BHERETOE M EM/ THAER

A Generic Publish/Subscribe Framework for Peer-to-Peer
Environment

i A S R
B BT B

FERKBEBE L+t XA

2O OZE O O OT 8y @ R OB /3T B OAE B
A Generic Publish/Subscribe Framework for Peer-to-Peer Environment

B)'-f—'fe

A I R Student : Shih-Chiang Chien
BEHIR D REBH Advisor : Shyan-Ming Yuan
IR @ K Z
g U - - A - 0 A
B+ B X

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

June 2008

Hsinchu, Taiwan, Republic of China

FERBEA+TEFXA

RETRERTE Y /R | B

B iyt TREZET - mH

Y

ELES H o FF R AR A N Bl - eI PR A
e AR S APL BYHIES DNISG N 1 D8 R P AN AR R
IRFAEA MY B IE - [FIIRF DA FS DH 2 5 HELL ST A RT e P g 2 R SR e i 52
25 o ITERTERENY S D #-E U A AR - AR AESbe Bt — 5 i H. m] 5 HI RIS
EALCE - RFAE RIS 5 D 2SR ARG T B2 A B S s e

At FER a2 fr D B S 177 D258 55 (o FH S e R A e g
i T BN SR AP B AR A HE PR - AT Rkt s T
o ADE RS AR HE T TR UZHRE » o 7 1 A (il |~ T LR
BESRE)~ TR) B T TR AT R TR) DUSHEDRER - 1% TR iERE
FENEALAY T PR, > BeMie it Bt B Viceroy BEEHREREESIT NG E
> 3 H e Bt— (B A3 AR TR SRR T E - LEOh > T IReEE — s fiie A
FE RS SR EPHFER AR e A7 a T BEME IS » Rl FH S REAL PR RO &

FRAN AT B BERTE

A Generic Publish/Subscribe Framework for Peer-to-Peer

Environment

Student: Shih-Chiang Chien Advisor: Shyan-Ming Yuan

Institutes of Computer Science and Engineering

National Chiao-Tung University

Abstract

At present, the structured P2P algorithms have been proposed frequently.
Consequently, the P2P application developers need to learn different API semantics. It
generates additional efforts of switching to different P2P topologies. Moreover, it is
difficult for the developers to evaluate the performance of an application based on a
particular underneath P2P APIs. On the other hand, if the P2P framework can provide
reusable and comprehensive network communication components, it can expedite
developing progress. Therefore, the P2P protocols can easily accommodate to
different network environments.

In this research, a novel P2P developing framework is proposed to assist in
developing P2P applications by using various structured P2P protocols and P2P
pub/sub algorithms. We design an architecture to construct the structured P2P
functional blocks, including network communication components, P2P topology
maintenance and routing, network bootstrapping, as well as pluggable pub/sub
services. In order to demonstrate the genuineness and generality of the framework, we
provide a ring protocol, the Viceroy DHT implementation, and a simple pub/sub
algorithm. Furthermore, we generate a client application to indicate the convenience
of exchanging among different underlying networks, P2P protocols, and pub/sub

services.

Acknowledgement

W AE IR AR AR R T AR SE AR A AR TS R L e T 4y
H OISR IE R - it e EUEEH R TR 2 s S0 Hl - A=k
FUEMIRHE THAHE KRB IR » I HSERF UG TSR - BB T
il o [P =L TAR B SRR~ SRR ~ DU 2% -
HICZ A ZEa THGET A HUILTFEEERE © (EUE SR ki & hil
A SRR TG TR KRBT - IEoh - R SR B s - R
AESR R 2 52 TRPZAHIE AR AE £ BORSES - (R th R B e 1R 2
R BERELE ~ DMESASRIR ~ RoKEE K ~ BUMRSEREE RAE - AUR S E = 2E
TR EE 2) -

(ESE RGP HCURIRE BR=AR A - IS~ MRI=EE - MH
DA > AEaRE B oE FAH AR - s 7 B B = ey A
BEAh - PRt B A ~ 2SR 0 LURFT SAREFR} 95 I E: - fERER L
WFERT NIRRT N TR 2 Sy mlle > il R ANE LR Ldod T
AR —YIMER] -

PR B G R B A ACRER - R B =R 2t > I B — (2
TGRSR > 0 HAEBOREI R e it 1R300 ERrRsiy—Yl) » SRR L E)
FREEE AR o [AIBH » R EHY SRR ST » A8 HHS 2R TG TR s®
PG ELEZ RREAIRE T - ELLE R e m R P ERA A Y -

Hlﬁ

Table of Contents

ACKNOWLEDGEMENT I
TABLE OF CONTENTS 11
LIST OF FIGURES A%
LIST OF TABLES VI
1. INTRODUCTION 1
1.1. IMOTIVATION.......0eteeitieeeetteeeestrteeessseeeessseeeasseeeasssseesasssaseasssaeasssseessssseeesnsssssesssseesssssseessssseenns 2
1.2. CONTRIBUTIONS OF THIS THESIS......0eeeittteeeitreeeestreeesnreeesssseeeassssessssssesessssessesssssessssssesssseesans 4
1.3. THESIS OUTLINEuvtiiiuiieeiereeeasssieiessssesasersasasssseesssssesesssseesassssesssssssssssssessesssssessssssesssssseenns 4

2. BACKGROUND AND RELATED WORK 5
2.1. BACKGROUNDcciiitttetiuiieeeitiieeesiseeaaasteseaasseaeessssesanssesssanssasasssseesssssesessssessesssseessssseesssssseenns 5
2.1 1. StrUctured P2P INEIWOTK. iiiieiieiieienissesinsssnssnns 5

2.1.2. P2P Publish/Subscribe AIGOFItRI.cccecueeiiiuiecieiiinienienieeieeee et 7

2.2 P2P COMMON APL ...ttt e e e e e e e e e ear e e e e e e e eetaaaeeeeeeeeeannnes 8
2.3. PUBLISH/SUBSCRIBE COMMON APIooiiiiiiiiiiiiii et siti e evee e e e e eeree e e neeeeas 9
2.4. P2P PUB/SUB LIBRARY ...ioeeiiiuiiiieiiiiseeiiieeaiciieeessteessaseeessssaeesssssseeessseessssseessssseessnsseesnssens 10

3. SYSTEM ARCHITECTURE 11
3.1. OVERVIEW.........uttiiiieiteeeseiessaserteeassseesasseeessssseeasssssssensssassasassessssssesassssesssssseesssssessenssseesssssens 11
3.2. P2P PROTOCOL LLAYERcvtiiiiuiiieeeiiiiiiiieisaiiieeeasieeeeantaeesnnaeeeassseeeassseessssseessnsseessnssseesnssses 12
3.2.1. PCOF IMIETACE.eoeeeeeeeietiet ettt ettt et ettt et e e e 14

3.2.2. PEEETFACIOTY CLASS ...vvveeeeeeeieeeeeeeeeetee e eeteeestee e e staee e seveaesetaeessssseeesnseaeansseeennnes 15

3.2.3. Resource, Id, and Peerld iNIETfaCEc.couueevueiviueiniiiiiiiiieeeeesieeseeeseeeee e 15
3.2.4.IdFactory and PeerldFactory iNterface.................coccovevieviecinceinieenieeiecneecnennenne 16

3.2.5. CancellableTask interface.................cccocueveecuieiuiniiniienieiieitee e 16

3.2.6. SEFVICE INIETTACE ...ttt 16

3.3. PUB/SUB SERVICE AND APL......coooiiiiiiiiie ettt ettt e e tae e e ree e enaaaeeennneas 16
3.3.1. PUbSuUDService iNIETACEcc.cccuevuiniiiiiiieiieieeeneeeet e 17

3.3.2. PUDliSHer And SUDSCTIDETuuueueeeneniiesssssssassssssssssssssssssnnsnnnes 18

3.3.3. EventHandler iNterface.ccocoeeevuieeuieciiniienienieieet ettt 19

3.3.4. EVENE IRIETTACE ...ttt s 19

3.4. TRANSPORT LLAYERcceiuiiieiiiieeeeiiieeeieeeeteeeestreeesssseeesssaeeesssseeeasssseessssseeesssseessnssseesnsssens 20
3.4.1. CommunicationManager MMIEIfACEc.oceecuervuenveerienieiieeieeeeieeieecre e 21

II

3.5.

4.1.

4.2.

5.1.

5.2.

6.1.

S o w >

3.4.2. AdATESS INICTTACE. ...c..eeeeeeieiiiiie ettt ettt ettt e
3.4.3. ROUIEMESSAZE TNIETACEeeeneeeneeeeeieeseeeeeeeeee ettt ettt e
3.4 4. MESSAGE TNIETTACE ..ottt ettt ettt et e saee e e
BOOTSTRAP SERVICE.........ciiiiiiuiitiiieteeieiete ettt ettt

3.5.1. BOOISIrapService iNIETACE.ccueeeeeueeciieciieieiieneeeiteet et

IMPLEMENTATION DETAILS

CONTROL FLOW ..ottt s
4.1, 1. Pt BOOISIFAPPINGueeeeieeaieieieeite ettt ettt ettt et ettt ettt s bt s baesbee s
4.1.2. MeSSAZE TraNSMISSIONceeuueieeieeiiiieiieeite et eit ettt ettt ettt s e s essbaesbee s
Go1.3. PUD/SUD ACHIONS ...ttt ettt ettt ettt st st sbee s
ADDITIONAL CLASS USAGEccuiiuiiiiiiiiiiiiiiii it
4.2, 1. EFIVIFORIIONE ..ottt ettt ettt ettt ettt ettt bt et bt e sttt st e et e enbaeeabee s
B.2. 2 ADSITACEPEOT ...t ittt ettt ettt sttt sttt et e bt s baesbee s
4.2.3. ADSITACIEVERNL.....c..i ittt e s
4.2 4. NOACHANALEcouoviiieiaiieiiieieett et ettt ettt ettt s et sbaeebee s
B.2.5.TOPIC...ioueeeeait ettt ettt et et e
4.2.6. LoCAIBOOISITAPSEIVICE ...ttt ettt
4.2.7. HUPBOOISIIAPSEIVICE ...ttt s s
4.2.8. Local CommunicationMaANGEETcccocuereesiecueranineiaiiesiieiueeuennesee e saeenaeeae e

4.2.9. TCPCommunicationMaANGZETcccovueruenueenuieauieieetesieieereetesne e see e eae s

EVALUATIONS

SCENARIO DEMONSTRATIONcuoiuiiiiuiitiiinienetesieneeressensasee st ene st sre s s ene s s
5.1.1. Implementing P2P ProtocCol....................ccciieiieiieiieiiinienieieeeeeeeeeeeeeieere e
5.1.2. Implementing Pub/Sub ServiCecccccivieciimiiniiniiiieieieieeeeeeeeeere e
5.1.3. Develop P2P Pub/Sub APPLICALIONcc.coceecuiriuiniiiiiiieiieieeeeeeneene e

(00).Y157: 23 £10) NS T R

CONCLUSION AND FUTURE WORK

(@0)) 5101 (0) PR

FUTURE WORKcooiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt

APPENDIX

THE RING PROTOCOL ..ottt ettt ettt et ettt s e s
ENHANCED VICEROY PROTOCOL.......ceoiuiiiiiiiiiiiiieeiteeiie ettt ettt ettt et e
THE SIMPLE PUB/SUB PROTOCOL.......cccuttiiiiiiiiiiieeiteeiie ettt ettt et
EXAMPLE PROGRAMcooiiiiiiiiitiiiteesite ettt ettt ettt ettt ettt ettt sate e it e saaeesateesaeeenaees
L PUDLISI CLIENE ..ottt et e e e e e e e e e eaaaeaee s
I, SUDSCEIDE CLIENL ...t e e e e e e e e aaaaaee s

