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Abstract

Prior works have elaborated on the problem of joint clustering in the optimization and ge-
ography domains. However, prior works neither clearly specify the connected constraint in
the geography domain nor propose efficient algorithms. In this paper, we formulate the joint
clustering problem in which a connected constraint and the number of clusters should be spec-
ified. We propose an algorithm K-means with Local Search (abbreviated as KLS) consisting
of three phases: the transformation phase, the coarse clustering phase and the fine clustering
phase. First, data objects that fulfill the,connected constraint is represented as the ConGraph
(standing for CONnected Graph). Im light lof the €ConGraph, by adapting the concept of K-
means and local search, an algorithm is devised to coarsely cluster objects for the purpose of
efficiency. Then, these coarse cluster results are fine tuned to minimize the dissimilarity of
the data objects in the optimization domain. Our experimental results show that KLS can

find correct clusters efficiently.

Keywords — geography, joint clustering
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Chapter 1

Introduction

Clustering is an important technique in data mining field and has been utilized in many
applications, such as biology analysis, information retrieval systems, market analysis and so
forth [14, 9]. Given data objects with their attributes, clustering is to separate these data
into different groups such that objects.with similar attributes are in the same group while
objects in different groups are dissimilar. Due-to the widespread use of clustering in many
applications, data clustering has been studied and a significant amount of research efforts have
been elaborated on efficient clustering problems.:=‘Fhough data clustering has been studied for
years, with a new kind of data, clustering should be developed to satisfy the requirement of
applications.

Recently, with the growth of geographic information system and sensor networks, spatial
data are widely collected. In general, there are two types of attributes associated with the
spatial data, i.e., the geography attribute and the non-geography attribute. For example, in a
traffic information system, cars equipped with GPS and wireless networks are able to upload
their speeds and locations to estimate the real time traffic status or plan the fastest paths
[10, 7]. Therefore, spatial data contain the geography attribute (i.e., the location of cars) and
the non-geography attribute (i.e., speeds). Without loss of generality, the geography attribute
is referred to the geography domain, whereas the non-geography attribute is referred to the
optimization domain. To cluster spatial data for discovering interesting information, two

requirements should be fulfilled in the generation of cluster results. Specifically, each data
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in the same group should have similar values in the optimization domain and data objects
in the same group should not be so far in the geography domain. To generalize the above
scenario, a joint clustering problem over the geography domain and the optimization domain
is derived. Given a set of data objects with their attributes in both the geography domain and
the optimization domain, we should partition objects into several groups such that objects in
the same group are connected in the geography domain while minimizing the dissimilarity of
the data objects in the optimization domain.

A joint clustering problem addressed in this paper can be best understood by an illustrative
example in Figure 1.1, where each data object has two attributes over the geography domain
and the optimization domains. Explicitly, the attribute in the geography domain (i.e., the
values of X-axle and Y-axle) of a data object indicates the location of this data object, and
the other attribute in the optimization domain is the number along with each data object.
Traditional clustering methods consider geography and non-geography attributes in the same
domain (i.e. only one domain) and for examples in K-means [14], which is a center-based
clustering method, derives cluster fesults as shown in Figure 1.1(a). In Figure 1.1(a), the
upper six objects should be grouped-togethér-sincetheir-attribute in the optimization domain
is very similar and their attributes in the geography domain are close to each other. On the
other hand, Figure 1.1(b) shows the clustering results derived by contiguity-based or density-
based clustering methods (e.g., DBSCAN [14]). As can be seen in Figure 1.1(b), the lower six
objects are grouped into one cluster. However, their attributes in the optimization domain
vary from one to six. This is due to that the contiguity-based/density-based method consider
the local density only and thus cannot find center-based clusters in the optimization domain.
The ideal clustering result is shown in Figure 1.1(c), where objects in each cluster have similar
values in the optimization domain and their corresponding attributes in the geography domain
are close to nearby objects. It is shown in [9, 13, 11] that a joint clustering problem calls for
the design of new algorithms.

We mention in passing that the authors in [9] first explored the clustering problem over two

domains and proposed a SVM-based approach for clustering over two domains. However, due
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(a) By K-means. (b) By DBSCAN. (c) Ideal clusters.

Figure 1.1: An example to illustrate the problem.

to that the higher computation cost in complete-link, the proposed method is not feasible for a
large-scale amount of data objects. The authors in [13], thus, proposed a heuristic algorithm,
BINGO, to cluster objects. Note that the goal of the above two methods is to partition objects
into several groups, where each group forms a compact region in the geography domain while
objects in the same group have similar values in the optimization domain. Thus, the above
two methods do not explicitly specify the mmeaning of compact regions. On the other hand,
the authors in [5, 11] formulated a joint clustering pfoblem in which data objects have two
types of attributes: one is the attributé data (similar to the attribute data in the optimization
domain in this paper) and the otheris.a relationship data. However, the relationship data is a
binary relation, which cannot fully reflect the relationship in the geography domain (i.e., the
various values of distances between two objects in the geography domain). Hence, the joint
clustering problem addressed in this paper cannot be dealt with by any direct extension of
existing joint clustering works in [5, 11].

Consequently, in this paper, we formulate a joint clustering problem in which a connected
constraint is specified in the geography domain. Specifically, given data objects with attributes
over the optimization domain and the geography domain, we aim to partition objects into
groups such that the clustering cost is minimized and data objects in the same group satisfy
a connected constraint required. Then, an algorithm KLS (standing for K-means with Local
Search) is proposed. KLS consists of three phases: the transformation phase, the coarse
clustering phase and the fine clustering phase. First, given the connected constraint required

and the attributes of objects in the geography domain, grid-cells data structure is used to
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efficiently derive the ConGraph (standing for CONnected Graph), where each vertex is an
object and an edge exists between two objects if their distance in the geography domain is
within a given threshold. In light of the ConGraph, by using the concept of K-means and local
search, objects are coarsely clustered into several groups. The coarsely clustering approach
makes a trade-off between efficiency and quality of clusters. Based on the clustering results
derived, we could further fine tune clusters to minimize the dissimilarity in the optimization
domain. Our experimental evaluation demonstrates that algorithm KLS is indeed able to
efficiently and effectively cluster objects.

