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Abstract

Spatial queries for extracting data from wireless sensor networks are important for many ap-
plications, such as environmental monitoring and military surveillance. One such query is
K Nearest Neighbor (KNN) query that facilitates sampling of monitored sensor data in cor-
respondence with a given query location. Recently, itinerary-based KNN query processing
techniques, that propagate queries and collect data along a pre-determined itinerary, have
been developed concurrently [27][30]. These research works demonstrate that itinerary-based
KNN query processing algorithms aresable to achieve better energy efficiency than other
existing algorithms. However, how $o derive: itineraries based on different performance re-
quirements remains a challenging problem. In‘this paper, we propose a new itinerary-based
KNN query processing technique, called PCTKNN, that.derives different itineraries aiming at
optimizing two performance criteria, respomse-latency and energy consumption. The perfor-
mance of PCIKNN is analyzed mathematically and evaluated through extensive experiments.
Experimental results show that PCIKNN has better performance, such as accuracy, energy

consumption and query latency, and has scalability than the state-of-the-art.
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Chapter 1

Introduction

Recent advances in micro-sensing MEMS and wireless communication technologies have mo-
tivated the development of wireless sensor networks (WSN). A WSN which consists of a large
number of sensor nodes capable of sensing, computing, and communications, can be used
in a variety of applications such as border detection systems, ecological monitoring systems,
and intelligent transportation systems. Generally: speaking, WSNs are deployed over a wide
geographical area to facilitate long-term momitering and data collection tasks. As sensing
readings are geographically distributed; spatial gueries that aim at extracting sensing data
from sensor nodes located in certain areas of‘interests are essential to many WSN applications
[13][18]. In this paper, we focus on théprocessing of K-nearest neighbors (KNN) query, which
facilitates data sampling of the sensors located in"a geographical proximity via specification of
a query point ¢ and a sample size K. Using a KNN query, one could obtain sensor data (e.g.,
environmental measurements) near a query location of interests. A KNN query processing is
a classical spatial query in a centralized databases and has attracted many research efforts
to improve the performance of KNN query processing [19][22][8][23][4]. However, traditional
KNN processing techniques are infeasible for wireless sensor networks in that a centralized
database should be built to periodically collect sensing data from large-scale sensor networks,
which incurs higher energy consumption and long latency.

To overcome the issues mentioned above, in-network processing techniques for KNN queries
have been developed [5][2][24][25][30][27][28]. In these papers, a KNN query is submitted to
the network via any sensor node (referred to as the source node) and propagated to the
sensor nodes qualified by specified predicates. As a result, sensor data from these nodes
are collected and returned to the source node. Existing in-network KNN query processing
techniques can be categorized into two types: a) infrastructure-based and b) infrastructure-

free. The former relies on a network infrastructure (e.g., based on R-trees [6] and its variants
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Figure 1.1: Overview of itinerary-based KNN query processing.

[20][1] or spanning trees [14][15] in WSN) for query propagation and processing [5][24][25].
Maintenance of those network infrastructures is a major issue of this type of query processing
techniques. In particular, maintaining infrastructures incurs excessive communications when
sensors have the mobility capability [3][7}#:@uthe other hand, the latter does not rely on
any pre-established network infrastrueture toiprocess gueries. Recently, two infrastructure-
free KNN query processing techniquiesshave been-developed [30][27][28]. The main idea of
these infrastructure-free KNN queryprocessing is that a KNN query is propagated along well-

designed itineraries and data is collected while the KNN query performs itinerary traversals.

Without loss of generality, an itinerary-based KNN query processing algorithm typically
consists of three phases: i) routing phase; ii) KNN boundary estimation phase; iii) query
dissemination phase. The execution example of itinerary-based KNN query processing is
shown in Figure 1.1. Explicitly, when a KNN query @) is issued at a source node, the query @
that specifies the query point ¢ and the sample size K is routed to the sensor node nearest to
the query point ¢ (referred the home node) by geo-routing protocols (e.g., GPSR [9], PSGR
[26] and other geo-routing protocols [10][11]). Then, in the KNN boundary estimation phase,
the home node will estimate the initial KNN boundary (e.g., the solid boundary shown in
Figure 1.1(a)), where KNN boundary is likely to contain K sensor nodes. After estimating
the initial KNN boundary, in the query dissemination phase (shown in Figure 1.1(b)), the
home node propagates the query to each node within the KNN boundary. A KNN query is
propagated along well-designed itineraries, while partial query results are aggregated at the
same time. It is shown in [30][27][28], by avoiding the maintenance of a network infrastructure,

itinerary-based KNN query processing techniques outperform existing infrastructure-based



KNN approaches.

Clearly, the performance (such as the query latency and the energy consumption) of
itinerary-based KNN query processing techniques is dependent on the design of itinerary
structures. With a long itinerary, long processing latency and high energy consumption are
expected due to the long itinerary traversal of a KNN query. Thus, itinerary planning is
a vitally important design issue for itinerary-based KNN query processing. Prior works in
[30][27][28] develop several itinerary structures. However, the proposed itineraries are not op-
timized in terms of the energy consumption and the query latency. In this paper, we propose
a new itinerary-based KNN query processing technique that derives parallel itineraries aim-
ing at optimizing two performance criteria, the query latency and the energy consumption.
Specifically, we propose a Parallel Concentric-circle Itinerary-based KNN query processing
(thus named as PCIKNN). In this paper, PCIKNN is designed to allow a KNN query propa-
gated in multiple concurrent itineraries and the number of concurrent itineraries (referred to
as KNN threads for short) is maximal. Intuitively, with a larger number of concurrent KNN
threads propagated, both the query latency and the energy consumption are significantly re-
duced. Furthermore, analytical models for the query.latency and the energy consumption
of PCIKNN are derived. By optimizing the latency and-the energy consumptions, PCIKNN
derives itineraries with two modes f{i.e., minilatency mode and min_energy mode), specifi-
cally tailored to minimize the response latency or the energy consumption, respectively. For
itinerary-based KNN query processing techniques; an important issue is to estimate a search
boundary covered by itineraries. Thus, by exploring regression techniques, we proposed a
boundary estimation method to accurately determine the search boundary. In addition, to
improve the query accuracy, we develop several mechanisms to dynamically adjust the search
boundary. The performance of PCIKNN is analyzed mathematically and evaluated through
extensive experimentation based on simulation. Experimental results show that PCIKNN has
better performance and scalability than the state-of-the-art.

The rest of the paper is organized as follows. Preliminaries, including the problem defi-
nition and basic ideas of existing itinerary-based KNN query processing is introduced. The
design of our PCIKNN technique and analytic models for two optimization modes are de-
scribed in Chapter 3. A KNN boundary estimation is presented in Chapter 4. Mechanisms
for spatial irregularity are developed in Chapter 5. The performance of PCIKNN and other
existing techniques is evaluated in Chapter 6. Finally, Chapter 7 concludes this paper.



Chapter 2

Preliminaries

In this chapter, some assumptions and KNN problem definition is presented. Then, the

problem addressed in this paper is described.

2.1 Assumptions

We assume that sensor nodes in wireless sensor-networks are randomly distributed in a two-
dimensional space. Each sensor is location-aware via GPS:[17] or other localization techniques.
By periodically inter-exchanging information ameng sensor nodes nearby, a sensor node is able
to maintain its own neighboring information.. Meréover, we assume that the sensed data are
stored locally on the sensor nodes. KNN queries can be issued at any sensor node (called
source node), which is the starting node for in-network query processing. The source node is
also responsible for reporting the query result after query processing. As mentioned before,
KNN query processing provides a way to sample the data from sensor nodes located in the
proximity of a given query location. We now define the KNN query in wireless sensor networks
as follows:

Definition: (K Nearest Neighbor query). Given a set of sensor nodes M and a geographical
location (denoted as a query point ¢), find a subset M’ of k nodes (M’ C M, |[M'| = K)
such that Vn; € M’ and Vny € M — M, dist(ny,q) < dist(ns,q), where dist represents the
Euclidean distance function.

