

國 立 交 通 大 學

資訊科學與工程研究所

碩碩碩碩 士士士士 論論論論 文文文文

點對點環境下的通用發佈 /訂閱框架

A Generic Publish/Subscribe Framework for Peer-to-Peer

Environment

研 究 生：簡士強

指導教授：袁賢銘 教授

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 七七七七 年年年年 六六六六 月月月月

點 對 點 環 境 下 的 通 用 發 佈/訂 閱 框 架

A Generic Publish/Subscribe Framework for Peer-to-Peer Environment

研 究 生：簡士強 Student：Shih-Chiang Chien

指導教授：袁賢銘 Advisor：Shyan-Ming Yuan

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年六月

點對點環境下的通用發佈/訂閱框架

學生：簡士強 指導教授：袁賢銘

國立交通大學資訊科學與工程研究所

摘要摘要摘要摘要

直至今日，許多新的點對點網路演算法仍不斷的被提出。應用程式開發者便

需要學習各種相異 API 的用法，因而增加了開發者在轉換使用不同點對點網路

時額外的負擔。同時也使得開發者難以針對特定應用領域評量各點對點網路的優

劣。而從點對點網路開發者的角度來看，如果能夠提供一組完備且可重用的網路

傳輸組件，將能大幅的提昇開發者將點對點網路部署到各種實體網路的進程。

本研究提出一個全新的開發框架，協助開發者使用各種點對點網路拓墣與發

佈訂閱演算法來開發點對點網路應用程式。在我們所提出的系統架構中，包含了

各個開發點對點網路相關應用所需的功能，其中涵蓋了「網路傳輸」、「點對點網

路演算法」、「網路啟動」與「可抽換發布訂閱服務」四項功能群。為了展示此開

發框架的通用性與優點，我們提供了環狀網路與 Viceroy 點對點網路的示範實

作，並且提供一個簡單的發布訂閱演算法實作。此外，我們將透過一個範例應用

程式來展現此框架在開發點對點發布訂閱應用時，藉由抽換功能組件達成部署應

用於不同環境上的便利性。

A Generic Publish/Subscribe Framework for Peer-to-Peer

Environment

Student: Shih-Chiang Chien Advisor: Shyan-Ming Yuan

Institutes of Computer Science and Engineering

National Chiao-Tung University

Abstract

At present, the structured P2P algorithms have been proposed frequently.

Consequently, the P2P application developers need to learn different API semantics. It

generates additional efforts of switching to different P2P topologies. Moreover, it is

difficult for the developers to evaluate the performance of an application based on a

particular underneath P2P APIs. On the other hand, if the P2P framework can provide

reusable and comprehensive network communication components, it can expedite

developing progress. Therefore, the P2P protocols can easily accommodate to

different network environments.

In this research, a novel P2P developing framework is proposed to assist in

developing P2P applications by using various structured P2P protocols and P2P

pub/sub algorithms. We design an architecture to construct the structured P2P

functional blocks, including network communication components, P2P topology

maintenance and routing, network bootstrapping, as well as pluggable pub/sub

services. In order to demonstrate the genuineness and generality of the framework, we

provide a ring protocol, the Viceroy DHT implementation, and a simple pub/sub

algorithm. Furthermore, we generate a client application to indicate the convenience

of exchanging among different underlying networks, P2P protocols, and pub/sub

services.

 I

Acknowledgement

兩年的碩士生涯匆匆的過去了，很慶幸能在學生生活結束之際完成了令

自己滿意的研究成果。為此，首先要感謝我的指導教授袁賢銘老師，在尋找研

究題材時給予我相當 大的自由度，並且適時的給予建議，幫助我抓緊研究主

軸。同時也感謝三位口試委員，蔡清欉教授、謝筱齡教授、以及林獻堂教授，

百忙之中仍抽空給予我許多有用 的批評與建議。在此要特別感謝謝筱齡老師

在論文寫作方面給了我相當大的協助。此外，感謝葉秉哲學長與高子漢學長，

在數次的合作中分享了許多研究以及實作上 的經驗，同時也感謝吳瑞祥學

長、鄭明俊學長、邱繼弘學長、高永威學長、與林家鋒學長在兩年的研究室生

活中提供的諸多協助。

在此也感謝分散式系統實 驗室的夥伴們：周鴻仁、林辰璞、林宜豊、

以及謝明志，在課業上與研究上相互砥礪，也一起營造了實驗室歡樂的氣氛。

此外，我也要感謝田晏、盧奕丞，以及所有 交大資科 95級的同學，在大學與

研究所六年的期間留下了許多美好的回憶，也祝福大家不管在研究上或是工作

上都能一切順利。

最後要感謝生養我的父母親：簡天成先生與吳麗雪女士，賜與我一個靈

活的腦袋，並且在我求學的過程中提供了生活上所需的一切，讓我能專心致力

於學習以及研究。同樣的，也要感謝我的兄長簡大鈞，在日常生活中不斷加強

我邏輯與思考辯証的能力，僅以這篇研究來回報你們無私的付出。

 II

Table of Contents

ACKNOWLEDGEMENT ... I

TABLE OF CONTENTS ..II

LIST OF FIGURES...V

LIST OF TABLES ... VI

1. INTRODUCTION ...1

1.1. MOTIVATION...2

1.2. CONTRIBUTIONS OF THIS THESIS...4

1.3. THESIS OUTLINE ..4

2. BACKGROUND AND RELATED WORK ..5

2.1. BACKGROUND ..5

2.1.1. Structured P2P Network...5

2.1.2. P2P Publish/Subscribe Algorithm..7

2.2. P2P COMMON API..8

2.3. PUBLISH/SUBSCRIBE COMMON API ...9

2.4. P2P PUB/SUB LIBRARY ..10

3. SYSTEM ARCHITECTURE ... 11

3.1. OVERVIEW.. 11

3.2. P2P PROTOCOL LAYER ...12

3.2.1. Peer interface...14

3.2.2. PeerFactory class ..15

3.2.3. Resource, Id, and PeerId interface ..15

3.2.4. IdFactory and PeerIdFactory interface ...16

3.2.5. CancellableTask interface..16

3.2.6. Service interface ..16

3.3. PUB/SUB SERVICE AND API..16

3.3.1. PubSubService interface ..17

3.3.2. Publisher and Subscriber...18

3.3.3. EventHandler interface..19

3.3.4. Event interface ...19

3.4. TRANSPORT LAYER ..20

3.4.1. CommunicationManager interface ..21

 III

3.4.2. Address interface..21

3.4.3. RouteMessage interface ...21

3.4.4. Message interface ..21

3.5. BOOTSTRAP SERVICE..22

3.5.1. BootstrapService interface...22

4. IMPLEMENTATION DETAILS ...23

4.1. CONTROL FLOW ...23

4.1.1. Peer Bootstrapping ..23

4.1.2. Message Transmission ...24

4.1.3. Pub/Sub Actions ...26

4.2. ADDITIONAL CLASS USAGE ...27

4.2.1. Environment...27

4.2.2. AbstractPeer ..28

4.2.3. AbstractEvent...28

4.2.4. NodeHandle ...28

4.2.5. Topic...29

4.2.6. LocalBootstrapService...29

4.2.7. HttpBootstrapService...29

4.2.8. LocalCommunicationManager ..30

4.2.9. TCPCommunicationManager ..30

5. EVALUATIONS ..31

5.1. SCENARIO DEMONSTRATION ..31

5.1.1. Implementing P2P Protocol ...31

5.1.2. Implementing Pub/Sub Service ..36

5.1.3. Develop P2P Pub/Sub Application ..38

5.2. COMPARISONS ..43

6. CONCLUSION AND FUTURE WORK ...46

6.1. CONCLUSION..46

6.2. FUTURE WORK...47

7. APPENDIX ..50

A. THE RING PROTOCOL ...50

B. ENHANCED VICEROY PROTOCOL..52

C. THE SIMPLE PUB/SUB PROTOCOL...57

D. EXAMPLE PROGRAM ..58

I. Publish Client ..58

II. Subscribe Client ...60

 IV

8. REFERENCES ..63

 V

List of Figures

Figure 2-1 – Common Structured P2P Topologies. ..6

Figure 3-1 – System Architecture Overview...11

Figure 3-2 – Class Diagram of P2P Protocol Layer..13

Figure 3-3 – Class Diagram of Pub/Sub Service and API. ...17

Figure 3-4 – Class Diagram of Transport Layer. ..20

Figure 3-5 – Class Diagram of Bootstrap Service ..22

Figure 4-1 – Sequence Diagram of Peer Bootstrapping ...23

Figure 4-2 – Sequence Diagram of Message Routing ..24

Figure 4-3 – Sequence Diagram of Service Callbacks ...25

Figure 4-4 – Sequence Diagram of Publishing ...26

Figure 4-5 – Sequence Diagram of Subscribing ...27

Figure 5-1 – Relationships between Ring Protocol implementation and P2P Protocol

Layer ...33

Figure 5-2 – Relationship between Viceroy DHT implementation and P2P Protocol

Layer ...35

Figure 5-3 – Setup P2P and network environment. ..38

Figure 5-4 – Using Pub/Sub API for Publishing...40

Figure 5-5 – Using Pub/Sub API for Subscribing...41

Figure 5-6 – P2P and Network Environment Options. ...42

Figure 6-1 – Integrated with OSGi platform...49

Figure 7-1 – Concept of Simple Pub/Sub Algorithm..57

 VI

List of Tables

Table 2-1 – List of famous DHT schemes. ...6

Table 5-1 – Task Descriptions of Developing P2P Protocols32

Table 5-2 – Task Descriptions of Developing Pub/Sub Services................................36

Table 6-1 – Possible Usage of Send Policy ..47

Table 7-1 – Pseudo code for the node join and lookup operation...............................50

Table 7-2 – Pseudo code of stabilization and neighbor update operation...................51

 1

1. Introduction

Nowadays, with the computing power of PC and network bandwidth

increasing, people are willing to dispense their computing power and share

information with each others. In pure P2P network, each participant shares their

resources in order to gain benefits from other peers. By the natural of sharing in

P2P networks, the more users joining the network, the more capacity this P2P

network obtained. The scalability is based on the performance of P2P protocols, not

determined by the server capacity in traditional centralized architecture. The P2P

networks are proved to be an alternative technique in distributed information

processing [14]. In addition, the ownership of shared resources and the right to

distribute are possessed by the user in the P2P network as opposed to typical central

server system where the user grant the service provider the rights of using and

distributing resources.

