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利用統計方法提升行動裝置硬體指紋之準確率 

研究生：王鼎鈞                          指導教授：謝續平 

國立交通大學  資訊科學與工程研究所 

摘  要 

 

硬體裝置識別是網路安全中非常重要的議題。攻擊者可能使用竊

取或是假造的身分去進行非法的行為或攻擊，這使得蒐集證據變得

更為困難。之前的研究中提出一個稱為遠端硬體裝置指紋的技術，

利用從裝置送出的 TCP 封包中取出時間戳記內包含的時間訊息計算

出該裝置的時間歪斜誤差(clock skew error)來做為該裝置的硬體

指紋。但時間歪斜會因為硬體的特性和網路的傳輸延遲而變的不穩

定，特別是對行動裝置來說這個不穩定更為的明顯。在此篇論文中

我們利用統計的模型來提升行動裝置硬體指紋的準確率。並且根據

這個行動裝置硬體指紋的技術提出了一個偽造身分檢測的方法。實

驗的結果顯示我們提出的方法可以有效的偵測出偽造身分攻擊，並

且相較於之前的研究有著更高的準確度。 
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Abstract 

Device identification is one of the most important issues to Internet 

security. An adversary can take illegal actions with stolen or forged 

identity that makes evidence collecting to be very difficult. Previous 

work introduces an intuitive method that identifies a device by its clock 

skew. Unfortunately, the clock skew of a device is instable over time in 

the mobile environment due to the characteristics of the hardware and 

the instability of network latency. In this paper we adapt a statistical 

method inspired by EWMA model that characterizes the tendency of 

clock skew changes to improve the accuracy of mobile device 

fingerprinting. We also propose a device identity spoofing detection 

scheme based on the improved mobile device fingerprinting technique. 

The experiment result shows that the proposed scheme effectively 

detects identity spoofing attacks with higher accuracy compared to 

prior works.  
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1. Introduction 

 

With the rapid evolution of automation services and environment information 

monitoring applications, the information is directly acquired from the devices 

without human intervention. Take automatic fire alarm system as an example, the 

temperature information is sampled by temperature sensor devices that placed in 

the monitored area. Once a sensor device found that the temperature is over an 

unusual level or a fixed threshold, there might be a fire accident in the monitored 

area. Then it may issue an alarm to evacuate all the personnel or automatically 

report to the fire department. Unfortunately, these devices are not been properly 

protected, attackers may directly replace one or some of the sensor devices to 

crash the system. Verifying the device‟s identity has become more and more 

important. 

The main idea of remote device fingerprinting is utilizing the hardware 

specification or firmware behavior to represent the identity of a physical device. 

There are two roles in remote device fingerprinting: the fingerprinter and the 

fingerprintee. The fingerprinter must acquire some information from the 

fingerprintee to verify the identity of the fingerprintee. The two devices must be 

connected to each other to exchange information. Since most of the modern 

devices have the ability to access to the Internet, they can communicate with each 

other through well know Internet protocols such as TCP and UDP. 

There are three main classes of remote physical device fingerprinting 

techniques: passive, active, and semipassive. The passive fingerprinting technique 

is that the fingerprinter passively observes some information from the 
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fingerprintee and the fingerprintee did not aware that it has been fingerprinted. 

The active fingerprinting technique is that the fingerprinter must issue a 

fingerprinting request to ask the fingerprintee to present the information for 

fingerprinting. The third class of fingerprinting technique is that after the 

fingerprintee initiates a connection, the fingerprinter can interact with the 

fingerprintee over that connection. There are both advantage and disadvantage of 

each class. For example, the advantage of passive fingerprinting is that the 

fingerprinter is completely undetectable to the fingerprintee. The disadvantage of 

passive fingerprinting is that if the fingerprintee is behind a NAT or firewall, the 

fingerprinter will not be able to observe the information from the fingerprintee.  
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2. Related Work 

There are several techniques that had been proposed to fingerprint a physical 

device. These techniques can be categorized into three categories. The first 

category takes the device‟s unique identifier as its fingerprint. For example, the 

MAC address is suitable for fingerprinting a network interface card. However, 

these identifiers can be easily modified or forged therefore this type of 

fingerprinting techniques can only apply to lower security concern applications. 