The rest of the paper is organized as follows. The related work is introduced in Chapter
2. Preliminaries are given in Chapter 3. The proposed algorithm is presented in Chapter 4.

Performance evaluation is conducted in Chapter 5. This paper concludes in Chapter 6.



Chapter 2

Related Work

In this chapter, we first introduce the traditional clustering approaches, and then describe
the joint clustering algorithms. Finally, a new popular area, clustering with constraints, is

described.

2.1 Traditional Clustering

Given n objects, the goal of clustering is toreliisteriobjects into some number of groups such
that objects in the same group should‘be similar and objects in different groups should be
dissimilar. The types of groups and definition of similarity is dependent on applications.
Usually, the distance between two objects are used to define the similarity: two objects with
near distance are similar.

The most famous clustering algorithm is K-means [14]. Given n objects and the number
of clusters, k, K-means clusters objects into k£ groups. The idea of K-means is to select k
different objects as seeds initially; each seed forms the initial centroid of each cluster. Each
object is then assigned to the cluster of its most similar centroid. Once all objects are assigned
to their corresponding clusters, compute the new centroids of clusters. A centroid is used as
the mean of a cluster. Then reassign the clusters of objects until the result is not changed or
after a limit number of iterations set by the user. A variation of K-means is K-medoids which

use the most representative object (i.e. the object that is the most closed to the mean value)
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as the centroid instead of the mean value.

In contrast to the center-based clustering, K-means, DBSCAN [14] is a density-based
clustering algorithm. Instead of requiring the number of clusters, DBSCAN requires two
other parameters: MiniPts and Eps. In DBSCAN, an object is a core object if the number of
objects within distance Eps is larger than or equal to MiniPts; an object is a border object if
it is not a core object but is inside the neighborhood of a core object; a noise object is neither
a core object nor a border object. With the definition of core, border and noise objects,
DBSCAN consists of three phases: (1) label all objects, (2) filer out the noise objects, and
(3) make connected core objects and their corresponding border objects into the same cluster.
Two core objects are connected if their distance is within Eps. Note that although there is no
need to assign the number of clusters in DBSCAN compared to K-means, DBSCAN requires
appropriate MiniPts and Eps to represent a suitable density. Although DBSCAN can find
clusters that obey the connected constraint,in our problem, DBSCAN does not consider the
attributes in the optimization and thus it cannet eluster similar objects into the same cluster.
Our proposed algorithm adapts thefidea of DBSCAN to. define the connected constraint and
use the concept of K-means and local search-{12}-te achieve the goal.

Graph-based clustering [14] is to cluster data-represented by a graph. In other words,
given a graph G = (V| E), a graph-based clustering is to cluster vertices into some number of
groups. There are many graph clustering algorithms, and we mention a typical one here. Given
a similarity threshold, the Jarvis-Patrick clustering algorithm (abbreviated as JP clustering)
removed the edges with similarity that is smaller the threshold specified by users and make
each connected subgraph as a cluster. The similarity value of an edge is defined as the shared
nearest neighbor (SNN) similarity. For two objects, find the ¢ nearest neighbors of each object,
and then define their SNN similarity as the number of the intersection of nearest neighbors.
Although the Jarvis-Patrick Clustering algorithm can cluster objects correctly even if there
are different densities among objects, the correct parameters are hard to set and computing
the SNN similarity graph is time-consuming when ¢ is large. For example, when ¢ = n, where

n is the number of vertices, the time complexity is O(n?).
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2.2 Joint Clustering

Though prior works have elaborated on proposing methods to deal with joint clustering prob-
lems, the connected constraint in the geography domain is not clearly defined. Furthermore,
the proposed methods are not efficient given a huge amount of data objects.

The clustering problem with connected constraints is addressed in [9] first. Besides, an
algorithm based on the hierarchical clustering method and SVM is proposed. Note that the
parameters used in SVM is hard to determine, and the time complexity is high due to the
usage of the complete link method. A two-phases algorithm for the clustering problem which
the clusters cannot overlap to each other in the geography domain is developed in [13]. In the
first phase, the original objects are transformed into non-overlapping T-regions. A T-region
is a grid in the geography domain and each pair of objects in the same T-region is within
distance T in the optimization domain. Each T-region can be viewed as a compact cluster
with high similarity in the optimization domain andrdifferent area in the geography domain.
A method to determine T automatieally lis-also-provided in [13]. In light of T-region concept,
in the second phase, k regions are selected as the initial seeds of the clusters via a heuristic
method. Then, two neighbor regions’are merged until the number of regions (i.e. clusters)
reaches k specified by users. Although authors’in [13] shows that it is more efficient than [9]
in their experiments, the transformation of T-regions in [13] is still not efficient since the time
complexity of transformation is O(n?), where n is the number of objects.

On the other hand, the joint clustering problem of clustering objects in both the attributes
and the relationships is formulated in [5, 11]; there is no attributes in the geography domain.
The relationships can be represented by a graph directly, where vertices are objects and edges
are relationships. Furthermore, authors in [11] focus on the joint clustering problem without
the number of clusters specified. The relationships are represented by symmetric binary
relations and are considered as the connected constraint similar to our problem. Although
there is no need to assign the number of clusters in [11], the minimum size of each cluster
is included, and this parameter affects both the efficiency and the quality of clusters a lot.

The concept of their proposed algorithm, Connected X Clusters (abbreviated as CXC), is
7



to combine K-medoids and BFS [12]. CXC consists of two phases. In the beginning of
the first phase, some number of objects are selected as medoids and form clusters. Then,
for each medoid, find the nearest unclustered objects into their clusters via BFS. Therefore,
the neighbors of medoids are clustered. Follow the same procedure, the unclustered objects
are clustered through BFS. After all objects are clustered, clusters with sizes smaller than
the minimum requirement are merged. Then new medoids are computed from new clusters
and repeat the BFS-cluster procedure. The above procedure is stopped after the number of
iterations specified by the user. In the second phase, the clusters are merged hierarchically
until there are two clusters. Therefore, there are many sets of clusters (i.e. 2 clusters, 3
clusters, ...). The one with the best Joint Silhouette Coefficient is chosen as the final result.
Compared to the above works, we define the connected constraint clearly and our target is
attributes with real values in two domains instead of the binary relationships and attributes

in one domain. Also, we do not require the mminimum size of each cluster.