23

23
23
24
26
27
27
28
28
28
29
29
29
30
30

31

31
31
36
38
43

46

46
47

50

REFERENCES

v

63

List of Figures

Figure 2-1 — Common Structured P2P Topologies.ccceeviiieniieiniieiieeeieeeiieenas 6
Figure 3-1 — System Architecture OVEIVIEW.cocueevuiirieiniieniiiiecnieeieeeie e 11
Figure 3-2 — Class Diagram of P2P Protocol Layer.........c.ccccoccevviiniiniiiincnciecnene 13
Figure 3-3 — Class Diagram of Pub/Sub Service and APIL.cccccoviiiiniinnnnnn. 17
Figure 3-4 — Class Diagram of Transport Layer.cccccceceeviiniiinicnieenicniceeenene 20
Figure 3-5 — Class Diagram of BootStrap SErviceccoceevveriienecniieenecnsieeneennens 22
Figure 4-1 — Sequence Diagram of Peer Bootstrappingccceceeeveeeenieenniieenineen. 23
Figure 4-2 — Sequence Diagram of Message Routingccccceecveevieniieenecniiceneennen. 24
Figure 4-3 — Sequence Diagram of Service Callbackscccccooceeevieriiieniinicinecnnen. 25
Figure 4-4 — Sequence Diagram of Publishingcccoeoveeriiiiniiiiniiiiieiiceeeee 26
Figure 4-5 — Sequence Diagram of Subscribing............cocceeeviiiiniiiiiniiiiniieiiceeeee 27
Figure 5-1 — Relationships between Ring Protocol implementation and P2P Protocol

LAYT ettt st ittt e iresstee s be e s abeesna b eaee e smae s hbe e eeabeeesabeeenbeesabeesanaes 33
Figure 5-2 — Relationship between Viceroy DHT implementation and P2P Protocol

| IE\S QOO NS e = g 3 AEERY NSRRI 35
Figure 5-3 — Setup P2P and network environment.c...ccoccevvieenneenienneeneeenneennne. 38
Figure 5-4 — Using Pub/Sub API for Publishing..............ccccccoiviniiiiiniiniiceeee. 40
Figure 5-5 — Using Pub/Sub API for Subscribing........c...cccccoiveiiiiiniininnincieeee. 41
Figure 5-6 — P2P and Network Environment Options.ccccccevveeuieniernieenieenneennne. 42
Figure 6-1 — Integrated with OSGi platform...........ccccccecieeriinnienieniieneeeceeeeee, 49
Figure 7-1 — Concept of Simple Pub/Sub Algorithm............cccccooviieiiininiiiniineeen. 57

List of Tables

Table 2-1 — List of famous DHT schemes.ccccoociiiiiniiiniiniiiciccceece 6
Table 5-1 — Task Descriptions of Developing P2P Protocolsc..ccecceeveenienneenen. 32
Table 5-2 — Task Descriptions of Developing Pub/Sub Services...........ccecueevnieennnen. 36
Table 6-1 — Possible Usage of Send POlICYcoocueiriiiiniiiiiiiiiiiceicieeeiee e, 47
Table 7-1 — Pseudo code for the node join and lookup operation...........c.cccceevuveenneee. 50
Table 7-2 — Pseudo code of stabilization and neighbor update operation................... 51

VI

1.Introduction

Nowadays, with the computing power of PC and network bandwidth
increasing, people are willing to dispense their computing power and share
information with each others. In pure P2P network, each participant shares their
resources in order to gain benefits from other peers. By the natural of sharing in
P2P networks, the more users joining the network, the more capacity this P2P
network obtained. The scalability is based on the performance of P2P protocols, not
determined by the server capacity in traditional centralized architecture. The P2P
networks are proved to be an alternative technique in distributed information
processing [14]. In addition, the ownership of shared resources and the right to
distribute are possessed by the user in the P2P network as opposed to typical central
server system where the user grant the service provider the rights of using and
distributing resources.

In order to construct an efficient and scalable P2P network, many structured
P2P network have been proposed these days and have been verified as efficient and
fault-tolerated in large distributed environment. Most of them, e.g. Chord [33],
Pastry [31], Viceroy [16], etc., are able to route message between two peers in
O(log N) hops where there are N peers within the network. With the feature of
self-organize and failover, structured P2P networks have been widely used in file
sharing [13][25], network data storage [6], and distributed indexing [32]. There are
several research works on deploying distributed personal information portal [20]
and online auction systems [10] onto the P2P networks.

Publish/Subscribe paradigm is effective in disseminating information to

peers who are interested in. In order to apply this mechanism on the P2P network,

P2P pub/sub algorithms are designed with the consideration of both time efficiency
and transmission overhead. Efficient pub/sub algorithms are able to alleviate the
communication burden when dealing with the burst of information on a large scale
P2P network.

As investigated the research topic of structured P2P networks, however,
each P2P network was implemented under different approaches, providing various
application interfaces. A standardized development and deployment framework can
reduce the overheads of implementing P2P protocols and applications. Therefore,

developers can focus on the applications’ unique functionalities.

1.1. Motivation

In the application domain of content management system, e.g., personal
blog system, large amount of information are created and requested over the entire
user community. With the search capability, users can retrieve information which
has particular contents according to given query. As the P2P community keeps
advancing, however, the number of updating events will soon overwhelm the size
of events that human can handle. By introducing pub/sub mechanism, applications
can automatically disseminate information to the interested peers in P2P network.
Like the RSS supported on many website, the pub/sub paradigm provides the
functionality for users focusing on only the interested events. Therefore, pub/sub
mechanism is an essential feature while designing a platform for developing P2P
applications.

There are three aspects of developing a P2P Pub/Sub-related program:
application developers, P2P protocol developers, and P2P pub/sub protocol
developers. From the aspect of developing pub/sub applications, programmers

usually need to learn new APIs when changing the underlying overlay network.

2

The difference of semantics can reside in peer initialization, network construction,
and even communication mechanism; that is, implementing the same functionality
on different P2P APIs could cause code rewriting. The same situation happens in
changing pub/sub APIs. This means application would be strong coupled with P2P
and pub/sub implementations. Application developers have no chance to compare
the performance of their systems on different overlays.

® Issue la: Application developer need to learn different semantics

Jrom numerous P2P APlIs.

® Issue 1b: The cost of rewriting code is huge for testing performance

of particular application on different P2P network.

For p2p pub/sub algorithm developers, the lack of a common platform for
evaluating performance makes it hard to compare between algorithms. First,
preparing identical test case on two different p2p pub/sub systems is cumbersome.
Second, the delay of event dissemination needs to normalize due to the different
implementation of internet communication.

® Issue 2: P2P pub/sub algorithm developers need a common platform

to compare with other algorithms.

While developing a P2P algorithm, developers writing their own code
communicating with other peer through physical network connection. Each P2P
API introduces redundant code on network programming. Developers take
additional time on debugging network-related code. Without network-related code
reusing, the effort for extending deployment environment is huge.

® Issue 3a: P2P network developer write redundant code for network

communication, make it hard to deploy P2P on different physical

network environment.

® Issue 3b: A common process is needed for overlay network
initialization.

Our goal is to solve these issues mentioned above. Thus, a standardized API

and communication mechanism for P2P application development is need to be

defined.

1.2. Contributions of this thesis

In this thesis, a generic development framework for P2P applications is
proposed. With the design of multi-layers abstraction, P2P application developers
can deploy their application to different kinds of P2P overlays and physical network
environments. In additional, this framework can help developers realizing the P2P
protocols and creating value added pub/sub services. We define a general pub/sub
service SPIs which focused on deploying pub/sub mechanism over entire P2P
network. The layered design of this framework encourages that developers create
reusable components. Moreover, an execution configuration module is provided
which can externalize parameters to customize for different environment

constraints without recompiling programs.

1.3. Thesis Outline

Chapter two introduces the background knowledge and shows the previous
researches in defining common API for P2P programming and pub/sub
application. In Chapter three, a layered architecture and primary interfaces are
described in detail. The interaction between modules and the usage of components
are further described in chapter four. Chapter five demonstrates the usability of this
framework and shows the pros and cons by comparing with existing solutions. In

the end, future work and conclusion are given in section six.

4

2.Background and Related Work

This chapter covers the definition of structured P2P network and introduces
the types of pub/sub algorithm. We also describe previous research on defining
common API for P2P network and pub/sub system. The comparison between

previous research and our work will be briefly described in this chapter.

2.1. Background

2.1.1. Structured P2P Network

P2P network is a virtual network that consist an amount of peers. Each peer
links to a subset of peers on the network and communicates with each other through
a specific routing algorithm. In structured P2P network, each peer is mapped to a
peer id within a large identifier space. This identifier space defines the distance
metrics between ids. Links between peers are determined by the distance. Each
resource, such as files, is assigned a unique key from the same identifier space.
With the mapping from key and resource, the structured P2P network naturally
organizes as a distributed hash table (DHT).

In order to accommodate with scalability, structured P2P networks are
usually designed with four criteria: low degree, low diameter, greedy routing, and
robustness [28]. Many different topologies are used in structured P2P protocols and
keep peers knows only local information. These common P2P topologies are

depicted in Figure 2-1.

0.5-0.75.0.5-1.0)
4

T 0.75-1.0.0.5-1.0)

node B's virtual coordinate zone

A28

- . (c) Tori

(a) Plaxton trees (b) Ring
001 = 011
/ \\ / \
Y
~ L N

f \ \
(000 010 101 111 v/

100 «=——— 110

(e) deBruijn graphs

] 21— NIL

N pE R e e N N e RN e R e N S L
(f) Skip list
Figure 2-1 — Common Structured P2P Topologies.

The capability of DHT protocols are affect by the underlying topology.
Table 2-1 lists the famous DHT schemes with their capability and corresponding

topology.

DHT scheme Topology Diameter

Pastry, Tapstry[36], Kademlia[19] | Plaxton tree[24] O(log N)

Chord Ring O(log N)

CAN[27] Tori O(dN ")

Viceroy Butterflies O(log N)

D2B[9], Koorde[12] de Bruijn graphs O(log N)

Skip Graph[2] Skip list[26] O(log N)

Table 2-1 — List of famous DHT schemes.

2.1.2. P2P Publish/Subscribe Algorithm

Publish/Subscribe mechanism involves two roles of actor, publisher and
subscriber. Publishers generate events associated with topic or tagged with
properties. Subscribers register with interested topics or properties. Subscribers
receive only matched events. A message routing protocol determines how to
disseminate events to interested subscribers. In pub/sub messaging system,
publisher and subscribers are generally anonymous and can dynamically publish
and subscribe with given topic or properties. Publishers and subscribers are loosely
coupled, without addressing message receiver directly. The pub/sub algorithm can
be categorized into two major models [29]:

A. Topic-based model

In topic based model, publishers and subscribers are associated with a
channel by given topic name. Subscriber can only filtering events by topic name,
which are considered less expressive. Therefore, a hierarchical topic space is used
to provide more expressiveness. Topics are organized in a hierarchical structure, i.e.,
a topic can be defined as a sub-topic. An event associated with a particular topic is
conceptually associated with its super-topic. A subscriber can receive both events
associate with interested topics and its sub-topics.

B. Content-based model

In this model, an event is published with several properties denoted.
Subscribers register their interested values of certain properties. When an event is
disseminated over P2P network, a distributed filtering mechanism is used to limit
transmission to the set of interested subscribers.

