

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

建構實作評量測驗產生器之研究

Building a Tester Generator for Performance Based Testing

研 究 生：王念主

指導教授：曾憲雄 博士

中 華 民 國 九 十 七 年 六 月

建 構 實 作 評 量 測 驗 產 生 器 之 研 究

Building a Tester Generator for Performance Based Testing

研 究 生：王念主 Student：Nien-Chu Wang

指導教授：曾憲雄 博士 Advisor：Dr. Shian-Shyong Tseng

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年六月

建構實作評量測驗產生器之研究

研究生 : 王念主 指導教授 : 曾憲雄博士

國立交通大學資訊學院

資訊科學與工程研究所

摘 要

 實作評量是根據受測者實際完成一項特定任務所作的評量，因為實作評量重

視受測者實作的能力，所以很多認證考試都需要受測者通過相關的實作評量測

驗。軟體操作技能檢定就是一個例子，藉由觀察受測者實際操作軟體來完成特定

任務的操作過程，來評量受測者是否具備特定的軟體操作技能。然而，老師以人

工的方式評量是花費龐大而且耗時。隨著電腦網路的快速發展，如何利用電腦化

測驗的優勢，來輔助老師檢測軟體操作技能是我們主要的研究目標。根據我們的

觀察，學生操作軟體來完成技能檢定中設計的特定任務，一般都會設定起始操作

畫面，經由一些的操作動作，來檢測是否完成任務的操作需求。在這篇論文中，

我們以一個有限狀態機(FSM)來描述軟體的操作流程，將 FSM 中的狀態(State)

定義成描述軟體的操作畫面，而轉換函數(Transition)則定義成描述受測者的操

作動作。以這樣的概念，我們提出了 Functional Specification Language，即

可方便的透過正規文法(Regular grammar)來描述軟體的操作流程，並使用

parser generator 來產生對應的實作評量試題。老師可以藉由修改正規文法來

設計實作評量試題中的檢測項目。我們利用此一方法來實作 MS Word 的軟體操作

試題，最後我們請教學專家來確認這些試題是否能檢測受測者特定的軟體操作技

能，而他們認為設計出來的試題是正確且容易被了解的。

關鍵字：實作評量、有限狀態機、試題產生器、電腦化測驗

 i

Building a Tester Generator for
Performance Based Testing

Student: Nien-Chu Wang Advisor: Dr. Shian-Shyong Tseng

Institute of Computer Science and Engineering

Nation Chiao Tung University

Abstract
Performance-based testing (PBT) is usually used to assess the examinee’s

procedural knowledge, the knowledge of knowing how, by performing some real

world tasks. Many software skill certification exams have integrated PBT as a part of

their exam to certify the examinee’s software operating skill, where the examinee

needs to perform a sequence of actions on specific software to achieve the required

results. Traditionally, the evaluation of the examinee’s software operating skills which

only can be manually done by the teacher is time-consuming and costly. With our

observation, using software to perform a sequence of actions to complete the task

seems like a navigation process from the starting point of the software run-time state

to get the required results, which can be modeled as a Finite State Machine (FSM),

where the current state of FSM represents the software run-time status, and the

transitions of FSM represent the actions the examinee can perform. Once the

examinee performs an action in a certain state, the corresponding state transition will

be triggered to move from the current state to the next state and then the PBT tester

will visualize the next software run-time status. Based on this concept, a set of regular

grammar, called the Functional Specification Language (FSL), is defined to describe

the software run-time status and transitions of the PBT tester according to the

functionality of specific software. Thus, a parser generator can be applied to generate

the corresponding PBT tester based on the given FSL and the related action routines.

To evaluate the proposed scheme, several experiments have been done to show the

correctness, reusability, and expressive power of the scheme.

Keyword: Performance-based testing, Finite State Machine, Generator,
Computer-based testing

 ii

誌 謝

首先，我要感謝我的指導教授，曾憲雄博士，老師非常有耐心，不厭其煩，

一次又一次的討論，指導我撰寫這篇論文，讓我不只是完成這篇論文，而且學習

到很多研究方法、思考方法、以至於表達方法，這是碩士班期間最寶貴的知識。

感謝楊鎮華教授、孫春在教授和黃國禎教授，在口試時給了許多寶貴的意見，讓

這篇論文更完善，並且讓我了解到這個研究的價值，拓展了我的視野。

再來，非常感謝翁瑞鋒學長，和學長討論使我的思考與研究得到相當大的啟

發。此外，蘇俊銘、曲衍旭和林喚宇學長們在論文上也給予我很多寶貴的意見，

也感謝楊哲青學長及黃桂芝學姊在我碩士班兩年來的照顧。怡利、立晧、學長姐

以及學弟妹，感謝大家在我的碩士生涯一起努力、互相扶持。

最後，我要感謝我的家人，讓我能夠專注於研究上，並且在遭遇困難時鼓勵

我，讓我能夠有自信地完成這篇論文。

 iii

Table of Contents
摘 要 ... i

Abstract .. ii

誌 謝 ... iii

Table of Contents .. iv

List of Figures .. v

List of Tables ... vi

Chapter 1. Introduction ... 1

Chapter 2. Related Work ... 4

2.1. Computer-based Testing... 4
2.2. Computer-based Skill Assessment ... 5
2.3. Different Approach to Construct PBT Tester ... 5

Chapter 3. Tester Generator Scheme.. 8

3.1. Performance-Based Testing in Software Skill Certification 9
3.2. Software Functional Specification Language .. 12

Chapter 4. Application... 16

4.1. MS Word Test Scenario Authoring Process ... 16
4.2. PBT Tester Revision and Combination .. 20

Chapter 5. Experiment... 28

5.1. System Implementation.. 28
5.2. Experiment Design and Result... 30

Chapter 6. Conclusion.. 33

Reference .. 34

 iv

List of Figures
Figure 1: The scheme of tester generator .. 9
Figure 2: MS Word PBT tester .. 10
Figure 3: The MS Word Scene Ontology ...11
Figure 4: The visualization of PBT tester.. 12
Figure 5: An example of FSL about MS Word.. 14
Figure 6: The FSM for “Change the font style of the title in MS Word”.................................. 15
Figure 7: The MS Word test scenario authoring process... 16
Figure 8: The illustration of action types... 17
Figure 9: The FSL for “Set the title in italic” .. 21
Figure 10: The FSM for “Set the title in italic” ... 22
Figure 11: The FSL for “Set the title in bold and use Times New Roman as default font type”

