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Abstract

Entity search has been proved to be handy to search data “entities” such as phone number
and email without looking them indirectly from individual pages. The technique trans-
forms the web from the document view to the entity view, which enable more holistically
search. However, due to the limitation of previous models, the resulting entities are lim-
ited in the same pages. In this paper, welmaédel the entity search problem as a puzzle
problem. The framework digests all pages-and builds a global view on how the entities
should be combined. By utilizing the entity graph, the framework is able to composes
entities into tuples even they are not directly related. We evalulate our system using real

world web pages and show that the system is efficient for searching entity tuples.

Keywords — Entity search, information retrieval
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Chapter 1

Introduction

The web is an ultimate information repository, and it is still growing rapidly. In order to
search information in the unorganized and unstructured web, several search models has
been introduced. The document-based search engines provide users a page view of the
web. The basic unit in the page view is a deecument, which is good enough for some kind
of user intentions such as “Find blog posts which is related to a topic” and “Find related
information about a person”. However, the document-based search model is far from
intuitive for users who want to find specific entities; for example, “What is the phone
number and email address of someone”. Although users can narrow down the search
results by providing more precise keywords to the search engine, they still have to digest
the pages to find the exact entity they are looking for.

Due to the desire of a more intuitive way to retrieve structured information from the
web, vertical search, which search the target domain in a more organized way, has gain
focus in recent years. Although there are general frameworks to build vertical search,

building vertical search engines for arbitrary domains is still a very complicated task due



<Document 1> <Document 2> <Document 3>
...John... Ccontact: ...John...
...... john@nasa.gov
john@nasa.gov || 012-345-0001 012-345-0001

{ John, john@nasa.gov, 012-345-0001 }

Figure 1.1: An example of cross-page tuple

to the cost of data integration. As a result, the entity search, which provide user an
entity view of the web, is proposed. Instead of pages, users search for specific entity
tuples in the entity search engine. It is more efficient to specify what we are looking for
directly rather than digest the a set pages ourselves. Consider the following scenarios

which compare the page-based search with the entity-based search:

e Scenario One: An user who wantsto find all universities that has the computer
science department may issué the query. "univetsity computer science” in the page-
based search engine and try his best-to view all the pages and digest the desired
tuples. Yet in the entity-baséd search engine, the user is able to issue the query

“#University #Department:‘computer science”’ to list all tuples directly.

e Scenario Two: An user wants to list all {zip code, address, phone number} tuples
in California, it is almost impossible to do this in keyword-based search model.
However, in the vertical search engine, one can issue the query “#State:California

#Zipcode #Address #Phone” to list the desired contact information.

The previous work of entity search[21] has studied the ranking criteria of tuples very
well; however, the system is limited by the proximity window size and page boundary.
As a result, the system is only able to find entity tuple which has appeared together in

at least one page; for example, the previous system can not find tuples in Figure 1.1.



In this paper, we study a different approach to construct the entity search framework.
The framework is designed to search entity tuples of arbitrary sizes and consider the
relationship between different entities in a corpus-centric view in order to find entity
tuples across multiple pages.

To serve an entity search query, the system has to grab a set of entities from the
corpus and rank the composed tuples. The process is like solving a puzzle problem in
which the solver has a lot of puzzle pieces and want to compose the pieces into the desired
form.

In the puzzle problem, each piece provides the solver some information about how
this piece can be combined with others. The same thing holds for the entity search
problem, in which each entity is a piecesofi thesdesired tuple. Due to the redundancy of
the web, the same information woeuld l[appear several-times in different websites. In the
web puzzle problem, each page provides the system information that how to compose
entities together. However, the answer. of the web.puzzle problem varies from query to
query; the tuple scheme defines what kind of pieces (entities) the solver need to compose
the answer (tuple) and the keywords give the solver hints about what is a good answer.

In summary, our contributions are as follows:

o We design the entity search framework in a new approach, which offers better

precision and functionality.

e We model the entity search as a puzzle problem utilizing the redundancy of web

and study the inference process to search entity tuples across page boundary.

e The framework is able to handle web scale data by paralleling the off-line relation
recognition with the map/reduce programming model and utilizing the distributed

3



index for on-line query serving.

