SRS
YRS R

I

-3

- B 4 a2 8 % K>N 2
o8 ¥ OF o B i W

A Fast Algorithm for Continuous Frequent K-N Match
Search

— 4%t AT 2 K B N fe s ch-d i B 2
A Fast Algorithm for Continuous Frequent K-N Match Search

By o4 534 Student : Jen-He Huang

R R R Advisor : Jiun-Long Huang

S SRS

R
T
LS\ S

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science
August 2008

Hsinchu, Taiwan, Republic of China

ai’i‘_g‘@{i;_’g/\a

BB T REB R P o AR E I - BAER IR P
TR AN b 3 _,a_”zk&rgﬁﬁr G {4 ’hﬁ_ﬁ;}%ﬂ'{j\j_ B gL b 2 FY ehdp

BRI 0 B A 0 R LB e gt o & KN et
BE P N end g e Bod kB ko i iRk chz B F B R
Rl i 5/6”}5 gL agdp iR - AR TIREY > 5
MEPFHDTHRRI R P o m g ?f"%‘ I E AT R B R

P o FIM s AR Hm APHRN T - B F K-

Abstract

In many multimedia and data mining applications, similarity search is one of the critical
topics. Most existing similarity search algorithms use all attributes of objects to determine
the similarity between them. These algorithms are influenced easily by a few attributes with
high dissimilarity. In k-n match search, it compares only n attributes where n is smaller
than data dimensionality d. It solves the problem that exists in previous works and can find
similarity between objects efficiently. In dynamic environment, data with high dimensional
attributes are large and have high evolving speed. It is inefficient to reevaluate the queries
when the attributes fluctuate. Thus, we propose, in this thesis, a algorithm CFKNMatchAD
to continuous k-n match search. Specifically, we provide safe regions for every attribute and
do the query reevaluation only when the attribute is out of its safe region. It reduces the
computation costs significantly. At the same time, it also provides valid query result. The
experimental results show that our algorithm can reduce query reevaluation costs in different
data-variation rates with respect to traditional k-n match search. Algorithm CFKNMatchAD

can also be applied on distributed environment to balance the computation costs.

ii

® 3t

FALAOARPEASNFAAP AL T RATh BT DE R BHE PR
ARPLFOENAR R A ehm Y ARLEIN DR &
CHRHL BT EARY 0 KA APy g B3 A3 8 g
o RN B EER G ARG o ¥ R R M R &
B AR P RAGET] G B 4 R BEE Y i 0]
B o Bt B R PR &R .,b%g;;;ﬁq RAGHTT AR F O

43w f§ oo

a\g

f

¥

iii

Contents

1 Introduction

2 Preliminaries

2.1 Related Works

2.2 Processing Frequent K-N-Match Queries

2.2.1 Problem definition
2.2.2 Algorithm AD

3 Algorithm

3.1 Overview

3.2 Safe Region

3.3 Running Examples o000 o

4 Discussion

4.1 Centralized Environment

4.2 Centralized Environment with safe region

4.3 De-centralized Environment

4.4 Implementation L

5 Performance Evaluation

5.1 Simulation Model

5.2 Impact of point number

5.3 Impact of dimension number

5.4 Impact of monitor interval [ng, n;]

5.5 Impact of fluctuated dimension number

5.6 Impact of answer number k

5.7 Impact of answer number inter-arrival time of attribute-changed event

6 Conclusion

v

N ot ot w W

10
10
12
15

17
17
17
18
21

22
22
25
25
27
29
30
30

33

List of Figures

1.1 An Example 2
2.1 The n-match problem 6
2.2 Sorted lists of differences 8
3.1 Procedure of CFKNMatchAD 11
3.2 Example of CKNMatchAD Problem 16
4.1 Centralized Environment Architecture 18
4.2 Architecture of distributed system 20
5.1 Simulation with different data variation rates. 24
5.2 Analysis of the average response time of CFKNMatchAD 24
5.3 Simulation with different number of point 26
5.4 Simulation with different number of dimension 26
5.5 Simulation with different ng —mnqo 28
5.6 Simulation with different ngo 28
5.7 Simulation with different ny 29
5.8 Simulation with different number of fluctuated dimension 30
5.9 Simulation with different k 31
5.10 Simulation with different mean of inter-arrival time 32

List of Tables

2.1
2.2
2.3

3.1
3.2
3.3

5.1

Notation 5)
An Example Database 7
Structures when processing k-n match query 8
Safe Region for attribute iy of point 7 L. 14
An Example for CFKNMatchAD 15
Structures after performing FKNMatchAD 15
System Parameterso oL 22

vi

Chapter 1

Introduction

In many multimedia and data mining applications, similarity search is one of the critical
topics. By giving a example image, people use similarity search to find the images that are
most similarity to the given image. In biochemistry, researchers use similarity search to find
similarity between genes. Similarity search is widely used in every field [1] [3] [13].

Traditional studies on similarity search focus on queries that want to retrieve objects closest
to a static point. Prior approaches usually a similarity function to aggregate all attributes of
object into a score. Then the similarity between objects is compared by using these scores. In
addition, in applications such as stock market analysis or image search engine, large volume
of data are stored in database and these data change with rapid speed. Prior approaches can
not be applied to dynamic environments where data streams have high evolving speed. Since
data streams are large and change over time, the system must process queries in real time.
Therefore, we focus on how to improve correctness and efficiency of continuous similarity
search. In general, these data are usually represented by multi-dimensional features. In order
to reduce computation of search process, traditional researches usually define a function to
aggregate differences of every features into a score and find data with high similarity according
to the scores. Therefore, similarity search can be thought as nearest neighbor search in multi-
dimensional space. Several approaches [22] [26] were proposed to process k-NN problems in
high-dimensional data spaces efficiently.

Prior approaches, however, can not compare every features of the data. Moreover, the
dimension with high dissimilarity can affect the score easily. Consider the example shown in
Figure 1.1. The nearest neighbor of object A is object C. However, attributes in dimension
ds may be not significant to present the characteristic of data objects. So it is possible that
object B is the best answer for object A. Consequently, frequent k-n-match problem [21] was

proposed. In [21], the search algorithm compares every difference between data objects and

Figure 1.1: An Example

query object in every dimensions and records the frequency of data objects which is most
similar to query object. In this approach, every feature of object can not affect each other
when comparing is performing. Because Tung et al. [21] pointed out that k-n-match has
good performance on nearest neighbor query, we introduce this idea on continuous query. In
large database system, answering a query in real time is a significant task. It is inefficient
to processing the same query every time. Reducing computation therefore becomes a key
issue when processing a query. Consider property of continuous query. If the attributes of
the objects do not change abruptly, similarities between the objects and the query object
will not change abruptly as well. In such situation, there are many redundant works if we
process the query every time. Due to this characteristic, the answers are usually the same
when we evaluate two successive queries [9]. According to this continuity, we can obtain total
or partial answers without reevaluation. We introduce the idea of safe region. For every
continuous query, we follow k-n-match algorithm to compute answers and return them at the
first time. Then we set a safe region for every attribute of data object. When the system
periodically reports answer to user, if feature of data object have changed and changed value
is within safe region, we do not have to reevaluate the query. Otherwise, k-n-match algorithm
is performed to find new answers for the user.

The rest of this thesis is organized as follows. Chapter 2 presents preliminaries, including
related works and how to processing frequent k-n-match queries. Chapter 3 describes our
algorithm for continuous k-n-match query. System architectures and performance evaluations
are presented in chapter 4 and 5 respectively. Finally, chapter 6 makes a conclusion for this

thesis.

Chapter 2

Preliminaries

In this section, we will give some preliminaries. Related works about continuous query over
data streams are presented in Section 2.1. In Section 2.2, k-n-match problem and frequent

k-n-match problems proposed in [21] are presented.

2.1 Related Works

Nearest neighbor search (NN) is used in many applications such as pattern recognition, image
search, location-based service, ...etc. Related research issues about NN has received consider-
able interests in recent years. The simplest solution for NN is to compute the distance between
query point and every data point in database and find the point with smallest distance. R-trees
index structure [4] [10] [17]are widely used to process NN in dynamic environments because of
its Efficiency. There are many variants of NN problem. The k-nearest neighbor search (KNN)
and e-approximate nearest neighbor search are most well-known. Because NN and KNN can
be used in many domains, several researchers have studied them [13] [16] [22] [26]. In [16],
the authors proposes a multi-step similarity search algorithm that can grantee to reduce the
minimum number of candidates in complex high-dimensional databases. In [26], an efficient
method, called iDistance, was proposed for KNN. iDistance partitions the data and select a
reference point for each partition. The data are transformed into a single dimensional space
according their similarity to a reference point. Then KNN is performed using one dimensional
range search. There are many methods based on r-trees-like indexing structures proposed
in [6] [12] [23] for processing KNN. However, most techniques mentioned above encounter the
problem of dimensionality curse. Therefore, they can not be used in the environment where
data stream are very large. e approximate NN [2] [14] was proposed to solve the curse of

dimensionality.