Generally speaking, the exact result set of KNN should contain the K nearest neighbor
nodes of q. However, due to the mobility nodes and the network spatial irregularity, prior
works only provide approximate KNN query result and the query result accuracy is defined by
the percentage ratio of the correct KNNs returned. In itinerary-based KNN query processing

techniques, the main phase is the query dissemination phase. Thus, in the following, we
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describe the query dissemination phase in details.

2.2  Query Dissemination Phase in Itinerary-based KINN

Query Processing

Figure 2.1: Itinerary-based query propagation.

Query dissemination is a critical=issue-for itinerary-based KNN query processing tech-
niques. The detailed steps of itinerary-based query dissemination are illustrated in Fig-
ure 2.1(a), where the dotted line is a well-designed-itinerary. As shown in the figure, sensors
are categorized into @-node (marked as black nodes)and D-node (marked as white nodes).
Upon receiving a query, a Q-node broadcasts a probe message including the query Q and the
itinerary information to its neighbors. Each neighbor node (i.e., D-node) receives the probe
message and then sends its sensed data to the Q-node. After collecting data from D-nodes
nearby, the Q-node finds the next Q-node along the itinerary and forwards the current query
result to the next Q-node. The next Q-node is determined by exploring the mazimum progress
heuristic in that the next Q-node with the farthest distance to the current Q-node along the
proceeding direction of the itinerary is selected. The width of the itineraries w is set to ‘/737",
where r is the transmission radius of a sensor node, for full coverage shown in Figure 2.1(b).
Interesting readers are referred to [16] [29] for detailed implementation of itinerary-based query
dissemination. Finally, the last Q-node forwards the aggregated query result to the source

node, where the KNN query is issued.



2.3 Overview of PCIKNN

In this paper, we propose a new itinerary-based query processing algorithm based on optimized
parallel concentric-circle itineraries, named as PCIKNN. Same as in prior works in [30][27],
PCIKNN also has three phases: the routing phase, the KNN boundary estimation phase and
the query dissemination phase. In addition, to improve the query accuracy of KNN query,
PCIKNN has several mechanisms to improve the accuracy of KNN query results. Explicitly,
the estimated KNN boundary could be dynamically updated while the query is propagated
within the KNN boundary. Moreover, the KNN result collection should be guaranteed based
on information exchanging within adjacency itineraries. Finally, aggregated query results are
sent back to the source node.

As mentioned before, itinerary structures have a great impact on the performance of
itinerary-based KNN query processing techniques. Long itineraries may incur long latency
and heavy energy consumption, because the query propagation and data collection are per-
formed along the itineraries. A query may have a long journey and have to carry more collected
data on long itineraries, thereby increasing both thelatency and the energy consumption. In
addition to the length and the number of itineraries, the number of concurrent KNN query
threads propagated also have an impact on performance of itinerary-based KNN query pro-
cessing techniques. Clearly, with a-larger mumber of eoncurrent threads propagated along
itineraries, the latency of KNN query processing-may be improved. However, prior works
explore multiple itineraries by fixing the number of concurrent KNN query threads to the
number of itineraries. Thus, in PCIKNN, we aim at designing itineraries that allow more con-
current KNN query threads to be propagated. Since the routing phase of PCIKNN is the same
as in [30][27][28], in the following sections, we will describe the itinerary structure designed in
PCIKNN, the estimation method in the boundary estimation phase and the mechanisms for

improving the accuracy of KNN results.
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Chapter 3

Itinerary Structures in PCIKNN

In this chapter, we first present the design of parallel concentric-circle itineraries in PCIKNN
and then an analytical comparison of performances between PCIKNN and existing works are
derived. Moreover, corresponding to the targeted performance criteria, i.e., the query latency
and the energy consumption, we analytically derive the number of parallel itineraries to be

employed in PCIKNN.

3.1 Parallel Concentric-Circle Itimeraries

As pointed before, the number and structure of itineraries have an impact on performance of
itinerary-based KNN query processing algorithms.” Intuitively, a KNN query executed concur-
rently through a large number of itineraries will incur small latency and energy consumptions.
However, in reality, it’s not feasible to use an excessive number of itineraries due to that the
packet collision problem [27][28]. Here, we first explore the design issue of parallel concentric-
circle itineraries by assuming a boundary that contains K nearest sensor nodes to the query
point is given. We will address the issue of estimating this KNN boundary later in Chapter 4.

Given a query point ¢ and an estimated KNN boundary, the area within the boundary
can be divided into multiple concentric-circle itineraries. Let C; denote the ¢th circle with
a radius w X 7, where w is the itinerary width, the distance between itineraries. Similar to
[30][27][28], w can be set as \/757", where 7 is the transmission range of a sensor node. In order
to propagate KNN query along concentric-circle itineraries, we partition the KNN boundary
into multiple sectors. Figure 2.2(a) shows an example of concentric-circle itineraries, where the
number of sectors is 4. For each sector, we have three types of itinerary segments: 1) a branch-

segment, 2) a set of peri-segments, and 3) two return-segments. As shown in Figure 2.2(b), a

branch segment is a straight line passed through concentric-circles with the itinerary width w



in each sector, two return-segments are the boundary lines among sectors with the itinerary
width § and peri-segments are portions of concentric-circles between branch-segments and
return-segments. Obviously, there is no peri-segment in a concentric-circle if the regions of
branch-segments and return-segments fully cover this concentric-circle. It can be seen that in
Figure 2.2(b) the arrows indicate the directions of query propagations. With the segments of
itineraries in PCIKNN, a KNN query is executed concurrently at these segments of itineraries
and the KNN query propagated in these segments are referred to as KNN query threads. Note
that the number of concurrent KNN query threads in PCIKNN is as maximal as possible.

In light of itinerary segments derived above, a KNN query is disseminated along these seg-
ments of itineraries. A KNN query propagation starts from the home node and the KNN query
is first propagated along with branch-segments in each sector. Along the branch-segment, a
Q-node broadcasts a probe message and aggregates the partial results from D-nodes within
the region width of w. Then, for each sector, when the KNN query reaches one of concentric-
circles, two KNN query threads are forked to propagate along the two peri-segments, while
the original KNN query continues to move_ along the branch-segment. To propagate a KNN
query in two peri-segments, the Q-nodein the branch segment first finds two Q-nodes in peri-
segments and evenly divide the partial query result:collected to these two Q-nodes. Then,
these two Q-nodes will start perforniing KNN-query dissémination with peri-segments. When
KNN queries propagating along peri-segments arrive the boundary lines of their sectors, KNN
queries with data collected are returned back to the home node through return-segments.
Because the home node receives all partial KNN query results, it is able to decide whether
to continue KNN query propagation or not. This leads to more precise KNN query results
in PCIKNN. The detailed mechanisms to improve the query accuracy is presented later. The
above query dissemination repeats until the original KNN query reaches the outer concentric-
circle. Hence, in PCIKNN, the number of the concurrent KNN threads is larger than prior
works [30]DIKNN. It can be seen that by exploring parallel concentric-circles, the number of
concurrent KNN query threads is maximized. Furthermore, due to the high parallelism of
PCIKNN, PCIKNN achieves high performance in terms of the query latency and the energy

consumption.