We start in Section 2 to the conceptual model to solve the entity search problem
using the puzzle solving approach. Section 3 presents the entity graph and Section 4
materializes the tuple composition and the ranking criteria. We study the related works

in Section 5. Section 6 evaluate our prototype system using real world data set.



Chapter 2

Preliminaries

Looking for entity tuples from the web is like a puzzle problem. Each page provide some
hints about the solution tuple. When a usersearch for information, the user actually tries
to solve the web puzzle. Each pageoffers some eviderice about how the entities should be
combine into the answer tuples. By surfing the pages in the partial web, the user digests
the relation between entities and Gomposes the answer tuples based on his intention.
However, digesting all the pages in the web is an impossible task for a single user and
there is no guarantee that no information is missing by surfing only the limited number
of pages. As a result, the entity search system is crucial for such web data analysis tasks.

The entity search framework solves the following problem:
e Given: A set of documents {d;,ds, ..., d,}.

e Input: The tuple scheme {FEi, Fs,..., E,} and keywords to narrow down the

returned tuples.

e Output: Ranked entity tuples in {E} x Ey x -+ X E,}.



2.1 Data Model

The web is a collection of documents D = {d;,ds,...,d,} and each document d; is a
collection of terms {ti,ts,...,%4,}. In order to search entity holistically, we have to
model the web in the entity view. An entity is a (value, type) pair and each document
is annotated as a collection of entities. We will use type(e) to represent the type of the
entity e and use F; to represent all entities of type t. For example, an contact page
of a company may be annotated as {(012-345-6789, #phone), (contact@example.com,
#email), ... }.

To relate entities with concept, keywords are also annotated as a type of entity.
Instead of page, the basic unit in the entity search system is entity. Given the document
repository, the system have to transform the documents into a set of entities and recognize
their relationship in order to support.the tuple:compesition process.

An entity search query contains twé-partsi=econcept and tuple scheme. The concept is
in the form of keywords in the page-based search system while the tuple scheme is a set
of entity types. Each entity type is prefixed by the # symbol. For example, the query
“Turing Award #Person #University #Email” searches for {person name, university,
e-mail} tuples related to the concept “Turing Award”. It is also possible to narrow down
the search results by limiting the value in an entity type. For example, “Computer Science
#Person #University #State:California” lists only the {person name, university, state}
tuples related to the concept “Computer Science” and the value of the state entity is

“California”.



2.2 Entity Search Characteristics

Since the characteristics of an entity-based search system is different from the page-based
search system, the difference drives the different system requirements and design issues
between the two. Given the concept, which is represented in keywords, the desired entity
tuples are directly returned in entity-based search system while users have to digest the
results in page-based search system. Therefore, the entity search system should not
only be able to annotate entities but also to compose those entities into correct tuples.
Moreover, since not all entities in the resulting tuples in directly related to the keywords;
in the other words, they may not even appears in the same page with the keywords. As
a result, the system should consider the relation between entities in a global view rather
than being limited by only pages containing the keywords.

The major difference comes frem.that the page-based search system requires only the
returned pages to match the given coneept-and-entity-based search requires the entities
to be annotated and composed into tuples:+There are three major requirements in an

entity-based search system:

e Annotation: The system should be able to annotate entities in the unstructured

documents.

e Composition: Entities should be composed into tuples based on their relation in

the corpus.

e Ranking: The entity tuples should be ranked based on their correlation to the

given concept.

The entity annotation is well studied in information extraction [4][8][3]. As a resutl
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we will focus on tuple composition and the ranking criteria of entity tuples in this paper.

2.3 Owur Propose: Puzzle Solving

A very special characteristic of the web is the redundancy, which means the same in-
formation may appear several times in different form. The redundancy introduce the

following hypothesis.

Hypothesis 1. An entity tuple exists in the real-world if and only if there is a way to

discover all entities in the tuple starting from one of the entities.

The hypothesis actually matches the way how we discover information as well as how
we solve a puzzle problem. To solve a‘puzzle, we start from one piece of the puzzle; see
how it matches to the other pieces; add more pieces; and get to the answer after several
iterations. We know which piece to add beecause the piece itself gives us some information
about how it is related to other pieces:. The same situation happens to the entities in
the web. Each pages provide us information about how entities are correlated. Suppose
whenever we see entity e;, we also see e;; we probably know that if a tuple contains e;, it
may also contains e;. The appearance of the entity itself gives us, the searcher, how it is
related to other entities.