2.3 Clustering with Constraint

There are many researches about clustering with censtraints introduced in [1]. The most
relevant researches to our work are [15, 8, 4] which study the must-link and cannot link
constraints. A must-link constraint for two object means that these two objects must be in
the same cluster while the cannot-linke constraint for two objects means these two objects
must not be in the same cluster. These works use the constraints to improve the qualities
of clusters. Therefore, some constraints can be violated in order to acheive good quality
efficiently. However, the connected constraint in this paper cannot be volated.

On the other hand, the must-link and cannot-link constraints define that two objects must
be or not be in the same cluster, but our goal is to make sure the connectedness of objects
in each cluster. In contrast, even if two objects are connected, they can belong to different
clusters Authors in [4] propose the e-constraint which is similar but not the same to our

connected constraint. Although they also propose a K-means-like algorithm to e-constraint,



it does not fit the constraints completely. Besides, all of these works focus on attributes in

the same domain.




Chapter 3

Preliminaries

Objects considered in this paper have two domains of attributes; the two domains are the
optimization domain and the geography domain. To facilitate the presentation of this paper,
an object ¢ is denoted as 0;. The corresponding set of attributes in the optimization domain
(respectively, the geography domain) isexpressedby S; (respectively, L;). Specifically, the
5th attribute in S; is represented as sz . whefeas they ™ “attribute in L; denotes as lf . Suppose
that the dimension of the optimization domain is dg and that of the geography domain is
dy. Based on the notations of attributes‘of objects, we-could further formulate the similarity
measurement. Same as in prior works, the distance between two objects is used as the dissim-
ilarity measurement. Among a variety of distance functions, Euclidean distance is the most
employed. Thus, we have the following two distance functions in the optimization domain

and the geography domain.

Definition 1 (Distance functions): For two objects o; and o;, the distance measurement in

the geography domain, denoted as distye,(0;,0;), is formulated as:

dist eo(04,05) =

and the distance measurement in the optimization domain, denoted as dist,,(0;,0;), is for-

10



mulated as:

distopi(0i,05) =

Based on the definition of distance functions above, the cost of a cluster in the opti-

mization domain is further formulated. Assume that a cluster C; has a set of objects (e.g.,

(01,02,...,0ic;))), where |Cj| is the number of objects in C;. The cost of cluster C; in the

optimization domain is thus formulated as:

1 |C5]

g9(C;) = |C 2 Zdzstopt (0;, cen;)

where cen; is the centroid of C; and is derived as

L Loy s
P IRE o B 2 S 2 )

0;€C;

Consequently, the average cost of awset of clusters.is defined as:

Definition 2 (Average cost of clusters) Given a-sét of clusters SC = (Cy, Cy, ...,

of SC' is defined as:

A
Q
Il
‘M-
3| Q

where n =% |Cyl.

Cy), the cost

The constraint in the geography domain is used to cluster objects such that their distance

in the geography domain is within a threshold required such that objects in the same cluster

are connected. The definition of the connected constraint is defined as:

Definition 3 (Connected constraint on cluster) Given a clusters Cy, where |Cy| > 1, and

a threshold r, Yo;,0; € Cy N o; # 0j, distye,(0;,05) < 1 or there is a sequence of o0b-

Jects 0u1, 042, - -y 0un € Cyp such that distye,(0;,0u1) < 7, distyeo(0u1,0u2) < 7, -, and

distgeo(Oun, 0;) < 1. Cy is fit the constraint inherently when |Cy| = 1.
11



Problem formulation: From the definitions above, the problem addressed in this paper is
that given the number of clusters k, a distance threshold r, n objects o1, 0, ..., 0,, with their
attributes in the optimization domain and the geography domain, the goal is to derive a set of
clusters SC' = (C4, Cs, ..., C) such that (1) each object o; belongs to only one cluster C;, (2)

objects in the same cluster are connected, and (3) the average cost (i.e., f(SC')) is minimized.

12



Chapter 4

Algorithm KLS: K-means with Local

Search

We propose algorithm KLS consisting of three phases: the transformation phase, the coarse
clustering phase, and the fine clusteringphase. In'the transformation phase, the Congraph
(standing for CONnected Graph) is derived for-efficiently verifying the connected constraint.
Then, in the coarse clustering phasé, rough clusters are éfficiently derived via the ConGraph.
The number of clusters is greater than or'equalto k. and the clusters may lose some qualities
due to the efficient consideration. Finally, the clusters found in the second phase are merged
according to f(SC) iteratively until the number of clusters is k. In the following sections,

each phase will be described in details.

4.1 Transformation Phase

In this phase, given a set of objects, the goal is to derive the ConGraph that captures the
connected features among objects in the geography domain. In this section, the distance
between objects in the geography domain is named as distance in short. The definition of the

ConGraph is as follows:

Definition 4 (ConGraph) Given a set of n data objects O = {01, 09, ... , 0,} and a threshold

r, a ConGraph is a graph G = (V, E), where each vertez v; is referred to each object o; and an
13



edge e(v;, vj) between v; and v; ezists if and only if distye,(0;, 0;) < 1. In addition, E(v;) = {v;

| e(vi,v;) € E} is the neighbors of vertex v;.

One naive method of generating the ConGraph is that distances of all object pairs are
computed and then each object pair is verified whether its corresponding distance is within r
or not. Clearly, this is very time consuming.

