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Abstract

In recent years, wireless sensor networks (WSNs) continue to grow rapidly and
have widely use in both military and civilian. Therefore, security issues of WSNs are
more important. Since the sensor nodes have limited power, computation, and storage,
it is not easy to establish efficient and secure protocol for WSNs. In terms of
efficiency, a countermeasure -- Data Aggregation has been proposed for reducing the
resource consumption and communication bandwidth. Since data aggregation needs to
compute and aggregate data at the intermediate nodes (Aggregators), how to provide
end-to-end privacy with data aggregation in WSNs becomes a challenge. In recent
years, some research is interesting in above mentioned secure aggregation for WSNs,
but most of them focus on a certain aggregation function like “SUM”.

However, a large class of sensorp-network applications such as median
computation or finding maximum/minimum, rely of comparison operations. In this
paper, we use a light-weight encryption scheme. called Privacy Homomorphism that
supports operations over ciphertext for our purpose. Additionally, we propose a secure
comparison protocol that achieves the energy benefits and support secure comparison
operations over the encrypted values for WSNs by some techniques used to solve
“Grater than” problem in cryptographic.

Key words: data aggregation, confidentiality, sensor network, Secure Computation



Content of Table

P2 FE B s [
AADSTIACT ...ttt sttt et st e st et e e te st e beentesatenreentenanens i
CONEENE OF TADIE....eeeieeeeee ettt st sae e iii
LISE OF TADIES....cneeee et ettt st s ae e iv
LIST OF FIQUIES ...ttt sttt sttt st ae et e sneesbeensesnnans v
IO 101 (oo [FTox [0 o OSSR 1
T (<o MY o] SRR 4
2.1 Data Aggregation in Wireless Sensor Networks..........ccccveverereeieeienenennenne 6

2.2 Aggregation for Encrypted Data ..........cccevererererieienieenesesieseee e 8

3. PIElIMINGAIIES ...ttt et e s e st eeseesaeeseeneens 10
3.1 Homomorphic ENCryption SChEME.........ccoeceeiiiieiinierineneeeeeeeeeeeeeesie e 10

3.2 Privacy HOMOMOIPRISIMS. ....c.voiiiriiriieiiiieieeitetetee et 11

4. Protocol Model and Background ...........cceeeeererieieienienesieseeeseeeeee e 13
4.1 Data Aggregation Model and-Problem Definition...........ccccoceeveeieienencnenne. 13

4.2 ASSUMPLION .eviniiieeennesdiere BoeaBarad ot annthe e i e entensesesseseesbesseeseeseeneesenseneesaes 14

4.3 Key Setup fOr ENCryPtion fii e ceesienas e i scesee e see e ssee e eseeeesseenes 14

4.4 ATtaCKer MOEL...........ifit i ettt et 15

4.5 Requirement of Secure Data AQQregation .i......ccceveevereeneerieneeneeie e 16

4.6 NOTALIONS ...ttt e ah BT I e ittt ettt ettt eb sttt e 17

5. The MaIN PrOtOCON .....c.cooviiiriirieriieieeeee et 19
5.1 ProtOCOI OVEIVIBW ..ottt sttt 19

5.2 Cluster-based Aggregation Tree FOrmation ...........ccecceveeeveeceervenesseeseeneeennns 19

5.3 Finding Maximum/Minimum within CIUSEEr ...........cccovveriininiieererereee 21
5.3.1 Details Of ProtoCol .........ccooeriririnieieiceeresese e 22

5.4 Cluster Data AQQregation..........ccvecereeereenieeieseesieseeseesseeseesee e seesseesseeneas 24

6. SECUMLY ANAIYSIS ..euvieeeiieeie ettt ae e st e e s seeeesseesteensesneens 26
5.1 COITECINESS. ...ttt ettt ettt sbe ettt sbe et s e saeeneeanes 26

I o €1 U0} Y PSS 27

7. OVEINEAG ...ttt sttt 29
8 A 001 - T 110 o PSS 30

8. Conclusions and FULUIE WOTK.........ccceierieriirenineneeteeeesie e e 33
RETEIBNCE ...ttt bbbttt et e ettt 34
N 0] 017 0L AU 37



List of Tables

Table 1: NOatiONS .......ocveiirieiicierieee s
Table 2. The communication and computation cost of each

Table 3. The comparison of OPES scheme and our scheme

NOAE .ooveeeeeeeeeceeeeeee



List of Figures

Figure 1. The cluster-based aggregation tree StruCture. ............ccooeveieieneninesieeees 8
Figure 2. Cluster-based aggregation tree formation............ccoceoeieneniieninineseees 20
Figure 3. Cluster data aggregation ...........coovereiieiieresieseese e e s enes 25



1. Introduction

A wireless sensor network (WSN) is composed of many small sensor nodes
deployed to sense the environment. The main element of constructing a sensor
network is sensor nodes. A sensor is a programmable microcontroller with sensing
component, which is a low-cost device used to sense and collect environment
information, such as temperature, humidity, light, magnetic, acceleration, acoustic,
etc[1]. There is one base station (or sink) which is used to find the summarized
statistics of the whole network. The base station diffuses a specific task to whole
network and the sensors collect raw data for a given task and then report to the base
station. Wireless sensor networks continue to grow rapidly with cheaper price
characteristics of sensor nodes. Sensor nodes are, low cost solutions to a variety of
real-world applications. WSNs-have widely.-use.in-both military and civilian. The
applications include real-time traffic-monitoring, military surveillance, tracking at
critical facilities, monitoring as animal-habitats, detecting blaze in forest, etc. Sensor
networks change the way people interact with the environment [1][2].

Since sensor nodes have limited power, computation, and storage, it is not easy
to establish efficient and secure protocol for WSN. In terms of efficiency, most of
sensor nodes consume energy during computation and transmission of data packets.
Therefore, we need to reduce the amount of raw data sent by processing in-network
and a sensor network. We refer to in-network processing as data aggregation. The idea
of data aggregation is to combine several readings at intermediate nodes for saving
bandwidth and computation. We describe details of data aggregation in the following
section.

Another important issue about a wireless sensor network is security, especially in

military usage. Sensor nodes are deployed in the hostile and unsecure environment.
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Due to low cost and resource constraint, a sensor is not suitable to equip with a
tamper-resistant device. Also, the unreliable communication channel of sensor
networks make defense become more hard, so an attacker can take control of several
nodes and private data can be stolen. Additionally, collected data can be modified or
erased and then direct the base station to agree on the false result. For these reasons, a
lot of research has been proposed to solve various aspects of sensor network security
in recent years, like data integrity/authentication, broadcast authentication, key
management, location verification and location privacy, secure routing and
forwarding. Furthermore, because of nodes compromised is a serious threat of sensor
networks, some research focuses on detection of compromise and revocation.

Data privacy is a basic security requirement for wireless sensor networks,
especially in a battleground where data is sensitive. Although some research on
protecting the sensitive data from.eavesdropping have existed, most of them put
emphasis on special kind of aggregation-functions, such as SUM, Variance, and
Average. With comparison functionlike..MAX/MIN, they don’t refer to such
aggregation function. In addition, it represents major obstacles to the implementation
of traditional public key based cryptosystems in sensor nodes because of energy
consumption.