.. 23
Figure 12: The FSM for “Set the title in bold and use Times New Roman as default font type”

.. 24
Figure 13: A PBT tester with two action paths.. 25
Figure 14: The PBT tester with a trap path.. 26
Figure 15: The PBT tester combination... 27
Figure 16: The screenshots of MS Word PBT tester ... 28
Figure 17: The running process of MS Word PBT tester .. 29
Figure 18: The results for satisfaction degree questionnaire (5 is the highest possible score) 31

 v

List of Tables
Table 1: The elements of PBT tester.. 10
Table 2: The descriptions of symbols for “Change the font style of the title”......................... 14
Table 3: The action types used in “Change the font style of the title” 18
Table 4: The definition of action types .. 19
Table 5: The descriptions of symbols used in “Set the title in italic”...................................... 21
Table 6: The descriptions of symbols used in “Set the title in bold and use Times New Roman

as default font type”.. 23
Table 7: MS Word test case ... 30
Table 8: The corresponding FSL of test case... 31

 vi

Chapter 1. Introduction

 Learning assessment is an important and essential part in the process of learning.

With the growth of the computer and the Internet technology, the learning assessment

via the computer and the Internet, called Computer-Based Testing (CBT) has become

a trend especially in the information technology (IT) certification exam. In software

skill certification, such as MS Word certification [1], there are usually two phases of

tests. The first phase is to test the examinee’s declarative knowledge, the knowledge

of knowing what, which is usually the traditional single-choice or multiple-choice

testing. The second phase is to test the examinee’s procedural knowledge, the

knowledge of knowing how, called Performance Based Testing (PBT) [2-4]. In PBT,

the examinees have to perform some real world tasks by using specific software to

demonstrate their software operating skills. For example, the examinee might be

asked to complete the following task “At the beginning of the document, insert a Table

of Contents showing two heading levels.” in MS Word 2003 certification exam. To

complete this task, the examinee has to perform a sequence of actions on MS Word to

get the required results and the examinee’s software operating skills can be assessed

during the process of accomplishing this task. Besides, PBT allows the examinees to

come up with the correct answer using different approaches. That is, the examinee can

solve a problem by showing how to navigate through a sequence of processes to get

the required results.

 Currently, the examinees have to use actual software to realize PBT in software

skill certification. Besides, since the actions of most software performed by the

examinee during the testing are not recorded, the evaluation of the examinee’s

software operating skills which only can be manually done by the teacher is costly

 1

and time-consuming. In recent years, a testing platform for PBT, called the PBT tester,

on some specific software which can provide adequate functionality of the software to

complete the required tasks and track the examinee’s action sequence were proposed

as a cost effective way to realize PBT in software skill certification. However, to build

a PBT tester for some specific software, the control flows of testing scenario should

be simulated in the tester so that the software output can be correctly visualized

according to the examinee’s sequence of actions. Thus, the programming efforts of

building a PBT tester are costly. Besides, the reusability for the new PBT test items is

also a critical issue for the PBT tester developer.

 With our observation, using software to perform a sequence of actions to

complete the task seems like a navigation process from the starting point of the

software run-time state to the final state to get the required results. Our idea is to use

Finite State Machine (FSM) to model what the examinee performs during the PBT in

software skill certification, where the current state of FSM represents the software

run-time status, and the transitions of FSM represent the actions the examinee can

perform. Once the examinee performs an action in a certain state, the corresponding

state transition will be triggered to move from the current state to the next state and

then the PBT tester will visualize the next software state. Based on this concept, a set

of regular grammar, called the Functional Specification Language (FSL), is defined

to describe the software run-time status and the transitions of the PBT tester according

to the functionality of specific software. Thus, a parser generator can be applied to

generate corresponding software tester based on the given FSL, where the grammar

rule of FSL can be used to model the action sequence performed by the examinee, the

non-terminals of FSL represent the software run-time status, and the terminals of FSL

represent the actions the examinee can perform. Besides, action symbols are attached

to each terminal symbol to trigger the corresponding action routines, such as the

 2

routines for visualizing the next software run-time status and recording the actions

performed by the examinee. To effectively visualize the next software run-time status,

the visualization is divided into backgrounds and foregrounds, where the visualization

action routine substitutes the foregrounds according to the action performed by the

examinee, and the backgrounds do not need to be changed.

 To evaluate the correctness, reusability, and expressive power of proposed

scheme, we have implemented a prototypical system in the web environment. In this

thesis, several test cases are designed to evaluate the expressive power of proposed

scheme. According to the feedbacks of the teachers and the tester developers, we may

conclude that the proposed scheme is workable and beneficial for them.

 The remainder of the article is organized as follows. In Chapter 2, we introduce

some related works about the traditional PBT tester and authoring tools for creating

the PBT tester. Then, the proposed Tester Generator Scheme and the application of

PBT tester are described in Chapter 3 and Chapter 4 respectively. Chapter 5 discusses

the system implementation and experiments. Finally, Chapter 6 gives the conclusion

and future work.

 3

Chapter 2. Related Work

2.1. Computer-based Testing

 The traditional multiple-choice test, administered via paper and pencil, provides

a highly constrained testing environment. With dynamic visuals, sound, and user

interactivity, computer based testing are being considered as alternative means for

more effective testing [5-9], compared to traditional paper-and-pencil test. Innovative

computerized test items [8] which refer to item types that use the computer’s

capabilities to improve measurement and assessment have been introduced over the

past two decades. Zenisky and Sireci [12] gave examples to illustrate drag-and-drop,

moving objects to create a tree structure, and several other response actions. In [13], a

taxonomy or categorization of 28 innovative item types that may be useful in

computer-based assessment are introduced, which is organized along the degree of

constraint on the respondent’s options for answering or interacting with the

assessment item or task.

 According to [8], it is possible to view innovations as falling into three categories.

