy of prediction results, in this work, we provide a 

systematic method to identifying miRNA targets. 

 

1.3 The Specific Aim 

In this work, we proposed a systematic method of identifying miRNA 

targets in human genome and provide some additional information of 

miRNAs and its targets. Users can input the overexpression profiles of a 

specific miRNA. Using the expression data, some existing computational 

prediction programs and useful filter features observed from the 

experimentally supported targets to identify the potential miRNA target 

genes. The main contribution of this work is improving the accuracy by 

setting some criteria which are the features of miRNA targets we observing 

from the experimentally data retrieved from TarBase[20]. Moreover, we 

also collected some gene expression data of miRNAs and its targets to 

support our prediction results. 
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Chapter 2 Related Works 

Research of identifying miRNA targets is the most useful way to 

understand the functions of miRNA. Several prediction tools based on 

different methods were developed for finding the potential miRNA targets. 

To simplify the using of these prediction tools, various web servers were be 

established. Furthermore, numerous databases were built for systematizing 

the information of both miRNA and its targets. In this chapter, we 

introduce some existing miRNA target prediction tools, web servers and 

databases. 

 

2.1 miRNA Target Databases 

 

Table 2.1 Database of miRNA 

DB Name Data Source Species Prediction 
Method Features 

miRBase::Targets miRBase::Sequences 
4 insects 
16 vertebrates 
2 habitude  

miRanda - 

TarBase Literatures 8 organisms - Experimentally 
validate targets 

miRNAMap 
miRBase 
TarBase 
UCSC genome browser

2 insects 
9 vertebrates 
1 worm 

miRanda 
TargetScan 
RNAhybrid  

3 criteria and Gene 
expression data 

miRanda - 
human 
drosophila 
zebrafish  

miRanda   

TargetScan - 5 species TargetScan  Seed complementary 

miRGator miRBase 
UCSC genome browser

human 
mouse 

miRanda 
TargetScans 
PicTar  

Gene expression data 

microRNA.org miRBase 
UCSC genome browser

Human 
Mouse 
rat 

miRanda  Gene expression data 
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At present, lots of databases were developed for housing information of 

miRNA and its targets such as miRBase::Targets contains the potential 

miRNA targets in almost all genomes and TarBase integrated the 

experimentally tested miRNA target sites. In Tab. 2.1, we list some miRNA 

targets database and describe the data source, species, prediction methods 

and special features of each database. 

 

2.1.1 miRBase::Targets 

 

 

Figure 2.1 Web page of miRBase. 
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A comprehensive database, miRBase[21], houses the miRNA data and 

it divides into three parts. One is miRBase::Registry which provides a 

confidential service assigning official names for novel miRNA genes prior 

to publication of their discovery, another is miRBase::Sequences, 

containing all the published miRNA sequence, genome location and 

association annotations and the other is miRBase::Targets[22] that stores 

computationally predicted miRNA target genes across several species. 

miRBase::Targets version 5 released in 2007, the miRNA sequences are 

obtained from miRBase::Registry and target gene sequences from Ensembl. 

The potential miRNA targets are identified by miRanda algorithm which 

uses dynamic programming alignment to identify highly complementary 

sites. 

 

 

Figure 2.2 Computational prediction protocol of miRBase::Targets. 
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2.1.2 TarBase 

 

 

Figure 2.3 Web page of TarBase. 

 

TarBase[20] is the database which provides experimentally supported 

miRNA targets. They collect the experimentally verified miRNA target in 

at least 8 organisms include human, mouse, virus, fruit fly, worm, zebrafish, 

rat and plant. For each tested target sites, TarBase described the miRNA 

that binds it, the gene in which it occurs, the experiments that were 

conducted to test it and the paper from which all data were extracted. The 

current release, version 4.0, contains 128 miRNA, 570 target genes and 763 

target sites. 
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Figure 2.4 Experimentally supported data of each species in TarBase. 

 

2.1.3 miRNAMap 

A previous research of our group, miRNAMap[23], is the database 

collects experimentally verified miRNAs and target genes in several 

metazoan genomes includes human, mouse, rat and etc. miRNAMap  

employed three computational tools, miRanda, RNAhybrid and TargetScan, 

to identify miRNA targets in 3’UTR of genes. In the latest version of 

miRNAMap (version 2.0)[24], we integrated more species and prediction 

tools. Besides, we also consider the target accessibility of each target site. 

The advancements and new features miRNAMap 2.0 is listed in Table 2.1. 
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Figure 2.5 Web page of miRNAMap. 

 

Table 2.2 Comparison of miRNAMap 1.0 and 2.0. 

