FYEVR] S T R A

RN R

2R RN A L B

Building a Tester Generator for Performance Based Testing

x;ﬂ;b‘“el::t

—_

hEREfEe BL

(«)‘7

'',

s S Jed = F o4k

g TR R %A L E 2T

Building a Tester Generator for Performance Based Testing

Student : Nien-Chu Wang

R A L Advisor : Dr. Shian-Shyong Tseng
AR - S B R A
L @ v
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science
June 2008

Hsinchu, Taiwan, Republic of China

PEARA LS ER

G NS R f gL

K= ‘LL“§P g
TAPEZI AT

FEFRIRBIRETFRA - AR LERTFanER AL R E

R
LRI R T 4 o AT RO SR Y RN F & LR L AP M R (TR R
R £ 'Fj}isb%ﬁq{— B o Fhd LR RIE R RF TR A R ST
Ear gk (T AT 0 RIFE KR AR R RARE iR (TP o XA o R EFILA
e R AR R0 PP SR R DR R Ao I R
RIS DA R 24 X T e RO R R R AN P R e g PR RN P eh
BB F ATk R A PR R R T - AR AR T
o gd - B ER T RRPIET RS ERTEIEE R RiTRH P
A~ B LR S (FSM) ko d i 308 cndfe 1748 > 4 FSM ¢ ek i& (State)
THR~fE MR TR 5 @ f S g(Transition) Bl €& = 45 i <RI e
Fd 1% o 1P s > 243 1 7 Functional Specification Language @ ¢
¥ 3O % @ R % 2 (Regular grammar) k 4 i 088 ok fEUR AR 0 X H
parser generator XA 2 ¥R TR FAL 0 XV L jEd B R 2 R
R TR ALY hfRRT P o A * gt — 22 k7 1 MS Word shg # 4% iF
A B A P RE B RO FERRAT L SR A AT A R R R A gtk T

oo @ B PERERFT R OREE ALY F AR R

MeEF © F (R~ OURGH AL E - TR

Building a Tester Generator for
Performance Based Testing

Student: Nien-Chu Wang Advisor: Dr. Shian-Shyong Tseng

Institute of Computer Science and Engineering

Nation Chiao Tung University

Abstract

Performance-based testing (PBT) is usually used to assess the examinee’s
procedural knowledge, the knowledge of knowing how, by performing some real
world tasks. Many software skill certification exams have integrated PBT as a part of
their exam to certify the examinee’s software operating skill, where the examinee
needs to perform a sequence of actionsion specific software to achieve the required
results. Traditionally, the evaluation of the,examinee’s software operating skills which
only can be manually done by-the.teacher is time-consuming and costly. With our
observation, using software to-perform-a‘sequence-of actions to complete the task
seems like a navigation process from the starting point of the software run-time state
to get the required results, which can be modeled as a Finite State Machine (FSM),
where the current state of FSM represents the software run-time status, and the
transitions of FSM represent the actions the examinee can perform. Once the
examinee performs an action in a certain state, the corresponding state transition will
be triggered to move from the current state to the next state and then the PBT tester
will visualize the next software run-time status. Based on this concept, a set of regular
grammar, called the Functional Specification Language (FSL), is defined to describe
the software run-time status and transitions of the PBT tester according to the
functionality of specific software. Thus, a parser generator can be applied to generate
the corresponding PBT tester based on the given FSL and the related action routines.
To evaluate the proposed scheme, several experiments have been done to show the
correctness, reusability, and expressive power of the scheme.

Keyword: Performance-based testing, Finite State Machine, Generator,
Computer-based testing

'ﬁi’fkﬁjégiffhﬁv#%%ﬁﬁ’ FRgegl B2y ate > 2 REG
- SR - Zdntm o R FEAERERGY RN NARSER®Y A LY
FFAEL R LTI AN EAE 2 GEAALFP T EF R o
E#HGEERE N kB AR RS 2o @FFLTF TR 0L &

Thwm2{aid TP RNTBRIEREFAL DR E - 5B 1 N PRH o

ER Y RMIREE L B L3t ALY BT @Y S gk
Host o KRG TR F R A AR L B ARIFROR A
SREMPTFTER I I TS Y AARLIA E RDRAE el 2 TR
R F G B RN L LR A2y 4 S T ApdkdE o

o 0 N R RHEA R A AFE A G ;Z'g_%;‘j_%’;;ﬂ;{:—_p » TP 4l ig ﬂ;ﬁpggi@j

B
R ET IR RTERE 1+

Table of Contents

AADSTFACT ... i
F - PP SOTT iii
TabIE OF CONTENTS ...t iv
I TS A0 1o U =TSSR %
LISE OF TADIES ... s Vi
Chapter 1.] 0 oo [UTox 1 o] o ISP 1
Chapter 2. RElAtEA WOIK ... e 4
2.1. Computer-based TESHING........cveeeieeie e e e nre e nns 4
2.2. Computer-based SKill ASSESSIMENTccivviieeieeiee e 5
2.3. Different Approach to Construct PBT TeSIENccevvveieeiee e 5
Chapter 3. Tester Generator SChEMIE .. it 8
3.1. Performance-Based Testing in-Saftware Skill Certificationcccocevviinnnen. 9
3.2. Software Functional Specification LangUage%........ccceveererenenenenieneeeeeeeenes 12
Chapter 4. WA o] o] [ToF 1A o] o B ey e SR 16
4.1. MS Word Test Scenario AUtROFING.PIOCESScc.coeeveiriiiecece e 16
4.2. PBT Tester Revision and CombiNatioNcccccoviiiereieieinese e 20
Chapter 5. [q 0T [0 T=T o | O UST 28
5.1. System IMPIEMENTALION.c.ooi e 28
5.2. Experiment Design and ReSUIL............ccov e 30
Chapter 6. (0] 0 10d [V 1] o] o SRS 33
RETEIENCE ...t 34