After problems of KNN are widely researched, continuous KNN (CKNN) is proposed be-
cause location-based services and mobile computing become popular. [18] is the first one to
identify the importance of CKNN and propose moving-objects data model and query language
for CKNN query. But [18] do not discuss CKNN processing algorithm. The first algorithm
for CKNN is proposed in [19] with sampling method. KNN queries perform periodically at
predefined sample points. This algorithm has a trade-off between sampling rate and com-
puting costs. If sampling rate is low, the answer is incorrect. Otherwise, we have additional
computational overhead. Moreover, it has no accuracy guarantee because sampling rate can
not match the split points perfectly. To overcome this drawback, a time-parameterized (TP)
queries [20] for CKNN are proposed. TP queries output the validity period of current answer
and the objects that may change the answer. Then we can compute the next answer after
the validity period without having additional computing overhead. In [11], the authors pro-
pose a generic framework for monitoring continuous spatial queries over moving objects. This
framework is the first one to address the location update issue and provide the interface for
monitoring different types of queries.

KNN can be viewed as searching for the top-k object that is most similarity to the query
object. There are many works that discussed about top-k queries in different environment. [7]
and [8] propose algorithms to process one time top-k queries. [7] focus on providing exact
answers while [8] focus on providing exact and approximate answers. Then the techniques
of processing top-k queries are applied to continuous monitoring top-k objects in different
environments. The algorithms of one time queries are not sufficient for continuous monitoring
because they can not detect the change of top-k answers. Top-k monitoring is viewed as an
incremental view maintenance problem [25]. [24] proposed a top-k monitoring approach called
FILA to monitor wireless sensor networks. In [24], it installed a filter at each sensor node to
filter the unnecessary sensor update. [15] monitors top-k points of interest in road networks.
In road networks, the distances between objects and query point depend on the non-weight
of roads that connected to objects. In [15], an expansion tree rooted at query point is built
and the objects in the answer are also in the expansion tree. When the object moves into the
expansion tree, this means the answer will change and then the expansion tree will be rebuilt

to find the correct answer.

2.2 Processing Frequent K-N-Match Queries

2.2.1 Problem definition

In this section, we will bring in the frequent k-n-match problem that presented in [21]. K-n-
match problem is to find k objects that are the most similar to the query object and n is an
integer which is not bigger than dimensionality of a data object d. As an example shown in
Figure 1.1, some features of data items are not significant to present characteristics of data
items. Instead of comparing data objects in all dimensions, we compare data objects to query
object in n dimensions which are significant to data objects. Since we can adjust n, we can
find different sets of data objects according value of n. After performing k-n-match search
with different n, we can find the top k objects which appear in answers most frequently.

We follow the rules and notations in [21]. Objects from database are considered as multi-
dimensional points. We will use object and point interchangeably in the rest of the thesis.
Database is considered as a set of d-dimensional points, where d the dimensionality. The

notations are shown in Table 1 as follows.

Notation | Meaning
c Cardinality of the database
DB The database, which is a set of points
d Dimensionality of the data space
k The number of n-match points to return
n The number of dimensions to match
P A point
Di The coordinate of P in the i-th dimension
Q The query point
i The coordinate of Q in the i-th dimension
S A set of points

Table 2.1: Notation

DEFINITION 1. N-match difference
P(p1,p2, ..., pa) and Q(q1, G2, --., qa) are two d-dimensional points. Let 6; = |p; —qi|,i =1, ..., d.
Sort {d1,09,...,04} in increasing order and let sorted array be {4, d),...,0,}. Therefore, the

n-match difference of point P with respect to point @ is 9/,.

DEFINITION 2. The n-match query

Given a set of d-dimensional points in DB and a n-match query < @), n > where @) is a query
point and n is an integer (1 < n < d), the n-match problem is to search the point P € DB
which has smallest n-match difference with respect to). P is called n-match point of Q).

We use an example shown in Figure 2.1 to describe n-match more specifically. Figure 2.1

shows a two dimensional space with four points A(1,3), B(2,2),C(3,6),and D(4,4).Consider
the query < (0,0),1 >, the answer is A because A has smallest 1-match difference (0, = 1)
with respect to (). When we adjust n to 2, point B becomes the answer because it has smallest

2-match difference (6, = J, = 2) with respect to Q.

- *«C(3,6)

- *D(4,4)
L« A(1,3)
— < B(2,2)

Y-Axis

I T N N O O I
Q0,00 x-Axis

Figure 2.1: The n-match problem

DEFINITION 3. The k-n-match query
Given a set of d-dimensional points in DB of cardinality ¢, and a k-n-match query < Q,n, k >
where) is a query point, n is an integer (1 < n < d), and k is an integer (k < ¢), the k-n-
match problem is to search k points from DB such that n-match difference of these k points
are less than or equal to the other points in DB.

After giving the definition of the k-n-match query, we know that we can get different set of
points with different n. However, it is difficult to determine the value of n in various applica-
tions. Instead of determining a value for n, we try different values of n and find k points that

appear in answers most frequently. The definition of frequent k-n-match problem is as follows.

DEFINITION 4. The frequent k-n-match query

Given a set of d-dimensional point in DB of cardinality ¢, and a frequent k-n-match query
< Q,[no,n], k > where @ is a query point, [ng,n;] is an interval within [0,d], and k is
an integer (k < ¢), let Sp, ...,.S; be the answer sets of k — nyg — match, ..., k —ny — match,
respectively. Find a set T of k points, so that for any point P, € T and any point P, € DB—T,
P,’s number of appearances in Sy, ..., S; is larger than or equal to P»’s number appearances in
Soy ey Si-

User can determine the interval [ng,n;]. When the interval is small, frequent k-n-match

will compare points only in few features. It is hard to determine if the given points is similar
to query point by those few features. On the other hand, frequent k-n-match spend much
time on finding answers when we set the interval too large. It will encounter dimensionality
problem which have been addressed in [5]. Therefore, we should adjust the interval to get the

appropriate answers.

2.2.2 Algorithm AD

To solve k-n-match problem efficiently, the AD algorithm for k-n-match search (KNMatchAD)
has been proposed to minimize the number of attribute retrieved. The AD algorithm will
access the attributes in Ascending order of their Differences to the query point’s attributes.
The AD algorithm for k-n-match search uses some data structures to maintain the necessary
information while processing a query. appear[i] maintains the number of appearances of
point 7. h maintains the number of point ID’s that have appeared n times. S is the answer
set. We use the following example to illustrate how algorithm KNMatchAD processes a k-n-
match query. Consider the database shown in Table 2.2. Suppose an user requests a query
< Q(3.0,4.5,5.5),2,2 >. In this case, k=n=2. After sorting attributes of every point in every
dimension, we calculate attribute differences between data points and query point in each
dimension and then have sorted lists of difference shown in Figure 2.2. The KNMatchAD will

perform as follows:

[object ID [dy | dy | d3 |
1 057307 4.0
2 2515271 3.0
3 331401 7.5
4 6.0 65] 6.0
) 8.019.0 1 10.0

Table 2.2: An Example Database

Round 1: Locate query values in every dimension. ¢;(3.0) is located between (2, 2.5) and (3,
3.3); q2(4.5) is located between (3, 4.0) and (2, 5.2); ¢3(5.5) is located between (1, 4.0) and
(5, 6.0).

Round 2: Find the smallest difference between attribute and ¢; in every dimension using
binary search toward bigger or smaller attribute directions and store in g¢[]. ¢[] has six triples
which are {(2,0,0.5) ,(3,1,0.3) ,(3,2,0.5) ,(2,3,0.7) ,(1,4,1.5) ,(4,5,0.5)}.

Round 3: Get the triple (3, 1, 0.3) with smallest dif popped from g[] and appear|3] is
increased by 1. Find next smaller difference in dimension 1 towards bigger attribute direction,

that is, (4, 6.0), and insert the triple (4, 1, 3.0) into g[1].

(3,0.3) (1,2.5) (5,4.0)

Uy *—0—0 >
(2,05) (4,3.0)
(3,0.5) (1,1.5) (5,4.5)
ds *—0 ® ® ®
(2,0.7) (4,2.0)
(4,0.5) (1,1.5) (2,2.5) (5,4.5)
ds e e e e ®
(3,2.0)

Figure 2.2: Sorted lists of differences

Round 4: Get the triple (2, 0, 0.5) with smallest dif and appear|2] is increased by 1. Find
next smaller difference in dimension 1 towards smaller attribute direction, that is, (1, 0.5) and
insert the triple (1, 0, 2.5) into ¢[0].
Round 5: Get the triple (3, 2, 0.5) with smallest dif and appear[3] is increased by 1 and
equals 2. appear|[3] equals n and h is increased by 1. Find next smaller difference in dimension
2 towards smaller attribute direction, that is, (1, 3.0) and insert triple (1, 2, 1.5) into ¢[2].
Round 6 and 7 work in a similar way to round 3-5 and h equals k after round 7. Then we
can stop KNMatchAD and return S as the answer. Table 2.3 shows the data structures in

every round during processing the given k-n-match query.

(a) Round 3 (b) Round 4
appear 0,0,1,0,0} appear 0,1,1,0,0}
gd (2,0.5).(4:3.0),3.05 (20,115 .(405)] od 1.2.5).(4,3.0),3.05) (201115 (40 5)]
S S
h ! h !
(¢) Round 5 (d) Round 6
appear 0,1,2,0,0} appear 0,1,2,1,0
d (1,2.5),(4,3.0),(L,1.5),(2,0.7),(1,1.5),(4,0.5)] ed (1,2.5),(4,3.0),(L15),(2,0.0)(1.1.5),(3.2.0)]
S 3 S 3
h J h J
(e) Round 7
appear 0,2,2,1,0}
od {1,2.5).(43.0),(L15),(4.2.0),(1,15),3.2.0)]
181 2,3}
2

Table 2.3: Structures when processing k-n match query

The AD algorithm for frequent k-n-match search (FKNMatchAD) is similar as for k-n-
match search. The difference is that frequent k-n-match search has to monitor number of ap-
pearances of points in the interval [ng, n1] given by frequent k-n match query < @, [ng, n1], k >.
In addition, data structures h[] and S]] displace h and S to maintain appearances of points
and answers. In the procedure of FKNMatchAD, if appear[i] is within [ng, nq] , point i will
be added to answer set Syppeqr(ij a0d hgppeqrfi increases by 1. FKNMatchAD stops until hin4]

8

equals k. Finally, FKNMatchAD scans S|| to obtain the k point ID’s that appear most times.
The detailed steps of FKNMatchAD are described in Algorithm 1.