First, new item types that improve the assessment of some ability or skill can be

created. Bennett et al. [7] discussed this kind of item type. The second category

includes assessments designed to improve the authenticity of the assessment.

Licensing exams that use computers to create high-fidelity simulations of professional

activities, such as the clinical skills and the architectural licensing exams discussed in

the next section fall into this category. Assessments of constructs not easily measured

by conventional tests constitute the third category. Examples include tests of musical

aptitude and interpersonal skills.

 4

2.2. Computer-based Skill Assessment

 Many skills and proficiencies are not easily assessed by paper-and-pencil

multiple-choice test items. Consider, for example, clinical skills [11], [14], which take

a history from a patient and perform a physical examination, or the design ability of

an architect [10]. In recent years, the simulation technology has been applied to the

certification exams of Microsoft Office Specialist (MOS), to realize PBT. Therefore,

the examinees demonstrate their software operating skills by performing a sequence

of actions on specific software to finish critical IT tasks in a simulated working

environment, not using the actual software [15]. They have conducted that the

simulation testing is a more effective way to evaluate the examinee’s software

operating skills.

However, research has shown that these performance-based testing are difficult

to administer and score, and have low reliability and limited generalizability.

Therefore, it is hard to construct and maintain a PBT tester for skill assessment. In

this thesis, we focus on the software operating skill assessment, and try to propose a

model to describe the PBT tester.

2.3. Different Approach to Construct PBT Tester

 In this section, several approaches that can be used to construct a PBT tester are

surveyed, including 1) standard-based approach, 2) object-based approach, and 3)

screenshot-based approach.

 Standard-based Approach

 The IMS Global Consortium, an industry and academic consortium, produced

 5

the IMS QTI (IMS Question & Test Interoperability Specification), which uses an

XML file to describe a basic structure for the representation of question (item) and

test (assessment) data and their corresponding results reports [16]. Some questions,

such as drag & drop and spot the error, in QTI specification define an image as a test

item to let the examinees perform some actions (i.e., clicking, drag object) on that

image. For example, for a given picture, the question may look like “The picture

illustrates four of the most popular destinations for air travelers arriving in the

United Kingdom: London, Manchester, Edinburgh and Glasgow. Which one is

Glasgow?” [17], and then the examinee uses mouse to click at the correct location on

the given picture. However, the QTI specification did not clearly define the structure

and the operating flow of simulation questions for PBT.

 Object-based Approach

 In [8], Shavelson et al. designed several objects, such as batter, light bulb, and

voltage, to let the examinees perform their hand-on performance task on the computer.

Due to the special effort required to implement specific domain objects, it is hard to

reuse the objects in different domains.

 Screenshot-based Approach

 Kinnersley et al. [13] used Adobe Flash [20] to create a PBT tester to emulate

MS Word and Excel. The tester is a timeline of MS Word or Excel screenshots to

represent different software run-time status so that the examinee can perform some

actions (i.e., clicking, drag object) on the screenshots, where the action performed by

the examinee is to move from the current screenshot to the next screenshot in the

timeline. Since Flash is not originally designed for software simulation, all of the

screenshots need to be gathered, cropped and sized, and the mouse events

 6

corresponding to the actions performed by the examinee also hove to be implemented.

Therefore, it is very time consuming for a tester developer to build a PBT tester.

Adobe Captivate [21] was used to create a tester for software skill exam. When

the teacher wants to create a tester, he/she opens the target software to perform a

sequence of actions from the starting state of the software to the final state of the

software. During the sequence of actions, the Captivate automatically captures the

screenshot and creates the sequence of screenshot based on the actions performed by

the teacher. However, to model different operating paths, objects such as button or

menu and the corresponding mouse events have to be added manually. Thus, it is hard

to construct, reuse, and maintain the more complex simulation.

 7

Chapter 3. Tester Generator Scheme

As mentioned before, it is time-consuming and costly to design a tester for PBT,

because the control flows of the corresponding action sequence performed by the

examinee should be implemented so that the software run-time status can be correctly

visualized. With our observation, using software to perform a sequence of actions to

complete the task seems like a navigation process from the starting point of the

software run-time status to get the required results which can be modeled as a Finite

State Machine (FSM). In this thesis, we propose a generator-based approach, called

the Tester Generator Scheme, to assist teachers in building a tester for PBT without

low level programming, as shown in Figure 1: The scheme of tester generator. The

scheme includes two phases: the Construction phase and Testing phase. In the

construction phase, an authoring process which refers to the Functional Specification

Language (FSL) and action routine declarations is proposed to help teachers specify

the testing scenario, where the FSL is a set of regular grammar to describe the

sequence of actions that the examinee can perform and corresponding software

run-time status and the action routine declaration is to describe the action routines

used in the FSL. The detailed definition will discuss in the following sections.

According to the FSL and related resources, i.e., software run-time status images and

action routines, a parser generator can be applied to generate the required tester. In the

testing phase, the examinee can perform a sequence of actions on the tester to

complete the required tasks.

 8

MS Word Functional
Spec Language

MS Word
Test Scenario

Actions perform by examinee

visualization

Construction Phase Testing Phase

W
eb InterfaceMS Word

Tester
Test Scenario

Authoring

Parser
Generator

(yacc)

Action Routine
Library

Action Routine
Declaration

MS Word
Scene Ontology

Figure 1: The scheme of tester generator

3.1. Performance-Based Testing in Software Skill

Certification

 As we know, PBT can test the examinee’s procedural knowledge; in other words,

the examinee’s software operating skill can be assessed during the process of

performing a sequence of actions, where a clear goal, called the task, is given for the

examinee to complete. An example is described as follows:

Example 1: The correct action sequence of “Change the font style of the title in MS

Word”.

 We assume that there is a performance-based test item “Change the font style of

the title in MS Word”. The correct action sequence should be as follows: ○1 Select

the title of the document by double clicking the title or using the cursor to select the

title, ○2 Click the “Format” menu, ○3 Click the “Font” menu, ○4 Set the correct

font style, and ○5 Click the “OK” button to finish the task. The examinee needs to

perform a sequence of actions as mentioned above so that the correct font style can be

done. Figure 2: MS Word PBT tester shows the corresponding MS Word screenshots

of the action sequence performed by the examinee.