Establishing pub/sub mechanism on P2P network provides additional

scalability and load balancing. Moreover, the single point failure in traditional

7

server-based pub/sub system is reduced by the fail-over mechanism provided in the
self-organized P2P network. In previous study, two design patterns are identified to
implement P2P pub/sub algorithms [3]. In the Store-Sub paradigm, the subscribers
store their subscriptions in the DHT network. While publishers publish an event, all
subscribers are retrieved and the event can then be disseminated to each of them.
On the other hand, the Store-Pub paradigm aggregates publisher into the distributed
directory based on the previous publishing events. Publishers announce their
existence and the DHT network maintains the statistical profile of publishing

history. These two design patterns accommodate to different pub/sub scenarios.

2.2. P2P Common API

To facilitate independent innovations in P2P protocols, services, and
applications, Debak et al. [7] propose a common API for structured overlays.
Following research revises this API with the request-response communication
pattern [5]. Moreover, a conceptual model for structured P2P network is proposed
by Aberer et al. [1] to provide interoperability between decentralized overlay
networks. These researches focus on providing a standardizing P2P network API to
application developers.

JXTA [34] is a platform for peer-to-peer computing, proposed by open
source community. The JXTA protocols are a set of six protocols that standardize
the behaviors between peers. In order to provide interoperability in different
language and network environment, JXTA protocol uses XML messages and the
super-peer architecture. The index information is also stored within the super-peers,
providing reliability and supporting heterogeneous nodes which installed different
set of services. JXTA achieves a great success as a P2P application platform, but

offers no high level support for structured P2P topology.

8

2.3. Publish/Subscribe Common API

Java Message Service (JMS) [35] is a part of standard service that included
in Java EE platform. JMS defines the common set of interface and associated
semantics. By JMS provider implementing the standard API, developers can easily
deploy programs with different messaging server. JMS provide two messaging
domain:

A. Point-to-Point Domain: This messaging domain is built on the concept
of message queue. Each message has only one consumer. The
point-to-point messaging is used when every message must be
processed successfully by one consumer.

B. Publish/Subscribe Domain: This domain is defined with topic-based
model. In addition, JMS API defines an SQL-like selection language
and provides a built-in facility for supporting application-defined
property values.

However, the JMS API is a proprietary specification for Java to
intercommunication with messaging server. In order to provide a lightweight API,
Pietzuch et al. [23] define a simplified abstraction for pub/sub system. This
common API uses XML-RPC to describe the interaction, preserving the
interoperability with other languages and platforms. With little efforts, this API
shows that many pub/sub systems can be brought to compliance. These pub/sub
APIs assumed that both publisher and subscriber are clients to a messaging service.

Therefore, an auxiliary server is required for delivering messages.

2.4. P2P Pub/Sub Library

Developing the P2P routing protocols and pub/sub systems is cumbersome
task requiring sophisticated testing on scalability and reliability. P2P application
developers tend to implement their system using a P2P library. FreePastry [22] is an
open source P2P library which provides pub/sub functionality. The FreePastry
implements the Pastry network routing protocol intended for deployment in the
Internet. Based on the Pastry network, additional functionalities are built, such as
pub/sub system and distributed storage. The topic-based pub/sub system supported
in FreePastry is Scribe system [4]. Moreover, with the design of peer factory,
application can be simulate/test in local computer without modifying program

(other than the initiation codes).

10

3.System Architecture

In this chapter, we briefly introduce our system architecture. According to
the issues described in chapter one, our system needs to provide sufficient
abstraction to cover the common functionalities in P2P routing protocol and
pub/sub protocol. The following sections will point out how we achieve the goal of

design a general and flexible development framework.

3.1. Overview

Previous research of common P2P API shows the common functionality of
structured P2P networks. Inspired by FreePastry and PeerSim [18], we further
extend the P2P API by abstracting the physical network communication from P2P
protocols and introduce additional bootstrapping facility. A standard pub/sub API is
designed to accommodate with heterogeneous pub/sub model in pure P2P

networks.

Client Application

PNy
get boot peer @publish!subscribe

Bootstrap
_— o
Service

access

user-defined Pub/Sub AP

service

trigger actions

2 I
fe
2 o E d Pluggable Service Pub/Sub Service
c W .
() 9 <> route message/monitor topology @
= X
W - E—— P2P Protocol
g send!retrieve message

—_— Transport Layer

Figure 3-1 — System Architecture Overview.

11

P2P Applications retrieve a live peer in the P2P network through Bootstrap
Service. This live peer is used to initiate the join operation. Application can directly
access the P2P Protocol Layer for message routing and performing lookup
operation. By registering Pub/Sub Service to local peer, applications use Pub/Sub
API to do event publication and subscription. P2P Protocol Layer delegates the
physical network transmission to Transport Layer. Environment module loads

external parameters from configuration file.

3.2. P2P Protocol Layer

This is the core layer of performing structured P2P functionalities. In P2P
Protocol Layer, we propose an object model to describe the relationships within
structured P2P network components. This object model consists of the interfaces of
common P2P functionalities, peer initialization, and constraints of generating
topology. By implementing these interfaces, P2P network library developers are
able to create a particular routing protocol.

Peer exposes the common API for general purpose P2P network accessing.
Each Peer associates with a PeerId mapping to identifier space and a
CommunicationManager for network accessing. The identifier space contains
Id for the general key to any Resource and subclass PeerId for identifying
peers. NodeHandle is a peer reference to be used for remote peer communication
and topology maintenance.

We use Abstract Factory pattern to standardize the process of id creation
and peer initialization. PeerFactory and Peer IdFactory define the interface
for create peer instance and assign a unique peer identifier. IdFactory consists

of the methods generating the key for resources.

12

The Service interface is defined for create user-defined application that
can monitor the activities of P2P network. In order to achieve the goal of define
pluggable pub/sub service, we introduce the Service interface that can receive
certain events while a message arrived and topology changed. With the service
registration mechanism, developers are free to implement additional functionalities

without polluting the code of P2P protocol.

=<interfaces=
IdFactory

+ cragtelciresowrce | Resoures) [id
+ generateRanciomic) o

+ createicisting - Sting) (T

+ craateicibarray - bytelp o PeerldFactory
+ bulldicFramStingliasing - Sting) | fd

=<interface==

+ geheratePeeticl) | Peerid

PeerFactory
==interface==
Resource + createPeer)) : Peer
+ createPeer(pid : Peerld) : Peer
‘T‘ + getCommunicationManager] . CommunicationManager
=zintarfacas== =<interface== J
Id - Peerid
+ distance(dostid | id) | doubie
ssinterface== HodeHandle
Paear
- i Peerld

+ getPeeridl) - Pearld - address Address
+ getCommunicalionManager]) | CommunicationManager + getPeardn Peerld
+ getl ocaiHandlel) | NodeHandle + getﬁ\ddrescéﬁ - pddress
+ measageReceivedinm - RowtelMessage) | vold ’

+ iaJoined) | booiean

+ IsResponsibiaForid Id) | hooiean

+ joinfbootPeer | ModeHandla) : vaid

+ jeave) | vold

+ jookupiic | id) | NodeH andie

+ rauteric i, mag Message, hint - ModeHandle) » vold
+ gethelghborSelinurm 2 inf) - Set ccinterfacass

+ getReplicationSel(id | Id, maxRani | inf) | SoredsSet

+ localLookup(icl - fc, num - Int safe : boolean) ; SortedSet Cancellablefask
+ acheduleMessage]ic id, mag - Message, delay | int, period :ind) : CancellabieTask
+ seheduleMessageid Id, mag - Message, deigy . Inf) - CancelfabieTasi

+ register{senice | Senvical | void

+ getSenicername | String) @ Sewice

+ getdiiSenices]) Colfection

+ isReady] | booiean

+canceld ;void
+isCancelled void

Figure 3-2 — Class Diagram of P2P Protocol Layer

13

3.2.1. Peer interface

The method defined in Peer interface can be categorized in three groups of
operations. The first group accesses basic attributes and status.

public PeerId getPeerId();

public CommunicationManager getCommunicationManager () ;
public NodeHandle getLocalHandle();

public boolean isJoined();

public boolean isReady () ;

The getLocalHandle () operation are used to create a transferable peer
reference that represents current node. The method isJoined is used for
determining if the peer is in a correct state to perform P2P functions. The
isReady method determines if the peer is ready to process message received from
transport layer.

The second group defines the common P2P API. Developers use these
methods to perform message routing and to explorer P2P topology.

public void join(NodeHandle bootPeer);

public void leave();

public NodeHandle lookup (Id id);

public void route(Id id, Message msg, NodeHandle hint);

public boolean isResponsibleFor (Id id);

public CancellableTask scheduleMessage (Id id, Message msg, long delay);
public CancellableTask scheduleMessage(Id id, Message msg, long delay,

long period);

With the join and leave operations, peers can either participate or leave the
network. After successfully joining a P2P network, the return value of isJoined
should be always true. The scheduleMessage methods are used to perform
asynchronous messaging. Developer can use these functions to establish network

stabilization procedure.

14

The third group is used for registering user-defined services.

public void register (Service service);
public Service getService(String serviceName);

public Collection<Service> getAllServices();

Arbitrary number of services can be registered in one peer. Each service is
identified with given service name. The two getter functions, getService and
getAllServices, are primarily used in routing service specific message and

notify the event of topology changing.

3.2.2. PeerFactory class

PeerFactory provides the standard API for creating a new peer and for
restoring peer with existing peer id. Peer initialization is hidden behind the
implementation of PeerFactory. The physical network module must be determined
while constructing an instance of PeerFactory. All peers created from this

factory are registered to the same network module for further communication.

3.2.3. Resource, Id, and Peerld interface

Resource is a marker interface, denotes a class of object that can be
distributed across the P2P network. By extending java.io.Serializable
interface, resources can naturally be transferred over the network. Id represents the
identifier space, with a distance function defined. The peer identifiers can be a sub
space of identifier space. Thus, PeerId is a subclass of Id, represents the

identifier of each peer.

15

3.2.4. IdFactory and PeerldFactory interface

These two factory interface are in control of generating and computing id
for distributable resources. Despite of invoking constructor directly, using factory

methods provides standard interfaces for creating id.

3.2.5. CancellableTask interface

This interface represents an asynchronous message routing task and isolates
the implementation of job scheduling. While using the functionality of message
scheduling, CancellableTask provides the functionality to peek the status of

asynchronous task and to interrupt it.

3.2.6. Service interface

A service is a plug-in for establishing additional protocols on top of existing
P2P networks. This interface defines callback functions for processing message
routing and handling. In addition, the topology changing events of peers are
propagated to installed services. With topology awareness, services are able to
implement fail-over mechanism without periodically polling the information of

neighborhoods.

3.3. Pub/Sub Service and API

This module provides a light-weight API for executing pub/sub related task.
Publisher and Subscriber define the common pub/sub API that can connect
with arbitrary pub/sub service. Each Publisher and Subscriber is associated

with one topic.

16

The PubSubService is a subclass of Service that defines the SPI
needed for implementing P2P pub/sub algorithms. PubSubService receives the
actions from pub/sub applications via Publisher and Subscriber. In order to
accommodate to both topic-based model and content-based mode, the pub/sub API
is designed with topic-based model and additional selector language like the one
used in JMS for attribute filtering. The content-based model is also supported by
introducing a wildcard topic. Pub/sub client program receives interested event via

registering EventHandler.

