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By computing the Wilson loop expectation value W [ C ]  in the two-dimensional Schwinger model 
on R ' X S ' ,  we show that nonleading terms depend on the shape of the contours both on R  ' X  R  ' 
and R ' x S ' .  We also find that the rhombic contour and triangular contour lead to the same static 
potentials both on R ' XR and R ' xS' .  The binding energy is also affected by the choice of con- 
tour shapes on the R ' x S 1  model. This indicates that the model on R ' x S '  deserves more study. 

I. INTRODUCTION 

It is known that the gauge-invariant Wilson loop ex- 
pectation value 

is related to the binding energy of a quark-antiquark 
pair.' Therefore, W [ C ]  has been employed by a number 
of  author^"^ to test the idea of quark confinement. More- 
over, the gauge-invariant dynamical variable3 W [ C ]  is 
useful as a toy model in discussing hadronic physics.4 

Furthermore, many articles5 have argued that by 
averaging over different contours C, the Green's function 
of the quark currents is derivable from the gauge- 
invariant Wilson loop expectation value W [ C ]  in the 
large-Nc limit. Accordingly, a study of the equations for 
the loop averages was first proposed by Polyakov and 
Nambu in order to make transparent the relevant relation 
between QCD and the dual resonance model.6 

I t  was shown in Ref. 2 that W  [ C ]  depends nontrivially 
on the shapes of the contour C. This property was also 
discussed by several authors to analyze the effect of the 
long-wavelength string fluctuations7 on W [ C ] .  More- 
over, by considering a smoothly shaped contour one can 
avoid singularitiesg usually plagued with a rectangular 
contour. Indeed, it was shown in Ref. 2 that nonleading 
terms depend sensitively on the contour shapes C. 

Also, the Wilson loop expectation value W [ C ]  is ex- 
pected to be a linearly increasing quark-antiquark pair 
static potential of the form 

Here d ( = P O  on a circle) is the distance between the 
quark and antiquark. Here p and 0 denote, respectively, 
the radial and polar coordinates on S '. 

For simplicity, we will consider a two-dimensional 
Schwinger model9 on R ' X S '  with massless fermions. 
Extending our result from two-dimensional QED (QED2) 
to diagonal QCD, (DQCD,) is straightforward and will 
only bring in an additional group-theoretical factor2 

Here N stands for the dimension of the fundamental rep- 
resentation of the symmetry group SU(N).  

There are several advantages1' for considering R ' XS'  
instead of R ' X R I .  First of all, it is much easier to con- 
sider the model on R ' x S' since most of the relevant 
physics remains unaffected. Secondarily, the annoying 
infrared divergence usually plagued with most two- 
dimensional gauge theories can be shown to be absent on 
R 'xs ' .  Moreover, the flat-space limit can be easily 
reproduced by letting p,  the radial coordinate, go to 
infinity. Also the fermions are introduced (in contrast 
with a pure gauge theory) in order to study not only the 
gauge-invariant dynamical variable W [ C ]  in the loop 
space more directly but also the mechanism for quark 
trapping.93" We reported part of the results concerning 
the binding energy in QED, in a previous paper.'2 In this 
paper, we will present complete and consistent details 
and make transparent some technical tricks in showing 
the decoupling theorem. 

Therefore, we will study the shape dependence of 
W [ C ]  in QED,. In Sec. 11, we will briefly review the 
loop calculations of W [ C ]  by the path-integral method. 
In Sec. 111, we will review the computation of the anoma- 
lous mass p2 on the R ' XS'  model using Fujikawa's 
method. In Sec. IV, we present the details of the calcula- 
tions for four different contours C: namely, the rectangu- 
lar, rhombic, triangular, and elliptic contours. We also 
demonstrate a special trick in taking limits. Finally, 
several comments and discussions are in order in Sec. V. 