 9

Change the font style of the
title to bold

…
Examinee

Task ResultAction sequence and software screenshots

1 2 3 5

Figure 2: MS Word PBT tester

 Since the actions of most software performed by the examinee during the testing

are not recorded, the evaluation of the examinee’s software operating skills which

only can be manually done by the teacher is costly and time-consuming. To ease the

efforts of the teacher, we should know what sort of information should be kept to find

out “How does the examinee complete the task”. Therefore, a testing platform for

PBT, called the PBT tester, on some specific software which can provide an

environment to simulate the required real situations was proposed to assess the

examinee’s software operating skills by providing adequate functionality of the

software to complete the required tasks and track the examinee’s action sequence,

where the following elements need to be considered, as shown in Table 1.

Table 1: The elements of PBT tester
Element Description
Task A PBT tester must have a goal the examinee needs to achieve.

i.e., the task in Example 1.
Action The examinee can perform a certain action on the PBT tester,

i.e., Steps 1-5 in Example 1
Path A sequence of actions from the starting state to final state calls

an operating path. A PBT tester needs to support different
action sequences performed by the examinee to complete the
task.

Visualization According to the action performed by the examinee, the PBT
tester will visualize the corresponding software run-time status
to simulate the required real situation.

 10

 In order to describe the relations between the actions performed by the examinee

and corresponding software run-time status, we propose a four-level ontology, called

Scene Ontology (SO) as shown in Figure 3: The MS Word Scene Ontology, where the

root level is the target software, the MS Word, and the second one describes the

functionality of the target software which is used to assess the examinee’s software

operating skills, the third one describes the modules of functionality, and fourth one

describes the sub-modules, to allow the reuse of modules and sub-modules definitions

that commonly appear across different software, i.e., MS Excel and PowerPoint.

There is one relation “a part of relation” in SO, which represents the visualization to

describe that the software run-time status can be classified into one of the modules or

sub-modules according to its functionality in MS Word.

MS Word

Text/File Paragraph Single
Document

Font NumberingLayout Insert
Picture

Word
Master

Style Size

…

… …

… …

… …
Functionality

Modules

Sub-modules

Figure 3: The MS Word Scene Ontology

 According to the proposed Scene Ontology, using MS Word to perform a task

can be represented as a finite number of actions; i.e., select a word, click a button, and

input some texts, etc. Once a certain action is performed, the corresponding software

run-time status will be visualized. Thus, the action sequence and the corresponding

 11

run-time status visualization can be modeled as a Finite State Machine (FSM), where

the current state of FSM represents the software run-time status, and the transitions of

FSM represent the actions the examinee can perform. Once the examinee performs an

action in a certain state, the corresponding state transition will be triggered to move

from the current state to the next state and then the PBT tester will visualize the next

software run-time status.

 To effectively visualize the next software run-time status, the visualization is

divided into foregrounds and backgrounds, where the foregrounds are the run-time

status images that need to be changed to represent the next software run-time status

and the backgrounds are those that do not need to be changed. In other words, only

the foregrounds are changed in each state transition. Therefore, the visualization of

software run-time status is also a sequence of the corresponding foregrounds and

backgrounds combination according to the actions performed by the examinee as

shown in Figure 4.

…

Foreground Foreground

Background

1 2

Figure 4: The visualization of PBT tester

3.2. Software Functional Specification Language

 Based on the concept mentioned above, we define a set of regular grammar,

called the Functional Specification Language (FSL), where the grammar rule of

FSL can be used to model the operating paths, the non-terminals of FSL represent the

 12

software run-time status, and the terminals of FSL represent the actions the examinee

can perform. Besides, action symbols are attached to each terminal symbol to trigger

corresponding action routines.

Definition 1: Functional Specification Language is a 5-tuple, FSL = (N, Σ, P, S, γ),

where

1. N is a finite set of non-terminals, which represents the run-time status of

specific software.

2. Σ is a finite set of terminals, which represents the actions that the examinee

can perform, i.e., click the toolbar, select a word, etc.

3. P is a finite set of production rules, which represents the action performed by

the examinee and the next run-time status of specific software. A production

rule needs to satisfy one of the following forms:

 A xB, A x, where A, B in N, and x in Σ*

4. S is the starting state, which represents the initial run-time status of the PBT

tester.

5. γ is a finite set of action symbols, which is defined on Σ to trigger

corresponding action routine, i.e., the routines for visualizing the next software

run-time status and recording the actions performed by the examinee.

 The following example illustrates the real case of FSL about MS Word

certification exam.

Example 2: The FSL for “Change the font style of the title in MS Word”.

 For the performance-based test item given in Example 1, which describes the

performance-based test item “Change the font style of the title in MS Word.” , we have

 13

to define three non-terminals, S, A, and B, representing three different software

run-time status during the testing. A set of terminals, {b, c, d, e, f, g, h}, are defined to

represent the action that the examinee can perform. For example, terminal b means

the examinee performs “select the title by double clicking”. Besides, two action

symbols, #a1 and #a2, are used to trigger the corresponding action routines

respectively. Note that an action routine may contain variables as parameters

according to the action performed by the examinee. The details of symbol definitions

are shown in Table 2.

Table 2: The descriptions of symbols for “Change the font style of the title”
Type Symbol Description

S The starting state of the testing. In this state, the
run-time status of the title is one of the followings:
normal, highlighted, and bold.

A The state of showing the format menu.

Non-terminal

B The state of showing the font panel.
b Highlight the title by double clicking.
c Use the cursor to select the title.
d Click the “Format” menu.
e Click the “Font” menu.
f Click the correct font style. i.e., bold.
g Click the “OK” button to complete the task.

Terminal

h Submit the task.
#a1 Set software run-time status. Action Symbol
#a2 Visualize the next software run-time status.

 The corresponding FSL is shown in Figure 5.