List of Figures

Figure 1: The scheme Of teSter gENEIatOrcccveieeiieiii e e s 9
Figure 2: MS WOId PBT 1ESTENciuviiieice e stie st e et ee ettt e e aeenreennee e 10
Figure 3: The MS Word Scene ONtolOgycccccveveeiieiiiiii e 11
Figure 4: The visualization 0f PBT tEStEr.......c.cciviiiiiieeie e 12
Figure 5: An example of FSL about MS WOId.........ccoo i 14
Figure 6: The FSM for “Change the font style of the title in MS Word™..............ccoevveeienee, 15
Figure 7: The MS Word test scenario authoring ProCESS........cvevveereereeriersieeeseeseeseeseesnesnns 16
Figure 8: The illustration OF aCtION TYPES......ccveiiiiiie e 17
Figure 9: The FSL for “Set the title in ItaliC”cccooe i 21
Figure 10: The FSM for “Set the title in italiC”cccovi i 22
Figure 11: The FSL for “Set the title in bold and use Times New Roman as default font type”
.. 23
Figure 12: The FSM for “Set the title in bold and use Times New Roman as default font type”
.. 24
Figure 13: APBT tester with two action pathS i .ooooeii i 25
Figure 14: The PBT tester With @ trap Path. .. ovesees e e cosboteeeeeeieinnenieneneseeeeseeesese e 26
Figure 15: The PBT tester combination. ..o i i i e 27
Figure 16: The screenshots of MSMOIrd PBT 1ESLNcuvveiveieeieieceeie et 28
Figure 17: The running process of MS WOIrd PBT-TESter it .eoviieeie e 29

Figure 18: The results for satisfaction'degree questionnaire (5 is the highest possible score) 31

List of Tables

Table 1: The elements Of PBT tESTEr........cui i s 10
Table 2: The descriptions of symbols for “Change the font style of the title”........................ 14
Table 3: The action types used in “Change the font style of the title”c..cco v 18
Table 4: The definition OF aCtION TYPESveive i 19
Table 5: The descriptions of symbols used in “Set the title in italic”............cccccove v 21
Table 6: The descriptions of symbols used in “Set the title in bold and use Times New Roman

G (=] 0 L 0] 0 A 1Y - RS 23
Table 7: MS WOIT TESE CASE ..ottt sttt sttt ettt saeste e seeeneas 30
Table 8: The corresponding FSL Of teSt CASE......cccueiviiiierieiec e 31

Vi

Chapter 1. Introduction

Learning assessment is an important and essential part in the process of learning.
With the growth of the computer and the Internet technology, the learning assessment
via the computer and the Internet, called Computer-Based Testing (CBT) has become
a trend especially in the information technology (IT) certification exam. In software
skill certification, such as MS Word certification [1], there are usually two phases of
tests. The first phase is to test the examinee’s declarative knowledge, the knowledge
of knowing what, which is usually the traditional single-choice or multiple-choice
testing. The second phase is to test the examinee’s procedural knowledge, the
knowledge of knowing how, called Performance, Based Testing (PBT) [2-4]. In PBT,
the examinees have to perform:some real world tasks by using specific software to
demonstrate their software operating skills. For example, the examinee might be
asked to complete the following task ““At the beginning of the document, insert a Table
of Contents showing two heading levels.” in MS Word 2003 certification exam. To
complete this task, the examinee has to perform a sequence of actions on MS Word to
get the required results and the examinee’s software operating skills can be assessed
during the process of accomplishing this task. Besides, PBT allows the examinees to
come up with the correct answer using different approaches. That is, the examinee can
solve a problem by showing how to navigate through a sequence of processes to get
the required results.

Currently, the examinees have to use actual software to realize PBT in software
skill certification. Besides, since the actions of most software performed by the
examinee during the testing are not recorded, the evaluation of the examinee’s

software operating skills which only can be manually done by the teacher is costly

and time-consuming. In recent years, a testing platform for PBT, called the PBT tester,
on some specific software which can provide adequate functionality of the software to
complete the required tasks and track the examinee’s action sequence were proposed
as a cost effective way to realize PBT in software skill certification. However, to build
a PBT tester for some specific software, the control flows of testing scenario should
be simulated in the tester so that the software output can be correctly visualized
according to the examinee’s sequence of actions. Thus, the programming efforts of
building a PBT tester are costly. Besides, the reusability for the new PBT test items is
also a critical issue for the PBT tester developer.

With our observation, using software to perform a sequence of actions to
complete the task seems like a navigation process from the starting point of the
software run-time state to the finalstate to get the.required results. Our idea is to use
Finite State Machine (FSM) to imodel what the examinee performs during the PBT in
software skill certification, where the current-state -of FSM represents the software
run-time status, and the transitions of ESM.represent the actions the examinee can
perform. Once the examinee performs an action in a certain state, the corresponding
state transition will be triggered to move from the current state to the next state and
then the PBT tester will visualize the next software state. Based on this concept, a set
of regular grammar, called the Functional Specification Language (FSL), is defined
to describe the software run-time status and the transitions of the PBT tester according
to the functionality of specific software. Thus, a parser generator can be applied to
generate corresponding software tester based on the given FSL, where the grammar
rule of FSL can be used to model the action sequence performed by the examinee, the
non-terminals of FSL represent the software run-time status, and the terminals of FSL
represent the actions the examinee can perform. Besides, action symbols are attached

to each terminal symbol to trigger the corresponding action routines, such as the

2

routines for visualizing the next software run-time status and recording the actions
performed by the examinee. To effectively visualize the next software run-time status,
the visualization is divided into backgrounds and foregrounds, where the visualization
action routine substitutes the foregrounds according to the action performed by the
examinee, and the backgrounds do not need to be changed.

To evaluate the correctness, reusability, and expressive power of proposed
scheme, we have implemented a prototypical system in the web environment. In this
thesis, several test cases are designed to evaluate the expressive power of proposed
scheme. According to the feedbacks of the teachers and the tester developers, we may

conclude that the proposed scheme is workable and beneficial for them.

The remainder of the article is organized as follows. In Chapter 2, we introduce
some related works about the traditional PBT. tester and authoring tools for creating
the PBT tester. Then, the proposed Tester Generator Scheme and the application of
PBT tester are described in Chapter 3.and-Chapter 4-respectively. Chapter 5 discusses
the system implementation and experiments. Finally, Chapter 6 gives the conclusion

and future work.