In this paper, we focus on the data confidentiality and provide secure comparison
to solving the problem of finding maximum/minimum with in-network aggregation.
We wuse a light-weight cryptographic encryption scheme called privacy
homomorphism proposed by Domingo-Ferrer [20] instead of public key based
cryptosystems. By using privacy homomorphism, we aggregate data in an encrypted
form at the aggregator and provide end-to-end privacy. Additionally, we first utilize
some cryptographic techniques [16] to process secure comparison in encrypted data

for wireless sensor networks. Our protocol limits the adversary’s ability to obtain
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exact information about normal sensor nodes and robust against known-plaintext
attack.

Since sensor nodes can be compromised by attacker, attacks such as forging or
modifying messages, can be carried out easily. Hence, other security requirements like
data integrity/authentication are equally important issues. Those requirements prevent
the compromised nodes from misleading the base station to agree on an incorrect
value. However, we ignore data integrity and authentication in this paper, and we
develop our protocol by some literature about data integrity/authentication in
existence.

In summary, the remainder of this paper is organized as follows. Section 2
introduces some related work for sensor network security and notion of data
aggregation. Section 3 describes some preliminaries which are related to our protocol.
Section 4 explains the protocol -model and background, including problem definition,
attacker model, and some assumption.for-ur-protocol. The main protocol description
and security analysis are presented in 'Section-5 and Section 6, respectively. In Section
7 we discuss the overhead of our protocol. Finally, we give a conclusion and future

work in Section 8.



2. Related Work

In the beginning, many literature have been proposed for minimizing energy
consumption in WSN [3][17][18]. They present a technique called data aggregation,
which can decrease the energy consumption efficiently. But they assume all nodes in
the network are honest, and none of them integrate the security threats with
in-network aggregation.

In recent years, a lot of research has been proposed to solve the problem about
sensor network security with data aggregation. In order to defeat an active adversary
whose goal is to tamper or discard messages such that the base station obtains a
wrong result, some research discusses data integrity and data authentication for
wireless sensor networks [4][5][10][13]. - Those .works have contribution that the base
station accepts the aggregation result with high probability if the aggregated result is
on a desired bound. In other words, ithe base station rejects wrong results (out of
desired bound) and detects the compromised nodes:

Due to lots of applications on collecting sensitive measurement, some research
focuses on data confidentiality [6][7][8][11]. In [6] Girao et al. introduces a concept
of Conceal Data Aggregation, which is the first work in providing end-to-end privacy
for wireless sensor networks. They provide a solution for processing encrypted data at
the intermediate nodes (aggregators) by using privacy homomorphism. This work
reforms the disadvantage of hop-by-hop encryption schemes which we introduce in
the next section.

In [7], Castelluccia et al. suggests another approach to aggregate encrypted data
for the SUM aggregation. In contrast to [6], they propose a simple and provably
secure additively homomorphic scheme that process encrypted data efficiently. The

homomorphic encryption scheme used in their architecture is simple and provable
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secure. This scheme is illustrated as follows.

Additively Homomorphic Encryption Scheme proposed by Castelluccia et al.
System Setup:

® Miisa large integer. m denote a plaintextand m €[0,...,M —1].

® Each sensor nodes share a unique pair-wise key k with base station. Let

k e [0,..., M —1]

® et Enc() denotes encryption function and Dec( ) represents decryption
function.

Encryption:
Compute ¢ = Enc(m, k, M) =m + k (mod M)

Decryption:

Compute m = Dec(c, k, M) =c —k (mod M)
Addition Homomorphism:
1. Let c3=Enc(my, ki, M) =m; +k; (mod M) and
2 = Enc(my, k2, M) = m; + k, (mod M)
2. mg+my=Dec(c; + Cy, ki + ky, M) = (C1 + C2) — (K1 + kz) (mod M)

Although this scheme is cheaper than [6].in resource consumption, and provides
security analysis, but it has some limitation. First, the key length must be as long as
plaintext and the key management is also problematic. Second, this method is not
suitable for other aggregation function such as MAX/MIN. Acharya et al. [8] shows
that the first secure comparison scheme which allows comparison operation
performed on ciphertex. This scheme uses another encryption scheme that can
preserve the order of plaintext. But in this approach, it is only secure against
ciphertext-only attack. In other words, if one of sensor nodes is compromised, the
adversary is able to get the plaintext-ciphertext pair. Therefore, the privacy of data is
broken over whole networks. In [11], He et al. proposed two efficient
privacy-preserving data aggregation protocols called CPDA and SMART, the used
technique of both schemes differ from [6][7], CPDA uses algebraic properties of
polynomials to compute the aggregate value. In the SMART scheme, each node splits

its private value into pieces and sends encrypted partial values to other nodes. Then
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the other nodes can calculate the aggregate value. Finally, all of partial aggregate
values are collected by the base station. These approaches are efficient and
energy-saving, but it works for statistical functions such as SUM and AVERAGE.
Jadia et al. and Kifayat et al. [9][14], they combine several security requirements such
as data confidentiality and authentication mechanism for establishing secure data
aggregation protocols.

There are plenty of multiparty secure computation (SMC) techniques used in
cryptography, SMC proposes a solution for the problem of processing encrypted data.
In [16], Chu et al. presents a fundamental scheme that is useful in construction secure
interactive protocols, they propose schemes for “equality”, “inequality” and “greater
than” predicates. Because of these schemes are not computationally expensive for
WSNs, we use the proposed technigue to establish secure protocols for performing
MAX/MIN functions in wireless.sensor networks.

In the following two sections, we discuss-data aggregation in WSNs and show

how to process encrypted data with data.aggregation.

2.1 Data Aggregation in Wireless Sensor Networks

Because of the resource and power restriction of a sensor node, data aggregation
is used to reduce the data communication cost and energy consumption of sensor
networks. Many works have been proposed in recent years [3][17][18]. Before a data
aggregation, sensor nodes are formed into a hierarchical cluster-based tree structure.
In this tree structure, the base station is the root of a tree, and sensor nodes spilt into
several clusters. Within a cluster, one of sensor nodes is elected as the aggregator, the
remainding nodes become sensing nodes. The aggregators are formed into a tree

structure. Moreover, they can be elected dynamically to balance the power



consumption of all the nodes [20]. However this issue is out of scope of this paper.
The tree structure is illustrated in Figure 1. Base on the operation of wireless sensor
networks, each node measures sensitive data periodically. When data are taken by
individual sensing nodes, they need to be collected and processed to output the result
by specific aggregation function, such as MAX/MIN, SUM, AVERAGE, VARIANCE,
etc. In order to save the bandwidth and energy of nodes, an approach is to send this
collected data to certain special node. More accurately, we refer to some special nodes
as the Aggregators. Then aggregators exploit some arithmetic operation for data
aggregation. Next, aggregators send the partial result to upper layer cluster for next
aggregation. Eventually, partial results will aggregate at sink (base station). The
aggregator can either be more powerful nodes or regular sensor nodes. In this paper,
we assume aggregators are elected randomly. from sensor nodes. Hence, the
aggregators must require simple. arithmetic operations, such as additions or
subtractions or multiplications.

Without considering the security, for.some statistical measurements like SUM,
AVERAGE aggregation functions, a general method is to simply add up values
received from its child nodes and then forwards the partial result to base station. For
aggregation functions like MAX/MIN, we also can process it by the order of the value.
However, the assumption that all sensor nodes are honest is an unrealistic assumption
in a wireless sensor network. We will then discuss how to provide security with data

aggregation for WSN in next section.