Algorithm 1: FKNMatchAD

1: Initialize appear]], h], S]]

2: for every dimension i do

3: Locate ¢; in dimension i.

4: Calculate the differences between ¢; and its closest attributes in
dimension i along both directions. Form a triple (pid,pd,dif) for
each direction. Put this triple to g[pd].

5: do

6: (pid,pd,dif) = smallest(g);

7. appear|pid]++;

8: if ng < appear|pid] < n; then

9: if hlappear[pid] < k then

10: h[appear[pid]]++;

11: Slappear[pid]] = Slappear|pid]] U pid;

12: Read next attribute from dimension pd and form a new triple (pid,pd,dif).
If end of the dimension is reached, let dif be co. Put the triple to g[pd].
13: while h[ni] < k
14: scan the top k elements of S,,, ..., S, to obtain the k point ID’s that appear most
times

Chapter 3

Algorithm

3.1 Overview

In this section, we propose an algorithm called CFKNMatchAD to process continuous k-n-
match search. CFKNMatchAD is based on AD algorithm for frequent k-n-match search.
Continuous query, unlike traditional query, requires constant evaluation and update when
contents of database change. These queries are usually inherently dynamic and related to
temporal context. Some changes will not affect the answer. For this reason, we do not have
to perform whole procedure of algorithm to check whether the answer changes when data
streams fluctuate. Therefore, we do some modification to FKNMatchAD and add it into
CFKNMatchAD. We also calculate the intervals called safe region for all attributes of points.
Attributes of points can fluctuate within safe regions without changing the answer. Such
approach, therefore, can reduce the cost of evaluation for similarity search.

There are two types of continuous query: event-based and time-based. For event-based
continuous queries, we report the valid top-k points for the queries after a attribute of point
fluctuates. Report operation is driven by attribute-fluctuated event. For time-based continu-
ous query, client will give a report period. We find valid top-k points for the query and report
them after every report period. Report operation is driven periodically. Our algorithm can
be applied to both of continuous queries.

Since our algorithm sets safe region for attributes, we can determine whether the answer
may change by safe region and reduce computation without doing unnecessary evaluations.
We further classify safe region into two levels. Fluctuated attribute within level one safe
region(SR;) will not change the appear|] while fluctuated attribute within level two safe
region(SRy) may change appear|]. The procedure of CFKNMatchAD is shown in Figure 3.1.

The centralized server receives the queries from the users and then registers the queries to the

10

The Centralized Server

The users
Redqi 1. Register the query to the query table Query Table
egister a g
» 2. Initialize the data structures for the query ID | Value
query 3. Run FKNMatchAD
(1.0,1.0,...)
Retuin the 2 |[(2.0,3.0,...)
ansyers
The data sources
If an attribute i,-$ Calculate If the fluctuated Run
fluctuates SR(#) attribute i’jis out of | OutOfSafeRegion

SR or has no SR

If the fluctuated
attribute i falls
into SR+(i))

» No operation

If the fluctuated > Update
attribute i’ falls appeat[], isAppear, match,

into SRy(i")
Figure 3.1: Procedure of CFKNMatchAD

query table, initialize the data structures for the queries, and run FKNMatchAD to report
the first-time answers. Afterward, when the data sources report that an attributes fluctuates,
we check where the attribute is. If the attribute falls into its SRy, we do nothing. If the
the attribute falls into its SRy, we update some data structures. If the attribute is out of its
SR or has no safe region, we will run the algorithm called OutOfSafeRegion to obtain valid
answers and report to the users.

To calculate safe region, we use some new data structures as follows.

1. Z'SAppeaTi’j: record whether point ¢ in dimension j contributes one match between
i and query point. In other words, isAppear;; checks if attribute i; makes appear]i
increase one. In FKNMatchAD, point ¢ will be added to .S,, if it has n matches between
query point and itself. isAppear; ; is set to false initially. When the triple(pid, pd, dif)

with smallest dif is popped from g[|, we set isAppearyiqpa to true.

2. match; j: we set match;; to m if attribute 4; contributes the m-th match between
point ¢ and query point. For example, we have triple (2,1,0.5) popped form g[] and
appear|2] increases by 1 and equals 2. Then point 2 has 2 matches with respect to query
point and we set matchy; to 2 because attribute of point 2 in dimension 1 contributes

the 2nd match.

3. threshold: we set threshold to the dif popped from g[] when FKNMatchAD stops.

11

Thus, the differences of the points that in S, ..., S,, are not bigger than threhsold.

3.2 Safe Region

In continuous queries, fluctuated attribute within its safe region will not change the final
answer S. We further classify safe region into two levels. Fluctuated attribute within level one
safe region(SR;) will not change the appear[] while fluctuated attribute within level two safe
region(SRy) may change appear|]. We do not reevaluate FKNMatchAD if fluctuated attribute
is within safe region and update appear|] if fluctuated feature is within SRy. Therefore, SR
is defined according isAppear and SR, is defined according to that whether the point I has
chance to affect S. Because the answer S depends on the appearances of the top k elements in
{Sny---Sny }» we have to prevent fluctuated attribute from changing the order of the elements
in {Sy,...5,, } if we want to keep S unchanged. Consider a point (i, s, ...,i,) ,we classify
the following cases according to appear|I], isAppeary 4, threshold, matchy 4.

Case 1: If isAppeary 4 is false and appear|I] is smaller than ny — 1, this means attribute i4
does not contribute any match between I and query point. If still fluctuated attribute ¢/, does
not contribute any match, S will not change. Hence, we set SRy (iq) to [—00, gq — threshold] U
[qa + threshold, oo]. Even if i/, contributes a match, appear(I] is smaller than ny and S will
not change. So we set SRy(i4) to all interval - SRy (ig).

Case 2: If isAppear; 4 is false and appear[I] is bigger than or equals ng— 1, this case is similar
to case 1. We set SRy (iq) to SRy(iq) to [qa — 00, qa — threshold] U [qq + threshold, qq + o0].
When 4/, contributes a match, this match is possible to become one of {ny...ns }-th match and
may change the element order in the top k positions of {S,,...Sy, }. Hence, SRy(i4) is set to
none.

Case 3: If isAppear; 4 is true and appear|I] is smaller than ny — 1, this means i4 has already
contributed a match and can not contribute anymore. Then even if i/, fluctuates to any value,
it will not change S. We set SR;(iq) to [qq — treshold,,, qs + threshold] and SRy(iq) to all
interval - SRy (iq).

Case 4: If isAppearyq is true, appear(I] is bigger than ny — 1, and match; 4 is bigger than
ny. igq contributes the m-th match where m > n; in this case. Hence, i/, will not change
the element order of the top k positions in {S,,, ..., S, } if |/, — qa| is bigger than |ig — qal.
Hence, we set SRi(iq) to [qgq — threshold, qq — iq] U [qa + i4, qa + threshold] and SRs(igq) to
[qa — 00, g4 — threshold] U [qq + threshold, qq + o).

The safe regions of different cases are shown in Table 3.1.

12

Algorithm 2: CFKNMatchAD

1: FKNMatchAD
2: if attribute i, of point I fluctuated with fluctuated attribute ¢/, then
3: Calculate the safe region for i4

4. if ¢, is out of safe region or has no safe region then
5: OutOfSafeRegion()
6: else if iy is within SR, then
7: if isAppear; 4 is false then
8: if appear[I] < ng — 1 then
9: appear + +
10: isAppeary 4 < true
11: else
12: if (appear[I] < ng — 1) or (appear[I] > n, and match; 4 > n1) then
13: appear([I| — —
14: isAppeary q < false
15: while h[n;] < k do
16: (pid,pd,dif) = smallest(g);
17: appear[pid]++;
18: 1sAppearyiq pa < true;
19: matchyiqpa < appear|pid)]
20: if ng < appear|pid] < n, then
21: hlappear|pid]]++;
22: Slappear[pid]] = Slappear|pid]] U pid;
23: threshold < dif
24: Read next attribute from dimension pd and form a new triple (pid,pd,dif).

If end of the dimension is reached, let dif be oo. Put the triple to g[pd].
25: scan the top k elements of S, ..., S,, to obtain the k point ID’s that appear most
times

Algorithm 3: OutOfSafeRegion

1: if isAppeary 4 is true and |gq — @] > threshold and match; 4 = appear[I] then
2: delete I from S[appear|I]]

3: appear[I] — —

4: isAppearyq < false

5 matchy g < 0

6: else

7. Reset appear[], h], isAppear, match, S|

8: Calculate the differences between ¢; and its closest attributes in
dimension i along both directions. Form a triple (pid,pd,dif) for
each direction. Put this triple to g[pd].

