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 I 

 

摘要 

 

    H.264/AVC 是一個可以達到比現在最被廣泛使用的 MPEG-2 視訊壓縮標準更

高效率的視訊編碼，在這篇論文，我們提出了一個快速的演算法，以加快 MPEG-2

到 H.264/AVC 的轉換編碼的速度，這演算法包括了一個針對 H.264 提供的不同區

塊大小的有效選擇方法以及快速決定這些區塊的移動向量的方法，實驗結果顯示

所提出的演算法在與完整的 MPEG-2 到 H.264 的轉換標碼比較時，可以降低大量

的計算時間且保持相同的影像品質。 

 

關鍵字： MPEG-2、H.264/AVC、轉換編碼、型態決定、移動向量 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 II 

Abstract 

 

    The H.264/AVC standard can achieve much higher coding efficiency than the 

widely available MPEG-2 video standard. In this thesis, we proposed a fast algorithm 

in order to speed up MPEG-2 to H.264/AVC transcoding time. The proposed 

algorithm includes a fast mode decision method for the variable-sizes blocks in H.264 

and a fast motion vector decision method for these blocks. The Experiment results 

show the proposed algorithm can reduce much computational cost with keeping 

similar video quality while compared with full MPEG-2 to H.264 transcoder. 

 

Keywords: MPEG-2, H.264/AVC, Transcoding, Mode decision, Motion vector 
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Chapter 1 

 

 

Introduction 

 

 

    Video transcoding is one of the video adaptation methods to convert the 

characteristics of video stream into the other characteristics for solving the 

incompatible problem for universal multimedia access [1-2]. The characteristics 

include bitrate, framerate, video standard, image resolution, etc. The format 

transcoding method purposes to convert the input stream of one video standard to the 

output stream of another standard and the key issue in it is to minimize the 

complexity while keeping the quality [3]. 

    Currently, most of the video used in the multimedia applications such as DTV, 

DVD, and HDTV uses the MPEG-2 video coding standard. However, H.264/AVC 

developed by Joint Video Team of ISO/IEC MPEG and ITU-T VCEG is the latest 

video coding standard and achieves high coding efficiency. Compared with MPEG-2 

video, H.264 can reduce more than half of the bitrate with same video quality. 

Therefore, the MPEG-2 to H.264 transcoder is necessary and that is discussed in this 

thesis. 

    H.264 employs some techniques which are different form MPEG-2 as shown in 

Table 1.1. The major differences are: 1. H.264 uses different intra prediction modes 
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and variable block sizes for inter prediction; 2. 4X4 integer transform (HT) in H.264 

is different from 8X8 DCT in MPEG-2; and 3. H.264 uses multiple reference frames 

for inter prediction. Besides, the motion vector accuracy and the entropy coding of 

H.264 are also different from MPEG-2. 

Table 1.1 Comparison between MPEG-2 and H.264 

    Generally, transcoders can be classified into two types, one called “Transform 

Domain Transcoder(TDT)” operates in the transform domain and the other called 

“Cascaded Pixel Domain Transcoder(CPDT)” operates in the pixel domain. 

    A transform domain transcoder can reduce much computational complexity of 

IDCT and HT. In [4], an efficient method has been proposed to convert DCT 

coefficients to HT coefficients entirely in the transform domain. It shows that the 

conversion is essentially a 2D transform, S-Transform, as shown in Figure 1.1. 

However, TDT has the problem of drift error due to the mismatch of motion 

compensation. [5] analyzed two major kinds of drift error: interpolation error and 

quantization error and proposed a transcoding scheme based on quantization and 

Format MPEG-2 H.264 

Intra prediction DC prediction 9 modes(4X4) 

4 modes(16X16) 

Block size for 

inter prediction 

16X16 4 MB mode 

4 sub-block mode 

ME/MC accuracy ½  pixel ¼  pixel 

Transform 8X8 DCT 4X4 HT 

Ref. frame # 1 5 

Entropy coding VLC CABAC, CAVLC 
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interpolation drift error compensation. In [6], their transcoder converts 8x8 DCT in 

MPEG-2 into 4x4 integer transform in H.264 and reduces the image resolution to 

half of the original size in both vertical and horizontal directions. 

 

Figure 1.1 Transform domain transcoder 

    On the other hand, the cascaded pixel domain transcoder which involves full 

decoder and encoder can be accelerated by reusing the coding information as shown 

in Figure1.2. [7] proposed an efficient CPDT by using MPEG-2 coding mode and 

using motion vectors of MPEG-2 to be the prediction motion vectors in H.264 

stream. The intra mode decision for MPEG-2 to H.264 transcoding has been 

proposed in [8]. It computes the edge angle in a block from the MPEG-2 DCT 

coefficients and according to the edge angle it limits the intra prediction modes to be 

performed in the transcoding. Since the mode decision and motion estimation hold 

the very great proportion of computational time in H.264 encoder, most researches 

have focused on reducing macroblock mode decision time [9-12] or motion 

estimation time [13-14] in CPDT.      

In [9], the proposed algorithm is used to determine which one of the 16x16, 16x8, 

8x16, and 8x8 block size modes should be used for each macroblock. [10] proposed 

a 2-D Sobel filter based motion vector method and a DCT domain method to 

measure macroblock complexity and realize efficient H.264 candidate mode decision. 

A fast trnascoding algorithm based on CPDT architecture has been proposed in [11]. 