==interface==

==interface== Service
Peer
+ getServiceName() | String
+ register(service : Service) - void + forwardirm | Routelessage) . booiean
+ getSendce(name : String) : Service + dlefiverfdiesticl | Id, mag - Message) | void
+ getAliSenvices)) : Collaction + updatelhandle | NodeHandbe, Isdain booiean) | void

+ setHandierthandier : Peel) | void

ﬁlk

==interface==

PubSubService Topic

- name : String
+ gagPubiisher(nubiisher | Publishen | void -id:1d

+ remnovePubliisharpublisher | Publishel) | void
+ reguestPublishipublisher | Publisher, event | Evend) | void
+ aadSubscibensubscrber | Subscribey) | void

+ getTopickamed) : String
+ getTopicldd : 1d

+ remnoveSubscibersubscriber | Subscriber | void

| T
|
Subscriber

Publisher

- topic : Topic
- service | PubSubService
- selector: String

- tapic : Tapic
- gervice : PubSubService

+ getTopic() : Topic

+ publish(event : Events : vaid + getTopicl . Topic

+ getSelectard) : String

+closeq :void + unsubscribed) ;vaid
+ setBventHandlerthandler : EventHandler) - vaid
+ notifyievent : Event) - vaid
==interface=» i
Event
==interface==

+ getSourceld(key : String) : Peerld === EventHandier

+ getAttribute) | Ohject

+ getAttributekey | String, value ; Object) | void + anFventitopic - Topic, event - Event) : void

Figure 3-3 — Class Diagram of Pub/Sub Service and APIL.

3.3.1. PubSubService interface

The PubSubService interface extends the Service interface with

special pub/sub related functions. According to Bender’s work [3], both Store-Pub

17

and Store-Sub patterns can be used in implementing pub/sub services. Therefore,
we define five common operations for accommodating these two approaches:

public void addPublihser (Publisher publisher);
public void removePublisher (Publisher publisher);
public void addSubscriber (Subscriber subscriber);
public void removeSubscriber (Subscriber subscriber);

public void requestPublish (Publisher publisher, Event event);

These add/remove methods are invoked while publishers and subscribers
are joined or left. The P2P pub/sub service providers implement these methods to
maintain the information of publishing and subscribing in the P2P network. The
requestPublish method is invoked while a publisher requests for event

disseminating.

3.3.2. Publisher and Subscriber

Developers use Publisher and Subscriber to access pub/sub systems.
Publisher and Subscriber are both bind with an instance of PubSubService at
runtime. While publishing an event, Publisher delegates this operation to the
binding pub/sub service. For adapting to various pub/sub system implementations,
Publishers are required invoking close method to explicitly terminate the publishing
session.

In order to adapt both topic-based model and content-based model, we
provide two methods to describe users’ subscription: topic and attribute selector.
Pub/sub services can provide their own selector string format for further attribute

filtering or supporting content-based subscribing.

18

3.3.3. EventHandler interface

EventHandler defines a callback function that applications can be notify of
the arrival of events:

public void onEvent (Topic topic, Evnet event);

The onEvent method receives the coming event and the topic belongs to as
parameters. Application-specified tasks are defined within this function. With topic
information and user-defined event properties, developers can aggregate the event

processing in single callback.

3.3.4. Event interface

This interface defines the basic operations which can retrieve general
information, such as source id and attributed. The attributes of event can be used in
content-based pub/sub algorithm and event filtering mechanism. The following
methods are defined in this interface:

public PeerId getSourcelId();

public Object getAttribute (String key);

public int getIntAttribute(String key);

public long getLongAttribute (String key);

public float getFloatAttribute(String key);

public double getDoubleAttribute (String key);
public void setAttribute(String key, Object obj);
public void setIntAttribute(String key, int 1i);
public void setLongAttribute (String key, long 1);
public void setFloatAttribute (String key, float f);

public void setDoubleAttribute(String key, double d);

19

3.4. Transport Layer

The transport layer encapsulates the detail of resolving physical address and
establishing connection. The CommunicationManager is the representative of
physical network infrastructure. Through the abstraction of network
communication, P2P protocol can easily deploy on different network environment.
In our design, peers can register to one single instance of
CommunicationManager, reducing the overhead of activating multiple P2P
networks. CommunicationManager uses Address to establish network
connection in order to perform message transmission. Peers communicate with
each other by sending message. Message interface defines the essential
attributes for determine the source peer and the message handler. Figure 3-4 shows

the relationship within transport layer.

=<interface==
Peerid

==interface== ¢

fd =zinterface==
+ dlistance{desticl - i) * couble Peer HodeHandle
+ getCommunicationanager(| CommunicationManager -id : Peerld
+ messageReceivad(nm | RouteMeassage) | vold - address - Address
zeipterface== + routefid Id, mag - Message, hint: ModeHandle) © vaid
Message + getPeerld() : Peerld
+ getaddress () Address
+ getSourceld] - Peerld

+ getServicettame() - Sting |

=<interface==
Communication\fanager

=<interface==

Routelfessage — ==interface==
: e Address
+ gethextHon) - NodeHandle : ??O.r:;f(gnxjdoufem’essage) el
+ getDestinationid) - id)

+ registarPesipest | Peay) © Address

* gelllessage() - Message + removeipest | Peay) vold

Figure 3-4 — Class Diagram of Transport Layer.

20

3.4.1. CommunicationManager interface

The CommunicationManager contains methods handling message
transmission. Peers retrieve the physical address by registering themselves to
CommunicationManager and detach from network by remove itself from
CommunicationManager. The close operation is used for cleaning up
resources, such as network connection and listening port. Through the send
operation, messages can be sent with destination id and next hop information. The
implementers of the CommunicationManager interface are responsible for

resolving network address and establishing connections.

3.4.2. Address interface

This interface denotes the real address that one can use to communicate
through underlying network environment. Each implementation of
CommunicationManager is responsible for providing the physical address,

which implements the Address interface.

3.4.3. RouteMessage interface

RouteMessage encapsulates the required information for transport
message between sites. The message stores the content that needs to be transferred.
The message receiver is designated as the peer responsible for destination id. P2P

protocol and service specified the next hop for message routing.

3.4.4. Message interface

In our framework, peers are communicated with each other by messaging.

The Message interface represents the information that exchanged over P2P

21

network. The peer id of message source is able to retrieve from message. With
service name specified, a user-defined service can be designated as the handler of

arriving message.

3.5. Bootstrap Service

In order to join an existing overlay network, peers must know a live peer on
that network. The bootstrap service provides a general interface that can adapt to

different service implementations.

==interface==
Client Application |- _ _ - BoolsirapService
+ getBootstrapperrequestar | ModeHandla) & ModeH andis
Eoot Serverd - ConcreteBootstrapService1 ConcreteBoostrapService2 N Boot Server?

Figure 3-5 — Class Diagram of Bootstrap Service

3.5.1. BootstrapService interface

The class BootstrapService is a fagade to external bootstrap service
instance. The getBootstrapper method encapsulates the communication
protocol between client and bootstrap server. The parameter of
getBootstrapper method is the self reference of requesting peer. Bootstrap
server can then take the request information to select a nearest boot peer for better
join performance, or to promote requester as a boot peer while deploying a novel

P2P network.

22

4.Implementation Details

This section describes the interaction between components that mentioned
in chapter 4, including: peer bootstrapping, pub/sub actions, and message
processing. The detail control flow of this framework and the usage of each class

are covered in following sections.

4.1. Control Flow

4.1.1. Peer Bootstrapping

While performing network bootstrapping, an external boot server is required
to retrieve the P2P network information for the nodes outside. Application initiates
a BootstrapService instance that implements particular communication protocol for
boot server. An active peer is returned by invoking getBootstrapper method.

Through the active node, join request can be dispersed among peers in the network.

application :Peer hoot server

I
| ==Create==
|

1: create BootstrapServiced >| - BootstrapService

2.1 request boot

return active peer

Figure 4-1 — Sequence Diagram of Peer Bootstrapping

23

4.1.2. Message Transmission

When the route operation has been invoked, the route message is prepared
and is sent by CommunicationManager. According to the next hop address,
route message can be transferred to the CommunicationManager at remote site.
CommunicationManager receives the route message and then notify the
handle peer using the messageReceived callback. The destination id will be
checked first, see if current peer is responsible for the arriving message. If this
arriving message doesn’t specify any service handler, peer will directly forward this
message to next hop, using route function. Otherwise, the handleMessage

method will take over this message.

application local node : Peer localhar remateiar
T T Communicationhanager Communicationmanager
| 1: routed) | !
I : |
1.1 gendd

m 1.1.1: transfer route message()

I

I

I

| 2: rout ived
2.1:messageReceived]) ,JL-I\ : route message arrived)

I
211 routeq jzj A1 farward route messaged

< _________

L
I

—

| 21 messageReceived() 3 route message arrived()

I

I

|

I
3.1.1: handleMessaged

-

Figure 4-2 — Sequence Diagram of Message Routing

I
I
I
I
I
I
I

If the message is intended for processing by designate service, the control

will hand over to the specified service. The following action is decided whether

24

current peer is the destination or not. The forward function is invoked to
determine the next hop. The permission of forwarding current message can be
decided by the return value of forward method. While message is delivered to its
destination, peer will invoke the deliver method of corresponding service

instance.

- Bervice - Peer CCommunicationmManager

| 1. messageReceivedd

I
|
1.1 getServicel) u
|
|
|
|
|

1.2 forwardd ==

|J_-|f _______ = 1.3 zendd
PR "]

| 2 messageReceived])

|
|
|
2.1 getService(LI
|
|
|
|
|
|
|
|
|
|
|
|
|
i

™

.é__l

I\

2.2 deliverd

3 topology changed

3.1 updated E

Figure 4-3 — Sequence Diagram of Service Callbacks

G-

The update method will be invoked by the P2P protocol developer when
the topology is changed. Services can perform data migration or backup whether a

node is joined or not.

25

4.1.3. Pub/Sub Actions

When an instance of Publisher is created, the addPublisher
function will be triggered and pub/sub service can then perform publisher join
operation. While an event is published through associated Publisher, the pub/sub
service will invoke the requestPublish method. This event will then be
disseminated on the network according to the pub/sub algorithm implemented in
the associated pub/sub service. The Publisher class also provides a close

function that explicitly notifies the leave of a publisher.

application s PubhSuhService - Peear

| ==creates=
| 1: nesww Publisherd

I
I
- Puhlisher :
I

1.1: addPublizherd
m 1.1.1: send publisher joind
e —

|
|
|
|
|
|

e — — — | u
i | | |
| : | |
| 2 publish{y | |
2.1: requestPublish) _ | I
m 211 send event) |

ke — — — ————— I u
i | | |
| : | |
| 3l | |
-tlosed 3.1 removePublisherd |
jS.I 2 send publisher leaved .
S |
|
|
|
|

———d

Figure 4-4 — Sequence Diagram of Publishing

The subscription is sent while application creates a new instance of
Subscriber via the addSubscriber method. In this framework, the event

retrieving is implemented in event-driven fashion. With event handler being

26

specified, application will be notified when an event is arrived. To revoke
subscription, the unsubscribe method is invoked and pub/sub service will send

out the request of unsubscribing.

Application :PubSubService - Peer

| ==creates==
| 1: new Subscriberd

- Subscriber

|
|
|
1.1 addSuhscriber) |

1.1.1: send subscription)
A gl

| ==creates=
| 2: create hanlder

m
=
[a)
=
=
T
@
=
o
o
=

4 event arriva

4.1 notifyd

L

A unsuhbscribe
0 2.1 removeSubscriberd

=

A.1.1: send unsubscription()

——a 0 = —— — =~ —— —

Figure 4-5 — Sequence Diagram of Subscribing

4.2. Additional Class Usage

4.2.1. Environment

This class setups the execution context for initializing components. It also

provides utilities for externalizing parameters from configuration files and plain

27

code. The configuration file format is the same as of Java properties file, contains

simply lines of name-value pairs.