Consequently, we divide the geography domain into cells [2] with equal size. Objects are
hashed into cells according to their attributes in the geography domain. Through cells, given
an object 0;, we are able to quickly find out possible objects nearby o;. Since the threshold of
the connected constraint is set to r, the width and the height of a cell can be set to 2r such that
only 29 neighbor cells are required to explore when finding the neighbors of a vertex. Figure
4.1(a) is an example to illustrate the transformation phase, where there are eleven objects,
the numbers along objects are object identifications, and the coordinate values represent their
attributes in the geography domain. The'geography:domain is partitioned into 2r-by-2r cells.
Note the 2r-by-2r rectangle with dashed line and‘has+ o, as its center. Only the four cells
overlapped by this rectangle are nécessary to further verify for F(v,). Then, the distances
between those objects in these four ¢ells are computed. Finally, edge e(ve,v4) and e(vs, vg)
are added into E since their distance is within 7. "By utilizing cells, only a limited amount of
objects are searched. Given the objects in Figure 4.1(a), the ConGraph is generated in Figure
4.1(b).

Time and Space Analysis. Assume that there are n objects. Let m be the maximum
size of cells. The time complexity of constructing the hash table is O(n), and the space
complexity is also O(n). Finding all edges for a vertex requires O(2% - m) which is smaller
or equal to O(n), so the total time complexity is O(2 - m - n) or O(n?). When the density
of each cell and the dimension of the geography domain are low, d; and m can be viewed
as constants. In such situation, finding all edges for a vertex requires only O(1) and thus
the total time complexity of finding F is O(n). Since the graph is probably sparse, we use

adjacency list to represent the graph. Therefore, the space overhead of the graph is O(F).

14
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Figure 4.1: An example of transformation.
4.2 Coarse Clustering Phase

Same as in K-means, we first select k vertices asinitial centroids. Adapting the concept of local
search [12], these vertices are used as the representative objects for their clusters. Then, those
neighbors of these representative objects are extracted. “The distances between each centroid
and the corresponding neighbors are caleulated-—=Fhen, only the neighbor with the smallest
distance will be selected into the nearest eluster and the centroid of the corresponding cluster
will be updated. Moreover, the representative object for the corresponding cluster is replaced
by the new neighbor. The above procedure will be repeated until there is no unclustered
neighbor. After this procedure, the unclustered objects are assigned to the nearest cluster if
the connected constraint is not violated. The pseudo code is written in Algorithm 1.

Figure 4.2(a) shows an example of seven objects, where the ConGraph is provided and the
coordinate values of objects are the attributes in the optimization domain. Assume that we
would like to cluster the seven objects into three groups. The execution of KLS is shown in
Figure 4.2(b). As shown in Figure 4.2(a), the initial seeds are v, v and vz and each seed
forms a new cluster (i.e., C,, Cy and C.) in Step 0; Step 0 is described from line 3 to 7. Then,
through line 9 to 15, the centroid of each cluster is calculated in the optimization domain.

PQ is the priority queue to store data pairs (d?,v;). We use d? here to calculate more easily.
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Algorithm 1: Coarse Clustering Algorithm

© 0w N o ook W N

- e
N = O

13
14
15
16
17
18

19
20
21

Input: An integer k, a graph G = (V, E') and attributes of V/
Output: a set of clusters SC, where |[SC| > k

let E,(v;) (respectively, E.(v;)) be the unclustered (respectively, clustered) neighbors of
%
/* initialization */
select k vertices as the initial seeds and each seed forms a cluster C}
foreach seed v; do
let d be the smallest distance distop(vi,vj), v; € Ey(v;)
add pair (d, v;) into a priority queue PQ
end
/* local search */
while PQ.not_empty do
remove (d,v;) from PQ with the smallest d
let C} be the cluster of v;, and cen; be the centroid of C;
let d, u be the smallest distance dist,u(cens, v;) and the corresponding vertex,
where v; € E,(v;)
add u into cluster C; and update cen;
add pair (d,u) into PQ
end
/* fix unclustered objects */
foreach unclustered v; € V do
if |E.(v;)| > 0 then add v; to the nearest cluster, of v; € E.(v;) and update the
corresponding centroid
else wv; forms a new cluster
end
return the union of all clusters SC

As can be seen in Step 1, vy is selected and included into cluster C,. Then, the unclustered

neighbors of vy (i.e., vs,vg) are searched in the ConGraph. Since the distance between vz and

the centroid of C, is the smallest, the data pair (9,5) will be inserted into PQ. Following the

same operation, we could have the cluster results shown in Step 6. Note that in the end of

Step 5, there is no representative object in P() and v; has not been clustered. This special

situation is handled by line 17 to 20 in Algorithm 1 and shown in Step 6.

As point out in prior works, the selection of initial seeds in K-means has great impact on

the cluster results [3, 14, 11]. In our works, good initial seeds requires that distances of two

seeds should be as far as possible in both the optimization and the geography domains. It

is apparent that seeds should be much different from each other in the optimization domain
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Step 0

Ca=(1),Cp=(2),C.=(3)

cen, = (1,1), cen, = (8,2), cen, = (7,9)
PQ = {(4,1), (10,3), (16,2)}

o
|

V4

(a) Setting.
Step 1 Step 4
Ca=(1.4), G =(2), C. = (3), Ca=(1.4.5), Cy = (2), C; = (3,6),
cen; = (1,2), cen, = (8,2), cen; = (7, 5), | |cen, = (2,2), cen, = (8,2),
PQ = {(9,4), (10,3), (16,2)} cen. = (5.5,5.5), PQ = {(20,5)}
Step 2 Step 5
Ca=(14,5), Gy =(2), C. = (3), C.=(145),C,=(2),C. =(3,6),
cen, = (2,2), cen, = (8,2), cen, = (7, 5), | |cen, = (2,2), cen, = (8,2),
PQ = {(10,3), (16,2), (20,5)} cen. = (5.5,56.5), PQ = {}
Step 3 Step 6
C.=(1.4,5), C, =(2), C. =(3,6), C.=(14,57), C,=(2), C: = (3,6)
cen, = (2,2), cen, = (8,2), cen, = (1.5,2.5), cen, = (8,2),
cen; = (5.5,5.5), PQ = {(16,2), {2(1,5}} cen. = (5.5,5.5), PQ = {}

(b) Execution process.