11. THE THEORY ON R ' X S ' 
We will give a brief review of the derivation of the 

chiral a r ~ o m a l ~ ' ~ , ' ~  using Fuijkawa's path-integral 
methodI4 before we get into the details of computing 
W [ C ] .  The Lagrangian for the two-dimensional (Eu- 
clidean) Schwinger model is given by 

Here D, =a,+e A , .  Also the y matrices satisfy 
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In this paper we will work on the Euclidean (Riemanni- 
an) base manifold after a Wick rotation. Writing 
y2=iy0,  we find that ypD, becomes a Hermitian oper- 
ator after a Wick rotation xO--ix2 and A,-iA2. 
Note that ypt = - y fi and g,, =6,, with p = 1,2 in Eu- 
clidean space. Furthermore, we can show that y!= - y, 
and y,y5=~,,yV by defining y 5 =  - y 1 y 2  and e I2=  1. 
Note that we have followed the notation of ~ u j i k a w a ' ~  
(1980). Also note that y;=-y,  in two dimensions (in 
contrast with y:=y5 in four dimensions) is a general 
feature in 4k + 2 dimensions. Moreover, the gauge-fixing 
term is 

Xexp [ $ c i Q ~ , d x p ]  . (2.7) 

Here C denotes closed contours on R ' x S' defined by 
x,=x,(t), and N denotes all irrelevant normalization 
factors. 

111. THE ANOMALY ON R ' X S ' 
Note that the gauge field A, can be written as 

A, = A: + A: [=a,a - (  1 /e)~,,a"4(x)] in two dimen- 
sions. Therefore, by the chiral y, transformation 

y56 (x )  
in the Lorentz gauge (i.e., a,A,=O). On the spatial cir- $ ( x ) = ~ ( x ) e  , (3.2) 
'le "7 we need to 'pecify appropriate condi- the fermions x decouple from A :, the longitudinal corn- 

in order to define the properly Therefore, ponent of the gauge fields A,, in the model defined by 
by requiring that k and F,, (hence J p - - q y p $ )  be single 
valued, one obtains the following constraints on the pho- (2.1). Here 4 is A:, the transverse component 

ton and fermion fields: of A,, by 

Note that it was argued9 that one should take e 'q= - 1 
due to the stability of the vacuum. Hence (2.4) and (2.5) 
are sufficient to restrict ourselves to R 'xs'. Note also 
that all the algebraic and differential operations are not 
affected by this restriction since the connection on 
R ' x s '  is trivial, namely, T;,=O. In fact, 
g,, =diag( 1 ,p2) on R ' x s I .  Hence the loop average is 

The nontrivial dynamics of the model is actually hidden 
in the Jacobian factor of the path-integral m e a ~ u r e ' ~ " ~  
for the above chiral y 5  transformation. In fact, this Jaco- 
bian factor will contribute as a dynamical photon mass. 

Following Ref. 14, the Jacobian factor ( A )  of the path- 
integral measure for the above chiral transformation is 

D$ =DX exp [ -  J d 2 x  ~ ( x ) A ( x )  , 1 (3.4) 

with 

dk, 
A(x)=  lirn T~MJ-  

1 
M-o: 

2 ysexp -k,kp- -[yp,yvlF,,, 
( 2 7 ~ ) ~  .=-, 4 u 2  I 

Note that we have scaled the momentum k 2  according to 
k2+Mk.  Moreover, we have suppressed the trivial radi- 
al factor p since p will not appear in the final expression 
(3.12). 

In order to carry on our computations, we need to 
know the asymptotic properties of the Jacobi 8 functionI6 
of the form 

In fact, we want to know the large-M behavior of 

If 8 ( y )  is in the Schwartz space (the set of C x  functions 
on R n  which, along with their partial derivatives of all 
orders, tend to vanish rapidly at infinity), one can obtain 
the following functional equation of the Jacobi 8 func- 
tion: namely, 

Note that Gaussian functions (3.6) are certainly in the 
Schwartz space. Hence, using the functional equation of 
the Jacobi 8 function (3.8), one obtains 
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Therefore, we have 

lim 8 ( l / a M 2 ) = ~ & .  
M - m  

Hence the Jacobian factor can be shown to be 

dk A(x)=  lim T ~ M ~ V ' % J ~ ~ ~  
M - m  ( 2 ~ )  