Chapter 2. Related Work

2.1.Computer-based Testing

The traditional multiple-choice test, administered via paper and pencil, provides
a highly constrained testing environment. With dynamic visuals, sound, and user
interactivity, computer based testing are being considered as alternative means for
more effective testing [5-9], compared to traditional paper-and-pencil test. Innovative
computerized test items [8] which refer to item types that use the computer’s
capabilities to improve measurement and assessment have been introduced over the
past two decades. Zenisky and Sireci{12] gave.examples to illustrate drag-and-drop,
moving objects to create a tree structure; and several-other response actions. In [13], a
taxonomy or categorization of 28 innovative item types that may be useful in
computer-based assessment are introduced, which-is organized along the degree of
constraint on the respondent’s options for answering or interacting with the

assessment item or task.

According to [8], it is possible to view innovations as falling into three categories.
First, new item types that improve the assessment of some ability or skill can be
created. Bennett et al. [7] discussed this kind of item type. The second category
includes assessments designed to improve the authenticity of the assessment.
Licensing exams that use computers to create high-fidelity simulations of professional
activities, such as the clinical skills and the architectural licensing exams discussed in
the next section fall into this category. Assessments of constructs not easily measured
by conventional tests constitute the third category. Examples include tests of musical

aptitude and interpersonal skills.

2.2.Computer-based Skill Assessment

Many skills and proficiencies are not easily assessed by paper-and-pencil
multiple-choice test items. Consider, for example, clinical skills [11], [14], which take
a history from a patient and perform a physical examination, or the design ability of
an architect [10]. In recent years, the simulation technology has been applied to the
certification exams of Microsoft Office Specialist (MOS), to realize PBT. Therefore,
the examinees demonstrate their software operating skills by performing a sequence
of actions on specific software to finish critical 1T tasks in a simulated working
environment, not using the actual software [15]. They have conducted that the
simulation testing is a more effective way to evaluate the examinee’s software

operating skills.

However, research has shown-that these‘performance-based testing are difficult
to administer and score, and: have “low-reliability and limited generalizability.
Therefore, it is hard to construct and maintain‘a PBT tester for skill assessment. In
this thesis, we focus on the software operating skill assessment, and try to propose a

model to describe the PBT tester.

2.3.Different Approach to Construct PBT Tester

In this section, several approaches that can be used to construct a PBT tester are
surveyed, including 1) standard-based approach, 2) object-based approach, and 3)

screenshot-based approach.

® Standard-based Approach

The IMS Global Consortium, an industry and academic consortium, produced

the IMS QTI (IMS Question & Test Interoperability Specification), which uses an
XML file to describe a basic structure for the representation of question (item) and
test (assessment) data and their corresponding results reports [16]. Some questions,
such as drag & drop and spot the error, in QTI specification define an image as a test
item to let the examinees perform some actions (i.e., clicking, drag object) on that
image. For example, for a given picture, the question may look like “The picture
illustrates four of the most popular destinations for air travelers arriving in the
United Kingdom: London, Manchester, Edinburgh and Glasgow. Which one is
Glasgow?” [17], and then the examinee uses mouse to click at the correct location on
the given picture. However, the QTI specification did not clearly define the structure

and the operating flow of simulation questions for PBT.

® Object-based Approach

In [8], Shavelson et al. designed-several-objects, such as batter, light bulb, and
voltage, to let the examinees perform their hand-on performance task on the computer.
Due to the special effort required to implement specific domain objects, it is hard to

reuse the objects in different domains.

® Screenshot-based Approach

Kinnersley et al. [13] used Adobe Flash [20] to create a PBT tester to emulate
MS Word and Excel. The tester is a timeline of MS Word or Excel screenshots to
represent different software run-time status so that the examinee can perform some
actions (i.e., clicking, drag object) on the screenshots, where the action performed by
the examinee is to move from the current screenshot to the next screenshot in the
timeline. Since Flash is not originally designed for software simulation, all of the

screenshots need to be gathered, cropped and sized, and the mouse events

6

corresponding to the actions performed by the examinee also hove to be implemented.

Therefore, it is very time consuming for a tester developer to build a PBT tester.

Adobe Captivate [21] was used to create a tester for software skill exam. When
the teacher wants to create a tester, he/she opens the target software to perform a
sequence of actions from the starting state of the software to the final state of the
software. During the sequence of actions, the Captivate automatically captures the
screenshot and creates the sequence of screenshot based on the actions performed by
the teacher. However, to model different operating paths, objects such as button or
menu and the corresponding mouse events have to be added manually. Thus, it is hard

to construct, reuse, and maintain the more complex simulation.

Chapter 3. Tester Generator Scheme

As mentioned before, it is time-consuming and costly to design a tester for PBT,
because the control flows of the corresponding action sequence performed by the
examinee should be implemented so that the software run-time status can be correctly
visualized. With our observation, using software to perform a sequence of actions to
complete the task seems like a navigation process from the starting point of the
software run-time status to get the required results which can be modeled as a Finite
State Machine (FSM). In this thesis, we propose a generator-based approach, called
the Tester Generator Scheme, to assist teachers in building a tester for PBT without
low level programming, as shown insFigure L:. The scheme of tester generator. The
scheme includes two phases: the Construction phase and Testing phase. In the
construction phase, an authoring process. which refers to the Functional Specification
Language (FSL) and action routine declarations is proposed to help teachers specify
the testing scenario, where the FSL is a set of regular grammar to describe the
sequence of actions that the examinee can perform and corresponding software
run-time status and the action routine declaration is to describe the action routines
used in the FSL. The detailed definition will discuss in the following sections.
According to the FSL and related resources, i.e., software run-time status images and
action routines, a parser generator can be applied to generate the required tester. In the
testing phase, the examinee can perform a sequence of actions on the tester to

complete the required tasks.

MS Word Functional
Spec Language

MS Word
Scene Ontology

Action Routine
Declaration

Test Scenario
Authoring

Action Routine
Library

Actions perform by examinee

MS Word
7Test ScenaL/z7

»

Parser
Generator
(yacc)

MS Word visualization
Tester

Construction Phase

e

Testing Phase

Figure 1: The scheme of tester generator

3.1.Performance-Based Testing in Software Skill

Certification

29©)191U| a3

As we know, PBT can test the examinee’s procedural knowledge; in other words,

the examinee’s software operating, skilli'can, be .assessed during the process of

performing a sequence of actions, where a-clear goal; called the task, is given for the

examinee to complete. An example is-described as follows:

Example 1: The correct action sequence of “Change the font style of the title in MS

Word”.