In order to construct an efficient and scalable P2P network, many structured

P2P network have been proposed these days and have been verified as efficient and

fault-tolerated in large distributed environment. Most of them, e.g. Chord [33],

Pastry [31], Viceroy [16], etc., are able to route message between two peers in

O(log N) hops where there are N peers within the network. With the feature of

self-organize and failover, structured P2P networks have been widely used in file

sharing [13][25], network data storage [6], and distributed indexing [32]. There are

several research works on deploying distributed personal information portal [20]

and online auction systems [10] onto the P2P networks.

Publish/Subscribe paradigm is effective in disseminating information to

peers who are interested in. In order to apply this mechanism on the P2P network,

 2

P2P pub/sub algorithms are designed with the consideration of both time efficiency

and transmission overhead. Efficient pub/sub algorithms are able to alleviate the

communication burden when dealing with the burst of information on a large scale

P2P network.

As investigated the research topic of structured P2P networks, however,

each P2P network was implemented under different approaches, providing various

application interfaces. A standardized development and deployment framework can

reduce the overheads of implementing P2P protocols and applications. Therefore,

developers can focus on the applications’ unique functionalities.

1.1. Motivation

In the application domain of content management system, e.g., personal

blog system, large amount of information are created and requested over the entire

user community. With the search capability, users can retrieve information which

has particular contents according to given query. As the P2P community keeps

advancing, however, the number of updating events will soon overwhelm the size

of events that human can handle. By introducing pub/sub mechanism, applications

can automatically disseminate information to the interested peers in P2P network.

Like the RSS supported on many website, the pub/sub paradigm provides the

functionality for users focusing on only the interested events. Therefore, pub/sub

mechanism is an essential feature while designing a platform for developing P2P

applications.

There are three aspects of developing a P2P Pub/Sub-related program:

application developers, P2P protocol developers, and P2P pub/sub protocol

developers. From the aspect of developing pub/sub applications, programmers

usually need to learn new APIs when changing the underlying overlay network.

 3

The difference of semantics can reside in peer initialization, network construction,

and even communication mechanism; that is, implementing the same functionality

on different P2P APIs could cause code rewriting. The same situation happens in

changing pub/sub APIs. This means application would be strong coupled with P2P

and pub/sub implementations. Application developers have no chance to compare

the performance of their systems on different overlays.

� Issue 1a: Application developer need to learn different semantics

from numerous P2P APIs.

� Issue 1b: The cost of rewriting code is huge for testing performance

of particular application on different P2P network.

For p2p pub/sub algorithm developers, the lack of a common platform for

evaluating performance makes it hard to compare between algorithms. First,

preparing identical test case on two different p2p pub/sub systems is cumbersome.

Second, the delay of event dissemination needs to normalize due to the different

implementation of internet communication.

� Issue 2: P2P pub/sub algorithm developers need a common platform

to compare with other algorithms.

While developing a P2P algorithm, developers writing their own code

communicating with other peer through physical network connection. Each P2P

API introduces redundant code on network programming. Developers take

additional time on debugging network-related code. Without network-related code

reusing, the effort for extending deployment environment is huge.

� Issue 3a: P2P network developer write redundant code for network

communication, make it hard to deploy P2P on different physical

network environment.

 4

� Issue 3b: A common process is needed for overlay network

initialization.

Our goal is to solve these issues mentioned above. Thus, a standardized API

and communication mechanism for P2P application development is need to be

defined.

1.2. Contributions of this thesis

In this thesis, a generic development framework for P2P applications is

proposed. With the design of multi-layers abstraction, P2P application developers

can deploy their application to different kinds of P2P overlays and physical network

environments. In additional, this framework can help developers realizing the P2P

protocols and creating value added pub/sub services. We define a general pub/sub

service SPIs which focused on deploying pub/sub mechanism over entire P2P

network. The layered design of this framework encourages that developers create

reusable components. Moreover, an execution configuration module is provided

which can externalize parameters to customize for different environment

constraints without recompiling programs.

1.3. Thesis Outline

Chapter two introduces the background knowledge and shows the previous

researches in defining common API for P2P programming and pub/sub

application. In Chapter three, a layered architecture and primary interfaces are

described in detail. The interaction between modules and the usage of components

are further described in chapter four. Chapter five demonstrates the usability of this

framework and shows the pros and cons by comparing with existing solutions. In

the end, future work and conclusion are given in section six.

 5

2. Background and Related Work

This chapter covers the definition of structured P2P network and introduces

the types of pub/sub algorithm. We also describe previous research on defining

common API for P2P network and pub/sub system. The comparison between

previous research and our work will be briefly described in this chapter.

2.1. Background

2.1.1. Structured P2P Network

P2P network is a virtual network that consist an amount of peers. Each peer

links to a subset of peers on the network and communicates with each other through

a specific routing algorithm. In structured P2P network, each peer is mapped to a

peer id within a large identifier space. This identifier space defines the distance

metrics between ids. Links between peers are determined by the distance. Each

resource, such as files, is assigned a unique key from the same identifier space.

With the mapping from key and resource, the structured P2P network naturally

organizes as a distributed hash table (DHT).

In order to accommodate with scalability, structured P2P networks are

usually designed with four criteria: low degree, low diameter, greedy routing, and

robustness [28]. Many different topologies are used in structured P2P protocols and

keep peers knows only local information. These common P2P topologies are

depicted in Figure 2-1.

 6

Figure 2-1 – Common Structured P2P Topologies.

The capability of DHT protocols are affect by the underlying topology.

Table 2-1 lists the famous DHT schemes with their capability and corresponding

topology.

DHT scheme Topology Degree Diameter

Pastry, Tapstry[36], Kademlia[19] Plaxton tree[24] O(log N) O(log N)

Chord Ring O(log N) O(log N)

CAN[27] Tori O(d) O(dN
1/d

)

Viceroy Butterflies O(1) O(log N)

D2B[9], Koorde[12] de Bruijn graphs O(1) O(log N)

Skip Graph[2] Skip list[26] O(log N) O(log N)

Table 2-1 – List of famous DHT schemes.

(a) Plaxton trees (b) Ring
(c) Tori

(d) Butterflies
(e) deBruijn graphs

(f) Skip list

 7

2.1.2. P2P Publish/Subscribe Algorithm

Publish/Subscribe mechanism involves two roles of actor, publisher and

subscriber. Publishers generate events associated with topic or tagged with

properties. Subscribers register with interested topics or properties. Subscribers

receive only matched events. A message routing protocol determines how to

disseminate events to interested subscribers. In pub/sub messaging system,

publisher and subscribers are generally anonymous and can dynamically publish

and subscribe with given topic or properties. Publishers and subscribers are loosely

coupled, without addressing message receiver directly. The pub/sub algorithm can

be categorized into two major models [29]:

A. Topic-based model

In topic based model, publishers and subscribers are associated with a

channel by given topic name. Subscriber can only filtering events by topic name,

which are considered less expressive. Therefore, a hierarchical topic space is used

to provide more expressiveness. Topics are organized in a hierarchical structure, i.e.,

a topic can be defined as a sub-topic. An event associated with a particular topic is

conceptually associated with its super-topic. A subscriber can receive both events

associate with interested topics and its sub-topics.

B. Content-based model

In this model, an event is published with several properties denoted.

Subscribers register their interested values of certain properties. When an event is

disseminated over P2P network, a distributed filtering mechanism is used to limit

transmission to the set of interested subscribers.

Establishing pub/sub mechanism on P2P network provides additional

scalability and load balancing. Moreover, the single point failure in traditional

 8

server-based pub/sub system is reduced by the fail-over mechanism provided in the

self-organized P2P network. In previous study, two design patterns are identified to

implement P2P pub/sub algorithms [3]. In the Store-Sub paradigm, the subscribers

store their subscriptions in the DHT network. While publishers publish an event, all

subscribers are retrieved and the event can then be disseminated to each of them.

On the other hand, the Store-Pub paradigm aggregates publisher into the distributed

directory based on the previous publishing events. Publishers announce their

existence and the DHT network maintains the statistical profile of publishing

history. These two design patterns accommodate to different pub/sub scenarios.

2.2. P2P Common API

To facilitate independent innovations in P2P protocols, services, and

applications, Debak et al. [7] propose a common API for structured overlays.

Following research revises this API with the request-response communication

pattern [5]. Moreover, a conceptual model for structured P2P network is proposed

by Aberer et al. [1] to provide interoperability between decentralized overlay

networks. These researches focus on providing a standardizing P2P network API to

application developers.

JXTA [34] is a platform for peer-to-peer computing, proposed by open

source community. The JXTA protocols are a set of six protocols that standardize

the behaviors between peers. In order to provide interoperability in different

language and network environment, JXTA protocol uses XML messages and the

super-peer architecture. The index information is also stored within the super-peers,

providing reliability and supporting heterogeneous nodes which installed different

set of services. JXTA achieves a great success as a P2P application platform, but

offers no high level support for structured P2P topology.

 9

2.3. Publish/Subscribe Common API

Java Message Service (JMS) [35] is a part of standard service that included

in Java EE platform. JMS defines the common set of interface and associated

semantics. By JMS provider implementing the standard API, developers can easily

deploy programs with different messaging server. JMS provide two messaging

domain:

A. Point-to-Point Domain: This messaging domain is built on the concept

of message queue. Each message has only one consumer. The

point-to-point messaging is used when every message must be

processed successfully by one consumer.

B. Publish/Subscribe Domain: This domain is defined with topic-based

model. In addition, JMS API defines an SQL-like selection language

and provides a built-in facility for supporting application-defined

property values.