Features miRNAMap 1.0 miRNAMap 2.0 
Known miRNAs miRBase (version 6.0) miRBase (version 9.2) 
Supported species human, mouse, rat and dog 2 insects, 9 vertebrates and 1 worm 
Experimental 
miRNA targets Surveying literature TarBase and Surveying literature 

miRNA expression 
profiling 

Lu. et al miRNA profiling in 
human  

Lu. et al miRNA profiling in human 
Q-PCR miRNA profiling in human 

Expression profiles 
of miRNA targets - NCBI-GEO-GDS596 (76 human 

tissues)  
miRNA target 
prediction tools miRanda miRanda, RNAhybrid and 

TargetScan 
Criteria for 
filtering the 
predicted miRNA 
targets 

- 
predicted by at least two tools 
target genes contained multiple sites 
target site is accessible 

Accessible region 
of miRNA target 
sites 

- Sfold  

Tissue specificity 
of human miRNAs - Q-PCR miRNA profiling (18 human 

tissues) 
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2.1.4 miRGator 

miRGator[25] is a system integrates target prediction, functional 

analysis, gene expression and genome annotation of miRNAs supports the 

human and mouse genomes. They use miRanda, PicTar and TargetScanS to 

find out miRNA target genes and integrated functional annotation of both 

miRNAs and its targets including expression, function, pathway, disease 

terms. The schema of miRGator is shown in Fig. 2.2. 

 

 

Figure 2.6 Overview schema of miRGator. 
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2.2 miRNA Target Prediction Web Server 

To provide a convenient environment for researchers who are interested 

in the regulations of miRNA, many useful miRNA target prediction web 

servers were developed.  

 

2.2.1 miRTar 

 

 

Figure 2.7 System flow of miRTar. 

 

In our previous research, we developed a miRNA target prediction tool 
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named miRTar. It allows user input a user-defined miRNA sequence or the 

accession number of known miRNA for identifying miRNA targets against 

the conserved mRNA sequences of mammalian genes. Besides, miRTar 

also provided some additional information such as the secondary structure 

between miRNA and its targets. MiRTar can be accessed 

at http://miRTar.mbc.nctu.edu.tw/. 

 

2.2.2 microRNA.org 

microRNA.org[26] is a resource of miRNA target predictions and 

miRNA expression profiles. The target prediction is based on the 

development of miRanda algorithm that computed optimal sequence 

complementarity between mature miRNA and its target using a weighted 

dynamic programming algorithm. In addition to miRNA target prediction, 

they also integrated some miRNA expression profiles including 172 human, 

64 mouse and 16 rat small RNA libraries extracted from major organs and 

cell types. microRNA.org is available at http://www.microrna.org. 

 

 

Figure 2.8 Web page of microRNA.org. 
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2.2.3 miTarget 

 

 

Figure 2.9 Web page of miTarget. 

iRNA/target duplex. In contrast 

with those programs, miTarget[27] using a support vector machine (SVM) 

 

Among the existing miRNA target prediction programs, most of them 

identified the targets by considering the complementary between miRNA 

and its target and the thermodynamics of m

classifier for miRNA target prediction. 

The SVM features which were designed based on the RNA secondary 

structure prediction results produced by RNAfold program in the Vienna 

RNA Package [28, 29] and were categorized into three elements: structure 
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features, thermodynamic features and position-based features. The general 

scheme of miRNA:mRNA interactions were shown in Fig. 2.10. Finally, 41 

features were chose to training the SVM model. Table 2.3 list the top 15 

contributing features. 

 

 

Figure 2.10 General scheme of miRNA:mRNA interactions. 

 

ble e top 15 atures. 

nk Score 

Ta  2.3 Th contributing fe

Ra Rank Feature 
1 81.9 Position five 
2 79.6 5' part free energy 
3 79.1 Position six 
4 78.9 Position four 
5 78.9 AU matches at the 5' part 
6 77.6 Mismatches at the 5' part 
7 76.6 Matches at the 5' part 
8 73.9 Total GU matches 
9 73.4 Position seven 
10 72.9 Position two 
11 71.4 GU match at the 5' part 
12 70.8 GU match at the 3' part 
13 70.3 Total AU matches 
14 68.8 Position three 
15 68.6 Total free energy 
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2.3

r methods were based on 

ther

h of the three prediction tools, miRanda, RNAhybrid and 

TargetScan, we integrated in this work will be described in detail 

following. 