4.2.2. AbstractPeer

This abstract class implements the Peer interface, provides default work
flow of message routing as that is listed in section 4.1.2. By using JavaSE 5.0
concurrency package, we provide the implementation of the scheduleMessage
methods. The AbstractPeer also provide additional scheduleTask methods that
can register tasks which run asynchronously or periodically. The join and leave
operations are override in this class for deferring scheduled message and task until
node joined, and provide a joinImpl method for protocol developers
implementing the core join algorithm. The P2P protocol developers should extend

this class to create their own protocol implementations.

4.2.3. AbstractEvent

We provide the implementation of the Event interface for accessing basic
attributes such as event source and custom properties. Application developers can

extend this abstract class and create their application specific event type.

4.2.4.NodeHandle

NodeHandle represents the peer reference and contains information that can
uniquely identify and connect to certain peer, including peer id and physical
address. This class is a distributable resource, which implements the Resource

interface.

28

4.2.5. Topic

The Topic object is used to represent the associating channel of publishers
and subscribers. Each topic is identified with a topic name. In order to isolate the
event topic from particular identifier space, this class provides two constructors for
properly generating corresponding topic key.

public Topic(IdFactory factory, String topicName);

public Topic(Id id, String topicName) ;
The application developers formally pass an instance of IdFactory as a
parameter in order to generate a valid hash key from given topic name in target
identifier space. For debugging convenience, an additional constructor is provided

which directly specifies the corresponding topic id.

4.2.6. LocalBootstrapService

The LocalBootStrapService is used in bootstrapping P2P nodes on single
VM. This bootstrap service requires no external boot server. This class is a utility

for testing applications without deploy additional service.

4.2.7. HttpBootstrapService

We provide a HTTP-based boot server and the HttpBootstrapService
cooperated with that allow peers retrieve bootstrapping information from network.
The URL of boot server can be specified in Environment configurations. The peer
reference of requesting peer is serialized and is encoded in Base64 code format,
which can be append in the HTTP Post request body. The boot server accepts

additional domain parameter that can differentiate boot request from different P2P

29

network. By the nature of HTTP protocol, developers can adapt to different boot

server implementation, as long as the server obey the request message format.

4.2.8. LocalCommunicationManager

Peers that setup in the same VM environment can be addressed using
LocalCommunicationManager. This communication manager forces messages sent
in sequential order, it can be used in protocol simulation and debugging. Since both
message source and destination are resident in the same virtual machine, the I/O
exception will not occur during message transmission. This component is useful in

early stage of development process.

4.2.9. TCPCommunicationManager

The TCPCommunicationManager allows message transmission through
TCP/IP network. The address create by TCPCommunicationManager contains the
information of IP address and port are listened, which allows peer startup on
different port. This component has a configurable size of thread pool used for

consuming incoming message.

30

5.Evaluations

This chapter starts with how to develop reusable components for P2P

network and flexible pub/sub application through the framework we proposed. Two

P2P protocols and A P2P pub/sub algorithm are used in order to present the design

flow from pseudo codes to correctly executable programs. Section 5.2 gives a

detailed comparison with previous researches and describes the pros and cons of

this framework.

5.1. Scenario Demonstration

5.1.1. Implementing P2P Protocol

The fundamental elements of a structured P2P protocol consist in defining

overall network structure, basic P2P operations, and fail-over mechanisms. The

following table lists the tasks for implementing P2P protocol using our framework.

Task

Remarks

define id space

Create corresponding Td and PeerId class, which define
the distance function. Implement IdFactory and

PeerIdFactory for creating identifier.

define topology

Implement Peer interface with routing table information.

Determine the neighbor set and replication set.

peer initialization

Define externalized parameter name and type for
environment configuration. Implement PeerFactory for

creating peers.

join operation

Define message format of join request and response.
Implement associated action in joinImpl method and
provide corresponding message handling procedures in
handleMessage method. Change peer status after join

operation finished.

31

Define message format of lookup request and response.
Implement route and localLookup method for
lookup operation | determine routing path. Implement associated action in
handleMessage method. Define request time out

mechanism to prevent thread locking.

_ Define leave request format, carrying the information of
leave operation .
topology correction.

Managing periodical probing task using

o scheduleMessage method, scheduleTask method
stabilization
and CancellableTask class. Should be tolerated on

every possible exception.

Table 5-1 — Task Descriptions of Developing P2P Protocols

Here we present two reference implementations that show how to
implement a P2P protocol. First, we implement Ring Protocol, which is a
simplified version of Chord. Like Chord, Ring Protocol maps both peers and
resources in to an m-bits, ordered identifier circle. Each peer in Ring Protocol
maintains the link to its predecessor, successor, and K random peers on the network.
The details of Ring Protocol are described in Appendix A.

RingIdFactory and RingPeerIdFactory are created using
MD5/SHA-1 hash algorithm to produce corresponding RingId and
RingPeerId. Because both type of identifier mapping to the same id space,
RingPeerld is simply a subclass of the Ringld class. A NeighborTable is
introduced to manage the information of random neighbor table, which provides

corresponding methods to refresh/retrieve the neighbors’ status.

32

==interface== ==interface==
fdFactory PeerldFactory
AN

==interfaces== <]_‘
Id

% ==interface==
Peerid

1= | T

==intetface==
FPeer

N

PeerFactory

i AbstractPear
RingldFactory RingPeerldFactory

Ringld - RingPeerld

|
HeighborTable H RingPeer RingPeerFactory

Figure 5-1 — Relationships between Ring Protocol implementation and P2P Protocol Layer

In order to implement the join operation, we directly send out a join request
to boot peer that search for the successor. When the lookup response is arrived, the
joining peer can setup successor and predecessor. The random neighbor table can
also be filled up according to the response message. While peer leaving, the
predecessor is notified with successor correction information. The predecessor of
leaving peer can then inform its new successor for further topology repairing.

The lookup operation is implemented in recursive way. The lookup request
is forward to the closest neighbor until the successor of current peer is the possible
handler for the certain id. The entire message flow involves lookup, route,
localLookup, and handleMessage method. The locallLookup method
determines the closest neighbor with the information about current neighborhoods.

The route method compacts lookup request and routing information into a

33

RouteMessage, delegate the message transmission to communication manager. In
handleMessage method, the lookup request is examined if the request is reach
the correct destination. A lookup response will be sent to the requester, or a fail
occurs while the request is time out.

The stabilization process is established by using scheduleTask methods.
A periodical message sending task is registered that send notification to its
successor (if existing), and the successor reports its predecessor as response. Any
inconsistency of ring topology will be correct during the request-response cycle.
The neighbor table updating task also utilizes message scheduling to ping each peer,
the table entry is removed if exception occurred in message transmission.

The second protocol we used is the Viceroy DHT (details present in
Appendix B) with topology stabilization enhanced. In the design of Viceroy DHT,
both peers and resources are mapping to the interval of real numbers between the
interval of [0, 1). The ViceroyId class represents a valid identifier and defines
the distance function. A ViceroyPeer maintains additional peer status, such as
level, seven out-bound links and all remote links. By defining the
ViceroyIdFactory and ViceroyPeerFactory, developers can adapt their

application to Viceroy DHT.

34

==interface=»= 1 ==interface==
IdFactory PeerldFactory
T

==interface== < H

id [

i ==interface==
Pearid

%I AN

==interface==
Peer

i

| AbstraciPear

PeerFactory

VicermddFactory £ ViceroyPeerFactory

\el Vicerowid VicermPeer

Figure 5-2 — Relationship between Viceroy DHT implementation and P2P Protocol Layer

Within the handleMessage method, each arriving message is delegated
to individual processing functions. The join operation sends a JoinMessage out
to find the correct joining position on the P2P network through the boot peer. Once
the join operation fails to complete within the timeout, peer will start a new
network and join as the first peer in this network. Peers send a LeaveMessage to
its successor to notify the change of topology.

The route method implements the greedy routing algorithm via the
localLookup method determing the next hop. The lookup operation involves
two messages, LookupMessage and LookupAckMessage, to discover the
handle peer and notify the result. By using the lookup operation, each Viceroy peer
can then forward the LevelLookupMessage to complete the level lookup
operation. If these two lookup operation do not finish before timeout, the lookup

method will be interrupted and will throw an exception.

35

By using sheduleTask method, the periodical stabilization and probing
tasks are implemented. If the peer status is incorrect, a series of actions for
topology reconstruction will be triggered. For determing the correctness of inbound
connections, a random remote peer will be chosen and a InboundValidateMessage

will be sent to see if the remote peer still holds the link.

5.1.2. Implementing Pub/Sub Service

The P2P pub/sub service providers need to implement the
PubSubService interface to deploy their pub/sub algorithm in P2P network
using our framework. Two desgin patterns of developing a P2P pub/sub system are
identified. The detail of implementing P2P pub/sub services is lists the following

table:

Store-Sub Store-Pub

addPublisher N/A Maintain Publisher

removePublisher N/A Structure

requestPublish Event Dissemination

addSubscriber Maintain Subscriber

removeSubscriber Structure

Table 5-2 — Task Descriptions of Developing Pub/Sub Services

A simple topic-based pub/sub algorithm is used to demonstrate the flexible
design of the pluggable pub/sub service. The simple pub/sub protocol maps each
topic to a hash key. The topic handler is dynamically assigned to the peer that is
responsible for the hash key. Topic handler receives the event from publisher and
notifies every subscriber currently interested in. Appendix C shows the protocol in

details.

36

We create a class named SimplePubSubService that implement this simple
pub/sub protocol. Since only subscribers are need to @ stored,
SimplePubSubService simply ignores the action of publisher joining/leave by
leaving both addPublisher and removePublisher method empty.
Subscribers are stored in local service instance and a subscription message is sent
to topic handler while a new subscriber initiated. The handling peer stores the
subscriptions with corresponding subscribing peer and interested topic for later
notification process.

When publishers send out events, the SimplePubSubService send out
an event-publishing message to the topic handler. Once the topic handler received
the publish request, it lookups all subscribers that interested in the same topic and
send out the event-notification message to each one of them. Each event
notification will be delivered to subscribers and corresponding event handler will
then be triggered.

Our framework not only supports topic-based model, but also
accommodates content-based model. There are two approaches to implementing
content-based pub/sub algorithms. First, by introducing a wildcard topic, publishers
and subscribers discard the topic information. The subscription is described only
using selector string, which represents the user’s interests. Second, the topic can be
treated as a special attribute. Events which published by the publisher associated
with specific topic are all associate with the same attribute value. By using these
two approaches, applications can access content-based pub/sub system via our

Pub/Sub APL

37

5.1.3. Develop P2P Pub/Sub Application

We introduce how to create an application as a client accessing P2P pub/sub
service via our framework. There are five steps to initialize the P2P network
environment: (1) load configurations, (2) setup network environment, (3) setup P2P
protocol, (4) setup services, (5) join to P2P network. Tasks in each step are

described in Figure 5-3.

Load

Configurations [S Create Environment

Setup Network

e — Create CommunicationManager

Setup P2P Create IdFactory
Protocol Create PeerFactory

Create Service

Setup Services Eame . . .
i Register Service to Handling Peer

Create BootstrapService

Join to P2P
Network Retrieve Boot Peer, then Join

Figure 5-3 — Setup P2P and network environment.

