

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

針對 MPEG-2 到 H.264/AVC 的轉換編碼的快速演算

法

A Fast Algorithm for MPEG-2 to H.264/AVC Transcoding

研 究 生：陳信良

指導教授：蔡文錦 教授

中 華 民 國 九 十 七 年 七 月

針對 M P E G - 2 到 H . 2 6 4 / A V C 的轉換編碼之快速演算法

A Fast Algorithm for MPEG-2 to H.264 Transcoding

研 究 生：陳信良 Student：Shin-Liang Chen

指導教授：蔡文錦 Advisor：Wen-Jiin Tsai

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年七月

 I

摘要

 H.264/AVC 是一個可以達到比現在最被廣泛使用的 MPEG-2 視訊壓縮標準更

高效率的視訊編碼，在這篇論文，我們提出了一個快速的演算法，以加快 MPEG-2

到 H.264/AVC 的轉換編碼的速度，這演算法包括了一個針對 H.264 提供的不同區

塊大小的有效選擇方法以及快速決定這些區塊的移動向量的方法，實驗結果顯示

所提出的演算法在與完整的 MPEG-2 到 H.264 的轉換標碼比較時，可以降低大量

的計算時間且保持相同的影像品質。

關鍵字： MPEG-2、H.264/AVC、轉換編碼、型態決定、移動向量

 II

Abstract

 The H.264/AVC standard can achieve much higher coding efficiency than the

widely available MPEG-2 video standard. In this thesis, we proposed a fast algorithm

in order to speed up MPEG-2 to H.264/AVC transcoding time. The proposed

algorithm includes a fast mode decision method for the variable-sizes blocks in H.264

and a fast motion vector decision method for these blocks. The Experiment results

show the proposed algorithm can reduce much computational cost with keeping

similar video quality while compared with full MPEG-2 to H.264 transcoder.

Keywords: MPEG-2, H.264/AVC, Transcoding, Mode decision, Motion vector

 III

Contents

Chapter 1 .. 1

Introduction .. 1

Chapter 2 .. 6

Related Works .. 6

2.1 Fast Macroblock Mode Decision .. 6

2.2 Fast Motion Vector Decision .. 8

Chapter 3 .. 11

Motivation .. 11

Chapter 4 .. 12

Proposed Method ... 12

4.1 Proposed Mode Decision Method ... 12

4.1.1 Type check .. 14

4.1.2 Early Decision... 14

4.1.3 Fast Mode Decision(MD) ... 17

4.2 Proposed MV Decision Method .. 19

4.2.1 Mode and Energy Check ... 20

4.2.2 Motion Vector Prediction .. 21

4.2.3 MV Mapping or Integer-Pixel Refinement 23

4.2.4 Sub-Pixel Refinement .. 24

Chapter 5 .. 25

Experimental Results ... 25

5.1 Threshold Determination .. 26

5.2 Experiment at Fixed Bitrate .. 29

5.3 Experiment at Various Bitrate ... 33

5.4 Frame by Frame at Fixed QP = 30 .. 39

Chapter 6 .. 42

Conclusion and Future Work ... 42

References .. 43

 IV

List of Figures

Figure 1.1 Transform domain transcoder 3

Figure 1.2 Cascaded pixel domain transcoder 4

Figure 2.1 Early Termination 7

Figure 2.2 motion vector derivation 9

Figure 2.3 Dynamic search range 9

Figure 4.1 Proposed transcoding architecture 13

Figure 4.2 The Flowchart of Proposed Mode Decision 13

Figure 4.3 Decide 16X16 or 8X8 16

Figure 4.4 Determine Block Mode (a) 16X8, (b)8X16, (c)8X8 16

Figure 4.5 Compared with upper, left and current macroblock 19

Figure 4.6 The flowchart of proposed MV decision 20

Figure 4.7 Reuse of MPEG-2 MV for Eng = 0 21

Figure 4.8 Select Candidate MV 22

Figure 4.9 Set the search range 23

Figure 4.10 Eng(A) < High_Th and High_ThX2 > Eng(B) > High_Th 24

Figure 5.1 the experiment with different low thresholds and

a fixed high threshold = 200 27

Figure 5.2 the experiment with different high thresholds and

a fixed low threshold = 75 28

Figure 5.3 Experiment results at various bitrates

 Figure 5.3 (a) Foreman 33

 Figure 5.3 (b) News 34

 Figure 5.3 (c) Bus 35

 V

 Figure 5.3 (d) Coastguard 36

 Figure 5.3 (e) Mobile 37

 Figure 5.3 (f) Stefan 38

Figure 5.4 Comparison in frame by frame 40

 VI

List of Tables

Table 1.1 Comparison between MPEG-2 and H.264 2

Table 4.1 Probability and PSNR loss of intra-to-intra 14

Table 5.1 Experiment in bitrate = 1.2Mbps 30

Table 5.2 Experiment at fixed QP = 30 40

 1

Chapter 1

Introduction

 Video transcoding is one of the video adaptation methods to convert the

characteristics of video stream into the other characteristics for solving the

incompatible problem for universal multimedia access [1-2]. The characteristics

include bitrate, framerate, video standard, image resolution, etc. The format

transcoding method purposes to convert the input stream of one video standard to the

output stream of another standard and the key issue in it is to minimize the

complexity while keeping the quality [3].

 Currently, most of the video used in the multimedia applications such as DTV,

DVD, and HDTV uses the MPEG-2 video coding standard. However, H.264/AVC

developed by Joint Video Team of ISO/IEC MPEG and ITU-T VCEG is the latest

video coding standard and achieves high coding efficiency. Compared with MPEG-2

video, H.264 can reduce more than half of the bitrate with same video quality.

Therefore, the MPEG-2 to H.264 transcoder is necessary and that is discussed in this

thesis.

 H.264 employs some techniques which are different form MPEG-2 as shown in

Table 1.1. The major differences are: 1. H.264 uses different intra prediction modes

 2

and variable block sizes for inter prediction; 2. 4X4 integer transform (HT) in H.264

is different from 8X8 DCT in MPEG-2; and 3. H.264 uses multiple reference frames

for inter prediction. Besides, the motion vector accuracy and the entropy coding of

H.264 are also different from MPEG-2.

Table 1.1 Comparison between MPEG-2 and H.264

 Generally, transcoders can be classified into two types, one called “Transform

Domain Transcoder(TDT)” operates in the transform domain and the other called

“Cascaded Pixel Domain Transcoder(CPDT)” operates in the pixel domain.

 A transform domain transcoder can reduce much computational complexity of

IDCT and HT. In [4], an efficient method has been proposed to convert DCT

coefficients to HT coefficients entirely in the transform domain. It shows that the

conversion is essentially a 2D transform, S-Transform, as shown in Figure 1.1.