3.2 Analysis of Itinerary Structures

In this section, we will analyze the performances of IKNN, DIKNN and PCIKNN in terms

of the number of concurrent query threads, the query latency and the energy consumption.
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Without loss of generality, we assume that sensor nodes are uniformly distributed in the
monitored region. Moreover, the KNN boundary is known and in our illustrative example,
the radius R of the KNN boundary is set to ¢ xw. In other words, there are ¢ concentric-circles
in the KNN boundary. In addition, the number of sectors is set to S.

Number of concurrent query threads: Figure 3.1(a) shows the parallel IKNN algorithm
proposed in [30]. As can be seen in Figure 3.1(a), since there are two itineraries, the number
of concurrent query threads in IKNN is 2. For DIKNN and PCIKNN, the number of sectors
directly affects the number of concurrent query threads. It can be seen that in Figure 3.1(b),
only one itinerary is in a sector of DIKNN and hence the number of concurrent query threads
in DIKNN is exactly the same with the number of sectors. In PCIKNN, for each sector,
one could have one query thread along with a branch-segment, two query threads alone with
peri-segments in each concentric circle. Therefore, the maximal number of concurrent KNN
query threads is (2 x c+1) x S. Assume that the number of sectors is set to 4 and the number
of concentric-circles is 4. As such, we could have the number of concurrent query threads in
DIKNN and PCIKNN as 4 and 36, respectively., Clearly, PCIKNN has the maximal number
of query threads compared to IKNN and DIKINN.

As pointed out early, sensor nodes are uniforinly disttibuted in the network and the width
of itineraries for query propagation and data-¢ollection is'w. Consequently, the query latency
and the energy consumption are highly proportional torthe length of itineraries. As such, for
the analysis of the query latency and the energy' consumption, the comparisons of DIKNN
and PCIKNN are in terms of the length of itineraries. Note that since DIKNN outperforms
IKNN, we only compare DIKNN and PCIKNN.

Query latency: The query latency is determined by the maximal length of itineraries in
DIKNN and PCIKNN. Therefore, we derive the maximal length of itineraries shown as the
dotted lines in Figure 3.1(b) and Figure 2.2(a) to represent the query latency (denoted as the
analytical latency). As shown in Figure 3.1(b), it can be seen that the analytical query latency
of DIKNN is the sum of the total lengths of concentric-circles in a sector and the length of a

branch-segment. Hence, we have

R
analytical latencypreny = > 2o (Lengthe;) + Lengthyranch

27 (iXw)
S

, where the length of itinerary in the ith concentric-circle Lengthe; = and the length
of branch-segment Lengthy.anen = (¢ — %) X W.

Due to that the analytical query latency is represented as the maximal length of itineraries,
the analytical query latency of PCIKNN is thus formulated as the sum of the length of a peri-

segment in the maximal concentric-circle and the length of a branch-segment. Thus, we have

11



analytical_latencypcrxkny = Lengthperi + Lengthyranch

, where the length of peri-segments Lengthpe,; = %R in the maximal concentric-circle and the

length of a branch-segment Lengthy.qnen = (¢ — %) x w. The result of the analytical latency
for DIKNN and PCIKNN with the number of sectors varied is shown in Figure 3.2(a). It can
be seen in Figure 3.2(a) that the analytical latency in DIKNN and PCIKNN decreases when
the number of S increases. This is due to that with a larger number of sectors, the smaller
of the maximal length of itineraries in both DIKNN and PCIKNN. Moreover, the analytical
latency of PCIKNN is smaller than that of DIKNN. As a result, PCIKNN is expected to have

better latency performance than others.

Energy consumption: In itinerary-based KNN query processing techniques, the data
collected is carried along with the itineraries during the query propagation. Clearly, the energy
consumption of DIKNN and PCIKNN could be evaluated by the amount of data carried. With
a longer itinerary, the number of Q-nodes on the itinerary and the amount of data carried will
be increased. Thus, the analytical energy eonsumption is estimated as analytical_energy =
S« analytical _energy,, where analytical ‘eneérqys is the energy consumption in one sector and
S is the number of sectors. Intuitively, the value of analytical_energy, can be derived by
integrating the length of itineraries -and theé amount of data carried. Denote the length of
itineraries in a sector as length,. Since the amount of data carried is directly proportional
to the itinerary length, we could use a continuous function of itinerary lengths, denoted as

D omount (%), to model the energy consumption. Hence, we could have the following formula:

length D

20 amount (1) X d(z) o< (itinerary_length)?

analytical _energys =

Therefore, the analytical energy could be a quadratic function of itinerary lengths in a
sector. The analytical energy of DIKNN is formulated as the sum of the square of the total

lengths of concentric-circles in a sector and the length of a branch-segment. Hence, we have:
R
analytical_energyprxnny = S x (3_2o(Lengthes) + Lengthianch)®

Notice that itineraries for the data collection of PCIKNN in a sector include a branch-
segment and peri-segments. Hence, when KNN query along with a branch-segment encounter a
new concentric-circle, KNN query starts two KNN query threads alone with two peri-segments.
Consequently, the data collected so far along with the branch-segment is equally divided into
two parts for two KNN query threads. Hence, the amount of data carried along with itineraries

is smaller, thereby reducing the energy consumption. Following the same derivation for the

12



analytical energy, the analytical energy of PCIKNN is formulated as sum of the square of each
sub-itinerary (a partial branch-segment and a peri-segment in a concentric-circle). Thus, we

have:

R
analytical _energypcrxny = S X (32 (Lengthperici + Lengthyanch.ci)?)

, where the length of a peri-segment in the concentric-circle C is Lengthperici = Lengthperi
%R and the partial branch-segment from a concentric-circle C;_; to its next concentric-circle
Ct is Lengthyranch,ci = w.

In light of the analytical energy formulas for DIKNN and PCIKNN, we generate the
analytical results with the number of sectors varied. The analytical energy results are shown
in Figure 3.2(b), where both DIKNN and PCIKNN have smaller energy consumption with a
larger number of sectors. Furthermore, PCIKNN has a smaller analytical energy consumption.

From the above analysis, PCIKNN is able to allow as many concurrent KNN query threads
as possible in itineraries derived. Thus, with a good parallelization, PCIKNN has smaller
query latency time and the energy consumption than existing works (i.e., IKNN and DIKNN)

from the perspective of the analytical lateney and energy consumption. In the latter section,

we will show that experimental results demonstrate.the above observation.

3.3 Optimal Number:of 'Sectors for PCIKNN

PCIKNN explores parallel concentric-circles itineraries to achieve better parallelism. Thus,
to determine an appropriate number of sectors (denoted as S) is a critical issue. When the
number of sectors is larger, the length of total itineraries will increase because the numbers
of branch-segments and return-segments are also increased. However, when a smaller number
of sectors is used, the length of peri-segments in each sector increases, thereby incurring more
energy consumption for propagating KNN queries and carrying more partial KNN results.
There is an obvious bound of the number of sectors (i.e., the length of peri-segments in
the out concentric-circle is zero). In this section, we derive analytical models to determine
the appropriate number of sectors in accordance with the two optimization goals considered,
i.e., minimum latency (referred to as min_latency) and the minimum energy (referred to as

min_enerqgy).