It used the coded macroblock type and the coded block pattern included in the 

MPEG-2 bitstream to reduce the complexity against the full-searching mode 

decision. Moreover, [12] proposed a scheme which determines suitable intra or inter 
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modes in H.264 encoder according to DCT coefficients, motion vectors, and 

neighboring macroblock modes of the MPEG-2 bitstream and improves quality 

compared with the algorithm presented in [11]. On the other hand, [13] proposed a 

novel motion mapping algorithm aimed for low-complexity MPEG-2 to H.264 

transcoding by using MPEG-2 motion vectors efficiently. Compared to motion 

mapping, [14] presented reduced complexity motion estimation by reducing the 

search range dynamically. 

 

Figure 1.2 Cascaded pixel domain transcoder 

    Compared with the cascaded pixel domain transcoder, the complexity of the 

transform domain trnascoder can be reduced further because the processes of the 8x8 

inverse DCT and the 4x4 integer transform are skipped. However, the TDT 

architecture has several disadvantages compared to CPDT. First, TDT can not use 

in-loop filtering to eliminate blocking artifacts but CPDT can use. This disadvantage 

leads to the degradation of video quality. Second, the motion estimation using the 

variable block size in H.264 restricts the use of MC-DCT and has some drift error in 

TDT architecture. Moreover, the complexities of the 8x8 IDCT and the 4x4 integer 

transform are much lower than those of the macroblock mode decision and motion 

estimation in H.264. According to these reasons, our proposed transcoder for 

MPEG-2 to H.264 transcoding is implemented in CPDT architecture. 

    In this thesis, a new MPEG-2 to H.264 transcoding is proposed, which provides a 

fast macroblock mode decision and a fast motion vector decision in pixel domain. 

The experimental results show that our transcoder speeds up much computational 

time and keeps the video quality. The rest of this thesis is organized as follows. 
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Chapter 2 gives the introduction to related works of the fast mode decision and MV 

decision in CPDT, and chapter 3 gives our motivation. Our proposed trnascoder 

architecture is discussed in chapter 4, and the experimental results are shown in 

chapter 5. The conclusion is given in the last chapter. 
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Chapter 2 

 

Related Works 

 

 

    In chapter 1, we have introduced two architectures of MPEG-2 to H.264 

transcoding: TDT and CPDT. The quality of video in CPDT is higher than that in 

TDT but it needs more computational time, thus we proposed a fast algorithm for 

MPEG-2 to H.264 transcoding in pixel domain. In this chapter, we introduce 

previous works in CPDT including fast macroblock mode decision method and fast 

motion estimation scheme. 

 

2.1  Fast Macroblock Mode Decision 

    There are four inter macroblock modes and four subblock modes in H.264/AVC 

video coding standard. A good fast mode decision scheme is very important in 

MPEG-2 to H.264 transcoding since it can achieve very good rate-distorition 

performance with low complexity. [9] analyzed the energy of MPEG-2 residual 

macroblock and used it to select macroblock size in H.264. The energy of a residual 

macroblock is measured as the sum of the absolute value of the dequantized DCT 

coefficients of the motion compensated prediction MPEG-2 residual macroblock. 
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When the energy is very low, it is a strong probability that the optimal block size 

mode will be 16X16. While the energy is big, the probability that the optimal size is 

not 16X16 is more than 90%. Therefore, [9] set a low threshold for 16X16 block 

type and a high threshold for 8X8 block type as shown in Figure 2.1. If the energy of 

a residual macroblock is lower than the low threshold, the transcoding will choose 

the 16X16 block mode and turn off the process of evaluating other block modes 

since the performance of 16X16 mode is good enough. On the other hand, if the 

energy is larger than the high threshold, the transcoding will spilt the macroblock 

into four 8X8 blocks to achieve better performance. If the energy of a residual 

macroblock is between the low threshold and high threshold, the trnascoding will 

determine the final mode according to the distribution of energy of the four 8X8 

blocks in that macroblock. 

 

Figure 2.1 Early Termination 

    Kim, et al. proposed another fast mode decision algorithm by using the coded 

macroblock type (CMT) and the coded block pattern (CBP) in MPEG-2 [11]. In 

MPEG-2, the CMT means whether a macroblock uses the temporal prediction from 

reference frames or spatial perdiction from the same frame and the CBP indicates 

which blocks in the macroblock are coded. The transcoder of [11] uses the CMT to 

determine a macroblock to be intra or inter coded. If the macroblock is intra coded 

type in MPEG-2, the transcoder would choose intra coding for it in H.264. Similarly, 

when the macroblcok is inter coded type, the transcoder would use inter coding for it 
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and select the macroblock size adaptively according to CBP, as follows. 

 The number of not coded blocks >= 2 : SKIP, 16X16, 16X8, and 8X16 are 

enabled. 

 The number of not coded blocks = 1 : SKIP, 16X16, 16X8, 8X16, and 8X8 

are enabled 

 If all blocks are coded : all inter macroblock modes are enable 

    The fast transcoder proposed in [11] reduces the computational time by reducing 

the number of macroblock modes for RDO evaluation in H.264 encoder. Compared 

to [11], the fast transcoder proposed in [9] reduces more transcoding complexity 

since it decides exact one macroblock mode for H.264 encoding and no RDO 

evaluation is needed. However, the video quality produced by the transcoder in [9] 

might not be good if the decided block mode is not the best one. 

 

2.2  Fast Motion Vector Decision 

In MPEG-2 to H.264 transcoding, the motion estimation needs much 

computational cost since there are seven macroblock modes in H.264. [11] proposed 

a simple motion mapping mechanism for deciding the motion vector for inter 16X16 

mode. In [13], an efficient motion mapping method to decide motion vectors for 

inter 16X16, 16X8, 8X16, and 8X8 modes has been proposed. The output motion 

vector is derived as a weighted average of the MPEG-2 motion vectors of candidate 

macroblocks which include the macroblock containing the target block mode and 

those macroblocks adjacent to the target block, as shown in .Figure 2.2, where the 

target block modes in Figure 2.2(a), (b), and (c) for motion vector derivation is 16X8, 

8X16, and 8X8 respectively. The weight of a candidate motion vector is inversely 

proportional to the distance between its macroblock’s geometric center to the target 
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block’s geometric center. 