In our framework, we first analysis the whole corpus and build the relation between any
two entities. The relation is represented in the conditional probability form. P(epost|€pri)
is the probability that when e,,; is in the tuple, e,.s is also in the tuple. Given the
concept, we can choose some entities as the starting points and discover other entities

based on the relation.



Entity Search

Entity
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Figure 2.1: Entity search framework architecture

The framework architecture is ,shdwn 11}} Flgure 21 The web pages is first annotated

and materialized into the entity graph. Whenever there is a user query, we choose some

entities in the entity graph and cﬁszqox;e"f- ot-l-le-l.":'en_t-i_!trires based on the tuple scheme and

their relation with the concept.



Chapter 3

Entity Graph

To catch the global relation between entities, the system has to analysis the whole corpus
construct a global view of entities. The global, is stored as an entity graph G = (V, E),
where V' is the set of all entities and (£-is-the correlation between entities. The entity
graph is a directed graph and the weight of‘an edge from e; to e; is the probability that
an user can discover e; by starting“from e;. By utilizing the entity graph, the system is
able to compose entities into tuples based on their correlation.

The analysis process is generalize into two steps: document-centric analysis and
corpus-centric analysis. Each document is analyzed and provides the system some evi-
dence. The evidences from each documents is aggregated as a global view and the entity
graph is constructed. Since the recognition function can be varies for any two different
types, we study only the basic probability model which consider only co-occurrence of
entities but not context in the documents. However, the recognition can be easily replace

by arbitrary model based on domain knowledge.
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AN

<Document 1>
...John...

john@nasa.gov
012-345-0001

AN

<Document 2>
NASA
...John...

. .. Somebody
mail@nasa.gov
012-345-0000

AN

<Document 3>
University...
Mary
mary@ieee.org
John
john@nasa.gov

Mary

mary@ieee.org

AN

<Document 5>

AN

<Document 6>
Mary(failed
to extract)
012-345-0002
mary@ieee.org

Figure 3.1: Example web pages

3.1 Document-centric:Analysis

Consider the documents in Figure 3.1, each document gives us some information about
the entities in them even without seeing: other context in the document. Suppose there
is only one document 1, it is very possible thé person name “John” is highly correlated
to the email “john@nasa.org”.

The confidence comes from the presentation of entities in the document. The more
complex a document, the lesser information it provides for an entity pair. For example,
in document 3, we are not so sure that which email is related to “John” because there
are two person name entity and two email entity in the document. Consider only the
co-occurrence of entities, we formulate the confidence estimation function for any two

entities e; and e; appears in document d as follow:

11



[{(ei¢)) € d}|

{(z,y) € dl € type(es),y € type(e;)}]

Calejle;) =

The above function consider only the occurrence of entities in the document. The
more entities of same type in a document, the lower its confidence to an entity pair
contains entity of the type. It is also possible to consider other factors such as word

distance or the number of entities of the types between two entities.

1
Calejles) =

 distance(e;, e;)

One can simply use the occurrence-based function or optimize the document-centric
analysis function based on domain knowledge. It is also possible to choose different
function for different entity types. ;However, to make the system simply to bootstrap,
we use the occurrence-based function-by default. A- more detailed analysis on document-

centric analysis function is studied in therexperiment.section.

3.2 Corpus-centric Analysis

Given an entity, one can discover other entities of different types by surfing documents
in the corpus. With unlimited time and patient, one can summarize the impression and

analysis the relation between entities.

Definition 1. Given two entities €prior aNd €posterior 0Of different types. P(€posterior|€prior)
is the probability that one discover eposterior JrOM €prior Tather than another entity of type

type(€posterior) by randomly surfing the corpus.