3.3.1 Notations and Assumptions

Given a KNN boundary with radius R and network density d, we intend to derive an appro-

priate number of sectors to meet the optimization objectives. Note that the network density is
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Parameter | Description

R radius of KNN boundary (m)

d network density (nodes/m?)

r transmission range of a node (m)

w width of itineraries

E, the expected distance between hops (m)
Delay time delay for processing a message (s
Dsize D-node message size (bits)

Hsize message header size (bits)

Bits energy to transmit one data bit per hop

Table 3.1: Parameters used in our analytical model.

T* - circle j+1

W, .
l itinerary j

ce o AL cirle
Figure 3.3: Information statistics in routing path.

able to estimate while routing KNN query and will be described later. Assumptions made in
our analysis are discussed as follows. We assume thatsensor nodes are uniformly distributed
and there is no void area in the mgnitored region. Message transmissions are reliable, i.e.,
there is no message lost. Query propagation.along the branch- and return- segments are one
hop for each concentric circle and each-Q-nede is ideally- located in the itineraries. Parameters

used in our analysis are summarized in Table 3.1

3.3.2 Minimum Latency for PCIKNN

In PCIKNN, when the number of sectors is increased, peri-segment is expected to shorten,
thus reducing the latency. For each sector, once a KNN query arrives boundaries among
sectors, the partial results should be transmitted to the home node along the return-segments.
With a larger number of sectors, network jams are likely to happen around the home node,
degrading the latency of PCIKNN. Therefore, the latency time of PCIKNN mainly depends
on two values: latencype,; and latencypome. Explicitly, latency,.,; is the latency of propagating
KNN query in peri-segments at the farthest concentric-circle from the home node because the
latency of query propagation along peri-segments at the inner concentric-circle is smaller. On
the other hand, latencynome is the time spent for processing partial results at the home node.

Therefore, the latency time of PCIKNN is formulated as

latency = latencyper; + latencynome
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To calculate latencyperi, we should take into account message delays for sending probe
messages and receiving D-nodes messages at each Q-node. Thus, we could have latencype,; as

follows:

latencyperi = Eﬁz;i x (14 E%ezm) x Delay

, Where Eﬁgj is the expected number of Q-nodes in the peri-segment at the farthest concentric-
circle and E%ezm is the expected number of D-nodes of a Q-nodes. The expected number of
D-nodes is estimated as the number of D-nodes in the gray area in Figure 3.3. Consequently,

we have

Epm_2><7r><R><w
hor = 9 % S x Er

ER" = Erxwxd
, where Er is the expected length of each hop of Q-nodes. According to [27][28], Er is
formulated as Er = r2V/d/(1 + rv/d).
As for the latency time spent on collecting partial results at the home node, we assume
that partial results are sent to the home nodes at the same time (which is the worst-case

scenario). Hence, we have the following lateney:
lateneypome =2-x.S. x Delay

According to the above derivations, thedatency” time for PCIKNN is able to derived as

follows:

latency = (Z25 x (1 +w x Er x d) x Delay) 4+ (2 x S x Delay)

In order to obtain the optimal number of sectors to achieve the minimal latency time of
PCIKNN, we could differentiate the above latency formula. Therefore, the optimal number
of sectors is derived as follows:

S_\/(%TR)x(l%—wxErxd)
N 2

3.3.3 Minimum Energy for PCIKNN

As mentioned above, a long itinerary length shall incur more energy consumption. However,
the energy consumption of PCIKNN should consider the energy consumption on the query
propagation and data collection along with branch- and peri-segments, and the energy con-
sumption of carrying partial results along with return-segments. Explicitly, a small number of

sectors leads to long itineraries in each sector, incurring heavy energy consumption overall in
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carrying data collected from D-nodes. On the contrary, a large number of sectors increases the
number of branch-segments and return-segments, incurring more energy consumption over-
head on the query propagation and data collection along branch-segments, and the partial
result collection along return-segments. Thus, an optimal number of sectors can be derived to
minimize the energy consumption. Generally speaking, the energy consumption of PCIKNN
involves two parts in each itinerary segment: 1) Data collected from D-nodes should be car-
ried hop-by-hop along with KNN query. 2) KNN query is propagated along with Q-nodes.
Without loss of generality, the energy consumption is modeled as the communication cost in
terms of the number of bits transmitted among sensor nodes. Thus, the energy consumption of
PCIKNN is the sum of energy consumption corresponding to branch-segment, peri-segment
and return-segment of all sectors. Since there are multiple concentric-circle itineraries in
PCIKNN, the energy consumption on the type-segment in the i¢th concentric-circle itineraries
is expressed by energy,,,. .- For example, the energy consumption of peri-segment itineraries

in the first concentric-circle is represented as energy,.,; ¢, Consequently, we have

energy = Zf:/lw(‘s X (energybranch,Ci oE ENET GYperi,Ci + energyreturn,Ci))a

R

where the number of concentric-circles is| +

The energy consumption is modeled as Epq, X Bits,=where Fj,, is the expected number
of hops and Bits is the energy consumption totransmit one data bit per hop. Let Eﬁﬁm
denote the expected number of hops in the typessegment on Ci. For example, Ezg;”(ﬁ? is the

type

expected number of hops in the branch-segment on Ci. Furthermore, £ represents the

expected number of D-nodes of a Q-node in the type-segment. For computation simplification,
we simplify the radius of C'i is ¢ X w. In the following, we will derive the energy consumption
in each itinerary segment.

Note that the energy consumption in each segment consists of D-nodes data carrying

energy and Q-nodes query propagation energy. For the energy consumption for the branch

segment on C'7, we could have the following formula:

Epanct x (Hgize + (EB" X Dyize)) X Bits,

num

where E,’?LZZ”CC,? =1, E%’:ﬁh = 0 since Q-nodes are assumed to be connected hop-by-hop along
with a branch-segment and D-nodes data collected are divided into peri-segments.

Similar, we could derive the energy consumption in the peri-segment as follows:

peri

25 (Bjeric, % Hase) + (X257 (5 % BT ) % Dyise)) x Bits,

2X T X1 XWw

where EPY" = and EP"" = Er x w x d.
hOp,CZ 2 X S X E,,,. Drnum
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Since we have two return-segments in each sector, the energy consumption is modeled as

follows:

2 x Epelith X (Hgize + (B 0; X Dyize)) X Bits,

n’LLm’CZ
return __ ; return  __ Jopert peri
where Ehop’Ci =1, EDMWCZ- = Ehopa X EDmm'
Putting the above formulas together, we could further utilize differentiation to derive the

optimal number of sectors so as to minimize the energy consumption of PCIKNN. Conse-

quently, the optimal number of sectors is derived as follows:

ruld  (E+1)
S — Er 6

Hsize

x Dsize

Model Validation: The simulation environment for model validation is that there are
1000 sensor nodes randomly distributed in a 500x500 simulation field. Total 100 KNN
queries are issued, where K=300. The simulation results are shown in Figure 3.4. The
minimal latency model determines Sigtency =6.4 rounded to 6 is equal to the experiment
minimal latency with S=6. The minimalenergy model derives Scpergy =7.1 rounded to 7 also
matched the experiment result with S=7! These comparisons show that our analysis is pretty
accurate. From the formulas derived, we could easily determine the number of sectors with

its quality very close to the optimized objectives:

7000 . , . T T : : ! :
Latency —— Energy ——
0.54 b
6500 |- c ,
- -%_ 0.52 - nalytical Result
5 Analytical Result %
< 6000 - = 05 f
> o
@ 048 |
5500 )
0.46 r
5000 1 1 1 1 1 1 1 1 1 1 1 1
4 5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11 12
number of sectors number of sectors
(a) Minimum latency model (b) Minimum energy model

Figure 3.4: Models validation.