However, TDT has the problem of drift error due to the mismatch of motion

compensation. [5] analyzed two major kinds of drift error: interpolation error and

quantization error and proposed a transcoding scheme based on quantization and

Format MPEG-2 H.264

Intra prediction DC prediction 9 modes(4X4)

4 modes(16X16)

Block size for

inter prediction

16X16 4 MB mode

4 sub-block mode

ME/MC accuracy ½ pixel ¼ pixel

Transform 8X8 DCT 4X4 HT

Ref. frame # 1 5

Entropy coding VLC CABAC, CAVLC

 3

interpolation drift error compensation. In [6], their transcoder converts 8x8 DCT in

MPEG-2 into 4x4 integer transform in H.264 and reduces the image resolution to

half of the original size in both vertical and horizontal directions.

Figure 1.1 Transform domain transcoder

 On the other hand, the cascaded pixel domain transcoder which involves full

decoder and encoder can be accelerated by reusing the coding information as shown

in Figure1.2. [7] proposed an efficient CPDT by using MPEG-2 coding mode and

using motion vectors of MPEG-2 to be the prediction motion vectors in H.264

stream. The intra mode decision for MPEG-2 to H.264 transcoding has been

proposed in [8]. It computes the edge angle in a block from the MPEG-2 DCT

coefficients and according to the edge angle it limits the intra prediction modes to be

performed in the transcoding. Since the mode decision and motion estimation hold

the very great proportion of computational time in H.264 encoder, most researches

have focused on reducing macroblock mode decision time [9-12] or motion

estimation time [13-14] in CPDT.

In [9], the proposed algorithm is used to determine which one of the 16x16, 16x8,

8x16, and 8x8 block size modes should be used for each macroblock. [10] proposed

a 2-D Sobel filter based motion vector method and a DCT domain method to

measure macroblock complexity and realize efficient H.264 candidate mode decision.

A fast trnascoding algorithm based on CPDT architecture has been proposed in [11].

It used the coded macroblock type and the coded block pattern included in the

MPEG-2 bitstream to reduce the complexity against the full-searching mode

decision. Moreover, [12] proposed a scheme which determines suitable intra or inter

 4

modes in H.264 encoder according to DCT coefficients, motion vectors, and

neighboring macroblock modes of the MPEG-2 bitstream and improves quality

compared with the algorithm presented in [11]. On the other hand, [13] proposed a

novel motion mapping algorithm aimed for low-complexity MPEG-2 to H.264

transcoding by using MPEG-2 motion vectors efficiently. Compared to motion

mapping, [14] presented reduced complexity motion estimation by reducing the

search range dynamically.

Figure 1.2 Cascaded pixel domain transcoder

 Compared with the cascaded pixel domain transcoder, the complexity of the

transform domain trnascoder can be reduced further because the processes of the 8x8

inverse DCT and the 4x4 integer transform are skipped. However, the TDT

architecture has several disadvantages compared to CPDT. First, TDT can not use

in-loop filtering to eliminate blocking artifacts but CPDT can use. This disadvantage

leads to the degradation of video quality. Second, the motion estimation using the

variable block size in H.264 restricts the use of MC-DCT and has some drift error in

TDT architecture. Moreover, the complexities of the 8x8 IDCT and the 4x4 integer

transform are much lower than those of the macroblock mode decision and motion

estimation in H.264. According to these reasons, our proposed transcoder for

MPEG-2 to H.264 transcoding is implemented in CPDT architecture.

 In this thesis, a new MPEG-2 to H.264 transcoding is proposed, which provides a

fast macroblock mode decision and a fast motion vector decision in pixel domain.

The experimental results show that our transcoder speeds up much computational

time and keeps the video quality. The rest of this thesis is organized as follows.

 5

Chapter 2 gives the introduction to related works of the fast mode decision and MV

decision in CPDT, and chapter 3 gives our motivation. Our proposed trnascoder

architecture is discussed in chapter 4, and the experimental results are shown in

chapter 5. The conclusion is given in the last chapter.

 6

Chapter 2

Related Works

 In chapter 1, we have introduced two architectures of MPEG-2 to H.264

transcoding: TDT and CPDT. The quality of video in CPDT is higher than that in

TDT but it needs more computational time, thus we proposed a fast algorithm for

MPEG-2 to H.264 transcoding in pixel domain. In this chapter, we introduce

previous works in CPDT including fast macroblock mode decision method and fast

motion estimation scheme.

2.1 Fast Macroblock Mode Decision

 There are four inter macroblock modes and four subblock modes in H.264/AVC

video coding standard. A good fast mode decision scheme is very important in

MPEG-2 to H.264 transcoding since it can achieve very good rate-distorition

performance with low complexity. [9] analyzed the energy of MPEG-2 residual

macroblock and used it to select macroblock size in H.264. The energy of a residual

macroblock is measured as the sum of the absolute value of the dequantized DCT

coefficients of the motion compensated prediction MPEG-2 residual macroblock.

 7

When the energy is very low, it is a strong probability that the optimal block size

mode will be 16X16. While the energy is big, the probability that the optimal size is

not 16X16 is more than 90%. Therefore, [9] set a low threshold for 16X16 block

type and a high threshold for 8X8 block type as shown in Figure 2.1. If the energy of

a residual macroblock is lower than the low threshold, the transcoding will choose

the 16X16 block mode and turn off the process of evaluating other block modes

since the performance of 16X16 mode is good enough. On the other hand, if the

energy is larger than the high threshold, the transcoding will spilt the macroblock

into four 8X8 blocks to achieve better performance. If the energy of a residual

macroblock is between the low threshold and high threshold, the trnascoding will

determine the final mode according to the distribution of energy of the four 8X8

blocks in that macroblock.

Figure 2.1 Early Termination

 Kim, et al. proposed another fast mode decision algorithm by using the coded

macroblock type (CMT) and the coded block pattern (CBP) in MPEG-2 [11]. In

MPEG-2, the CMT means whether a macroblock uses the temporal prediction from

reference frames or spatial perdiction from the same frame and the CBP indicates

which blocks in the macroblock are coded. The transcoder of [11] uses the CMT to

determine a macroblock to be intra or inter coded. If the macroblock is intra coded

type in MPEG-2, the transcoder would choose intra coding for it in H.264. Similarly,

when the macroblcok is inter coded type, the transcoder would use inter coding for it

 8

and select the macroblock size adaptively according to CBP, as follows.

 The number of not coded blocks >= 2 : SKIP, 16X16, 16X8, and 8X16 are

enabled.