‘@2;) : Base Station #= :Aggregator @& : Sensing Node () : Cluster

Figure 1. The cluster-based aggregation tree structure.

2.2 Aggregation for Encrypted Data

As mentioned before, the data aggregation reduces the amount of communication
within wireless sensor networks, and lets the procedure run more efficiently. While if
data confidentiality is required, efficient data aggregation becomes a challenge. There
are some solutions for providing data privacy within network. The standard approach
to protect the private information is to encrypt the sensitive data with a secret key that
only the legal receiver can decrypt it. In wireless sensor networks, sensor nodes
encrypt their private data by using a unique shared secret key with base station and
then forward the encrypted value to base station through other nodes. Upon receiving
all response messages from sensor nodes, base station decrypts all the ciphertext, and
then aggregates them according to specific aggregation function. This kind of solution
achieves end-to-end privacy, but has obvious drawback. Since sensor nodes transform

packets to base station directly, it steps up traffic within the network enormously.



Another solution is called hop-by-hop (HBH) encryption. The general idea of
HBH encryption is composed of three phases,

1) The bootstrapping phase: In this phase, to establish secure link between a cluster
leader (aggregator) and sensing nodes by using a pair-wise key sharing approach.

2) The data aggregation phase: Within the cluster, children nodes encrypt their
readings by shared key with the aggregator A, and send it to A. A decrypts all the
received packets and then produce the partial result base on aggregation function.

3) The data transmission phase: each aggregator encrypts its calculated result and
sends it to the upper level aggregator. The upper level aggregator decrypts all the
received packets and aggregates them as a new aggregation result and then
encrypts it again. Finally, the sink gets the aggregation result of the whole
network.

As compared with first solution, HBH ‘encryption is more efficient than previous
approaches. It reduces the communication-cost. However, HBH encryption has a
serious flaw. It is vulnerable to attackers.because their aggregated data is exposed in
plaintext at the aggregator. An adversary can obtain some confidential information
easily when an aggregator is compromised. Besides, another obvious drawback is that
it requires three steps for aggregation, including decryption, aggregation, and
re-encryption which instead increases the computation cost.

In order to achieve the efficient and secure data aggregation, we propose the
end-to-end privacy preserving aggregation scheme, which hold both of the advantage
of earlier two solutions. At the aggregator, we achieve to process encrypted data by

using homomorphic encryption scheme and decrease communication cost.



3. Preliminaries

In this section we introduce some tools we used in our protocol. We first describe
the concept of homomorphic encryption and then introduce the homomorphic

encryption scheme we used for constructing our protocol.

3.1 Homomorphic Encryption Scheme

A homomorphic encryption scheme allows arithmetic operations to be performed
on ciphertext. A homomorphic encryption scheme is useful when someone does not
have decryption key but needs to fulfill some arithmetic operation on ciphertext. This
method is consistent with our purpose. Let Ey(.) be an encryption function and Dy(.)
be a decryption function. And then.we define following operations on ciphertext.
®  First operation @:

E (m, +m,)=E, (m,)® Em,)=¢, ®c, where ¢, =E,(m,) and

¢, =E,(m,).
® Second operation ®:

E (rm)=E (m)®E,(m)®..®E,(m)=r®E, (m), where r is a known

constant.

In our protocol, we need additively homomorphic encryption schemes. There
exists some encryption schemes with additive homomorphism. In this paper, we use
Privacy Homomorphisms proposed by Domingo-Ferrer in [19] for our purpose.
Although it is showed that this PH is insecure for some major parameter settings, it
shows some reasons that such PH use for data aggregation scenarios in WSN is still

reasonable secure and we can adopt the parameter setting discussed in [6].
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3.2 Privacy Homomorphisms

In this section, we introduce a particular class of encryption transformations —
PH, Privacy Homomorphisms. It can solve the problem of data aggregation without
decrypting original messages in wireless sensor networks. First Privacy
Homomorphism (PH) scheme is proposed by Rivest et al. In this paper, we use
additive and multiplicative PH presented by Domingo-Ferrer [19]. The symmetric PH
can be described as follows:
Setup:
The public parameters: positive integer d > 2 and a large integer w. w should have
many small divisors and there should be many integers that can be inverted mod w.
The secret parameters: secret key K = (x, q), x € Z,,such that x* mod w exists and a
small divisor q of w.

Encryption:

® Randomly split aeZ, into.secretsaj,a;,..,aq such that
a=a, +..+a, modq :ZLaj modg and a; €Z, forallj.

e Compute E,(a)=(a,xmodw,a,x* modw,...,a,x" modw)

Decryption:
® Calculate the scalar product of the j-th coordinate by x’ mod w to retrieve a; mod

w for all j.

® Compute Z‘::laj modq to get the plaintext a.

In this case the set of plaintext is T'=2Z . The set of ciphertext is T = (z,).

The set of plaintext operations is formed basically by addition, subtraction and
multiplication in T’. The set of ciphertext operations is composed of addition,

subtraction, defined as follows.
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Addition homomorphism: They are done component-wise.

E, (a+Db)

((a, + 1, )xmodw, (a, +b, )x2 mod w,..., (a, +b, )x* modw)
(alxmod w,...,a, x* mod w)+(blx mod w,..., b, x* mod w)
= EI/ (a)@ EL, (b)

12




4. Protocol Model and Background

Before describing our main protocol, we concentrate on interpreting a

description of the protocol model and background.

4.1 Data Aggregation Model and Problem Definition

In a sensor network, the goal of aggregation is to compute those aggregation
functions (like Sum, Maximum/Minimum, Average, Medium, Count) of the sensed
readings on every sensor node. In this paper, the general sensor network is composed
of many resource-limited sensor nodes and networks are illustrated in Figure 1. In our
structure, there is a set S ={s,,s,,...,s, of n sensing nodes, each sensing node s; has
sensed data value v;. And there is.a single base station R (or query server, sink node
etc.), which is able to communicate with sensor nodes and has unlimited power and
storage capability. Some of intermediate-senser nodes become aggregators (in this
paper we also say cluster leader) A= {A_LAk} Due to large power consumption,
when transmitting data packets, an aggregator is used to aggregate partial sensed data
for reducing total communication cost and energy-saving.

The aggregation within sensor network is performed over an aggregation tree,
which is the tree structure formed by the union of all the paths from the sensor nodes
to the base station. The same as other data aggregation protocols, we assume the base
station is the root of aggregation tree. There are multiple methods for constructing the
aggregation tree, but we focus on providing security aspects of data aggregation.

A data aggregation function can represent y = f(vl,...,vn). In this paper, we focus on

finding maximum/minimum in sensor network. Therefore,

f(Vy,.V, )= MAX{y, ...V, }

13



4.2 Assumption

We assume that the base station R shares a unique key with every sensor node in
the network for confidentiality communication. In addition, we assume R is unable to
be compromised and it can authenticate its broadcast messages to all of sensor nods in
aggregation tree [21].

For the data transmission, we also assume that there is a reliable transmission
mechanism between nodes and it means that packets will not be loss when secure data
aggregation procedure was afoot. For the key setup, we assume every sensing node
has a common secret key K, =(x,q) shared with the base station and updates
periodically. Additionally, there is a unique pairwise key shared between sensing
nodes and the aggregator within a cluster, we can use proposed mechanism called
random key distribution proposed-in [15]:;Besides, we assume the adversary has no
knowledge about the WSNs and thus captures nodes randomly. Finally, we assume

hop-by-hop authentication between.nodes.