 

 Methods f miRNA target prediction program

 
ility 

 
availability

 miRNA Target Prediction Software  

At present, different computational methods have been developed for 

identifying miRNA targets (Table 2.1). Because of the challenge of 

predicting miRNA targets, there are several methods which can divide into 

different categories. The most widely used method is focus on the 

complementarity between miRNA and its targets and some methods require 

strict complementarity to the seed region of miRNA [15, 16]. Except the 

complementarity between two sequences, othe

modynamics and binding structure [18, 30, 31]. Besides, SVM is also 

the method used to predict miRNA targets [27]. 

For eac

Table 2.4  and resources o s. 

Tool Type of method Method
availab

Data Refs 

miRanda Complementarity Download Yes [17] 

miRanda miRBase Complementarity Online 
search Yes [22] 

TargetScan Seed complementarity earch 
Online 
s Yes [15] 

TargetScanS y es Seed complementarit Online 
search Y [16] 

DIANA microT mics ad Thermodyna Downlo Yes [31] 
PicTar Thermodynamics es  Y [30] 

RNAhybrid istical model load Thermodynamics 
and stat Down  [18] 

miT rget SVMe Online 
Search  [27] a

Tar Experimentally validated 
ts N/A Yes [20] Base targe
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2.3.1 miRanda 

MiRanda[17] is the second published method of predicting miRNA 

targets. It identifies the potential miRNA target binding sites by looking for 

the high-complementarity regions on the target sequences using a weighted 

dynamic programming algorithm (Fig 2.3). The scoring matrix used by this 

algorithm is built based on that the bases at the 5’ end of the miRNA are 

rewarded more than those at the 3’ end. The binding sites exhibiting perfect 

or almost perfect match at the seed region of miRNAs display a better score. 

The resulting binding sites are then evaluated thermodynamically, using the 

Vienna RNA folding package [28, 29]. 

 

 

Figure 2.11 System flow of miRanda. 
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2.3.2 RNAhybrid 

RNAhybrid[18] recognizes regions in the 3’-UTRs that have the 

potential to form a thermodynamically favorable duplex with a specific 

miRNA. The core algorithm of RNAhybrid is an extension of RNA 

secondary structure prediction. Instead of a single sequence folding back to 

itself like MFold, RNAhybrid determined the most favorable hybridization 

site between miRNA and its potential target using an artificial linker. 

Intra-molecular hybridizations base pairing between target nucleotides or 

between miRNA nucleotides are not allowed. The time complexity of this 

algorithm is linear in the target length, it allows many long sequences to be 

search in a short time. RNAhybrid is available 

at http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/. 

 

 

Figure 2.12 Web page of RNAhybrid. 
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2.3.3 TargetScan 

TargetScan[15] is the first method applied for human miRNA target 

prediction using mouse, rat and fish genomes for conservation analysis. 

Different from those methods looking for the complementary sites, 

TargetScan requires the perfect complementarity to the seed region which 

is the position 2-8 of a miRNA numbered from 5’ end. This approach can 

successfully reduce the false positive at the beginning of prediction process. 

Moreover, TargetScan also consider the thermodynamic stability of each 

potential binding site using RNAFold from the Vienna Package[32]. 

 

 

Figure 2.13 Web page of TargetScan. 
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2.3.4 MirTarget 

MirTarget [33] is an algorithm for detecting miRNA targets. The 

algorithm combines relevant parameters for miRNA target recognition and 

heuristically assigns different weights to these parameters according to 

their relative importance. First step of this algorithm, miRNA seed 

sequence (positions 2–8) was scanned against all human 3’-UTR sequences 

to identify perfect complementary using a computer hashing technique. 

Then the level of cross-species conservation of seed pairing was examined. 

MirTarget evaluated orthologous sequences from five organisms and a 

gene candidate was rejected if the perfect seed pairing was not found in the 

orthologs from at least three organisms. The miRNA/target site duplex 

stability was evaluated by binding free energy (DG). DG values were 

computed using RNAFold [29]. A candidate target site was rejected if the 

DG value was higher than -13 kcal/mol. If a candidate site passed these 

screening filters, local sequence alignment was performed to extend the 

alignment between miRNA and 22 bases downstream of the seed-binding 

site in 30-UTR. Bases surrounding the seed sequences are important for 

target recognition [16]. Thus limited seed extension was evaluated for 

pairing to miRNA positions 1, 9 and 10. The longest stretch of perfect 

matches (including positions 2–8) was considered as an extended seed for 

raw score calculation. Different weights were assigned with the following 

order to differentiate their relative importance: seed conservation > limited 

seed extension > duplex binding stability > terminal base match. A score is 

recorded if it is no less than the threshold value 30. 
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Figure 2.14 The simple flowchart for MirTarget. (Wang, X, 2006) 
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Chapter 3 Materials and Method 

3.1 Materials 

In the systematic method for identifying miRNA target we propose in 

this work, we integrated some biological data source and computational 

programs. Table 3.1 and Table 3.2 show the biological data sources and 

prediction programs integrated in this work respectively. 

