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摘 要       
 
 

在多媒體與資料探勘的應用上，相似度搜尋是一個很重要的議題。目

前大部分的演算法都利用物件的所有特徵來決定彼此之間的相似

度。這些演算法很容易被物件中高差異性的特徵所影響。在 K-N 配對

搜尋中，只將物件的 d 的特徵中取出 k 個來比較，解決的之前演算法

的問題並且能夠有效的找出物件彼此的相似度。在變動的環境中，多

維特徵的資料總是變化地很快。每當資料變化時都重新計算答案很沒

有效率。因此，在這篇論文我們提出了一個針對連續 K-N 配對搜尋的

演算法叫 CFKNMatchAD。我們對每個特徵計算出一個安全領域，只有

當特徵變化跑出安全領域後才會做重新計算的動作，可以大幅節省計

算所花費的消耗並且可以提供正確的答案。實驗的結果我們的演算法

在不同的資料變化率下，可以降低重新計算的花費。另外，CFKNMatch- 

AD 還可以應用在分散式環境中來平均計算的花費。 
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Abstract

In many multimedia and data mining applications, similarity search is one of the critical

topics. Most existing similarity search algorithms use all attributes of objects to determine

the similarity between them. These algorithms are influenced easily by a few attributes with

high dissimilarity. In k-n match search, it compares only n attributes where n is smaller

than data dimensionality d. It solves the problem that exists in previous works and can find

similarity between objects efficiently. In dynamic environment, data with high dimensional

attributes are large and have high evolving speed. It is inefficient to reevaluate the queries

when the attributes fluctuate. Thus, we propose, in this thesis, a algorithm CFKNMatchAD

to continuous k-n match search. Specifically, we provide safe regions for every attribute and

do the query reevaluation only when the attribute is out of its safe region. It reduces the

computation costs significantly. At the same time, it also provides valid query result. The

experimental results show that our algorithm can reduce query reevaluation costs in different

data-variation rates with respect to traditional k-n match search. Algorithm CFKNMatchAD

can also be applied on distributed environment to balance the computation costs.
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Chapter 1

Introduction

In many multimedia and data mining applications, similarity search is one of the critical

topics. By giving a example image, people use similarity search to find the images that are

most similarity to the given image. In biochemistry, researchers use similarity search to find

similarity between genes. Similarity search is widely used in every field [1] [3] [13].

Traditional studies on similarity search focus on queries that want to retrieve objects closest

to a static point. Prior approaches usually a similarity function to aggregate all attributes of

object into a score. Then the similarity between objects is compared by using these scores. In

addition, in applications such as stock market analysis or image search engine, large volume

of data are stored in database and these data change with rapid speed. Prior approaches can

not be applied to dynamic environments where data streams have high evolving speed. Since

data streams are large and change over time, the system must process queries in real time.

Therefore, we focus on how to improve correctness and efficiency of continuous similarity

search. In general, these data are usually represented by multi-dimensional features. In order

to reduce computation of search process, traditional researches usually define a function to

aggregate differences of every features into a score and find data with high similarity according

to the scores. Therefore, similarity search can be thought as nearest neighbor search in multi-

dimensional space. Several approaches [22] [26] were proposed to process k-NN problems in

high-dimensional data spaces efficiently.

Prior approaches, however, can not compare every features of the data. Moreover, the

dimension with high dissimilarity can affect the score easily. Consider the example shown in

Figure 1.1. The nearest neighbor of object A is object C. However, attributes in dimension

d5 may be not significant to present the characteristic of data objects. So it is possible that

object B is the best answer for object A. Consequently, frequent k-n-match problem [21] was

proposed. In [21], the search algorithm compares every difference between data objects and
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object d1 d2 d3 d4 d5

A 1 1 1 1 1
B 1.2 1.2 1.2 1.2 100
C 10 10 10 10 10

Figure 1.1: An Example

query object in every dimensions and records the frequency of data objects which is most

similar to query object. In this approach, every feature of object can not affect each other

when comparing is performing. Because Tung et al. [21] pointed out that k-n-match has

good performance on nearest neighbor query, we introduce this idea on continuous query. In

large database system, answering a query in real time is a significant task. It is inefficient

to processing the same query every time. Reducing computation therefore becomes a key

issue when processing a query. Consider property of continuous query. If the attributes of

the objects do not change abruptly, similarities between the objects and the query object

will not change abruptly as well. In such situation, there are many redundant works if we

process the query every time. Due to this characteristic, the answers are usually the same

when we evaluate two successive queries [9]. According to this continuity, we can obtain total

or partial answers without reevaluation. We introduce the idea of safe region. For every

continuous query, we follow k-n-match algorithm to compute answers and return them at the

first time. Then we set a safe region for every attribute of data object. When the system

periodically reports answer to user, if feature of data object have changed and changed value

is within safe region, we do not have to reevaluate the query. Otherwise, k-n-match algorithm

is performed to find new answers for the user.

The rest of this thesis is organized as follows. Chapter 2 presents preliminaries, including

related works and how to processing frequent k-n-match queries. Chapter 3 describes our

algorithm for continuous k-n-match query. System architectures and performance evaluations

are presented in chapter 4 and 5 respectively. Finally, chapter 6 makes a conclusion for this

thesis.
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Chapter 2

Preliminaries

In this section, we will give some preliminaries. Related works about continuous query over

data streams are presented in Section 2.1. In Section 2.2, k-n-match problem and frequent

k-n-match problems proposed in [21] are presented.

2.1 Related Works

Nearest neighbor search (NN) is used in many applications such as pattern recognition, image

search, location-based service, ...etc. Related research issues about NN has received consider-

able interests in recent years. The simplest solution for NN is to compute the distance between

query point and every data point in database and find the point with smallest distance. R-trees

index structure [4] [10] [17]are widely used to process NN in dynamic environments because of

its Efficiency. There are many variants of NN problem. The k-nearest neighbor search (KNN)

and ε-approximate nearest neighbor search are most well-known. Because NN and KNN can

be used in many domains, several researchers have studied them [13] [16] [22] [26]. In [16],

the authors proposes a multi-step similarity search algorithm that can grantee to reduce the

minimum number of candidates in complex high-dimensional databases. In [26], an efficient

method, called iDistance, was proposed for KNN. iDistance partitions the data and select a

reference point for each partition. The data are transformed into a single dimensional space

according their similarity to a reference point. Then KNN is performed using one dimensional

range search. There are many methods based on r-trees-like indexing structures proposed

in [6] [12] [23] for processing KNN. However, most techniques mentioned above encounter the

problem of dimensionality curse. Therefore, they can not be used in the environment where

data stream are very large. ε approximate NN [2] [14] was proposed to solve the curse of

dimensionality.