4.3 Key Setup for Encryption

In our protocol, we need two layer data encryption for secure computation in
wireless sensor networks. The first layer is end-to-end encryption which wireless
sensor networks to conceal the sensed data and aggregate data readings securely.
Hence, the aggregators are unable to read the private data of sensing nodes. The
second layer encryption is to establish a secure channel between the aggregator and
sensor nodes. Because of the resource-constrained and storage-limited, we use an
encryption transformation called privacy homomorphisms [19] to achieve our target
for first layer encryption. We use another symmetric encryption scheme such as AES

or RC5 for the second layer encryption. In the setup phase of our protocol, all of
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sensing nodes in the network need to agree on a secret key K, :(x,q) with base
station privately. There contains several methods to achieve this job and we omit this

issue in this paper.

4.4 Attacker Model

In this section, we describe the adversary’s attempt. We first classify the
adversary model.
Semi-honest (Honest-but-Curious or Passive) Adversary:
In this model, the attacker will conscientiously follow the prescribed protocol, but will
try to learn or compute additional information during following the protocol. In other
words, the target of an attacker is to compromise some nodes and read all messages in
storage as well as eavesdropped in-WSN:
Malicious (Active) Adversary:
In this model, the adversary deviates from-the-protocol in arbitrary ways. The purpose
of this deviation can be several reasons, ‘including learning more information from
honest parties, modifying the result of the protocol, interfering the procedure of
specified protocol.
Collusive:
We consider that any two participants (maybe two sensing nodes or one is sensing
node and the other is aggregator) within cluster are collusive if they use their mutual
secrets to derive the additional information.
Non-collusive:
On the other hand, we say two participants are non-collusive means that there are no
two parties collude with others.

In this paper we do not consider the malicious adversary, we focus on defeating
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the attack from semi-honest and non-collusive adversary. In wireless sensor networks,
the adversary can compromise a (small) I (< n+Kk) fraction of sensors. We say that
the adversary compromised a node means as long as it remains in control of sensor
nodes, it can read all of contents and eavesdrops all incoming and outgoing messages.
An adversary is interested in learning the private information of sensor nodes while
remaining undetected. In addition, an adversary does not interfere with any
communication over the network and modify sensed data on sensors it compromised.
We assume adversary is unable to monitor and record all traffic and can only monitor

incoming and outgoing communication of compromised nodes.

4.5 Requirement of Secure Data Aggregation

For secure data aggregation,sour goalis-to achieve end-to-end data privacy in a
wireless sensor network. We must prevent a semi-honest adversary (eavesdropper)
from obtaining any private information about sensor nodes. The following list the
desired characteristics of a secure data aggregation.

Correctness: a correct aggregation of sensor data is desired. In this paper our purpose
is to correctly obtain the maximum/minimum value of sensor networks with the
constraint that no other sensors know the additional information of any individual
sensor.

Privacy: for data confidentiality, there are two privacy goals. First, only the base
station can learn about the final aggregation result. Second, each node only has
knowledge about its private data after running data aggregation procedure. In another
word, the normal neighbor nodes should not be able to know the private readings of
other nodes and the secure data aggregation protocol should be able to defeat

eavesdropper to reveal private data and ensure that the adversary can’t deduce the
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plaintext. Besides, 0
Efficiency: the purpose of data aggregation is to reduce communication overhead
within whole network, thus reduce the power and resource consumption. Data

aggregation can be achieved by in-network processing.

4.6 Notations

For clearly, we summarize the notation and symbols used in our protocol in
Table 1.

Table 1: Notations

Notations  Significance

S A sensor node (in here we refer to sensing nodes)
A An aggregator (orc‘[USIer Jﬁg?r)?ojgf'gluster

n The total number of sensing nodes in the network.
i Sensor indices 1_“ “‘*—— ‘—— a

j The indices of bit stri.ng ‘

I The number of compromised nodes.

Si A unique identifier of a sensor node.

m The bit length of sensing data.

k The total number of aggregator in the network.

Vi Sensor readings of node s;.

R A base station of a wireless sensor network

Kr A common key shared between base station and all of sensing nodes
Kuy A unique pair-wise key established between node u and node v.

r,r’ Random numbers

17



The encryption algorithm using shared secret key Kg by Privacy
Homomorhpim

The symmetric encryption algorithm using secret pair-wise key
Kuv.(such as AES, RC5)

The ciphertext of v;.

The message space of the encryption scheme

18



5. The Main Protocol

In this section, we will introduce our main structure for finding
maximum/minimum securely in wireless sensor networks. We first give an overview

of the protocol and then present details of the protocol.

5.1 Protocol Overview

Our scheme is composed of three stages: the first stage is cluster-based
aggregation tree formation, in this stage our goal is to construct cluster-based
aggregation tree. One sensor node will be a cluster leader (or aggregator) which
computes the maximum/minimum value over ciphertext within a cluster. The
remaining members are sensing node which used-to collect data for specific task and
aggregation tree of cluster leaders 'is formed. -The second stage is finding
maximum/minimum  within a' cluster,——in, this phase we will calculate
maximum/minimum of all the members within a cluster by a series of operations, then
the result will pass to the upper layer cluster. The last stage is cluster data aggregate.
All the aggregators become the members of the upper layer cluster in this phase. The
following sections are details of three stages. For consistency, we use the aggregators

to represent the cluster leaders in this paper.

5.2 Cluster-based Aggregation Tree Formation

The first step is to construct the aggregation tree for wireless sensor networks.
The optimization of the aggregation tree structure is out of the scope of this paper. For
concreteness, we describe the algorithm in [11]. In the sensor networks, the query

server (or base station) broadcasts a query message “HELLO” which contains the tree
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construction information to other adjacent sensor nodes. Until each sensor node
receives the query message, it elects itself as the cluster leader with some probability.
If a node becomes a cluster leader, it will forward a query message to its neighbors as
same as the query server. We say two nodes are neighbor means they can
communicate with each other directly (one-hop); otherwise, it can decide to join one
of the clusters in the sensor networks by responding a “JOIN” message which

contains node’s id to join. This procedure of cluster formation is illustrated in Figure

2.

HELLO . HELLO JOIN . JOIN

ELLO

H
@ HRLLO @ @ HELLO @
@ @ @ .HELLO I HELLO@
HELLO
@ LHELLO /et 1o @ HELLO
@ 3 ,u | @
IJ' /

@ R: Base Station @

Number 1 to 10: Sensor Node |,

(b) Node 2 and 4 become cluster leaders.

(a) Initially, R sends a request message b Py " And then they respond the "HELLO" message

“HELLO" to adjacent nodes, each nodes | - _#to their neighbor nodes. Because node 5
receives the message and elects itself as'a = “ has joined another cluster, it don't respond
cluster leader or cluster member. J ] other node’s requests.

(®
O, ) (a) JOIN@

JOIN

JOIN @
@ . HELLO

)

HELLO HELLO
(c). Node 6 receives multiple (d). Finally, several clusters are
“HELLO" messages and formed, and a cluster-based ag-
randomly chooses one to join. gregation tree is constructed.