 

Table 3.1 Resources of biological data. 

Category Data 
Source Version Link Ref.

Genome 
Sequence Ensembl 49 http://www.ensembl.org/index.html [34]

Known 
miRNA 
Sequence 

miRBase 11.0 http://microrna.sanger.ac.uk/sequences/ [21]

Gene 
expression 
Profile 

NCBI 
GEO - http://www.ncbi.nlm.nih.gov/projects/geo/ [35]

 

Table 3.2 Resources of computational tools. 

Category Tool Name Version Ref. 

miRNA Target Prediction 
miRanda v 1.9 [17] 
RNAhybrid v 2.1 [18] 
TargetScan v 1.0b [15] 

Target Accessibility Calculation Sfold  [36] 
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3.1.1 miRNA sequences 

miRBase::Sequences provides miRNA sequences data, annotation, 

references and links to the other resources for all published miRNAs. The 

latest version (release 11.0) of the database contains 6396 entries 

representing hairpin precursor miRNAs, expressing 6211 miRNA products 

from 72 species: a rapidly growth of over 2000 sequences in the past two 

years.  

 

 

Figure 3.1 The growth of miRBase from 2002 to 2008. 

 

In this work, we extracted 678 human miRNA from 

miRBase::Sequences (release 11.0). 

 

3.1.2 Target genes 

Several previous researches indicated that miRNA target sites are 
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conserved across species. In target prediction, considering target sites 

conserved across multiple species is more likely to reduce the false 

positives and also increasing the prediction efficiency [15, 17, 37]. Thus, in 

this work we retrieved the 15,314 3’UTR from 7,907 human genes from 

UCSC Genome Browser [38]. 

 

3.1.3 Sfold 

 

Figure 3.2 Web page of Sfold. 

 

Sfold is a RNA secondary structure prediction tool using statistical 

algorithm. In addition, Sfold also can be employed to predict the accessible 

target regions for RNA-targeting nucleic acids. 

The core algorithm of Sfold could be separated into two steps. In the 
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forward step, it computes the equilibrium partition functions for all 

substrings of an RNA sequence. In the backward step, it takes a recursive 

sampling algorithm to draw secondary structures. 

For prediction of accessible sites for targeting by antisense 

oligonucleotides, Sfold using a probability profiling approach based on the 

sampling algorithm[39]. On a profile for width W, the probability that W 

consecutive bases are all unpaired is plotted against the first base o f the 

segment. The target site was considered as accessible if there is at least one 

peak > 0.5, the target site was considered moderate for a peak with 

probability between 0.3 and 0.6, and the potential was low for a site with 

probability < 0.3 of being single-stranded. Sfold 2.0 application server is 

now available at http://sfold.wadsworth.org/. 

 

3.1.4 Expression profiles of miRNA and target genes 

In this work, we integrated two data sets of miRNA expression profiles 

which were obtained by different experimental method, Q-PCR and 

miRNA-based array[40] respectively. 

 

Table 3.3 Details of expression profiles. 

Category Author Method Description Ref.

miRNA 
 Q-PCR 224 human in 18 major 

normal tissues in human  

Lu et al. miRNA-bead array 217 mammalian miRNAs 
from 334 human samples [40]

Target Gene Su et al. gene expression 
array-based 

Coding genes in 79 human 
tissues [41]
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All 224 human in 18 major normal tissues in human were detected by 

using a real-time PCR-based 220-plex miRNA expression profiling method 

to determine the tissue-specificity to human miRNAs. In the Lu study, a 

systematic expression analysis of 217 mammalian miRNAs from 334 

human samples was detected by a bead-based flow cytometric miRNA 

expression profiling method. 

Except the expression profiles of miRNAs, we also collected the gene 

expression profiles of coding genes in 79 human tissues. These data were 

obtained from NCBI GEO (GEO accession: GSD596). 

 

 

Figure 3.3 Cluster analysis of GDS596. 
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Since the miRNA downregulates its target gene, the expression profile 

of miRNA and its target g

Pearson correlation coefficient is computed from the expression profiles 

both miRNA and target gene for each miRNA and its target gene (coding 

gene). There are 13 overlapping human tissues between the Q-PCR data set 

of the miRNA expression profiles and the GDS596 data set of the target 

gene expression profiles. The details of the 13 overlapping tissues are listed 

in Table 3.4. 