3



After problems of KNN are widely researched, continuous KNN (CKNN) is proposed be-

cause location-based services and mobile computing become popular. [18] is the first one to

identify the importance of CKNN and propose moving-objects data model and query language

for CKNN query. But [18] do not discuss CKNN processing algorithm. The first algorithm

for CKNN is proposed in [19] with sampling method. KNN queries perform periodically at

predefined sample points. This algorithm has a trade-off between sampling rate and com-

puting costs. If sampling rate is low, the answer is incorrect. Otherwise, we have additional

computational overhead. Moreover, it has no accuracy guarantee because sampling rate can

not match the split points perfectly. To overcome this drawback, a time-parameterized (TP)

queries [20] for CKNN are proposed. TP queries output the validity period of current answer

and the objects that may change the answer. Then we can compute the next answer after

the validity period without having additional computing overhead. In [11], the authors pro-

pose a generic framework for monitoring continuous spatial queries over moving objects. This

framework is the first one to address the location update issue and provide the interface for

monitoring different types of queries.

KNN can be viewed as searching for the top-k object that is most similarity to the query

object. There are many works that discussed about top-k queries in different environment. [7]

and [8] propose algorithms to process one time top-k queries. [7] focus on providing exact

answers while [8] focus on providing exact and approximate answers. Then the techniques

of processing top-k queries are applied to continuous monitoring top-k objects in different

environments. The algorithms of one time queries are not sufficient for continuous monitoring

because they can not detect the change of top-k answers. Top-k monitoring is viewed as an

incremental view maintenance problem [25]. [24] proposed a top-k monitoring approach called

FILA to monitor wireless sensor networks. In [24], it installed a filter at each sensor node to

filter the unnecessary sensor update. [15] monitors top-k points of interest in road networks.

In road networks, the distances between objects and query point depend on the non-weight

of roads that connected to objects. In [15], an expansion tree rooted at query point is built

and the objects in the answer are also in the expansion tree. When the object moves into the

expansion tree, this means the answer will change and then the expansion tree will be rebuilt

to find the correct answer.
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2.2 Processing Frequent K-N-Match Queries

2.2.1 Problem definition

In this section, we will bring in the frequent k-n-match problem that presented in [21]. K-n-

match problem is to find k objects that are the most similar to the query object and n is an

integer which is not bigger than dimensionality of a data object d. As an example shown in

Figure 1.1, some features of data items are not significant to present characteristics of data

items. Instead of comparing data objects in all dimensions, we compare data objects to query

object in n dimensions which are significant to data objects. Since we can adjust n, we can

find different sets of data objects according value of n. After performing k-n-match search

with different n, we can find the top k objects which appear in answers most frequently.

We follow the rules and notations in [21]. Objects from database are considered as multi-

dimensional points. We will use object and point interchangeably in the rest of the thesis.

Database is considered as a set of d-dimensional points, where d the dimensionality. The

notations are shown in Table 1 as follows.

Notation Meaning
c Cardinality of the database

DB The database, which is a set of points
d Dimensionality of the data space
k The number of n-match points to return
n The number of dimensions to match
P A point
pi The coordinate of P in the i-th dimension
Q The query point
qi The coordinate of Q in the i-th dimension
S A set of points

Table 2.1: Notation

DEFINITION 1. N-match difference

P (p1, p2, ..., pd) and Q(q1, q2, ..., qd) are two d-dimensional points. Let δi = |pi− qi|, i = 1, ..., d.

Sort {δ1, δ2, ..., δd} in increasing order and let sorted array be {δ′1, δ′2, ..., δ′d}. Therefore, the

n-match difference of point P with respect to point Q is δ′n.

DEFINITION 2. The n-match query

Given a set of d-dimensional points in DB and a n-match query < Q, n > where Q is a query

point and n is an integer (1 ≤ n ≤ d), the n-match problem is to search the point P ∈ DB

which has smallest n-match difference with respect to Q. P is called n-match point of Q.

We use an example shown in Figure 2.1 to describe n-match more specifically. Figure 2.1
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shows a two dimensional space with four points A(1, 3), B(2, 2), C(3, 6),and D(4, 4).Consider

the query < Q(0, 0), 1 >, the answer is A because A has smallest 1-match difference (δx = 1)

with respect to Q. When we adjust n to 2, point B becomes the answer because it has smallest

2-match difference (δx = δy = 2) with respect to Q.

D(4,4)

C(3,6)

B(2,2)

A(1,3)

Q(0,0)

Y
-A
x
is

X-Axis

Figure 2.1: The n-match problem

DEFINITION 3. The k-n-match query

Given a set of d-dimensional points in DB of cardinality c, and a k-n-match query < Q, n, k >

where Q is a query point, n is an integer (1 ≤ n ≤ d), and k is an integer (k ≤ c), the k-n-

match problem is to search k points from DB such that n-match difference of these k points

are less than or equal to the other points in DB.

After giving the definition of the k-n-match query, we know that we can get different set of

points with different n. However, it is difficult to determine the value of n in various applica-

tions. Instead of determining a value for n, we try different values of n and find k points that

appear in answers most frequently. The definition of frequent k-n-match problem is as follows.

DEFINITION 4. The frequent k-n-match query

Given a set of d-dimensional point in DB of cardinality c, and a frequent k-n-match query

< Q, [n0, n1], k > where Q is a query point, [n0, n1] is an interval within [0, d], and k is

an integer (k ≤ c), let S0, ..., Si be the answer sets of k − n0 − match, ..., k − n1 − match,

respectively. Find a set T of k points, so that for any point P1 ∈ T and any point P2 ∈ DB−T ,

P1’s number of appearances in S0, ..., Si is larger than or equal to P2’s number appearances in

S0, ..., Si.

User can determine the interval [n0, n1]. When the interval is small, frequent k-n-match
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will compare points only in few features. It is hard to determine if the given points is similar

to query point by those few features. On the other hand, frequent k-n-match spend much

time on finding answers when we set the interval too large. It will encounter dimensionality

problem which have been addressed in [5]. Therefore, we should adjust the interval to get the

appropriate answers.

2.2.2 Algorithm AD

To solve k-n-match problem efficiently, the AD algorithm for k-n-match search (KNMatchAD)

has been proposed to minimize the number of attribute retrieved. The AD algorithm will

access the attributes in Ascending order of their Differences to the query point’s attributes.

The AD algorithm for k-n-match search uses some data structures to maintain the necessary

information while processing a query. appear[i] maintains the number of appearances of

point i. h maintains the number of point ID’s that have appeared n times. S is the answer

set. We use the following example to illustrate how algorithm KNMatchAD processes a k-n-

match query. Consider the database shown in Table 2.2. Suppose an user requests a query

< Q(3.0, 4.5, 5.5), 2, 2 >. In this case, k=n=2. After sorting attributes of every point in every

dimension, we calculate attribute differences between data points and query point in each

dimension and then have sorted lists of difference shown in Figure 2.2. The KNMatchAD will

perform as follows:

object ID d1 d2 d3

1 0.5 3.0 4.0
2 2.5 5.2 3.0
3 3.3 4.0 7.5
4 6.0 6.5 6.0
5 8.0 9.0 10.0

Table 2.2: An Example Database

Round 1: Locate query values in every dimension. q1(3.0) is located between (2, 2.5) and (3,

3.3); q2(4.5) is located between (3, 4.0) and (2, 5.2); q3(5.5) is located between (1, 4.0) and

(5, 6.0).