 The second category utilizes the firmware behavior to fingerprint a certain 

physical device. The main reason that each device performs different behavior is 

that some of the detailed algorithms are not clearly defined in the protocol 

standards. The device manufacturer can design their own ones therefore leave the 

trace to classify them from other manufacturers. Franklin et al. [1] proposed a 

passive fingerprinting technique that classifies the wireless network interfaces 

through their behavior when they are applying active scanning. According to the 

same concept, Corbett [2] proposed another scheme that classifies the wireless 

network device by observing their rate switching algorithms. The drawback of this 

kind of fingerprinting techniques is that they can only classify devices on model 

level, that is, knowing a certain device is belongs to which model of some 

manufacturer. If there are two devices that happens to be exactly same model or 

same manufacturer, this type of fingerprinting techniques will not be able to tell 

them apart. 

 The last category of device fingerprinting techniques is based on hardware 

specifications of the fingerprinted device. It gathers the hardware information 

such as the frequency of the device‟s CPU or memory size of the device all 
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together to form a information matrix to represent a device‟s fingerprint. It has 

been widely deployed on many software registration or activation processes. 

Microsoft Windows utilize this type of fingerprinting technique in its activation 

process to avoid two or more machines use the same activation number. 

 Clock skew is another hardware specification that can be used to fingerprint a 

physical device. Every device has its own clock, and the quassation frequency of 

the oscillator in every device is slightly different thus can be used to differentiate 

two given devices. Based on this characteristic Kohno et al. [3] proposed a remote 

physical device fingerprinting technique that estimates the clock difference of the 

fingerprinter‟s system clock and the fingerprintee‟s TCP timestamp. The 

experiment result of this technique is impressive, but the clock is not always the 

same especially in mobile environment. In this paper we based on Kohno‟s work 

and provide a solution for mobile physical device fingerprinting. 
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3. Clock Skew Based fingerprinting 

technique for mobile devices 

 

In this chapter, our mobile device fingerprinting technique will be presented 

which is inspired by Kohno‟s remote physical device fingerprinting technique [3] 

and Exponentially Weighted Moving Average Model [4]. We will first give a brief 

introduction on Kohno‟s work, and then we will explain why Kohno‟s work will 

not be able to apply to fingerprint a mobile device. Finally, we will give our 

proposed mobile device fingerprinting technique. 

 

3.1. Kohno’s remote physical device fingerprinting technique 

Kohno et al. [3] proposed a scheme that fingerprints a remote computer‟s 

physical identity from its timing information. They estimated the machine‟s clock 

skew by examining the timestamps embedded in the TCP and ICMP packets sent 

by that machine. 

Kohno formalized the timing relation between the fingerprinter ‟s clock and 

the fingerprintee‟s TCP timestamp value as follow: Let T be a set of data that 

observed by the fingerprinter and let ti be the time in seconds at which the 

fingerprinter received the ith packet in T and let Ti be the timestamp contained 

within the ith packet. Define 

𝑥𝑖 =   𝑡𝑖 − 𝑡1 

𝑣𝑖 =   𝑇𝑖 − 𝑇1 
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𝑤𝑖 =   𝑣𝑖 Hz  

𝑦𝑖 =  𝑤𝑖 − 𝑥𝑖  

𝑂𝑇 =    𝑥𝑖  , 𝑦𝑖   ∶ 𝑖 ∈    1……  𝑇      

The unit for 𝑤𝑖  is seconds, 𝑦𝑖  is the observed offset of the ith packet. Hz 

is the intended frequency, the inverse of its resolution; e.g., a clock with 10 ms 

granularity is designed to run at 100 Hz. 𝑂𝑇 is the offset-set corresponding to the 

observed data set 𝑇. 

Assuming that the fingerprinter‟s clock is the accurate and that the t values 

represent true time, and there is no delay between when the fingerprintee 

generates the ith packet and when the fingerprinter capture the ith packet, then 

𝑦𝑖 =   off 𝑥𝑖 + 𝑡1 . The first derivative of y, which is the slope of the points in 𝑂𝑇, 

is the clock skew s of the fingerprintee. Since we cannot generally make these 

assumptions, we can only approximate s from the observed data set. 