However, the JMS API is a proprietary specification for Java to

intercommunication with messaging server. In order to provide a lightweight API,

Pietzuch et al. [23] define a simplified abstraction for pub/sub system. This

common API uses XML-RPC to describe the interaction, preserving the

interoperability with other languages and platforms. With little efforts, this API

shows that many pub/sub systems can be brought to compliance. These pub/sub

APIs assumed that both publisher and subscriber are clients to a messaging service.

Therefore, an auxiliary server is required for delivering messages.

 10

2.4. P2P Pub/Sub Library

Developing the P2P routing protocols and pub/sub systems is cumbersome

task requiring sophisticated testing on scalability and reliability. P2P application

developers tend to implement their system using a P2P library. FreePastry [22] is an

open source P2P library which provides pub/sub functionality. The FreePastry

implements the Pastry network routing protocol intended for deployment in the

Internet. Based on the Pastry network, additional functionalities are built, such as

pub/sub system and distributed storage. The topic-based pub/sub system supported

in FreePastry is Scribe system [4]. Moreover, with the design of peer factory,

application can be simulate/test in local computer without modifying program

(other than the initiation codes).

 11

3. System Architecture

In this chapter, we briefly introduce our system architecture. According to

the issues described in chapter one, our system needs to provide sufficient

abstraction to cover the common functionalities in P2P routing protocol and

pub/sub protocol. The following sections will point out how we achieve the goal of

design a general and flexible development framework.

3.1. Overview

Previous research of common P2P API shows the common functionality of

structured P2P networks. Inspired by FreePastry and PeerSim [18], we further

extend the P2P API by abstracting the physical network communication from P2P

protocols and introduce additional bootstrapping facility. A standard pub/sub API is

designed to accommodate with heterogeneous pub/sub model in pure P2P

networks.

Figure 3-1 – System Architecture Overview.

 12

P2P Applications retrieve a live peer in the P2P network through Bootstrap

Service. This live peer is used to initiate the join operation. Application can directly

access the P2P Protocol Layer for message routing and performing lookup

operation. By registering Pub/Sub Service to local peer, applications use Pub/Sub

API to do event publication and subscription. P2P Protocol Layer delegates the

physical network transmission to Transport Layer. Environment module loads

external parameters from configuration file.

3.2. P2P Protocol Layer

This is the core layer of performing structured P2P functionalities. In P2P

Protocol Layer, we propose an object model to describe the relationships within

structured P2P network components. This object model consists of the interfaces of

common P2P functionalities, peer initialization, and constraints of generating

topology. By implementing these interfaces, P2P network library developers are

able to create a particular routing protocol.

Peer exposes the common API for general purpose P2P network accessing.

Each Peer associates with a PeerId mapping to identifier space and a

CommunicationManager for network accessing. The identifier space contains

Id for the general key to any Resource and subclass PeerId for identifying

peers. NodeHandle is a peer reference to be used for remote peer communication

and topology maintenance.

We use Abstract Factory pattern to standardize the process of id creation

and peer initialization. PeerFactory and PeerIdFactory define the interface

for create peer instance and assign a unique peer identifier. IdFactory consists

of the methods generating the key for resources.

 13

The Service interface is defined for create user-defined application that

can monitor the activities of P2P network. In order to achieve the goal of define

pluggable pub/sub service, we introduce the Service interface that can receive

certain events while a message arrived and topology changed. With the service

registration mechanism, developers are free to implement additional functionalities

without polluting the code of P2P protocol.

Figure 3-2 – Class Diagram of P2P Protocol Layer

 14

3.2.1. Peer interface

The method defined in Peer interface can be categorized in three groups of

operations. The first group accesses basic attributes and status.

public PeerId getPeerId();

public CommunicationManager getCommunicationManager();

public NodeHandle getLocalHandle();

public boolean isJoined();

public boolean isReady();

The getLocalHandle() operation are used to create a transferable peer

reference that represents current node. The method isJoined is used for

determining if the peer is in a correct state to perform P2P functions. The

isReady method determines if the peer is ready to process message received from

transport layer.

The second group defines the common P2P API. Developers use these

methods to perform message routing and to explorer P2P topology.

public void join(NodeHandle bootPeer);

public void leave();

public NodeHandle lookup(Id id);

public void route(Id id, Message msg, NodeHandle hint);

public boolean isResponsibleFor(Id id);

public CancellableTask scheduleMessage(Id id, Message msg, long delay);

public CancellableTask scheduleMessage(Id id, Message msg, long delay,

long period);

With the join and leave operations, peers can either participate or leave the

network. After successfully joining a P2P network, the return value of isJoined

should be always true. The scheduleMessage methods are used to perform

asynchronous messaging. Developer can use these functions to establish network

stabilization procedure.

 15

The third group is used for registering user-defined services.

public void register(Service service);

public Service getService(String serviceName);

public Collection<Service> getAllServices();

Arbitrary number of services can be registered in one peer. Each service is

identified with given service name. The two getter functions, getService and

getAllServices, are primarily used in routing service specific message and

notify the event of topology changing.

3.2.2. PeerFactory class

PeerFactory provides the standard API for creating a new peer and for

restoring peer with existing peer id. Peer initialization is hidden behind the

implementation of PeerFactory. The physical network module must be determined

while constructing an instance of PeerFactory. All peers created from this

factory are registered to the same network module for further communication.

3.2.3. Resource, Id, and PeerId interface

Resource is a marker interface, denotes a class of object that can be

distributed across the P2P network. By extending java.io.Serializable

interface, resources can naturally be transferred over the network. Id represents the

identifier space, with a distance function defined. The peer identifiers can be a sub

space of identifier space. Thus, PeerId is a subclass of Id, represents the

identifier of each peer.

 16

3.2.4. IdFactory and PeerIdFactory interface

These two factory interface are in control of generating and computing id

for distributable resources. Despite of invoking constructor directly, using factory

methods provides standard interfaces for creating id.

3.2.5. CancellableTask interface

This interface represents an asynchronous message routing task and isolates

the implementation of job scheduling. While using the functionality of message

scheduling, CancellableTask provides the functionality to peek the status of

asynchronous task and to interrupt it.

3.2.6. Service interface

A service is a plug-in for establishing additional protocols on top of existing

P2P networks. This interface defines callback functions for processing message

routing and handling. In addition, the topology changing events of peers are

propagated to installed services. With topology awareness, services are able to

implement fail-over mechanism without periodically polling the information of

neighborhoods.

3.3. Pub/Sub Service and API

This module provides a light-weight API for executing pub/sub related task.

Publisher and Subscriber define the common pub/sub API that can connect

with arbitrary pub/sub service. Each Publisher and Subscriber is associated

with one topic.

 17

The PubSubService is a subclass of Service that defines the SPI

needed for implementing P2P pub/sub algorithms. PubSubService receives the

actions from pub/sub applications via Publisher and Subscriber. In order to

accommodate to both topic-based model and content-based mode, the pub/sub API

is designed with topic-based model and additional selector language like the one

used in JMS for attribute filtering. The content-based model is also supported by

introducing a wildcard topic. Pub/sub client program receives interested event via

registering EventHandler.

Figure 3-3 – Class Diagram of Pub/Sub Service and API.

3.3.1. PubSubService interface

The PubSubService interface extends the Service interface with

special pub/sub related functions. According to Bender’s work [3], both Store-Pub

 18

and Store-Sub patterns can be used in implementing pub/sub services. Therefore,

we define five common operations for accommodating these two approaches:

public void addPublihser(Publisher publisher);

public void removePublisher(Publisher publisher);

public void addSubscriber(Subscriber subscriber);

public void removeSubscriber(Subscriber subscriber);

public void requestPublish(Publisher publisher, Event event);

These add/remove methods are invoked while publishers and subscribers

are joined or left. The P2P pub/sub service providers implement these methods to

maintain the information of publishing and subscribing in the P2P network. The

requestPublish method is invoked while a publisher requests for event

disseminating.

3.3.2. Publisher and Subscriber

Developers use Publisher and Subscriber to access pub/sub systems.

Publisher and Subscriber are both bind with an instance of PubSubService at

runtime. While publishing an event, Publisher delegates this operation to the

binding pub/sub service. For adapting to various pub/sub system implementations,

Publishers are required invoking close method to explicitly terminate the publishing

session.

In order to adapt both topic-based model and content-based model, we

provide two methods to describe users’ subscription: topic and attribute selector.

Pub/sub services can provide their own selector string format for further attribute

filtering or supporting content-based subscribing.

 19

3.3.3. EventHandler interface

EventHandler defines a callback function that applications can be notify of

the arrival of events:

public void onEvent(Topic topic, Evnet event);

The onEvent method receives the coming event and the topic belongs to as

parameters. Application-specified tasks are defined within this function. With topic

information and user-defined event properties, developers can aggregate the event

processing in single callback.

3.3.4. Event interface

This interface defines the basic operations which can retrieve general

information, such as source id and attributed. The attributes of event can be used in

content-based pub/sub algorithm and event filtering mechanism. The following

methods are defined in this interface:

public PeerId getSourceId();

public Object getAttribute(String key);

public int getIntAttribute(String key);

public long getLongAttribute(String key);

public float getFloatAttribute(String key);

public double getDoubleAttribute(String key);

public void setAttribute(String key, Object obj);

public void setIntAttribute(String key, int i);

public void setLongAttribute(String key, long l);

public void setFloatAttribute(String key, float f);

public void setDoubleAttribute(String key, double d);

 20

3.4. Transport Layer

The transport layer encapsulates the detail of resolving physical address and

establishing connection. The CommunicationManager is the representative of

physical network infrastructure. Through the abstraction of network

communication, P2P protocol can easily deploy on different network environment.

In our design, peers can register to one single instance of

CommunicationManager, reducing the overhead of activating multiple P2P

networks. CommunicationManager uses Address to establish network

connection in order to perform message transmission. Peers communicate with

each other by sending message. Message interface defines the essential

attributes for determine the source peer and the message handler. Figure 3-4 shows

the relationship within transport layer.

Figure 3-4 – Class Diagram of Transport Layer.