13

case | match; 4 | isAppear | appear[I] [SR;(i4) SR5(iq)

1 - false <ng-—1 Region 1% | All interval-Region 1
2 - false >ng—1 Region 1 -

3 - true <ng—1 Region 2° | All interval-Region 2
4 > ng true > nq Region 3¢ | Region 1

%Region 1 is [—o0, qg — threshold] U [qq + threshold, o]
bRegion 2 is [gq — tresholdy, , qq + threshold]
“Region 3 is [qq — threshold, qq — i4] U [q4 + 14, g4 + threshold)

Table 3.1: Safe Region for attribute iy of point I

In FKNMatchAD, once the attributes fluctuated, we have to re-sort all of attribute and
reevaluate the query. In CFKNMatchAD, if attributes of point i/, fluctuate, we have to sort
i!, and place it in right order. But in the case 3, 4, and 5 of CFKNMatchAD mentioned
above, if fluctuated attribute i/, is within SRy and isAppear; 4 is true, we do not have to sort
i!, because 7 still contributes a match and do not change the order of points in S[|]. Hence,
CFKNMatchAD can save the computation on sorting fluctuated attributes.

The procedure of continuous frequent-k-n-match algorithm (CFKNMatchAD) is shown
in Algorithm 2. When a continuous frequent k-n-match query requests, we firstly perform
FKNMatchAD and return S. Consider the point I (1,1, ..., i,). When attribute 7, is changed,
calculate the safe region defined in Table 3.1. If fluctuated attribute ¢, is out of the safe region,
we perform OutOfSafeRegion shown in Algorithm 3. In algorithm OutOfSafeRegion, we check
two conditions that may change S. 1)isAppearyq is true, |qq — ;| is bigger than threshold
and matchy 4 = appear|I]. In this case, iy contributes the largest match between I and query
point, but 7, does not. After i, fluctuates, 7, makes I out of Syppear(r- Hence, we delete I from
Sappear(r] and decrease appear(l] by 1. During the procedure of FKNMatchAD, we add points
into S[] according to similarity order, that is, points in the top position have more similarity
to query point. After we delete I from Sgppear(r), its position will be replaced immediately by
the point after it in S,ppeqr(r)- The rest part of CFKNMathAD will check the size of S, to
determine if we have to perform FKNMatchAD. Then we just have to scan the points at the
top k positions of S[] to obtain the k point ID’s that appear most times. 2) All the other case
have to perform FKNMatchAD from initial state because fluctuated attribute may disorder
the sequences of elements in {S,,, ..., Sy, }. Hence, we initialize appear|], h[], isAppear, match
;threshold, and S]] and perform the FKNMatchAD at the end of CFKNMatchAD to get the
correct answer S.

On the other hand, we also check fluctuated attribute that within SRy. Fluctuated at-
tribute within SR will not change S, but appear|] may need to update. The procedure of
updating appear|] is shown in line 6 to 12 of Algorithm 2. The rest of CFKNMatchAD perform

14

FKNMatchAD again to check if S, get the top k points.

3.3 Running Examples

We take the database shown in Table 3.2 as an example. User requests a query <Q(3.0, 4.5,
5.5, 6.0, 3.5), [3,4], 2>. First, we perform FKNMatchAD and return S. The data structures
we need are shown in Table 3.3.

Consider the example shown in Figure 3.2 (a). Suppose that the attribute of point 2 in dy4
becomes 7.2 from 9.0. The difference of point 2 in d4 becomes 1.2 from 3.0. It matches case 2 in
Table 3.1 and is out of safe region because |6.0 — 7.2| is smaller than 2.5 (threshold). Because
the fluctuated attribute (7.2) of point 2 will make point 4 become out of Ss, S will finally
become {2,3}. So it matches the second condition in line 7 in algorithm OutOfSafeRegion
and we initialize all the data structures and perform FKNMatchAD to obtain S’{2,3} which
is different S{2,4}. Consider the example in Figure 3.2 (b). The attribute of point 5 in d3
becomes 5.3 from 9.0. This matches case 1 in Table 3.1 and the fluctuated attribute (5.3)
falls into SRy. Then we update appear[5] to 1. S is still unchanged. Consider the example
in Figure 3.2 (c¢). The attribute of point 5 in d; becomes 7.8 from 5.3. This case matches
the case 3 in Table 3.1 and the fluctuated attribute (7.8) falls into its SRy. Then appear|5]
is updated to 0. S does not change. In the example shown in Figure 3.2 (d), the attribute of
point 4 in d3 becomes 10.5 from 3.0. The fluctuated attribute has no safe region and matches
the first condition in line 1 in algorithm OutOfSafeRegion. Then we delete point 4 from Sy
and Sy has only one element in it. So we perform FKNMatchAD to find the rest element in
S, and scan S| to get k points that appear most times.

ID dy | dj dy | ds

dy
T (05181 4.0 [1.5 3.1
2125162 65 | 9.0 62 appear]] rg’i’g"f’}l}
3 (33144 72 [70 [43 o
R R LRERY MEEEY
5 148190100 IL.0[S5 S {34}
threshold | 2.5

[Query [3.0]45] 55 [6.0 [35]

Table 3.3: Structures after performing FKN-
MatchAD

Table 3.2: An Example for CFKNMatchAD
THEOREM 3.1. Correctness of CKMatchAD
The points return by algorithm CKNMatchAD compose the k-n-match set of query point Q.
PROOF. First, we perform CKNMatchAD to find frequent k-n-match answer sets of query
point Q. Every attribute i4 that contributes a match is within the interval [g; —threshold, q;+

threshold]. Consider the cases in Table 3.1. In case 1 and 3, appear|I] is smaller than ng — 1.

15

Threshold, Threshold,
(3,0.3) (1,2.5) (3,0.3) (1,2.5)
R o o e o P () e —— el e >
(2,0.5) (5,1.8)] (43.0) (2,0.5) (5,1.8)| (4,3.0)
(3.0.1) 1,2.7) (5,4.5) (3.0.1) 1,2.7) (5,4.5)
dr =@ ® L ® ® » d-® L L ® ® >
(4,0.7) 2,1.7) (4,0.7) 2,1.7)
21.0) [3,1.7) (5,4.5) (2307 (3,1.7) \Qg.s)
ds - » d; /og—)/o-o—a >
(1,1.5) (4,R.5) (1,15) (4,p.5)
(31.0) £~ \&3.0) (1,4.5) (55.0) (3,1.0) (2,3.0) (1,45) (55.0)
ds o—i-/c o *—> d, o ® ®
(4,11.5) (4,1.5)
(1,0.4) (3,0.8) 2,2.7) (5,5.0) (1,0.4) (3,0.8) 2,2.7) (5,5.0)
ds > >—0 * ds ® *—0 >
(4,1.2) (4,1.2)
Threshold; Threshold,
(a) (b)
Threshold, Threshold,
(3,0.3) E%.s) N\ (3,0.3) (1.2.5)
Sl S Eum— P () ey >
" 208) (5.1.8)] (43.0) " 208) (5.1.8)] (43.0)
(3.0.1) 1,2.7) (5,4.5) (3.0.1) 1,2.7) (5,4.5)
d =@ *® L ° ® > d-® L L ® ® >
(4,0.7) 2,1.7) (4,0.7) 2,1.7)
(2,1.0) (3,1.7) (5,4.5) (2,1.0) [3,1.7) (5,4.5)
(] — e ety ® » ds > >
(1,1.5) (4,R.5) (1,15) (4,p.5)
(8,1.0) (2,3.00 (1,4.5) (55.0) (8,1.0) (2,3.00 (1,4.5) (5,5.0)
ds *—9 > > ds *—0 ® ®
(4,11.5) (4,1.5)
(1,0.4) (3,0.8) 2,2.7) (5,5.0) (1,0.4) (3,0.8) 2,2.7) (5,5.0)
ds ® >—0 L ——p d; o *—0 ® o)
(4,1.2) (4,1.2)
Thresholds Thresholds
(c) (d)

Figure 3.2: Example of CKNMatchAD Problem

Even if fluctuated attribute contributes or loses one match, appear[I] is still smaller than ng.
Hence, S, ..., 5, and S are unchanged. In case 2, original attribute ¢4 does not contribute
any match because isAppeary 4 is false. We set SR; to the interval (Region 1 in Table 3.1)
which within the fluctuated attribute still contributes no match and will not affect S. In case
4, the attribute i4 contributes the m-th match where m is bigger than n;. We set SR; to keep
fluctuated attribute ¢/, from changing the order of the attributes that contribute I-th match
where [is smaller than m. The other cases that are not in Table 3.1 have no safe region. In
Algorithm 3, we initialize all the data structures for the cases that have no safe region or the
fluctuated attribute is out of safe region. At the end of CFKNMatchAD, we then check the

size of S[| to determine if we need to perform FKNMatchAD to get the top k points. O

16

Chapter 4

Discussion

In this section, we will discuss the extensions of CFKNMatchAD. We discuss the problems
of using CFKNMatchAD in the centralized and de-centralized environments. In addition, we

also discuss the problem of simulation implementation.

4.1 Centralized Environment

As shown in Figure 4.1, the system for similarity search applications usually has a centralized
server with many different data sources. These data sources send data packets that have
information about the points to the centralized server. The format of data packet is (id, <
P1, P2, .-, Pa >) where id is the point ID and < py, pa, ..., pg > is the attribute list of the point.
After collecting information of the points, the centralized server receives continuous queries
from the clients. Then the centralized server performs CFKNMatchAD and returns S to the
clients.