We assume that there is a performance-based test item “Change the font style of

the title in MS Word”. The correct action sequence should be as follows: @ Select

the title of the document by double clicking the title or using the cursor to select the

title, @ Click the “Format” menu, @ Click the “Font” menu, @ Set the correct

font style, and & Click the “OK” button to finish the task. The examinee needs to

perform a sequence of actions as mentioned above so that the correct font style can be

done. Figure 2: MS Word PBT tester shows the corresponding MS Word screenshots

of the action sequence performed by the examinee.

=Py

o =

Cxami

nee

Result

L

-i = -:I._' e
camibes 3 Teagher
Change the font style of the L — - e s -

title to bold

Figure 2: MS Word PBT tester

Since the actions of most software performed by the examinee during the testing
are not recorded, the evaluation of the examinee’s software operating skills which
only can be manually done by the teacher is costly and time-consuming. To ease the
efforts of the teacher, we should know what sort of information should be kept to find
out “How does the examinee complete the task”. Therefore, a testing platform for
PBT, called the PBT tester, on some specific software which can provide an
environment to simulate the required real situations was proposed to assess the
examinee’s software operating. skills by providing adequate functionality of the
software to complete the required tasks and track the examinee’s action sequence,

where the following elements need to be considered, as shown in Table 1.

Table 1: The elements of PBT tester

Element Description

Task A PBT tester must have a goal the examinee needs to achieve.
i.e., the task in Example 1.

Action The examinee can perform a certain action on the PBT tester,
i.e., Steps 1-5 in Example 1

Path A sequence of actions from the starting state to final state calls

an operating path. A PBT tester needs to support different
action sequences performed by the examinee to complete the
task.

Visualization | According to the action performed by the examinee, the PBT
tester will visualize the corresponding software run-time status

to simulate the required real situation.

10

In order to describe the relations between the actions performed by the examinee
and corresponding software run-time status, we propose a four-level ontology, called
Scene Ontology (SO) as shown in Figure 3: The MS Word Scene Ontology, where the
root level is the target software, the MS Word, and the second one describes the
functionality of the target software which is used to assess the examinee’s software
operating skills, the third one describes the modules of functionality, and fourth one
describes the sub-modules, to allow the reuse of modules and sub-modules definitions
that commonly appear across different software, i.e., MS Excel and PowerPoint.
There is one relation *“a part of relation” in SO, which represents the visualization to
describe that the software run-time status can be classified into one of the modules or

sub-modules according to its functionality in MS Word.

MS Word
Functionality /4 _
Text/File Paragraph Single |
Document
Modules /N N /Zx\
. Insert Word
Font Layout Numbering Picture Master |

SRR RS

Figure 3: The MS Word Scene Ontology

According to the proposed Scene Ontology, using MS Word to perform a task
can be represented as a finite number of actions; i.e., select a word, click a button, and
input some texts, etc. Once a certain action is performed, the corresponding software

run-time status will be visualized. Thus, the action sequence and the corresponding

11

run-time status visualization can be modeled as a Finite State Machine (FSM), where
the current state of FSM represents the software run-time status, and the transitions of
FSM represent the actions the examinee can perform. Once the examinee performs an
action in a certain state, the corresponding state transition will be triggered to move
from the current state to the next state and then the PBT tester will visualize the next
software run-time status.

To effectively visualize the next software run-time status, the visualization is
divided into foregrounds and backgrounds, where the foregrounds are the run-time
status images that need to be changed to represent the next software run-time status
and the backgrounds are those that do not need to be changed. In other words, only
the foregrounds are changed in each state transition. Therefore, the visualization of
software run-time status is also a-sequence of the corresponding foregrounds and
backgrounds combination according to the .actions-performed by the examinee as

shown in Figure 4.

uluense AT e i i O A Mhpia - avwasue: | FER g < g O edlol
[— I |
l | | =
| \ =
‘ " ; e 10 ;] = S - |
1 = u e 1 = W]
‘ 1 ; } . | 1
i -
I
|
I
| : S
= oolNaTEa Ve, = ooWWaTES

Background

Figure 4: The visualization of PBT tester
3.2.Software Functional Specification Language

Based on the concept mentioned above, we define a set of regular grammar,
called the Functional Specification Language (FSL), where the grammar rule of

FSL can be used to model the operating paths, the non-terminals of FSL represent the

12

software run-time status, and the terminals of FSL represent the actions the examinee
can perform. Besides, action symbols are attached to each terminal symbol to trigger

corresponding action routines.

Definition 1: Functional Specification Language is a 5-tuple, FSL=(N, >,P, S, 7),
where

1. N is a finite set of non-terminals, which represents the run-time status of
specific software.

2. X is a finite set of terminals, which represents the actions that the examinee
can perform, i.e., click the toolbar, select a word, etc.

3. P is a finite set of production rules, which represents the action performed by
the examinee and the next.run-time status.of specific software. A production
rule needs to satisfy one of the following forms:

A > xB, A > x, where A, BinN,.and x in- > *

4. S is the starting state, which represents the initial run-time status of the PBT
tester.

5. 7 is a finite set of action symbols, which is defined on X to trigger
corresponding action routine, i.e., the routines for visualizing the next software

run-time status and recording the actions performed by the examinee.

The following example illustrates the real case of FSL about MS Word

certification exam.

Example 2: The FSL for “Change the font style of the title in MS Word”.
For the performance-based test item given in Example 1, which describes the

performance-based test item “Change the font style of the title in MS Word.” , we have

13

to define three non-terminals, S, A, and B, representing three different software
run-time status during the testing. A set of terminals, {b, c, d, e, f, g, h}, are defined to
represent the action that the examinee can perform. For example, terminal b means
the examinee performs “select the title by double clicking”. Besides, two action
symbols, #al and #a2, are used to trigger the corresponding action routines
respectively. Note that an action routine may contain variables as parameters
according to the action performed by the examinee. The details of symbol definitions

are shown in Table 2.

Table 2: The descriptions of symbols for “Change the font style of the title”

Type Symbol | Description
Non-terminal | S The starting state of the testing. In this state, the
runstime status of.the title is one of the followings:
normal;thighlighted;.and bold.
A The state of showing-the format menu.
B The state-of showing the font panel.
Terminal b Highlight the title by double clicking.
C Use the cursor to select the title.
d Click the “Format” menu.
e Click the “Font” menu.
f Click the correct font style. i.e., bold.
g Click the “OK” button to complete the task.
h Submit the task.
Action Symbol | #al Set software run-time status.
#a2 Visualize the next software run-time status.