Table 3.4 The 13 overlapping human tissues. 

issue Index Tissue 

enes are typically negatively correlated. The 

 

Index Tissue Index Tissue Index T
1 Brain 5 Lung 9 Prostate 13 Trachea 
2 H Muscle T  eart 6 10 estis  
3 Kidney 7 Ovary 1  1 Thymus   
4 Liver 8 Placenta 12 Thyroid   

 

3.2 System flow 

Fig. 3.4 shows the flowchart of the systematic method of identifying 

miRNA targets we propose in this work. 
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Figure 3.4 System flow. 

 

The inputs should be a specific miRNA and its overexpression profiles. 

First, we identify the downregulated genes by analysis the miRNA 

overexpression profiles. This approach narrow down the search scope of 

targets successfully and let the prediction process be more efficiently. To 

support the input miRNAs and targets, the sequences of both known 

miRNAs and targets were retrieved from miRBase (release 11.0, April 

2008)[21] and Ensembl (release 49, March 2008) [34] respectively. 

For accelerating the identifying of miRNA targets against the prepared 

target sequences, we applied a filtering strategy based on dynamic 

programming which named iScan. iScan is a sequence local alignment 

program using the simple sum-of-pair scoring function (SP scoring 

function). For each kind of pair, G:C, A:T and G:U, iScan assigned score 6, 

4 and 2 respectively. Otherwise, penalties of -3 and -5 are assigned for 

mismatched pairs and a gap respectively. After this filtering process, only 

those fragments which the score of alignment to a specific miRNA 

sequence exceed the cutoff value would be retained. These retained 

fragments are the candidates of miRNA targets and used as the search 
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database. 

 

Table 3.5 Score of each type of pairs. 

 G:C A:T G:U mismatch gap 
Score 6 2 4 -3 -5 

 

Subsequent to the filtering process, three computational prediction tools, 

miRanda, TargetScan and RNAhybrid, are applied for identifying miRNA 

targets. 

To increase the accuracy of miRNA target prediction, we set four 

criteria for filtering the potential miRNA targets predicted by the three 

computational programs described above. The first criterion is target site 

was predicted by at least two tools among miRanda, TargetScan and 

RNAhybrid. The second one is target gene contains multiple target sites. 

Third, target site locates in accessible regions which were calculated by 

Sfold. The last one is target site locates in the both ends of target 3’-UTR. 

All of these criteria were observing from the experimentally determined 

miRNA target sites which were retrieved from TarBase and the detail about 

these criteria will be elaborated in the following section of this chapter. The 

results which remain after the filtering of these four criteria are the 

potential miRNA targets of this specific miRNA. 

The prediction algorithm of our method was named MRT. Besides the 

basic information of the relationship between miRNA and its targets, we 

also provide the expression data of both miRNA and its target to support 

the prediction results. 
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3.3 Filtering process of miRNA target prediction 

In order to reduce the false positive and retain the more potential 

miRNA targets, we set four criteria by observing the experimentally data 

we retrieved from TarBase and surveying previous researches. The detail of 

these criteria will be described following. 

 

Table 3.6 Four criteria of filtering process. 

Description Number Percentage 
Target site was predicted by at least two tools 28 35%
Target gene contains multiple target sites 45 56.25%
Target site locates in 5’ end or 3’ end of target 3’-UTR 55 68.75%
Target site locates in accessible regions 10 1.25%

 

3.3.1 Criterion 1: Target site was predicted by at least two 

tools. 

In this work, three common used computational prediction programs, 

miRanda, RNAhybrid and TargetScan, were applied to identify miRNA 

targets. This criterion reserve candidate miRNA targets which were 

predicted by at least two tools (Fig. 3.4). 
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Figure 3.5 Criteria of identifying miRNA targets. 

 

3.3.2 Criterion 2: Target gene contains multiple target 

sites. 

Previous research indicated that one gene can contain several miRNA 

target sites. Thus, this criterion keeps the miRNA targets that contain more 

than two target sites. In the 80 experimentally data we retrieved from 

TarBase, there are 48 unique genes and 15 of them contain multiple target 

sites. For example, the C. elegans miRNA let-7 binds to night and eight 

sites in NRAS and KRAS respectively [42]. Otherwise, one of homebox 

(HOX) clusters, HOXA7, also be regulated by miR-196 with 4 binding 

sites[43]. Thus, after this filtering process, only those genes contain 

multiple target sites would be kept. 

 

3.3.3 Criterion 3: Target site locates in 5’ end or 3’ end of 

target 3’-UTR. 