12



The corpus-centric analysis function, which aggregate the document-based confidence,

is defined as follow:

ZdeD Cd(epost|€p7”i)

ejEtype(epost) ZdeD Cd(ej ’ep”')

P(€post|epri) = >

Each document in the corpus contribute some confidence to the estimation; however,
the final probability estimation is determined by the overall impression in the whole
corpus. Consider the example of six documents in figure 3.1, the person name “John”
has co-occured with three different emails. There are five (#Email | “John”) pairs with
different confidence estimation in the corpus. The probability that discover an email

entity from the person entity “John” are as follows:

P johnGna. "I glrrse 1?092255: 01‘25) +1
P(“mail@na...” | “John”)'= 0.5
1+ 05+ (0.25+0.25) +1
0.25

P « @ ”'n ch h 7Y —
(“mary@ie...” | “John”) 1+0.5+(0.25+0.25) +1

We can construct the entity graph by estimating the discovery probability between
all entity pairs in the corpus. All entity pairs with discovery probability greater than 0.6

are shown in Table 3.1.

3.3 Entity Graph Construction

With the millions or even billions of entities in the web, constructing the entire entity
graph is a non-trivial task. As a result, the system should be able to parallel the entity
annotation as well as the relation recognition process. In the prototype system, we use

13



€;

€j

P(ejle:)

John john@nasa.gov | 0.75
Mary mary@Qieee.org | 0.833
Somebody mail@nasa.gov | 1
John 012-345-0001 | 0.667
John NASA 0.833
Mary IEEE 0.667
john@nasa.gov | John 0.9
mary@ieee.org | Mary 0.833
john@nasa.gov | 012-345-0001 1
mail@nasa.goy?| 012-345-0000 1
mary@ieee.org || 012-345-0002~ | 1
john@nasa.gov |.NASA 0.8
mail@nasa.gov' | NASA 1
maryQieee.org | IEEE 0.667
012-345-0001 | John 1
012-345-0000 | mail@nasa.gov | 1
012-345-0001 | john@nasa.gov | 1
012-345-0002 mary@Qieee.org | 1
012-345-0000 | NASA 1
012-345-0001 | NASA 1
NASA John 0.833
IEEE Mary 1
NASA john@nasa.gov | 0.667
IEEE mary@ieee.org | 1

Table 3.1: Relations in Figure 3.1




the Gate[9] toolkit for entity annotation. The entity graph construction process is im-
plemented in the Map/Reduce programming model[11] using the open source Hadoop|1]
framework.

The mapper and the reduce is shown in Algorithm 1 and Algorithm 2 respectively.
In the mapper function, each document is annotated based on the given tuple scheme
and a set of entities is produced. The document-centric analysis function C; is also
done in the mapper function right after the entities are annotated. The function can be
arbitrary function that output the a confidence value between 0 to 1 given the annotated
document. Moreover, it is possible to set a threshold value for any two types in order to
prune less confident entity pairs. After the analysis is done, each entity pair is emitted

to the reducer to perform the corpus-centri¢ analysis.

Algorithm 1 Entity graph constriictor mapper
Input: document d; in corpus D; object scheme

Output: ({ey, type}, {epost, confidencey)pairs
1: Entities F = annotate(d;)

2: for all (e;,e;) € E do

30 c= Cylejler)

4:  if ¢ > threshold[type(e;), type(e;)] then

5: emit({e;,type(e;)}, ej, ¢)

Before passing to the reducer function, the system group the entity pairs by the
value of e,,; and the type of e,s;. The confidence value for each entity is aggregated by
the corpus-centric analysis function. We introduce the null matrix M,,,; here to handle

noise from the document-centric analysis function. The element m;; in M,,; denote the

15



probability that an entity of type ¢; can not discover any entity of type ¢;. Conceptually,
we create a virtual entity with null value for each type. Each entity in the corpus has a
virtual edge link to the null entities with probability m;;. All entities with corpus-centric
confidence value less than m,; are pruned to eliminate the noise. Moreover, the pruning
saves the space to store the huge entity graph. The values in M,,,; can be assigned based

on domain knowledge or any reasonable value that properly shrink the entity graph.