17



Chapter 4

KNN Boundary Estimation

Obviously, the precision of the KNN boundary estimation has a direct impact on the perfor-
mance of itinerary-based KNN query processing. In this chapter, we develop a mechanism to

estimate KNN boundary.

-

(a) (b)

Figure 4.1: Estimating coverage areas of routing.

4.1 Design of KNN Boundary Estimation

An over-estimated KNN boundary will lead to excessive energy consumption and long latency,
whereas an under-estimated KNN boundary may reduce the accuracy of query results. Thus,
boundary estimation is very critical to the success of itinerary-based KNN query processing.
Here we assume that sensor nodes do not have a priori knowledge about the density and
distribution of nodes in the network. To address this issue, DIKNN [27][28] first collects
(partial) network information in the query routing phase to derive the network density, which
in turn is used to estimate a boundary that are likely to contain K sensor nodes. Clearly,
how to precisely determine the network density from the partial information gathered in the

routing phase is important. In the following, we will describe our approach to derive the
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Figure 4.2: Intersection covered area with various node distances.

network density in the routing phase.

By using a geo-routing protocol, e.g., GPSR, a KNN query is greedily forwarded from
the source node to the home node. In the routing phase, network information, such as the
number of nodes and the coverage area shown the dotted area in Figure 4.1(b) along the
routing path, is obtained. This information (i.e., coverage area of routing and the number
of nodes encountered) are gathered and’sent along with KNN query. Let A; denote the area
covered by relay messages up to theZth hop and Num tepresents the total number of nodes
within the coverage area of the routing path. They are collected and updated as a KNN query
moves forward hop-by-hop. Once thé query reaches its home node, the collected information
is used to estimate the network density.

Next, we demonstrate how to update these two values in the routing phase. A message
relay from node NN; to node N, is shown in Figure 4.1(a), where the gray area is the newly
explored area, denoted as FA;. The number of sensor nodes in FA; is denoted by inc; .
By adding inc; 41 to Num, one could have the most updated number of nodes encountered so
far. The value of EA; is formulated as EA; = mr? — H(2r — dist(N;, Ni11)), where r is the
transmission radius of a sensor, H(.) is a linear function and dist(N;, N;y1) is the Euclidean
distance between NN; and N,,;. By extensive experiments, we observed that the intersection
area between two sensor nodes is almost negative correlated with dist(N;, N;y1) shown in
Figure 4.2. Thus, in this paper, to precisely estimate the intersection area between two sensor

nodes, we explore linear regression techniques and H(.) is thus formulated as:
H(dlSt(Nz, Ni—i—l)) =cC+c X dZSt(NZ, Ni+1)7

where ¢; and ¢y are coefficients, which are determined by [12].
In fact, H function, to be empirically determined in our simulation, is used to estimate the

intersection area of N; and N,,.;. Hence, the total area covered by relay messages up to ith
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hop is as follows:
Ai = EAZ + Ai—17 for i > 1 and Al = 7T7"2.

When a KNN query reaches the home node, the home node computes the network density

D as D=X 1, where A is the total area covered by relay messages from the source node. As

a result, the KNN boundary is estimated as follows:

TR2x D=K
R=.,/%

D"

Although DIKNN|[27][28] also explores the network density to estimate the KNN boundary
region, an additional list is used to record all local information of each hop in the routing
phase. This list, sent along with KNN query, incurs more energy overhead. Furthermore,
DIKNN estimates KNN boundary by an algorithm named KNNB presented in their paper
which estimates the KNN boundary by local information hop by hop started from the home
node to extend the estimated boundary until a circle centered by query point q is found and
has K nodes. Obviously, there two condition of boundary estimation by KNNB, first, KNNB
may utilize less local information to-estimated the KNN-boundary when the estimated KNN
boundary is smaller than the length of routing path. It may reduce the accuracy because
KNN uses less local information for houndary estimation. Second, there is a problem when
the additional list is too short to find the KNN boundary. We compare the performance of
our proposed mechanism with that of DIKNN later.
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Chapter 5

Mechanisms for Spatial Irregularity

The above boundary estimation is under the assumption that the sensor nodes are uniformly
distributed in the monitored region. However, it is possible that real sensor networks are
spatial irregular, thereby reducing the accuracy of boundary estimation. To deal with this
problem, in this chapter, we present a mechanism to dynamically adjust the estimated KNN
boundary when the query is propagated. ¢Hurthermore, in PCIKNN, the home node will
collect KNN query results via the return-segmentsin each sector. Therefore, the home node
will decide whether KNN query should-be propagated or not according to the partial KNN
query results collected. We, therefore, propose two mechanisms for the two modes (i.e., the

min_energy model and the min_latency mode).

5.1 Adjusting Estimated KNN Boundary During Query
Propagation

After estimating the KNN boundary with radius R , KNN query is then propagated to branch-
segments. The network information obtained in the routing phase (i.e., the total coverage area
A and the number of nodes Num) is sent with KNN query processing. When KNN query is
propagated along with the branch-segment, local network information within the segment is
accumulated via the below operation in the routing phase. Ap (respectively, Numg) is the
coverage area (respectively, number of nodes) along the branch-segment. Consequently, we
could derive the network density by exploring local network information. Hence, the network

density is updated as follows:

Dupdzzte = (Num+NumB)/(A+AB)

K
7rDupdate

Rupdate =
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Figure 5.1: Updating KNN boundary dynamically.

By exploiting local network information in each sector, PCIKNN is able to dynamically
adapt KNN boundary. For example, the gray area in Figure 5.1 is adapted to node densities
in sectors. Even though this adapted KNN boundary still cannot guarantee the accuracy of
KNN query result because the adapted KNN boundary still may be smaller or larger than
the real KNN boundary, it is expected 6 decrease the difference between the estimated KNN
boundary and the real KNN boundary. In the performance evaluation section, we will show

the performance of estimated boundary updating.

5.2 Adjusting Estimated KINN Boundary from the Home
Node

As pointed out early, in PCIKNN, the home node has the partial KNN query results from each
sector. Therefore, the home node is able to decide whether KNN query should be propagated
or not according to the partial KNN query results collected. Thus, we propose two mechanisms
to ensure KNN collection and handle the un-accuracy of the estimated KNN boundary. Due
to the nature of PCIKNN, partial results from each sector are collected by the home node, the
home node is able to decide and control whether the estimated boundary should be extended
or the query processing should be stopped via controlling messages sent by the home node.
Mechanism for the Min_Energy Mode:

In the min_energy mode of PCIKNN, the goal is to conserve as much energy as possible.
Therefore, only receiving control messages (referring to CONTINUE message) from the home
node, Q-nodes alone with the branch-segments are propagated to the next concentric circles.

Specifically, when the home node receives partial results from each sector, the home node will
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record some information, such as the sector and the concentric-circle, that indicate where the
partial result comes from. Once the home node collect all the partial results from each sector
in a concentric-circle C'i, the home node will determine whether the KNN query should be
propagated in the next concentric-circle C'i + 1 or not. Note that, when KNN query reaches
or exceeds the estimated KNN boundary, the Q-nodes will wait for the control messages from
the home node. It can be seen that the KNN query is disseminated concentric-circle by
concentric-circle after the KNN query exceeds the estimated KNN boundary. On the other
hand, when the partial results from sectors fulfil the KNN requirement, the home node informs
the Q-nodes to stop the KNN query dissemination and data collection in each sector, saving
the energy consumption.