Figure 4.2: An example for the coarse clustering phase.

since this fits the objective function f(SC'). However, seeds may not need to be different from
each other in the geography domain intuitively. We argue that seeds that are far to each other
in the geography domain may be better because clusters must obey the connected constraint.
Consider Figure 4.1(a) again, assume that we want to choose four medoids, and the most four
different objects in the optimization domain are oy, 03, 0g, 07. If we use these objects as the
medoids, there are two problems. Let the cell in the down-left corner be cell (0,0). First,
it cannot cover the other disconnected objects, and therefore there will be four bad clusters
among cell (1,2) and (2,2), and the rest objects form other clusters. Apparently the number

of clusters and the quality of each cluster are not good. Moreover even if there are some

17



objects in the cell (1,1) and (2,1) such that there are only one connected graph instead of
three connected subgraphs, the representative objects of clusters that contain o3 and og may
not “move” out in the local search of KLS because the other seeds, 01, o7 are in their way.
To remedy this, we can take the advantage of cells which have been computed before. Since
the objects have been placed into cells which are small region in the geography domain, we can
view these cells as temporary clusters and therefore they are inherently far in the geography
domain. For each cell, the variance of objects in the optimization domain is derived first.

Here, the variance of a cell is defined as ) distopi(0, cen)?, where cen is the centroid of

occell
the cell. Then the median of the variance is chosen as the pivot such that cells with higher
variance than the pivot are filtered. Note that to make sure that there are at least k seeds, the
filtering operation is stopped when the number of cells is smaller than k. After the filtering, the
medoid, the nearest object to the centroid, of each cell is chosen according to the attributes in
the optimization domain. Then, the most,_different & initial seeds (i.e. medoids) are selected.
We randomly select one medoid as thesfirst seedssFhen for each medoid, the minimum distance
among all selected seeds is calculated;and the one with-the maximum distance is selected as
the new seed. The selection operation is'stopped-until the number of seeds is k.

Note that the definition of difference among seeds affects the quality of seeds selection.
We choose the minimum distance since this operation can reveal the most difference among
seeds. For example, after selecting ¢ seeds, the new selected (¢ + 1)y, seed is at least the most
different from all selected seeds compared to the other unselected seeds. If we use a sum of
distances instead of the minimum, a new seed that is much different from a selected seed but
similar to some selected seeds may be selected, and thus it is a redundant seed.

Figure 4.3 shows an example of the seeds selection. The number in each circle indicates its
attribute in the optimization domain, and the location indicates its attributes in the geography
domain. Figure 4.3(a) is the objects before filtering. The median of variances of cells is 2,
and the results after filtering is shown in Figure 4.3(b), where black nodes are the medoids
of cells. In the following content, we use their attribute in the optimization domain as their

identification numbers. Assume that o1q is selected as the first seed. Then, o; would be
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Figure 4.3: An example of seeds selection.

selected since its the farthest object in the optimization domain compared to 0. If we use a
sum of distances to select seeds, 015 would be selected. However, 015 has a similar attribute
in the optimization domain as 019. On the other hand, with the minimum distance, o5 would
be selected as the third seed.

Time Analysis of seeds selection. Fotr \n objects, b cells and k cluster, computing the
variance of all cells requires O(n), filtering theeells requires O(b), and finding k most different
medoids from max(k,b/2) cells requites O (b~%?). Therefore, the total time complexity is
O(n +b+b-k?). In the worst case, each objeet forms an unique cell (i.e., b = n), and thus
the time complexity is O(n - k?).

Time Analysis of the Coarse Clustering. For n objects, k clusters, the initialization
costs O(n-k?). A priority queue can be implemented by a heap which requires O(k) to insert a
new object or remove the top object. Therefore, the total time complexity about operating the
priority queue is O(nlogk). We do not find the best representative object in each iteration.
Instead, the new appended object is chosen as the representative object. This makes a trade-
off between the quality of clusters and running time, and thus the time complexity of the
local search is O(|E|+nlog k). Finding unclustered objects requires O(|E|), and generate SC

requires only O(n). The overall time complexity of this phase is O(n - k* + | E|).
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4.3 Fine Clustering Phase

Before explaining the fine clustering method, the connectedness of two clusters is defined as

follows:

Definition 5 (Connected constraint among clusters) Two clusters C; and C; are connected

if and only if 3o, € C; and Jo, € C; such that distye,(or,0,) < 1.

The goal of this phase is to merge clusters until the number of clusters is k. To minimize
the average cost, we adapt the agglomerative hierarchical clustering with the mean distance
[6]. The fine clustering is to recursively merge the two connected clusters with the smallest
distance between their centroids until the number of clusters is k.

Specifically, if there are more than k disconnected subgraphs in the ConGraph, the number
of clusters is also more than k due to the connected constraint. Therefore, there is no suitable
solution in this situation.

Time Analysis. The agglomerative hierarchical clustering with average link requires
O(k'®), where k' is the number of clusters found by the:coarse clustering. If sorted lists are

used to maintain the the distances from: each cluster to.the other clusters, the time complexity

could be reduced to O(k"*log ).

4.4 Overall Time and Space Complexity

Given n objects, the number of clusters k, and the threshold of the connected constraint r, the
transformation phase requires O(n?) while the coarse clustering phase requires O(n - k* + | E|)
The agglomerative hierarchical clustering with the mean distance requires O(k"?log k'), where
k" is the number of rough cluster results and k& < k' << n generally. Thus, the overall time is
bounded by the transformation time, O(n?). The space overheads are cells and graphs which

requires O(F) space.
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Chapter 5

Performance Study

In this chapter, we first describe the environment of the experiments including the data
generator, the suits of test cases and the methods we use to evaluate in Section 5.1. Then the
cost evaluation is conducted in Section 5.2 and the running time comparison is conducted in
Section 5.3. Finally, the heuristic method of choosing initial seeds is evaluated in Section 5.4.

All experiments are executed with a=2.4GHz Intel €PU-and 8GB of memory.