 The number of not coded blocks = 1 : SKIP, 16X16, 16X8, 8X16, and 8X8

are enabled

 If all blocks are coded : all inter macroblock modes are enable

 The fast transcoder proposed in [11] reduces the computational time by reducing

the number of macroblock modes for RDO evaluation in H.264 encoder. Compared

to [11], the fast transcoder proposed in [9] reduces more transcoding complexity

since it decides exact one macroblock mode for H.264 encoding and no RDO

evaluation is needed. However, the video quality produced by the transcoder in [9]

might not be good if the decided block mode is not the best one.

2.2 Fast Motion Vector Decision

In MPEG-2 to H.264 transcoding, the motion estimation needs much

computational cost since there are seven macroblock modes in H.264. [11] proposed

a simple motion mapping mechanism for deciding the motion vector for inter 16X16

mode. In [13], an efficient motion mapping method to decide motion vectors for

inter 16X16, 16X8, 8X16, and 8X8 modes has been proposed. The output motion

vector is derived as a weighted average of the MPEG-2 motion vectors of candidate

macroblocks which include the macroblock containing the target block mode and

those macroblocks adjacent to the target block, as shown in .Figure 2.2, where the

target block modes in Figure 2.2(a), (b), and (c) for motion vector derivation is 16X8,

8X16, and 8X8 respectively. The weight of a candidate motion vector is inversely

proportional to the distance between its macroblock’s geometric center to the target

 9

block’s geometric center.

 (a) 16X8 (b) 8X16 (c) 8X8

Figure 2.2 motion vector derivation [13]

[14] propsoed a fast motion estimation algorithm by reducing the search range.

The search range reduction depends on the MPEG-2 coding mode and MPEG-2

motion vecotr, as shown in Figure 2.3. If the macroblock mode is skip mode and

inter with zero motion vector in MPEG-2, the search range is limited to 1. On the

other hand, if the macroblock is intra mode in MPEG-2, the search range will be set

to the maximum as specified in the H.264 encoder configuration (e.g., 16 in Figure

2.3). In the case of MPEG-2 inter mode that has motion vector, the search range for

the macroblock in H.264 is set to the maximum of the x-coordinate and y-coordinate

value of the MPEG-2 motion vector.

Figure 2.3 Dynamic search range [14]

 10

Compared to [14], the motion mapping method proposed in [13] does not need

full-pixel motion estimation because it derives exact one motion vector for each

block mode. Therefore, the motion mapping method reduces much more

computational cost. However, The video quality produced by the motion mapping

method might not be good enough if the derived motion vector is not optimal.

 11

Chapter 3

Motivation

 In CPDT, a good mode decision or motion estimation can decreases transcoding

time efficiently with high video quality. [9] proposes a fast mode decision method

and [13] proposes a motion mapping scheme to reduce much computational time. In

this thesis, we want to provide a fast mode decision and a fast motion vector decision

with adapted refinement to determine macroblock size and MV efficiently. Besides,

we hope that our fast mode decision and motion vector decision methods can be

combined efficiently while keeping the quality nearly the same as the CPDT

transcoder to achieve a high quality and low complexity MPEG-2 to H.264

transcoding. Moreover, since the inter 16X16, 16X8, 8X16, 8X8 block modes are

usually used more than sub-block modes like 4X8, 8X4 and 4X4, we only focus on

improving efficiency of these mode decision and motion estimation in this thesis.

 12

Chapter 4

Proposed Method

 In this chapter, we describe the proposed fast transcoding algorithm in detail.

Figure 4.1 shows our MPEG-2 to H.264 trnascoding architecture including a full

MPEG-2 decoder and a full H.264 encoder. In this architecture, when the MPEG-2

video stream is decoded, the information including motion vectors, residual

coefficients, and macroblock types in MPEG-2 will be stored. And then, in the H.264

encoding part, we propose a fast mode decision and a fast motion vector decision

methods. The proposed mode decision uses the residual coefficients and macoblock

types obtained from MPEG-2 video stream to efficiently select macroblock mode to

be used in the H.264 encoder. The proposed MV decision uses the MPEG-2 motion

vectors and residual coefficients to speed up the motion estimation process of the

H.264 encoder.

4.1 Proposed Mode Decision Method

 Since H.264 employs four block modes and four subblock modes within the inter

coding mode, the block mode selection has much computational cost in MPEG-2 to

H.264 transcoding. Therefore, a fast block mode decision to select block mode

 13

efficiently is important. Figure 4.2 shows the flowchart of the proposed fast mode

decision algorithm for an MPEG-2 to H.264 transcoder, and we only focus on the four

block modes: inter 16X16, 16X8, 8X16, and 8X8. In the following subsections, we

describe the algorithm for four inter block mode decision.

Figure 4.1 Proposed transcoding architecture

Figure 4.2 The Flowchart of Proposed Mode Decision

 14

4.1.1 Type check

 The coded macroblock in the P frame of an MPEG-2 video stream include four

types, as shown in follow :

 MC type : motion compensation with one motion vector

 No-MC type : motion compensation with zero motion vector

 Skip type : no residual coefficient and motion vector

 Intra type : intra coded mode

 In our algorithm, the current marcoblock type is first checked. If the MPEG-2

coded macroblock type is skip type, only the skip mode and inter 16X16 mode as the

macroblock mode in H.264 encoding process since it means the prediction error is

very low using this type and therefore the RD cost of the corresponding macroblock is

supposed to be very low in the H.264 encoder. In our experiments, if the MPEG-2

macroblock is intra coded, the probability of this macroblock is intra type in H.264

will be about 50%. Moreover, if these marcoblocks are all decided intra type in H.264,

the PSNR loses less than 0.09dB, as shown in Table 4.1. Therefore, when the

MPEG-2 macroblock is intra coded without motion estimation, two intra modes, intra

4X4 and intra 16X16, are considered as the macroblock mode in H.264 encoder.

Sequence Probability PSNR loss Sequence Probability PSNR loss

Foreman(120f) 65% 0.01 News(120f) 46% 0.00

Stefan(90f) 19% 0.09 Tempete(120f) 62% 0.00

Table 4.1 Probability and PSNR loss of intra-to-intra

4.1.2 Early Decision

 In Chen, et al. algorithm [9], they have shown that the energy of the MPEG-2

 15

residual coefficients can be used to determine the block sizes: 16X16, 16X8, 8X16,

8X8 accurately. In our algorithm, the energy of every MPEG-2 8X8 residual block in

the current macroblock is calculated using the formula shown as follows :

,where 𝐹𝑌
𝑖 is the DCT residual coefficient of

the 8X8 block i luminance component

 Based on the energy of four 8X8 residual blocks, a low- threshold and a

high-threshold are used to classify each 8X8 residual block into one of the following

energy types. Low-block, high-block, and undecided-block :

 Low energy : 8X8 block energy < low-threshold

 High energy : 8X8 block energy > high-threshold

 Undecided : 8X8 block energy ≥ low-threshold and ≤ high-threshold

 If there is no undecided-block in current macroblock, the block mode of this

macroblock are be early determined as follows. If there are three or more 8X8 blocks

set as low-block in the current macroblock, the macroblock size is determined as

16X16 (e.g., in Figure 4.3a) since the prediction error is very low. On the other hand,

if there are three or more 8X8 block set as high-block, it means the content of current

macroblock is very high complexity. Therefore, the block size of 8X8 mode is

considered in this case (e.g., in Figure 4.3b).

|),(|][8
7

0

7

0

vuiEng
v u

i

YF
 


𝐹𝑌

0 𝐹𝑌
1

𝐹𝑌
2 𝐹𝑌

3

8

8

 16

 (a) (b)

Figure 4.3 Decide 16X16 or 8X8

 Moreover, If there are two low-blocks and two high-blocks, the distribution of

the energy types is used to determine the block mode, as shown in Figure 4.4.