 

         (a) 16X8                  (b) 8X16                (c) 8X8 

Figure 2.2 motion vector derivation [13] 

[14] propsoed a fast motion estimation algorithm by reducing the search range. 

The search range reduction depends on the MPEG-2 coding mode and MPEG-2 

motion vecotr, as shown in Figure 2.3. If the macroblock mode is skip mode and 

inter with zero motion vector in MPEG-2, the search range is limited to 1. On the 

other hand, if the macroblock is intra mode in MPEG-2, the search range will be set 

to the maximum as specified in the H.264 encoder configuration (e.g., 16 in Figure 

2.3). In the case of MPEG-2 inter mode that has motion vector, the search range for 

the macroblock in H.264 is set to the maximum of the x-coordinate and y-coordinate 

value of the MPEG-2 motion vector. 

 

Figure 2.3 Dynamic search range [14] 
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Compared to [14], the motion mapping method proposed in [13] does not need 

full-pixel motion estimation because it derives exact one motion vector for each 

block mode. Therefore, the motion mapping method reduces much more 

computational cost. However, The video quality produced by the motion mapping 

method might not be good enough if the derived motion vector is not optimal. 
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Chapter 3 

 

Motivation 

 

 

    In CPDT, a good mode decision or motion estimation can decreases transcoding 

time efficiently with high video quality. [9] proposes a fast mode decision method 

and [13] proposes a motion mapping scheme to reduce much computational time. In 

this thesis, we want to provide a fast mode decision and a fast motion vector decision 

with adapted refinement to determine macroblock size and MV efficiently. Besides, 

we hope that our fast mode decision and motion vector decision methods can be 

combined efficiently while keeping the quality nearly the same as the CPDT 

transcoder to achieve a high quality and low complexity MPEG-2 to H.264 

transcoding. Moreover, since the inter 16X16, 16X8, 8X16, 8X8 block modes are 

usually used more than sub-block modes like 4X8, 8X4 and 4X4, we only focus on 

improving efficiency of these mode decision and motion estimation in this thesis. 
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Chapter 4  

 

Proposed Method 

 

 

    In this chapter, we describe the proposed fast transcoding algorithm in detail. 

Figure 4.1 shows our MPEG-2 to H.264 trnascoding architecture including a full 

MPEG-2 decoder and a full H.264 encoder. In this architecture, when the MPEG-2 

video stream is decoded, the information including motion vectors, residual 

coefficients, and macroblock types in MPEG-2 will be stored. And then, in the H.264 

encoding part, we propose a fast mode decision and a fast motion vector decision 

methods. The proposed mode decision uses the residual coefficients and macoblock 

types obtained from MPEG-2 video stream to efficiently select macroblock mode to 

be used in the H.264 encoder. The proposed MV decision uses the MPEG-2 motion 

vectors and residual coefficients to speed up the motion estimation process of the 

H.264 encoder. 

4.1  Proposed Mode Decision Method 

    Since H.264 employs four block modes and four subblock modes within the inter 

coding mode, the block mode selection has much computational cost in MPEG-2 to 

H.264 transcoding. Therefore, a fast block mode decision to select block mode 
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efficiently is important. Figure 4.2 shows the flowchart of the proposed fast mode 

decision algorithm for an MPEG-2 to H.264 transcoder, and we only focus on the four 

block modes: inter 16X16, 16X8, 8X16, and 8X8. In the following subsections, we 

describe the algorithm for four inter block mode decision. 

 

Figure 4.1 Proposed transcoding architecture 

 

Figure 4.2 The Flowchart of Proposed Mode Decision 
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4.1.1  Type check 

    The coded macroblock in the P frame of an MPEG-2 video stream include four 

types, as shown in follow : 

 MC type : motion compensation with one motion vector 

 No-MC type : motion compensation with zero motion vector 

 Skip type : no residual coefficient and motion vector 

 Intra type : intra coded mode 

    In our algorithm, the current marcoblock type is first checked. If the MPEG-2 

coded macroblock type is skip type, only the skip mode and inter 16X16 mode as the 

macroblock mode in H.264 encoding process since it means the prediction error is 

very low using this type and therefore the RD cost of the corresponding macroblock is 

supposed to be very low in the H.264 encoder. In our experiments, if the MPEG-2 

macroblock is intra coded, the probability of this macroblock is intra type in H.264 

will be about 50%. Moreover, if these marcoblocks are all decided intra type in H.264, 

the PSNR loses less than 0.09dB, as shown in Table 4.1. Therefore, when the 

MPEG-2 macroblock is intra coded without motion estimation, two intra modes, intra 

4X4 and intra 16X16, are considered as the macroblock mode in H.264 encoder.  