The corresponding FSL is shown in Figure 5.

SO Dsar#a2S|Char#az S| dsar Al hsa2
A%e#azB

B > fiar4a2 B| g sar#a2S
Figure 5: An example of FSL about MS Word

14

In this grammar, the first step is to select the title of the document, which can be
done by double clicking the title (terminal b) or using cursor to select the title
(terminal c). After selecting the title, the corresponding action routines are
triggered, highlight the title (#al) and visualize the next software run-time status
(#a2). The examinee then needs to click the “Format” menu (terminal d) to set the
correct style. After clicking the “Font” menu item (terminal e), the font panel will
be popped out. In the panel, the examinee needs to set the correct style, said bold
(terminal f), click the “OK” button (terminal g) to complete the task, and finally

submit the task (terminal h). The corresponding FSM is shown in Figure 6.

click(d,,)

Figure 6: The FSM for “Change the font style of the title in MS Word”.

15

Chapter 4. Application

In this chapter, we describe the test scenario authoring process, which includes
three phases: 1) Specify Required Task, 2) Design Operating Paths, and 3) Upload

Visualization.

4.1.MS Word Test Scenario Authoring Process

To assist test scenario authoring, we propose an authoring process to help the
teachers, which includes three phases: the 1) Specify Required Task, 2) Design
Operating Paths, and 3) Upload Visualization. Figure 7 shows a flowchart of the test

scenario authoring.

Specify Design Specify)| MS Word
; —> 7 > T | Test Scenari
Required Task Operating Paths Visualization

T
55 ‘%‘E [t
e
Teachers/Authors

Figure 7: The MS Word test scenario authoring process

(1) Specify Required Task:

The teacher needs to specify the starting state and final state according to the
required task the examinee should achieve. If the examinee performs the action
sequence correctly, the state transition will eventually connect to the starting state as
the final state as shown in Figure 6 above. However, the software run-time status in
the starting state is not as the same as that in the final state. Therefore, the “key states”
representing specific software run-time status between the starting state and final state
should be specified by the teacher as well. That is, the action sequence performed by

the examinee must navigate through the “key states” in order to get the required

16

results.
In this step, the corresponding non-terminals of the FLS will be determined

according to the starting state, final state, and “key states”.

(2) Design Operating Paths:

Suppose we have an action routine library which contains some build-in action
routines for PBT tester construction, the teacher refers to the action routine library to
specify the available action sequence from the starting state to final state, where the
corresponding terminals and related action routines of FSL will be determined based
on the given action sequence. An example is described as follows:

i
|

Example 3: Define the actlon types for the performance -based test item “Change

= FISA%W ~
the font style of the title in MSWord” S

For the performance- based test |tem—g4¥en |n Example 1, we define three
non-terminals, S, A, and B as shown |n Example 2 and the corresponding action types

need to be defined by the teacher, including menu clicking, text selecting, list clicking,

and button clicking as shown in Figure 8.

% iNED SND wAD W0 620 TAD AGW EEM KA
s i DEFEBJSAM-TRIDAT - QRO W T+ -
f PO R T T T SR T T T T T |

Text Selecting

97 B (T T e

o EAREERTOTREE RS () NHE, WE

q r'_mr1 RiesiE1 H 1§
ML E SRR W T

LR} - - - -
nme 4 wemmg. . \OOMEACEIR S -!.A.l e-- fas/Remm: nw: G weEmn- . OOAEAOEE S -L-A-S5E0N, e sFim@:
Ol (L !\‘lu. "y W T ¥ Ol w ’1&; L i ¥ b ¥

Figure 8: The illustration of action types

17

The details of action type descriptions and the corresponding definitions are

shown in Table 3 and Table 4, respectively.

Table 3: The action types used in “Change the font style of the title”
Non-terminal | Action Type Description
S Menu Clicking | The menu clicking on the “Format” menu will
trigger the state transition from non-terminal
A to non-terminal B.
Text Selecting The text selecting on the working area will
change the current software run-time status;
that is, the text will be highlighted.
A Menu Clicking | The menu clicking on the “Font” menu needs
to be defined by the teacher so that the
current state will move to the non-terminal B.
B List Clicking The list clicking on the “Font Style” list will
set the software run-time status according to
the elicking style.
Button Clicking. | The button clicking on the “OK” button will
trigger_the state transition to move to the

non-terminal.- S and the corresponding
software run-time status will be set.

18

Table 4: The definition of action types

Action Type

Description

Menu Clicking

The menu contains frequently used functionality such as
Open, Save, and Print. According to the required task, the
corresponding menu should be set by the teacher to check if
the examinee knows the exact functionality to complete the
required task. i.e., the menu clicking in Example 3.

Text Selecting

Several user events are defined on the working area such as
clicking, double clicking, selecting, and dragging. i.e., to
format the text, the examinee should select the required text
before clicking the “Format” menu, or the software run-time
status will not be changed.

List Clicking

The list contains several choices for the examinee to choose.
According to the required task, the examinee needs to
choose the correct option to complete the task.

Button Clicking

After performing sequence of actions such as text menu
clicking and list elieking, the examinee usually needs to
click the.button to check if the action sequence is performed
correctly:

(3) Specify Visualization:

Since the PBT tester will visualize the corresponding software run-time status
according to the action sequence performed by the examinee, the teacher needs to
specify related run-time status visualization in order to simulate the required real

situation. In this step, the corresponding parameters of action routines of FSL will be

determined according to the run-time status visualization.

19

4.2.PBT Tester Revision and Combination

With the defined FSM model for PBT tester, the examinee can perform a
sequence of actions on the PBT tester that can be used to assess the examinee’s
software operating skills. The PBT tester revision and combination are used to design
a PBT tester with different functionalities, where the revision is to revise the original
PBT tester functionality or add new functionality to a PBT tester; and the combination
is to combine different PBT tester by FSM union or concatenation to provide
comprehensive software operating skill assessment. The revision and combination of

a PBT tester are described as follows.

(1) Reusing an Existing PBT Tester

Algorithm: Revise the Functionality of a PBT Tester
Input: The FSL constructed in Example 2
Output: APBT tester with revised functionality.