There are many algorithms for calculate the linear regression from a give 

set of points. The most common one is simple least-squares linear regression 

algorithm [18], but both Paxson [6] and Moon [5] noted that simple least-squares 

linear regression algorithm will be insufficient for data that contains variable 

network delay. Consequently, Kohno borrow the linear programming solution 

from Moon et al. [5][8] to approximate the slope of y, i.e. the clock skew of the 

fingerprintee. 

The linear programming calculates the equation of a line 𝑦 = 𝛼𝑥 + 𝛽 that 

upper-bounds all the points in 𝑂𝑇. That is, for all 𝑖 ∈   1……  𝑇   , 

𝛼 ∙ 𝑥𝑖 + 𝛽 ≥  𝑦𝑖 . 



 

7 
 

The linear programming solution then minimizes the average vertical distance of 

al the points in 𝑂𝑇 from the line. That is, minimizes the objective function 

1

 𝑇 
∙  𝛼 ∙ 𝑥𝑖 + 𝛽 − 𝑦𝑖  

 𝑇 

𝑖=1

 

 Moon et al. [5] noted that instead of solving this objective function by standard 

linear programming techniques, there exist techniques that solve the linear 

programming problems in two variables in linear time. Kohno apply Moon‟s 

technique in all his experiment. 

Kohno found that a particular device‟s clock skew deviates very little over 

time, around 1-2 parts per million (ppm), but that there was a significant 

difference between the clock skews (up to 50 ppm)  of different devices, even if 

they are identical models. This allows the clock skew of a device to act as a 

fingerprint. Assuming a stability of 1 ppm, 4-6 bits of information can be 

extracted to act as a device‟s identity.  

3.2. Instability of Mobile Device’s Clock Skew 

 Although the experiment result of Kohno‟s work shows that the clock skew is 

very stable over time, but this result cannot apply to estimating the clock skew of 

a mobile device. There are two source of 變因 in clock skew estimation, one is 

temperature and the other one is network transmission delay. We will describe in 

detail as follow. 

 

Impact of Temperature 

 The impact of temperature on clock skew has been discovered since the early 
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1990s [9][10] by the NTP community. Kohno do mention that temperature might 

affect the clock skew of a device but he leave it as a future work that would help 

provide greater insights into the efficacy of his technique.  

 

 

Table 3.1: Electrical Specification – maximum limitation values 

 

Table 3.1 shows the electrical specification of the clock skew error of a AT-cut 

crystal that is common for PCs under different working temperature and figure 3.1 

graphically illustrate the relation of working temperature and frequency [11]. The 

figure shows that the clock skew may vary over 20 ppm due to temperature 
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changes, which is way over Kohno‟s assumption that the clock skew of a device 

has a stability of 1ppm. That is because Kohno‟s experiment is made on general 

purpose PCs that the temperature is relatively stable over time. Murdoch [12] 

proposed an attack model on anonymity systems that support hidden services, e.g. 

Tor [13] , based on the temperature impact on clock skew. 

 

 

Figure 3.1: Typical Frequency vs Temperature Curve for various angle of AT-cut 

crystals. 

We made a similar experiment as Murdoch did but record the CPU‟s 

temperature of a laptop instead of record the temperature in the room. The model 

of the laptop is ASUS W7J. The temperature was record directly from the system 

utility mbmon [14]. The TCP packets sent from the laptop was captured on the 

same time. We calculate the clock skew and the average temperature every 5 
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minutes. Figure 3.2 shows the experiment result that the device‟s clock skew is 

highly related with the temperature changes. 

 

Figure 3.2: The clock skew error and CPU temperature change over time of a 

ASUS W7J Laptop 

 

 The working environment of a mobile device changes rapidly so that the 

impact of temperature on device‟s clock skew is more noticeable. The lifetime 

with only battery power is a major consideration of a mobile device that leads to 

many modern power saving techniques being proposed. For example, many 

modern processors will automatically turn into sleeping mode when it is in idle 

state. Some processors will switch to lower frequency when the working load is 

not very high or the battery power is running out. Some laptop manufacturer will 

turn off the CPU fan to save power if the CPU temperature is in a safe working 
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range. All the power saving techniques mentioned above would result in dramatic 

vary of the device‟s temperature therefore makes the device‟s clock skew to be 

instable. 