Sequence Probability PSNR loss Sequence Probability PSNR loss 

Foreman(120f) 65% 0.01 News(120f) 46% 0.00 

Stefan(90f) 19% 0.09 Tempete(120f) 62% 0.00 

Table 4.1 Probability and PSNR loss of intra-to-intra 

 

4.1.2  Early Decision 

    In Chen, et al. algorithm [9], they have shown that the energy of the MPEG-2 
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residual coefficients can be used to determine the block sizes: 16X16, 16X8, 8X16, 

8X8 accurately. In our algorithm, the energy of every MPEG-2 8X8 residual block in 

the current macroblock is calculated using the formula shown as follows : 

 

 

 

                                             

,where 𝐹𝑌
𝑖  is the DCT residual coefficient of 

the 8X8 block i luminance component 

    Based on the energy of four 8X8 residual blocks, a low- threshold and a 

high-threshold are used to classify each 8X8 residual block into one of the following 

energy types. Low-block, high-block, and undecided-block : 

 Low energy : 8X8 block energy < low-threshold 

 High energy : 8X8 block energy > high-threshold 

 Undecided : 8X8 block energy ≥ low-threshold and ≤ high-threshold 

    If there is no undecided-block in current macroblock, the block mode of this 

macroblock are be early determined as follows. If there are three or more 8X8 blocks 

set as low-block in the current macroblock, the macroblock size is determined as 

16X16 (e.g., in Figure 4.3a) since the prediction error is very low. On the other hand, 

if there are three or more 8X8 block set as high-block, it means the content of current 

macroblock is very high complexity. Therefore, the block size of 8X8 mode is 

considered in this case (e.g., in Figure 4.3b). 
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                (a)                                 (b) 

Figure 4.3 Decide 16X16 or 8X8 

 

    Moreover, If there are two low-blocks and two high-blocks, the distribution of 

the energy types is used to determine the block mode, as shown in Figure 4.4. 

 

           (a)                      (b)                     (c) 

Figure 4.4 Determine Block Mode (a) 16X8, (b)8X16, (c)8X8 

    If the two upper 8X8 blocks are high-block and two bottom 8X8 blocks are 

low-block, or oppositely, the two upper blocks are low-block and the two bottom 

blocks both are high, as shown in Figure 4.4(a), then 16X8 block mode which divides 

the macroblock into upper and bottom parts is chosen in H.264 to make lower RD 
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cost. Similarly, if the two left 8X8 blocks are low-blocks and the two right 8X8 blocks 

are high-blocks or oppositely, as shown in Figure 4.4(b), this marcoblcok is 

determined as 8X16 mode. Moreover, if the upper-left block and the bottom-right 

block are low-block and the upper-right block and the bottom-left block are 

high-block or oppositely, as shown in Figure 4.4(c), it means the larger block size is 

not good for current macroblock since the residual is very dispersive. Therefore, we 

choose the 8X8 block size in this case. According to experimental results shown in 

later, it is observed that more than half of macroblock modes in the most video 

sequence can be decided using this proposed early decision method which explores 

energy distribution patterns in a macroblock. 

4.1.3  Fast Mode Decision(MD) 

    In the previous subchapter, we describe an early decision method to determine 

block mode if there is no undecided-block in current macroblock. However, when one 

or more among the four 8X8 blocks of the macroblock is undecided-block, it is hard 

to determine one block mode for the macroblock since it is hard to predict which 

mode will have best RD cost. On the other hand, if we consider all inter modes in this 

case, that is, perform exhaustively full search to determine the best mode, the 

conputational cost could be quite high. Therefore, we propose a fast mode decision 

method to choose some candidate block sizes efficiently to speed up transcoding 

process while still keeping with high video quality. 

The 16X8 mode and 8X16 mode in H.264 are very different since the 16X8 

mode divides macroblock into upper and bottom partition and the 8X16 mode divides 

macroblock into left and right partition. Therefore, only one of 16X8 and 8X16 modes  

is considered to be the candidate mode for the undecided macroblock. On the other 

hand, the 16X16 mode has much difference from the 8X8 mode since the 16X16 
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mode is large size which is good for low complex macroblock and the 8X8 mode is 

smaller size that is good for high complex macroblock. Similarly, only one of the 

16X16 and 8X8 is considered to be the candidate mode. Due to reduce candidate 

modes compared with H.264, the computational cost for the undecided macroblocks 

is also reduced. The proposed fast mode decision algorithm is as follows : 

 First, we define several variables as follows : 

 TopEng : Eng8[0] + Eng8[1] 

 BottomEng : eng8[2] + eng8[3] 

 LeftEng : eng8[0] + eng8[2] 

 RightEng : eng8[1] + eng8[3]  

 MinEng, MaxEng : the minimum and  

maximum energy of four 8X8 block 

 AvgEng : the average energy of four 8X8 blocks 

 K : an empiric constant value, In our experiment, K = 1.5 

 Choose 16X8 or 8X16 mode : 

if(abs(TopEng - BottomEng) > abs(LeftEng - RightEng)) 

 choose the 16X8 mode as the candidate mode 

else 

 choose the 8X16 mode as the candidate mode 

 Choose 16X16 or 8X8 mode 

if((MaxEng - MinEng) < AvgEng * K) 

 choose the 16X16 mode as the candidate mode 

else 

 choose the 8X8 mode as the candidate mode  

    Besides the above algorithm, in our experiments, if the left macroblock of the 

current macroblock mode is equal to upper macroblock in H.264 (as Figure 4.5), the 



 19 

probability of current macroblock is equal to them will be more than 60% in the 

macroblocks which is not early decided. Therefore, while the left macroblock mode 

and the upper macroblcok are equal and this mode is not one of the candidate modes, 

we also add this mode into the candidate set. In other words, in the fast mode decision 

stage, only the candidate modes (three at most) will be evaluated with RDO process to 

determine the best mode for those undecided macroblocks. 

 

Figure 4.5 Compared with upper, left and current macroblock 

4.2  Proposed MV Decision Method 

    In H.264 encoder, it uses quarter-pixel-accuracy prediction and various block 

sizes ranging from 16X16 to 4X4 for motion estimation on. The one with the best RD 

cost is used for motion compensation. Therefore, the computation cost of the motion 

estimation is very high. In order to speed up the motion estimation for MPEG-2 to 

H.264 transcoding and we proposed an efficient motion vector decision method. Our 

algorithm determines motion vector for the partition blocks of inter 16X16, 16X8, 

8X16 and 8X8 only. Figure 4.6 shows the flowchart of the proposed algorithm. 