Figure 2. Cluster-based aggregation tree formation
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5.3 Finding Maximum/Minimum within Cluster

In this phase, our main idea is to provide secure data aggregation for finding
maximum/minimum. We can divide our scheme into three steps. Three steps are

Encrypted Data Transmission, Decrypt then Aggregate, Verification. The algorithm is

illustrated in the following. E, and D, represent the encryption and the
decryption algorithm where Kx is the key. Let |v| be the bits length of v. We use v,

to represent the i-th bit of the vy, where v, =v, v V. If we want to encrypt a

x,mYx,m-1"*

value a=(a,,a,....a), weuse E(a) todenote (E(a,)E(a).E@).

m?!~m-11"""

® Aggregator A has a shared key K, ; with each sensor node s; , respectively.

® Each sensor node has private,sensing data, we denote v;, where m=|v,|

® Each sensor node has a common key K. =(x,q), which is also known to base
station R, but the aggregator-A does not know.
® Denote the number of sensing nodes in‘a cluster as t.

Encrypted data transmission

1  Encrypted data transmission
1.1 Each sensor node s, encrypts its data reading v; by utilizing common

key Kg, denote E, (v;)=Ey (Vi Ex, (Vis)
1.2 Then each sensor node encrypts the message again by using shared

secret key with A, denote ¢, =E', (EKR (viyj )) wherel<i<t,

1<j<m.

1.3 One of cluster member encrypts “-1” and then sends to the aggregator
for using in next phase.

1.4 Each sensing node sends its encrypted value to A respectively.

Decrypt and Aggregate
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2

Decrypt and Aggregate

2.1

2.2

Foreach je {1,2,..., m}, A receives all the messages, decrypts the

received messages from sensing nodes, and gets E, (v, j) and then

saves the value on its memory unit.
Choosing two parties sy and sy within a cluster. Then computing the
following values via homomorphic encryption.

@ dj =V Vs dj =V, v, ;-1

(b) e; =re;,,,+d;, e;'=r;'d;" wheree , =0, r;,r'e, M.

(c) f,=¢;+¢;’

Verification
3 Verification
3.1 Arandomly sendsE, (f) to one of sensing nodes s, in random order,

3.2

3.3
3.4

where f=(f . f)

s, decrypts the received message and computes the value p, then sends p
to A.

A receives p and then knows which one is greater than another.

An aggregator A repeats (step 2.2 to step 3.3) until whole nodes are
compared.

5.3.1 Details of Protocol

In this section we describe the details of our scheme. We use an example to

illustrate. There are three parties within a cluster. One is aggregator, the remaining

parties called node s, and node sy are sensing nodes which are used to collect sensitive

data. Aggregator A compares the values v,,v, which are collected by sx and s,

respectively. We define the length of the sensed value is m, so if the sensed value
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which length is not sufficient m, the sensor node can prefix 0’s to its value. We

assume A has a shared key with every sensor node within the cluster. In here, we
denote K, ,, K, , . Moreover, we assume K; = (x,q) to be known to sensing nodes s
and sy and the base station.

In Encrypted Data Transmission phase, each sensor node (Sx and sy) bit-wisely

encrypts its data reading v,,v, by using common shared key K; ,

X!y

denote E, (Vx,m)""' Ey, (Vx,l)’ Ex, (Vy,m)""' Ex, (Vy,l)' Then these encrypted values will
encrypt again by using shared key K, ,and K,  with the aggregator. We denote
¢, =E' (EKR (Vx,j)) and ¢, =E' (EKR (vy'j)) where 1< j<m. In addition, one

of the sensing nodes encrypts theivalue *-1” by the privacy homomorphisms
encryption scheme and sends to-the aggregator..This encrypted value will be used in
the following step, and we will explain why we needto do this later. Each sensor node
sends the encrypted value to the aggregator.

In Decrypt and Aggregate phase, an aggregator receives messages from s, and sy,

and then decrypts messages by shared secret key K, ,,K,,. An aggregator obtains

Ex. Vym oo Ex. V1)1 Ex (Vg ) Ex (v, ) and records it on its memory unit.

Finally, the aggregator chooses two records to compute following values (for i = m to

1) via homomorphic encryption.

(@) Ex, (d)=Ex, (Vs —Vyi)= B, (v )@ (v, )
E.. (d)=E (v,; +v,; ~1)=E, (v, )®E, (v,;)®E, (-1) where E, (-1)
is given in Encrypted Data Transmission phase. Since the aggregator can’t

generate encryption of -1 (otherwise the aggregator will know the secret

parameter x), so we need to given the aggregator this encrypted value before
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computing this equation.

(b). EKR (ei ) = EKR (riei+l + di): & EKR (ei+1)® EKR (di)
Ec (6)=E (r'd;")=r'®E, (d;') where e ,=0,and rr'e, M.

(©). EKR (fi): EKR (ei +€ I): EKR (ei )G') EKR (ei I)
After an aggregator has completed the five equations, it will go to next phase.

In Verification phase, the aggregator sends E,_ (f) to node sy or s, (assume A

sends to s,) in random order, where E_ (f):<EKR(fm),...,EKR(fl)>. Node sy

R

decrypts the messages by common key Kgand gets a vector f'= <f'm f'1> (fis

random order of f), and then checks vector f’ then output p by following statements.

1 ,if thereexists f' =1forl<i<m
p=<0 ,iff" =rforvisi<sm,r'e; M
—1,if thereexists f', = —-1for1<i<m

Finally, sx sends p to the aggregator to determinate which ciphertext is greater
than another (if p = 1, x> vy; if p = -1, w< vy; if p = 0, vx=Vvy). Then the aggregator
keeps the greatest ciphertext in its memory unit and discards all remainder records.
The comparison procedure is complete. If there exists another sensing node s, within
cluster, the aggregator repeats the same procedure until all nodes has been compared.

Numerical example is illustrated in Appendix A.

5.4 Cluster Data Aggregation

After finding maximum/minimum within a cluster, we need to aggregate data for
all clusters. A common technique for data aggregation is to construct an aggregation
tree. We implement our protocol on top of the cluster-based aggregation tree. Each

aggregator forwards the derived maximum/minimum value within the cluster to the
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upper layer cluster and the upper layer aggregator represents the derived value
received from the lower layer aggregator as another sensing value. We are illustrated

in Figure 3.

>

A, Aggregator : datarouting path

- . i 1|~
A,: Aggregator IrL \: - a cluster S;: Sensing node max{v;, v;} | maxvalue
S;:Sensing node : sensing value (b). If A; and A, has completed the protocol
and get the partial max value with encryption,
(a). Example sensor network graph, then A, A, send the value to A,. A represents
a partial of aggregation tree A,, A, assensing nodes and deals with them

by same steps .
Figure 8. Cluster data.aggregation

Figure 3(a) show the original structure, where Sj, S,, Ss, S4 are sensing nodes, Ao,
A1, A are aggregators. Each sensing node s; has private data readings v;. The clusterl
is formed with Ay, s1, S; and cluster2 is formed with A, s3, S;. During the data
aggregation, clusterl will perform finding max/min protocol and obtain max{vy, v.}.
Cluster2 will get max{vs, v4} by the same token. Next, we fulfill cluster data
aggregation and illustrate it in Figure 3(b).

As we said earlier, the aggregators A;, A, get the partial maximum value within a
cluster, and then they send partial maximum/minimum value to the aggregator Ao.
Further, Ao is the aggregator and A;, A, become cluster members in Cluster0. Ap
completes data comparison and obtains partial maximum/minimum by the same steps.
Because of the cluster-based tree aggregation architecture, there must exists sensing

nodes within a cluster. Therefore, our protocol works correctly.
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6. Security Analysis

In this section, we briefly discuss correctness and privacy of our protocol.