 

Impact of Network Topology and Transmission Delays 

 Kohno‟s method is based on the timing information of the fingerprinter‟s 

system clock and the fingerprintee‟s TCP timestamps. If the transmission delay is 

stable over time, this delay will be part of the 𝛽 value in the line equation. But 

once again, we cannot generally assume that the delay is constant, especially for 

mobile devices. That is because the mobile devices could send out some packets 

while moving. Another situation is that the mobile device may roam from one 

Access Point to another or one network infrastructure to another, e.g. from Wifi to 

WiMax. The different network topology results in different transmission path of 

each packet. These differences will reflect in the transmission delay. The instable 

transmission delay will affect both 𝛼 and 𝛽 value of the line equation. That is, 

affect the estimate clock skew of the mobile device.  

3.3. The Proposed Mobile Device Fingerprinting Technique 

We have described the reasons that why the clock skews of mobile devices 

will not remain stable over time. Duo to the instability of clock skews, some 

applications that based on the device fingerprinting technique will fail to work 

anymore. For example, the application that utilizes the clock skew based device 

fingerprinting technique to track a mobile device will not be able to keep tracking 

the target device if the clock skew of the device changes when it moves from 

place to place. In the same application, the tracker might be confused if there are 
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two or more devices in the same location that their clock skews are close. 

Fortunately, the major factor that affects the clock skew is the temperature 

changes, and it is smooth over time. As the experiment results shows in Fig.2, the 

temperature of a device‟s CPU will not dramatically change. The largest 

temperature difference is between minute 5 and minute 10 that the temperature 

raised about 2.6 degrees. The resulting clock skew difference is about 2.2 ppm.  

And another important finding in the experiment is that the temperature tends to 

keep increase or decrease over a period of time. As shown in Fig.2, the 

temperature keep rising between the first 20 minutes and keep falling between 

minute 85 to minute 120. We apply statistical model called Exponentially 

Weighted Moving Average that can adapt to small changes to improve the 

accuracy of device fingerprinting.  

 

Exponentially Weighted Moving Average Model 

We took clock skew as a feature value and used statistical method 

Exponentially Weighted Moving Average (EWMA) to calculate historical 

averages for feature changes. This method allows us to smooth out fluctuations in 

the clock skew variations.  

Let x(i) represent the clock skew of a target device‟s feature Z that observed 

on time i.  Using EWMA we calculate the moving average z(p) as [15]: 

𝑧 𝑝 =  λ ∙ 𝑥 𝑝 +  1 − λ   ∙ 𝑧 𝑝 − 1 , 0 < λ <  1 

The average and standard deviation of 𝑧 𝑝  are: 

𝑢𝑧 =  𝑢𝑥  
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σ𝑧
2 =  σ𝑥

2 ∙  
λ

1 − λ
  

Where σ𝑥  and 𝑢𝑥  are calculated during the training phase. Lower and upper 

bound limits are: 

Lower Bound:  𝐿𝐶𝐿𝑧 =  𝑢𝑧 −  𝐿 ∙ σ𝑧  

Upper Bound:  𝑈𝐶𝐿𝑧 = 𝑢𝑧 +  𝐿 ∙ σ𝑧  

The L value is the tolerance coefficients that can be tuned to adapt the current 

environment. If 𝑧 𝑝  falls outside [𝐿𝐶𝐿𝑧 ,𝑈𝐶𝐿𝑧 ] then the current average is far 

from the training average, and the case is considered to be two different 

fingerprintee, If we wish the system to be strict, we can set L to a smaller value. 

On the contrary, if we wish the system to be a little bit looser, we can set L to a 

larger value. 

 

Incremental Learning 

After the the EWMA model of the fingerprintee is trained and put into test, 

we adapt incremental learning in order to let the EWMA model precisely reflect 

the current characteristic of the fingerprintee in real time. As compare to classical 

modeling, in which testing phase starts after that training phase is completed, our 

model will be retrained and the parameters will be updated after each test.  

The concept of the incremental learning is similar to k-fold cross-validation 

[16] which is widely applied in training and testing models. The difference is that 

the sampling data in k-fold cross-validation is always the same. In k-fold 
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cross-validation, the provided data is partitioned into k subsamples, and each 

subsample is used once as the test data, while the rest of sample is used as training 

data. The k results are the averaged to produce a single estimation. In incremental 

learning, the weighted moving average is calculated over historical training data, 

and the test data is always the „current‟ sampled data that will become the training 

data in the next interval.  