 21

3.4.1. CommunicationManager interface

The CommunicationManager contains methods handling message

transmission. Peers retrieve the physical address by registering themselves to

CommunicationManager and detach from network by remove itself from

CommunicationManager. The close operation is used for cleaning up

resources, such as network connection and listening port. Through the send

operation, messages can be sent with destination id and next hop information. The

implementers of the CommunicationManager interface are responsible for

resolving network address and establishing connections.

3.4.2. Address interface

This interface denotes the real address that one can use to communicate

through underlying network environment. Each implementation of

CommunicationManager is responsible for providing the physical address,

which implements the Address interface.

3.4.3. RouteMessage interface

RouteMessage encapsulates the required information for transport

message between sites. The message stores the content that needs to be transferred.

The message receiver is designated as the peer responsible for destination id. P2P

protocol and service specified the next hop for message routing.

3.4.4. Message interface

In our framework, peers are communicated with each other by messaging.

The Message interface represents the information that exchanged over P2P

 22

network. The peer id of message source is able to retrieve from message. With

service name specified, a user-defined service can be designated as the handler of

arriving message.

3.5. Bootstrap Service

In order to join an existing overlay network, peers must know a live peer on

that network. The bootstrap service provides a general interface that can adapt to

different service implementations.

Figure 3-5 – Class Diagram of Bootstrap Service

3.5.1. BootstrapService interface

The class BootstrapService is a façade to external bootstrap service

instance. The getBootstrapper method encapsulates the communication

protocol between client and bootstrap server. The parameter of

getBootstrapper method is the self reference of requesting peer. Bootstrap

server can then take the request information to select a nearest boot peer for better

join performance, or to promote requester as a boot peer while deploying a novel

P2P network.

 23

4. Implementation Details

This section describes the interaction between components that mentioned

in chapter 4, including: peer bootstrapping, pub/sub actions, and message

processing. The detail control flow of this framework and the usage of each class

are covered in following sections.

4.1. Control Flow

4.1.1. Peer Bootstrapping

While performing network bootstrapping, an external boot server is required

to retrieve the P2P network information for the nodes outside. Application initiates

a BootstrapService instance that implements particular communication protocol for

boot server. An active peer is returned by invoking getBootstrapper method.

Through the active node, join request can be dispersed among peers in the network.

Figure 4-1 – Sequence Diagram of Peer Bootstrapping

 24

4.1.2. Message Transmission

When the route operation has been invoked, the route message is prepared

and is sent by CommunicationManager. According to the next hop address,

route message can be transferred to the CommunicationManager at remote site.

CommunicationManager receives the route message and then notify the

handle peer using the messageReceived callback. The destination id will be

checked first, see if current peer is responsible for the arriving message. If this

arriving message doesn’t specify any service handler, peer will directly forward this

message to next hop, using route function. Otherwise, the handleMessage

method will take over this message.

Figure 4-2 – Sequence Diagram of Message Routing

If the message is intended for processing by designate service, the control

will hand over to the specified service. The following action is decided whether

 25

current peer is the destination or not. The forward function is invoked to

determine the next hop. The permission of forwarding current message can be

decided by the return value of forward method. While message is delivered to its

destination, peer will invoke the deliver method of corresponding service

instance.

Figure 4-3 – Sequence Diagram of Service Callbacks

The update method will be invoked by the P2P protocol developer when

the topology is changed. Services can perform data migration or backup whether a

node is joined or not.

 26

4.1.3. Pub/Sub Actions

When an instance of Publisher is created, the addPublisher

function will be triggered and pub/sub service can then perform publisher join

operation. While an event is published through associated Publisher, the pub/sub

service will invoke the requestPublish method. This event will then be

disseminated on the network according to the pub/sub algorithm implemented in

the associated pub/sub service. The Publisher class also provides a close

function that explicitly notifies the leave of a publisher.

Figure 4-4 – Sequence Diagram of Publishing

The subscription is sent while application creates a new instance of

Subscriber via the addSubscriber method. In this framework, the event

retrieving is implemented in event-driven fashion. With event handler being

 27

specified, application will be notified when an event is arrived. To revoke

subscription, the unsubscribe method is invoked and pub/sub service will send

out the request of unsubscribing.

Figure 4-5 – Sequence Diagram of Subscribing

4.2. Additional Class Usage

4.2.1. Environment

This class setups the execution context for initializing components. It also

provides utilities for externalizing parameters from configuration files and plain

 28

code. The configuration file format is the same as of Java properties file, contains

simply lines of name-value pairs.

4.2.2. AbstractPeer

This abstract class implements the Peer interface, provides default work

flow of message routing as that is listed in section 4.1.2. By using JavaSE 5.0

concurrency package, we provide the implementation of the scheduleMessage

methods. The AbstractPeer also provide additional scheduleTask methods that

can register tasks which run asynchronously or periodically. The join and leave

operations are override in this class for deferring scheduled message and task until

node joined, and provide a joinImpl method for protocol developers

implementing the core join algorithm. The P2P protocol developers should extend

this class to create their own protocol implementations.

4.2.3. AbstractEvent

We provide the implementation of the Event interface for accessing basic

attributes such as event source and custom properties. Application developers can

extend this abstract class and create their application specific event type.

4.2.4. NodeHandle

NodeHandle represents the peer reference and contains information that can

uniquely identify and connect to certain peer, including peer id and physical

address. This class is a distributable resource, which implements the Resource

interface.

 29

4.2.5. Topic

The Topic object is used to represent the associating channel of publishers

and subscribers. Each topic is identified with a topic name. In order to isolate the

event topic from particular identifier space, this class provides two constructors for

properly generating corresponding topic key.

public Topic(IdFactory factory, String topicName);

public Topic(Id id, String topicName);

The application developers formally pass an instance of IdFactory as a

parameter in order to generate a valid hash key from given topic name in target

identifier space. For debugging convenience, an additional constructor is provided

which directly specifies the corresponding topic id.

4.2.6. LocalBootstrapService

The LocalBootStrapService is used in bootstrapping P2P nodes on single

VM. This bootstrap service requires no external boot server. This class is a utility

for testing applications without deploy additional service.

4.2.7. HttpBootstrapService

We provide a HTTP-based boot server and the HttpBootstrapService

cooperated with that allow peers retrieve bootstrapping information from network.

The URL of boot server can be specified in Environment configurations. The peer

reference of requesting peer is serialized and is encoded in Base64 code format,

which can be append in the HTTP Post request body. The boot server accepts

additional domain parameter that can differentiate boot request from different P2P

 30

network. By the nature of HTTP protocol, developers can adapt to different boot

server implementation, as long as the server obey the request message format.

4.2.8. LocalCommunicationManager

Peers that setup in the same VM environment can be addressed using

LocalCommunicationManager. This communication manager forces messages sent

in sequential order, it can be used in protocol simulation and debugging. Since both

message source and destination are resident in the same virtual machine, the I/O

exception will not occur during message transmission. This component is useful in

early stage of development process.

4.2.9. TCPCommunicationManager

The TCPCommunicationManager allows message transmission through

TCP/IP network. The address create by TCPCommunicationManager contains the

information of IP address and port are listened, which allows peer startup on

different port. This component has a configurable size of thread pool used for

consuming incoming message.

 31

5. Evaluations

This chapter starts with how to develop reusable components for P2P

network and flexible pub/sub application through the framework we proposed. Two

P2P protocols and A P2P pub/sub algorithm are used in order to present the design

flow from pseudo codes to correctly executable programs. Section 5.2 gives a

detailed comparison with previous researches and describes the pros and cons of

this framework.

5.1. Scenario Demonstration

5.1.1. Implementing P2P Protocol

The fundamental elements of a structured P2P protocol consist in defining

overall network structure, basic P2P operations, and fail-over mechanisms. The

following table lists the tasks for implementing P2P protocol using our framework.

Task Remarks

define id space

Create corresponding Id and PeerId class, which define

the distance function. Implement IdFactory and

PeerIdFactory for creating identifier.

define topology
Implement Peer interface with routing table information.

Determine the neighbor set and replication set.

peer initialization

Define externalized parameter name and type for

environment configuration. Implement PeerFactory for

creating peers.

join operation

Define message format of join request and response.

Implement associated action in joinImpl method and

provide corresponding message handling procedures in

handleMessage method. Change peer status after join

operation finished.

 32

lookup operation

Define message format of lookup request and response.

Implement route and localLookup method for

determine routing path. Implement associated action in

handleMessage method. Define request time out

mechanism to prevent thread locking.

leave operation
Define leave request format, carrying the information of

topology correction.

stabilization

Managing periodical probing task using

scheduleMessage method, scheduleTask method

and CancellableTask class. Should be tolerated on

every possible exception.

Table 5-1 – Task Descriptions of Developing P2P Protocols

Here we present two reference implementations that show how to

implement a P2P protocol. First, we implement Ring Protocol, which is a

simplified version of Chord. Like Chord, Ring Protocol maps both peers and

resources in to an m-bits, ordered identifier circle. Each peer in Ring Protocol

maintains the link to its predecessor, successor, and K random peers on the network.

The details of Ring Protocol are described in Appendix A.

RingIdFactory and RingPeerIdFactory are created using

MD5/SHA-1 hash algorithm to produce corresponding RingId and

RingPeerId. Because both type of identifier mapping to the same id space,

RingPeerId is simply a subclass of the RingId class. A NeighborTable is

introduced to manage the information of random neighbor table, which provides

corresponding methods to refresh/retrieve the neighbors’ status.

 33

Figure 5-1 – Relationships between Ring Protocol implementation and P2P Protocol Layer

In order to implement the join operation, we directly send out a join request

to boot peer that search for the successor. When the lookup response is arrived, the

joining peer can setup successor and predecessor. The random neighbor table can

also be filled up according to the response message. While peer leaving, the

predecessor is notified with successor correction information. The predecessor of

leaving peer can then inform its new successor for further topology repairing.

The lookup operation is implemented in recursive way. The lookup request

is forward to the closest neighbor until the successor of current peer is the possible

handler for the certain id. The entire message flow involves lookup, route,

localLookup, and handleMessage method. The localLookup method

determines the closest neighbor with the information about current neighborhoods.

The route method compacts lookup request and routing information into a

 34

RouteMessage, delegate the message transmission to communication manager. In

handleMessage method, the lookup request is examined if the request is reach

the correct destination. A lookup response will be sent to the requester, or a fail

occurs while the request is time out.