Detailed description is given in the following subsections. 
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Figure 4.6 The flowchart of proposed MV decision 

4.2.1  Mode and Energy Check 

    The motion vectors included in an MPEG-2 coded video stream are estimated for 

block size of 16X16. Therefore, the motion vectors of MPEG-2 seems can be reused 

for the inter 16X16 mode in H.264. However, both MPEG-2 and H.264 allow 

half-pixel accuracy and the different filters are used for interpolation at the half-pixel 

position. In MPEG-2, two-tap filter: (1,1)/2 is used whereas six-tap filter: 

(1,-5,20,20,-5,1)/32 is used in H.264. Therefore, we reuse the motion vectors of 

MPEG-2 only for integer-pixel motion vectors of 16X16 blocks and apply the 

sub-pixel refinement around the integer motion vectors. 
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    On the other hand, although MPEG-2 standard does not apply the block sizes of 

16X8, 8X16, and 8X8, we still consider reusing the MPEG-2 motion vectors directly 

for these partition blocks in H.264 if the energy of the partition block is equal to zero. 

For example, in Figure 4.7, the motion vector of MPEG-2 is reused directly in right 

16X8 partition block since the energy value of the upper-right and bottom-right 8X8 

blocks of the corresponding macroblock are both zero. 

 

 

 

 

 

 

Figure 4.7 Reuse of MPEG-2 MV for Eng = 0 

4.2.2  Motion Vector Prediction 

    In the motion mapping algorithm [13], they used the motion vectors of the 

current macroblock and those macroblocks adjacent to the current target block to 

derive the output motion vector (Figure 2.2). In our approach, we also use these 

motion vectors as the candidate motion vectors for H.264 motion vector prediction. 

However, the motion vectors of those macroblocks are not always good for the target 

block because some of these candidate motion vectors, called unreliable motion 

vectors, may have different directions from the real motion of the target block. 

Therefore, we present an efficient method to remove such unreliable motion vectors 

from the candidate motion vectors. We consider using the energy of the residual 

coefficients to define the unreliable motion vectors and remove them from the 

candidate motion vectors, as shown in Figure 4.8. 

 

 

Eng > 0 

 

 

Eng = 0 

Reused MPEG-2 MV 
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 (a) 16X8                 (b) 8X16                 (c) 8X8 

Figure 4.8 Select Candidate MV 

We compare the energy of the target block with the energy of those blocks 

adjacent to the current target block. If the energy of the neighbor block is larger than 

the two times energy of the target block, this motion vector is defined as an unreliable 

motion vector for the target block and therefore, it will be removed from the set of 

candidate motion vectors. For example, for the 16X8 mode in Figure 4.8(a), the 

partition-A block and the block of number 1 are both in 16X8 size which has two 8X8 

blocks, and the blocks of number 0, 2, 3 and 4 are all in 8X8 size block. We compare 

the energy of partition-A block with that of number 0, 2, 3 and 4 blocks and compare 

two times energy of partition-A block with that of number 1 block, as follows : 

 if( Eng(i)8X8 > Eng(A)16X8 )   i = 0, 2, 3, and 4  

         remove this MV from the candidate MVs 

 if(Eng(1)16X8 > (Eng(A)16X8 * 2) ) 

         remove this MV from the candidate MVs  

    Finally, the target motion vector are computed as : 

                                                         (1) 

where the weight wi is inversely proportional to the distance between the geometric 

center of the candidate macroblocks which are not removed and that of target partition 

block A. Since the motion vectors predicted in this way may not be good enough, in 

the next subsection, we describe how to decide the motion vector mapping or refine it 

)()(   ii MVwroundAMV
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adaptively. 

4.2.3  MV Mapping or Integer-Pixel Refinement 

    For equation (1), since the most proportion of the predicted motion vector comes 

from the motion vector of the macroblock with the target partition block, we use the 

magnitude of the energy to estimate the accuracy of the original MPEG-2 motion 

vector of this macroblcok and determine the search range of the refinement window. 

The refinement is performed with full search method of H.264 in this search window 

centered at the predicted motion vector. 

 

Search range =   
2          if larger than High_Th

     4          if larger than High_ThX2
  

For 16X8 or 8X16 mode 

Search range =   
       2          if larger than High_Th/2

   4          if larger than High_Th
  

For 8X8 mode 

Formula (2) 

(a) 16X8 or 8X16 mode 

 

(b) 8X8 mode 

Figure 4.9 Set the search range 

    The search range is defined in formula (2), where the High_Th is the same as the 

high-threshold defined previously in the subsection 4.1.2. In inter 16X8 mode, if the 
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energy of the target block is lower than High_Th, the predicted motion vector directly 

is used. If the energy is larger than High_Th or even two times of High_Th, the search 

range of the refinement window is set be 2 or 4 pixels in order to find a better motion 

vector efficiently. The inter 8X16 and 8X8 mode are performed similar motion vector 

refinement. Figure 4.10 shows an example for inter 8X16 mode, where assume Eng(A) 

is less than High_Th, while Eng(B) is in between High_ThX2 and High_Th. In this 

case, the 8X16 partition A block uses the predicted motion vector directly, but the 

predicted motion vector of the partition B block needs to be refined.  