S b #a1 #a2 S | c #a1 #a2 S | d #a2 A | h #a2

A e #a2 B

B f #a1 #a2 B | g #a1 #a2 S

Figure 5: An example of FSL about MS Word

 14

In this grammar, the first step is to select the title of the document, which can be

done by double clicking the title (terminal b) or using cursor to select the title

(terminal c). After selecting the title, the corresponding action routines are

triggered, highlight the title (#a1) and visualize the next software run-time status

(#a2). The examinee then needs to click the “Format” menu (terminal d) to set the

correct style. After clicking the “Font” menu item (terminal e), the font panel will

be popped out. In the panel, the examinee needs to set the correct style, said bold

(terminal f), click the “OK” button (terminal g) to complete the task, and finally

submit the task (terminal h). The corresponding FSM is shown in Figure 6.

click(c#a2) click(d#a2)

click(e#a1 #a2)
/ argsytle

click(f#a1 #a2)/argsytle

select(b#a1 #a2)

Figure 6: The FSM for “Change the font style of the title in MS Word”.

 15

Chapter 4. Application

 In this chapter, we describe the test scenario authoring process, which includes

three phases: 1) Specify Required Task, 2) Design Operating Paths, and 3) Upload

Visualization.

4.1. MS Word Test Scenario Authoring Process

 To assist test scenario authoring, we propose an authoring process to help the

teachers, which includes three phases: the 1) Specify Required Task, 2) Design

Operating Paths, and 3) Upload Visualization. Figure 7 shows a flowchart of the test

scenario authoring.

Specify
Required Task

Design
Operating Paths

Specify
Visualization

MS Word
Test Scenario

Figure 7: The MS Word test scenario authoring process

(1) Specify Required Task:

 The teacher needs to specify the starting state and final state according to the

required task the examinee should achieve. If the examinee performs the action

sequence correctly, the state transition will eventually connect to the starting state as

the final state as shown in Figure 6 above. However, the software run-time status in

the starting state is not as the same as that in the final state. Therefore, the “key states”

representing specific software run-time status between the starting state and final state

should be specified by the teacher as well. That is, the action sequence performed by

the examinee must navigate through the “key states” in order to get the required

 16

results.

 In this step, the corresponding non-terminals of the FLS will be determined

according to the starting state, final state, and “key states”.

(2) Design Operating Paths:

 Suppose we have an action routine library which contains some build-in action

routines for PBT tester construction, the teacher refers to the action routine library to

specify the available action sequence from the starting state to final state, where the

corresponding terminals and related action routines of FSL will be determined based

on the given action sequence. An example is described as follows:

Example 3: Define the action types for the performance-based test item “Change

the font style of the title in MS Word”.

 For the performance-based test item given in Example 1, we define three

non-terminals, S, A, and B as shown in Example 2 and the corresponding action types

need to be defined by the teacher, including menu clicking, text selecting, list clicking,

and button clicking as shown in Figure 8.

Menu Clicking
Text Selecting

List Clicking

Button Clicking

Figure 8: The illustration of action types

 17

 The details of action type descriptions and the corresponding definitions are

shown in Table 3 and Table 4, respectively.

Table 3: The action types used in “Change the font style of the title”
Non-terminal Action Type Description

Menu Clicking The menu clicking on the “Format” menu will
trigger the state transition from non-terminal
A to non-terminal B.

S

Text Selecting The text selecting on the working area will
change the current software run-time status;
that is, the text will be highlighted.

A Menu Clicking The menu clicking on the “Font” menu needs
to be defined by the teacher so that the
current state will move to the non-terminal B.

List Clicking The list clicking on the “Font Style” list will
set the software run-time status according to
the clicking style.

B

Button Clicking The button clicking on the “OK” button will
trigger the state transition to move to the
non-terminal S and the corresponding
software run-time status will be set.

 18

Table 4: The definition of action types

Action Type Description
Menu Clicking The menu contains frequently used functionality such as

Open, Save, and Print. According to the required task, the
corresponding menu should be set by the teacher to check if
the examinee knows the exact functionality to complete the
required task. i.e., the menu clicking in Example 3.

Text Selecting Several user events are defined on the working area such as
clicking, double clicking, selecting, and dragging. i.e., to
format the text, the examinee should select the required text
before clicking the “Format” menu, or the software run-time
status will not be changed.

List Clicking The list contains several choices for the examinee to choose.
According to the required task, the examinee needs to
choose the correct option to complete the task.

Button Clicking After performing sequence of actions such as text menu
clicking and list clicking, the examinee usually needs to
click the button to check if the action sequence is performed
correctly.

(3) Specify Visualization:

Since the PBT tester will visualize the corresponding software run-time status

according to the action sequence performed by the examinee, the teacher needs to

specify related run-time status visualization in order to simulate the required real

situation. In this step, the corresponding parameters of action routines of FSL will be

determined according to the run-time status visualization.

 19

4.2. PBT Tester Revision and Combination

 With the defined FSM model for PBT tester, the examinee can perform a

sequence of actions on the PBT tester that can be used to assess the examinee’s

software operating skills. The PBT tester revision and combination are used to design

a PBT tester with different functionalities, where the revision is to revise the original

PBT tester functionality or add new functionality to a PBT tester; and the combination

is to combine different PBT tester by FSM union or concatenation to provide

comprehensive software operating skill assessment. The revision and combination of

a PBT tester are described as follows.

 (1) Reusing an Existing PBT Tester

Algorithm: Revise the Functionality of a PBT Tester

Input: The FSL constructed in Example 2.

Output: A PBT tester with revised functionality.

Parameter: ai is the action that needs to be revised.

Step 1. Import an existing FSL into a new PBT tester and name the FSL f1.

Step 2. For each terminals ti in f1, find the terminals for ai.

Step 3. For each ai, revise the corresponding action routines attached in the terminals

found in Step 2.

Step 3. For each revised action routines in Step 3, configure the corresponding

parameters for ai.

Step 4. Apply parser generator to generate the corresponding PBT tester based on the

f1.

 20

Example 4: Modify the functionality of an existing PBT tester.

 Assume that the original PBT test item is “Set the title in bold”, the teacher want

to apply the same test scenario to evaluate the examinee’s software operating skills

and with a modification to “Set the title in italic”. For this example, we have to revise

the terminal symbol e in Example 2, which is used to define the action type “list

clicking on bold”. The details of symbol definitions are shown in Table 5. The

terminal symbol e is revised to e’, which represents the examinee click the “italic” in

the font style list.