Mechanism for the Min_Latency Mode:

The goal of this mechanism is to minimize the query latency under decreasing unnecessary
search overhead and thus, the home node frequently broadcasts the radius of the estimated
KNN boundary once receiving the partial KNN results. Explicitly, the home node broad-
casts information related to the current status.of KNN query results and allow Q-nodes to
quickly propagate KNN query. Hence,5swhen a partial-result is collected, the home node will
estimate the distance between the Kth data‘and. the query point (referred to DMAX) and
DMAX is the minimal boundary estimated so far that ¢nsures there are KNN data in this
boundary. If the number of KNN results collected by the home node does not exceed K, the
DMAX is set to infinite. Note that the DMAX will be updated if the partial KNN results are
collected. Then, if the current value of DMAX is different from previous-round DMAX, the
home node broadcasts messages that contain the current DMAX to Q-nodes. Otherwise, the
home node sends a message to Q-nodes about the location information of the partial results
collected. A KNN query stops disseminating when the home node ensures that KNN results
are collected. In particular, when a (Q-node on a branch-segment exceeds the estimated KNN
boundary, this Q-node holds an estimated short period WAIT_TIME for waiting the home
node message. The estimated period WAIT_TIME is sum of the estimated query dissemina-
tion time of peri-segment, the partial result returning along return-segment and the estimated
message broadcasting time along the branch-segment. Furthermore, when a Q-node receives
the DMAX message, if the distance between the home node and this Q-node is larger than
DMAX, the KNN query stops the query propagation to avoid unnecessary searching.

For the energy consumption analysis of these mechanisms, we simply utilize the total
number of broadcasting controlling messages by the home node. Suppose that the number of

concentric-circle that the estimated KNN boundary is smaller than the real KNN boundary
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is referred as Over_Cnum, and Owver_C'i means the ith concentric-circle that exceeds the
estimated KNN boundary, and there are S sector. In min_energy mechanism, the home
node broadcasts for each exceeded circle and each sector. Hence, the broadcasting messages
number is S x Over_Cnum. In min_latency mechanism, there is an obvious upper bound
of the broadcasting time, when each partial result updates DMAX. In this condition, there
are S X Quer_Cnum partial results, and each time of broadcasting is sent for each sector.
As a result, the number of broadcasting messages is S x Qver_Cnum x S. Obviously, the
mechanism in the min_energy mode may broadcast less messages and consumes less energy
for controlling query processing.

For the latency analysis, the total additional waiting time of mechanisms is used as the
analytical latency time. Latencygpjover.ci denotes the processing latency of the jth branch-
segment in the ith exceeding circle and the value of Latencyp;over ci consists of three factors:
the latency of peri-segments, the latency of return-segments and the latency of broadcasting

along with branch-segments. Thus, we have
LatencyBj,Over,Ci = Latencyperi,Over,Ci ifk Latency’r‘eturn,Ove’r,Ci + MsngraadcaStingOver,Ci

In the min_energy mechanism, because the KNN query is propagated circle by circle, the

additional latency is formulated as the summation of holding times of each circle:

Over_Cnum;

Latencymin,energy 3 Zizl (HOldingOver,Ci)

, where Holdingoyer.c; denotes the holding time of the ith concentric-circle. Clearly, the
holding time of each sector in a concentric-circle is determined by the maximal Latencyg; over_ ci

among each sector and is derived as,
HOldingOver,Ci = maXlSjSS(LatencyBj,Over,Ci)

In the min_latency mechanism, because the waiting time of each branch-segment is un-
affected with each other, the additional latency is the maximal waiting time of among all
branch-segments, which is the summation of waiting time of each circle along the branch-

segment. Thus, we have,

Over_Cnum oy
Latencymin,latency = maxj <j<S8 (22‘21 (Wa@tlngBj,Over,Ci ) )

, where Waitingp; over_ci is the waiting time of the jth branch-segment in the ¢th concentric-
circle and is set to the minimum value between the estimated waiting time and real processing

latency.
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WaitingBj,Over,Ci = M[N{WAIT—TIMEBj,Over,Ch LatencyBj,Over,Ci}

Note that for the mechanism in the min_latency mode, once one partial result is col-
lected, the home node informs other Q-nodes the status of KNN results and Q-nodes will
determine whether KNN query threads should be propagated or not. For the mechanism in
the min_energy mode, the goal is to conserve as much energy as possible. Therefore, KNN
query threads is propagated after all the partial results in the previous concentric-circles are
collected. Obviously, the waiting time Waitingg; over.ci in the min_latency mechanism is
smaller than the holding time Holdingoyer.ci in the min_energy mechanism. According to the
formulas derived above, it can be seen that the latency in the min_latency mode is smaller

than that in the min_energy mode.
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Chapter 6

Performance Evaluation

We develop a simulation to evaluate the performance of PCIKNN and other closely related
works, i.e., IKNN and DIKNN. The simulation model and parameter settings are presented

in Section 6.1. The experimental results are reported in Section 6.2.

6.1 Simulation Model

Our simulation is implemented in CSINM[21]. There are.1000 sensor nodes randomly distributed
in a 500x500m? region. The transmission radius of a node is 40m. For each sensor node, the
average number of neighboring nodes#s 20. The megsage delay for transmitting or receiving
messages is 30ms. Sensor nodes to be static in the default environment. For each query, the
location of a query point ¢ is randomly selected. The value of K for each KNN query is 100.
The beacon message broadcasting period is 3s. A KNN query is answered when the query
result is returned to the source node. For each round of experiment, 5 queries are issued
from randomly selected source nodes. Each experimental result is obtained by average of fifty
rounds of experiments. Three itinerary-based KNN algorithms are implemented. Algorithm
IKNN [30] exploring one itinerary is adopted while Algorithm DIKNN [27][28] with minimum
latency is utilized. For fair comparison, we derive the result of DIKNN with all possible
number of sectors and find out that the results with minimum latency are almost the same
with minimum energy. So that, we just show the result with minimum latency in DIKNN.
In Algorithm PCIKNN, we derive results in minimum latency mode adopted the min_energy
mechanism and in minimum energy mode adopted the min_latency mechanism. We compare
three algorithms in terms of energy consumption, query latency and query accuracy under
various environment factors such as the network density, the number of sample size (i,e., K

for KNN queries), the node mobility and the failure rate of nodes. These performance metrics
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are summarized as follows:

Energy Consumption (Joules): The total amount of energy consumed for processing
a KNN query in a simulation run.

Query Latency (ms): The elapsed time between the time a query is issued and the time
the query result is returned to the source node.

Query Accuracy(%): The percentage ratio of the number of sensor nodes that are
exactly the K nearest sensor nodes to query point ¢ over the number of sensor nodes in KNN

query results collected.

6.2 Experimental Results

In this section, we first investigate the impact of network density on the three examined
algorithms. Next, we study the scalability of these three algorithms to the value of K. Then
we show the performances under varied node mobility and node failure rate. Finally, we

examine the accuracy of boundary estimation.