 

Figure 4.10 Eng(A) < High_Th and High_ThX2 > Eng(B) > High_Th 

4.2.4  Sub-Pixel Refinement 

    After the above process is finished, the best integer motion vector for each target 

partition block is estimated. We propose to do a sub-pixel motion refinement in order 

to combat the difference from the half pixel interpolation methods used in MPEG-2 

and H.264. We first perform half-pixel refinement around the best integer motion 

vector and finally quarter-pixel refinement around the best half-pixel motion vector. 
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Chapter 5 

 

Experimental Results 

 
In the chapter, we compare the proposed method with the “Chen’s algorithm” [9] 

and the “Xin’s algorithm” [13], which speed up the block mode decision and motion 

vector decision respectively. We also compare the proposed transcoder with the 

MPEG-2 to H.264 standard transcoder. The parameters of our experimental 

environment are set as follows: 

    CPU : Intel Pantium4 3.0 GHz 

 Test sequence(frames): Foreman(120), Coastguard(120), Bus(120), 

News(120), Mobile(120), Stefan(90) 

 Group of Picture (GOP): I P P P P …… 

 GOP size: 30 frames 

 Frame rate: 30 fps 

 Frame format: CIF (352 x 288 pixels) 

 Codec : MPEG-2(TM5), H.264(JM13.1) 

 MPEG-2 bitrate : 3.2 Mbps 

 RD Optimization : High complexity mode (if used) 

 Motion Estimation : Search window size = 16 

 Rate Control : used 
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 Inter Mode : Skip, 16X16, 16X8, 8X16, and 8X8 are enabled 

    As mentioned above, in our experiment the input MPEG-2 bitstream is encoded 

at a bitrate of 3.2 Mbps. And the output H.264 bitstreams are encoded at various 

bitrates in order to compare the performance at the different bitrates and the 

rate-control of the H.264 standard is used. The frame structures of both MPEG-2 and 

H.264 are IPPP structure, and the “High complexity mode” is enabled in the H.264 

encoding process if the RD-optimization is used. We also experimented the results of 

[9] and [13] algorithms in the same condition of their paper to verify the correctness. 

However, in order to make fair comparison, we set the different experimental 

environment from their paper in following experiment. 

5.1  Threshold Determination 

    First, experiments are conducted for various high thresholds and low thresholds 

in order to find the best thresholds. From chapter 4 we know that if high-threshold is 

set too high or low-threshold is set too low, then the number of undecided blocks 

increases and thus the computation overhead also increases. On the other hand, if 

high-threshold is set too low or low-threshold is set too high, then the probability that 

the proposed block mode decision method makes wrong decision increases and thus 

reduces the video quality for a given bitrate. Therefore, for better choice of both 

high-threshold and low-threshold, we need to make a trade off between video quality 

and the number of undecided blocks. Figure 5.1 and 5.2 show the experiment with 

different low thresholds and high thresholds respectively. In Figure 5.1, the 

x-coordinate means the value of low threshold. The y-coordinate in Figure 5.1(a) and 

5.1(b) mean quality loss in terms of PSNR (△PSNR) and the number of the 

undecided macroblocks, respectively. It is observed that, for most of the streams, 

when the low threshold was larger than 100, the video quality lost a lot but only few 
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number of undecided macorblocks decreased. Similarly, when the low threshold is 

less than 50, although PSNR improved, the number of undecided macroblocks also 

increased a lot. Therefore, we propose to set the low-threshold in between 50 and 100. 

On the other hand, in Figure 5.2, while the high threshold is less than 200, the video 

quality degraded dramatically although the number of undecided blocks can be 

reduced a little bit. Therefore, it is better to set the high-threshold more than or equal 

to 200. In the following experiments, the low-threshold and the high-threshold are set 

to 75 and 200, respectively.. 

 

(a) △PSNR  

 

(b) Number of undecided MBs 

Figure 5.1 the experiment with different low thresholds and 

 a fixed high threshold = 200 
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(a) △PSNR 

 

 

(b) Number of undecided MBs 

Figure 5.2 the experiment with different high thresholds and 

 a fixed low threshold = 75 

 

 

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

100 150 200 250 300 350

foreman

news

coastguard

bus

mobile

hall

container

0

5000

10000

15000

20000

25000

30000

35000

40000

100 150 200 250 300 350

foreman

news

coastguard

bus

mobile

hall

container



 29 

 5.2  Experiment at Fixed Bitrate 

 

 

Foreman 

  PSNR(dB) Total Time(s) ME Time(s) △PSNR △T-Time(%) △ME-Time(%) 

re-encoder 40.09 749.354 362.389 0 0.00 0.00 

re-encoder-fast 40.09 568.151 177.281 0 -24.18  -51.08  

Ref [9] 39.71 161.773 101.157 -0.38 -78.41  -72.09  

Proposed-MD 39.85 181.832 109.597 -0.24 -75.73  -69.76  

Ref [13] 39.9 235.628 90.046 -0.19 -68.56  -75.15  

Proposed-MVD 40 237.81 93.121 -0.09 -68.26  -74.30  

Ref [9] + [13] 39.46 79.66 20.843 -0.63 -89.37 -94.25 

Proposed algorithm 39.81 100.236 29.256 -0.28 -86.62 -91.93 

News 

  PSNR(dB) Total Time(s) ME Time(s) △PSNR △T-Time(%) △ME-Time(%) 

re-encoder 44.22 773.529 351.791 0 0.00  0.00  

re-encoder-fast 44.21 599.238 171.691 -0.01 -22.53  -51.20  

Ref [9] 44 156.197 96.415 -0.22 -79.80  -72.60  

Proposed-MD 44.03 165.626 101.22 -0.19 -78.59  -71.23  

Ref [13] 44.08 230.907 86.332 -0.14 -70.15 -75.50 

Proposed-MVD 44.15 232.573 87.455 -0.07 -69.93 -75.14 

Ref [9] + [13] 43.86 74.236 16.702 -0.36 -90.40 -95.25 

Proposed algorithm 44.02 81.44 19.203 -0.20 -89.47 -94.54 

Bus 

  PSNR(dB) Total Time(s) ME Time(s) △PSNR △T-Time(%) △ME-Time(%) 