Previous researches indicated that the function of a target binding site is 

related to its location in 3’-UTR. The effective target sites preferentially 

reside near the both end of the 3’-UTR[44, 45].  
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Examined the experimentally data get from TarBase, we divide whole 

3’-UTR into three equal parts (as Fig 3.5A), there are about 68.75% target 

sites located in the both ends. To be stricter, we separated each 3’-UTR into 

four equal parts (as Fig 3.5B) and there are still 48.75% of these target sites 

reside in the quarter parts of both ends. Thus, this criterion keeps the 

potential target sites which locate in the both ends of the target 3’UTR. 

 

 

Figure 3.6 Criterion 3 of identifying miRNA targets. 

 

3.3.4 Criterion 4: Target site locates in accessible regions. 

The structural elements in RNA secondary structure include helix, 

hairpin loop, bulge loop, interior loop and multi-branched loop. These 

elements make the RNA secondary structure more complicated.  

Several studies suggested that the structure of miRNA target would 

affect the miRNA biding ability. The sequence context that surrounds the 

miRNA target sites influences the binding affinities of miRNA/target 

duplex. Kertesz et al. [46] indicated that the secondary structures contribute 

to target recognition, because there is an energetic cost to free base-pairing 

interactions within mRNA in order to make the target accessible for 
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miRNA binding (Fig. 3.6). Long at el. [47] posited the accessible model of 

miRNA target sites for predicting miRNA targets and successfully 

interpreted the published data on the in vivo of C. elegans reporter genes 

that contain modified lin-41 3’-UTR sequences. 

 

 

Figure 3.7 Energetic cost to free base-pairing interactions (Long, D., et al. 

2007). 

   

 

Figure 3.8 Criterion 4 of identifying miRNA targets. 
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In this work, if the miRNAs hybridize to the target sites are located in 

the accessible regions are more likely to be real, shown as Fig. 3.7. The 

accessibility of target sequence is calculated by Sfold. 
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Chapter 4 Results 

4.1 Case study: miR-124 

In this work, we used miR-124 as an example. miR-124 is highly 

expressed in brain and kidney[40]. miR-124a was first identified by cloning 

studies in mouse[48] and its expression was later verified in human 

embryonic stem cells[40, 49]. There are 183 known miR-124 targets in 

TarBase. 

 

 

Figure 4.1 Bead-array miRNA expression profile of miR-124. 

 

We downloaded the miR-124 overexpression profiles from the NCBI 

GEO database[35] for one published study (accession GSE6207). In the 

Wang study[33], miR-124 and negative control miRNA were transfected 
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into HepG2 cell line using the Reverse Transfection protocol recommend 

by Ambion. The changes in global gene expression profiles were evaluated 

by microarray experiments at 4, 8, 16, 24, 32, 72, and 120 h post 

transfection using Affymetrix human U133Plus2 chip. 

To narrow down the candidate target database, we analysis the 

expression profiles to identify the downregulated genes before applying the 

computational prediction programs. Array signals were normalized using R 

which is a project of statistical computing. A gene was defined as 

downregulated if the expression reduction was at least 50% compared with 

negative control (fold change < -1). 

 

 

Figure 4.2 The amount of downregulated genes at each time point. 

 

Examined the expression data, there were only a small number of genes 

be downregulated by miR-124 at early stage (4 hour and 8 hours). The 

amount of downregulated targets increasing rapidly during 16 hour to 72 
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hour. Transfection time point at 72 hour has the most downregulated genes. 

However, the rate of downregulated targets is slow down at the later points. 

The amount of downregulated genes at each time point were shown in Fig. 

4.2. 

In this work, 744 genes were considered as the candidate targets and 

there are 46 genes were recorded in TarBase as the experimentally 

supported target genes of miR-124. Go through the system flow described 

above, 227 of these candidate genes were predicted as the potential targets 

of miR-124 and contained 709 target sites. 

 

 

Figure 4.3 The number of target sites satisfy the four criteria. 
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Shown as Fig.4.3, There were a large number of target sites satisfied 

criterion 2, target gene contains multiple target sites, and criterion 3, target 

site locates in 5’ end or 3’ end of target 3’-UTR. Nevertheless, only a few 

percentages of predicted target sites satisfied criterion 1, target site was 

predicted by at least two tools, and criterion 4, target site locates in 

accessible regions. 

As described above, there were 46 experimentally tested miR-124 

target genes in the candidate targets. 39 of these experimentally tested 

miR-124 target genes were predicted as the potential targets by the 

systematic method. Furthermore, there are three genes were satisfied all of 

the four criteria we described above and also known as the target of 

miR-124. 