 (a) (b) (c)

Figure 4.4 Determine Block Mode (a) 16X8, (b)8X16, (c)8X8

 If the two upper 8X8 blocks are high-block and two bottom 8X8 blocks are

low-block, or oppositely, the two upper blocks are low-block and the two bottom

blocks both are high, as shown in Figure 4.4(a), then 16X8 block mode which divides

the macroblock into upper and bottom parts is chosen in H.264 to make lower RD

 17

cost. Similarly, if the two left 8X8 blocks are low-blocks and the two right 8X8 blocks

are high-blocks or oppositely, as shown in Figure 4.4(b), this marcoblcok is

determined as 8X16 mode. Moreover, if the upper-left block and the bottom-right

block are low-block and the upper-right block and the bottom-left block are

high-block or oppositely, as shown in Figure 4.4(c), it means the larger block size is

not good for current macroblock since the residual is very dispersive. Therefore, we

choose the 8X8 block size in this case. According to experimental results shown in

later, it is observed that more than half of macroblock modes in the most video

sequence can be decided using this proposed early decision method which explores

energy distribution patterns in a macroblock.

4.1.3 Fast Mode Decision(MD)

 In the previous subchapter, we describe an early decision method to determine

block mode if there is no undecided-block in current macroblock. However, when one

or more among the four 8X8 blocks of the macroblock is undecided-block, it is hard

to determine one block mode for the macroblock since it is hard to predict which

mode will have best RD cost. On the other hand, if we consider all inter modes in this

case, that is, perform exhaustively full search to determine the best mode, the

conputational cost could be quite high. Therefore, we propose a fast mode decision

method to choose some candidate block sizes efficiently to speed up transcoding

process while still keeping with high video quality.

The 16X8 mode and 8X16 mode in H.264 are very different since the 16X8

mode divides macroblock into upper and bottom partition and the 8X16 mode divides

macroblock into left and right partition. Therefore, only one of 16X8 and 8X16 modes

is considered to be the candidate mode for the undecided macroblock. On the other

hand, the 16X16 mode has much difference from the 8X8 mode since the 16X16

 18

mode is large size which is good for low complex macroblock and the 8X8 mode is

smaller size that is good for high complex macroblock. Similarly, only one of the

16X16 and 8X8 is considered to be the candidate mode. Due to reduce candidate

modes compared with H.264, the computational cost for the undecided macroblocks

is also reduced. The proposed fast mode decision algorithm is as follows :

 First, we define several variables as follows :

 TopEng : Eng8[0] + Eng8[1]

 BottomEng : eng8[2] + eng8[3]

 LeftEng : eng8[0] + eng8[2]

 RightEng : eng8[1] + eng8[3]

 MinEng, MaxEng : the minimum and

maximum energy of four 8X8 block

 AvgEng : the average energy of four 8X8 blocks

 K : an empiric constant value, In our experiment, K = 1.5

 Choose 16X8 or 8X16 mode :

if(abs(TopEng - BottomEng) > abs(LeftEng - RightEng))

 choose the 16X8 mode as the candidate mode

else

 choose the 8X16 mode as the candidate mode

 Choose 16X16 or 8X8 mode

if((MaxEng - MinEng) < AvgEng * K)

 choose the 16X16 mode as the candidate mode

else

 choose the 8X8 mode as the candidate mode

 Besides the above algorithm, in our experiments, if the left macroblock of the

current macroblock mode is equal to upper macroblock in H.264 (as Figure 4.5), the

 19

probability of current macroblock is equal to them will be more than 60% in the

macroblocks which is not early decided. Therefore, while the left macroblock mode

and the upper macroblcok are equal and this mode is not one of the candidate modes,

we also add this mode into the candidate set. In other words, in the fast mode decision

stage, only the candidate modes (three at most) will be evaluated with RDO process to

determine the best mode for those undecided macroblocks.

Figure 4.5 Compared with upper, left and current macroblock

4.2 Proposed MV Decision Method

 In H.264 encoder, it uses quarter-pixel-accuracy prediction and various block

sizes ranging from 16X16 to 4X4 for motion estimation on. The one with the best RD

cost is used for motion compensation. Therefore, the computation cost of the motion

estimation is very high. In order to speed up the motion estimation for MPEG-2 to

H.264 transcoding and we proposed an efficient motion vector decision method. Our

algorithm determines motion vector for the partition blocks of inter 16X16, 16X8,

8X16 and 8X8 only. Figure 4.6 shows the flowchart of the proposed algorithm.

Detailed description is given in the following subsections.

 20

Figure 4.6 The flowchart of proposed MV decision

4.2.1 Mode and Energy Check

 The motion vectors included in an MPEG-2 coded video stream are estimated for

block size of 16X16. Therefore, the motion vectors of MPEG-2 seems can be reused

for the inter 16X16 mode in H.264. However, both MPEG-2 and H.264 allow

half-pixel accuracy and the different filters are used for interpolation at the half-pixel

position. In MPEG-2, two-tap filter: (1,1)/2 is used whereas six-tap filter:

(1,-5,20,20,-5,1)/32 is used in H.264. Therefore, we reuse the motion vectors of

MPEG-2 only for integer-pixel motion vectors of 16X16 blocks and apply the

sub-pixel refinement around the integer motion vectors.

 21

 On the other hand, although MPEG-2 standard does not apply the block sizes of

16X8, 8X16, and 8X8, we still consider reusing the MPEG-2 motion vectors directly

for these partition blocks in H.264 if the energy of the partition block is equal to zero.

For example, in Figure 4.7, the motion vector of MPEG-2 is reused directly in right

16X8 partition block since the energy value of the upper-right and bottom-right 8X8

blocks of the corresponding macroblock are both zero.