Round 2: Find the smallest difference between attribute and qi in every dimension using

binary search toward bigger or smaller attribute directions and store in g[]. g[] has six triples

which are {(2,0,0.5) ,(3,1,0.3) ,(3,2,0.5) ,(2,3,0.7) ,(1,4,1.5) ,(4,5,0.5)}.
Round 3: Get the triple (3, 1, 0.3) with smallest dif popped from g[] and appear[3] is

increased by 1. Find next smaller difference in dimension 1 towards bigger attribute direction,

that is, (4, 6.0), and insert the triple (4, 1, 3.0) into g[1].

7



(5,4.0)

(4,3.0)

(5,4.5)

(5,4.5)(2,2.5)

(4,2.0)

(3,2.0)

(1,2.5)

(1,1.5)

(1,1.5)

(2,0.7)

(4,0.5)

(3,0.5)

(2,0.5)

(3,0.3)

d2

d3

d1

Figure 2.2: Sorted lists of differences

Round 4: Get the triple (2, 0, 0.5) with smallest dif and appear[2] is increased by 1. Find

next smaller difference in dimension 1 towards smaller attribute direction, that is, (1, 0.5) and

insert the triple (1, 0, 2.5) into g[0].

Round 5: Get the triple (3, 2, 0.5) with smallest dif and appear[3] is increased by 1 and

equals 2. appear[3] equals n and h is increased by 1. Find next smaller difference in dimension

2 towards smaller attribute direction, that is, (1, 3.0) and insert triple (1, 2, 1.5) into g[2].

Round 6 and 7 work in a similar way to round 3-5 and h equals k after round 7. Then we

can stop KNMatchAD and return S as the answer. Table 2.3 shows the data structures in

every round during processing the given k-n-match query.

(a) Round 3
appear {0,0,1,0,0}
gd {(2,0.5),(4,3.0),(3,0.5),(2,0.7),(1.,1.5),(4,0.5)}
S {}
h 0

(b) Round 4
appear {0,1,1,0,0}
gd {(1,2.5),(4,3.0),(3,0.5),(2,0.7),(1.,1.5),(4,0.5)}
S {}
h 0

(c) Round 5
appear {0,1,2,0,0}
gd {(1,2.5),(4,3.0),(1,1.5),(2,0.7),(1.,1.5),(4,0.5)}
S {3}
h 1

(d) Round 6
appear {0,1,2,1,0}
gd {(1,2.5),(4,3.0),(1,1.5),(2,0.7),(1.,1.5),(3,2.0)}
S {3}
h 1

(e) Round 7
appear {0,2,2,1,0}
gd {(1,2.5),(4,3.0),(1,1.5),(4,2.0),(1.,1.5),(3,2.0)}
S {2,3}
h 2

Table 2.3: Structures when processing k-n match query

The AD algorithm for frequent k-n-match search (FKNMatchAD) is similar as for k-n-

match search. The difference is that frequent k-n-match search has to monitor number of ap-

pearances of points in the interval [n0, n1] given by frequent k-n match query < Q, [n0, n1], k >.

In addition, data structures h[] and S[] displace h and S to maintain appearances of points

and answers. In the procedure of FKNMatchAD, if appear[i] is within [n0, n1] , point i will

be added to answer set Sappear[i] and happear[i] increases by 1. FKNMatchAD stops until h[n1]
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equals k. Finally, FKNMatchAD scans S[] to obtain the k point ID’s that appear most times.

The detailed steps of FKNMatchAD are described in Algorithm 1.

Algorithm 1: FKNMatchAD
1: Initialize appear[], h[], S[]
2: for every dimension i do
3: Locate qi in dimension i.
4: Calculate the differences between qi and its closest attributes in

dimension i along both directions. Form a triple (pid,pd,dif) for
each direction. Put this triple to g[pd].

5: do
6: (pid,pd,dif) = smallest(g);
7: appear[pid]++;
8: if n0 ≤ appear[pid] ≤ n1 then
9: if h[appear[pid] < k then

10: h[appear[pid]]++;
11: S[appear[pid]] = S[appear[pid]] ∪ pid;
12: Read next attribute from dimension pd and form a new triple (pid,pd,dif).

If end of the dimension is reached, let dif be ∞. Put the triple to g[pd].
13: while h[n1] < k
14: scan the top k elements of Sn0 , ..., Sn1 to obtain the k point ID’s that appear most

times

9



Chapter 3

Algorithm

3.1 Overview

In this section, we propose an algorithm called CFKNMatchAD to process continuous k-n-

match search. CFKNMatchAD is based on AD algorithm for frequent k-n-match search.

Continuous query, unlike traditional query, requires constant evaluation and update when

contents of database change. These queries are usually inherently dynamic and related to

temporal context. Some changes will not affect the answer. For this reason, we do not have

to perform whole procedure of algorithm to check whether the answer changes when data

streams fluctuate. Therefore, we do some modification to FKNMatchAD and add it into

CFKNMatchAD. We also calculate the intervals called safe region for all attributes of points.

Attributes of points can fluctuate within safe regions without changing the answer. Such

approach, therefore, can reduce the cost of evaluation for similarity search.

There are two types of continuous query: event-based and time-based. For event-based

continuous queries, we report the valid top-k points for the queries after a attribute of point

fluctuates. Report operation is driven by attribute-fluctuated event. For time-based continu-

ous query, client will give a report period. We find valid top-k points for the query and report

them after every report period. Report operation is driven periodically. Our algorithm can

be applied to both of continuous queries.

Since our algorithm sets safe region for attributes, we can determine whether the answer

may change by safe region and reduce computation without doing unnecessary evaluations.

We further classify safe region into two levels. Fluctuated attribute within level one safe

region(SR1) will not change the appear[] while fluctuated attribute within level two safe

region(SR2) may change appear[]. The procedure of CFKNMatchAD is shown in Figure 3.1.

The centralized server receives the queries from the users and then registers the queries to the
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1. Register the query to the query table

2. Initialize the data structures for the query

3. Run FKNMatchAD

Query Table

Calculate

SR(ij)

Update

appear[], isAppear, matchi,j

Run

OutOfSafeRegion

No operation

Register a 
query

Return the 
answers

If an attribute ij
fluctuates

If the fluctuated

attribute i'j falls

into SR1(i'j)

If the fluctuated

attribute i'j falls

into SR2(i'j)

If the fluctuated

attribute i'j is out of

SR or has no SR

The Centralized Server

The data sources

The users

ID

1

2

...

Value

(1.0,1.0,...)

(2.0,3.0,...)

...

Figure 3.1: Procedure of CFKNMatchAD

query table, initialize the data structures for the queries, and run FKNMatchAD to report

the first-time answers. Afterward, when the data sources report that an attributes fluctuates,

we check where the attribute is. If the attribute falls into its SR1, we do nothing. If the

the attribute falls into its SR2, we update some data structures. If the attribute is out of its

SR or has no safe region, we will run the algorithm called OutOfSafeRegion to obtain valid

answers and report to the users.

To calculate safe region, we use some new data structures as follows.

1. isAppeari,j: record whether point i in dimension j contributes one match between

i and query point. In other words, isAppeari,j checks if attribute ij makes appear[i]

increase one. In FKNMatchAD, point i will be added to Sn if it has n matches between

query point and itself. isAppeari,j is set to false initially. When the triple(pid, pd, dif)

with smallest dif is popped from g[], we set isAppearpid,pd to true.