6.2.1 The Impact of Network Density

First, we investigate the impact of network density to the performance of the three examined
algorithms. Here, the network density 18 measured as the number of sensor nodes deployed
in a fixed monitored region (i.e., 500x500m?). We vary the number of sensor nodes from
500 to 1500. As a result, the average number of neighbors for each node is varied from
10 to 30. Figure 6.1(a) shows that all three algorithms have better query accuracy when
the network density is increased. However, when the network is sparse (i.e., the number of
nodes is smaller than 800 nodes), PCIKNN outperforms IKNN and DIKNN. This is because
a KNN query propagating along itineraries in IKNN and DIKNN may easily get dropped
because they have longer itineraries than PCIKNN. Due to the high parallelism in itineraries,
the length of each segment of itineraries is shorter, and this reason causes that PCIKNN is
robust. Only a few D-nodes are lost if a KNN query thread is dropped. Furthermore, DIKNN
utilizes the estimated KNN boundary to decide whether KNN query should be stopped or
not (i.e., without guaranteed mechanisms like PCIKNN). Consequently, the query accuracy
of DIKNN is significantly reduced because of spatial irregularity. In a fairly dense network
(i.e., the number of nodes is larger than 900 nodes), both IKNN and PCIKNN have better
query accuracy. As can be seen in Figure 6.1(b), the latency of PCIKNN is the lowest among

three algorithms in both minimum latency and minimum energy modes, showing the strength
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of concurrent KNN query propagation. The latency is lower when the number of nodes is
increased for each algorithm. In the dense network, the latency of three algorithms tends to
decrease. Clearly, in a dense network, KNN boundary is small, leading to a short latency.
Figure 6.1(c) shows the energy consumption of three algorithms. PCIKNN has the lowest

energy consumption, showing the merits of itinerary designed in PCIKNN.

6.2.2 Scalability of IKNN, DIKNN and PCIKNN
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Figure 6.2: Impact of K.

Next, we investigate the impact of sample size K to scalability of the three algorithms.
Clearly, K has a direct impact on the number of nodes involved in query processing. In this
experiment, the value of K is varied from 50 to 400. The query accuracy of IKNN, DIKNN and
PCIKNN is shown in Figure 6.2(a). It can be seen in Figure 6.2(a) that the query accuracy
of DIKNN is significantly reduced as K increases, because the KNN query result of each
itinerary in DIKNN is directly sent back to the source without further processing even though
DIKNN adjusts KNN boundary and exchanges information among itineraries. DIKNN is
impacted by spatial irregularity seriously. On the other hand, PCIKNN and IKNN have good
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query accuracy under the varied K because they both have KNN guaranteed mechanisms.
The latency increases as K increases since more sensor nodes are discovered. As can be
seen in Figure 6.2(b), PCIKNN has the smallest latency, validating our analytical model for
minimum latency of PCIKNN. As seen in Figure 6.2(c), energy consumption of all algorithms
tends to increase as K increases because the number of sensor nodes involved is increased as
well. PCIKNN has the smallest energy consumption. Furthermore, compared with PCIKNN
with the minimum latency mode (i.e., PCIKNN min latency), PCIKNN with the minimum
energy (i.e., PCIKNN min_energy) indeed has the minimal energy consumption, showing the

correctness of our optimized derivation.

6.2.3 Impact of Node Mobility
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Figure 6.3: Impact of node mobility.

The third experiment we investigated is the impact of node mobility for three algorithms.
Obviously, when the mobility gets higher, the accuracy gets lower, because two reasons: first,
the rate of queries and messages lost increase because each node doesn’t have its current

neighbors information. Second, a node which is in the K nearest neighbors to the query point
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q may move out. In this experiment, the mobility of node is varied from 1m/s(i.e., walking
speed) to 15m/s(i.e., driving speed). The accuracy result is shown in Figure 6.3(a) and it can
be seen that the accuracy of three algorithms decrease seriously when the mobility increases.
However, it shows that PCIKNN still has the best query accuracy in both in min_latency
and min_energy modes. The reason is that PCIKNN has highly parallelism to decrease the
latency and be more robust because the length of an itinerary is much less then IKNN’s and
DIKNN’s. By the way, the query lost rate in routing phase is about 25% when the speed is
15m /s, and this accuracy lost is caused by geo-routing algorithms. The latency results shown
in Figure 6.3(b) get higher when the mobility is higher in each algorithm. Because even a
query thread is dropped the source node in IKNN and DIKNN or the home node in PCIKNN
should wait a threshold time to ensure the query processing is failed. It makes the latency
worsen, but PCIKNN still outperforms others. The energy consumption results also increase
with the mobility shown in Figure 6.3(c). The mobility increasing causes a Q-node may move
out its original itinerary region easily and the Q-node should take effort to disseminate the
query back to its original itinerary. However, PCIKNN still has the best energy consumption

in min_energy mode.

6.2.4 Impact of Node Failure

Next, we investigate the impact of node-failure to the performance of the three examined
algorithms. In this experiment, the failure rate of node is varied from 0.1% to 0.5% and the
time period for each node to check whether it fails is 300ms. Obviously, a node failure has
directly impact of query processing. The home node, the source node or the routing node on
the routing path failure causes the query dropped; a Q-node failure causes its query thread
dropped and decreases the query accuracy; a D-node failure causes KNN result changed. The
result of query accuracy is shown in Figure 6.4(a). It can be seen that PCIKNN has the best
accuracy performance which is still upper than 80% when the failure rate is high (i.e., 0.5%).
PCIKNN is the most robust because of its highly parallelism to decrease the latency and
the length of an itinerary is much less then IKNN’s and DIKNN’s. The latency and energy
consumption results of each algorithm both get higher when the failure rate increase shown in
Figure 6.4(b) and Figure 6.4(c). The reason is the same with the result of the node mobility
experiment. It can be soon that PCIKNN still has the best performance and is impacted by
the node failure rate slightly.
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Figure 6.5: KNN boundary estimation of DIKNN and PCIKNN.

6.2.5 KNN Boundary Estimation Simulation

To evaluate the proposed KNN boundary estimation technique, we set the value of K to be 300.
To avoid the effect of network boundary, query points in the middle region (i.e., 100mx100m,)
are selected. The liner regression function of PCIKNN is set to H (dist(N;, Niy1)) = (—76.9166x
dist(N;, Niy1) +4999.0903) by liner regression technique in [12]. The optimal KNN boundary
is the average distance of kth distant'nodes.of. all queries derived by the experiments. As
shown in Figure 6.5, PCIKNN is very. close to the optimal KNN boundary under various
network density. However, the boundary estimated.in DEKNN does not fit well with the trend
of the optimal KNN boundary. Moreover, in Figure 6.5, when the number of nodes is smaller
than 800, the KNN boundary estimated in DIKNN is smaller than the optimal value because
the KNN boundary is large and the routing path from the source node to the home node is not
long enough to estimate a region contained K sensor nodes. On the other hand, even though
the routing path is long enough to estimate the KNN boundary, the result is not precise due
to the inaccuracy of coverage areas in routing path. Figure 6.5 demonstrates the correctness

and the accuracy of our KNN boundary estimation.

6.2.6 KNN Boundary Adjusting Simulation

In the final experiment, we evaluate the performance of the mechanisms adjusting the KNN
boundary by the home node. We set the value of K to be 300, and the result shown in
Figure 6.6. It shows that the accuracy without adjusting the KNN boundary by the home
node gets worse when the value of K increases. It is because that when the K increases, the
difference between the real KNN boundary and the estimated boundary impacts the accuracy
more significantly and the estimated KNN boundary may encounter the network border more

often. It is worthy to mention that the energy overhead of two mechanisms, i.e, in Min_latency

33



0.95 - =
> @ B
E 09 r B . 1
3 I a
g o085 |
)
5]
& 0.8 r min_latency —— i

min_energy - —
min_latency without mechanism -
0.75 min_energy without mechanism &

07 L L L L L L
50 100 150 200 250 300 350 400

K

Figure 6.6: KNN boundary adjusting mechanisms by the home node in PCIKNN.

and Min_energy, just about 0.1% and 1%. It can be seen that the adjusting mechanisms of

the home node maintains the accuracy and these mechanisms cause slight overhead.
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Chapter 7

Conclusions

In this paper, we proposed an efficient itinerary-based KNN algorithm, PCIKNN, for KNN
query processing in the sensor network. PCIKNN disseminates queries and collects data along
pre-designed itineraries with high parallelism. We derived the latency and the energy con-
sumption of PCIKNN and then by optimizing the derived formulas, we are able to determine
the appropriate number of sectors for PCLKNN:sFurthermore, by exploring linear regression,
the KNN boundary estimated is as close astheseptimal one. In addition, PCIKNN is able
to dynamically adjust KNN boundaryysby considering local network information within sec-
tors. Furthermore, KNN query is guaranteed-to be-answered since the home node will decide
whether to further extend the bounda®y or not based oen collected KNN query result. Exten-
sive experiments have been conducted. Experimental results show that PCIKNN significantly

outperforms others in terms of energy consumption, query latency and query accuracy.