Figure 4.7 Reuse of MPEG-2 MV for Eng = 0

4.2.2 Motion Vector Prediction

 In the motion mapping algorithm [13], they used the motion vectors of the

current macroblock and those macroblocks adjacent to the current target block to

derive the output motion vector (Figure 2.2). In our approach, we also use these

motion vectors as the candidate motion vectors for H.264 motion vector prediction.

However, the motion vectors of those macroblocks are not always good for the target

block because some of these candidate motion vectors, called unreliable motion

vectors, may have different directions from the real motion of the target block.

Therefore, we present an efficient method to remove such unreliable motion vectors

from the candidate motion vectors. We consider using the energy of the residual

coefficients to define the unreliable motion vectors and remove them from the

candidate motion vectors, as shown in Figure 4.8.

Eng > 0

Eng = 0

Reused MPEG-2 MV

 22

 (a) 16X8 (b) 8X16 (c) 8X8

Figure 4.8 Select Candidate MV

We compare the energy of the target block with the energy of those blocks

adjacent to the current target block. If the energy of the neighbor block is larger than

the two times energy of the target block, this motion vector is defined as an unreliable

motion vector for the target block and therefore, it will be removed from the set of

candidate motion vectors. For example, for the 16X8 mode in Figure 4.8(a), the

partition-A block and the block of number 1 are both in 16X8 size which has two 8X8

blocks, and the blocks of number 0, 2, 3 and 4 are all in 8X8 size block. We compare

the energy of partition-A block with that of number 0, 2, 3 and 4 blocks and compare

two times energy of partition-A block with that of number 1 block, as follows :

 if(Eng(i)8X8 > Eng(A)16X8) i = 0, 2, 3, and 4

 remove this MV from the candidate MVs

 if(Eng(1)16X8 > (Eng(A)16X8 * 2))

 remove this MV from the candidate MVs

 Finally, the target motion vector are computed as :

 (1)

where the weight wi is inversely proportional to the distance between the geometric

center of the candidate macroblocks which are not removed and that of target partition

block A. Since the motion vectors predicted in this way may not be good enough, in

the next subsection, we describe how to decide the motion vector mapping or refine it

)()(  ii MVwroundAMV

 23

adaptively.

4.2.3 MV Mapping or Integer-Pixel Refinement

 For equation (1), since the most proportion of the predicted motion vector comes

from the motion vector of the macroblock with the target partition block, we use the

magnitude of the energy to estimate the accuracy of the original MPEG-2 motion

vector of this macroblcok and determine the search range of the refinement window.

The refinement is performed with full search method of H.264 in this search window

centered at the predicted motion vector.

Search range =
2 if larger than High_Th

 4 if larger than High_ThX2

For 16X8 or 8X16 mode

Search range =
 2 if larger than High_Th/2

 4 if larger than High_Th

For 8X8 mode

Formula (2)

(a) 16X8 or 8X16 mode

(b) 8X8 mode

Figure 4.9 Set the search range

 The search range is defined in formula (2), where the High_Th is the same as the

high-threshold defined previously in the subsection 4.1.2. In inter 16X8 mode, if the

 24

energy of the target block is lower than High_Th, the predicted motion vector directly

is used. If the energy is larger than High_Th or even two times of High_Th, the search

range of the refinement window is set be 2 or 4 pixels in order to find a better motion

vector efficiently. The inter 8X16 and 8X8 mode are performed similar motion vector

refinement. Figure 4.10 shows an example for inter 8X16 mode, where assume Eng(A)

is less than High_Th, while Eng(B) is in between High_ThX2 and High_Th. In this

case, the 8X16 partition A block uses the predicted motion vector directly, but the

predicted motion vector of the partition B block needs to be refined.

Figure 4.10 Eng(A) < High_Th and High_ThX2 > Eng(B) > High_Th

4.2.4 Sub-Pixel Refinement

 After the above process is finished, the best integer motion vector for each target

partition block is estimated. We propose to do a sub-pixel motion refinement in order

to combat the difference from the half pixel interpolation methods used in MPEG-2

and H.264. We first perform half-pixel refinement around the best integer motion

vector and finally quarter-pixel refinement around the best half-pixel motion vector.

 25

Chapter 5

Experimental Results

In the chapter, we compare the proposed method with the “Chen’s algorithm” [9]

and the “Xin’s algorithm” [13], which speed up the block mode decision and motion

vector decision respectively. We also compare the proposed transcoder with the

MPEG-2 to H.264 standard transcoder. The parameters of our experimental

environment are set as follows:

 CPU : Intel Pantium4 3.0 GHz

 Test sequence(frames): Foreman(120), Coastguard(120), Bus(120),

News(120), Mobile(120), Stefan(90)

 Group of Picture (GOP): I P P P P ……

 GOP size: 30 frames

 Frame rate: 30 fps

 Frame format: CIF (352 x 288 pixels)

 Codec : MPEG-2(TM5), H.264(JM13.1)

 MPEG-2 bitrate : 3.2 Mbps

 RD Optimization : High complexity mode (if used)

 Motion Estimation : Search window size = 16

 Rate Control : used

 26

 Inter Mode : Skip, 16X16, 16X8, 8X16, and 8X8 are enabled

 As mentioned above, in our experiment the input MPEG-2 bitstream is encoded

at a bitrate of 3.2 Mbps. And the output H.264 bitstreams are encoded at various

bitrates in order to compare the performance at the different bitrates and the

rate-control of the H.264 standard is used. The frame structures of both MPEG-2 and

H.264 are IPPP structure, and the “High complexity mode” is enabled in the H.264

encoding process if the RD-optimization is used. We also experimented the results of

[9] and [13] algorithms in the same condition of their paper to verify the correctness.

However, in order to make fair comparison, we set the different experimental

environment from their paper in following experiment.

5.1 Threshold Determination

 First, experiments are conducted for various high thresholds and low thresholds

in order to find the best thresholds. From chapter 4 we know that if high-threshold is

set too high or low-threshold is set too low, then the number of undecided blocks

increases and thus the computation overhead also increases. On the other hand, if

high-threshold is set too low or low-threshold is set too high, then the probability that

the proposed block mode decision method makes wrong decision increases and thus

reduces the video quality for a given bitrate. Therefore, for better choice of both

high-threshold and low-threshold, we need to make a trade off between video quality

and the number of undecided blocks. Figure 5.1 and 5.2 show the experiment with

different low thresholds and high thresholds respectively. In Figure 5.1, the

x-coordinate means the value of low threshold. The y-coordinate in Figure 5.1(a) and

5.1(b) mean quality loss in terms of PSNR (△PSNR) and the number of the

undecided macroblocks, respectively. It is observed that, for most of the streams,

when the low threshold was larger than 100, the video quality lost a lot but only few

 27

number of undecided macorblocks decreased. Similarly, when the low threshold is

less than 50, although PSNR improved, the number of undecided macroblocks also

increased a lot. Therefore, we propose to set the low-threshold in between 50 and 100.