2. matchi,j: we set matchi,j to m if attribute ij contributes the m-th match between

point i and query point. For example, we have triple (2,1,0.5) popped form g[] and

appear[2] increases by 1 and equals 2. Then point 2 has 2 matches with respect to query

point and we set match2,1 to 2 because attribute of point 2 in dimension 1 contributes

the 2nd match.

3. threshold: we set threshold to the dif popped from g[] when FKNMatchAD stops.

11



Thus, the differences of the points that in Sn0 , ..., Sn1 are not bigger than threhsold.

3.2 Safe Region

In continuous queries, fluctuated attribute within its safe region will not change the final

answer S. We further classify safe region into two levels. Fluctuated attribute within level one

safe region(SR1) will not change the appear[] while fluctuated attribute within level two safe

region(SR2) may change appear[]. We do not reevaluate FKNMatchAD if fluctuated attribute

is within safe region and update appear[] if fluctuated feature is within SR2. Therefore, SR1

is defined according isAppear and SR2 is defined according to that whether the point I has

chance to affect S. Because the answer S depends on the appearances of the top k elements in

{Sn0 ...Sn1}, we have to prevent fluctuated attribute from changing the order of the elements

in {Sn0 ...Sn1} if we want to keep S unchanged. Consider a point I(i0, i2, ..., in) ,we classify

the following cases according to appear[I], isAppearI,d, threshold, matchI,d.

Case 1: If isAppearI,d is false and appear[I] is smaller than n0 − 1, this means attribute id

does not contribute any match between I and query point. If still fluctuated attribute i′d does

not contribute any match, S will not change. Hence, we set SR1(id) to [−∞, qd− threshold]∪
[qd + threshold,∞]. Even if i′d contributes a match, appear[I] is smaller than n0 and S will

not change. So we set SR2(id) to all interval - SR1(id).

Case 2: If isAppearI,d is false and appear[I] is bigger than or equals n0−1, this case is similar

to case 1. We set SR1(id) to SR1(id) to [qd −∞, qd − threshold] ∪ [qd + threshold, qd +∞].

When i′d contributes a match, this match is possible to become one of {n0...n1}-th match and

may change the element order in the top k positions of {Sn0 ...Sn1}. Hence, SR2(id) is set to

none.

Case 3: If isAppearI,d is true and appear[I] is smaller than n0− 1, this means id has already

contributed a match and can not contribute anymore. Then even if i′d fluctuates to any value,

it will not change S. We set SR1(id) to [qd − tresholdn1 , qd + threshold] and SR2(id) to all

interval - SR1(id).

Case 4: If isAppearI,d is true, appear[I] is bigger than n0 − 1, and matchI,d is bigger than

n1. id contributes the m-th match where m > n1 in this case. Hence, i′d will not change

the element order of the top k positions in {Sn0 , ..., Sn1} if |i′d − qd| is bigger than |id − qd|.
Hence, we set SR1(id) to [qd − threshold, qd − id] ∪ [qd + id, qd + threshold] and SR2(id) to

[qd −∞, qd − threshold] ∪ [qd + threshold, qd +∞].

The safe regions of different cases are shown in Table 3.1.
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Algorithm 2: CFKNMatchAD
1: FKNMatchAD
2: if attribute id of point I fluctuated with fluctuated attribute i′d then
3: Calculate the safe region for id
4: if i′d is out of safe region or has no safe region then
5: OutOfSafeRegion()
6: else if id is within SR2 then
7: if isAppearI,d is false then
8: if appear[I] < n0 − 1 then
9: appear + +

10: isAppearI,d ← true
11: else
12: if (appear[I] < n0 − 1) or (appear[I] > n1 and matchI,d > n1) then
13: appear[I]−−
14: isAppearI,d ← false
15: while h[n1] < k do
16: (pid,pd,dif) = smallest(g);
17: appear[pid]++;
18: isAppearpid,pd ← true;
19: matchpid,pd ← appear[pid]
20: if n0 ≤ appear[pid] ≤ n1 then
21: h[appear[pid]]++;
22: S[appear[pid]] = S[appear[pid]] ∪ pid;
23: threshold ← dif
24: Read next attribute from dimension pd and form a new triple (pid,pd,dif).

If end of the dimension is reached, let dif be ∞. Put the triple to g[pd].
25: scan the top k elements of Sn0 , ..., Sn1 to obtain the k point ID’s that appear most

times

Algorithm 3: OutOfSafeRegion
1: if isAppearI,d is true and |qd − i′d| > threshold and matchI,d = appear[I] then
2: delete I from S[appear[I]]
3: appear[I]−−
4: isAppearI,d ← false
5: matchI,d ← 0
6: else
7: Reset appear[], h[], isAppear, match, S[]
8: Calculate the differences between qi and its closest attributes in

dimension i along both directions. Form a triple (pid,pd,dif) for
each direction. Put this triple to g[pd].
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case matchI,d isAppear appear[I] SR1(id) SR2(id)
1 - false < n0 − 1 Region 1a All interval-Region 1
2 - false > n0 − 1 Region 1 -
3 - true < n0 − 1 Region 2b All interval-Region 2
4 > n1 true > n1 Region 3c Region 1

aRegion 1 is [−∞, qd − threshold] ∪ [qd + threshold,∞]
bRegion 2 is [qd − tresholdn1 , qd + threshold]
cRegion 3 is [qd − threshold, qd − id] ∪ [qd + id, qd + threshold]

Table 3.1: Safe Region for attribute id of point I

In FKNMatchAD, once the attributes fluctuated, we have to re-sort all of attribute and

reevaluate the query. In CFKNMatchAD, if attributes of point i′d fluctuate, we have to sort

i′d and place it in right order. But in the case 3, 4, and 5 of CFKNMatchAD mentioned

above, if fluctuated attribute i′d is within SR1 and isAppearI,d is true, we do not have to sort

i′d because i′d still contributes a match and do not change the order of points in S[]. Hence,

CFKNMatchAD can save the computation on sorting fluctuated attributes.

The procedure of continuous frequent-k-n-match algorithm (CFKNMatchAD) is shown

in Algorithm 2. When a continuous frequent k-n-match query requests, we firstly perform

FKNMatchAD and return S. Consider the point I(i1, i2, ..., in). When attribute id is changed,

calculate the safe region defined in Table 3.1. If fluctuated attribute i′d is out of the safe region,

we perform OutOfSafeRegion shown in Algorithm 3. In algorithm OutOfSafeRegion, we check

two conditions that may change S. 1)isAppearI,d is true, |qd − i′d| is bigger than threshold

and matchI,d = appear[I]. In this case, id contributes the largest match between I and query

point, but i′d does not. After id fluctuates, i′d makes I out of Sappear[I]. Hence, we delete I from

Sappear[I] and decrease appear[I] by 1. During the procedure of FKNMatchAD, we add points

into S[] according to similarity order, that is, points in the top position have more similarity

to query point. After we delete I from Sappear[I], its position will be replaced immediately by

the point after it in Sappear[I]. The rest part of CFKNMathAD will check the size of Sn1 to

determine if we have to perform FKNMatchAD. Then we just have to scan the points at the

top k positions of S[] to obtain the k point ID’s that appear most times. 2) All the other case

have to perform FKNMatchAD from initial state because fluctuated attribute may disorder

the sequences of elements in {Sn0 , ..., Sn1}. Hence, we initialize appear[], h[], isAppear, match

,threshold, and S[] and perform the FKNMatchAD at the end of CFKNMatchAD to get the

correct answer S.