6.1 Correctness

In terms of correctness of our protocol, our purpose is to let the base station can
acquire the correct maximum/minimum value of the sensor networks. In order to
achieve the goal, we concentrate on the Decrypt and Aggregate phase. For
simplification, we assume there are two sensing nodes within a cluster which
identifier are s,, sy with private readings vy, vy, respectively. Considering the following

three cases:

Case 1. if v, > v , we let | be the index of the first different bit of vy and vy from the
most significant bit. We obviously discoversthat the value of bit index j of v, and vy
where

L |+1<j<m: e;=d; =0and 'd;"=1or —1such that ¢ is always a random

number. Therefore, the derived value f; is a random number too.

[ ) j=1: e¢;=d; =1 and e;'=d;'=0. Therefore, f, =e; +e;,'=1.

® 1< j<I-1: ¢is always a random number such that the derived value fj is a
random number too.

Therefore, we deduce the identifier value p = 1.

Case 2: if v, <v,, as same as case 1, we can list the situations of bit index j as
follows:

® | +1< j<m:The derived value fj is a random number.

® =1 ¢ =d =-1and e'=d,'=0. Therefore, f, =e +¢'=-1.

® 1< j<I-1:The derived value fj is a random number too.
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Therefore, we deduce the identifier value p = -1.

Case 3: if v, =v , it means that all of bits of vx and vy are same, such that
e;=d; =0, d;’=lor-1 and e’ is always a random number, and thus

f, =e; +e;" is also a random number too, where 1< j<m. Therefore, we deduce

the identifier value p = 0.
After the protocol, we can determine which one is greater than other accurately.
In ideal situations when there is no data loss in the sensor network, base station should

get accurate aggregation results.

6.2 Privacy

Assume that the involved parties arejsemi-honest and non-collusive. We discuss
the data confidentiality of our=scheme into two conditions. For simplification, we
consider there are two sensing ‘nodes:s,‘and-s, with private data vy and vy and an
aggregator A within the same cluster.”First, the compromised node is one of sensing
nodes, we assume the compromised node is sy (Sxand syare symmetric). The attacker
can obtain all incoming and outgoing messages of s,. Additionally, key information

and private data of node sy are revealed. Through the protocol, the messages of s, can

obtain from the aggregator is EKR(f').We briefly discuss why the adversary can’t

acquire extra information. Let | be index of the first different bit of v, and vy. We see
that if vy > vy or vy < vy, then fj is uniformly distributed in M, for all index j =1and
f1=1(w>w),f1=-1(w<v)forindex j =1I. By s,’s view, it can’t get any bit
information of s, because the f* is in random order. Besides, it is not able to know
which one is bigger than other since it don’t know A how to compare two values.

Therefore, no other information leak to the compromised sensing node.
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Second, the compromised node is the aggregator A. According to the procedure
of our protocol, the adversary can receive the messages transmitted from sensing
nodes. All the messages are encrypted by privacy homomorphism. Since our protocol
is secure base on security of privacy homomorphism, we can construct another ADV’
to break the Privacy Homomorphism scheme if there exist an attacker ADV break our
protocol.

We brief discuss the security of Privacy Homomorphism. For a fixed numbera
of known cleartext-ciphertext pairs, the probability of randomly guessing the right key
can be made small. In addition, there is only a small probability that a ciphertext
decrypts to the same cleartext using two different keys. Combining both results, we
consider that if the aggregator is compromised by an attacker, the attacker is hard to
derive the secret value with received ciphertext. from s, and s, since the attacker
randomly guessing the right key. \We show: that vy.is-kept secret from A and sy, and vy
is kept secret form A and s, after-the pratocol:

However, above two cases are unrealistic situations in wireless sensor networks,
and we show that even if the adversary compromised a small portion of nodes
including the aggregator and sensing nodes, it only effect in localizing the possible
damage. We see that if the adversary captures an aggregator A and another sensing
node s; (s; and A are not in the same cluster), the private information of the cluster
including the aggregator A are revealed. But the nodes out of the range of this cluster
only the private data of compromised nodes are exposed. For a realistic situation in
wireless sensor networks, an adversary is unable to monitor all communication of
whole networks. It only monitors incoming and outgoing traffic and private data of

compromised nodes. Therefore, we restrict the security impact of nodes compromise.
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7. Overhead

In this section, we evaluate the computation and communication cost for each
node. We use bit size of the messages required for evaluating communication cost and
number of operations for computation cost. We first consider the case of sensing node.
However, we ignore some light-weight operations which include pseudo-random
function. For convenience, the following notations are used for analysis.
® C: the ciphertext space of privacy homomomrphism.
® d: the number of division of PH. (in [6], they suggest d = 2~4)
® t: the average number of cluster member.
® C,n: the computation cost of symmetric encryption. (such as AES)
® Cyy: the computation cost of multiplication, (modulus operation)
® C,qq: the computation cost of addition. (modulus operation)

First, we evaluate the messages -overhead ‘of ciphertext. We consider the
ciphertext of PH. Because each™'sensitive data are encrypted bitwisely, and each
encryption is split into d pieces. The overhead of encrypted messages is (m-d -logC).
Through the protocol, each sensing node sends one ciphertext in Encrypted Data
Transmission phase and then responds to the aggregator the value p in Verification
phase. Therefore, the communication cost of sensing node is (mdlogC )+ |p|. Next,
we evaluate the computation cost in a sensing node. For Domingo-Ferrer Privacy
Homomorphism scheme, the encryption needs 2d-1 multiplication (modular operation)
for transforming d partitions to ciphertext. Therefore, the total cost of PH encryption
is (2d-1)Cpy . For the decryption of PH, it needs 2d-1 multiplication (modulus
operation) for retrieving the original partitions and (d-1) addition (modulus operation)
for retrieving the original messages. The total cost of decryption is (2d-1)Cpy +

(d-1)Caqq. Through our protocol, a sensing node must encrypt data in Encrypted data
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Transmission. In addition, the bit length of sensing data is m and we assume the
symmetric encryption used for hop-by-hop encryption requires Cs,m. Therefore, the
encryption cost m(2d-1)Cpy + Csym . Besides, it must decrypt one ciphertext received
from the aggregator in average case, the cost is m[(2d-1)Cpy + (d-1)Caqq]. Therefore,
the computation cost of one sensing node is m[(4d-2)Cpu + (d-1)Caga] + Csym.

In the following, we consider the aggregator. We assume there are t members
within a cluster in average case. An aggregator must decrypt the ciphertext Cgymand
compute (t-1) times for calculating the partial result and send t-1 encrypted messages
to members in Decrypt and Aggregate phase. After finding the maximum/minimum
value within a cluster, the aggregator re-encrypts the result by symmetric encryption
and then sends the calculated partial result to upper layer cluster for next aggregation
in the end. Therefore, total communication of the aggregator is t (mdlogC). For an
aggregator, it costs five addition-(modulus operation)-and two multiplication (modulus
operation) for comparing two- encrypted-data. Additionally, we need t-1 times
comparisons for finding maximum/minimum: Therefore, total computation cost of
aggregators is (t-1)(5Cagg + 2Cmui) + (t+1)Csym. The summarization of computation
cost and communication cost is list in Table 2.