The stabilization process is established by using scheduleTask methods.

A periodical message sending task is registered that send notification to its

successor (if existing), and the successor reports its predecessor as response. Any

inconsistency of ring topology will be correct during the request-response cycle.

The neighbor table updating task also utilizes message scheduling to ping each peer,

the table entry is removed if exception occurred in message transmission.

The second protocol we used is the Viceroy DHT (details present in

Appendix B) with topology stabilization enhanced. In the design of Viceroy DHT,

both peers and resources are mapping to the interval of real numbers between the

interval of [0, 1). The ViceroyId class represents a valid identifier and defines

the distance function. A ViceroyPeer maintains additional peer status, such as

level, seven out-bound links and all remote links. By defining the

ViceroyIdFactory and ViceroyPeerFactory, developers can adapt their

application to Viceroy DHT.

 35

Figure 5-2 – Relationship between Viceroy DHT implementation and P2P Protocol Layer

Within the handleMessage method, each arriving message is delegated

to individual processing functions. The join operation sends a JoinMessage out

to find the correct joining position on the P2P network through the boot peer. Once

the join operation fails to complete within the timeout, peer will start a new

network and join as the first peer in this network. Peers send a LeaveMessage to

its successor to notify the change of topology.

The route method implements the greedy routing algorithm via the

localLookup method determing the next hop. The lookup operation involves

two messages, LookupMessage and LookupAckMessage, to discover the

handle peer and notify the result. By using the lookup operation, each Viceroy peer

can then forward the LevelLookupMessage to complete the level lookup

operation. If these two lookup operation do not finish before timeout, the lookup

method will be interrupted and will throw an exception.

 36

By using sheduleTask method, the periodical stabilization and probing

tasks are implemented. If the peer status is incorrect, a series of actions for

topology reconstruction will be triggered. For determing the correctness of inbound

connections, a random remote peer will be chosen and a InboundValidateMessage

will be sent to see if the remote peer still holds the link.

5.1.2. Implementing Pub/Sub Service

The P2P pub/sub service providers need to implement the

PubSubService interface to deploy their pub/sub algorithm in P2P network

using our framework. Two desgin patterns of developing a P2P pub/sub system are

identified. The detail of implementing P2P pub/sub services is lists the following

table:

 Store-Sub Store-Pub

addPublisher N/A

removePublisher N/A

Maintain Publisher

Structure

requestPublish Event Dissemination

addSubscriber N/A

removeSubscriber

Maintain Subscriber

Structure N/A

Table 5-2 – Task Descriptions of Developing Pub/Sub Services

A simple topic-based pub/sub algorithm is used to demonstrate the flexible

design of the pluggable pub/sub service. The simple pub/sub protocol maps each

topic to a hash key. The topic handler is dynamically assigned to the peer that is

responsible for the hash key. Topic handler receives the event from publisher and

notifies every subscriber currently interested in. Appendix C shows the protocol in

details.

 37

We create a class named SimplePubSubService that implement this simple

pub/sub protocol. Since only subscribers are need to stored,

SimplePubSubService simply ignores the action of publisher joining/leave by

leaving both addPublisher and removePublisher method empty.

Subscribers are stored in local service instance and a subscription message is sent

to topic handler while a new subscriber initiated. The handling peer stores the

subscriptions with corresponding subscribing peer and interested topic for later

notification process.

When publishers send out events, the SimplePubSubService send out

an event-publishing message to the topic handler. Once the topic handler received

the publish request, it lookups all subscribers that interested in the same topic and

send out the event-notification message to each one of them. Each event

notification will be delivered to subscribers and corresponding event handler will

then be triggered.

Our framework not only supports topic-based model, but also

accommodates content-based model. There are two approaches to implementing

content-based pub/sub algorithms. First, by introducing a wildcard topic, publishers

and subscribers discard the topic information. The subscription is described only

using selector string, which represents the user’s interests. Second, the topic can be

treated as a special attribute. Events which published by the publisher associated

with specific topic are all associate with the same attribute value. By using these

two approaches, applications can access content-based pub/sub system via our

Pub/Sub API.

 38

5.1.3. Develop P2P Pub/Sub Application

We introduce how to create an application as a client accessing P2P pub/sub

service via our framework. There are five steps to initialize the P2P network

environment: (1) load configurations, (2) setup network environment, (3) setup P2P

protocol, (4) setup services, (5) join to P2P network. Tasks in each step are

described in Figure 5-3.

Figure 5-3 – Setup P2P and network environment.

In order to participate in an existed network, we need to prepare the

execution environment and peer initializer first. The following code snippet

demonstrates how to setup Ring Protocol on TCP/IP network environment:

//determine underlying transportation mechanism

Environment env = new Environment(new File(“example.cfg”));

CommunicationManager layer = new TCPCommunicationManager(env);

//determine p2p network type and id type

IdFactory idFactory = new RingIdFactory(env);

PeerFactory factory = new RingPeerFactory(idFactory, layer);

//peer initailization

 39

Peer peer = factory.createPeer();

PubSubService service = new SimplePubSubService();

peer.register(service);

The Environment object can create or load external parameters from

properties file. Here we use TCP connection and Ring Protocol as our underlying

network transmission and P2P network topology. By using RingIdFactory and

RingPeerFactory, we are able to create a new peer. The pub/sub service

plug-in is also register to the new created peer at this step. After peer successfully

initialized, we use BootstrapService to connect to arbitrary boot server and

retrieve a valid boot peer:

//connect to http boot server

BootstrapService bootService = new HttpBootstrapService(env);

try { //perform join operation

 NodeHandle localhandle = peer.getLocalHandle();

 NodeHandle booter = bootService.getBootstrapper(localhandle);

 peer.join(booter);

} catch (PeerJoinException ex) { //if join failed on exception

 ex.printStackTrace();

}

if (peer.isJoined()) {

 //following p2p operating goes here

}

We use HTTP protocol connect to boot server. The server URL is defined in

external properties loaded by Environment. The peer we created uses the value

returned from BootstrapService.getBootstrapper() to perform join

operation.

If the peer successfully joins the network and registers pub/sub service, we

can use Pub/Sub API to create a publishing session. Figure 5-4 lists the

corresponding actions for publishing events.

 40

Figure 5-4 – Using Pub/Sub API for Publishing.

The following code demonstrate how to perform pub/sub tasks:

//create publisher associated with specific topic and peer

Topic topic = new Topic(idFactory, "hello topic");

Publisher publisher = null;

try {

 publisher = new Publisher(service, topic);

 // publish message

 Event event = new TextEvent(peer.getPeerId(), "hello pubsub");

 publisher.publish(event);

} catch (PubSubException ex) {//publish failed

 ex.printStackTrace();

 System.exit(1);

} finally { //clean up publisher and peer

 try {

 if (publisher != null) { publisher.close(); }

 } catch (PubSubException ex) {

 ex.printStackTrace();

 }

 try {

 peer.leave();

 } catch (PeerLeaveException ex) {

 //peer may not leave network correctly,

 //stabilization will handle the error

 ex.printStackTrace();

 }

}

 41

We create a topic named hello topic and associate Publisher with that

topic and the pub/sub service previously created. Then, events can be published via

the publisher.

Like performing publishing, applications create corresponding subscription

to receive interested information. Figure 5-5 describes how to add/remove

subscriptions.

Figure 5-5 – Using Pub/Sub API for Subscribing.

The following code is used for creating subscription on a specific topic:

//create subscriber associated with specific topic and peer

Topic topic = new Topic(idFactory, "hello topic");

Subscriber subscriber = null;

try {

 subscriber = new Subscriber(service, topic);

 //set message listener to catch message event

 subscriber.setEventHandler(new EventHandler() {

 public void onEvent(Event event) {

 if (event instanceof TextEvent) {

 System.out.println(((TextEvent) event).getText());

 }

 }

 });

 try { //wait until user input ‘q’

 for (int c = 0; c != 'q'; c = System.in.read()){}

 } catch (IOException ex) {}

 42

} catch (PubSubException ex) { //subscribe fail

 ex.printStackTrace()

} finally { //clean up subscriber and peer

 try {

 if (subscriber != null) { subscriber.unsubscribe();}

 } catch (PubSubException ex) {}

 try { peer.leave(); } catch (PeerLeaveException ex) {}

}

The Subscriber also associates with given topic and pub/sub service. In

addition, an EventHandler is specified to receive the event notification. The

onEvent() method will be invoked while an event arrived. We simply print all the

content of arriving text event.

Both physical network and P2P routing protocol components are

exchangeable. With a small amount of modification, the applications can deploy on

different operation environments. Currently, our framework supports two network

environments and two P2P networks. Figure 5-6 shows these environment options

and the corresponding steps during initialization.

Figure 5-6 – P2P and Network Environment Options.

The following code snippet demonstrates the adaptation by changing P2P

protocol to Viceroy DHT and limits the communication within local computer:

 43

..
.

//deploy p2p network on local machine

CommunicationManager layer = new LocalCommunicationManager(env);

//using viceroy id and peer factory

IdFactory idFactory = new ViceroyIdFactory(env);

PeerFactory factory = new ViceroyPeerFactory(idFactory, layer);

..
.

Only three object instances are changed and leaving other application code

unmodified. Through these examples above, we can see how agile this framework

is to develop pub/sub application on different environment.

5.2. Comparisons

The framework we proposed is based upon object-oriented architecture and

event-driven methodology. According to the structured P2P specification defined in

[5][7], we enhance the functionalities into object models that fully describe the

relationships between the identifier space and the routing protocol. Moreover, the

framework proposed by Aberer et al. [1], the additional service modules, e.g., P2P

Stroage Interface, and the P2P Basic Interface, i.e., P2P protocol, are objects

directly inherited from the same parent class. However, in our architecture, we

introduce pluggable modules, e.g., the Pub/Sub Service, those decouple from the

P2P protocol implementation. The features are achieved by invoking services as

events arrived. The events contain communication messages as well as topology

modifications. The event of state transition of handling peer, i.e., peer joins to a

network and peer is ready to receive message, is not propagated to the services.