On the other hand, we also check fluctuated attribute that within SR2. Fluctuated at-

tribute within SR2 will not change S, but appear[] may need to update. The procedure of

updating appear[] is shown in line 6 to 12 of Algorithm 2. The rest of CFKNMatchAD perform
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FKNMatchAD again to check if Sn1 get the top k points.

3.3 Running Examples

We take the database shown in Table 3.2 as an example. User requests a query <Q(3.0, 4.5,

5.5, 6.0, 3.5), [3,4], 2>. First, we perform FKNMatchAD and return S. The data structures

we need are shown in Table 3.3.

Consider the example shown in Figure 3.2 (a). Suppose that the attribute of point 2 in d4

becomes 7.2 from 9.0. The difference of point 2 in d4 becomes 1.2 from 3.0. It matches case 2 in

Table 3.1 and is out of safe region because |6.0− 7.2| is smaller than 2.5 (threshold). Because

the fluctuated attribute (7.2) of point 2 will make point 4 become out of S3, S will finally

become {2,3}. So it matches the second condition in line 7 in algorithm OutOfSafeRegion

and we initialize all the data structures and perform FKNMatchAD to obtain S ′{2, 3} which

is different S{2, 4}. Consider the example in Figure 3.2 (b). The attribute of point 5 in d3

becomes 5.3 from 9.0. This matches case 1 in Table 3.1 and the fluctuated attribute (5.3)

falls into SR2. Then we update appear[5] to 1. S is still unchanged. Consider the example

in Figure 3.2 (c). The attribute of point 5 in d1 becomes 7.8 from 5.3. This case matches

the case 3 in Table 3.1 and the fluctuated attribute (7.8) falls into its SR2. Then appear[5]

is updated to 0. S does not change. In the example shown in Figure 3.2 (d), the attribute of

point 4 in d3 becomes 10.5 from 3.0. The fluctuated attribute has no safe region and matches

the first condition in line 1 in algorithm OutOfSafeRegion. Then we delete point 4 from S4

and S4 has only one element in it. So we perform FKNMatchAD to find the rest element in

S4 and scan S[] to get k points that appear most times.

ID d1 d2 d3 d4 d5
1 0.5 1.8 4.0 1.5 3.1
2 2.5 6.2 6.5 9.0 6.2
3 3.3 4.4 7.2 7.0 4.3
4 6.0 5.2 3.0 4.5 2.3
5 4.8 9.0 10.0 11.0 8.5

Query 3.0 4.5 5.5 6.0 3.5

Table 3.2: An Example for CFKNMatchAD

appear[] {3,3,4,4,1}
S3 {3,4,2,1}
S4 {3,4}
S {3,4}

threshold 2.5

Table 3.3: Structures after performing FKN-
MatchAD

THEOREM 3.1. Correctness of CKMatchAD

The points return by algorithm CKNMatchAD compose the k-n-match set of query point Q.

PROOF. First, we perform CKNMatchAD to find frequent k-n-match answer sets of query

point Q. Every attribute id that contributes a match is within the interval [qd−threshold, qd +

threshold]. Consider the cases in Table 3.1. In case 1 and 3, appear[I] is smaller than n0− 1.
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Figure 3.2: Example of CKNMatchAD Problem

Even if fluctuated attribute contributes or loses one match, appear[I] is still smaller than n0.

Hence, Sn0 , ..., Sn1 and S are unchanged. In case 2, original attribute id does not contribute

any match because isAppearI,d is false. We set SR1 to the interval (Region 1 in Table 3.1)

which within the fluctuated attribute still contributes no match and will not affect S. In case

4, the attribute id contributes the m-th match where m is bigger than n1. We set SR1 to keep

fluctuated attribute i′d from changing the order of the attributes that contribute l-th match

where l is smaller than m. The other cases that are not in Table 3.1 have no safe region. In

Algorithm 3, we initialize all the data structures for the cases that have no safe region or the

fluctuated attribute is out of safe region. At the end of CFKNMatchAD, we then check the

size of S[] to determine if we need to perform FKNMatchAD to get the top k points. 2
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Chapter 4

Discussion

In this section, we will discuss the extensions of CFKNMatchAD. We discuss the problems

of using CFKNMatchAD in the centralized and de-centralized environments. In addition, we

also discuss the problem of simulation implementation.

4.1 Centralized Environment

As shown in Figure 4.1, the system for similarity search applications usually has a centralized

server with many different data sources. These data sources send data packets that have

information about the points to the centralized server. The format of data packet is (id, <

p1, p2, ..., pd >) where id is the point ID and < p1, p2, ..., pd > is the attribute list of the point.

After collecting information of the points, the centralized server receives continuous queries

from the clients. Then the centralized server performs CFKNMatchAD and returns S to the

clients.

The centralized server reevaluates the queries registered in it and return new top k points

after it receives the information about the fluctuated points from the data sources. The

Architecture is shown in Figure 4.1. In centralized environment, the data sources will send

information of the points to the centralized server and the centralized server checks if it has

to reevaluate queries. It is unnecessary that data sources send information of the points to

the centralized server if the query results are unchanged.

4.2 Centralized Environment with safe region

To overcome the shortcoming of centralized environment, we do not want the data sources

to send unnecessary information to the centralized server if query results will not change.

17



Centralized

server

Return Result

Register Query Collect points

query

query

Data source

Data source

Figure 4.1: Centralized Environment Architecture

After the centralized server receives continuous queries from clients, it performs first-time

CFKNMatchAD and computes safe region for every attribute. Then the centralized server

sends safe region of every attribute to the corresponding data sources. The centralized server

only send safe region which contains upper and lower bounds to the attribute that contributes

a match. For the attribute that do not contribute a match, its difference with respect to

the query value is bigger than threshold. So the centralized server only send threshold to

those attributes that do not contribute a match. Therefore, every data source can use safe

region received from centralized server to check whether fluctuated attributes will change

query results. In this environment, the data sources need to have a little computation power

to check whether fluctuated attributes are out of safe regions. Only when fluctuated attribute

will change query results, the data sources send information of points to inform the centralized

server to reevaluate queries. Because of safe region, some fluctuated attribute within its safe

region do not sent to the centralized server. Therefore, the centralized server has to send

a probe message to all data sources to retrieve all attributes before reevaluating queries.

Then the centralized server performs CFKNMatchAD and sends new safe regions to the data

sources. By using safe region, unnecessary information can be filtered.

4.3 De-centralized Environment

In centralized environment, the centralized server needs to handle all queries from the clients.