On the other hand, in Figure 5.2, while the high threshold is less than 200, the video

quality degraded dramatically although the number of undecided blocks can be

reduced a little bit. Therefore, it is better to set the high-threshold more than or equal

to 200. In the following experiments, the low-threshold and the high-threshold are set

to 75 and 200, respectively..

(a) △PSNR

(b) Number of undecided MBs

Figure 5.1 the experiment with different low thresholds and

 a fixed high threshold = 200

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

25 50 75 100 125 150
foreman

news

coastguard

bus

mobile

hall

container

0

5000

10000

15000

20000

25000

30000

35000

40000

25 50 75 100 125 150

foreman

news

coastguar
d
bus

 28

(a) △PSNR

(b) Number of undecided MBs

Figure 5.2 the experiment with different high thresholds and

 a fixed low threshold = 75

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

100 150 200 250 300 350

foreman

news

coastguard

bus

mobile

hall

container

0

5000

10000

15000

20000

25000

30000

35000

40000

100 150 200 250 300 350

foreman

news

coastguard

bus

mobile

hall

container

 29

 5.2 Experiment at Fixed Bitrate

Foreman

 PSNR(dB) Total Time(s) ME Time(s) △PSNR △T-Time(%) △ME-Time(%)

re-encoder 40.09 749.354 362.389 0 0.00 0.00

re-encoder-fast 40.09 568.151 177.281 0 -24.18 -51.08

Ref [9] 39.71 161.773 101.157 -0.38 -78.41 -72.09

Proposed-MD 39.85 181.832 109.597 -0.24 -75.73 -69.76

Ref [13] 39.9 235.628 90.046 -0.19 -68.56 -75.15

Proposed-MVD 40 237.81 93.121 -0.09 -68.26 -74.30

Ref [9] + [13] 39.46 79.66 20.843 -0.63 -89.37 -94.25

Proposed algorithm 39.81 100.236 29.256 -0.28 -86.62 -91.93

News

 PSNR(dB) Total Time(s) ME Time(s) △PSNR △T-Time(%) △ME-Time(%)

re-encoder 44.22 773.529 351.791 0 0.00 0.00

re-encoder-fast 44.21 599.238 171.691 -0.01 -22.53 -51.20

Ref [9] 44 156.197 96.415 -0.22 -79.80 -72.60

Proposed-MD 44.03 165.626 101.22 -0.19 -78.59 -71.23

Ref [13] 44.08 230.907 86.332 -0.14 -70.15 -75.50

Proposed-MVD 44.15 232.573 87.455 -0.07 -69.93 -75.14

Ref [9] + [13] 43.86 74.236 16.702 -0.36 -90.40 -95.25

Proposed algorithm 44.02 81.44 19.203 -0.20 -89.47 -94.54

Bus

 PSNR(dB) Total Time(s) ME Time(s) △PSNR △T-Time(%) △ME-Time(%)

re-encoder 33.74 763.143 366.361 0 0.00 0.00

re-encoder-fast 33.74 593.49 182.552 0 -22.23 -50.17

Ref [9] 33.04 180.981 106.752 -0.7 -76.28 -70.86

Proposed-MD 33.17 198.711 115.698 -0.57 -73.96 -68.42

Ref [13] 33.01 246.396 90.692 -0.73 -67.71 -75.25

Proposed-MVD 33.44 250.894 98.553 -0.3 -67.12 -73.10

Ref [9] + [13] 31.25 96.438 25.722 -2.49 -87.36 -92.98

Proposed algorithm 33.06 117.9 37.015 -0.68 -84.55 -89.90

 30

coastguard

 PSNR(dB) Total Time(s) ME Time(s) △PSNR △T-Time(%) △ME-Time(%)

re-encoder 34.69 768.36 386.824 0 0.00 0.00

re-encoder-fast 34.68 565.746 179.1 -0.01 -26.36 -53.70

Ref [9] 34.27 166.214 104.189 -0.42 -78.37 -73.07

Proposed-MD 34.44 193.26 116.782 -0.25 -74.85 -69.81

Ref [13] 34.46 235.97 92.049 -0.23 -69.29 -76.20

Proposed-MVD 34.62 243.555 101.079 -0.07 -68.30 -73.87

Ref [9] + [13] 34.04 83.874 22.8 -0.65 -89.08 -94.11

Proposed algorithm 34.42 113.077 36.748 -0.27 -85.28 -90.50

Mobile

PSNR(dB) Total Time(s) ME Time(s) △PSNR △T-Time(%) △ME-Time(%)

re-encoder 29.98 755.179 365.833 0 0.00 0.00

re-encoder-fast 29.98 588.965 182.121 0 -22.01 -50.22

Ref [9] 29.57 189.846 118.112 -0.41 -74.86 -67.71

Proposed-MD 29.64 195.953 118.448 -0.34 -74.05 -67.62

Ref [13] 29.81 241.891 93.03 -0.17 -67.97 -74.57

Proposed-MVD 29.95 252.752 104.79 -0.03 -66.53 -71.36

Ref [9] + [13] 29.4 103.664 32.159 -0.58 -86.27 -91.21

Proposed algorithm 29.69 114.54 39.51 -0.29 -84.83 -89.20

Stefan

PSNR(dB) Total Time(s) ME Time(s) △PSNR △T-Time(%) △ME-Time(%)

re-encoder 34.64 534.752 246.347 0 0.00 0.00

re-encoder-fast 34.64 420.128 130.687 0 -21.43 46.95

Ref [9] 33.87 127.329 79.569 -0.77 -76.19 -67.70

Proposed-MD 33.99 137.013 84.639 -0.65 -74.38 -65.64

Ref [13] 34.04 173.255 66.452 -0.6 -67.60 -73.03

Proposed-MVD 34.36 178.563 72.187 -0.28 -66.60 -70.70

Ref [9] + [13] 33.33 65.925 17.763 -1.31 -87.67 -92.79

Proposed algorithm 34.13 77.392 24.556 -0.51 -85.53 -90.03

Table 5.1 Experiment in bitrate = 1.2Mbps

 In this subchapter, we examined the transcoding performance and complexity at

a fixed target bitrate of 1.2 Mbps. The performance is measured in terms of the

reduced PSNR of the video after transcoding, while the complexity is measured in

 31

terms of the reduced re-encoding time. In order to evaluate the respective effect of the

proposed mode decision and motion vector decision algorithms, we have conducted

the experiments for the following methods.

 Fast mode decision (proposed-MD)

 Fast motion vector decision (proposed-MVD)

 Proposed integrated algorithm (including proposed-MD and

proposed-MVD)

We made a comparison for these proposed methods with current state-of-two-art

methods listed below.