Developers can only perform stabilization and replication in proactive style while

generating persistence services. Nevertheless, this pluggable approach makes a

lightweight peer implementation. Therefore, the P2P Protocol Layer only needs to

 44

handle routing protocols. The additional pluggable services are independent

modules not included in the layer.

Our design has been focusing on pure P2P networks. In other words, each

peer in the architecture shares information and collaborates with other peers

without a centralized server. In previous researches [23][35], publishers and

subscribers are both clients of a message server. In our platform, each peer involves

message dispersing and propagating via the pub/sub mechanism without an

additional message server. Instead, each peer is involved in the information

dispersal of the pub/sub mechanism in our framework, without establishing

additional message server. The benefit of pure P2P is that applications do not

depend on a pre-constructed server infrastructure. The index information is

connoted in the P2P network topology and routing protocol, compared to the

super-peer indexing mechanism used in JXTA. However, this statement assumes

the computation power of each peer is about equal. According to the assumption,

this framework does not grant developer the advantage deploying P2P applications

on the environment of heterogeneous devices.

In previous research of P2P protocol, network bootstrapping is usually

omitted. By considering the practicality of creating P2P applications, we define the

bootstrap service interface and provide two boot server implementations. By

externalizing the network communication, the framework allows different protocols

transmitting messages through one single network port. With the evolving of

CommunicationManager, the performance of all P2P protocols can be boosted.

The FreePastry library is an open source implementation of Pastry. With

Scribe system implemented as an additional service, developers can create group

communication system with efficient pub/sub capability. In the design of FreePastry,

the factory methods are used for testing/simulating applications without

 45

modification to the source code. However, applications developed using FreePastry

are limited to the functionalities that this P2P library offered, i.e., only Pastry

network and Scribe system. Our framework provides a flexible architecture that

application can easily deploy to any P2P network and any network environment.

With the lightweight pub/sub APIs, application developers can adopt any P2P

pub/sub service to meet their system requirements.

JXTA is a general P2P platform that allows heterogeneous applications be

deployed on top of a virtual JXTA network. JXTA can provide additional structured

P2P network functionality based on Peer Resolver Protocol. An open source project

named Meteor [17] implements Chord and CAN on top of the JXTA platform. This

approach deploys the DHT overlays upon the virtual JXTA network, which causes

the performance downgrade because of the communication overheads among peers

that introduced by JXTA. The JXTA platform provides a propagating pipe which

can simulate pub/sub mechanism via the one-to-many message transmission. The

message might be lost without noticed during the process of propagation. The

performance degrading and reliability issue make this propagation mechanism not

scaled to a large group communication system. In our framework, the message

transmission among peers is directly delegated to physical network transportation,

which does not incur the overheads of additional node discovery. Without message

propagating, our pub/sub service can maintain a distributed multicast structure and

support many-to-many message transmission. Therefore, disseminating information

among peers will not cause unnecessary bandwidth dissipation.

 46

6. Conclusion and Future Work

6.1. Conclusion

In this thesis, we identify major issues from three aspects of developing P2P

pub/sub applications. These issues result from the lack of standardize P2P API,

common P2P pub/sub API, and network abstraction. Therefore, we synthesis

standardized P2P API, common pub/sub API a generic P2P pub/sub framework.

Our framework provides a standard P2P API for application develops to interact

with various structured P2P networks. Furthermore, a P2P pub/sub API and SPI are

introduced for using/creating P2P pub/sub algorithm in pure P2P networks. In our

design, a layered architecture is created with common P2P API, common pub/sub

API/SPI, network transportation, and bootstrapping service. This framework allows

P2P application developer to switch the underlying overlay with a little bit code to

modify. We standardize the control flow between each module. The following

benefits are brought out by this framework:

A. Easily develop/deploy application on different P2P networks and

different pub/sub systems.

B. Support both topic-based and content-based pub/sub models.

C. Deploy the P2P applications on various network environments.

This framework is designed for developing P2P pub/sub applications in

pure P2P network. It provides an adaptive architecture for developing applications

on any overlays without incurring performance degradation. On the other hand, this

framework does not accommodate to an overlay network containing more than one

role of peers, e.g., the super-peers architecture used in JXTA. By comparing to

 47

other P2P pub/sub library and P2P platform, this framework provides generality of

adapting to any P2P routing protocol and P2P pub/sub algorithm and preserves the

performance and reliability of P2P networks.

In conclusion, with the realization of common API, this framework not only

standardizes the semantic of using structured P2P network, but also creates a

general control flow of develop a P2P pub/sub application. By adopting our

framework, developers can generate full-fledged pub/sub applications on top of

every structured P2P networks.

6.2. Future Work

For further extension, the transport layer can provide predefined

retransmission policy for P2P network developer to implement routing protocol in a

robust way. The transmission policy can be implemented in two ways, used as a

parameter of send operation or declared as class scope/method scope annotation.

The function parameter solution provides a fine-grain control on every single send

operation.

function parameter annotation

RouteMessage rm = …

SendPolicy policy =

SendPolicy.TryTwice;

commMgr.send(rm, policy);

@Policy(retry=2)

public class RingPeer extends

AbstractPeer { … }

Table 6-1 – Possible Usage of Send Policy

The policy annotation approach provides a coarse-grain control that defines

the send behavior over entire class or method. Using annotation keeps protocol

implementations away from physical transport problems. However, this approach

requires additional code preprocessing. Table 6- lists the possible usage of these

two approaches. In addition, providing response-waiting utilities helps P2P protocol

 48

developers implementing request-response operations, e.g. lookup operation,

without establishing their own lock-notify mechanism.

We omit the security issue from the framework. In order to build a secure

P2P application, the ultimate solution is applying a secure mechanism, e.g.

Byzantine fault tolerance [30], to P2P protocols. We leave the implementation to

P2P protocol developer. However, this framework can provide connection security

and data encryption. Implementing a TLPCommunicationManager offers a

secure connection or constructing a MessageEncryptor provides data integrity.

Although this framework is design in the way of adapting P2P application

to different structured P2P network, fully implementing these P2P network

components requires excessive works. A protocol adaptor can be introduced to

reduce the overhead of implementing P2P components using legacy libraries.

This framework can be further extended into a P2P service middleware,

integrated with OSGi platform [21]. Our framework can be employed as the

communication infrastructure for other OSGi services. With runtime deployment

and activation, applications can easily deploy on an existing P2P topology. Under

this service-oriented architecture, P2P components are not only reused in

development process, but also in runtime. Moreover, the monitoring services can be

dynamically introduced based on the architecture of OSGi platform.

 49

Figure 6-1 – Integrated with OSGi platform.

Currently, our framework supports only message-based communication.

With application level socket, application can manage interaction between peers

with stream-based communication. The socket API should have ability for P2P

application and service to establish long-live connections between peers. This

long-live connection reduces the effort on waiting message acknowledgement in a

frequent interaction scenario.

A real-world P2P pub/sub application should be implemented on top of our

framework for further examining the usability. A P2P Blog system, based on Scribe

system and Pastry network, has been implemented in our laboratory and has been

proved as an efficient approach to disseminate articles to massive readers. By

adapting this blog system to our framework, a complementary performance

evaluation on different overlay environment will be taken and we will have

opportunity to optimize the performance for both full-featured PCs and constrained

mobile devices.

 50

7. Appendix

A.The Ring Protocol

The ring protocol is a simple routing protocol built on top of the ring

topology and is a simplified version of Chord protocol. The identifier is a 128 or

160 bits integer and the distance metrics between peers is determined by the

clockwise distance. Each peer connects to the closest id in both clockwise and

counter clockwise directions. For improving the resilience on network partition,

each peer links to K random peer. The detail of this protocol is shown in Table 7-.

;.return

);(_.

))..,.(while(

;

)lookup(.

//

;

;

else

];[.][

tofor

;.

);.('.

null)notis'if(

)'join(.

'//

//

successorx

idneighborclosestxx

idsuccessorxidxid

nx

idn

idgivenfornodeeresponsiblthelookup

nrpredecesso

nsuccessor

ineighborsuccessorineighbor

Ki

rpredecessosucessorrpredecesso

idnlookupnsuccessor

n

nn

networktheinnodearbitraryanisn

networkthejoinsnnode

=

∉

=

=

=

=

=

=

=

1

;return

];[

);(].[

))(].[if(

null)notis][if(

tofor

;

)(.

))(.if(

;

);(.

)ighbor(closest_ne.

//

x

ineighborx

iddistineighbormin

miniddistineighbor

ineighbor

Ki

rpredecessox

iddistrpredecessomin

miniddistrpredecesso

successorx

iddistsuccessormin

idn

idgiventoneighborclosestreturn

=

=

<

=

=

=

<

=

=

1

Table 7-1 – Pseudo code for the node join and lookup operation

The ring peer periodically checks the existence of all the neighbors. By

proactive stabilization, peers are guaranteed to have a correct successor at some

 51

time after the last join/leave operation occurred. The random neighbors are also

updated every time a message delivered and the oldest random peer is been

replaced by the new coming request peer. Table 7-2 shows the pseudo code of the

stabilization operation.

'][

][][

tofor

else

]['

)'if(

)'ghbors(update_nei.

//

null;][

];[][

tofor

)notis][andnullnotis][if(

);,(

hbors()check_neig.

//

;'

)).,.('ornullisif(

)'notify(.

'//

);(.

;

)).,.(.if(

;.

)stabilize(.

//

nKneighbor

ineighborineighbor

Ki

Kneighbortonmove

tableneighborinexistsalreadyn

nn

visitorlatestwithtableneighborupdate

Kneighbor

jneighborjneighbor

Kij

aliveineighborineighbor

Kinnumberrandomi

n

entriestableneighborthechecklyperiodical

nrpredecesso

idnidrpredecessonrpredecesso

nn

nofrpredecessothebemightn

nnotifysuccessor

xsuccessor

idsuccessoridnidx

rpredecessosuccessorx

n

successorofyconsistencthechecklyperiodical

=

+=

−=

=

+=

−=

=

=

∈

=

∈

=

1

11

1

1

1

Table 7-2 – Pseudo code of stabilization and neighbor update operation

 52

B.Enhanced Viceroy Protocol

The design of Viceroy Protocol is based on both ring topology and butterfly

topology. In the previous research, the issues of concurrent join/leave and

unexpected peer failure are omitted. We slightly modify the algorithm to improve

the reliability.