Table 2. The communication and computation cost of each node

Communication Cost Computation Cost
Sensing node (mdlogC)+ |p| m[(4d-2)Cpu + (d-1)Caqd] +
Csym
Aggregator t(mdlogC) (t-1)(5Caga+2Cmun) +(t+1)Coym

7.1 Comparison

In this section, we compare our scheme to another secure comparison scheme
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proposed by Acharya et al. [8]. In [8], they use an order preserving encryption scheme
(OPES). This scheme allows any comparison operation to be applied on encrypted
data directly. Therefore, the sensing nodes only encrypt sensitive data and send to the
aggregator directly, and the aggregator only need to compare the ciphertext received
from sensing nodes.

We briefly compare two schemes by concrete measurements from [8] and [22].
The Crossbow’s MICA2 Motes are one candidate for a platform. For the encryption
transformations of OPES and PHg=, (privacy homomorphism with parameter d=2),
they measured execution times in terms of clock cycles for encryption and decryption.
We find the total cost of OPES encryption is about 1800 clock cycles for 4 bytes
operands by some measurements presented in [8], and the total cost of PHgy-
encryption is about 5700 clock cycles by some measurements presented in [22]. In
addition, our scheme needs extra energy consumption for symmetric encryption and
the decryption at a sensing node; Therefore;.the.energy consumption of our scheme is
more than OPES scheme. Take security.issue into account, we focus on two kinds of
attacks, one is node compromise attack, another is eavesdropping. Our scheme can
defeat against the node compromise attack in some situations, but the OPES scheme is
unable to resist such attack. In the following, we summarize the comparison of two

schemes in Table 3.
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Table 3. The comparison of OPES scheme and our scheme

OPES Our scheme
Energy Consumption | Aggregator Efficient Applicable
Sensing node Efficient Applicable
*Node Compromise Aggregator No Yes
Attack Sensing node No Yes
Both No No
Eavesdropping Attack Yes Yes

*Node compromise attack: row “Aggregator” means the compromised nodes are
aggregators; row “Sensing node” means the compromised nodes are sensing
nodes; row “Both” means the compromised nodes include aggregators and
sensing nodes.

Notation: Yes: satisfied No:-not satisfied

32




8. Conclusions and Future Work

In this paper, we first employ the cryptographic technique which used to solve
the problem of secure comparison for finding maximum/minimum in wireless sensor
networks. In our scheme, we use the symmetric privacy homomorphism purposed by
Domingo-Ferrer. It is feasible to process operations over the ciphertext in a wireless
sensor network. Our protocol has some properties as follows:

® Providing end-to-end privacy: if the adversaries are semi-honest and only

compromise the same kind of nodes (aggregator or sensing node), no
private information of uncompromised nodes is disclosed. If the adversary
compromise aggregators and sensing nodes, it only effect in localizing the
possible damage. In terms_of security;.the result of our scheme is better than
the preceding scheme in [8].

® Efficiency: our scheme can work with data aggregation and reduce energy

consumption.

We have proved that our scheme is correct and provide data privacy. For the
future work, there are two purposes we desire to achieve. First, we want to expand our
scheme to defeat against the malicious adversary. Second, we expect to minimize the

damage of node compromised attack.

33



Reference

[1]. D. Liu, P. Ning. Security for wireless sensor networks: introduction. Advances in
Information Security, Volume28, pp. 1-7, Springer, 2007.

[2]. D. Culler, D. Estrin, and M. Srivastava, Overview of Sensor Networks, IEEE
Computer, 37(8), pp. 41-46, August 2004.

[3]. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a tiny
aggragation service for ad-hoc sensor networks. In Proceedings of the fifth Annual
Symposium on Operation Systems Design and Implementation (OSDI°02), 2002.

[4]. B. Przydatek, D. Song, and A. Perrig. SIA: Secure information aggregation in
sensor networks. In Proceedings of the 1% International Conference on Embedded
Networked Sensor Systems (SenSys’03), pp.-255-265, ACM Press, 2003.

[5]. Y. Yang, X. Wang, S. Zhu, and G| Cao. SDAP: A secure hop-by-hop data
aggregation protocol for sensor networks.In Proceedings of the 7"ACM International
Symposium on Mobile Ad Hoc+Networking .and Computing (MobiHoc’06), pp.
356-367, ACM Press, 2006.

[6]. J. Girao, M. Schneider, and D. Westhoff. CDA: Concealed data aggregation in
wireless sensor networks. In Proceedings of the ACM Workshop on Wireless Security
(Wise’04), 2004.

[7]. C. Castelluccia, E. Mykletun, and G.. Tsudik. Efficient aggregation of encrypted
data in wireless sensor networks. In Proceedings of the Second Annual International
Conference on Mobile and Ubiquitous Systems, pp. 109-117, IEEE Press, 2005.

[8] M. Acharya, J Girao, and D. Westhoff. Secure comparison of encrypted data in
wireless sensor networks. In Proceeding of the Third International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt’05),

pp. 47-53, IEEE Press, 2005.

34



[9]. P. Jadia and A. Mathuria. Efficient secure aggregation in sensor networks. In
Proceddings of the 11™ International Conference on High Performance Computing
(HiPC’04), Lecture Notes in Computer Science 3296, pp. 40-49, Springer, 2004.

[10]. H. Chan, A. Perrig, and D. X. Song. Secure hierarchical in-network aggregation
in sensor networks. In Proceedings of the 13™ ACM Conference on Computer and
Communications Security (CCS’06), pp. 278-287, ACM Press, 2006.

[11]. W. He, X. Liu, H. Nguyen, K. Nahrstedt, and T. F. Abdelzaher. PDA:
Privacy-preserving data aggregation in wireless sensor networks. In Proceedings of
the 26" |1EEE International Conference on Computer Communication
(INFOCOM’07), pp. 2045-2053, IEEE Press, 2007.

[12]. D. Liu and P. Ning, Establishing pairwise keys in distributed sensor networks. In
Proceedings of the 10™ ACM Confefence on Corputer and Communications Security
(CCS’03), pp. 52-61, ACM Press, 2003.

[13]. C. Bekara, M. Laurent-Maknavicius;—and- K. Bekara. SAPC: A secure
aggregation protocol for cluster-based wireless sensor networks. In Proceedings of the
Third International Conference on Mobile Ad-Hoc and Sensor Networks (MSN’07),
Lecture Notes in Computer Science 4864, pp. 784-798, Springer, 2007.

[14]. K. Kifayat, M. Merabti, Q. Shi, and D. Llewellyn-Jones. Applying secure data
aggregation techniques for a structure and density independent group based key
management protocol. In Proceedings of the Third International Symposium on
Information and Assurance and Security (IAS’07), pp. 44-49, IEEE Press, 2007.

[15] L. Eschenauer and V. D. Gligor. A key-management scheme for distributed
sensor networks. In Proceedings of the 9™ ACM Conference on Computer and
Communications Security (CCS’02), pp. 41-47, ACM Press, 2002.

[16] C. K. Chu, and W. G.. Tzeng. Conditional Oblivious Cast Schemes. In

Proceedings of the 9" International Conference on Theory and Practice of Public Key
35



Cryptography (PKC’06), Lecture Notes in Computer Science 3958, pp. 443-457,
Springer, 2006.

[17] C. Intanagonwiwant, D. Estrin, R. Govindan, and J. Heidemann. Impact of
network density on data aggregation in wireless sensor networks. In Proceedings of
the 22" International Conference on Distributed Computing Systems (ICDCS’02), pp.
457-458, IEEE Press, 2002.