The centralized server reevaluates the queries registered in it and return new top k points
after it receives the information about the fluctuated points from the data sources. The
Architecture is shown in Figure 4.1. In centralized environment, the data sources will send
information of the points to the centralized server and the centralized server checks if it has
to reevaluate queries. It is unnecessary that data sources send information of the points to

the centralized server if the query results are unchanged.

4.2 Centralized Environment with safe region

To overcome the shortcoming of centralized environment, we do not want the data sources

to send unnecessary information to the centralized server if query results will not change.

17

&

Data source
8 Register Query
I

Collect points ﬁ]
Return Result Centralized

server
Figure 4.1: Centralized Environment Architecture

T

After the centralized server receives continuous queries from clients, it performs first-time
CFKNMatchAD and computes safe region for every attribute. Then the centralized server
sends safe region of every attribute to the corresponding data sources. The centralized server
only send safe region which contains upper and lower bounds to the attribute that contributes
a match. For the attribute that do not contribute a match, its difference with respect to
the query value is bigger than threshold. So the centralized server only send threshold to
those attributes that do not contribute a match. Therefore, every data source can use safe
region received from centralized server to check whether fluctuated attributes will change
query results. In this environment, the data sources need to have a little computation power
to check whether fluctuated attributes are out of safe regions. Only when fluctuated attribute
will change query results, the data sources send information of points to inform the centralized
server to reevaluate queries. Because of safe region, some fluctuated attribute within its safe
region do not sent to the centralized server. Therefore, the centralized server has to send
a probe message to all data sources to retrieve all attributes before reevaluating queries.
Then the centralized server performs CFKNMatchAD and sends new safe regions to the data

sources. By using safe region, unnecessary information can be filtered.

4.3 De-centralized Environment

In centralized environment, the centralized server needs to handle all queries from the clients.
When there are large volumes queries and points from the clients and data sources respectively,
server spends much computation cost on those. If there are other servers that have the
same computation power with centralized server, we can use these servers to compute partial
answers and send these partial answer to centralized server to compute final answers. By

this way, we can decrease the number of points that every server has to handle and balance

18

workload of every server. Consider de-centralized environment setting with m + 1 servers:
N1, N, ..., N, servers with a centralized server Ny. Every server N;(n < i < m) has data
points { Py ;, Ps, ..., B, ;} where [; is the number of points in N;. In de-centralized environment,
when the client registers a frequent k-n-match query < @, [ng,n1],k > to the Ny, Ny gives
every query a unique number gid and broadcasts (qid, < @, [ng,ni1],k >) to every server
Ni(n < i < m). Unlike centralized environment, N;(n < i < m) does not send information
of the points to the centralized server Ny at first time. According to different query points,
N;(0 < i < m) performs CFKNMatchAD to find the points that have chance to become final
answers. In traditional similarity search algorithm, a point is determined whether if it is an
answer that user wants according a score.

It can be guaranteed that the global top k points are also in the set of the local top k
points. However, in frequent k-n match search, an answer point is determined by the number
of appearance in Sy, ..., Sy,. It is possible that a point that is not in the local top k points
is in global Sy, ..., Sn,. If N;(0 < i < m) performs CFKNMatchAD to find local top k points
and send them to Ny, Ny may lose some points that should be in global S,,,...,S,,. This
problem causes incorrect number of appearance of points in global S,,, ..., S,,. To avoid this
problem, we let N; perform CFKNMatchAD and then send every point {P;;, P;;,..., P, ;}
that appear in local S,,, ..., S,, and their attributes with corresponding query number ¢id to
Ny where a; is the number of points in S, ..., S,,. We will prove that a point that do not
appear in the top k positions of local S, ...,.S,, will not appear in the top k positions of
global S, ..., Sy, in the next paragraph. Therefore, we just send the points that appear in
local Sy, ..., Sp, and can sure that final answer is correct. Then N receives the points from
N;(0 < i < m) with the same ¢id and perform FKNMatchAD to find globe top k points.
In N;(1 < i < m), the attributes of {Py;, P, ..., P, ;} have their safe regions. When the
attribute of { Py ;, Ps, ..., P, ;} fluctuates, N;(0 < i < m) performs CFKNMatchAD and then
sends the points that appear in local S, ...,S,, to Ny if if the points in local Sy, ..., Sn,
change. Nj receives the update from N;(0 < i < m) and performs FKNMatchAD to find new
globe top k points. The architecture of de-centralized environment is shown in Figure 4.2.

Proof. In frequent k-n match search, a point that do not appear in the top k position of
local Sy, ..., Sp, will not appear in the top k position of global S, ..., Sp,-

Let P be a point that do not appear in local S, ..., S,,. Hence, there are at least k points
that have n-match differences smaller than P where (ng < n < n;). If we send all points in
local Sy, ..., Sy, and P to the centralized server. After performing FKNMatchAD, assume
P is in global S,,, ..., S,,. This means that, there are less than £ points that have n-match

19

- -)

o local top k point sets
Monitoring PP

globe top k points | {P'y 1P’ 1, au)
{P’1,25P’2,25"'5P,a2,2}

{P’1,m,P’2,m,“',P,am,m}

N -),
Send thé local answers ﬁ
Server N Ser\Ter N, Server N,

Perform
CFKNMatchAD

Perform
CFKNMatchAD

Figure 4.2: Architecture of distributed system

differences smaller than P. But we do send all points in local S,,, ..., S,, to the centralized
server. So there are at least k points in global S,,,...,S,,. It contradicts the assumption
and the point P do not exist. Thus, we prove that a point that do not appear in the top k
positions of local S,,,, ..., S,, will not appear in the top k positions of global S, ..., S,,. O

In de-centralized environment, data servers only perform CFKNMatchAD on the points it
has and the centralized server only FKNMatchAD on the points received from data servers.
Moreover, data servers only send data of the points that appear in the top k positions of local
Shos s On, to the centralized server. Data servers can eliminate the points that are not the
answers and computation on query process can be balanced by all data servers and response
time of each query and network traffic can be reduced. The system we mentioned above are
2-level de-centralized architecture. The data servers are in level 1 and the centralized server
is in level 2. To reduce the response time of the queries, we can further deploy more servers
to deepen the architecture level. The servers of level 1 are all data servers and the server of

top level is the centralized server that is responsible to handle the queries from the clients.

20

The servers between level 1 and top level perform FKNMatchAD to find the temporary top

k points and send to the server of upper levels.

4.4 Implementation

In continuous queries, the server has to report the valid answer periodically. Therefore, when
an attribute fluctuates, we have to check whether the answer is changed and do the reevalua-
tion. In every reevalution, FKNMatchAD and CFKNMatchAD have to sort all attributes of
the objects in every dimension. This operation cost a lot of computation. Actually, we do not
have to sort all attributes and can get the valid answer. After we get the first-time answer,
we know how many attributes we retrieve to obtain the valid answer and the differences of
these attributes are smaller then threshold. In the next reevaluation, we can only sort the
attributes that have differences smaller than threshold plus a value to obtain the valid answer.
This will reduce the sorting time significantly and improve the performance of FKNMatchAD
and CFKNMatchAD.

21

Chapter 5

Performance Evaluation

In this section, we evaluate the efficiency of CFKNMatchAD with different attribute variation
rates. We use synthetic data sets generated randomly to run our experiments on a computer

with 3.2GHz CPU and 2G RAM.

5.1 Simulation Model

In our simulation model, we use the query and data points with high-dimensional attributes
that generated randomly from uniform distribution. First, we generate N data points with
d dimensional attributes data and each normalized attribute is a value within [0,1.0] and is
in uniform distribution. We consult [21] to set other system parameters. Table 5.1 lists the

default setting of system parameters.

| Parameter | Default Setting
Number of points N 20000
Number of dimensions 16
K 30
Monitor interval [ng,n, 4-8

Number of fluctuated dimension m | 8
attribute-changed event arrival time | exponential distribution with mean = 10 sec
Simulation time 3000 sec

Table 5.1: System Parameters

Our experiments compare FKNMatchAD, CFKNMatchAD in centralized environment
(CFKNMatchAD-C), CFKNMatchAD in centralized environment with safe region (CFKNMa-
tchAD-C with SR) and CFKNMatchAD in de-centralized environment (CFKNMatchAD-D)
mentioned in chapter 4. In centralized environment, we have a centralized server received N
data points from the data sources. In de-centralized environment, we set 10 servers and a

centralized server and assume that N data points are located uniformly in every data server,

22

that is, every data server has N /10 data points. The simulation time is 3000 seconds. During
simulation, we use exponential distribution to model the interval time that attribute-changed
events arrive and the mean value of distribution is 10 seconds. In every attribute-changed
event, we choose at most m attributes of a random point in different dimensions to fluctuate.
After the attribute fluctuates, each approach is performed to find the top k answers and re-
port them to the clients. Finally, the average response time of the queries and total network
packet bytes are used as the measurements to compare the performances between four ap-
proaches. Total network packets include point data sent from the data sources to the servers
and information of safe region sent from the servers to the data sources. To investigate the
impact of safe region, we evaluates the experiments in high, medium, low data variation rates

environments. The variation rate is defined as follows.
iq — variation_rate < i; < ig + variation_rate

Note that the origin attribute is iq and fluctuated attribute is i/, The high, medium, and
low variation rates are 5%, 10%, and 15% respectively. In Figure 5.1, we show the response
time of each approach after the first 20 events arrived. The response time of CFKNMatchAD-C
and CFKNMatchAD-C with SR are the same because they both are performed in centralized
environment. The difference between them is that CFKNMatchAD-C with SR uses safe region
to filter unnecessary update packets while CFKNMatch-C does not.