We use the greedy FindFast algorithm (mentioned in the technical report) as

our default lookup algorithm. The FindFast algorithm simply forwards the lookup

request to the closest neighbor node, using both inbound and outbound connections.

The nextonlevel operation is similar to the lookup operation, but with additional

level parameter. The clockwise closest node on certain level ring will be found

using this operation. Based on the result of lookup operation, the successors of

responsible node are examined until a node on the same level ring is found.

 53

 
 

;return

;.

).while(

);(.

),l(nextonleve.

//

);)~log(,(

;)(.~
el()select_lev.

//

;.return

);(_.

))..,.(while(

;

)lookup(.

//

null;

null;

null;

;_

;_

;

;

;

else

();_.

;.

);,.(.

();_.

;.

);.(.

null)notis'if(

)'join(.

'//

//

x

successorxx

ilevelx

idlookupnx

iidn

ilevelonidgivenforsuccessorclosestlookup

ninnumberrandomlevel

successordistnn

n

numbersnodetotalofestimationthevialevelselect

successorx

idneighborclosestxx

idsuccessorxidxid

nx

idn

idgivenfornodeeresponsiblthelookup

right

left

up

nrpredecessoring

nsuccessorring

level

nrpredecesso

nsuccessor

butterflyupdaten

cessorring_predessorring_succecessorring_prede

levelidnlnextonlevenssorring_succe

levelupdaten

rpredecessosuccessorrpredecesso

idnlookupn'successor

n

nn

networktheinnodearbitraryanisn

networkthejoinsnnode

=

≠

=

=

=

=

∉

=

=

=

=

=

=

=

=

=

=

=

=

=

1

1

1

 54

;return

;'

);('.

))('.if(

in'eachfor

;

);(.

))(.if(

;

);(.

))(.if(

;

);(.

))(.if(

;_

);(._

))(._if(

;_

);(._

))(._if(

;

)(.

))(.if(

;

);(.

)ighbor(closest_ne.

//

);(.

);,.(

);(.

);,.(.

);(_.

);,.(.

)if(

terfly()update_but.

//

x

xx

iddistxmin

miniddistx

inboundsx

rightx

iddistrightmin

miniddistright

leftx

iddistleftmin

miniddistleft

upx

iddistupmin

miniddistup

rpredecessoringx

iddistrpredecessoringmin

miniddistrpredecessoring

successorringx

iddistsuccessorringmin

miniddistsuccessorring

rpredecessox

iddistrpredecessomin

miniddistrpredecesso

successorx

iddistsuccessormin

idn

idgiventoneighborclosestreturn

noundnotify_inbright

levelid + nveln.nextonleright

noundnotify_inbleft

levelidnlnextonlevenleft

ninboundnotifyup

levelidnlnextonlevenup

level

n

linksbutterflytheupdateorinit

level

=

=

<

=

=

<

=

=

<

=

=

<

=

=

<

=

=

<

=

=

<

=

=

+=

+=

−=

>

− 12

1

1

1

 55

The additional stabilization protocol is used for maintain both ring and level

ring structure. By periodically checking its successor, peers has chance to modify

its level duo to the total number of peers might changed significantly. Because the

level of each peer is determined by the distance of its successor, the ring

stabilization needs to reselect level while the successor is changed. The level ring

stabilization checks if the level ring is changed or if the peer needs to join another

level ring. The butterfly links will be fixed while the peer detects itself join a

different level ring. Without actively inform the change of butterfly links, the

periodically inbound checking process will remove the inbound link if peer is left

or no longer establish a butterfly link to it.

;'

)).,.('ornullisif(

)'notify(.

'//

);(_._

;_

))._,.(.if(else

();_.

);,.(._

).if(

;_._

ilize()level_stab.

_//

);(.

();_.

;

)).,.(.if(

;.

)stabilize(.

//

nrpredecesso

idnidrpredecessonrpredecesso

nn

nofrpredecessothebemightn

nnotifylevelsuccessorring

xsuccessorring

idsuccessorringidnidx

butterflyupdaten

levelidnlnextonlevensuccessorring

levelxlevel

rpredecessoringsuccessorringx

n

successorringofyconsistencthechecklyperiodical

nnotifysuccessor

levelselectn

xsuccessor

idsuccessoridnidx

rpredecessosuccessorx

n

successorofyconsistencthechecklyperiodical

=

∈

=

∈

=

≠

=

=

∈

=

 56

)'(.

)innotis'if(

)'ound(notify_inb.

'//

//

);(.

);,(.

)notisornullisif(

);(.

);,(.

)notisornullisif(

);(.

);,(.

)(if

)notisornullisif(

erfly()check_butt.

//

);'or'or'(return

)'nbound(validate_i.

'//

);(.

true)notis)(_.if(

;in

unds()check_inbo.

//

;'_

)).,._('ornullis_if(

)'fy(level_noti.

_'//

naddinbound

inboundsn

nn

nnodefromdestablishe

linkbutterflyathatnnodenotify

noundnotify_inbright

levelidlnextonlevenright

aliverightright

noundnotify_inbleft

levelidlnextonlevenleft

aliveleftleft

noundnotify_inbup

levelidlnextonlevenup

level

aliveupup

n

linksbutterflythechecklyperiodical

nrightnleftnup

nn

ntolinkbutterflyaholdstillnifvalidate

xremoveinbounds

ninboundvalidatex

inboundsnoderandomx

n

sconnectioninboundthechecklyperiodical

nrpredecessoring

idnidrpredecessoringnrpredecessoring

nn

nofrpredecessoringthebemightn

level 12

1

1

1

++=

+=

−=

>

≡≡≡

=

=

∈

−

 57

C.The Simple Pub/Sub Protocol

Simple pub/sub protocol is based on topic-based model. Each topic is

mapping to a hash id. The peer that handles the given key is called topic handler.

Subscriber sends topic subscription message topic handler for registering interest

on specified topic channel. Publisher sends the event publish message to the topic

handler. Once an event publish message were received, topic handler relay the

event notification to all subscribers that register to the certain topic. When an event

notification arrives, the event handlers to corresponding topic are awake and the

onEvent method is invoked. The concept of this algorithm is illustrated in Figure

7-1.

Figure 7-1 – Concept of Simple Pub/Sub Algorithm

Whenever a peer joined and the update operation is invoked, topics that

should handled by the newly joined peer will migrate to the certain peer. On

 58

receiving migration message, the pub/sub service that registered on that peer stores

all the migrated topics.

For data persistence, a stabilizing message is sent periodically for dispersing

topics that peer handles to all peers in replication set. Once the peer is left, another

peer will take over these topics.

This pub/sub algorithm does not support attribute filtering. The selector

expression of subscriber is simply ignored. Event handler is notified whatever

attributes arriving event contains.

D.Example Program

I. Publish Client

package pubsub.app;

import dcslab.p2p.IdFactory;

import dcslab.p2p.Peer;

import dcslab.p2p.PeerFactory;

import dcslab.p2p.PeerJoinException;

import dcslab.p2p.PeerLeaveException;

import dcslab.p2p.boot.BootstrapService;

import dcslab.p2p.boot.impl.LocalBootstrapService;

import dcslab.p2p.environment.Environment;

import dcslab.p2p.pubsub.PubSubService;

import dcslab.p2p.pubsub.PubSubException;

import dcslab.p2p.pubsub.Publisher;

import dcslab.p2p.pubsub.Topic;

import dcslab.p2p.pubsub.event.Event;

import dcslab.p2p.pubsub.event.TextEvent;

import dcslab.p2p.pubsub.impl.SimplePubSubService;

import dcslab.p2p.transport.CommunicationManager;

import dcslab.p2p.transport.impl.TCPCommunicationManager;

import dcslab.p2p.impl.RingIdFactory;

 59

import dcslab.p2p.impl.RingPeerFactory;

import java.io.File;

public class PublishClient {

 public static void main(String[] args) {

 //determine underlying transportation mechanism

 Environment env = new Environment(new File(“example.cfg”));

 buildTCPEnvironment(env);

 CommunicationManager layer = new TCPCommunicationManager(env);

 //determine p2p network type and id type

 IdFactory idFactory = new RingIdFactory(env);

 PeerFactory factory = new RingPeerFactory(idFactory, layer);

 //peer initailization

 Peer peer = factory.createPeer();

 PubSubService service = new SimplePubSubService();

 peer.register(service);

 //connect to http boot server

 BootstrapService bootService = new LocalBootstrapService();

 try {//perform join operation

 NodeHandle localhandle = peer.getLocalHandle();

 NodeHandle booter=bootService.getBootstrapper(localhandle);

 peer.join(booter);

 } catch (PeerJoinException ex) {//if join failed on exception

 ex.printStackTrace();

 }

 if (peer.isJoined()) {

 //create publisher associated with specific topic and peer

 Topic topic = new Topic(idFactory, "hello topic");

 Publisher publisher = null;

 try {

 publisher = new Publisher(service, topic);

 // publish message

 Event event =

 60

 new TextEvent(peer.getPeerId(), "hello pubsub");

 publisher.publish(event);

 } catch (PubSubException ex) {//publish failed

 ex.printStackTrace();

 System.exit(1);

 } finally {

 try {

 if (publisher != null) { publisher.close(); }

 } catch (PubSubException ex) {

 ex.printStackTrace();

 }

 try {

 peer.leave();

 } catch (PeerLeaveException ex) {

 //peer may not leave network correctly,

 //stabilization will handle the error

 ex.printStackTrace();

 }

 }

 } else {

 // join failed, exit program

 System.exit(1);

 }

 }

}

II. Subscribe Client

package pubsub.app;

import dcslab.p2p.IdFactory;

import dcslab.p2p.Peer;

import dcslab.p2p.PeerFactory;

import dcslab.p2p.PeerJoinException;

import dcslab.p2p.PeerLeaveException;

import dcslab.p2p.boot.BootstrapService;

import dcslab.p2p.boot.impl.LocalBootstrapService;