Parameter: a; is the action that needs to be revised.

Step 1. Import an existing FSL into a new PBT tester and name the FSL f.

Step 2. For each terminals t; in f1, find the terminals for a;.

Step 3. For each a;, revise the corresponding action routines attached in the terminals
found in Step 2.

Step 3. For each revised action routines in Step 3, configure the corresponding
parameters for a;.

Step 4. Apply parser generator to generate the corresponding PBT tester based on the

f1.

20

Example 4: Modify the functionality of an existing PBT tester.

Assume that the original PBT test item is “Set the title in bold”, the teacher want
to apply the same test scenario to evaluate the examinee’s software operating skills
and with a modification to “Set the title in italic”. For this example, we have to revise
the terminal symbol e in Example 2, which is used to define the action type “list
clicking on bold”. The details of symbol definitions are shown in Table 5. The
terminal symbol e is revised to e’, which represents the examinee click the “italic” in

the font style list.

Table 5: The descriptions of symbols used in “Set the title in italic”

Type Symbol Description
Non-terminal | S,A,B The definitions are the same as those in Example 2
Terminal b-d The'definitionsare the same as those in Example 2
e’(revised) | Click the “italic”. inthe font style list
f-h The definitions are the same as those in Example 2
Action Symbol | #al The definitions are the same as that in Example 2
#a2 The definitions are-the same as that in Example 2

Figure 9 and Figure 10 are the FSL and corresponding FSM, respectively. In the
FSL, we need to redefine the terminal symbol e and configure the parameters for

action routine so that the software run-time status can be visualized correctly.

SO Dsar#2S|Char#az S| dear Al hsa2

A%e’#azB

B > fiarua2 B| g sar#a2S
Figure 9: The FSL for “Set the title in italic”

21

click(d,,)

click(f .; 20/ argyyye

Figure 10: The FSM for “Set the title in italic”

Algorithm: Add New Functionality of a PBT Tester
Input: Given the FSL in Example 2.

Output: Anew PBT tester with new functionality.

Step 1. Import an existing FSL into a new: PBT tester.and name the FSL fo.

Step 2. According to MS Word Scene Ontology, add non-terminals to f,,

Step 3. For each non-terminals ih‘Step 2 add‘t“erminals and related action routines.

Step 4. For each action routines in Step 3, configure the corresponding parameters for
visualization.

Step 5. Apply parser generator to generate the corresponding PBT tester based on the

fo.

Example 5: Reuse an existing PBT tester and add new functionality
Assume that the original PBT test item is “Set the title in bold” and the teacher
wants to add new functionality to original one “Set the title in bold and use Times New
Roman as default font type”. The above algorithm can be applied.
In this example, we have to add one non-terminal C to represent the software

run-time status for the font type setting. Besides, three terminals, i, j, and k, are added

22

which represent that the examinee clicks the font type dropdown list and selects the

“Times New Roman” font type or others. The details of symbol definitions are shown

in Table 6.

Table 6: The descriptions of symbols used in “Set the title in bold and use Times New

Roman as default font type”

Type Symbol | Description

Non-terminal | S, A, B | The definitions are the same as those in Example 2
C The state of showing the format menu.

Terminal b-h The definitions are the same as those in Example 2
i Click the “Font Type” dropdown list.
] Click the “Times New Roman” font type.
K Click the other font type.

Action Symbol | #al The definition is the same as that in Example 2
#a2 The definition is the same as that in Example 2

Figure 11 shows the FSL:of this example, we-add several production rules to

model the action sequence of setting the font type: Figure 12 shows the corresponding

FSM.

SO Dsa1#2S|Crarra S| dsa Al D s
A%e#agB

B> fuis2B|Qsrs2S|is142C

C 2 Jsars2 Bl Ktz C

Figure 11: The FSL for “Set the title in bold and use Times New Roman as default

font type”

23

Click(7,..;)l arGhype .

aimae o eam

B T E ey ST

C”Ck(f#al #az)/ ar gsytle, type CliCk(/#aJ #aZ)/ ar gtype
Figure 12: The FSM for “Set the title in bold and use Times New Roman as default
font type”

(2) The PBT Tester Combination

Algorithm: Design a PBT tester with different paths
Input: An FSM named, named m, and other FSMs, named m;, with the same start and
final states.

Output: A new PBT tester with different pathto complete the task.

Step 1. Import m and m;into a new PBT teste‘r.

Step 2. For each transition t;connect to the start state of m;, add t; to the start state of
m; delete t; and start state of m;.

Step 3. For each transition t;” connect to the final state of m;, add t;’ to the final state of

m; delete t;” and final state of m;.

Example 6: Construct a PBT tester with two paths to complete the task.

PBT allows the examinees to come up with the correct answer by different action
sequences. For example, to insert a symbol (i.e., a comma) in a paragraph, the
examinee has two options: 1) Click the “Insert” menu and insert a comma in the
“Symbol” window, or 2) Click the ”View” menu, enable the toolbar, and insert a

comma. The examinee can complete the task by one of action paths above. Suppose

24

we have two PBT testers, one describes the action sequence in the first option and the
other describes the second option. We can union these two PBT testers to generate a

new one, as shown in Figure 13.

Finish

Figure 13: A PBT tester with two action paths
= Ele)

Algorithm: Design a PBT tester with trap paths
Input: An FSM named, named m, and other FSMs, named m;. The m; model the trap
path that the examinee may navigate through in certain state of m.

Output: A new PBT tester with trap paths.

Step 1. Import m and mjinto a new PBT tester.
Step 2. For each state in m, find the corresponding state that the trap path may occur.

Step 3. For each state found in Step 2, add a state transition the start state of m;.

Example 7: Construct a PBT tester with a trap path.
When the examinee performs a sequence of actions to complete the task, some
misconceptions may occur. For example, to format the text, if the examinee forgets to

select the text first, the format of the text will not change. Therefore, we can design a

25

“trap path” and combine with the correct path. That is, the examinee can also navigate
through the “trap path”, but the action sequence performed on the “trap path” will not
affect the results. In order to highlight the misconception, we can also design action

routines to record what the examinee performs. Figure 14 shows corresponding PBT

tester.

--. Correcf path

Figure 14: The PBT ester with étrap path

Algorithm: Design a PBT Tester with Comprehensive Skill Assessment.
Input: An FSM named, named m, and other FSMs, named m;, where m; is a PBT
tester that Is used to assess different software operating capabilities.