re-encoder 33.74 763.143 366.361 0 0.00 0.00 

re-encoder-fast 33.74 593.49 182.552 0 -22.23  -50.17  

Ref [9] 33.04 180.981 106.752 -0.7 -76.28  -70.86  

Proposed-MD 33.17 198.711 115.698 -0.57 -73.96  -68.42  

Ref [13] 33.01 246.396 90.692 -0.73 -67.71 -75.25 

Proposed-MVD 33.44 250.894 98.553 -0.3 -67.12 -73.10 

Ref [9] + [13] 31.25 96.438 25.722 -2.49 -87.36 -92.98 

Proposed algorithm 33.06 117.9 37.015 -0.68 -84.55 -89.90 
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coastguard 

  PSNR(dB) Total Time(s) ME Time(s) △PSNR △T-Time(%) △ME-Time(%) 

re-encoder 34.69 768.36 386.824 0 0.00 0.00 

re-encoder-fast 34.68 565.746 179.1 -0.01 -26.36  -53.70 

Ref [9] 34.27 166.214 104.189 -0.42 -78.37  -73.07  

Proposed-MD 34.44 193.26 116.782 -0.25 -74.85  -69.81  

Ref [13] 34.46 235.97 92.049 -0.23 -69.29 -76.20 

Proposed-MVD 34.62 243.555 101.079 -0.07 -68.30 -73.87 

Ref [9] + [13] 34.04 83.874 22.8 -0.65 -89.08 -94.11 

Proposed algorithm 34.42 113.077 36.748 -0.27 -85.28 -90.50 

Mobile 

 

PSNR(dB) Total Time(s) ME Time(s) △PSNR △T-Time(%) △ME-Time(%) 

re-encoder 29.98 755.179 365.833 0 0.00 0.00 

re-encoder-fast 29.98 588.965 182.121 0 -22.01 -50.22 

Ref [9] 29.57 189.846 118.112 -0.41 -74.86 -67.71 

Proposed-MD 29.64 195.953 118.448 -0.34 -74.05 -67.62 

Ref [13] 29.81 241.891 93.03 -0.17 -67.97 -74.57 

Proposed-MVD 29.95 252.752 104.79 -0.03 -66.53 -71.36 

Ref [9] + [13] 29.4 103.664 32.159 -0.58 -86.27 -91.21 

Proposed algorithm 29.69 114.54 39.51 -0.29 -84.83 -89.20 

Stefan 

 

PSNR(dB) Total Time(s) ME Time(s) △PSNR △T-Time(%) △ME-Time(%) 

re-encoder 34.64 534.752 246.347 0 0.00 0.00 

re-encoder-fast 34.64 420.128 130.687 0 -21.43 46.95 

Ref [9] 33.87 127.329 79.569 -0.77 -76.19 -67.70 

Proposed-MD 33.99 137.013 84.639 -0.65 -74.38 -65.64 

Ref [13] 34.04 173.255 66.452 -0.6 -67.60 -73.03 

Proposed-MVD 34.36 178.563 72.187 -0.28 -66.60 -70.70 

Ref [9] + [13] 33.33 65.925 17.763 -1.31 -87.67 -92.79 

Proposed algorithm 34.13 77.392 24.556 -0.51 -85.53 -90.03 

 

Table 5.1 Experiment in bitrate = 1.2Mbps 

    In this subchapter, we examined the transcoding performance and complexity at 

a fixed target bitrate of 1.2 Mbps. The performance is measured in terms of the 

reduced PSNR of the video after transcoding, while the complexity is measured in 
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terms of the reduced re-encoding time. In order to evaluate the respective effect of the 

proposed mode decision and motion vector decision algorithms, we have conducted 

the experiments for the following methods. 

 Fast mode decision (proposed-MD) 

 Fast motion vector decision (proposed-MVD) 

 Proposed integrated algorithm (including proposed-MD and 

proposed-MVD) 

We made a comparison for these proposed methods with current state-of-two-art 

methods listed below. 

 Mode decision method proposed in [9] 

 Motion vector decision method proposed in [13] 

 Integrated method of the above two (i.e. [9]+[13]) 

 Full H.264 re-encoder with full search (re-encoder) 

 Fast H.264 re-encoder with fast full search (re-encoder-fast) 

The results are shown in Table 5.1, where the △ PSNR stands for the 

degradation of PSNR compared with full H.264 re-encoder, △T-Time and 

△ME-Time stand for the percentage of reduced processing time, also compared with 

full H.264 re-encoder, as shown in follows : 

∆Time(%) =  
 fast method processing time −  H. 264 processing time 

H. 264 processing time
 × 100% 

    In Table 5.1, the video quality of H.264 re-encoder with fast full search is similar 

to the re-encoder used full search and it can reduce about 22% processing time. 