Figure 3.3 illustrates an example of incremental learning after each testing. 

Each time the timing information of the target device is received; we calculate its 

clock skew base on Kohno‟s fingerprinting technique and test by the previous 

training data. If the clock skew falls outside the control limits [𝐿𝐶𝐿𝑧 ,𝑈𝐶𝐿𝑧 ], the 

fingerprinter issues an alert that there might be something wrong with this device. 

If the clock skew falls within the control limits, the fingerprinter take the current 

clock skew value and the previous training data together as the new training data 

and update the EWMA model for next testing period. In other words, Testingi is 

performed against CLi (Control Limits), which is taken into effect at Trainingi+1.  

 

Figure 3.3: Incremental Learning Example of 2 minute retraining interval 

 

The incremental learning keeps the EWMA model precisely represents the 

characteristic of the target device. 

 

Tuning of Statistical Parameters 

Training 
0 Training 

1 Training 
2 Training 

i 

Testing 
0 Testing 

1 Testing 
i - 1 

Training 
i + 1 

Testing 
i 

 time of testing  

. . . 

. . . . . . 

. . . 

0 1 2  i  ( i + 1 ) 

CL 
0 CL 

i CL 
i - 1 CL 

1 



 

15 
 

The EWMA model and parameters of the target fingerprintee  need to be 

fine-tuned before they are put into work. Parameters and initial values in EWMA 

model, tolerance coefficients need to be carefully determine during the training 

period. Ming [17] proved that exponentially weighted moving average filters are 

identical to first-order low-pass filters. Thus, we have used low-pass filters 

formulas to determine the appropriate value for λ parameter in EWMA formulas.  

For each device, we run a (long) single training-test with an initial value like 

λ0 = 0.1 and calculate the clock skew value every 𝑇𝑠  time. After that the 

training period elapses, we measure average frequency of false alarms for the rest 

of dataset, to be named 𝑓𝑐 . This parameter is equivalent to Turn-Over Frequency 

of a low-pass filter. The time-constant parameter of such a filter is calculated as: 

𝑇𝑓 =  
1

2π ∙ 𝑓𝑐
 

Then the λ parameter is parameter is [17]: 

λ =  
𝑇𝑠

𝑇𝑓 + 𝑇𝑠
 

 Since the physical characteristic of each device‟s clock is different, we cannot 

apply normal distribution model to determinate the tolerance value L. We first 

define the False Reject and the False Accept that will be used to determinate the L 

parameter. False Reject means that the clock skew of the target device is rejected by 

the EWMA filter, and False Accept means that the clock skew or other device is 

accepted by the EWMA filter. We take the data in the training phase to run the test 

by first setting L to be 0.1 and calculate the False Reject Rate. We repeat the testing 

and each time the L value is increased by 0.1. In order to calculate the False Accept 

Rate, we acquire a number of sample data from other devices. Again we repeat the 
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testing and calculate the False Accept Rate of each L value. The False Reject Rate 

will decrease as L increase and the False Accept Rate will increase as L increase. 

The two rates will eventually reach at the same value, which we called the Equal 

Error Rate. Figure 3.4 illustrate the relation of L and False Accept Rate and False 

Reject Rate. Then this L value is suitable for this device. 

 

Figure 3.4: The relation of L and False Accept Rate and False Reject Rate 

3.4. Proposed device identity spoofing detection scheme  

Now we are going to show that how our mobile device fingerprinting 

technique can be apply to applications such as detecting device identity spoofing 

attack. There are three phases in our detection scheme: the training phase, the 

testing phase, and the retraining phase. The training phase builds a profile that 

contains an initial EWMA model and testing parameters for a device that will be 

detected later on. After collecting sufficient data, we calculate the device‟s clock 

skew and put into testing. If the clock skew of the device is within the control 
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limit, the model will be updated with both previous and current clock skews in the 

retraining phase. 

In the training phase, we build a profile that contains an EWMA model and 

control limits parameters for the target device. First, a number of reference 

samples of the device‟s clock skew are collected. After collecting sufficient 

number of sample data, the parameters for the EWMA model will be generated by 

the methods we have described above. The model will be more accurate if the  

sample data is larger. Figure 3.5 depicts the training phase process and the 

procedures of device profile building module are showed in Figure 3.6. 