 Mode decision method proposed in [9]

 Motion vector decision method proposed in [13]

 Integrated method of the above two (i.e. [9]+[13])

 Full H.264 re-encoder with full search (re-encoder)

 Fast H.264 re-encoder with fast full search (re-encoder-fast)

The results are shown in Table 5.1, where the △ PSNR stands for the

degradation of PSNR compared with full H.264 re-encoder, △T-Time and

△ME-Time stand for the percentage of reduced processing time, also compared with

full H.264 re-encoder, as shown in follows :

∆Time(%) =
 fast method processing time − H. 264 processing time

H. 264 processing time
 × 100%

 In Table 5.1, the video quality of H.264 re-encoder with fast full search is similar

to the re-encoder used full search and it can reduce about 22% processing time.

Compared with the full H.264 re-encoder, the algorithm in [9] and [13] can reduce

total encoding time up to 75% and 65% respectively with small PSNR degradation

(0.48dB and 0.34dB respectively on the average). The integrated method of [9] and

[13] can reduce more processing time however, with more PSNR degradation.

 32

Compared with [9], the proposed mode decision method can increase PSNR of

0.11dB and compared with [13], the proposed motion vector decision method can

increase PSNR of 0.21dB with the increase of a little computational cost. However,

the proposed integrated algorithm can reduce total re-encoding time by 84.55% to

89.47% with small PSNR degradation (0.36dB on the average), compared with full

H.264 re-encoder. Especially, in the high motion video (e.g. Bus and Stefan), the

quality of the video encoded by the proposed integrated algorithm performs even

better and the processing time is also faster than [9] and [13]. The reasons that the

proposed integrated method performs much better on high motion video are due to

that the proposed mode decision method choose a better mode in the hard decision

macroblock and the proposed motion vector decision method refine the predict

motion vector in the partition blocks with more residual coefficient.

 33

5.3 Experiment at Various Bitrate

△PSNR

△T-Time

Figure 5.3 (a) Foreman

-0.8

-0.6

-0.4

-0.2

0

0.9Mbps 1.2Mbps 1.5Mbps

re-encoder-fast Ref [9] Ref [13]

Ref [9] + [13] Proposed-MD Proposed-MVD

Proposed algorithm

-100

-80

-60

-40

-20

0

0.9Mbps 1.2Mbps 1.5Mbps

re-encoder-fast Ref [9] Ref [13]

Ref [9] + [13] Proposed-MD Proposed-MVD

Proposed algorithm

 34

△PSNR

△T-Time

Figure 5.3 (b) News

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.6Mbps 0.9Mbps 1.2Mbps

re-encoder-fast Ref [9] Ref [13]

Ref [9] + [13] Proposed-MD Proposed-MVD

Proposed algorithm

-100

-80

-60

-40

-20

0

0.6Mbps 0.9Mbps 1.2Mbps

re-encoder-fast Ref [9] Ref [13]

Ref [9] + [13] Proposed-MD Proposed-MVD

Proposed algorithm

 35

△PSNR

△T-Time

Figure 5.3 (c) Bus

-3

-2.5

-2

-1.5

-1

-0.5

0

1.2Mbps 1.5Mbps 1.8Mbps

re-encoder-fast Ref [9] Ref [13]

Ref [9] + [13] Proposed-MD Proposed-MVD

Proposed algorithm

-100

-80

-60

-40

-20

0

1.2Mbps 1.5Mbps 1.8Mbps

re-encoder-fast Ref [9] Ref [13]

Ref [9] + [13] Proposed-MD Proposed-MVD

Proposed algorithm

 36

△PSNR

△T-Time

Figure 5.3 (d) Coastguard

-0.8

-0.6

-0.4

-0.2

0

0.9M bps 1.2M bps 1.5M bps

re-encoder-fast Ref [9] Ref [13]

Ref [9] + [13] Proposed-MD Proposed-MVD

Proposed algorithm

-100

-80

-60

-40

-20

0

0.9M bps 1.2M bps 1.5M bps

re-encoder-fast Ref [9] Ref [13]

Ref [9] + [13] Proposed-MD Proposed-MVD

Proposed algorithm

 37

△PSNR

△T-Time

Figure 5.3 (e) Mobile

-0.8

-0.6

-0.4

-0.2

0

1.2Mbps 1.5Mbps 1.8Mbps

re-encoder-fast Ref [9] Ref [13]

Ref [9] + [13] Proposed-MD Proposed-MVD

Proposed algorithm

-100

-80

-60

-40

-20

0

1.2Mbps 1.5Mbps 1.8Mbps

re-encoder-fast Ref [9] Ref [13]

Ref [9] + [13] Proposed-MD Proposed-MVD

Proposed algorithm

 38

△PSNR

△T-Time

Figure 5.3 (f) Stefan

Figure 5.3 Experiment results at various bitrates

 We also conducted experiments on the transcoding methods for six different

streams at three different bitrates and the results are shown in Figure 5.3. △PSNR

means the degradation of the PSNR compared with full H.264 re-encoder and

-1.5

-1

-0.5

0

0.9M bps 1.2M bps 1.5M bps

re-encoder-fast Ref [9] Ref [13]

Ref [9] + [13] Proposed-MD Proposed-MVD

Proposed algorithm

-100

-80

-60

-40

-20

0

0.9M bps 1.2M bps 1.5M bps

re-encoder-fast Ref [9] Ref [13]

Ref [9] + [13] Proposed-MD Proposed-MVD

Proposed algorithm

 39

△T-Time is the percentage of reduced re-encoding time. The results for all the

streams show the video quality of the proposed integrated algorithm is always better

than the integrated transcoder of [9] and [13] with a little more processing time at

different bitrate, especially in Bus and Stefan. Besides, while the re-encoding bitrate is

larger, the degradation of PSNR is usually less with the same processing time. In the

most of the streams, the degradation of PSNR at low bitrate is larger than at high

bitrate since a bad block mode or a bad motion vector caused more distortion when

the re-encoder used larger QP. However, since the proposed integrated algorithm

chose better block modes and better motion vectors, the degradation of PSNR at low

bitrate increased little. On the other hand, the PSNR of the integrated transcoder of [9]

and [13] is much lower than the mode decision method of [9] and the motion vector

decision method of [13] respectively, especially in Bus and Stefan sequences. The

reasons are due to that bad block modes and bad motion vectors could cause more

video quality loss.

5.4 Frame by Frame at Fixed QP = 30

 In this subchapter, we compare the proposed integrated algorithm with full H.264

encoder and the integrated method of [9] and [13] at fixed QP (30) and GOP size is 30

frames. We use Bus and Stefan video sequences which belong to high motion video.