When there are large volumes queries and points from the clients and data sources respectively,

server spends much computation cost on those. If there are other servers that have the

same computation power with centralized server, we can use these servers to compute partial

answers and send these partial answer to centralized server to compute final answers. By

this way, we can decrease the number of points that every server has to handle and balance
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workload of every server. Consider de-centralized environment setting with m + 1 servers:

N1, N2, ..., Nm servers with a centralized server N0. Every server Ni(n < i ≤ m) has data

points {P1,i, P2,i, ..., Pli,i} where li is the number of points in Ni. In de-centralized environment,

when the client registers a frequent k-n-match query < Q, [n0, n1], k > to the N0, N0 gives

every query a unique number qid and broadcasts (qid, < Q, [n0, n1], k >) to every server

Ni(n < i ≤ m). Unlike centralized environment, Ni(n < i ≤ m) does not send information

of the points to the centralized server N0 at first time. According to different query points,

Ni(0 < i ≤ m) performs CFKNMatchAD to find the points that have chance to become final

answers. In traditional similarity search algorithm, a point is determined whether if it is an

answer that user wants according a score.

It can be guaranteed that the global top k points are also in the set of the local top k

points. However, in frequent k-n match search, an answer point is determined by the number

of appearance in Sn0 , ..., Sn1 . It is possible that a point that is not in the local top k points

is in global Sn0 , ..., Sn1 . If Ni(0 < i ≤ m) performs CFKNMatchAD to find local top k points

and send them to N0, N0 may lose some points that should be in global Sn0 , ..., Sn1 . This

problem causes incorrect number of appearance of points in global Sn0 , ..., Sn1 . To avoid this

problem, we let Ni perform CFKNMatchAD and then send every point {P ′
1,i, P

′
2,i, ..., P

′
ai,i
}

that appear in local Sn0 , ..., Sn1 and their attributes with corresponding query number qid to

N0 where ai is the number of points in Sn0 , ..., Sn1 . We will prove that a point that do not

appear in the top k positions of local Sn0 , ..., Sn1 will not appear in the top k positions of

global Sn0 , ..., Sn1 in the next paragraph. Therefore, we just send the points that appear in

local Sn0 , ..., Sn1 and can sure that final answer is correct. Then N0 receives the points from

Ni(0 < i ≤ m) with the same qid and perform FKNMatchAD to find globe top k points.

In Ni(1 < i ≤ m), the attributes of {P1,i, P2,i, ..., Pli,i} have their safe regions. When the

attribute of {P1,i, P2,i, ..., Pli,i} fluctuates, Ni(0 < i ≤ m) performs CFKNMatchAD and then

sends the points that appear in local Sn0 , ..., Sn1 to N0 if if the points in local Sn0 , ..., Sn1

change. N0 receives the update from Ni(0 < i ≤ m) and performs FKNMatchAD to find new

globe top k points. The architecture of de-centralized environment is shown in Figure 4.2.

Proof. In frequent k-n match search, a point that do not appear in the top k position of

local Sn0 , ..., Sn1 will not appear in the top k position of global Sn0 , ..., Sn1 .

Let P be a point that do not appear in local Sn0 , ..., Sn1 . Hence, there are at least k points

that have n-match differences smaller than P where (n0 ≤ n ≤ n1). If we send all points in

local Sn0 , ..., Sn1 and P to the centralized server. After performing FKNMatchAD, assume

P is in global Sn0 , ..., Sn1 . This means that, there are less than k points that have n-match
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Figure 4.2: Architecture of distributed system

differences smaller than P . But we do send all points in local Sn0 , ..., Sn1 to the centralized

server. So there are at least k points in global Sn0 , ..., Sn1 . It contradicts the assumption

and the point P do not exist. Thus, we prove that a point that do not appear in the top k

positions of local Sn0 , ..., Sn1 will not appear in the top k positions of global Sn0 , ..., Sn1 . 2

In de-centralized environment, data servers only perform CFKNMatchAD on the points it

has and the centralized server only FKNMatchAD on the points received from data servers.

Moreover, data servers only send data of the points that appear in the top k positions of local

Sn0 , ..., Sn1 to the centralized server. Data servers can eliminate the points that are not the

answers and computation on query process can be balanced by all data servers and response

time of each query and network traffic can be reduced. The system we mentioned above are

2-level de-centralized architecture. The data servers are in level 1 and the centralized server

is in level 2. To reduce the response time of the queries, we can further deploy more servers

to deepen the architecture level. The servers of level 1 are all data servers and the server of

top level is the centralized server that is responsible to handle the queries from the clients.
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The servers between level 1 and top level perform FKNMatchAD to find the temporary top

k points and send to the server of upper levels.

4.4 Implementation

In continuous queries, the server has to report the valid answer periodically. Therefore, when

an attribute fluctuates, we have to check whether the answer is changed and do the reevalua-

tion. In every reevalution, FKNMatchAD and CFKNMatchAD have to sort all attributes of

the objects in every dimension. This operation cost a lot of computation. Actually, we do not

have to sort all attributes and can get the valid answer. After we get the first-time answer,

we know how many attributes we retrieve to obtain the valid answer and the differences of

these attributes are smaller then threshold. In the next reevaluation, we can only sort the

attributes that have differences smaller than threshold plus a value to obtain the valid answer.

This will reduce the sorting time significantly and improve the performance of FKNMatchAD

and CFKNMatchAD.
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Chapter 5

Performance Evaluation

In this section, we evaluate the efficiency of CFKNMatchAD with different attribute variation

rates. We use synthetic data sets generated randomly to run our experiments on a computer

with 3.2GHz CPU and 2G RAM.

5.1 Simulation Model

In our simulation model, we use the query and data points with high-dimensional attributes

that generated randomly from uniform distribution. First, we generate N data points with

d dimensional attributes data and each normalized attribute is a value within [0,1.0] and is

in uniform distribution. We consult [21] to set other system parameters. Table 5.1 lists the

default setting of system parameters.

Parameter Default Setting
Number of points N 20000
Number of dimensions 16
K 30
Monitor interval [n0,n1] 4-8
Number of fluctuated dimension m 8
attribute-changed event arrival time exponential distribution with mean = 10 sec
Simulation time 3000 sec

Table 5.1: System Parameters

Our experiments compare FKNMatchAD, CFKNMatchAD in centralized environment

(CFKNMatchAD-C), CFKNMatchAD in centralized environment with safe region (CFKNMa-

tchAD-C with SR) and CFKNMatchAD in de-centralized environment (CFKNMatchAD-D)

mentioned in chapter 4. In centralized environment, we have a centralized server received N

data points from the data sources. In de-centralized environment, we set 10 servers and a

centralized server and assume that N data points are located uniformly in every data server,
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that is, every data server has N/10 data points. The simulation time is 3000 seconds. During

simulation, we use exponential distribution to model the interval time that attribute-changed

events arrive and the mean value of distribution is 10 seconds. In every attribute-changed

event, we choose at most m attributes of a random point in different dimensions to fluctuate.