Table 5: The descriptions of symbols used in “Set the title in italic”
Type Symbol Description
Non-terminal S, A, B The definitions are the same as those in Example 2

b-d The definitions are the same as those in Example 2
e’(revised) Click the “italic” in the font style list

Terminal

f-h The definitions are the same as those in Example 2
#a1 The definitions are the same as that in Example 2 Action Symbol
#a2 The definitions are the same as that in Example 2

 Figure 9 and Figure 10 are the FSL and corresponding FSM, respectively. In the

FSL, we need to redefine the terminal symbol e and configure the parameters for

action routine so that the software run-time status can be visualized correctly.

S b #a1 #a2 S | c #a1 #a2 S | d #a2 A | h #a2

A e’ #a2 B

B f #a1 #a2 B | g #a1 #a2 S

Figure 9: The FSL for “Set the title in italic”

 21

click(c#a2) click(d#a2)

click(e#a1 #a2)
/ argsytle

click(f#a1 #a2)/argsytle

select(b#a1 #a2)

Figure 10: The FSM for “Set the title in italic”

Algorithm: Add New Functionality of a PBT Tester

Input: Given the FSL in Example 2.

Output: A new PBT tester with new functionality.

Step 1. Import an existing FSL into a new PBT tester and name the FSL f2.

Step 2. According to MS Word Scene Ontology, add non-terminals to f2.

Step 3. For each non-terminals in Step 2, add terminals and related action routines.

Step 4. For each action routines in Step 3, configure the corresponding parameters for

visualization.

Step 5. Apply parser generator to generate the corresponding PBT tester based on the

f2.

Example 5: Reuse an existing PBT tester and add new functionality

 Assume that the original PBT test item is “Set the title in bold” and the teacher

wants to add new functionality to original one “Set the title in bold and use Times New

Roman as default font type”. The above algorithm can be applied.

In this example, we have to add one non-terminal C to represent the software

run-time status for the font type setting. Besides, three terminals, i, j, and k, are added

 22

which represent that the examinee clicks the font type dropdown list and selects the

“Times New Roman” font type or others. The details of symbol definitions are shown

in Table 6.

Table 6: The descriptions of symbols used in “Set the title in bold and use Times New
Roman as default font type”

Type Symbol Description
S, A, B The definitions are the same as those in Example 2 Non-terminal
C The state of showing the format menu.
b-h The definitions are the same as those in Example 2
i Click the “Font Type” dropdown list.
j Click the “Times New Roman” font type.

Terminal

K Click the other font type.
#a1 The definition is the same as that in Example 2 Action Symbol
#a2 The definition is the same as that in Example 2

 Figure 11 shows the FSL of this example, we add several production rules to

model the action sequence of setting the font type. Figure 12 shows the corresponding

FSM.

S b #a1 #a2 S | c #a1 #a2 S | d #a2 A | h #a2

A e #a2 B

B f #a1 #a2 B | g #a1 #a2 S | i #a1 #a2 C

C j #a1 #a2 B | k #a1 #a2 C

Figure 11: The FSL for “Set the title in bold and use Times New Roman as default
font type”

 23

click(c#a2) click(d#a2)

click(f#a1 #a2)/argsytle, type

select(b#a1 #a2) click(e#a1 #a2)
/ argsytle

click(k#a1 #a2)
/ argtype

click(j#a1 #a2)/ argtype

click(i#a1 #a2)/ argtype

Figure 12: The FSM for “Set the title in bold and use Times New Roman as default

font type”

(2) The PBT Tester Combination

Algorithm: Design a PBT tester with different paths

Input: An FSM named, named m, and other FSMs, named mi, with the same start and

final states.

Output: A new PBT tester with different path to complete the task.

Step 1. Import m and mi into a new PBT tester.

Step 2. For each transition ti connect to the start state of mi, add ti to the start state of

m; delete ti and start state of mi.

Step 3. For each transition ti’ connect to the final state of mi, add ti’ to the final state of

m; delete ti’ and final state of mi.

Example 6: Construct a PBT tester with two paths to complete the task.

 PBT allows the examinees to come up with the correct answer by different action

sequences. For example, to insert a symbol (i.e., a comma) in a paragraph, the

examinee has two options: 1) Click the “Insert” menu and insert a comma in the

“Symbol” window, or 2) Click the ”View” menu, enable the toolbar, and insert a

comma. The examinee can complete the task by one of action paths above. Suppose

 24

we have two PBT testers, one describes the action sequence in the first option and the

other describes the second option. We can union these two PBT testers to generate a

new one, as shown in Figure 13.

…

…

Clickinsert

Clickview

Clickcomma

Clickcomma

Start Finish

Action path

Figure 13: A PBT tester with two action paths

Algorithm: Design a PBT tester with trap paths

Input: An FSM named, named m, and other FSMs, named mi.The mi model the trap

path that the examinee may navigate through in certain state of m.

Output: A new PBT tester with trap paths.

Step 1. Import m and mi into a new PBT tester.

Step 2. For each state in m, find the corresponding state that the trap path may occur.

Step 3. For each state found in Step 2, add a state transition the start state of mi.

Example 7: Construct a PBT tester with a trap path.

 When the examinee performs a sequence of actions to complete the task, some

misconceptions may occur. For example, to format the text, if the examinee forgets to

select the text first, the format of the text will not change. Therefore, we can design a

 25

“trap path” and combine with the correct path. That is, the examinee can also navigate

through the “trap path”, but the action sequence performed on the “trap path” will not

affect the results. In order to highlight the misconception, we can also design action

routines to record what the examinee performs. Figure 14 shows corresponding PBT

tester.

Start Finish…

ClickFormat

SelectText

Trap path

Correct path

ClickFormat

ClickOK

ClickOK

Figure 14: The PBT tester with a trap path

Algorithm: Design a PBT Tester with Comprehensive Skill Assessment.

Input: An FSM named, named m, and other FSMs, named mi, where mi is a PBT

tester that Is used to assess different software operating capabilities.

Output: A new PBT tester with comprehensive software operating skills.

Step 1. Import m and mi into a new PBT tester.