We re-encode Bus and Stefan for 150 frames and 90 frames, respectively. In Bus

sequence, the integrated [9] and [13] method reduced computational cost up to 87%

with 0.25dB PSNR degradation and increasing bitrate up to 41% and our proposed

integrated algorithm reduced processing time up to 85% with 0.1dB PSNR

degradation and increasing 9.63% bitrate, as shown in Table 5.2. In other words, the

encoding performance of our proposed integrated algorithm is much better than the

integrated [9] and [13] transcoder with slight increase in processing time.

 40

Bus

PSNR(dB) bitrate(Kbps) T-Time(s) △bitrate(%) △T-Time(%)

H.264 34.25 1286.10 969.757 0 0

[9]+[13] 34(-0.25) 1820.54 121.676 41.56% -87.45%

proposed 34.15(-0.1) 1409.98 143.194 9.63% -85.23%

Stefan

PSNR(dB) bitrate(Kbps) T-Time(s) △bitrate(%) △T-Time(%)

H.264 34.97 1263.55 541.482 0 0

[9]+[13] 34.66(-0.32) 1503.6 67.139 19.00% -87.60%

proposed 34.81(-0.17) 1340.43 77.328 6.08% -85.72%

Table 5.2 Experiment at fixed QP = 30

(a) Bus

(b) Stefan

Figure 5.4 Comparison in frame by frame

 Figure 5.3 shows the PSNR value of every frame in Bus and Stefan for the

33

34

35

36

37

1 16 31 46 61 76 91 106 121 136

H.264

[9]+[13]

proposed

33

34

35

36

37

1 16 31 46 61 76

H.264

[9]+[13]

proposed

 41

proposed integrated algorithm, the integrated [9] and [13] transcoder, and full H.264

re-encoder. As can be seen in the figure, the PSNR value of every frame of our

proposed algorithm is usually better. Moreover, since the first frame of a GOP is intra

frame which is coded by H.264 standard encoder, the PSNR of the first frame of a

GOP in the three different re-encoders is the same. When the frames are at the end of

GOP, the PSNR of the integrated [9] and [13] transcoder decreased more but the

PSNR of the proposed integrated algorithm is usually stable since our algorithm can

decide block modes and motion vectors correctly and efficiently, therefore, reducing

coding mode mismatch between MPEG-2 and H.264.

 42

Chapter 6

Conclusion and Future Work

 In this thesis, we proposed a fast algorithm focusing on 16X16, 16X8, 8X16 and

8X8 block mode decision and motion vector decision in MPEG-2 to H.264

transcoding. The proposed mode decision method can alleviate the complexity of

variable size block decision in H.264/AVC and the proposed motion vector method

predicts good motion vectors and finds the best motion vector with the efficient

refinement to reduce the computational cost of motion estimation.

 The experimental results show that our algorithm can save a lot of computational

cost while the video quality is reduced a little bit compared with the full H.264

re-encoder. Besides, the computation time of the proposed algorithm is less than the

fast mode decision proposed in [9] and the fast motion mapping proposed in [13] with

similar video quality.

 In the future, we will focus on reducing the computational time of intra type

prediction and deciding the motion vectors and prediction direction efficiently in B

frame type for helps in real-time implementation of MPEG-2 to H.264 transcoding.

 43

References

[1] Shih-Fu Chang and Anthony Vetro, “Video Adaptation: Concepts, Technologies,

and Open Issues “, Proceedings of the IEEE, Volume 93, No. 1, January 2005

[2] Ishfaq Ahmad, Xiaohui Wei, Yu Sun and Ya-Qin Zhang, “ Video Transcoding:

An Overview of Various Techniques and Research Issues “, IEEE Transactions

on Multimedia, Volume 7, No. 5, October 2005

[3] Hari Kalva, “ Issues in H.264/MPEG-2 Video Transcoding “, Proceedings of the

IEEE Consumer Communications and Networking Conference, January 2004, pp.

657-659

[4] Jun Xin, Anthony Vetro and Huifang Sun, “ Converting DCT Coefficients to

H.264/AVC Transform Coefficients “, Proceedings of the IEEE Pacific-Rim

Conference on Multimedia (PCM), November 2004, pp.939-946

[5] Tuanjie Qian, Jun Sun, Dian Li, Xiaokang Yang, Jia Wang, “ Transform Domain

Transcoding From MPEG-2 to H.264 With Interpolation Drift-Error

Compensation “, IEEE Transactions on Circuits and Systems for Video

Technology, Volume 16, No. 4, April 2006, pp.523-534

[6] Chen Chen, Ping-Hao Wu and Homer Chen, “ MPEG-2 to H.264 Transcoding “,

Picture Coding Symposium, December 2004

[7] Zhi Zhou, Shijun Sun, Shawmin Lei and Ming-Ting Sun, “ Motion Information

and Coding Mode Reuse for MPEG-2 to H.264 Transcoding “, IEEE

International Symposium on Circuits and Systems, Volume 2, May 2005

pp.1230-1233

[8] Hari Kalva and Branko Petljanski, “ Exploiting the Directional Features in

MPEG-2 for H.264 Intra Transcoding “, IEEE Transactions on Consumer

Electronics, Volume 52, No. 2, May 2006

[9] Gao Chen, Yong-dong Zhang, Shou-xun Lin and Feng Dai, “ Efficient Block

Size Selection for MPEG-2 to H.264 Transcoding “, Proceedings of the 12
th

Annual ACM International Conference on Multimedia, October 2004,

pp.300-303

 44

[10] Shen Li, Lingfeng Li, Takeshi Ikenaga, Shunichi Ishiwata, Mastaka Matsui and

Satoshi Goto, “ Complexity Based Fast Coding Mode Decision for

MPEG-2/H.264 Video Transcoding “, IEEE Asia Pacific Conference on

Circuits an Systems, December 2006, pp. 574-577

[11] Donghyung Kim, Kicheol Jeon, Jongho Kim and Jechang Jeong, “ A Fast

MPEG2-to-H.264 Transcoding Algorithm in Spatial Domain “, in IWAIT, 2006,

pp.695-700

[12] H. Kato, A. Yoneyama, Y. Takishima and Y. kaji, “ Coding Mode Decision For

High Quality MPEG-2 to H.264 Transcoding “, IEEE International Conference

on Image Processing, October 2007

[13] Jun Xin, JianJun Li, Anthony Vetro, Huifang Sun and Shun-ichi Sekiguchi,

“ Motion Mapping for MPEG-2 to H.264/AVC Transcoding “, IEEE

International Symposium on Circuits and System, May 2007, pp. 1991-1994

[14] Gerardo Fernandez-Escribano, Hari Kalva, Pedro Cuenca and Luis

Orozco-Barbosa, “ Reducing Motion Estimation Complexity in MPEG-2 to

H.264 Transcoding “, IEEE International Conference on Multimedia and Expo,

July 2007, pp.440-443