After the attribute fluctuates, each approach is performed to find the top k answers and re-

port them to the clients. Finally, the average response time of the queries and total network

packet bytes are used as the measurements to compare the performances between four ap-

proaches. Total network packets include point data sent from the data sources to the servers

and information of safe region sent from the servers to the data sources. To investigate the

impact of safe region, we evaluates the experiments in high, medium, low data variation rates

environments. The variation rate is defined as follows.

id − variation rate ≤ i′d ≤ id + variation rate

Note that the origin attribute is id and fluctuated attribute is i′d. The high, medium, and

low variation rates are 5%, 10%, and 15% respectively. In Figure 5.1, we show the response

time of each approach after the first 20 events arrived. The response time of CFKNMatchAD-C

and CFKNMatchAD-C with SR are the same because they both are performed in centralized

environment. The difference between them is that CFKNMatchAD-C with SR uses safe region

to filter unnecessary update packets while CFKNMatch-C does not.

In Figure 5.1, we can see that the response time of FKNMatchAD do reevaluation every

time and CFKNMatchAD usually has 0 response time because it uses safe region. Since

CFKNMatchAD-D can balance the workload of every processing server and filter some points

that will not be the answers, we can see that the response time of CFKNMatchAD-D is

significantly lower than the other three approaches. In addition, we can see that first time

response times of four approaches are significantly higher. As we mention in chapter 4, in the

first time evaluation, we do not know how much attributes we have to retrieve to find the

answers. Therefore, we sort all attributes in every dimension. After that, we use the result of

the first time evaluation to know how much attributes we retrieve and the differences between

query value and those retrieved attributes are smaller than threshold. Therefore, we can only

sort the attributes that have differences smaller than threshold plus a value and then we can

use these sorted attributes to find the answers. We do not sort all attributes and reduce the

sorting time after the first evaluation.

In Figure 5.1, we can see that the fluctuated attributes are out of safe regions more easily

in the environment with high data variation rate. Hence, the number of that CFKNMatchAD

reevaluates the query increases when the data variation rate increase.
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To analyze the CFKNMatchAD specifically, we classify the average response time into three

parts: sorting time, calculating the safe region, and calculating the answers. As Figure 5.2
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(c) simulation with 15% data variation rate

Figure 5.1: Simulation with different data variation rates

Figure 5.2: Analysis of the average response time of CFKNMatchAD
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shows, the sorting time dominates the average response time. The time using on calculation

the safe region and the answers is almost none. Hence, we think that the parameter that

affect the sorting time will affect the average response time significantly.

5.2 Impact of point number

In Figure 5.3, we compare the four approaches with 10000-30000 number of points in differ-

ent data variation environments. The Figure 5.3(a)(b)(c) show the results using the average

response time as the measurement. In the results, CFKNMatchAD performs better than

FKNMatchAD. In different data variation, the total process time of FKNMatchAD are about

the same. The response time of all approaches increase when number of points increases. But

the response of FKNMatchAD increases more strictly than CFKNMatchAD. Because CFKN-

MatchAD does not reevaluate the query after some attribute-changed event arrive, the average

response of CFKNMatchAD does not increase as sharp as FKNMatchAD when number of the

points increases. In 5.3(d)(e)(f), the experiments use total packet bytes as the measurement.

FKNMatchAD and CFKNMatchAD-C have the same number of packet bytes because the

data sources report information of all points without filtering any update packets at every

attribute-changed event arrives. Contrarily, number of packet bytes of CFKNMatchAD-C

with SR and CFKNMatch-D are smaller than the other two approaches. CFKNMatchAD-C

with SR uses safe region to filter the unnecessary update packets and CFKNMatchAD-D uses

de-centralized architecture to filter the points that will not be in the answer sets. Thus, these

two approaches have less number of packet bytes in the simulations. Finally, we can say that

CFKNMatchAD has better scalability than FKNMatchAD.

5.3 Impact of dimension number

To examine the scalability of CFKNMatchAD, we also evaluate the experiments with different

number of dimension. As shown in Figure 5.4, we evaluate the experiments with 12-20 dimen-

sion of point. Since the monitor interval [n0, n1] is fixed, all approaches need to retrieve more

attributes to find the top k answer during processing a query when number of dimension of

the point decreases. And threshold also becomes bigger when number of dimension decreases.

Because we sort the attributes that have differences smaller than threshold plus a value in

every reevaluation, we sort more attributes when threshold becomes bigger. Therefore, the

sorting time makes the average response time of all approaches increase when number of di-
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Figure 5.3: Simulation with different number of point
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Figure 5.4: Simulation with different number of dimension
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mension decreases as shown in Figure 5.4(a)(b)(c). In Figure 5.4(d)(e)(f), the results have

similar behavior in Figure 5.3(d)(e)(f) because the total packet bytes increase when number

of dimension increases.

5.4 Impact of monitor interval [n0, n1]

In the next simulation, we evaluate every approach under different monitor interval [n0, n1].

In Figure 5.5, we use default value of [n0, n1] and expand n0 and n1 by 1 respectively in zig-zag

manner. Expansion of monitor interval means that we have to monitor additional answer sets

and have more points in the answer sets S[]. In Figure 5.5(a)(b)(c), we can see that the average

response time of FKNMatchAD increase a little when n0 decreases because all approaches only

have to add points to the additional answer sets during the procedure of processing the queries.

This does not affect the average response time critically. But the average response time of all

approach increase slightly when n0 decreases. If there are more points in the answer sets, we

have higher chance to do the reevaluation because more the attributes are easy to fluctuate

out of their safe regions. On the other hand, in Figure 5.5(a)(b)(c), all the average response

time increase when n1 increases much because increase of n1. To process a frequent k-n match

query, we have to compute until S[n1] has k points and then find k points that appear most

frequently in S[]. Increase of n1 means that we have to spend more time to find the top

k points and makes the average response time increase. In Figure 5.5(d)(e)(f), we can see

that as monitor interval increases, the total packet bytes of CFKMatchAD-C with SR and

FKNMatchAD-D also increase and the volume of the increase depends on the increase of the

monitor interval but not the value of n0 or n1. But the total packet bytes of FKNMatchAD

and CFKNMatchAD-C are the when monitor interval increases. This is because these the data

sources always report information of all points. If number of point and number of dimension

do not change, the total packet bytes of these two approaches are the same.

To investigate the impact of n0 and n1 more specifically, we also run the simulations with

different n0 and n1 separately. We set n0 or n1 to the default value and adjust the other one.

The results are shown in Figure 5.6 and 5.7. The increases 5.7(a)(b)(c) are more acute than

the increases in In Figure 5.6(a)(b)(c). In Figure 5.6(d)(e)(f) and 5.7(d)(e)(f), we can see that

the total packet bytes of CFKNMatchAD-C with SR are affected by the increases of n0 and

n1 critically while the total packet bytes of CFKNMatchAD-D do not.
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Figure 5.5: Simulation with different n0 − n1
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Figure 5.6: Simulation with different n0
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Figure 5.7: Simulation with different n1

5.5 Impact of fluctuated dimension number

To measure FKNMatchAD and CFKNMatch in different data variation environment, we not

only change data variation rate but also number of fluctuated dimension. Figure 5.8 shows the

experiment results with 4-16 fluctuated dimensions. We choose at most 4-16 dimensions to

fluctuate in every attribute-changed event. In Figure 5.8(a)(b)(c), the average response time

of FKNMatchAD are almost the same because FKNMatchAD reevaluate the queries after

every attribute-changed event arrives and number of fluctuated dimension does not affect it.