Step 2. For each mi, add a state transition from the finish state of mi-1 to the start state

of mi.

Step 3. Configure the corresponding visualization of mi if necessary

Example 8: Construct a PBT Tester with comprehensive skill assessment.

 Some performance-based test item may contain comprehensive software

 26

operating skills. For example, to create a business document, the examinee may need

to know how to create a table to show the sales amount in the end the month, format

the related text, and create a Table of Contents etc. To design a PBT tester for this

kind of test item, we can combine several PBT testers to generate a more complex one,

as shown in Figure 15.

…

Format the text

Merge/Split cell

Start

Finish

ClickFormat

SelectText

ClickTable

Figure 15: The PBT tester combination

 27

Chapter 5. Experiments

In this chapter, the implementation and evaluation design are described. Then,

experimental results are presented and discussed.

5.1. System Implementation

 We have implemented a prototype system based on web-based environment to

evaluate the proposed scheme. As shown in Figure 16 (1), the examinee should first

select the required text, and then drag the text to the first line. After that, the examinee

needs to select first row of the table and delete it by clicking the menu bar as shown in

Figure 16 (2).

drag here

(1) Drag the text (2) Delete the first row

Figure 16: The screenshots of MS Word PBT tester

 There are two inputs and one output in our generator, where “scenario.xml” and

“lladacs.bnf” are the inputs to describe what software run-time status images are used

and the corresponding regular grammar of the required PBT tester respectively. Then,

the YACC [19], an LALR parser generator that can accept a regular grammar

specification and produce parsing tables for the specified language, is applied to

 28

generate the PBT tester.

S A B

Wrong answer
Try again!

Please use tool bar to change
the text size of “Question” to 14

click

dbclick

click

drag

select

click

C

start

S b #a1 #a2 S | c #a2 A
A d #a2 B
B e #a1 #a2 B | f #a1 #a2 S
C h #a1 #a2 B | i #a2

S b #a1 #a2 S | c #a2 A
A d #a2 B
B e #a1 #a2 B | f #a1 #a2 S
C h #a1 #a2 B | i #a2

Corresponding
regular grammar

MS Word Tester

MS Word FSL

Visualize()
{

}

SetCond()
{

}

AR

Action Routine Library
(ARL)

Visual Object
Repository

Visual object

Figure 17: The running process of MS Word PBT tester

The PBT tester execution algorithm is shown as follows.

Algorithm: The PBT Tester Execution Algorithm

Input: Action sequence performed by the examinee.

Output: The scenes that represent the corresponding software run-time status

according to the action performed by the examinee.

Step 1. Check the action performed by the examinee.

Step 2. If the action matches the terminal symbol defined in FSL, trigger

corresponding action routines; else go to Step 1.

Step 3. The action routine then sets the software run-time status and visualizes the

corresponding software run-time status.

Step 4. If reach the final state, then stop; else go to Step 1.

 29

5.2. Experiment Design and Result

 To evaluate the expressive power of proposed FSL, several MS Word test cases

are designed to perform an experiment as shown in Table 7. The test cases are referred

to [22] with some modifications, where this book is one of the reference book used in

Techficiency Quotient Certification (TQC). There are 10 test cases with 5 specific

software operating capabilities: format the font and the paragraph, modify the text by

using find/replace/go to functionality, merge/split/delete the table cells, insert

picture/word art, and insert index or table of contents. Each test case was transformed

into FSL and then imported into the prototype system.

Table 7: MS Word test case

Test Case Functionality Test Item Description
1 Font Use 22 point bold as default

font type
Format the text

2 Find/Replace Find the “ms word”,
replace with “MS Word”

Find and
replace the text

3 Paragraph Use single line space as
default

Format the
paragraph

4 Symbol Insert a comma between
“MS Word” and “Excel”

Insert
comma/colon

5 Merge/Splitcell Merge cells in the 2nd row Merge the cell
6 Add/Delete

table/row/column
Delete the 1st row of the
table and add tow columns

Add table and
delete the row

7 Picture/WordArt Insert a picture at the right
hand side of the document

Insert picture

8 Document
background

Change background of the
document to “Cloud”

Insert document
background

9 Index/Table of
Contents

Insert Index for the
following text

Insert index

10 Picture editing Edit the picture’s position:
3.7cm from left

Edit picture’s
attribute

 30

Table 8: The corresponding FSL of test case
Test
Case

Number of
Non-terminals

Number of
Terminal

Number of
Grammar Rule

Number of Action
Routine Type

1 4 10 10 2
2 5 10 10 2
3 3 6 6 2
4 14 25 25 2
5 5 7 7 2
6 8 11 11 2
7 5 12 12 2
8 6 9 9 2
9 10 17 17 2
10 4 9 9 2

 In this experiment, 4 domain experts who teach MS Word in a MiaoLi

elementary school used the prototype system to evaluate if the test case can really

reflect the corresponding software operating capabilities. After using the prototype

system, we evaluate the satisfaction degree of the domain experts by a 5-point Likert

scale questionnaire. Figure 18 shows the average satisfaction degree of the domain

experts in each test case.

4.25 4.25

3.5 3.5
4 4

3.5
4

3.25

4.25

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

Test Case

Sa
tis

fa
ct

io
n
 D

eg
re

e

Figure 18: The results for satisfaction degree questionnaire (5 is the highest possible

score)

 31

 After further discuss with domain experts, we found that most domain expert

argue that the action sequence should follow the predefined actions which are not as

flexible as real MS Word. Therefore, the lack of instruction may cause their

inconvenience. On the hand, since the action sequence is predefined, we can easily

evaluate the action sequence performed by the examinee which out perform the real

software.

5.3. Discussion

 Since our PBT tester is describe by the corresponding FSL, it has the following

properties:

 Understandability

 The FSL clearly defines the software run-time status and the transition of the

PBT tester. It can be easily examined for correctness, consistency, and completeness.

 Flexibility

 An advantage of this approach is that once the FSL is built, the PBT tester

generation process is automatic. It is relatively easy to extend the functionality of PBT

tester by adding, changing, and deleting the grammar rules.