Algorithm 2 Entity graph constructor reducer
Input: ({e,m,type}, {€post, confidence}) pairs

Output: Edges (€pi, {€post, confidence})

1. F = new set()

[\

: for all e, ¢ € {epst, confidence} pairs do

3:  if e ¢ E then

4: E.put(e)

5: e.confidence = ¢

6: else

7: e.confidence = e.con fidence + ¢

8: total =) . e.confidence

9: for alle € F do

10:  e.confidence = e.con fidence - total

11:  if e.confidence > M,ule;.type, e;.type] then

12: emit(new Edge(e,., {e, e.confidence}))

16



John
012-345-0001

0.833 0.125
1.0 1.0

1.0 NASA mary@ieee.org
John NASA J1
john@nasa.gov 012-345-0002
(a) Sub-tree 1 (b) Sub-tree 2
NASA IEEE

0.8‘33/ \OL667 i/ \1
John john@nasa.gov Mary mary@ieee.org

l 0.667 ll

012-345-0001 012-345-0002

(c) Sub-tree 3 (d) Sub-tree 4

Figure 3.2: Sub-trees of entity graph for documents in Figure 3.1

3.4 Tuple Composition

As in our hypothesis, if a tuple exists in real world, there should be a way to find all
entities in it from one of the entity. The entity graph provides the system about how to
“discover” entity one by one. The tuple composition process is like traverse the entity
graph in random walks. Suppose the user starts from knowing one entity, the root entity,
and want to discover the other entities of different types. With his knowledge about the
known entities, the weight of the edge gives him some hints about which entity to go
next. He may go back and forth in the entity graph and finally collect the desired tuple.

Figure 3.2 shows some sub-trees in the entity graph of documents in Figure 3.1.

17



The sub-trees are possible combination of entities and represents the discovery path of
entities in the tuple. Given all sub-trees which contains one entity for each type in the
tuple scheme, some of them are more likely to be discovered by random walking in the
entity graph starting from random entity. For example, it is more likely to discover tuple
in Figure 3.2(a) and 3.2(d) rather than the one in Figure 3.2(b). Suppose the we start
from entities that match the types in tuple scheme and only discover one entity for each

type in the scheme. We can define the confidence of a tuple in the following equation:

C(tuple) = ght
( up 6) sub—trIeré%ituple H werg (6)
edge ect

Consider starting from the root entity as the known entity and discover other entities
by following the edge in the entity graph; whenever a new entity is discovered by edge e,
we have a probability weight(e) to continue the discovery rather than another discovery
process. As a result, the probability of accepting a sub-tree is the product of the weight
of its edges. Since there may be multiple sub-trees represents the same tuple, such as the
two sub-trees in Figure 3.2(a) and 3.2(c). We choose the one with maximum probability
to represent the confidence of the tuple to avoid the noise in tuple composition since there

may be a lot of low confidence sub-trees represents the same tuple.

18



Chapter 4

Entity Search

We will concretely materialize the entity search framework in this section. As the require-
ments for entity search, the entity tuples;should not only be valid but also be relevant
to the user given keywords. The keywords in the query guide the system the starting
points to search in the entity graph and thesystem rank the tuples found based on their
relevance with the keywords. To erable the framework, we adapt the inverted list index

into entity index and search the entity graph with A* search algorithm.

4.1 Concept-Driven Tuple Ranking

Since there are a lot of entity tuples matching the tuple scheme, the entity search provide
a function to narrow down the search results by introducing the keywords. The keywords
describe the concept which the resulting tuples should be related to.

Given the query ¢, we can transform ¢ as an entity of unique type in the entity graph
by computing the edges between ¢ and other entities in the graph. With the keyword

index, we can obtain the subset D,, which contains query ¢, in the corpus D. With the

19



entity index, we can obtain the subset D., which contains the entity e, in the corpus.
The inlink and outlink between an entity e and query ¢ can be calculated by P(e|q) and
P(qle) respectively. The detail of computing P(e|q) and P(q|e) utilizing both keyword

index and entity index is discussed in the next sub-section.

P(e|q) = document frequency(e, D,)

P(qle) = document frequency(q, D,)

Suppose we have the concept in mind, we can find the D, document set by the keyword
index. By browsing all documents in D,, we can get an impression that how all entities
are related to the concept. Howeverjthe entities of the desired tuple may not all appears
in D, so we still have to traverse-the entity graph to-compose the tuple. Whenever we
discover a new entity in the graph,in addition to check the confidence of the edge, we also
check the confidence of the entity e given ithe query q. We have the probability C(q,e)
to continue the discovery process rather than re-starting the discovery. The probability

C(q, e) is defined as follow:

C(q,e) = min(max(P(qle) + P(e|q), Pose), 1)

Pyase 18 the base probability for those entities that does not co-occur with the query
in any document. P(e|g) may be much lower than P(qle) since the concept can be
very general and matches much more documents than the entity. The function can be
explained as the confidence of an entity e given ¢ is proportional to P(¢|e) and breaking
tie by P(e|q).