 

Table 4.1 39 experimentally targets of has-miR-124 predicted by MRT. 

Gene Type Indirect Support Paper 
ACAA2 Downregulation/

Cleavage 
Microarray assay AND 
Real-time RT-PCR assay 

Lim et al, 2005; 
Wang et al, 2006 

AP1M2 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

ARAF1 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

ATP6V0E Downregulation/
Cleavage 

Microarray assay AND 
Real-time RT-PCR assay 

Lim et al, 2005; 
Wang et al, 2006 

B4GALT1 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

FN5 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

C14orf24 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

FLJ20364 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

CD164 Downregulation/
Cleavage 

Microarray assay AND 
Real-time RT-PCR assay 

Lim et al, 2005; 
Wang et al, 2006 

CDCA7 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

RAM2 Downregulation/ Microarray assay Lim et al, 2005 
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Cleavage 
CDK4 Downregulation/

Cleavage 
Microarray assay Lim et al, 2005 

CHSY1 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

ELOVL1 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

ELOVL5 Downregulation/
Cleavage 

Real-time RT-PCR assay Wang et al, 2006 

F11R Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

G3BP Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

HADHSC Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

ITGB1 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

LASS2 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

LITAF Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

LRRC1 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

NEK6 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

NME4 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

PLOD3 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

POLR3G Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

PTBP1 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

PTPN12 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

RYK Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

SLC15A4 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

SUCLG2 Downregulation/
Cleavage 

Real-time RT-PCR assay Wang et al, 2006 

SURF4 Downregulation/
Cleavage 

Real-time RT-PCR assay Wang et al, 2006 

SYPL Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

TEAD1 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

TOM1L1 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

MGC4083 Downregulation/ Microarray assay Lim et al, 2005 
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Cleavage 
UHRF1 Downregulation/

Cleavage 
Microarray assay Lim et al, 2005 

VAMP3 Downregulation/
Cleavage 

Microarray assay AND 
Real-time RT-PCR assay 

Lim et al, 2005; 
Wang et al, 2006 

ZBED3 Downregulation/
Cleavage 

Microarray assay Lim et al, 2005 

 

4.2 has-miR-124 regulated the RYK and ARAF 

RYK and ARAF are known as two targets of has-miR-124 [49]. In the 

overexpression profiles of miR-124 (GSE6207), both RYK and ARAF 

were first downregulated by miR-124 at 72 h. The gene expression profiles 

between RYK and miR-124 were shown in Fig. 4.2 and the gene 

expression profiles between ARAF and miR-124 were shown in Fig. 4.3. It 

is obvious that the both RYK and ARAF negatively correlated with 

miR-124. The Pearson’s correlations of RYK and ARAF are -0.48 and 

-0.62 respectively. 

 

 

Figure 4.4 Gene expression profiles of RYK and miR-124. 
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Figure 4.5 Gene expression profiles of ARAF and miR-124. 

 

For increasing the accuracy of prediction, four criteria were applied for 

filtering out the false target sites. Either RYK or ARAF satisfied all of 

these four criteria, were predicted by at least two tools, contain multiple 

target sites, target sites locate in the both end of target 3’-UTR and target 

sites locate in accessibility. 

 

4.3 Comparison with MirTarget 

As introduced before, MirTarget is an algorithm for detecting miRNA 

targets combining relevant parameters, with assigned different weights 

according to the relative importance. A gene was defined as a target of a 

specific miRNA if the score is equal to or greater than thread hold value 30. 
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Table 4.2 Comparison of MirTarget and MRT. 

Features MirTarget MRT 
Known miRNAs miRBase (version 7.0) miRBase (version 11.0) 
Supported species human, mouse, rat, dog, 

chicken 
2 insects, 9 vertebrates and 1 worm 

Experimental miRNA 
targets 

- TarBase and Surveying literature 

miRNA expression 
profiling 

- Lu. et al miRNA profiling in human 
Q-PCR miRNA profiling in human 

Expression profiles of 
miRNA targets 

- NCBI-GEO-GDS596 (76 human 
tissues)  

miRNA target 
prediction tools 

- miRanda, RNAhybrid and 
TargetScan 

Criteria for filtering the 
predicted miRNA 
targets 

- predicted by at least two tools 
target genes contained multiple sites 
target site is accessible 

Accessible region of 
miRNA target sites 

- Sfold  

Tissue specificity of 
human miRNAs 

- Q-PCR miRNA profiling (18 human 
tissues) 

 

In the Wang study, they predicted the potential miRNA targets of 

miR-124 using MirTarget. Overall 8810 target genes, 131 candidate genes 

received prediction scores of MirTarget and 85 target genes (Table 4.3) 

were predicted as targets of miR-124 (score ≧30). Of these 85 predicted 

target genes, 76 were represented on the microarray (GSE6207).  