In order to participate in an existed network, we need to prepare the
execution environment and peer initializer first. The following code snippet

demonstrates how to setup Ring Protocol on TCP/IP network environment:

//determine underlying transportation mechanism
Environment env = new Environment (new File(“example.cfg”));

CommunicationManager layer = new TCPCommunicationManager (env) ;
//determine p2p network type and id type
IdFactory idFactory = new RingIdFactory(env);

PeerFactory factory = new RingPeerFactory(idFactory, layer);

//peer initailization

38

Peer peer = factory.createPeer();

PubSubService service = new SimplePubSubService();

peer.register (service);

The Environment object can create or load external parameters from

properties file. Here we use TCP connection and Ring Protocol as our underlying

network transmission and P2P network topology. By using RingIdFactory and

RingPeerFactory, we are able to create a new peer. The pub/sub service

plug-in is also register to the new created peer at this step. After peer successfully

initialized, we use BootstrapService to connect to arbitrary boot server and

retrieve a valid boot peer:

//connect to http boot server

BootstrapService bootService = new HttpBootstrapService(env);

try { //perform join operation

NodeHandle localhandle = peer.getLocalHandle () ;
NodeHandle booter = bootService.getBootstrapper (localhandle);

peer.join (booter) ;

} catch (PeerJoinException ex) { //if join failed on exception

}
if

ex.printStackTrace() ;

(peer.isJoined()) {

//following p2p operating goes here

We use HTTP protocol connect to boot server. The server URL is defined in

external properties loaded by Environment. The peer we created uses the value

returned from BootstrapService.getBootstrapper () to perform join

operation.

If the peer successfully joins the network and registers pub/sub service, we

can use Pub/Sub API to create a publishing session. Figure 5-4 lists the

corresponding actions for publishing events.

39

Create Publisher

St AUblishing with PubSubService and Topic

Create Event
Invoke publish operation

Publishing Events

SRS — Invoke close operation

Figure 5-4 — Using Pub/Sub API for Publishing.

The following code demonstrate how to perform pub/sub tasks:

//create publisher associated with specific-topic and peer
Topic topic = new Topic(idFactory, "hello topic");
Publisher publisher = null;
try |
publisher = new Publisher (service, topic);
// publish message
Event event = new TextEvent (peer.getPeerId(), "hello pubsub");
publisher.publish(event) ;
} catch (PubSubException ex) {//publish failed
ex.printStackTrace () ;
System.exit (1) ;
} finally { //clean up publishen and peer
try |
if (publisher != null) { publisher.close(); }
} catch (PubSubException ex) {
ex.printStackTrace () ;
}
try |
peer.leave();
} catch (PeerlLeaveException ex) {
//peer may not leave network correctly,
//stabilization will handle the error

ex.printStackTrace () ;

40

We create a topic named hello topic and associate Publisher with that
topic and the pub/sub service previously created. Then, events can be published via
the publisher.

Like performing publishing, applications create corresponding subscription
to receive interested information. Figure 5-5 describes how to add/remove

subscriptions.

Create Subscriber
Selesibaaieinsl — with PubSubService, Topic,
and Attribute Selector

Create EventHandler

Process Events
Assign to Subscriber

ARSI S — Invoke unsubscribe operation

Figure 5-5 — Using Pub/Sub API for Subscribing.

The following code is used for creating subscription on a specific topic:

//create subscriber associated with specific topic and peer
Topic topic = new Topic(idFactory, "hello topic");
Subscriber subscriber = null;
try {

subscriber = new Subscriber (service, topic);

//set message listener to catch message event

subscriber.setEventHandler (new EventHandler () {

public void onEvent (Event event) {
if (event instanceof TextEvent) {

System.out.println(((TextEvent) event).getText ());

}) i
try { //wait until user input ‘g’
for (int ¢ = 0; ¢ != '"g'; ¢ = System.in.read()) {}

} catch (IOException ex) {}

41

} catch (PubSubException ex) { //subscribe fail
ex.printStackTrace ()
} finally { //clean up subscriber and peer
try {
if (subscriber != null) { subscriber.unsubscribe();}
} catch (PubSubException ex) {}

try { peer.leave(); } catch (PeerlLeaveException ex) {}

The Subscriber also associates with given topic and pub/sub service. In
addition, an EventHandler is specified to receive the event notification. The
onEvent() method will be invoked while an event arrived. We simply print all the
content of arriving text event.

Both physical network and P2P routing protocol components are
exchangeable. With a small amount of modification, the applications can deploy on
different operation environments. Currently, our framework supports two network
environments and two P2P networks. Figure 5-6 shows these environment options

and the corresponding steps during initialization.

LocalCommunicationManager
Setup Network

Environment TCPCommunicaitonManager

Setup P2P P RingldFactory, RingPeerFactory

Protocol
ViceroyldFactory,ViceroyPeerFactory

Figure 5-6 — P2P and Network Environment Options.

The following code snippet demonstrates the adaptation by changing P2P

protocol to Viceroy DHT and limits the communication within local computer:

42

//deploy p2p network on local machine

CommunicationManager layer = new LocalCommunicationManager (env) ;
//using viceroy id and peer factory

IdFactory idFactory = new ViceroyIdFactory(env);

PeerFactory factory = new ViceroyPeerFactory (idFactory, layer);

Only three object instances are changed and leaving other application code
unmodified. Through these examples above, we can see how agile this framework

is to develop pub/sub application on different environment.

5.2. Comparisons

The framework we proposed is based upon object-oriented architecture and
event-driven methodology. According to the structured P2P specification defined in
[5][7], we enhance the functionalities into object models that fully describe the
relationships between the identifier space and the routing protocol. Moreover, the
framework proposed by Aberer et al. [1], the additional service modules, e.g., P2P
Stroage Interface, and the P2P Basic Interface, i.e., P2P protocol, are objects
directly inherited from the same parent class. However, in our architecture, we
introduce pluggable modules, e.g., the Pub/Sub Service, those decouple from the
P2P protocol implementation. The features are achieved by invoking services as
events arrived. The events contain communication messages as well as topology
modifications. The event of state transition of handling peer, i.e., peer joins to a
network and peer is ready to receive message, is not propagated to the services.
Developers can only perform stabilization and replication in proactive style while
generating persistence services. Nevertheless, this pluggable approach makes a

lightweight peer implementation. Therefore, the P2P Protocol Layer only needs to

43

handle routing protocols. The additional pluggable services are independent
modules not included in the layer.

Our design has been focusing on pure P2P networks. In other words, each
peer in the architecture shares information and collaborates with other peers
without a centralized server. In previous researches [23][35], publishers and
subscribers are both clients of a message server. In our platform, each peer involves
message dispersing and propagating via the pub/sub mechanism without an
additional message server. Instead, each peer is involved in the information
dispersal of the pub/sub mechanism in our framework, without establishing
additional message server. The benefit of pure P2P is that applications do not
depend on a pre-constructed server infrastructure. The index information is
connoted in the P2P network topology and routing protocol, compared to the
super-peer indexing mechanism used in JXTA. However, this statement assumes
the computation power of each peer is about equal. According to the assumption,
this framework does not grant developer the advantage deploying P2P applications
on the environment of heterogeneous devices.

In previous research of P2P protocol, network bootstrapping is usually
omitted. By considering the practicality of creating P2P applications, we define the
bootstrap service interface and provide two boot server implementations. By
externalizing the network communication, the framework allows different protocols
transmitting messages through one single network port. With the evolving of
CommunicationManager, the performance of all P2P protocols can be boosted.

The FreePastry library is an open source implementation of Pastry. With
Scribe system implemented as an additional service, developers can create group
communication system with efficient pub/sub capability. In the design of FreePastry,

the factory methods are used for testing/simulating applications without

44

modification to the source code. However, applications developed using FreePastry
are limited to the functionalities that this P2P library offered, i.e., only Pastry
network and Scribe system. Our framework provides a flexible architecture that
application can easily deploy to any P2P network and any network environment.
With the lightweight pub/sub APIs, application developers can adopt any P2P
pub/sub service to meet their system requirements.

JXTA is a general P2P platform that allows heterogeneous applications be
deployed on top of a virtual JXTA network. JXTA can provide additional structured
P2P network functionality based on Peer Resolver Protocol. An open source project
named Meteor [17] implements Chord and CAN on top of the JXTA platform. This
approach deploys the DHT overlays upon the virtual JXTA network, which causes
the performance downgrade because of the communication overheads among peers
that introduced by JXTA. The JXTA platform provides a propagating pipe which
can simulate pub/sub mechanism via the one-to-many message transmission. The
message might be lost without noticed during the process of propagation. The
performance degrading and reliability issue make this propagation mechanism not
scaled to a large group communication system. In our framework, the message
transmission among peers is directly delegated to physical network transportation,
which does not incur the overheads of additional node discovery. Without message
propagating, our pub/sub service can maintain a distributed multicast structure and
support many-to-many message transmission. Therefore, disseminating information

among peers will not cause unnecessary bandwidth dissipation.

45

6.Conclusion and Future Work

6.1. Conclusion

In this thesis, we identify major issues from three aspects of developing P2P
pub/sub applications. These issues result from the lack of standardize P2P API,
common P2P pub/sub API, and network abstraction. Therefore, we synthesis
standardized P2P API, common pub/sub API a generic P2P pub/sub framework.
Our framework provides a standard P2P API for application develops to interact
with various structured P2P networks. Furthermore, a P2P pub/sub API and SPI are
introduced for using/creating P2P pub/sub algorithm in pure P2P networks. In our
design, a layered architecture is created with common P2P API, common pub/sub
API/SPI, network transportation, and bootstrapping service. This framework allows
P2P application developer to switch the underlying overlay with a little bit code to
modify. We standardize the control flow between each module. The following
benefits are brought out by this framework:

A. Easily develop/deploy application on different P2P networks and

different pub/sub systems.

B. Support both topic-based and content-based pub/sub models.

C. Deploy the P2P applications on various network environments.

This framework is designed for developing P2P pub/sub applications in
pure P2P network. It provides an adaptive architecture for developing applications
on any overlays without incurring performance degradation. On the other hand, this
framework does not accommodate to an overlay network containing more than one

role of peers, e.g., the super-peers architecture used in JXTA. By comparing to

46

other P2P pub/sub library and P2P platform, this framework provides generality of
adapting to any P2P routing protocol and P2P pub/sub algorithm and preserves the
performance and reliability of P2P networks.

In conclusion, with the realization of common API, this framework not only
standardizes the semantic of using structured P2P network, but also creates a
general control flow of develop a P2P pub/sub application. By adopting our
framework, developers can generate full-fledged pub/sub applications on top of

every structured P2P networks.

6.2. Future Work

For further extension, the transport layer can provide predefined
retransmission policy for P2P network developer to implement routing protocol in a
robust way. The transmission policy can be implemented in two ways, used as a
parameter of send operation or declared as class scope/method scope annotation.
The function parameter solution provides a fine-grain control on every single send

operation.

function parameter annotation

RouteMessage rm = .. @Policy (retry=2)
SendPolicy policy = public class RingPeer extends

SendPolicy.TryTwice; AbstractPeer { .. }

commMgr.send (rm, policy);

Table 6-1 — Possible Usage of Send Policy

The policy annotation approach provides a coarse-grain control that defines
the send behavior over entire class or method. Using annotation keeps protocol
implementations away from physical transport problems. However, this approach
requires additional code preprocessing. Table 6- lists the possible usage of these

two approaches. In addition, providing response-waiting utilities helps P2P protocol

47

developers implementing request-response operations, e.g. lookup operation,
without establishing their own lock-notify mechanism.