20
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> John john@nasa.gov
l 0.667
eeeeeee> 012-345-0001

Figure 4.1: Relate tuple to query

Given the concept-driven query ¢, the tuples discovered in the entity graph are ranked

by the following ranking function.

Score(q, t) =C(t) * H C(q,e) (4.1)

ect

We traverse the entity graph to eompose theentity tuples. When we select the root
node, we have a probability to give up this traversal; whenever we expand the tuple, we
check the path so far as well as the confidence of the newly added entity. The score is the
probability that the discovery process from the root entity has successfully completed.
For example, we evaluate the tuple in Figure 4.1 by all its edges and the confidence of

each entity in it give the query.

4.2 The Entity Index

To enable entity search, we store the entity graph in a memory cached table for fast
look-up. Every entity is encode into a 8-bytes ID and the graph is stored in distributed
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machines. Moreover, we construct a entity-based inverted list for each type of entity with
the following structure.

#TYPE — {docIDy, {(elD, )

#doc(cID)

The el D is the id of the entity and #doc(el D) is the number of documents contains
the entity with el D. By utilizing the entity index, we can join the inverted list of an
entity type with and keyword-based inverted lists. Given the inverted list [, of query ¢
and the inverted list [ of entity type E, we can join the two to obtain the joined list [’
For each entity e, we can get its sub-list [, in I’. Then we can calculate the confidence of

any entity e given query ¢ by:

size(le)
size(l")

Pfelq) =

1
Pl =) #doeleI D)

d€le

4.3 Tuple Expansion by A* Search

The algorithm that serves entity search query is shown in Algorithm 3. Given the
query ¢ and the tuple scheme S = {E1, Fs, ..., E,}, the system first checks the index and
constructs the set of entities which are co-occured with ¢ in the documents containing ¢;
then, it constructs size one tuples rooted by each entity in the set. The initial tuple set

is expanded based on the entity graph by A* search.
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Given a partial tuple ¢, the cost function g(¢) and the hypothsis function h(t) are

defined as follows:

g(q,t) = H C(q, entity) x H weight(edge)

entityct edge€t
h(q,t) = C tit
(g,) max, C(g, entity)

i

The score of an incomplete tuple t is estimated by:

Score'(q,t) = g(q,t) x h(q,t)

The system aims to find tuples with top-k scores. The hyposthsis function h(q,?)
is admissible since the weight of each edge is always less equal than 1 and the function
utilize the max confidence of entitiesin each type. As & result, given the tuple ¢’ expanded

from ¢, the following equation holds and thealgorithm satisfies the property of A*.

g(q,t") x h(q,t") > g(g,t) x h(g,?)
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Algorithm 3 Entity search

Input: Query g and scheme S = {E, Es, ..., E,}
Output: Ranked entity tuples
1: Get l; and lg,,VE; € S from the index
2: tuples = priority queue ranked by Score’(q,t)
3: for all E; € S do
4: 1 = join(ly, lg,)
5. for alle €l do

6: tuples.add(new tuple(e))

=

while tuples.empty() = false de

*®

t = tuples.pop()

9: if size(t) =n then

10: results.add(t)

11:  if size(results) = k then
12: return

13: 1" = expand(t)

14:  for allt € T’ do

15: tuples.add(t")
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Chapter 5

Experiments

We evaluate the framework by building a prototype system using 0.5M web pages under
uiuc.edu domain crawled on April, 2008, ;We uise the GATE framework to annotate enti-
ties by both statistical and dictionary-based methods. The number of entities annotated
including false-positive entities are shown in Table 5.1. The entity graph is constructed
using the Hadoop platform and in‘.stored in a cluster of memory cache to enable fast
look-up. The entity index is distributed on two machines and the C(q,e) function is
computed by aggregating the index look-up in a portal machine to show that the system
can be linearly scale out. After aggregating the C(q,e) function, the machine performs
tuple composition by querying the cluster which stores the entity graph.