In Figure 5.1, we can see that the response time of FKNMatchAD do reevaluation every
time and CFKNMatchAD usually has 0 response time because it uses safe region. Since
CFKNMatchAD-D can balance the workload of every processing server and filter some points
that will not be the answers, we can see that the response time of CFKNMatchAD-D is
significantly lower than the other three approaches. In addition, we can see that first time
response times of four approaches are significantly higher. As we mention in chapter 4, in the
first time evaluation, we do not know how much attributes we have to retrieve to find the
answers. Therefore, we sort all attributes in every dimension. After that, we use the result of
the first time evaluation to know how much attributes we retrieve and the differences between
query value and those retrieved attributes are smaller than threshold. Therefore, we can only
sort the attributes that have differences smaller than threshold plus a value and then we can
use these sorted attributes to find the answers. We do not sort all attributes and reduce the
sorting time after the first evaluation.

In Figure 5.1, we can see that the fluctuated attributes are out of safe regions more easily
in the environment with high data variation rate. Hence, the number of that CFKNMatchAD

reevaluates the query increases when the data variation rate increase.

23

To analyze the CFKNMatchAD specifically, we classify the average response time into three

parts: sorting time, calculating the safe region, and calculating the answers. As Figure 5.2

‘ —e— FKNMatchAD —=— CFKNMatchAD-C —a— CFKNMatchAD-C with SR —«— CFKNMatchAD-D ‘

1000
__ 800 |
w
£
(<5}
£ 600 |
=
D
2
S 400 |
o
w
[<5)
oc
200
o ‘

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Attribute-changed Event

(a) simulation with 5% data variation rate

—eo— FKNMatchAD —s— CFKNMatchAD-C —a— CFKNMatchAD-C with SR —<«— CFKNMatchAD-D

1000
__ 800 |
w
e <
=
£ 600 |
=
(5]
2
S 400 |
o
72}
[<5)
o

200 |

o ERERST | o o o

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Attribute-changed Event

(b) simulation with 10% data variation rate

—e— FKNMatchAD —=— CFKNMatchAD-C —a— CFKNMatchAD-C with SR —<«— CFKNMatchAD-D

1000
__ 800 |
=3
£ 600 |
=
é_ 400 |
&

200

o w ‘
1 2 3 a 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Attribute-changed Event
(c) simulation with 15% data variation rate
Figure 5.1: Simulation with different data variation rates
‘ O Sorting O Calculating Safe Regions B Calculating Answers ‘

1000 M
— L — —]
Ei 800 =
= i
= 600
2
g 400 r
o
&~ 200 r

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Attribute-changed Event

Figure 5.2: Analysis of the average response time of CFKNMatchAD

24

shows, the sorting time dominates the average response time. The time using on calculation
the safe region and the answers is almost none. Hence, we think that the parameter that

affect the sorting time will affect the average response time significantly.

5.2 Impact of point number

In Figure 5.3, we compare the four approaches with 10000-30000 number of points in differ-
ent data variation environments. The Figure 5.3(a)(b)(c) show the results using the average
response time as the measurement. In the results, CFKNMatchAD performs better than
FKNMatchAD. In different data variation, the total process time of FKNMatchAD are about
the same. The response time of all approaches increase when number of points increases. But
the response of FKNMatchAD increases more strictly than CFKNMatchAD. Because CFKN-
MatchAD does not reevaluate the query after some attribute-changed event arrive, the average
response of CFKNMatchAD does not increase as sharp as FKNMatchAD when number of the
points increases. In 5.3(d)(e)(f), the experiments use total packet bytes as the measurement.
FKNMatchAD and CFKNMatchAD-C have the same number of packet bytes because the
data sources report information of all points without filtering any update packets at every
attribute-changed event arrives. Contrarily, number of packet bytes of CFKNMatchAD-C
with SR and CFKNMatch-D are smaller than the other two approaches. CFKNMatchAD-C
with SR uses safe region to filter the unnecessary update packets and CFKNMatchAD-D uses
de-centralized architecture to filter the points that will not be in the answer sets. Thus, these
two approaches have less number of packet bytes in the simulations. Finally, we can say that

CFKNMatchAD has better scalability than FKNMatchAD.

5.3 Impact of dimension number

To examine the scalability of CFKNMatchAD, we also evaluate the experiments with different
number of dimension. As shown in Figure 5.4, we evaluate the experiments with 12-20 dimen-
sion of point. Since the monitor interval [ng, n4] is fixed, all approaches need to retrieve more
attributes to find the top k answer during processing a query when number of dimension of
the point decreases. And threshold also becomes bigger when number of dimension decreases.
Because we sort the attributes that have differences smaller than threshold plus a value in
every reevaluation, we sort more attributes when threshold becomes bigger. Therefore, the

sorting time makes the average response time of all approaches increase when number of di-

25

Average Response Time(ms)

Total Packet Bytes|

Average Response Time(ms)

Total Packet Bytes(K)

B FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR 0 CFKNMatchAd-D

2500
2000
1500
1000
500
0
10000 15000 20000 25000 30000
Number of Points
(a) 5% data variation rate
m FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR 0 CFKNMatchAd-D
1400000
10000 15000 20000 25000 30000
Number of Points
(d) 5% data variation rate
Figure 5.3:
B FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR 0 CFKNMatchAd-D
1600
1400 -
1200
1000
800
600
400
200
0
12 14 16 18 20
Number of Dimensions
(a) 5% data variation rate
m FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR 0 CFKNMatchAd-D
1200000
1000000
800000
600000
400000
200000
0

12 14 16
Number of Dimensions

(d) 5% data variation rate

18 20

ms)

Average Response Time(

Total Packet Bytes(K)

2500

m FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR 0 CFKNMatchAd-D

N
=}
153
S

1500

1000

500

1400000
1200000
1000000
800000
600000
400000

200000

()

10000 15000 20000

Number of Points

25000 30000

10% data variation rate

B FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR O CFKNMatchAd-D

10000

15000 20000 25000
Number of Points

30000

10% data variation rate

ms)

Average Response Time(

Total Packet Bytes(K

m FKNMatchAD @ CFKNMatchAD-C
0 CFKNMatchAD-C with SR 0 CFKNMatchAd-D

2500

N
=}
S
1S}

1500

=
S
S

23
1=
15y

10000 15000 20000

Number of Points

25000 30000

15% data variation rate

B FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR O CFKNMatchAd-D

1400000

1200000

o
S
S
S
S
S

800000

@
=3
S
S
S
S

400000

200000

10000

15000 20000 25000

Number of Points

(f) 15% data variation rate

30000

Simulation with different number of point

Average Response Time(ms)

Total Packet Bytes(K)

m FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR O CFKNMatchAd-D

1600

1400 -

1200

1000

800

600

400

200

(b

=

1200000
1000000
800000
600000
400000

200000

()

12 14 16 18

Number of Dimensions

20

10% data variation rate

O CFKNMatchAD-C with SR 0 CFKNMatchAd-D

m FKNMatchAD @ CFKNMatchAD-C ‘

12 14 16
Number of Dimensions

18 20

10% data variation rate

Average Response Time(ms)

Total Packet Bytes(K)

m FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR 0 CFKNMatchAd-D

1600

1400 -

M A ® O N
S 9 9 © S o
S & & © © o

12 14 16 18
Number of Dimensions

20

15% data variation rate

m FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR O CFKNMatchAd-D

1200000

1000000

800000

600000

400000

200000

12 14

Number of Dimensions

(f) 15% data variation rate

16 18 20

Figure 5.4: Simulation with different number of dimension

26

mension decreases as shown in Figure 5.4(a)(b)(c). In Figure 5.4(d)(e)(f), the results have
similar behavior in Figure 5.3(d)(e)(f) because the total packet bytes increase when number

of dimension increases.

5.4 Impact of monitor interval [ng, ni]

In the next simulation, we evaluate every approach under different monitor interval [ng, nq].
In Figure 5.5, we use default value of [ng, n1] and expand ng and n; by 1 respectively in zig-zag
manner. Expansion of monitor interval means that we have to monitor additional answer sets
and have more points in the answer sets S[]. In Figure 5.5(a)(b)(c), we can see that the average
response time of FKNMatchAD increase a little when ng decreases because all approaches only
have to add points to the additional answer sets during the procedure of processing the queries.
This does not affect the average response time critically. But the average response time of all
approach increase slightly when ng decreases. If there are more points in the answer sets, we
have higher chance to do the reevaluation because more the attributes are easy to fluctuate
out of their safe regions. On the other hand, in Figure 5.5(a)(b)(c), all the average response
time increase when n; increases much because increase of n;. To process a frequent k-n match
query, we have to compute until S[n;] has k points and then find k points that appear most
frequently in S[|. Increase of n; means that we have to spend more time to find the top
k points and makes the average response time increase. In Figure 5.5(d)(e)(f), we can see
that as monitor interval increases, the total packet bytes of CFKMatchAD-C with SR and
FKNMatchAD-D also increase and the volume of the increase depends on the increase of the
monitor interval but not the value of ng or ny. But the total packet bytes of FKNMatchAD
and CFKNMatchAD-C are the when monitor interval increases. This is because these the data
sources always report information of all points. If number of point and number of dimension
do not change, the total packet bytes of these two approaches are the same.