 

T,τ,RS

Device Profile

Building Module

Profile for Device τ: 

Pτ = { λ, u , σ,  L }

Device Profile 

Database

T: Size of the reference samples

τ: Identity of the device

RS: Reference samples

Pτ: The profile for device τ

 

Figure 3.5: Flow chart of the training phase 

Device Profile Building Module: 
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Step 1: Calculate the  λ parameter by  

𝑇𝑓 = 
1

2π ∙ 𝑓𝑐
 

λ =  
𝑇𝑠

𝑇𝑓 + 𝑇𝑠
 

Step 2: Calculate the average and standard derivation of the EWMA model by the 

formula 

𝑧 𝑝 =  λ ∙ 𝑥 𝑝 +  1 − λ   ∙ 𝑧 𝑝 − 1  

Step 3: Calculate the tolerance parameter L by the methods by setting an 

acceptable False negative value. 

And let Pτ = {λ , u , σ , L } denote the device‟s profile 

Figure 3.6: The procedures of Device Profile Building Module 

 

 After training phase, the device can be put into work with its identity ID. The 

detection server wishes to examine the possibility that the packets was actually 

sent by the ID that the device claimed. We take detection server‟s system time as 

global time. First, we record each received packet‟s arrival time TG according to 

global time. After receiving a batch of packets, we extract the timing information 

TD within each packet‟s TCP header. At this time, we have 

𝑇𝐺 =  𝑡1 , 𝑡2 ,⋯ , 𝑡𝑛  

𝑇𝐷 =  𝑡𝑑1 , 𝑡𝑑2 ,⋯ , 𝑡𝑑𝑛  

Next, we put these timing information data into the clock skew calculation module 

that apply Kohno‟s linear programming algorithm that outputs the clock skew SID. 

We retrieve the profile from the database based upon the claimed ID, including the 
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EWMA model and control limits parameters. The lower bound and upper bond 

control limits are produced as follows: 

𝐿𝐶𝐿𝐼𝐷 = 𝑢𝐼𝐷 − 𝐿𝐼𝐷 ∙ σ𝐼𝐷  

𝑈𝐶𝐿𝐼𝐷 =  𝑢𝐼𝐷 + 𝐿𝐼𝐷 ∙ σ𝐼𝐷  

where 𝑢𝐼𝐷  and σ𝐼𝐷  are the average and standard deviation of the ID‟s clock 

skew, and 𝐿𝐼𝐷 is the tolerance coefficient. Then we use these lower and upper 

control limits to test if the SID matches the stored average if 

𝐿𝐶𝐿𝐼𝐷  <  𝑆𝐼𝐷  <  𝑈𝐶𝐿𝐼𝐷  

The testing phase is showed in Figure 3.7 and the procedures of clock skew 

verifying module are showed in Figure 3.8 
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ID, TD , TG

Device Profile

Database

Clock skew 

Verification Module

LCLID < SID < UCLID

PID = {λ, u , σ,  L}

Updating

Module

Pass

Fail

ID

SID

Yes

No

PID

· ID: Claimed identity of the device

· TG: Timing information of global time

· TD: Timing information of the device ID

· PID: The Profile for device ID

· LCLID: Lower control limit for device ID

· UCLID: Upper control limit for device ID

· SID : Calculated Clock Skew of device ID 

 

Figure 3.7: Flow chart of testing phase and retraining phase 
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Clock Skew Verification Module: 

Step 1: Transform 𝑇𝐺 and 𝑇𝐷 into the form of Kohno‟s formula. 