5.1 Experiment

5.1.1 Simulation Model

The testing data have two domains of attributes. In order to view these data easier, we
utilize the RGB color model to represent the attributes in the optimization domain, that
is, three types of attributes represent red, blue and green, and their range are between 0
and 255. For example, value (255, 255, 0) in the optimization domain represents the color
yellow. In the geography domain, the range of each attribute is between 0 and 799. Therefore,
information of both domains of data could be shown in a 800x800 figure with different colors
in the optimization domain while regarding the attributes in the geography domain as their
coordinate. In the following content, we use (z,y) and (cr,cg, cb) to represent the attributes

in the geography domain and the ones in the optimization domain, respectively.
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A synthetic data generator is made to prepare test data with the ground truth. Our gen-
erator requires parameters k and r, where k indicates how many clusters should be generated,
and objects with the same clusters are within a distance r in the geography domain. For each
cluster, we generate the pivot points uniformly from 0 to 799 first, and then attributes in the
geography domain is generated to pass through these pivot points iteratively. The number
of pivot points are generated randomly, and each pivot point has different x or y from the
previous one. After these pivot points are generated, the first pivot point is the attribute of

the first object, and the next value of x is x + dir(x,2")w(t), where 2’ is the value of the

(t+7)
2r2

next pivot point, dir(z,z’) = ﬁ and w(t) = t with the probability t € [-r,r] and ¢
is an integer. w(t) generates larger integers with higher probability, and dir(x,z’) is 1 or -1
according to the relative position between x and the destination z’. Therefore, the generated
points are toward to 2’ with higher probability, but they may be backward locations, too. y is
also generated by the same function. Each,(xyy) is the attribute in the geography domain of
a new object. After reaching the pivet point=(a’,4 ), the next pivot point is used until there
is no pivot point remained. This approach can generate random points in the form of many
intersected “horizontal and vertical dines”. In.order to get a denser points such that objects
in each clusters have more neighbors, we use the same pivot points again after all pivot points
are passed, and this may cause a “diagonal line” between the last pivot and the first pivot.

After objects in each cluster have their attributes in the geography domain, the attributes
in the optimization domain are generated according to the normal distribution N(u,o). Our
data generation in the optimization domain is similar to the method in [9]. ¢r, cg, cb are
generated according to the same process, so we explain the process by one attribute here.
First, u and o are generated uniformly from 0 to 255 and from 1 to 32, respectively. Then,
each object has the value from N(u, o). The value is replaced by 0 (or 255) if it belows 0
(or above 255). Therefore, objects in each cluster have similar attributes in the optimization
domain, and all clusters obey the connected constraint.

Figure 5.1 is an example of synthisized data with » = 5 and k£ = 5. There are five clusters:

each cluster forms a “closed line” and clusters are overlapped to each other. The data over

22



160

300
250
200
10
100

140

120

100

T
160

(b) Projection in the optimization domain.

160

300
260
200
150

140

120

100

W g

0 60 il 100 120 140 160
"1

(¢) Projection in the geography domain.| .~ (d) Projection in the optimization domain.

Figure 5.1: An example of generate(i -data"‘%;vifh T k: 5 and the result of KLS: (a) and (b)
show the data over two domains; (c) and (d).show the result of KLS over two domains.

two domains are shown in Figure 5.1(a) and Figure 5.1(b), where objects in the same cluster
are represented by the same symbol and color. Figure 5.1(c) and Figure 5.1(d) show the
result of KL.S over two domains, and the clustering result of KLS is just a little different from
the truth. We will conduct a detailed experiments in the following content to evaluate KLS

deeply.

5.1.2 Test Cases

We setup eight suits of test cases, and each suit has five test cases, so there are forty test cases
in total. For example, Figure 6 shows forty clusters and each color curve represent a cluster.

As mentioned in Section 5.1.1, the ranges of all attributes in the geography domain and in
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Figure 5.3: Setting of test suits.

Figure 5.2: An example of forty clusters.

the optimization domain are [0,799] and [0, 255], respectively. We let r = 5 for all test cases.
If each object has more neighbors, the testicases would be more complicated and the running
time would increase. Therefore, we use . —1as the parameter of the data generator in order

to make the objects closer. The other parameter k, the mumber of clusters, is different among

test suits. Figure 5.3 shows the average numberof Objeéts of each test suit.

5.1.3 Implementation of Existing Works

Currently, BINGO [13] is the best algorithm for joint clustering in the optimization domain
and geography domain. We implement BINGO in order to compare it with KLS. The main
idea of BINGO is to consider the cost in both optimization domain and geography domain
simultaneously by using T-regions. A T-region is a square region in the geography domain and
each pair of data in this geography domain have distance in the optimization domain within 7.
Through analysis, BINGO provides a way to calculate the desired T. With compact T-regions,
BINGO forms a graph named NeiGraph G = (V, E') where each vertex is a T-region and there
is an edge between two vertices if the two T-regions are near by. Then, BINGO selects k
vertices as seeds and then merges remaining vertices to form the final k£ clusters. However,

BINGO cannot cluster successfully when some data objects are far in the optimization domain
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and are near in the geography domain. In such cases, some T-regions are not near by other
T-regions and thus they are not connected. The problem is that BINGO assumes that all
T-regions should be connected in order to finish the whole algorithm. In order to fix the
unconnected problem, we use minimum spanning tree (MST) to make sure T-regions form a
connected graph. We compute the distances between all pairs of T-regions to form a temporal
graph G'(V, E’), and then use MST on G’ to get |V| — 1 edges. By adding these |[V| — 1
edges to NeiGraph, NeiGraph is connected and thus BINGO can finish clustering successfully.
Although using MST solves the unconnected problem, it increases the time and space cost to
O(n?), where n is the number of data objects. Therefore, the revised BINGO cannot finish
the cases with larger size of objects in our environment.

For the purpose of comparison, we implement one naive algorithm Connected K-means
(abbreviated as CK-means) which has three phases as KL.S does. In CK-means, the operations
in the transformation phase and the fine cluster. phase are the same as KLS. Recall that the
ConGraph G = (V, E) was derived in ghe transformation. In the coarse clustering phase of CK-
means, objects are first partitioned by K-means-svith the attributes in the optimized domain
only. After clusters OC are derived by Kimeans;-we generate a new graph G’ = (V, E'), where
E" = {e(vi,v;) | e € E ANv;,v; € Cp,Cpe_ OC}at We exploit BFS [12] to traverse G’ and
get connected subgraphs G, Gs, ..., Gy. Then each connected subgraph is an equivalent
cluster which fits the connected constraint. Moreover, objects in the same clusters have
similar attributes in the optimization domain since they are clustered by K-means previously.
Therefore, k' > k clusters are found.