To investigate the impact of ng and n; more specifically, we also run the simulations with
different ng and n, separately. We set ng or ny to the default value and adjust the other one.
The results are shown in Figure 5.6 and 5.7. The increases 5.7(a)(b)(c) are more acute than
the increases in In Figure 5.6(a)(b)(c). In Figure 5.6(d)(e)(f) and 5.7(d)(e)(f), we can see that
the total packet bytes of CFKNMatchAD-C with SR are affected by the increases of ny and
ny critically while the total packet bytes of CFKNMatchAD-D do not.

27

Average Response Time(ms)

Total Packet Bytes(K)

Average Response Time(ms)

Total Packet Bytes(K)

m FKNMatchAD @ CFKNMatchAD-C

O CFKNMatchAD-C with SR O CFKNMatchAd-D O CFKNMatchAD-C with SR 0 CFKNMatchAd-D

m FKNMatchAD @ CFKNMatchAD-C
0 CFKNMatchAD-C with SR 0 CFKNMatchAd-D

| FKNMatchAD @ CFKNMatchAD-C ‘

2500 2500 2500
2000 3 2000 3 2000 |
E E
o o
£ E
1500 r 1500 5 1500 f
2 2
1 2
1000 & 1000 8 1000 |
o o
g g
500 2 500 2 500 f
0 0 0
4-8 3-8 39 x99 2-10 48 3-8 39 x99 2-10 4-8 3-8 39 2~9 2+10
Number of n0-nt Number of n0-n1 Number of n0-n1
(a) 5% data variation rate (b) 10% data variation rate (c) 15% data variation rate

® FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR 0 CFKNMatchAd-D

® FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR O CFKNMatchAd-D

® FKNMatchAD @ CFKNMatchAD-C
0 CFKNMatchAD-C with SR 0 CFKNMatchAd-D

900000 900000 900000
800000 800000 800000
700000 700000 700000
600000 % 600000 % 600000
500000 E‘lf 500000 E? 500000
400000 % 400000 % 400000
300000 S 300000 5 300000
200000 .2 200000 E 200000
100000 100000 100000
0 0 0
4~8 3~8 3~9 2~9 2~10 4~8 3~8 3~9 2~9 2~10 4~8 3~8 3~9 2~9 2~10
Number of n0-n1 Number of n0-n1 Number of n0-n1
(d) 5% data variation rate (e) 10% data variation rate (f) 15% data variation rate

Figure 5.5: Simulation with different ny — ny

® FKNMatchAD @ CFKNMatchAD-C

0 CFKNMatchAD-C with SR O CFKNMatchAd-D 0 CFKNMatchAD-C with SR O CFKNMatchAd-D 0 CFKNMatchAD-C with SR O CFKNMatchAd-D

m FKNMaichAD @ CFKNMatchAD-C ‘

m FKNMatchAD @ CFKNMatchAD-C ‘

1200 1200 1200
1000 - 1000 - 1000 -
£ g
g g
800 = 800 E 800
[0 [
2 g
600 S 600 S 600
g g
o o
(4] [}
400 g 400 ? 400
§ g
> >
200 < 200 < 200
0 0 0
2~8 3~8 4~8 5~8 6~8 2~8 3~8 4~8 5~8 6~8 2~8 3~8 4~8 5~8 6~8
n0 n0 n0
(a) 5% data variation rate (b) 10% data variation rate (c) 15% data variation rate
® FKNMatchAD @ CFKNMatchAD-C B FKNMatchAD @ CFKNMatchAD-C B FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR 0 CFKNMatchAd-D 0 CFKNMatchAD-C with SR 0 CFKNMatchAd-D O CFKNMatchAD-C with SR 0 CFKNMatchAd-D
900000 900000 900000
800000 800000 800000
700000 __ 700000 __ 700000
g g
600000 $ 600000 $ 600000
= =
500000 @ 500000 @ 500000
I3 [}
400000 § 400000 § 400000
o o
300000 S 300000 T 300000
© °
200000 200000 200000
100000 100000 100000
0 0 0
2~8 3~8 4~8 5~8 6~8 2~8 3~8 4~8 5~8 6~8
no no no
(d) 5% data variation rate (e) 10% data variation rate (f) 15% data variation rate

Figure 5.6: Simulation with different ng

28

® FKNMatchAD @ CFKNMatchAD-C

B FKNMatchAD @ CFKNMatchAD-C
0 CFKNMatchAD-C with SR O CFKNMatchAd-D

0 CFKNMatchAD-C with SR 0 CFKNMatchAd-D

® FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR 0 CFKNMatchAd-D

2500 2500 2500

2000 - 2000 - 2000 -

1500 1500 1500 -

1000 1000 1000 -

Average Response Time(ms)
Average Response Time(ms)
Average Response Time(ms)

500 500 500

46 47 48 4~9 4~10 46 47 4-8 4-9 4-10
ni nt ni
(a) 5% data variation rate (b) 10% data variation rate (c) 15% data variation rate
® FKNMatchAD @ CFKNMatchAD-C B FKNMatchAD @ CFKNMatchAD-C B FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR 0 CFKNMatchAd-D 0 CFKNMatchAD-C with SR 0 CFKNMatchAd-D O CFKNMatchAD-C with SR 0 CFKNMatchAd-D
900000 900000 900000

800000 | 800000 - 800000 |

700000 700000 | __ 700000

@
1=
153
S
S
15}

600000

@
S
S
S
153
1S}

500000
400000 |
300000 |

300000 - 300000 |

Total Packet Bytes(K)
Total Packet Bytes (K
IN
o
3
3
(=3
3
Total Packet Bytes(K
»
3
o
3
3
o

200000 200000

100000 - 100000 100000

0 0 0

4~6 4~7 4~8 4~9 4~10 46 47 4~8 4~9 4~10 46 47 4-8 4~9 4~10
ni ni n1

(d) 5% data variation rate (e) 10% data variation rate (f) 15% data variation rate

Figure 5.7: Simulation with different n,
5.5 Impact of fluctuated dimension number

To measure FKNMatchAD and CFKNMatch in different data variation environment, we not
only change data variation rate but also number of fluctuated dimension. Figure 5.8 shows the
experiment results with 4-16 fluctuated dimensions. We choose at most 4-16 dimensions to
fluctuate in every attribute-changed event. In Figure 5.8(a)(b)(c), the average response time
of FKNMatchAD are almost the same because FKNMatchAD reevaluate the queries after
every attribute-changed event arrives and number of fluctuated dimension does not affect it.
On the other hand, the average response time of CFKNMatchAD increases slightly when
number of the fluctuated dimension increases. This is because fluctuation of the attributes
in S[] can easily cause reevaluation and number of these attributes are comparatively smaller
with respect to the attributes that are not in S[|]. Therefore, we think that increase of number
of fluctuated dimension dose not cause reevaluation critically. The main reason that affected
the performance of CFKNMatchAD is that if the fluctuated attributes are out of their safe
regions. In Figure 5.8(d)(e)(f), the results using packet bytes as the measurement have the

similar behavior as Figure 5.5(d)(e)(f).

29

B FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR 0 CFKNMatchAd-D

Average Response Time(ms)

4 8 12 16
Number of Fluctuated Dimensions

(a) 5% data variation rate

B FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR O CFKNMatchAd-D

900000

800000
700000
600000
500000
400000

300000

Total Packet Bytes(K)

200000

100000

0
4 8 12 16

Number of Fluctuated Dimensions

(d) 5% data variation rate

Average Response Time(ms

(K)

Total Packet Bytes:

m FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR 0 CFKNMatchAd-D

1200

1000

800 |

600

400

200

4 8 12 16
Number of Fluctuated Dimensions

(b) 10% data variation rate

0 CFKNMatchAD-C with SR 0 CFKNMatchAd-D

B FKNMatchAD @ CFKNMatchAD-C ‘

900000

800000 |
700000
600000 |
500000
400000 |
300000 |
200000 |

100000

0

4 8 12 16
Number of Fluctuated Dimensions

(e) 10% data variation rate

Average Response Time(ms|

<
Z
g

Y

ket

o

Total Pa

m FKNMatchAD @ CFKNMatchAD-C
0 CFKNMatchAD-C with SR 0 CFKNMatchAd-D

1200

1000 -

800 |

600

400

200

4 8 12 16
Number of Fluctuated Dimensions

(c) 15% data variation rate

W FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR 0 CFKNMatchAd-D

900000

800000 |
700000
600000 |
500000
400000
300000 |
200000 |

100000

0

4 8 12 16
Number of Fluctuated Dimensions

(f) 15% data variation rate

Figure 5.8: Simulation with different number of fluctuated dimension

5.6 Impact of answer number k

Figure 5.9 illustrates the impact of the answer number & of all approaches. We vary k from 10

to 50. As Figure 5.9(a)(b)(c) show, the average response time of CFKNMatchAD increases

slowly when k increases. Contrarily, the average response time of FKNMatchAD increases

more heavily. This is because CFKNMatchAD uses safe region to decrease the probability

of reevaluation and slow down the increasing trend of CFKNMatchAD. Figure 5.9(d)(e)(f)

show the relations between number of packet bytes and number of answer k. The results

also have similar behavior as Figure 5.6(d)(e)(f). Reporting periodically makes total packet
bytes of FKNMatchAD and CFKNMatchAD-C higher than other two approaches. But the
total packet bytes of FKNMatchAD and CFKNMatchAD-C do not increase when k increases

because data sources always report information of all points to the centralized server.

5.7 Impact of answer number inter-arrival time of attribute-

changed event

Figure 5.10 shows the results of the simulations with different mean of inter-arrival time.