1 
Xexp - k 2 - - [ y ~ , ~ v l F P v  [ 1 M 2  1 

Note that (3.11) is exactly the same as the anomalous 
contribution in the flat-space Schwinger model. There- 
fore we have the same anomalous contribution: namely, 

with p2 given by 

Accordingly, the Wilson loop expectation value becomes 

W[CI 

Here 

Scff = J d 2~ - i y y P a j  + f FP,FP I 
Note that the conserved current J, (i.e., a . J  = O )  will not 
couple to A b. Therefore, we can collect all irrelevant A: 
and x terms in L'. Thus, by integrating out the trivial 
A and x degrees of freedom and introducing the current 

w [ c I = N ~ ~ ) A L ~ x ~ [ - s , , (  A;)+ J d 2 x  J .A]  (3.17) 

= N e x p [ i J d 2 x  d 2 y ~ p ( x ) ~ , , ( x  -y ) Jv (y ) ]  . 

(3.18) 

Note that the propagator for A L is 

Transforming into momentum space by 

J , (k )=  J d 2 x  J , ( X ) ~ ' ~ ' ~ ,  (3.19) 

we have, from (3.16), 

J , ( ~ ) = ~ Q $ , ~ - ' ~ . X " ~  dx,(t)  . (3.20) 

Therefore, 

Note that the spatial momentum k ,  becomes discretized, 
namely, 

due to the periodic boundary condition (2.4) and (2.5) in 
the spatial direction. Accordingly, the integration on k ,  
becomes a discrete sum. 

IV. CONTOUR SHAPE DEPENDENCE 

Let us first consider a rectangular contour given by the 
oriented boundary of the rectangular disk 

I ( x l , x 2 ) /  I x , i 5 d / 2 ,  / x 2 ( 5 T / 2 )  . 

The current can be shown to be 
- i (n /p ix ,  - i k  x 

J , ( k ) = i ~ $ ~ e  'dx, (4.1) 

Here k, = ( n  /p ,k2 ). Note that the above current is 
indeed conserved. Therefore, 

2 
1 " 

lnW[C]=- 1 1 . k2T nd ' ldk2 k i  + ( n  /p)2+p2 
( 4 ~ ) '  1 -  - s1n2-sin2- - [ f; ] sin -sin2- 

8a2p ,,=-, k i  2 2~ 2 n d  2P k 2 T 1 2  2 
(4.3) 

- Q' sin2(nd/2p) 
[ T  +P2 

1 -expi - ~ [ ( n  /p )2+p2]1 /2 )  

TP ,=-, (n /p )2  ( n  /p 12[( n /p l2 +p2]1'2 
(4.4) 
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The effective static potential of charge f Q separated by a 
mean distance d can be defined as 

Hence this effective static potential becomes 

in the case of the rectangular contour. 
Next, we will consider a rhombic contour defined by 

the equation ix , I  /a + x ,  1 /b = 1. The current can be 
shown to be 

cosk, b -cod na /p ) 
J,( k)=4abQe,,k, (4.8) 

(k2b)2- (na /p )2  ' 

Also note that the current conserved is apparent. There- 
fore, 

I cosk -cod na /p)  
k2-n2a2/p2 1 2 .  

Note that in (38) we performed a change of integration 
variable k2+k/b ,  in order to  extract the b dependence 
in the integrand. After doing this, it is straightforward to 
compute the effective static potential 

1 
lim - lnW(d/p ,T /2 )  

T--m T 
(4.10) 

- - 1 
- lim - l n W ( d / p , b ) .  (4.11) 

b - a  26 

Here we have set a = d  /p and b = T/2  to ensure that the 
average separation distance remains d.  This can be done 
by requiring Td =area of the contour. Therefore the 
effective potential becomes 

cosk -cod nd /p ) 

k2-n2d2/p2 1 2 .  
This expression can be simplified to the form 

sinhp(pa- 2d)  -sinhpp%- 
p d  sinhpprr 

Also, we can consider a slightly different contour, 
namely the triangular contour2 following the following 
contour path: i.e., starting from 
( x 1 , x 2  ) = ( 0 ,  - T / 2 ) - + ( d 7  T / 2 ) + (  - d 7 T / 2 ) + (  -d ,T /2 )  
and back to (0, - T/2) .  The current can be shown to be 

I 

Here k + = k 2 T + n d / p  and k _ = k 2 T - n d / p .  Note 
that the current is indeed conserved. Hence one can 
derive 

Replacing k, by k /T, we have 

Here k + and k - become k + nd /p and k - nd /p, re- the same. Note also that V A  (from a reversed triangular 
spectively. After some algebra, one has contour) equals to V ,  due to time-reversal invariance. 