𝑥𝑖 =   𝑡𝑖 − 𝑡1 

𝑣𝑖 =  𝑡𝑑𝑖 − 𝑡𝑑1 

𝑤𝑖 =   𝑣𝑖 Hz  

𝑦𝑖 =   𝑤𝑖 − 𝑥𝑖  

𝑂𝑇 =    𝑥𝑖  ,𝑦𝑖  
 ∶ 𝑖 ∈    1… … 𝑇𝐺       

Step 2: Solve the objective function 

 
1

 𝑇𝐺  
∙   𝑆𝐼𝐷 ∙ 𝑥𝑖 + 𝛽 − 𝑦𝑖  

 𝑇𝐺  

𝑖=1  

to get the estimated clock skew 𝑆𝐼𝐷  

Step 3: Calculate 𝐿𝐶𝐿𝐼𝐷 and 𝑈𝐶𝐿𝐼𝐷  from the parameters in device profile 𝑃𝐼𝐷  

𝐿𝐶𝐿𝐼𝐷 = 𝑢𝐼𝐷 −  𝐿𝐼𝐷 ∙ σ𝐼𝐷  

𝑈𝐶𝐿𝐼𝐷 =  𝑢𝐼𝐷 + 𝐿𝐼𝐷 ∙ σ𝐼𝐷  

Figure 3.8: The procedures of clock skew verification module 

If the calculated clock skew 𝑆𝐼𝐷  falls within [𝐿𝐶𝐿𝐼𝐷 ,𝑈𝐶𝐿𝐼𝐷 ], the system that 

will enter the retraining phase. In the retraining phase, the verified clock skew 

𝑆𝐼𝐷  is added to the EWMA model by the updating module in the retraining phase. 

Although our model takes all the sample data to calculate the average clock skew, 

but the parameter λ in the EWMA model make the newer data weighted more than 

the old ones in the average value. If there are n sample data, the ith data weighted 

only λn−i (λ is less than 1). That makes our model reflects the current behavior of 
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the device. Then the updated profile is saved back to device profile database. 

 The retraining phase processes is showed in Figure 3.7 and the procedures of 

updating module are showed in Figure 3.9. 

 

Updating Module: 

Step 1: Add 𝑆𝐼𝐷  to 𝑃𝐼𝐷  by update the average clock skew value 

𝑢 =  λ ∙ 𝑆𝐼𝐷 +  1 − λ   ∙ 𝑢 

Step 2: Update profile database with new value 

PID = {λ , u , σ , L } 

 

Figure 3.9: The procedures of updating module 
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4. Experiments and Results 

To evaluate our proposed technique, we make an experiment to implement the 

described device identity spoofing detection scheme in chapter 3. In this chapter, 3 

experiments will be presented. We will first depict the environment and settings and 

data collection of each experiment, and then we will show up the experimental 

results. 

4.1. Required packet number to estimate a clock skew 

Before we start to evaluate our scheme, we need to know how many timestamps 

(or packets) we have to acquire to estimate a device‟s clock skew with an acceptable 

granularity. We capture all the packets that sent from the device for a longtime (2 

days in our experiment) and use all of them to estimate the “target” clock skew. 

Then we divide all the data into contiguous non-overlapping segments of size n and 

estimate the clock skew of each segment. For each value of n, we calculate the 

average difference of each clock skew and the target clock skew.  

 

Figure 4.1 Segment size n versus average difference.  
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Figure 4.1 shows the average difference related to the segment size n. For the 

LAN device, the clock skew is relatively stable compare to the other three WLAN 

devices. It shows that only 60 packets are required to estimate a clock skew on a 

LAN device.  

For the three WLAN devices, the average difference remains very high (over 5 

ppm) until segment size n reaches 370. The reason is that the network latency of the 

WLAN environment is relatively instable compare to LAN. The experiment result 

shows that it takes over 500 packets to estimate an acceptable clock skew for a 

WLAN device. 

4.2. Required Profile Sample Size 

Now we know the required numbers of packet to estimate an acceptable clock 

skew, we now moving on to figure out how many clock skew samples required to 

build a device profile that can really characterize the tendency of the clock skew 

change. 

The data set is the same as the experiment described in section 4.1. We calculate 

the clock skew of each device every 500 packets. The first m estimated clock skews 

are used to build the device profile with our proposed scheme and the rest of the 

clock skews are used to test the device profile. If the clock skew were rejected in the 

testing phase, we count it as a false rejection. For each value of m, we divided false 

rejection counts by the total test time to get the false-reject rate. Figure 4.2 shows 

the false-reject rate related to the profile sample size m. For the LAN device, the 

false-reject rate quickly dropped below 3% when the profile sample size reaches 20. 
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Figure 4.2 False-Reject Rate versus profile sample size  

 

The false-reject rate of the three WLAN devices, on the other hand, remains over 

10% when the profile sample size becomes 20. The false-reject rate of the 4 device 

dropped below 3% when the profile sample size over 50. Therefore, if we want to 

build a profile that tightly characterize the tendency of the clock skew changes; the 

required profile sample size should be over 50. 