In addition to use CK-means, we also use the JP clustering algorithm in order to demon-
strate that traditional clustering algorithms cannot work. After the transformation, we get
the ConGraph G = (V, E) and set the weight of edges between v; and v; as dist,(v;, v;).
Then, after applying JP clustering to the graph, the coarse clusters are derived. Finally, as
KLS and CK-means, the fine clustering phase is applied to the coarse clusters in order to get

the final & clusters.
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5.1.4 Performance Metrics

Since the objects in each test case are generated under control, the true clusters SCj,... can be
known. According to f(SCye), the average cost of all test cases in each test suit is computed

first. Instead of using f(SC') as the measurement of the quality in the optimization domain,

L(SC)—f(SCtrue)

F(SCume) is used.

the relative cost
In addition to the traditional cost measurement, we can use more precise measurement to
understand the degree of correctness. Let C, Cs, ..., Cy be the clusters which are found by our

algorithm, C'Ty, C'Ts, ..., C'Ty, be the true clusters according to the setting of the experiments,

and m;; be the size of the intersection of C; and CTj;. Then, the precision of the pair of

cluster C; and CTj is P(i,j) = 7. Similarly, the recall R(i, j) = (57, and the F-measure

[14] is F(i,j) = %. Note that the range of F-measure is still [0, 1] as the precision
and recall, and 1.0 is the best value which indicates that the precision and recall are also 1.0.
Considering the two extreme cases: eachiobject forms an unique cluster and there is only one
cluster. In the first case, because the-gize of leach cluster-is small, it reaches the best precision,
1.0, for its corresponding true cluster. However, the recall is the worst. On the other hand,
the second case reaches the best recall; 1:0; but‘the worst precision. Normally, a cluster with
larger size may have high recall but lower precision. Because F-measure can reflect the overall

quality between the precision and recall, it is chosen as our main measurement.

By using the F-measure, for each true cluster C'Tj, the cluster C; with the largest F(4, j) is

K o
chosen to represent it. Then, the overall precision P is computed by %, where C; is the

=1 i
chosen cluster for each true cluster C'T;. Similarly, the overall recall R = %, and the
j=1 J

2PR - Consider the two extreme cases again, their F-measures are near

overall F-measure F' = o

zero because one of the precision or the recall is near zero. For example, assume that there are
100, 000 objects, the correct result is 100 clusters and the largest cluster have 2,000 objects.

If each object forms an unique cluster, P = 1.0 and R = % = 0.001. Therefore, F' = 0.002.

On the other hand, if there is only one cluster which contains all objects, P = 138880 = 0.02,

and R = 1.0. Therefore, F' = 0.04.
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5.2 Correctness Verification

5.2.1 Performance Comparisons
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Figure 5.4: Overall results between CK-means and KLS.

Figure 5.4 shows the results of the experiments with KLS and its competitors. Note that
we use 2k as the number of seeds in KLS instead of k. This small modification increases the
precision of clusters found by KLS since it is hard to choose the correct seeds even a useful
heuristic method is used. Then, the fine clustering merge more than 2k clusters to k clusters.
For CK-means, we use k as the number of seeds and set the iteration of K-means as one. Since
the check of connected constraint would divide clusters into many smaller pieces of clusters,

set the number of clusters as 2k would not help. Also, in our preliminary experiments, we
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found that the number of iterations does not help the performance after checking connected
constraint, so we use one iteration in order to save computation time. For JP clustering,
the similarity threshold is set as the median of weights of edges, and the number of nearest
neighbors is set as 2 - log(|V]) in order to save the computation time.

According to Figure 5.4(a), clusters found by KLS are the best. Specifically, when the
number of clusters increases, KL.S performs much better than JP clustering and CK-means.
On the other hand, even there are forty clusters and more than 100,000 objects, KLS still
achieves above 50% correctness. Note that BINGO cannot finish the cases with k& > 20 due
to memory limit.

Figure 5.4(b) and 5.4(c) shows the corresponding value of the overall precision and recall.
The performance of the precision and the F-measure are very similar while the variation of
recall is more stable than the other measurements. With the concept of T-regions, BINGO
has better precision than CK-means and JP clustering. However, it still has worse precision
than KLS due to the selection of T" isshard: asgeneral 7’ is not reliable when the distributions
of data objects are mess. On the other hand, sirice CK-means perform good recall but very
bad precision, we know that CK-means tesulted-some/large clusters. The behind reason will
be explained in 5.2.2.

In Figure 5.4(d), the common measurement, the average relative cost compared to the
true average cost, is shown. KLS has at most double cost than the true cost; CK-means has
double cost after £ = 15 and has at most triple cost; and the worst result of JP clustering
supports the necessity of reserving attributes into two domains. Note that from Figure 5.4(d),
BINGO performs worse than CK-means, and this result is opposite to Figure 5.4(a). Figure
5.4(d) indicates that although CK-means finds clusters that are much different from the true
clusters compared to BINGO, CK-means still achieve better clusters (note that true clusters

may not be the best clusters.).
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Algorithm Name Avg. F | Avg. P | Avg. R | Avg. cost
CK-means w/o fine 0.756 0.806 0.720 22.042

CK-means 0.404 0.294 0.990 53.174
KLS w/o fine 0.673 0.778 0.598 36.864
KLS 0.705 0.618 0.841 38.967

Table 5.1: Summary of the quality of the coarse and fine clustering.
5.2.2 Comparison between Coarse and Fine Clustering

From the above experimental results, we found that CK-means is the best competitor com-
pared to KLS. We futher analyze the detailed result in each phase in this section. The average
F, P and R of eight test suits are listed in Table 5.1. “CK-means w/o fine” means the clus-
ters found by CK-means before the fine clustering phase, and “CK-means” means the clusters
found by CK-means with all three phases. “KLS w/o fine”, and “KLS” have the same mean-
ing. Although “CK-means w/o fine” has the best F-measure, it gets much worse result after
the fine clustering due to the low precision.