[18] B. Krishnamachari, D. Estrin, and S. Wicker. The impact of data aggregation in
wireless sensor networks. In Proceedings of the 22nd International Conference on
Distributed Event-Based Systems, Workshops (ICDCSW’02), pp. 575-578, IEEE Press,
2002.

[19] J. Domingo-Ferrer. A provably secure additive and multiplicative privacy
homomorphism. In Proceedings ofthe 5" Intefnational Conference on Information
Security (ISC°02), Lecture Notes in. Computer Science 2433, pp. 471-483, Springer,
2002.

[20] K. Yuen, B. Li, B. Liang. Distributed minimum energy data gathering and
aggregation in sensor networks. In Proceedings of 2006 IEEE International
Conference on Communications (ICC’06), pp. 3536-3541, IEEE Press, 2006.

[21] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar. SPINS: Security
protocols for sensor networks. In Proceedings of the 7" Annual International
Conference on Mobile Computing and Networking (MOBICOM’01), pp. 189-199,
ACM Press, 2001.

[22] D. Westhoff, J. Girao, and M. Acharya. Concealed data aggregation for reverse
multicast traffic in sensor networks: encryption, key distribution, and routing
adaptation. In Proceedings of 2005 IEEE Transaction on Mobile Computing (ICC’05),

pp. 1417-1431, IEEE Press, 2006

36



Appendix A

In the following, we give an example for explanation.

Numerical Example for Secure Comparison

For simplification, this example focuses on aggregating the encrypted data. Assume
there are two participants sy and s, with private readings vy and vy, respectively. We

will compare two data in encrypted form with following parameters:

For illustration, we choose unrealistic small values:

Public parameters: d = 2, a modulus g = 28

Secret parameters: K=(x,q) ,x=3andq=7

The public aggregation function MAX is f(vy, vy) = max{vy, vy}

Case 1: vy > Vy, Vx = 5 =101, = XX Xq, Vy = 3 =011, =Y,Y4.Yp

sx and sy compute the ciphertext bit-wisely’ v, = X's X', X", v', =Y, Y'Y

(1238) Y',=Ei(0)=E:)(16)=(326)
(9 8) YH=E 37) (1) E(37 (312) (9’24)
(1818) Yy =Euy ) = E;,)(5:3)=(15,27)

X', = E(3,7)(1): E(3,7)(4 )
X' = E(3,7)(0) = E(3,7)(3 )
X'o= E(3,7)(1) E(3,7)(6'2)

and sends to the aggregator AG with additional information (the ciphertext of “1”
(24,7)).

AG computes

d, = X',-Y',=(12,8)-(3,26) = (9,10)
d,=X",+Y',-1=(12,8)+(3,26)—(24,7) = (19,27)

AG chooses random numbersr, =3,r', =2and e, = (0,0)
e, =r,e, +d, =3-(0,0)+(9,10)=(9,10)
e,=r',d,=2-(19,27)=(10,26)

f',=e, +e',=(910)+(10,26)=(19,8)
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d, = X',-Y", =(9,8)-(9,24)=(012)

d, = X', +Y' -1=(9,8)+(9,24)—(24,7) = (22,25)

AG chooses random numbers r, =5, ', =3and e, =(9,10)
e, =re, +d, =5-(9,10)+(0,12)=(17,6)

e, =r,d",=3-(22,25)=(10,19)

f'=e +e,=(17,6)+(1019)=(27,25)

d, = X',-Y', =(18,18)-(15,27) = (3.19)
d'y=X',+Y',—1=(1818)+(15,27)—(24,7)=(9,10)

AG chooses random numbers r, =4, r', =3and e, = (17,6)
e, = e, +d, =4-(17,6)+(319) = (1515)

e, =r',d',=3-(9,10)=(27,2)

f',=¢, +e,=(1515)+(27,2) = (14.17)

Then AG transmits the final f’=f ’»f '1f s to sy or s,.
The sensing node decrypts f’ by computing

f, =Dy (f',)= Dy (19,8) = (19%19mod 28,8%19*19 mod 28) = (25,4)

=(25+4)mod7 =1
f, = D37 (') = Dy (27,25) =(27*19 mod 28,2519 *19 mod 28) = (9,9)

=(9+9)mod7 =4
fo = Day)(f'y) = Dis-)(14,17) = (14%219 mod 2847*19*19 mod 28) = (14,5)

=(14+5)mod7 =5
The sensing node finds the value 1 in f,. Therefore, it sets p = 1 and sends p to AG.
Finally, AG receives the p and discards the ciphertext of vy. In the same way, if vy < vy,

the sensing node sets p = -1 and then AG discards the ciphertext of vy.

Case 2: vy = Vy, Vx = 3 =011, = X5X1 Xo, Vy = 3 =011, =Y,Y4.Yp

sxand s, compute the ciphertext bit-wisely v', = X", X", X', v\, =Y', Y'Y,

X', = E(3,7)(O) = E(3,7)(3 ): (9 8) Y, = E(3 7)(0) = LE@E7 (1 6) = (3126)
X' = E(3,7)(1) = E(3,7)(4 ) (12 8) Y= E (3,7) (1) = E (3 12) (9 24)
X lo = E(3,7)(1) = E(3,7)(6'2) (18 18) (1 3 7 (5 3) (15'27)

and sends to AG with additional information (the ciphertext of “1” (24,7) ).
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AG computes

d, = X',-Y',=(9,8)-(3,26) = (6,10)
d,=X",+Y',-1=(9,8)+(3,26)—-(24,7) = (16,27)

AG chooses random numbersr, =3,r', =2and e, = (0,0)
e, =r,e, +d, =3-(0,0)+(6,10) = (6,10)
e,=r,d,=2-(16,27)=(4,26)
f',=e,+e',=(610)+(4,26)=(108)

d, = X',-Y" =(128)-(9,24)=(312)

d, = X', +Y" -1=(12,8)+(9,24)-(24,7) = (25,25)

AG chooses random numbers r, =5, r', =3and e, = (6,10)
e, =re, +d, =5-(6,10)+(312)=(5,6)

e, =r,d, =3-(2525)=(19,19)

f',=e +e,=(56)+(19,19)=(24,25)

d, = X',-Y', =(18,18)-(15,27) = (3.19)

d',= X', +Y',—1=(18,18)+ (15,27)—(2477)=(9,10)

AG chooses random numbers r,= 45 r'; =3and e, = (5,6)
e, = e, +d, =4-(56)+(319)=(2315)

e\, =r',d',=3-(9,10)=(27,2)

f',=e, +&,=(2315)+(27,2)= (2217)

Then AG transmits the final f’=f »f 1f ‘5 to sy or s,.
The sensing node decrypts f’ by computing

f, = D7) (f',) = D (10,8) = (10*19mod 28,8*19*19mod 28) = (22,4)

=(22+4)mod7 =5
f, = D57 (') = D57 (24,25) = (24*19 mod 28,25*19*19mod 28) = (8,9)

=(8+9)mod7 =3
fo = D7) (f'y) = Ds7)(2217) = (22*19mod 28,17 *19*19mod 28) = (26,5)

=(26+5)mod7 =3
The sensing node finds that there are no 1 or -1 in f (f=f.f;fo). Therefore, it setsp =0

and sends p to AG. Finally, AG receives the p and discards one of ciphertext arbitrary.
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