Because our simulation time is set to 3000 seconds, there more attribute-changed events arrive

30

B FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR 0 CFKNMatchAd-D

Average Response Time|

10 20 30 40 50
Number of k

(a) 5% data variation rate

O CFKNMatchAD-C with SR O CFKNMatchAd-D

B FKNMatchAD @ CFKNMatchAD-C ‘

800000

700000 |
. 600000 |
< <
8 500000 | g
2 <
("] m
5 400000 | 5
g g
8 8
a 300000 - a
K g
200000 =
100000 |-
0
10 20 30 40 50
Number of k
(d) 5% data variation rate
Figure

Average Response Time(ms)

. 600000 -

1400

1200

1000

800 -

600 -

400

200

m FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR 0 CFKNMatchAd-D

10 20 30 40 50
Number of k

(b) 10% data variation rate

800000

700000 |

500000 |

400000 |

300000 ~

200000 |

100000

0

B FKNMatchAD @ CFKNMatchAD-C
0 CFKNMatchAD-C with SR 0 CFKNMatchAd-D

10 20 30 40 50
Number of k

(e) 10% data variation rate

Average Response Time(ms)

Total Packet Bytes(K

1400

m FKNMatchAD @ CFKNMatchAD-C
0 CFKNMatchAD-C with SR 0 CFKNMatchAd-D

1200 -

1000 -

800 -

600 -

400

200

10 20 30 40 50
Number of k

(c) 15% data variation rate

800000

700000

600000 |

500000

IS
S
S
S
S
S

300000 ~

200000

100000

0

5.9: Simulation with different k

W FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR 0 CFKNMatchAd-D

10 20 30 40 50
Number of k

(f) 15% data variation rate

when mean of inter-arrival time is smaller. During the simulation, the response time of the

first-time evaluation is significantly large because we have to sort all the attributes in every

dimension. When we have more attribute-changed event arrived, the response time of first-

time evaluation can be amortised to the other evaluations. Therefore, we can see the average

response time of all approaches increase sightly when mean of inter-arrival time increases in

Figure 5.10(a)(b)(c). In Figure 5.10(d)(e)(f), the total packet bytes decreases when mean of

inter-arrival time increases. This is because more attribute-changed event arrived make the

chance of reevaluation increases and the total packet bytes also increase.

31

m FKNMatchAD @ CFKNMatchAD-C
0 CFKNMatchAD-C with SR 0 CFKNMatchAd-D

1200

1000

800

600

400

Average Response Time(ms)

200

6 8 10 12 14

Number of Inter-arrival Time(sec)
(a) 5% data variation rate

B FKNMatchAD @ CFKNMatchAD-C
0O CFKNMatchAD-C with SR O CFKNMatchAD-D

900000
. 800000
700000
600000
500000
400000
300000
200000
100000

Number of packet bytes (K

0

6 8 10 12 14
Arrival time of attribute-changed event(sec)

(d) 5% data variation rate

W FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR O CFKNMatchAd-D

1200

1000

@
S
S

Average Response Time(ms)
IS =
S 3
3 3

N
S
S

6 8 10 12 14
Number of Inter-arrival Time(sec)

(b) 10% data variation rate

B FKNMatchAD @ CFKNMatchAD-C
0O CFKNMatchAD-C with SR O CFKNMatchAD-D

900000
800000
700000
600000
500000
400000
300000
200000
100000

Number of packet bytes(K)

0

6 8 10 12 14
Arrival time of attribute-changed event(sec)

(e) 10% data variation rate

B FKNMatchAD @ CFKNMatchAD-C
O CFKNMatchAD-C with SR 0 CFKNMatchAd-D

1200

1000

800

600

400

Average Response Time(ms)

200

6 8 10 12 14

Number of Inter-arrival Time(sec)
(¢) 15% data variation rate

B FKNMatchAD @ CFKNMatchAD-C
0 CFKNMatchAD-C with SR 00 CFKNMatchAD-D

900000
— 800000
700000
600000
500000
400000
300000
200000
100000
0

Number of packet bytes (K

6 8 10 12 14
Arrival time of attribute-changed event(sec)

(f) 15% data variation rate

Figure 5.10: Simulation with different mean of inter-arrival time

32

Chapter 6

Conclusion

In this thesis, we consider the problem of continuous k-n-match search. We propose a algo-
rithm CFKNMathAD to compute a safe region for every attribute of points in high dimensional
databases. We do not perform the query reevaluation if fluctuated attribute is within its safe
region. We reduce the query response time without doing unnecessary query reevaluation.
Furthermore, we also apply our algorithm in de-centralized environment to balance the sys-
tem workload. Our experiments show that CFKNMatchAD has better performances than
FKNMatchAD in different data variation rates. Finally, we conclude that CFKNMatchAD

reduce the query response time and balance system workload.

33

Bibliography

1]

2]

[10]

[11]

[12]

[13]

R. Agrawal, K.-I. Lin, H. S. Sawhney, and K. Shim. Fast similarity search in the pres-
ence of noise, scaling, and translation in time-series databases. In Proc. of the 21th
International Conference on Very Large Data Bases (VLDB), pages 490-501, 1995.

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal
algorithm for approximate nearest neighbor seraching fixed dimensions. Journal of the

ACM(JCAM), 45(6):891-923, 1998.

A. Badel, J. P. Mornon, and S. Hazout. Searching for geometric molecular shape comple-

mentarity using bidimensional surface profiles. Journal of Molecular Graphics, 10(4):205—
211, 1992.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: an efficient and
robust access method for points and rectangles. In Proc. of the 10th ACM Conference
on Management of Data (SIGMOD), pages 322-331, 1990.

S. Berchtold, C. Bohm, D. A. Keim, and H.-P. Kriegel. A cost model for nearest neighbour
search. In Proc. of the 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems(PODS), pages 78 — 86, 1997.

S. Berchtold, D. A. Keim, and H.-P. kriegel. The x-tree: An index structure for high-
dimensional data. In Proc. of the 22th International Conference on Very Large Data
Bases (VLDB), pages 28 — 39, 1996.

N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over web-accessible
databases. In Proc. of the 18th International Conference on Data Engineering(ICDE),
page 369, 2002.

R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
In Proc. of the 20th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems(PODS), pages 102-113, 2001.

L. Gao, Z. Yao, and X. Wang. Evaluating continuous nearest neighbor queries for stream-
ing time series via pre-fetching. In Proc. of the 11th International Conference on Infor-
mation and Knowledge Management (CIKM), pages 485 — 492, 2002.

A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc. of the
4th ACM Conference on Management of Data (SIGMOD), pages 47-57, 1984.

H. Hu, J. Xu, and D. L. Lee. A generic framework for monitoring continuous spatial
queries over moving objects. In Proc. of the 25th ACM Conference on Management of
Data (SIGMOD), pages 479-490, 2005.

N. Katayama and S. Satoh. The sr-tree: An index structure for high-dimensional near-
est neighbor queries. In Proc. of the 17th ACM Conference on Management of Data
(SIGMOD), pages 369 — 380, 1997.

F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas. Fast nearest neigh-

bor serach in medical image databases. In Proc. of the 22th International Conference on
Very Large Data Bases (VLDB), pages 215-226, 1996.

34

[14]

[15]

[20]

[21]

E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest
neighbor in high dimensional spaces. In Proc. of the 30th annual ACM symposium on
Theory of computing(STOC), pages 614 — 623, 1998.

K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis. Continuous nearest neigbor
monitoring in road networks. In Proc. of the 32nd International Conference on Very
Large Data Bases (VLDB), pages 43-54, 2006.

T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest neighbor search. In Proc. of the
18th ACM Conference on Management of Data (SIGMOD), pages 154-165, 1998.

T. Sellis, N. Roussopoulos, and C. Faloutsos. The r*-tree: a dynamic index for multi-
dimensional objects. In Proc. of the 13th International Conference on Very Large Data
Bases (VLDB), pages 507-518, 1987.

A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling the querying moving

objects. In Proc. of the 15th International Conference on Data Engineering(ICDE), pages
422-432, 1997.

Z. Song and N. Roussopoulos. K-nearest neighbor search for moving query point. In

Proceedings of the 7th International Symposium on Advances in Spatial and Temporal
Databases (SSTD), pages 79-96, 2001.

Y. Tao and D. Papadias. Time parameterized queries in spatio-temporal databases. In

Proc. of the 22nd ACM Conference on Management of Data (SIGMOD), pages 334-345,
2002.

A. K. H. Tung, R. Zhang, N. Koudas, and B. C. Ooi. Similarity search: A matching
based approach. In Proc. of the 32nd International Conference on Very Large Data
Bases (VLDB), pages 631 — 642, 2006.

R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. In Proc. of the 24th International
Conference on Very Large Data Bases (VLDB), pages 194 — 205, 1998.

D. A. White and R. Jain. Similarity indexing with the ss-tree. In Proc. of the 12th
International Conference on Data Engineering, pages 516 — 523, 1996.

J. Xu, X. Tang, W.-C. Lee, and M. Wu. Top-k monitoring in wireless sensor networks.
IEEFE Transactions on Knowledge and Data Engineering(TKDE), 19(7):962-976, 2007.

K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen. Efficient maintenance of materialized top-k

views. In Proc. of the 19th International Conference on Data Engineering(ICDE), pages
189-200, 2003.

C. Yu, B. C. Ooi, K.-L. Tan, and H. V. Jagadish. Indexing the distance: An efficient
method to knn processing. In Proc. of the 27th International Conference on Very Large
Data Bases (VLDB), pages 421 — 430, 2001.

35