 Scalability

 To aid in the scalability of the FSM, the visualization is divided into foregrounds

and backgrounds, and the action routine is used to configure the corresponding

visualization.

 We note some current limitations of our approach. First, the operation steps

should be finites. Second, our model is trying to model the action sequence of the skill

assessments and the design of the content is not our concern such as some

assessments related to the ability of creativity or design skills (i.e., design ability of an

architect).

 32

Chapter 6. Conclusions

 In this thesis, we have showed that the software run-time status and the

transitions of the PBT tester can be described by a set of regular grammar, called the

Functional Specification Language (FSL), to model the action sequence performed by

the examinee during the software skill certification. Based on the concept, a

generator-based approach including construction phase and testing phase, called the

Tester Generator Scheme, has been proposed to assist teachers in building a tester for

PBT. In the Construction phase, the available action sequence the examinee can

perform is firstly transformed into the corresponding FSL. Thus, a parser generator

can be applied to generate the required tester based on the given FSL. In the testing

phase, the examinee can perform a sequence of actions on the tester to complete the

required tasks.

To reduce the effort of editing the XML files for the input of the generator, we

are going to develop an authoring tool with a user-friendly UI to help authors edit

XML file in the near future. In addition, the computer-based skill assessments has

become very popular, we are trying to apply our model to different software operating

skill exams such as MS Excel and PowerPoint.

 33

Reference
[1] Microsoft Office Word 2003 Expert Certification Exam [cited 2008 March];

Available from: http://www.microsoft.com/learning/mcp/

[2] The ANATOMY of a Performance-Based Test [cited 2008 March]; Available from:

http://www.certmag.com/issues/may01/feature_mulkey.cfm

[3] Performance-Based Testing: Proving Your Skills [cited 2008 March]; Available

from: http://www.certmag.com/issues/nov02/feature_childers.cfm

[4] The State of Performance Based Testing [cited 2008 March]; Available from:

http://gocertify.com/article/PerformanceBasedTesting.shtml

[5] A. Basu, I. Cheng, M. Prasad and G. Rao, “Multimedia Adaptive Computer based

Testing: An Overview,” IEEE Int'l Conference on Multimedia, pp. 1850-1853, July,

2007.

[6] J. Yau and M. Joy, "Adaptive Learning and Testing with Learning Objects,"

International Conference on Computers in Education, 2004.

[7] Parshall, C. G., Spray, J. A., Kalohn, J. C., and Davey, T. (2002). Practical

Considerations in Computer-based Testing. Springer-Verlag, New York.

[8] Fritz Drasgow, “Innovative Computerized Test Items”, Encyclopedia of Social

Measurement, pp283-290, 2005.

[9] Ackerman, T. A., Evans, J., Park, K.-S., Tamassia, C., and Turner, R. (1999).

Computer assessment using visual stimuli: A test of dermatological skin disorders.

In Innovations in Computerized Assessment (F. Drasgow and J. B.

Olson- �Buchanan, eds.), pp. 137 150. Erlbaum, Mahwah, NJ.

[10] Bejar, I. I., and Braun, H. I. (1999). Architectural simulations: From research to

implementation. (Research Memorandum 99-2). Educational Testing Service,

Princeton, NJ.

 34

http://www.microsoft.com/learning/mcp/
http://www.certmag.com/issues/may01/feature_mulkey.cfm
http://www.certmag.com/issues/nov02/feature_childers.cfm
http://gocertify.com/article/PerformanceBasedTesting.shtml

[11] Clyman, S. G., Melnick, D. E., and Clauser, B. E. (1999). Computer-based case

simulations from medicine: Assessing skills in patient management. In Innovative

Simulations for Assessing ProfessionalCompetence (A.Tekian, C. H.McGuire, and

W. C. McGahie, eds.), pp. 29-41. University of Illinois, Chicago, IL.

[12] Zenisky, A. L., and Sireci, S. G. “Technological innovations in large-scale testing,”

Applied Measurement in Education, 15(4), 337-362, 2002.

[13] Kathleen, S. and Bernard G., Computer-Based Assessment in E-Learning: A

Framework for Constructing "Intermediate Constraint" Questions and Tasks for

Technology Platforms, Journal of Technology, Learning and Assessment, Vol.4,

No.6, 2006

[14] John J. N., and Danette W. M., “Assessment methods in medical education”,

Teaching and Teacher Education, Volume 23, Issue 3, April 2007, Pages 239-250

[15] Microsoft Simulation Question [cited 2008 March]; Available from:

http://www.microsoft.com/learning/mcpexams/simulations/

[16] QTI, IMS Global Learning Consortium, Inc. Question & Test Interoperability

[cited 2008 March]; Available from: http://www.imsglobal.org/question/

[17] IMS Global Learning Consortium, Inc.” IMS Question and Test Interoperability

Implementation Guide: Items Version 2.1” [cited 2008 March]; Available from:

http://www.imsglobal.org/question/qtiv2p1pd2/imsqti_implv2p1pd2.html

[18] Kinnersley, N., Mayhew, S., & Hinton, H. S. (2001). The design of a web-based

computer proficiency examination. In 31st Annual Frontiers in Education

Conference (Vol. 2, pp. F2C-3-7).

[19] Levine, John R., Tony Mason and Doug Brown [1992]. Lex & Yacc. O’Reilly &

Associates, Inc. Sebastopol, California.

[20] Adobe Flash; Available from: http://www.adobe.com/products/flash/

[21] Adobe Captivate; Available from: http://www.adobe.com/products/creativesuite/

 35

http://www.microsoft.com/learning/mcpexams/simulations/default.mspx
http://www.imsglobal.org/question/
http://www.imsglobal.org/question/qtiv2p1pd2/imsqti_implv2p1pd2.html
http://www.adobe.com/products/flash/
http://www.adobe.com/products/creativesuite

	Introduction
	Related Work
	Computer-based Testing
	Computer-based Skill Assessment
	Different Approach to Construct PBT Tester

	Tester Generator Scheme
	Performance-Based Testing in Software Skill Certification
	Software Functional Specification Language

	Application
	MS Word Test Scenario Authoring Process
	PBT Tester Revision and Combination

	Experiments
	System Implementation
	Experiment Design and Result

	Conclusions