We omit the security issue from the framework. In order to build a secure
P2P application, the ultimate solution is applying a secure mechanism, e.g.
Byzantine fault tolerance [30], to P2P protocols. We leave the implementation to
P2P protocol developer. However, this framework can provide connection security
and data encryption. Implementing a TLPCommunicationManager offers a
secure connection or constructing a MessageEncryptor provides data integrity.

Although this framework is design in the way of adapting P2P application
to different structured P2P network, fully implementing these P2P network
components requires excessive works. A protocol adaptor can be introduced to
reduce the overhead of implementing P2P components using legacy libraries.

This framework can be further extended into a P2P service middleware,
integrated with OSGi platform [21]. Our framework can be employed as the
communication infrastructure for other OSGi services. With runtime deployment
and activation, applications can easily deploy on an existing P2P topology. Under
this service-oriented architecture, P2P components are not only reused in
development process, but also in runtime. Moreover, the monitoring services can be

dynamically introduced based on the architecture of OSGi platform.

48

Client
Application

Other P2P P2P Message
Plugin Pub/Sub Routing Transport
Service Service Service Service

A A

:_route messages

monitor topology messages

OSGi Platform

Figure 6-1 — Integrated with OSGi platform.

Currently, our framework supports only message-based communication.
With application level socket, application can manage interaction between peers
with stream-based communication. The socket API should have ability for P2P
application and service to establish long-live connections between peers. This
long-live connection reduces the effort on waiting message acknowledgement in a
frequent interaction scenario.

A real-world P2P pub/sub application should be implemented on top of our
framework for further examining the usability. A P2P Blog system, based on Scribe
system and Pastry network, has been implemented in our laboratory and has been
proved as an efficient approach to disseminate articles to massive readers. By
adapting this blog system to our framework, a complementary performance
evaluation on different overlay environment will be taken and we will have
opportunity to optimize the performance for both full-featured PCs and constrained

mobile devices.

49

7.Appendix

A.The Ring Protocol

The ring protocol is a simple routing protocol built on top of the ring

topology and is a simplified version of Chord protocol. The identifier is a 128 or

160 bits integer and the distance metrics between peers is determined by the

clockwise distance. Each peer connects to the closest id in both clockwise and

counter clockwise directions. For improving the resilience on network partition,

each peer links to K random peer. The detail of this protocol is shown in Table 7-.

/I node n joins the network
/I n' is an arbitrary node in the network
n.join(n'")
if(n' is not null)
successor = n'lookup(n.id);
predecessor = sucessor.predecessor;
fori=1to K
neighborli] = successor.neighborli];
else
successor = n;

predecessor = n;

Il lookup the responsible node for given id
n.lookup(id)

X=n

while(id ¢ (x.id, x.successor.id))
x = x.closest _neighbor(id);

return x.successors;

I/l return closest neighbor to given id
n.closest_neighbor(id)
min = successor.dist(id);
X = successor;
if(predecessor.dist(id) < min)
min = predecessor.dist(id)
X = predecessor;
fori=1to K
if(neighbor|i] is not null)
if(neighborlil.dist(id) < min)
min = neighbor|i].dist(id);
x = neighborli];
return x;

Table 7-1 — Pseudo code for the node join and lookup operation

The ring peer periodically checks the existence of all the neighbors. By

proactive stabilization, peers are guaranteed to have a correct successor at some

50

time after the last join/leave operation occurred. The random neighbors are also
updated every time a message delivered and the oldest random peer is been
replaced by the new coming request peer. Table 7-2 shows the pseudo code of the

stabilization operation.

Il periodically check the consistency of successor
n.stabilize()
X = successor.predecessor;
if(x.id € (n.id, successor.id))
successor = Xx;

successor.notify(n);

/I n' might be the predecessor of n
n.notify(n')
if(predecessor is null or n'e (predecessor.id, n.id))

— '
predecessor =n';

/I periodically check the neighbor table entries
n.check_neighbors()

i = random number in (1, K);

if(neighbor|i] is not null and neighbor{i] is not alive)
for j=ito K—1
neighbor| jl = neighbor| j +1];
neighbor[K1 = null;

Il update neighbor table with latest visitor
n.update_neighbors(n')
if(n' already exists in neighbor table)
move n' to neighbor[K]
else
fori=1to K -1
neighborli] = neighborli +1]
neighbor[K]=n'

Table 7-2 — Pseudo code of stabilization and neighbor update operation

51

B.Enhanced Viceroy Protocol

The design of Viceroy Protocol is based on both ring topology and butterfly
topology. In the previous research, the issues of concurrent join/leave and
unexpected peer failure are omitted. We slightly modify the algorithm to improve
the reliability.

We use the greedy FindFast algorithm (mentioned in the technical report) as
our default lookup algorithm. The FindFast algorithm simply forwards the lookup
request to the closest neighbor node, using both inbound and outbound connections.
The nextonlevel operation is similar to the lookup operation, but with additional
level parameter. The clockwise closest node on certain level ring will be found
using this operation. Based on the result of lookup operation, the successors of

responsible node are examined until a node on the same level ring is found.

52

/l node n joins the network
/I n' is an arbitrary node in the network
n.join(n'")
if(n' is not null)
successor = n'lookup(n.id);
predecessor = successor.predecessor;
n.update _level();
ring_successor = n.nextonlevel(n.id,level);
ring_predecessor = ring_successor.ring_predecessor;
n.update _butterfly();
else
successor = n;
predecessor = n;
level =1;
ring _ successor = n;
ring _ predecessor = n;
up =null;
left = null;
right = null;

/! lookup the responsible node for given id
n.lookup(id)
x=n
while(id ¢ (x.id,x.successor.id))
x = x.closest _neighbor(id);

return x.successors;

/] select level via the estimation of total node numbers

n.select_level()

nl= ’_1/ n.dist(successor)—‘;

level = random number in (1, _log(ﬁ)J);

Il lookup closest successor for given id on level i
n.nextonlevel(id,i)

x = ndookup(id);

while(x.level # i)

X = X.SUccessors

return x;

53

[linit or update the butterfly links
n.update_butterfly()
if(level > 1)
up = n.nextonlevel(n.id,level —1);

up.notify _inbound(n);

left = n.nextonlevel(n.id ,level +1);
left.notify_inbound (n);

right = n.nextonlevel(n.id + 27 ,level +1);

right .notify_inbound (n);

/] return closest neighbor to given id
n.closest_neighbor(id)

min = successor.dist(id);

X = successor;

if(predecessor.dist(id) < min)
min = predecessor.dist(id)
X = predecessor;

if(ring _ successor.dist(id) < min)
min = ring _ successor.dist(id);
X = ring _ successor;

if(ring _ predecessor.dist(id) < min)
min = ring _ predecessor.dist(id);
X =ring _ predecessor;

if(up.dist(id) < min)
min = up.dist(id);
X = up;

if(left.dist(id) < min)
min = left.dist(id);
x = left;

if(right.dist(id) < min)
min = right.dist(id);
X = right;

for each x' in inbounds
if(x'.dist(id) < min)

min = x'.dist(id);
x=x";

return x;

54

The additional stabilization protocol is used for maintain both ring and level
ring structure. By periodically checking its successor, peers has chance to modify
its level duo to the total number of peers might changed significantly. Because the
level of each peer is determined by the distance of its successor, the ring
stabilization needs to reselect level while the successor is changed. The level ring
stabilization checks if the level ring is changed or if the peer needs to join another
level ring. The butterfly links will be fixed while the peer detects itself join a
different level ring. Without actively inform the change of butterfly links, the
periodically inbound checking process will remove the inbound link if peer is left
or no longer establish a butterfly link to it.

Il periodically check the consistency of successor
n.stabilize()
X = successor.predecessor;
if(x.id € (n.id, successor.id))
successor = Xx;
n.select _level();

successor.notify(n);

I/l periodically check the consistency of ring _ successor

n.level_stabilize()
X = ring _successor.ring _ predecessor;
if(level # x.level)
ring _ successor = n.nextonlevel(n.id,level);
n.update _butterfly();
else if(x.id € (n.id, ring _ successor.id))
ring _ successor = Xx;

ring _ successor.level _notify(n);

/I n' might be the predecessor of n
n.notify(n')
if(predecessor is null or n'e (predecessor.id, n.id))

— e
predecessor =n';

55

/I n' might be the ring _ predecessor of n
n.level_notify(n')
if(ring _ predecessor is null or n'e (ring _ predecessor.id, n.id))

ring _ predecessor =n';

/I periodically check the inbound connections
n.check_inbounds()
x = random node in inbounds;
if(x.validate _inbound(n) is not true)

inbounds.remove(x);

/lvalidate if n still hold a butterfly link to n'
n.validate_inbound(n')

return (up = n' or left = n' or right = n');

/I periodically check the butterfly links
n.check_butterfly()
if(up is null or up is not alive)
if (level > 1)
up = n.nextonlevel(id,level —1);
up.notify_inbound(n);
if(left is null or /left is not alive)
left = n.nextonlevel(id,level +1);
left.notify_inbound(n);
if(right is null or right is not alive)

right = n.nextonlevel(id + 27" ,level +1);
right.notify_inbound(n);

/I notify node n that a butterfly link
/l established from node n'
n.notify_inbound(n')
if(n' is not in inbounds)
inbound .add(n')

56

C.The Simple Pub/Sub Protocol

Simple pub/sub protocol is based on topic-based model. Each topic is
mapping to a hash id. The peer that handles the given key is called topic handler.
Subscriber sends topic subscription message topic handler for registering interest
on specified topic channel. Publisher sends the event publish message to the topic
handler. Once an event publish message were received, topic handler relay the
event notification to all subscribers that register to the certain topic. When an event
notification arrives, the event handlers to corresponding topic are awake and the
onEvent method is invoked. The concept of this algorithm is illustrated in Figure

7-1.

Concept

publish
@ Topics

Topic oy,

Handler
Topic

Handler 90"‘“

route

........

[mn—]
subscriber

Figure 7-1 — Concept of Simple Pub/Sub Algorithm

Whenever a peer joined and the update operation is invoked, topics that

should handled by the newly joined peer will migrate to the certain peer. On

57

receiving migration message, the pub/sub service that registered on that peer stores
all the migrated topics.

For data persistence, a stabilizing message is sent periodically for dispersing
topics that peer handles to all peers in replication set. Once the peer is left, another
peer will take over these topics.

This pub/sub algorithm does not support attribute filtering. The selector
expression of subscriber is simply ignored. Event handler is notified whatever

attributes arriving event contains.