35



Bibliography

1]

R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis. Nearest Neighbor and Reverse
Nearest Neighbor Queries for Moving Objects. In Proc. of 6th International Symposium
on Database Engineering & Applications Symposium (IDEAS), pages 44-53, 2002.

M. Demirbas and H. Ferhatosmanoglu. Peer-to-Peer Spatial Queries in Sensor Networks.
In Proc. of the 3rd International Conference on Peer-to-Peer Computing (P2P), page 32,
Washington, DC, USA, 2003. IEEE Computer Society.

D. Estrin, R. Govindan, and J. Heidemann.; Next Century Challenges: Scalable Coordi-
nation in Sensor Networks. In Proe. of the-dth AGM/IEEE International Conference on
Mobile Computing and Networking(MobiCom), pages 263-270, 1999.

H. Ferhatosmanoglu, E. Tuncel; D. Agrawal; and A. E. Abbadi. Approximate Nearest
Neighbor Searching in Multimedia Databases: In Proc. of the 17th IEEE International
Conference on Data Engineering (ICDE), pages 503-511, 2001.

D. Goldin, M. Song, A. Kutlu, H. Gao, and H. Dave. Georouting and Delta-gathering:
Efficient Data Propagation Techniques for Geosensor Networks. In NSF Worshop on
GeoSensor Networks, 2003.

A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In Proc.
of the ACM Special Interest Group on Management Of Data International Conference
(SIGMOD), pages 47-57, 1984.

W. R. Heinzelman, A. Chandrakasan, and H.balakrishnan. Energy-Efficient Communi-
cation Protocol for Wireless Microsensor Networks. In Proc. of the 33rd Hawaii Interna-

tional Conference on System Sciences (HICSS), pages 80208029, 2000.

Gisli R. Hjaltason and Hanan Samet. Distance browsing in spatial databases. ACM
Transactions on Database Systems, 24(2):265-318, 1999.

36



[9]

[10]

[11]

[12]

[13]

[15]

[16]

[17]

[18]

[19]

B. Karp and T. H. Kung. GPSR: Greedy Perimeter Stateless Routing for Wireless
Networks. In Proc. of the 6th ACM/IEEE International Conference on Mobile Computing
and Networking (MobiCom), pages 243-254, 2000.

Y. B. Ko and N. H. Vaidya. Location-aided Routing (LAR) in Mobile Ad Hoc Networks.
In Wireless Networks, pages 307-321, 2000.

F. Kuhn, R. Wattenhofer, and A. Zollinger. Worst-Case Optimal and Average-Case
Efficient Geometric Ad-Hoc Routing. In Proc. of the jth ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc), pages 267-278, 2003.

S. J. Leon. Linear Algebra with Applications. Prentice Hall, 2002.

D. Li, K. Wong, Y. Hu, and A. Sayeed. Detection, Classification and Traching of Targets
in Distributed Sensor Networks. Signal Processing, 2002.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a Tiny AGgrega-
tion Service for Ad-Hoc Sensor Netwotks.'ACM SIGOPS Operating Systems Review,
36(S1):131-146, 2002.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The Design of an Acquisi-
tional Query Processor For Sensor Networks:‘In Proc. of the ACM Special Interest Group
on Management Of Data International - Genference (SIGMOD), 2003.

D. Niculescu and B. Nath. Trajectory Based Forwarding and Its Applications. In Proc.
of the 9th ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCom), 2003.

N. Patwari, A. III, M. Perkins, N. Correal, and R. O’Dea. Relative location estimation

in wireless sensor networks. Signal Processing, 2002.

H. Qi, X. Wang, S. Iyengar, and K. Chakrabarty. High Performance Sensor Integration
in Distributed Sensor Networks Using Mobile Agents. International Journal of High
Performance Computer Applications, 16(3):325-335, 2002.

N. Roussopoulos, S. Keeley, and F. Vicent. Nearest Neighbor Queries *. In Proc. of the
ACM Special Interest Group on Management Of Data International Conference (SIG-
MOD), pages 71-79, 1995.

37



[20]

[21]

[22]

23]

[24]

[25]

28]

S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the Positions of
Continuously Moving Objects. In Proc. of the ACM Special Interest Group on Manage-
ment Of Data International Conference (SIGMOD), pages 331-342, 2000.

H. Schwetman. CSIM wuser’s guide (version 18). Mesquite Software, Inc.,

http://www.mesquite.com.

T. Seidl and H. Kriegel. Optimal Multi-Step k-Nearest Neighbor Search. In Proc. of the
ACM Special Interest Group on Management Of Data International Conference (SIG-
MOD), pages 154-165, 1998.

Z. Song and N. Roussopoulos. K-Nearest Neighbor Search for Moving Query Point. In
Proc. of the 7th International Symposium on Spatial and Temporal Databases (SSTD),
pages 79-96, 2001.

J. Winter and W. C. Lee. KPT: A Dynamic KNN Query Processing Algorithm for
Location-aware Sensor Networks. In Proc. of the 1st International Workshop on Data

Management for Sensor Networks (DMSN), pages 119-125, 2004.

J. Winter, Y. Xu, and W. C. Lee: Energy-Efficient Processing of K Nearest Neighbor
Queries in Location-aware Sensor Networks. I Proe. of the 2nd International Conference
on Mobile and Ubiquitous Systems: Networks-and Services (MobiQuitous), pages 281—
292, 2005.

J. Winter, Y. Xu, and W. C. Lee. PSGR: Priority-based Stateless Geo-Routing in Wireless
Sensor Networks. In Proc. of the 2nd IEEE International Mobile Adhoc and Sensor
Systems Conference (MASS), 2005.

S. H. Wu, K. T. Chuang, C. M. Chen, and M. S. Chen. DIKNN: An Itinerary-based
KNN Query Processing Algorithm for Mobile Sensor Networks. In Proc. of the 23rd
IEEE International Conference on Data Engineering (ICDE), 2007.

S. H. Wu, K. T. Chuang, C. M. Chen, and M. S. Chen. Toward the Optimal Itinerary-
based KNN Query Processing in Mobile Sensor Network. IEEE Trans. on Knowledge
and Data Engineering, 2008.

J. Xu, Y. Xu, W. C. Lee, and G. Mitchell. Processing Window Queries in Wireless Sensor
Networks. In Proc. of the 22nd IEEE International Conference on Data Engineering
(ICDE), 2006.

38



[30] Y. Xu, T. Y. Fu, W. C. Lee, and J. Winter. Itinerary-based Techniques for Processing K

Nearest Neighbor Queries in Location-aware Sensor Networks. Signal Processing, 2007.

39



	未命名