Compared with the full H.264 re-encoder, the algorithm in [9] and [13] can reduce 

total encoding time up to 75% and 65% respectively with small PSNR degradation 

(0.48dB and 0.34dB respectively on the average). The integrated method of [9] and 

[13] can reduce more processing time however, with more PSNR degradation. 
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Compared with [9], the proposed mode decision method can increase PSNR of 

0.11dB and compared with [13], the proposed motion vector decision method can 

increase PSNR of 0.21dB with the increase of a little computational cost. However, 

the proposed integrated algorithm can reduce total re-encoding time by 84.55% to 

89.47% with small PSNR degradation (0.36dB on the average), compared with full 

H.264 re-encoder. Especially, in the high motion video (e.g. Bus and Stefan), the 

quality of the video encoded by the proposed integrated algorithm performs even 

better and the processing time is also faster than [9] and [13]. The reasons that the 

proposed integrated method performs much better on high motion video are due to 

that the proposed mode decision method choose a better mode in the hard decision 

macroblock and the proposed motion vector decision method refine the predict 

motion vector in the partition blocks with more residual coefficient.  
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5.3  Experiment at Various Bitrate 

 

△PSNR 

 

 

△T-Time 

Figure 5.3 (a) Foreman 
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△PSNR 

 

 

△T-Time 

Figure 5.3 (b) News 
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△PSNR 

 

 

△T-Time 

Figure 5.3 (c) Bus 
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△PSNR 

 

 

△T-Time 

Figure 5.3 (d) Coastguard 
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△PSNR 

 

 

△T-Time 

Figure 5.3 (e) Mobile 
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△PSNR 

 

△T-Time 

Figure 5.3 (f) Stefan 

Figure 5.3 Experiment results at various bitrates 

    We also conducted experiments on the transcoding methods for six different 

streams at three different bitrates and the results are shown in Figure 5.3. △PSNR 

means the degradation of the PSNR compared with full H.264 re-encoder and 
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△T-Time is the percentage of reduced re-encoding time. The results for all the 

streams show the video quality of the proposed integrated algorithm is always better 

than the integrated transcoder of [9] and [13] with a little more processing time at 

different bitrate, especially in Bus and Stefan. Besides, while the re-encoding bitrate is 

larger, the degradation of PSNR is usually less with the same processing time. In the 

most of the streams, the degradation of PSNR at low bitrate is larger than at high 

bitrate since a bad block mode or a bad motion vector caused more distortion when 

the re-encoder used larger QP. However, since the proposed integrated algorithm 

chose better block modes and better motion vectors, the degradation of PSNR at low 

bitrate increased little. On the other hand, the PSNR of the integrated transcoder of [9] 

and [13] is much lower than the mode decision method of [9] and the motion vector 

decision method of [13] respectively, especially in Bus and Stefan sequences. The 

reasons are due to that bad block modes and bad motion vectors could cause more 

video quality loss. 

5.4  Frame by Frame at Fixed QP = 30 

    In this subchapter, we compare the proposed integrated algorithm with full H.264 

encoder and the integrated method of [9] and [13] at fixed QP (30) and GOP size is 30 

frames. We use Bus and Stefan video sequences which belong to high motion video. 

We re-encode Bus and Stefan for 150 frames and 90 frames, respectively. In Bus 

sequence, the integrated [9] and [13] method reduced computational cost up to 87% 

with 0.25dB PSNR degradation and increasing bitrate up to 41% and our proposed 

integrated algorithm reduced processing time up to 85% with 0.1dB PSNR 

degradation and increasing 9.63% bitrate, as shown in Table 5.2. In other words, the 

encoding performance of our proposed integrated algorithm is much better than the 

integrated [9] and [13] transcoder with slight increase in processing time. 
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Bus 

 

PSNR(dB) bitrate(Kbps) T-Time(s) △bitrate(%) △T-Time(%) 

H.264 34.25 1286.10 969.757 0 0 

[9]+[13] 34(-0.25) 1820.54 121.676 41.56% -87.45% 

proposed 34.15(-0.1) 1409.98 143.194 9.63% -85.23% 

Stefan 

 

PSNR(dB) bitrate(Kbps) T-Time(s) △bitrate(%) △T-Time(%) 

H.264 34.97 1263.55 541.482 0 0 

[9]+[13] 34.66(-0.32) 1503.6 67.139 19.00% -87.60% 

proposed 34.81(-0.17) 1340.43 77.328 6.08% -85.72% 

Table 5.2 Experiment at fixed QP = 30 

 

(a) Bus 

 

(b) Stefan 

Figure 5.4 Comparison in frame by frame 

    Figure 5.3 shows the PSNR value of every frame in Bus and Stefan for the  
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proposed integrated algorithm, the integrated [9] and [13] transcoder, and full H.264 

re-encoder. As can be seen in the figure, the PSNR value of every frame of our 

proposed algorithm is usually better. Moreover, since the first frame of a GOP is intra 

frame which is coded by H.264 standard encoder, the PSNR of the first frame of a 

GOP in the three different re-encoders is the same. When the frames are at the end of 

GOP, the PSNR of the integrated [9] and [13] transcoder decreased more but the 

PSNR of the proposed integrated algorithm is usually stable since our algorithm can 

decide block modes and motion vectors correctly and efficiently, therefore, reducing 

coding mode mismatch between MPEG-2 and H.264. 
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Chapter 6 

 

Conclusion and Future Work 

 

    In this thesis, we proposed a fast algorithm focusing on 16X16, 16X8, 8X16 and 

8X8 block mode decision and motion vector decision in MPEG-2 to H.264 

transcoding. The proposed mode decision method can alleviate the complexity of 

variable size block decision in H.264/AVC and the proposed motion vector method 

predicts good motion vectors and finds the best motion vector with the efficient 

refinement to reduce the computational cost of motion estimation. 

    The experimental results show that our algorithm can save a lot of computational 

cost while the video quality is reduced a little bit compared with the full H.264 

re-encoder. Besides, the computation time of the proposed algorithm is less than the 

fast mode decision proposed in [9] and the fast motion mapping proposed in [13] with 

similar video quality. 

    In the future, we will focus on reducing the computational time of intra type 

prediction and deciding the motion vectors and prediction direction efficiently in B 

frame type for helps in real-time implementation of MPEG-2 to H.264 transcoding. 
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