Figure 5.5 shows the detailed results between the coarse and fine clustering. Figure 5.5(a)
is the difference between the F-measute after the fine clustering and the one before the fine
clustering. Apparently, CK-means has worserk=measure after the fine clustering in all test
suits except kK = 5. On the other hand,, KLS has similar F-measure after the fine clustering;
when the number of clusters are small (i.e. &k < 15), the quality is improved by the fine
clustering for KLS. The difference between clustering with and without fine clustering phase
shows the usefulness of our proposed coarse clustering in KLS. In Figure 5.5(d), the difference
of average cost also indicates the same result.

The reason behind the variation of the F-measure can be understood by Figure 5.5(b) and
5.5(c). The goal of the fine clustering is to reduce the number of clusters to k, to maintain the
precision and to increase the recall simultaneously. Since fine clustering decreases the number
of clusters, the number of objects in each cluster increases. Therefore, the recall would be
increased basically. However, the increases of the recall are small compared to the decreases
of the precision for CK-means according to Figure 5.5(b) and 5.5(c). The result of decreasing

precision explains why CK-means have good recalls but bad overall results.
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Figure 5.5: Comparison between the coarse and fine clustering for CK-means and KLS.

From the above discussion, we find that CK-means performed bad because of its decreasing

precision, so what is the behind reason? Note that the clusters found by the coarse clustering
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Figure 5.6: Comparison among the running time of all algorithms.

cannot be divided in the fine clustering. The idea of fine clustering is to combine two similar
clusters which have good precision to a new larger cluster such that it can maintain a high
precision and result a higher recall. Howeyersawhen the number of clusters increases, clusters
with similar attributes in the optimizationfdoemain ihcrease, too. This results that many
objects which have similar attributes in the optimization domain but dissimilar attributes in
the geography domain are clustered. by K-means7in CK-means, and generates large number
of clusters (as shown in Figure 5.5(e)) affer.dividing the clusters which violate the connected
constraint. The large number of clusters increase the difficulty of merging clusters. Therefore,
the quality loses. Moreover, the large number of clusters also hurts the computation time as

we will see in the next section.

5.3 Time Comparison

As shown in Figure 5.6(a), BINGO is much slower than the other algorithms. Except T-
regions generation is not efficient, our revision for connected problem prevent its efficiency.
Figure 5.6(b) shows the average running time of algorithms except BINGO. Apparently, KL.S
is more efficient than the others. JP is not efficient due to the generation of SNN.

Figure 5.7 shows the detailed running time for CK-means and KLS. In Figure 5.7(a), the
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Figure 5.7: Comparison between the running time of CK-means and KLS.

execution time of the fine clustering dominates the overall execution time of CK-means. This
can be understood by Figure 5.5(e) again since the time complexity of the fine clustering is
determined by the number of clusters. On theether hand, in Figure 5.7(b), the transformation
dominates the execution time whichis the necessary ‘computation dominates the execution
time. Note that even there are more than 100,000 objects, KLS can finish in about ten

minutes.

5.4 Comparison of Initial Seeds

In order to judge the quality of the heuristic method of choosing the initial seeds by cells.
For each test case, KLS with random seeds is executed 10 times. The average values of F
P, R and costs are compared to KLS with the heuristic seeds selection. The results of all
values are highly similar, and the difference between the average F' of eight test suits is only
0.003. This implies that the heuristic method can find the seeds with the average quality.
Although it cannot increase the quality much, it still saves the execution time of repeating
the experiments with different random seeds.

Figure 5.9 shows the detailed comparison in test case 38 with k& = 40. We choose test

case 38 as the example of the detailed comparison because it has large number of objects
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Figure 5.8: Overall results between our heuristic seeds selection and random selection.

and clusters, and the average F-measures of random and heuristic seeds selections are similar.
The average values of random seeds selection and the corresponding values of heuristic seeds
selection are shown in Table 5.2. From Figure 5.9(a), heuristic selection has stable result and
higher precision, but the result of higher precision is not significant in the other test cases.
Figure 5.9(b) shows the same result. In summary, random seeds selection can achieve higher
quality sometimes, but it costs more time to compute. On the other hand, heuristic seeds
selection can achieve stable and good result generally. In large scale data, the usefulness of
heuristic seeds selection would be more significant since the time cost of one execution is very

expensive.

33



08 ¢

Value

0.2 r

Random F —+— Heuristic F
Random P —s«— Heuristic P
Random R —%— Heuristic R

06 r
0.4

> %
Value

Wﬁ‘:"x
T e
2 4 5 ] 10
Test round

(a) F-measure, precision and recall.

Random cost —+—

Heuristic cost

15
14 ¢
1.3 ¢
1.2 ¢

09 r

0.8

Test round

(b) Average cost.

Figure 5.9: Detailed results between our heunistic,seeds selection and random selection in test

case 38.

Seeds selection methods | Avg. F | Avg. P | Avg. R | Avg. cost
Random 0.536 0.438 0.694 1.123
Heuristic 0.548 0.426 0.770 1.02

Table 5.2: Result of Test case 38: comparison between random and heuristic
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Chapter 6

Conclusion

In this paper, we formulated the joint clustering problem in which a connected constraint
and the number of clusters should be specified. We proposed the algorithm K-means with
Local Search (abbreviated as KLS). Specifically, algorithm KLS consists of three phases: the
transformation phase, the coarse clustering phase,and the fine clustering phase. In the trans-
formation phase, we only consider the connected constraint and then derive the ConGraph.
Thus, in the coarse clustering phase; by exploring local search in the ConGraph with a global
priority queue, rough cluster results-are~derived:~In the fine clustering phase, these cluster
results are able to further adjust so as to'fitithe goal. Experiments were conducted and the

results show the effectiveness and efficiency of our proposed algorithm.
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