Finally, let us consider an elliptical contour sketched 
by the equation x i  /a + x  /b = 1. The current can be 

sinhp(pa-- 2d) --sinhpprr shown to be 
2pd s i n h p p ~  

(4.17) ~ , ( 2 / k : a ~ + k i b ~ )  
J,(k)=2aQabepVkv (4.18) 

Note that Vv = VV although their contour shapes are not 2 /k :a2+kib2  
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Here J , ( y )  is the Bessel's function.17 Again, the current 
is apparently conserved. Now, by inserting (4.18) into 
(3.211, one obtains 

Here k = n / p .  By scaling k 2  - t k  / b ,  one obtains 

The effective potential should be defined as 

1 
Velli,(d )=  - lim -In WCll ip(  T / 2 , 2 d  / a )  

T - . c  T 

- - 1 - lim -1n Wel l ,p (  a, b 1 
b - m  26 

Note that the area enclosed by the elliptical contour is set 
to be a a b  = Td in order to make d equal to the average 
separation. Therefore, 

After some algebra, one can then derive 

Here I ,  and L 1  are, respectively, the associated Bessel 
function and associated Struve's function" of order 1. 
Note that in deriving Eq. (4.23) we have made use of the 
integral representation of I, and L, : i.e., 

V. CONCLUSION 

In summary, we have 

Note that 8 ( =d / p  ) E [ 0 ,  a ]  for rectangular contour and 
rhombic contour, 8 E  [ O , a / 2 ]  for triangular contour, and 
8 E  [0, a 2 / 4 ]  for elliptical contour since we are living in a 
finite-size system, namely, B E  [ 0 , 2 a ] .  Note also that the 
equivalence between rhombic contour and triangular con- 
tour is not quite a surprise. For instance, imagine B=a 
in the case of triangular contour: then the triangular 
contour becomes the 8 = a / 2  rhombic contour except for 
some differences in the order and direction in the con- 
tour. 

I t  is also straightforward to show that 

By keeping d =p8  fixed and letting p- m, one repro- 
duces immediately the R ' X R ] flat-space static potentials 
of the forms 

which is expected to agree with Ref. 2. Also, 
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in the flat-space limit. Note that the higher-order contri- 
butions of the binding energy differ from one another and 
depend on both the contour shapes and the radial func- 
tion p in the model. This indicates that the model on 
R ' X S ' deserves more study. 

Furthermore, in the long-distance limit p d  >>I, one 
has 

In particular, we discover the van der Wall force for Vo, 
V,, and Vellip on R ' X R ' . 

It is, however, not easy to discuss similar long-distance 
behavior on R ' X S '  since f3 space is compact. Nonethe- 
less, we can show that V,(d) and Vo(d) are both mono- 
tonically increasing functions in d. For example, we can 
show that 

Hence, Vm(d) is a monotonically increasing function in d. 
Moreover, 

with 

Note that Y(8=0)=0 ,  Y ( 8 = ~ / 2 ) > 0 ,  and aY/aO>O 
for all 8 E [0, rr/2]. Therefore, Y (hence a Vo /a6 1 > 0 for 
all 8 E  [O,n-/2]. Hence Vo(d) is also a monotonically in- 
creasing function in d. This agrees with the large- 
distance limit on R ' X R ' shown above. 

In this paper, we study the two-dimensional Schwinger 
model and its dependence on different contour shapes on 
R 'xs'. By letting P-. a, we reproduce immediately 
the results on R ' X R . In this limit, we also discover the 
long-range van der Wall force form. We consider a 
rhombic shape contour instead of the ambiguous circular 
contour considered in Ref. 2. It is hard to imagine 
separating a qq pair by an infinite distance on the one 
hand, it is also difficult to analyze the circular contour 
within a presumed finite-sized R ' XS'  model on the other 
hand. Hence we consider rhombic and triangular shape 
contours instead of the ambiguous circular contour con- 
sidered in Ref. 2. 
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