Output: A new PBT tester with comprehensive software operating skills.

Step 1. Import m and mjinto a new PBT tester.
Step 2. For each m;, add a state transition from the finish state of m;.; to the start state
of m;,

Step 3. Configure the corresponding visualization of m; if necessary

Example 8: Construct a PBT Tester with comprehensive skill assessment.

Some performance-based test item may contain comprehensive software

26

operating skills. For example, to create a business document, the examinee may need
to know how to create a table to show the sales amount in the end the month, format
the related text, and create a Table of Contents etc. To design a PBT tester for this
kind of test item, we can combine several PBT testers to generate a more complex one,

as shown in Figure 15.

lick,

Format

b L vergerspieen b L

Finish

Figure 15: The PBT tester combination

27

Chapter 5. Experiments

In this chapter, the implementation and evaluation design are described. Then,

experimental results are presented and discussed.

5.1.System Implementation

We have implemented a prototype system based on web-based environment to
evaluate the proposed scheme. As shown in Figure 16 (1), the examinee should first
select the required text, and then drag the text to the first line. After that, the examinee
needs to select first row of the table and delete it by clicking the menu bar as shown in
Figure 16 (2).

(1) Drag the text - (2) Delete the first row

Al
WED WND WAL ROATW IAD WRD Ell| s*c wnx eax Aoezw IAQ DD
PrNe= @A 3 Ome uneay GEw 3 D E - Hic e wtN.~ QD3 Owe unose Fuw I Oeoa . di

D) [e vt =] U | (] s
- |

wan smn s = »e - B mms war wip SAn IAG | ee.

v umn] EE] A - s u-n wEls x § EET R T Lo

I % smu @Ela0 su-a msEz

A

=
Sy » -~ i ® i

Figure 16: The screenshots of MS Word PBT tester

There are two inputs and one output in our generator, where *“scenario.xml” and
“lladacs.bnf” are the inputs to describe what software run-time status images are used
and the corresponding regular grammar of the required PBT tester respectively. Then,
the YACC [19], an LALR parser generator that can accept a regular grammar

specification and produce parsing tables for the specified language, is applied to

28

generate the PBT tester.

MS Word FSL

SOy SICyupA
A->d,,B

B> €140 Bl T#al#azs
_E% N sa1 a2 B 1 T 4

MS Word Tester

Corresponding
| regular grammar

Action Routine Library
(ARL)

b » | Wrong answer \
T Try again! \

_|__| Please use tool bar to change
= | the text size of “Question” to 14

- Visual Object
Repository

Figure 17: The running process of MS Word PBT tester

The PBT tester execution algorithm is'shown-as follows.

Algorithm: The PBT Tester Execution Algorithm

Input: Action sequence performed by the examinee.

Output: The scenes that represent the corresponding software run-time status

according to the action performed by the examinee.

Step 1. Check the action performed by the examinee.

Step 2. If the action matches the terminal symbol defined in FSL, trigger
corresponding action routines; else go to Step 1.

Step 3. The action routine then sets the software run-time status and visualizes the
corresponding software run-time status.

Step 4. If reach the final state, then stop; else go to Step 1.

29

5.2.Experiment Design and Result

To evaluate the expressive power of proposed FSL, several MS Word test cases
are designed to perform an experiment as shown in Table 7. The test cases are referred
to [22] with some modifications, where this book is one of the reference book used in
Techficiency Quotient Certification (TQC). There are 10 test cases with 5 specific
software operating capabilities: format the font and the paragraph, modify the text by
using find/replace/go to functionality, merge/split/delete the table cells, insert
picture/word art, and insert index or table of contents. Each test case was transformed

into FSL and then imported into the prototype system.

Table 7;: MS Word test case

Test Case | Functionality Test Item Description
1 Font Use 22 point bold as default | Format the text
font type
2 Find/Replace Find the *“ms word™, Find and
replace with **MS Word™ replace the text
3 Paragraph Use single line space as Format the
default paragraph
4 Symbol Insert a comma between Insert
“MS Word”” and “Excel” comma/colon
5 Merge/Splitcell Merge cells in the 2" row Merge the cell
6 Add/Delete Delete the 1 row of the Add table and
table/row/column | table and add tow columns | delete the row
7 Picture/WordArt | Insert a picture at the right | Insert picture
hand side of the document
8 Document Change background of the | Insert document
background document to “Cloud” background
9 Index/Table of Insert Index for the Insert index
Contents following text
10 Picture editing Edit the picture’s position: | Edit picture’s
3.7cm from left attribute

30

Table 8: The corresponding FSL of test case

Test | Number of Number of | Number of Number of Action
Case | Non-terminals | Terminal Grammar Rule | Routine Type

1 4 10 10 2

2 5 10 10 2

3 3 6 6 2

4 14 25 25 2

5 5 7 7 2

6 11 11 2

7 12 12 2

8 9 9 2

9 10 17 17 2

10 |4 9 9 2

In this experiment, 4 domain experts who teach MS Word in a MiaoLi
elementary school used the prototype system tg.evaluate if the test case can really
reflect the corresponding software operating.capabilities. After using the prototype
system, we evaluate the satisfaction degree of the domain experts by a 5-point Likert
scale questionnaire. Figure 18 shows.the average satisfaction degree of the domain

experts in each test case.

5
435 4£5 4 4 4 425
B 4 1 3555 5 325 | |
4, 8 T
S
3=
: I
A 1 H B
0
1 2 3 4 5 6 7 8 9 10
Test Case

Figure 18: The results for satisfaction degree questionnaire (5 is the highest possible
score)

31

After further discuss with domain experts, we found that most domain expert
argue that the action sequence should follow the predefined actions which are not as
flexible as real MS Word. Therefore, the lack of instruction may cause their
inconvenience. On the hand, since the action sequence is predefined, we can easily
evaluate the action sequence performed by the examinee which out perform the real

software.

5.3. Discussion

Since our PBT tester is describe by the corresponding FSL, it has the following
properties:
® Understandability

The FSL clearly defines the.software run-time status and the transition of the
PBT tester. It can be easily examined for correctness,-consistency, and completeness.
® Flexibility

An advantage of this approach is.that-once the FSL is built, the PBT tester
generation process is automatic. It is relatively easy to extend the functionality of PBT
tester by adding, changing, and deleting the grammar rules.
® Scalability

To aid in the scalability of the FSM, the visualization is divided into foregrounds
and backgrounds, and the action routine is used to configure the corresponding
visualization.