 61

import dcslab.p2p.environment.Environment;

import dcslab.p2p.pubsub.PubSubException;

import dcslab.p2p.pubsub.PubSubService;

import dcslab.p2p.pubsub.Subscriber;

import dcslab.p2p.pubsub.Topic;

import dcslab.p2p.pubsub.event.Event;

import dcslab.p2p.pubsub.event.EventHandler;

import dcslab.p2p.pubsub.event.TextEvent;

import dcslab.p2p.pubsub.impl.SimplePubSubService;

import dcslab.p2p.transport.CommunicationManager;

import dcslab.p2p.transport.impl.TCPCommunicationManager;

import dcslab.p2p.impl.RingIdFactory;

import dcslab.p2p.impl.RingPeerFactory;

import java.io.File;

import java.io.IOException;

public class SubscribeClient {

 public static void main(String[] args) {

 //determine underlying transportation mechanism

 Environment env = new Environment(new File(“example.cfg”));

 CommunicationManager mgr = new TCPCommunicationManager(env);

 //determine p2p network type and id type

 IdFactory idFactory = new ViceroyIdFactory(env);

 PeerFactory factory = new ViceroyPeerFactory(idFactory, mgr);

 //peer initialization

 Peer peer = factory.createPeer();

 PubSubService service = new SimplePubSubService();

 peer.register(service);

 //connect to http boot server

 BootstrapService bootService = new HttpBootstrapService(env);

 try { //perform join operation

 NodeHandle localhandle = peer.getLocalHandle();

 NodeHandle booter=bootService.getBootstrapper(localhandle);

 peer.join(booter);

 62

 } catch (PeerJoinException ex) {//if join failed on exception

 ex.printStackTrace();

 }

 if (peer.isJoined()) {

 //create subscriber associated with specific topic and peer

 Topic topic = new Topic(idFactory, "hello topic");

 Subscriber subscriber = null;

 try {

 subscriber = new Subscriber(service, topic);

 //set message listener to catch message event

 subscriber.setEventHandler(new EventHandler() {

 public void onEvent(Topic topic, Event event) {

 if (event instanceof TextEvent) {

 System.out.println(

 topic.getTopicName() +

 ((TextEvent) event).getText());

 }

 }

 });

 try { //wait until user input ‘q’

 for (int c = 0; c != 'q'; c = System.in.read()){}

 } catch (IOException ex) {}

 } catch (PubSubException ex) { //subscribe fail

 ex.printStackTrace();

 } finally { //clean up subscriber and peer

 try {

 if (subscriber != null) { subscriber.unsubscribe();}

 } catch (PubSubException ex) {}

 try { peer.leave(); } catch (PeerLeaveException ex) {}

 }

 } else {

 // join failed, exit program

 System.exit(1);

 }

 }

}

 63

8. References

[1] K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas, S. Haridi and M.

Hauswirth, "The Essence of P2P: A Reference Architecture for Overlay

Networks," P2P, vol. 0, pp. 11-20, 2005.

[2] J. Aspnes and G. Shah, "Skip graphs," ACM Trans. Algorithms, vol. 3, pp. 37,

2007.

[3] M. Bender, S. Michel, S. Parkitny and G. Weikum, "A Comparative Study of

Pub/Sub Methods in Structured P2P Networks," Databases, Information Systems,

and Peer-to-Peer Computing, pp. 385-396, 2007.

[4] M. Castro, P. Druschel, A. -M. Kermarrec and A. I. T. Rowstron, "Scribe: a

large-scale and decentralized application-level multicast infrastructure," Selected

Areas in Communications, IEEE Journal on, vol. 20, pp. 1489-1499, 2002.

[5] G. Ciaccio, "A Pretty Flexible API for Generic Peer-to-Peer Programming,"

Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE

International, pp. 1-8, 26-30 March 2007.

[6] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris and I. Stoica, "Wide-area

cooperative storage with CFS," SIGOPS Oper. Syst. Rev., vol. 35, pp. 202-215,

2001.

[7] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz and I. Stoica, "Towards a

Common API for Structured Peer-to-Peer Overlays," Peer-to-Peer Systems II,

pp. 33-44, 2003.

[8] F. Delmastro, M. Conti and E. Gregori, "P2P common API for structured

overlay networks: A cross-layer extension," in WOWMOM '06: Proceedings of

the 2006 International Symposium on on World of Wireless, Mobile and

 64

Multimedia Networks, 2006, pp. 593-597.

[9] P. Fraigniaud and P. Gauron, "D2B: A de Bruijn based content-addressable

network," Theoretical Computer Science, vol. 355, pp. 65-79, 4/6. 2006.

[10] D. Haussheer, "Decentralized auction-based pricing with PeerMart," Integrated

Network Management, 2005. IM 2005. 2005 9th IFIP/IEEE International

Symposium on, pp. 381-394, 2005.

[11] M. O. Junginger, "A self-organizing publish/subscribe middleware for dynamic

peer-to-peer networks," Network, IEEE, vol. 18, pp. 38-43, 2004.

[12] M. Kaashoek and D. Karger, "Koorde: A Simple Degree-Optimal Distributed

Hash Table," Peer-to-Peer Systems II, pp. 98-107, 2003.

[13] Y. Kulbak and D. Bickson, "The emule protocol specification," 2005.

[14] A. Loo, “The future of peer-to-peer computing,” Communications of the ACM,

vol. 46, issue 9, pp. 57, 2003.

[15] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma and S. Lim, "A Survey and

Comparison of Peer-to-Peer Overlay Network Schemes," Communications

Surveys & Tutorials, IEEE, vol. 7, pp. 72-93, 2005.

[16] D. Malkhi, M. Naor and D. Ratajczak, "Viceroy: a scalable and dynamic

emulation of the butterfly," pp. 183-192, 2002.

[17] P. Manish, J. Nanyan, S. Cristina and M. Vincent. (2007, Feb. 21). Meteor. 2.4.1

Available: https://jxta-meteor.dev.java.net/

[18] J. Márk, M. Alberto, P. Gian Jesi and V. Spyros. (2007, Dec. 23). PeerSim: A

peer-to-peer simulator. 1.0.3

Available: http://peersim.sourceforge.net/

[19] P. Maymounkov and D. Mazieres, "Kademlia: A Peer-to-peer Information

System Based on the XOR Metric," 2002.

[20] MONKIA Info., "NUWeb," 2007

 65

Available: http://tw.nuweb.cc/

[21] OSGi Alliance, "OSGi Service Platform Core Specification Release 4.1,"

October. 2007.

[22] D. Peter, E. Eric, G. Romer, H. Andreas, H. Jeff, C. Y. Hu, I. Sitaram, L. Andrew,

M. Alan, N. Animesh, P. Ansley, R. Charlie, S. Dan, S. Jim, S. Atul and Z.

RongMei. (2007, Nov. 2). FreePastry. 2.0_03

Available: http://freepastry.rice.edu/FreePastry/

[23] P. Pietzuch, D. Eyers, S. Kounev and B. Shand, "Towards a common API for

Publish/Subscribe," in DEBS '07: Proceedings of the 2007 Inaugural

International Conference on Distributed Event-Based Systems, 2007, pp.

152-157.

[24] C. G. Plaxton, R. Rajaraman and A. W. Richa, "Accessing Nearby Copies of

Replicated Objects in a Distributed Environment," Theory of Computing

Systems, vol. 32, pp. 241-280, 02/24. 1999.

[25] J. Pouwelse, P. Garbacki, D. Epema and H. Sips, "The Bittorrent P2P

File-Sharing System: Measurements and Analysis," Peer-to-Peer Systems IV, pp.

205-216, 2005.

[26] W. Pugh, "Skip lists: a probabilistic alternative to balanced trees," Commun

ACM, vol. 33, pp. 668-676, 1990.

[27] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Schenker, "A scalable

content-addressable network," in SIGCOMM '01: Proceedings of the 2001

Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communications, 2001, pp. 161-172.

[28] J. Risson and T. Moors, "Survey of Research Towards Robust Peer-to-Peer

Networks: Search Methods," Computer Networks, vol. 50, pp. 3485-3521, 12/5.

2006.

 66

[29] B. Roberto, Q. Leonardo and V. Antonino, “Distributed event routing in

Publish/Subscribe communication systems: A survey,” In: Technical Report

TR-1/06, rnDipartimento di Informatica e Sistemistica, nUniversitá di Roma ‘La

Sapienza’ (2005).

[30] R. Rodrigues, B. Liskov and L. Shrira, "The design of a robust peer-to-peer

system," in EW10: Proceedings of the 10th Workshop on ACM SIGOPS

European Workshop, 2002, pp. 117-124.

[31] A. I. T. Rowstron and P. Druschel, "Pastry: Scalable, decentralized object

location, and routing for large-scale peer-to-peer systems," in Middleware '01:

Proceedings of the IFIP/ACM International Conference on Distributed Systems

Platforms Heidelberg, 2001, pp. 329-350.

[32] I. Stoica, D. Adkins, S. Zhuang, S. Shenker and S. Surana, "Internet indirection

infrastructure," in SIGCOMM '02: Proceedings of the 2002 Conference on

Applications, Technologies, Architectures, and Protocols for Computer

Communications, 2002, pp. 73-86.

[33] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H. Balakrishnan, "Chord: A

scalable peer-to-peer lookup service for internet applications," SIGCOMM

Comput. Commun. Rev., vol. 31, pp. 149-160, 2001.

[34] Sun Microsystems Inc. (2007, Oct 16th). JXTA v2.0 protocols specification.

Available: https://jxta-spec.dev.java.net/nonav/JXTAProtocols.html

[35] Sun Microsystems Inc. (2003, Dec 2nd). Java message service API.

Available: http://www.jcp.org/en/jsr/detail?id=914

[36] B. Zhao, J. Kubiatowicz and A. Joseph, "Tapestry: An infrastructure for

fault-tolerant wide-area location and routing," Computer Science Division, U. C.

Berkeley, apr, 2001.