However, 20 of these 76 potential miR-124 targets were the 

experimentally supported targets recorded in TarBase. There are 5 target 

genes were also predicted by our method. 

Shown as Fig. 4.6, there are 39 and 20 known miRNA targets predicted 

by MRT and MirTarget respectively. Only 5 of these 41 overlapping 

targets were predicted by both MRT and MirTarget. There is 144 known 

miR-124 targets did not predicted by MRT and most of these known targets 

were filtering out during the microarray analysis process before 

computational prediction. Thus, identifying a downregulated gene from 
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microarray data is relevant to the prediction of miRNA targets in the 

method we proposed. 41 targets were predicted by both of these programs 

and the coverage ratio is 53.94%.   

 

 

Figure 4.6 Number of real miR-124 target predicted by each tools. 
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Chapter 5 Discussions 

5.1 Identification of downregulated genes based on 

microarray data 

In order to increasing the accuracy of target prediction, we analysis the 

overexpression profiles of a specific miRNA. There are many way to 

analysis the expression profiles. The results of different analysis were 

various. For example, in this work, we normalize the microarray signal by 

using R. A gene was defined as downregulated if the expression reduction 

was at least 50% compared with negative control. However, there is still 

some real target genes of miR-124 which recorded in TarBase were filtered 

out by this filtering process. Thus, the definition of a group of 

downregulated genes without losing the real target genes is an important 

issue. 

 

5.2 Parameter optimization of iScan 

Before using the computational program to identifying miRNA targets 

we applied a sequence local alignment program, iScan, to filtering out the 

fragments if their alignment scores do not exceed the cutoff.  

However, each of the prediction tools integrated in this work were used 

different methods. Such as TargetScan is focus on the complementary 

between the seed region of miRNA and its targets. Instead of calculating 

the alignment score between the whole length of potential target site and 

miRNA, focus on the alignment between the seed region of miRNA and its 

targets might keep more possible targets. Thus, toward different 
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computational target prediction programs setting different parameters may 

increase the accuracy of prediction. 

 

5.3 The definition of a target site is accessible or not 

will affect the performance of our method 

To calculate the accessibility of target sequence, Sfold was applied in 

our method. However, the cost time of predicting the sequence accessibility 

is depend on the length of target genes. It might cost lots of time for 

calculating the accessibility of a long sequence. It is not a time-consuming 

way to predict target accessibility. 

A target site was considered as accessible if the average of accessibility 

of the target site is > 0.5. However, the complementary between miRNA 

and its targets might be imperfect and previous studies indicated that most 

of the target sites were perfectly complementary to the seed region of the 

specific miRNA. Therefore, considering the accessibility of the position 

2-7 of the target site 3’ end maybe can let the prediction more accuracy. 

 

5.4 Adding other useful criteria and applying scoring 

function for filtering process 

To increase the accuracy of target prediction, we set four criteria which 

were the features observed from the experimentally tested targets for 

filtering the potential miRNA targets predicted by the three computational 

prediction tools applied in our method. However, in addition to these 
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criteria we set, there still are other features were related to miRNAs and its 

targets. We can discover other features and set them as our criteria for 

improving our prediction. Moreover, these features have different relative 

importance. If we applying a scoring function for these criteria may 

improve our prediction. 

 

5.5 Prospective works 

To improvement the system of identifying miRNA targets, setting other 

useful criteria by observing the known miRNA targets, integrated other 

computational programs with different methods and adjust the parameters 

of iScan for each program integrated in this system. 
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Chapter 6 Conclusion  

miRNA controls many cellular processes, it is important to identify 

their targets with high accuracy. In this work, we propose a systematic 

method of identifying miRNA targets. Users should provide the expression 

profiles of the specific miRNA for us to identify a group of potential 

miRNA target genes. In this approach, we can observe the reduction of 

mRNA level, not just the amount of protein deriving from mRNA. Then 

three common used computational prediction tools were integrated for 

finding miRNA targets. To increase the accuracy of miRNA target 

prediction, we observed the experimentally tested miRNA target sites and 

developed several criteria. Moreover, we also provided the expression 

profiles of both miRNA and its target gene to describe miRNA/target 

relationship. Finally, in this work, we concentrate the miRNA target 

identification in human genome. However, this systematic approach is 

suitable for each species but with different parameters. 
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