On the other hand, the average response time of CFKNMatchAD increases slightly when

number of the fluctuated dimension increases. This is because fluctuation of the attributes

in S[] can easily cause reevaluation and number of these attributes are comparatively smaller

with respect to the attributes that are not in S[]. Therefore, we think that increase of number

of fluctuated dimension dose not cause reevaluation critically. The main reason that affected

the performance of CFKNMatchAD is that if the fluctuated attributes are out of their safe

regions. In Figure 5.8(d)(e)(f), the results using packet bytes as the measurement have the

similar behavior as Figure 5.5(d)(e)(f).
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Figure 5.8: Simulation with different number of fluctuated dimension

5.6 Impact of answer number k

Figure 5.9 illustrates the impact of the answer number k of all approaches. We vary k from 10

to 50. As Figure 5.9(a)(b)(c) show, the average response time of CFKNMatchAD increases

slowly when k increases. Contrarily, the average response time of FKNMatchAD increases

more heavily. This is because CFKNMatchAD uses safe region to decrease the probability

of reevaluation and slow down the increasing trend of CFKNMatchAD. Figure 5.9(d)(e)(f)

show the relations between number of packet bytes and number of answer k. The results

also have similar behavior as Figure 5.6(d)(e)(f). Reporting periodically makes total packet

bytes of FKNMatchAD and CFKNMatchAD-C higher than other two approaches. But the

total packet bytes of FKNMatchAD and CFKNMatchAD-C do not increase when k increases

because data sources always report information of all points to the centralized server.

5.7 Impact of answer number inter-arrival time of attribute-

changed event

Figure 5.10 shows the results of the simulations with different mean of inter-arrival time.

Because our simulation time is set to 3000 seconds, there more attribute-changed events arrive
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(f) 15% data variation rate

Figure 5.9: Simulation with different k

when mean of inter-arrival time is smaller. During the simulation, the response time of the

first-time evaluation is significantly large because we have to sort all the attributes in every

dimension. When we have more attribute-changed event arrived, the response time of first-

time evaluation can be amortised to the other evaluations. Therefore, we can see the average

response time of all approaches increase sightly when mean of inter-arrival time increases in

Figure 5.10(a)(b)(c). In Figure 5.10(d)(e)(f), the total packet bytes decreases when mean of

inter-arrival time increases. This is because more attribute-changed event arrived make the

chance of reevaluation increases and the total packet bytes also increase.
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Figure 5.10: Simulation with different mean of inter-arrival time
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Chapter 6

Conclusion

In this thesis, we consider the problem of continuous k-n-match search. We propose a algo-

rithm CFKNMathAD to compute a safe region for every attribute of points in high dimensional

databases. We do not perform the query reevaluation if fluctuated attribute is within its safe

region. We reduce the query response time without doing unnecessary query reevaluation.

Furthermore, we also apply our algorithm in de-centralized environment to balance the sys-

tem workload. Our experiments show that CFKNMatchAD has better performances than

FKNMatchAD in different data variation rates. Finally, we conclude that CFKNMatchAD

reduce the query response time and balance system workload.
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[5] S. Berchtold, C. Böhm, D. A. Keim, and H.-P. Kriegel. A cost model for nearest neighbour
search. In Proc. of the 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems(PODS), pages 78 – 86, 1997.

[6] S. Berchtold, D. A. Keim, and H.-P. kriegel. The x-tree: An index structure for high-
dimensional data. In Proc. of the 22th International Conference on Very Large Data
Bases (VLDB), pages 28 – 39, 1996.

[7] N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over web-accessible
databases. In Proc. of the 18th International Conference on Data Engineering(ICDE),
page 369, 2002.

[8] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
In Proc. of the 20th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems(PODS), pages 102–113, 2001.

[9] L. Gao, Z. Yao, and X. Wang. Evaluating continuous nearest neighbor queries for stream-
ing time series via pre-fetching. In Proc. of the 11th International Conference on Infor-
mation and Knowledge Management (CIKM), pages 485 – 492, 2002.

[10] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc. of the
4th ACM Conference on Management of Data (SIGMOD), pages 47–57, 1984.

[11] H. Hu, J. Xu, and D. L. Lee. A generic framework for monitoring continuous spatial
queries over moving objects. In Proc. of the 25th ACM Conference on Management of
Data (SIGMOD), pages 479–490, 2005.

[12] N. Katayama and S. Satoh. The sr-tree: An index structure for high-dimensional near-
est neighbor queries. In Proc. of the 17th ACM Conference on Management of Data
(SIGMOD), pages 369 – 380, 1997.

[13] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas. Fast nearest neigh-
bor serach in medical image databases. In Proc. of the 22th International Conference on
Very Large Data Bases (VLDB), pages 215–226, 1996.

34



[14] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest
neighbor in high dimensional spaces. In Proc. of the 30th annual ACM symposium on
Theory of computing(STOC), pages 614 – 623, 1998.

[15] K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis. Continuous nearest neigbor
monitoring in road networks. In Proc. of the 32nd International Conference on Very
Large Data Bases (VLDB), pages 43–54, 2006.

[16] T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest neighbor search. In Proc. of the
18th ACM Conference on Management of Data (SIGMOD), pages 154–165, 1998.

[17] T. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree: a dynamic index for multi-
dimensional objects. In Proc. of the 13th International Conference on Very Large Data
Bases (VLDB), pages 507–518, 1987.

[18] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling the querying moving
objects. In Proc. of the 13th International Conference on Data Engineering(ICDE), pages
422–432, 1997.

[19] Z. Song and N. Roussopoulos. K-nearest neighbor search for moving query point. In
Proceedings of the 7th International Symposium on Advances in Spatial and Temporal
Databases (SSTD), pages 79–96, 2001.

[20] Y. Tao and D. Papadias. Time parameterized queries in spatio-temporal databases. In
Proc. of the 22nd ACM Conference on Management of Data (SIGMOD), pages 334–345,
2002.

[21] A. K. H. Tung, R. Zhang, N. Koudas, and B. C. Ooi. Similarity search: A matching
based approach. In Proc. of the 32nd International Conference on Very Large Data
Bases (VLDB), pages 631 – 642, 2006.

[22] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. In Proc. of the 24th International
Conference on Very Large Data Bases (VLDB), pages 194 – 205, 1998.

[23] D. A. White and R. Jain. Similarity indexing with the ss-tree. In Proc. of the 12th
International Conference on Data Engineering, pages 516 – 523, 1996.

[24] J. Xu, X. Tang, W.-C. Lee, and M. Wu. Top-k monitoring in wireless sensor networks.
IEEE Transactions on Knowledge and Data Engineering(TKDE), 19(7):962–976, 2007.

[25] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen. Efficient maintenance of materialized top-k
views. In Proc. of the 19th International Conference on Data Engineering(ICDE), pages
189–200, 2003.

[26] C. Yu, B. C. Ooi, K.-L. Tan, and H. V. Jagadish. Indexing the distance: An efficient
method to knn processing. In Proc. of the 27th International Conference on Very Large
Data Bases (VLDB), pages 421 – 430, 2001.

35