We note some current limitations of our approach. First, the operation steps
should be finites. Second, our model is trying to model the action sequence of the skill
assessments and the design of the content is not our concern such as some
assessments related to the ability of creativity or design skills (i.e., design ability of an

architect).

32

Chapter 6. Conclusions

In this thesis, we have showed that the software run-time status and the
transitions of the PBT tester can be described by a set of regular grammar, called the
Functional Specification Language (FSL), to model the action sequence performed by
the examinee during the software skill certification. Based on the concept, a
generator-based approach including construction phase and testing phase, called the
Tester Generator Scheme, has been proposed to assist teachers in building a tester for
PBT. In the Construction phase, the available action sequence the examinee can
perform is firstly transformed into the corresponding FSL. Thus, a parser generator
can be applied to generate the required tester based on the given FSL. In the testing
phase, the examinee can perform a sequence ‘of.actions on the tester to complete the

required tasks.

To reduce the effort of editing the XML files for the input of the generator, we
are going to develop an authoring tool with a user-friendly Ul to help authors edit
XML file in the near future. In addition, the computer-based skill assessments has
become very popular, we are trying to apply our model to different software operating

skill exams such as MS Excel and PowerPoint.

33

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Reference

Microsoft Office Word 2003 Expert Certification Exam [cited 2008 March];

Available from: http://www.microsoft.com/learning/mcp/

The ANATOMY of a Performance-Based Test [cited 2008 March]; Available from:

http://www.certmag.com/issues/may01/feature mulkey.cfm

Performance-Based Testing: Proving Your Skills [cited 2008 March]; Available

from: http://www.certmag.com/issues/nov02/feature childers.cfm

The State of Performance Based Testing [cited 2008 March]; Available from:

http://gocertify.com/article/PerformanceBasedTesting.shtml

A. Basu, I. Cheng, M. Prasad and G. Rao, “Multimedia Adaptive Computer based
Testing: An Overview,” IEEE Int'l Conference on Multimedia, pp. 1850-1853, July,
2007.

J. Yau and M. Joy, "Adaptive Learning and Testing with Learning Objects,"
International Conference on"Computers-in-Education, 2004.

Parshall, C. G., Spray, J. A., Kalohn,J.'C., and Davey, T. (2002). Practical
Considerations in Computer-based Testing. Springer-Verlag, New York.

Fritz Drasgow, “Innovative Computerized Test Items”, Encyclopedia of Social
Measurement, pp283-290, 2005.

Ackerman, T. A., Evans, J., Park, K.-S., Tamassia, C., and Turner, R. (1999).
Computer assessment using visual stimuli: A test of dermatological skin disorders.
In Innovations in Computerized Assessment (F. Drasgow and J. B.
Olson-Buchanan, eds.), pp. 137 150. Erlbaum, Mahwah, NJ.

Bejar, I. 1., and Braun, H. I. (1999). Architectural simulations: From research to
implementation. (Research Memorandum 99-2). Educational Testing Service,

Princeton, NJ.

34

http://www.microsoft.com/learning/mcp/
http://www.certmag.com/issues/may01/feature_mulkey.cfm
http://www.certmag.com/issues/nov02/feature_childers.cfm
http://gocertify.com/article/PerformanceBasedTesting.shtml

[11] Clyman, S. G, Melnick, D. E., and Clauser, B. E. (1999). Computer-based case
simulations from medicine: Assessing skills in patient management. In Innovative
Simulations for Assessing ProfessionalCompetence (A.Tekian, C. H.McGuire, and
W. C. McGabhie, eds.), pp. 29-41. University of Illinois, Chicago, IL.

[12] Zenisky, A. L., and Sireci, S. G. “Technological innovations in large-scale testing,”
Applied Measurement in Education, 15(4), 337-362, 2002.

[13] Kathleen, S. and Bernard G., Computer-Based Assessment in E-Learning: A
Framework for Constructing "Intermediate Constraint” Questions and Tasks for
Technology Platforms, Journal of Technology, Learning and Assessment, \ol.4,
No.6, 2006

[14] JohnJ. N., and Danette W. M., “Assessment methods in medical education”,
Teaching and Teacher Education, Volume 23, Issue 3, April 2007, Pages 239-250

[15] Microsoft Simulation Question. [cited 2008 March]; Available from:

http://www.microsoft.com/learning/mcpexams/simulations/

[16] QTI, IMS Global Learning Consortium, Inc. Question & Test Interoperability

[cited 2008 March]; Available from: http://www.imsglobal.org/question/

[17] IMS Global Learning Consortium, Inc.” IMS Question and Test Interoperability
Implementation Guide: Items \Version 2.1” [cited 2008 March]; Available from:

http://www.imsglobal.org/question/qtiv2plpd2/imsati implv2plpd2.html

[18] Kinnersley, N., Mayhew, S., & Hinton, H. S. (2001). The design of a web-based
computer proficiency examination. In 31st Annual Frontiers in Education
Conference (Vol. 2, pp. F2C-3-7).

[19] Levine, John R., Tony Mason and Doug Brown [1992]. Lex & Yacc. O’Reilly &
Associates, Inc. Sebastopol, California.

[20] Adobe Flash; Available from: http://www.adobe.com/products/flash/

[21] Adobe Captivate; Available from: http://www.adobe.com/products/creativesuite/

35

http://www.microsoft.com/learning/mcpexams/simulations/default.mspx
http://www.imsglobal.org/question/
http://www.imsglobal.org/question/qtiv2p1pd2/imsqti_implv2p1pd2.html
http://www.adobe.com/products/flash/
http://www.adobe.com/products/creativesuite

	Introduction
	Related Work
	Computer-based Testing
	Computer-based Skill Assessment
	Different Approach to Construct PBT Tester

	Tester Generator Scheme
	Performance-Based Testing in Software Skill Certification
	Software Functional Specification Language

	Application
	MS Word Test Scenario Authoring Process
	PBT Tester Revision and Combination

	Experiments
	System Implementation
	Experiment Design and Result

	Conclusions