 

4.3. Accuracy evaluation of the proposed device identity spoofing 

detection scheme 

After knowing how many packets to estimate an acceptable clock skew and the 

required sample size to build an accurate device profile, we are going to evaluate the 

accuracy of our proposed device identity spoofing detection scheme. 
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4.3.1. Environment and Settings 

There are three roles in our experiment, the detection server, the legitimate 

devices and the attacker. The detection server is located at the backend of the 

network that can retrieve all the packets sent by every legitimate devices and 

attacker. After the device profile is build, the legitimate devices are going to perform 

their normal work. The attacker, on the other hand, will deploy identity spoofing 

attack that randomly sends packets with one of the legitimate identities.  

There are 1 detection server, 11 legitimate devices and 1 attacker in our 

experiment. From the experiment result of the experiment in section 4.1 and 4.2, we 

estimate the clock skew every 500 packets and build the device profile with 50 

samples. We run the experiment for two days to evaluate the accuracy of the 

proposed scheme. 

4.3.2. Error rate evaluation 

In order to evaluate the error rate of the proposed scheme, we first define the 

error situation in our experiment. The first situation is that the system issues an 

alarm when there is no attacker or the attacker is not attacking this legitimate 

identity. The second one is that the system does not issue an alarm when the attacker 

is attacking the identity. Since the attacker is under our control, every time it chooses 

one legitimate identity, we record the attack time and compare to the alarm record of 

the system to count the number of the error situation. The total error times will be 

divided by the total test times to calculate the error rate. 

To compare with the previous fingerprinting technique, we configure our scheme 

to run under the follow for conditions. The first and second condition applies 
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Kohno‟s linear programming based remote fingerprinting technique but only the 

second condition applies the EWMA model. The third and fourth condition applies 

linear regression based remote fingerprinting technique but only the fourth condition 

applies the EWMA model. Table 4.1 shows the error rate of the 11 devices under the 

four configurations. 

 

Device ID 

Without EWMA With EWMA 

Linear Regression Convex Hull Linear Regression Convex Hull 

Device 1 10.63% 9.09% 8.23% 8.41% 

Device 2 21.34% 26.14% 8.55% 8.43% 

Device 3 12.06% 9.09% 6.41% 6.82% 

Device 4 22.16% 25.00% 7.39% 7.23% 

Device 5 8.22% 7.95% 7.18% 7.33% 

Device 6 17.21% 18.18% 8.12% 8.75% 

Device 7 8.89% 9.09% 8.23% 8.64% 

Device 8 9.11% 9.06% 5.27% 5.75% 

Device 9 17.30% 18.18% 7.65% 7.41% 

Device 10 11.32% 9.03% 8.93% 8.23% 

Device 11 24.74% 26.14% 8.44% 8.86% 

Average 14.82% 15.18% 7.67% 7.81% 

Table 4.1: Error rate comparison 

 

As shown in table 4.1, the error rate of each device decrease when applying 

EWMA model no matter what fingerprinting techniques is used. The highest error 

rate when modeling without EWMA model is over 26%. And over have of the 
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devices have error rate over 10%, which is unacceptable for a spoofing detection 

scheme. On the other hand, none of the device that applying EWMA model have 

error rate over 9% and the average error rate is around 7%, which means that our 

proposed mobile device fingerprinting have higher accuracy compared to prior 

works. 
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5. Conclusion 

In this paper, we first introduce Kohno‟s clock skew based physical device 

fingerprinting technique. And then we explore the reasons why a device‟s clock 

skew will not remain stable in the mobile environment. So we propose a mobile 

device fingerprinting technique based on Kohno‟s device fingerprinting technique 

that can be applied to some applications that involve mobile devices. In order to 

evaluate the performance of our mobile device fingerprinting a technique, we 

propose a device identity spoofing detection scheme based on our technique. The 

experiment shows that the error of the detection scheme narrows down from 15.18% 

to 7.81% by applying our technique, which is a 51% improvement. 

As to future work, we will try to apply other average models to narrow down the 

error rate to a lower level (within 5%). Another possible enhancement is to combine 

our model with prediction methods such as Auto Regression model or Gaussian 

model to lower error rate. 
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