D.Example Program

. Publish Client

package pubsub.app;

import dcslab.p2p.IdFactory;

import dcslab.p2p.Peer;

import dcslab.p2p.PeerFactory;

import dcslab.p2p.PeerdJoinException;

import dcslab.p2p.PeerleaveException;

import dcslab.p2p.boot.BootstrapService;

import dcslab.p2p.boot.impl.LocalBootstrapService;
import dcslab.p2p.environment.Environment;

import dcslab.p2p.pubsub.PubSubService;

import dcslab.p2p.pubsub.PubSubException;

import dcslab.p2p.pubsub.Publisher;

import dcslab.p2p.pubsub.Topic;

import dcslab.p2p.pubsub.event.Event;

import dcslab.p2p.pubsub.event.TextEvent;

import dcslab.p2p.pubsub.impl.SimplePubSubService;
import dcslab.p2p.transport.CommunicationManager;
import dcslab.p2p.transport.impl.TCPCommunicationManager;

import dcslab.p2p.impl.RingIdFactory;

58

import dcslab.p2p.impl.RingPeerFactory;

import java.io.File;

public class PublishClient ({
public static void main(String[] args) {
//determine underlying transportation mechanism
Environment env = new Environment (new File(“example.cfg”));
buildTCPEnvironment (env) ;

CommunicationManager layer = new TCPCommunicationManager (env) ;

//determine p2p network type and id type
IdFactory idFactory = new RingIdFactory(env);

PeerFactory factory = new RingPeerFactory(idFactory, layer);

//peer initailization
Peer peer = factory.createPeer();
PubSubService service = new SimplePubSubService();

peer.register (service);

//connect to http boot server

BootstrapService bootService = new LocalBootstrapService();

try {//perform join operation
NodeHandle localhandle = peer.getlLocalHandle();
NodeHandle booter=bootService.getBootstrapper (localhandle);
peer. join (booter);

} catch (PeerJoinException ex) {//if join failed on exception

ex.printStackTrace () ;

if (peer.isJoined()) {
//create publisher associated with specific topic and peer
Topic topic = new Topic(idFactory, "hello topic");
Publisher publisher = null;
try {
publisher = new Publisher (service, topic);
// publish message

Event event =

59

new TextEvent (peer.getPeerId(), "hello pubsub");

publisher.publish(event);
} catch (PubSubException ex) {//publish failed
ex.printStackTrace();
System.exit (1);
} finally {
try |
if (publisher != null) { publisher.close();
} catch (PubSubException ex) {
ex.printStackTrace();
}
try |
peer.leave();
} catch (PeerlLeaveException ex) {
//peerimay not-leave network correctly,
//stabilization will handle. the error

ex.printStackTrace();

}
} else {
// joimr failed, exit program

System.exit (1) ;

}

Il. Subscribe Client

package pubsub.app;

import dcslab.p2p.IdFactory;

import dcslab.p2p.Peer;

import dcslab.p2p.PeerFactory;

import dcslab.p2p.PeerJoinException;
import dcslab.p2p.PeerleaveException;
import dcslab.p2p.boot.BootstrapService;

import dcslab.p2p.boot.impl.LocalBootstrapService;

60

import dcslab.p2p.environment.Environment;

import dcslab.p2p.pubsub.PubSubException;

import dcslab.p2p.pubsub.PubSubService;

import dcslab.p2p.pubsub.Subscriber;

import dcslab.p2p.pubsub.Topic;

import dcslab.p2p.pubsub.event.Event;

import dcslab.p2p.pubsub.event.EventHandler;
import dcslab.p2p.pubsub.event.TextEvent;

import dcslab.p2p.pubsub.impl.SimplePubSubService;
import dcslab.p2p.transport.CommunicationManager;
import dcslab.p2p.transport.impl.TCPCommunicationManager;
import dcslab.p2p.impl.RingIdFactory;

import dcslab.p2p.impl.RingPeerFactory;

import java.io.File;

import java.io.IOException;

public class SubscribeClient {
public static void main(String[] args) {
//determine underlying transportation mechanism
Environment env = new Environment (new File(“example.cfg”));

CommunicationManager mgr = new TCPCommunicationManager (env);

//determine " p2p.‘network “type and id type

IdFactory idFactory = new ViceroyIdFactory (env);

PeerFactory factory new ViceroyPeerFactory (idFactory, mgr);
//peer initialization

Peer peer = factory.createPeer();

PubSubService service = new SimplePubSubService();

peer.register (service);

//connect to http boot server

BootstrapService bootService = new HttpBootstrapService(env);

try { //perform join operation
NodeHandle localhandle = peer.getLocalHandle();
NodeHandle booter=bootService.getBootstrapper (localhandle);

peer. join (booter);

61

} catch (PeerJoinException ex) {//if join failed on exception
ex.printStackTrace();

}

if (peer.isJoined()) {
//create subscriber associated with specific topic and peer

Topic topic = new Topic(idFactory, "hello topic");

Subscriber subscriber = null;
try {
subscriber = new Subscriber (service, topic);

//set message listener to catch message event
subscriber.setEventHandler (new EventHandler () {
public void onEvent (Topic topic, Event event) {
if (event instanceof TextEvent) {
System.out.println(
topic.getTopicName () +

((TextEvent) event) .getText());

)i

try { |//wait until user .dinput

‘qr
for (int ¢ = 0; ¢ !'= 'g'; ¢ = System.in.read()) {}
} catch (IOException ex) {}
} catch (PubSubException ex) { //subscribe fail
ex.printStackTrace();
} finally { //clean up subscriber .and peer
try {
if (subscriber != null) { subscriber.unsubscribe();}
} catch (PubSubException ex) {}
try { peer.leave(); } catch (PeerlLeaveException ex) {}
}
} else {
// join failed, exit program

System.exit (1) ;

62

8.References

(1]

(2]

(3]

(4]

(5]

[6]

[7]

[8]

K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas, S. Haridi and M.
Hauswirth, "The Essence of P2P: A Reference Architecture for Overlay
Networks," P2P, vol. 0, pp. 11-20, 2005.

J. Aspnes and G. Shah, "Skip graphs," ACM Trans. Algorithms, vol. 3, pp. 37,
2007.

M. Bender, S. Michel, S. Parkitny and G. Weikum, "A Comparative Study of
Pub/Sub Methods in Structured P2P Networks," Databases, Information Systems,
and Peer-to-Peer Computing, pp. 385-396, 2007.

M. Castro, P. Druschel, A. -M. Kermarrec and A. I. T. Rowstron, "Scribe: a
large-scale and decentralized application-level multicast infrastructure," Selected
Areas in Communications, IEEE Journal on, vol. 20, pp. 1489-1499, 2002.

G. Ciaccio, "A Pretty Flexible API for Generic Peer-to-Peer Programming,"
Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE
International, pp. 1-8, 26-30 March 2007.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris and I. Stoica, "Wide-area
cooperative storage with CFS," SIGOPS Oper. Syst. Rev., vol. 35, pp. 202-215,
2001.

F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz and I. Stoica, "Towards a
Common API for Structured Peer-to-Peer Overlays," Peer-to-Peer Systems II,
pp- 33-44, 2003.

F. Delmastro, M. Conti and E. Gregori, "P2P common API for structured
overlay networks: A cross-layer extension," in WOWMOM '06: Proceedings of

the 2006 International Symposium on on World of Wireless, Mobile and

63

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Multimedia Networks, 2006, pp. 593-597.

P. Fraigniaud and P. Gauron, "D2B: A de Bruijn based content-addressable
network," Theoretical Computer Science, vol. 355, pp. 65-79, 4/6. 2006.

D. Haussheer, "Decentralized auction-based pricing with PeerMart," Integrated
Network Management, 2005. IM 2005. 2005 9th IFIP/IEEE International
Symposium on, pp. 381-394, 2005.

M. O. Junginger, "A self-organizing publish/subscribe middleware for dynamic
peer-to-peer networks," Network, IEEE, vol. 18, pp. 38-43, 2004.

M. Kaashoek and D. Karger, "Koorde: A Simple Degree-Optimal Distributed
Hash Table," Peer-to-Peer Systems II, pp. 98-107, 2003.

Y. Kulbak and D. Bickson, "The emule protocol specification," 2005.

A. Loo, “The future of peer-to-peer computing,” Communications of the ACM,
vol. 46, issue 9, pp. 57, 2003.

E. K. Lua, J. Crowcroft, M. Pias, R. Sharma and S. Lim, "A Survey and
Comparison of Peer-to-Peer Overlay Network Schemes," Communications
Surveys & Tutorials, IEEE, vol. 7, pp. 72-93, 2005.

D. Malkhi, M. Naor and D. Ratajczak, "Viceroy: a scalable and dynamic
emulation of the butterfly," pp. 183-192, 2002.

P. Manish, J. Nanyan, S. Cristina and M. Vincent. (2007, Feb. 21). Meteor. 2.4.1

Available: https://jxta-meteor.dev.java.net/

J. Mark, M. Alberto, P. Gian Jesi and V. Spyros. (2007, Dec. 23). PeerSim: A
peer-to-peer simulator. 1.0.3

Available: http://peersim.sourceforge.net/

P. Maymounkov and D. Mazieres, "Kademlia: A Peer-to-peer Information
System Based on the XOR Metric," 2002.

MONKIA Info., "NUWeb," 2007

64

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Available: http://tw.nuweb.cc/

OSGi Alliance, "OSGi Service Platform Core Specification Release 4.1,"
October. 2007.

D. Peter, E. Eric, G. Romer, H. Andreas, H. Jeff, C. Y. Hu, L. Sitaram, L. Andrew,
M. Alan, N. Animesh, P. Ansley, R. Charlie, S. Dan, S. Jim, S. Atul and Z.
RongMei. (2007, Nov. 2). FreePastry. 2.0_03

Avalilable: http://freepastry.rice.edu/FreePastry/

P. Pietzuch, D. Eyers, S. Kounev and B. Shand, "Towards a common API for
Publish/Subscribe," in DEBS '07: Proceedings of the 2007 Inaugural
International Conference on Distributed Event-Based Systems, 2007, pp.
152-157.

C. G Plaxton, R. Rajaraman and A. W. Richa, "Accessing Nearby Copies of
Replicated Objects in a Distributed Environment," Theory of Computing
Systems, vol. 32, pp. 241-280, 02/24. 1999.

J. Pouwelse, P. Garbacki, D. Epema and H. Sips, "The Bittorrent P2P
File-Sharing System: Measurements and Analysis," Peer-to-Peer Systems 1V, pp.
205-216, 2005.

W. Pugh, "Skip lists: a probabilistic alternative to balanced trees," Commun
ACM, vol. 33, pp. 668-676, 1990.

S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Schenker, "A scalable
content-addressable network," in SIGCOMM '01: Proceedings of the 2001
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, 2001, pp. 161-172.

J. Risson and T. Moors, "Survey of Research Towards Robust Peer-to-Peer
Networks: Search Methods," Computer Networks, vol. 50, pp. 3485-3521, 12/5.

2006.

65

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

B. Roberto, Q. Leonardo and V. Antonino, “Distributed event routing in
Publish/Subscribe communication systems: A survey,” In: Technical Report
TR-1/06, rnDipartimento di Informatica e Sistemistica, nUniversitd di Roma ‘La
Sapienza’ (2005).

R. Rodrigues, B. Liskov and L. Shrira, "The design of a robust peer-to-peer
system," in EWI0: Proceedings of the 10th Workshop on ACM SIGOPS
European Workshop, 2002, pp. 117-124.

A. I. T. Rowstron and P. Druschel, "Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems," in Middleware '01:
Proceedings of the IFIP/ACM International Conference on Distributed Systems
Platforms Heidelberg, 2001, pp. 329-350.

I. Stoica, D. Adkins, S. Zhuang, S. Shenker and S. Surana, "Internet indirection
infrastructure," in SIGCOMM '02: Proceedings of the 2002 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, 2002, pp. 73-86.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H. Balakrishnan, "Chord: A
scalable peer-to-peer lookup service for internet applications," SIGCOMM
Comput. Commun. Rev., vol. 31, pp. 149-160, 2001.

Sun Microsystems Inc. (2007, Oct 16th). JXTA v2.0 protocols specification.

Available: https://jxta-spec.dev.java.net/nonav/J X TAProtocols.html

Sun Microsystems Inc. (2003, Dec 2nd). Java message service APL

Available: http://www.jcp.org/en/jsr/detail71d=914

B. Zhao, J. Kubiatowicz and A. Joseph, "Tapestry: An infrastructure for
fault-tolerant wide-area location and routing," Computer Science Division, U. C.

Berkeley, apr, 2001.

66