In the entity graph construction process, we set each element in the threshold matrix
and each element in M,,,; as 0.2 since it is quite reasonable to filter out noise. Moreover,
to isolate the annotation error from performance evaluation, we do not consider entity

tuples containing any false-positive annotated entities.
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Type #Entities

Person Name 632,511

Email 34,408

Phone Number | 29,731

Zipcode 38,656
State 103
University 85

Table 5.1: Number of entities annotated

5.1 Precision

In the precision evaluation, we randomly select 100 person names which is correctly
annotated. Moreover, their related entites are also correctly annotated at least one time
in the corpus.

The query used in entity search is"“name#Person #Email #Phone”, which searches
the complete person name, email, and phone number related to a person name string.

We compare the web puzzle powered entity search with the other two competitors:

e keyword search: The keyword search is implemented based on the open source
search framework Lucene[2] and all pages are boosted by their Pagerank[15]. The
query used in keyword search is “name AND (phone OR email)”. In the keyword
search, we suppose that the user will not miss any entities appear in the result

pages and combine the entities he has seen correctly.

e Naive Count: Simply count the number of co-occurrence of entities in the inverted
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Figure 5.1: Satisfied query percentage under various ranks

list matching the query. Since thiere is no composition in naive counting, we suppose
the user can compose the entities in the top ranks correctly. The rank is considered

as the maximum rank among theé thiee-entities in the query.

In Figure 5.1, we compare the number”of search results viewed in order to satisfy
the query. The keyword-based search is sometimes mislead by the other phone number
or e-mail texts such as contact information of the organization. The same problem
occurs in the naive counting approach since the common shared entities appears more
frequently than the personal phone number or email. The web puzzle framework utilize
the conditional probability in tuple composition thus avoid the problem.

In Figure 5.2, we compare the number of different entities viewed in the top results
to satisfy the query. It shows that keyword search will show more ambiguous entities
comparing to the web puzzle framework because there are some directory listing pages
that list personal information for a lot of people. The naive counting beats the web
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Figure 5.2: Satisfied query percentage under various number of entity viewed

puzzle framework in rank 6 because;the naive eounting approach consider only entities
appearing in pages that also contains the query.keywords; thus, less noise was introduced
to the result.

Although we suppose that the user ean-ecompose all entities seem in both keyword
search and naive counting approaches, it is impossible without spending a sufficient
amount of time. In addition to the precision, the web puzzle framework satisfies more

queries in top ten.

5.2 Study of Tuple Size

To evaluate the system with different tuple size, we re-use the 100 person names in the
previous experiment and issue the query “name #Email #Person #Phone # University

#State #Zipcode” by adding one entity type at a time. The result is shown in Figure
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Figure 5.3: Satisfied query percentage under various ranks for different size of tuple

scheme

5.3.

Querying for less entity typesigives béetter precision in top results; however, when it
goes to top-10, there is no much different.. 4 of the'100 query cases is shown in Table 5.1.
It shows that querying for more entity types may mislead the tuple composition as in
case 12 and 24. However, in case 7 and 16, it shows that some entity may not be directly
found by the keywords without traversing the entity graph. In summary, the accuracy of

overall result is stable even the number of entity type required increases.

5.3 Tuple Listing

In the third experiment, we exam the system’s ability to list different entity tuples given

a fuzzy concept. 10 of 100 common surnames in United States are selected and make sure
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C\TS [1 [2|3 4|5 |6

12 11115198 |4

16 X|13|6[3[8 |6

24 1121916107

Table 5.2: Ranking for case\tupleSize

there are at least 5 different {#Person #Phone #Email} tuples related to the surname
in the corpus. The query “surname #Person:surname #Phone #Email” is issued to
the prototype system and we count the number of correct tuples referring to different
real-world instances in top ranks.

Table 5.2 shows the detailed result and Figure 5.4 shows the average number of dif-
ferent correct entity tuples in top ranks..*The experiment shows that the web puzzle

framework is able to show different tuples without introducing extra noises.
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Hit

Case\Rank |1 |2[3|4|5|6|7|8]9]10

Smith 1123|4455 |6|7|7

Johnson 1121314555 |5|5|5

Wililams 1212314414555

Brown 1111212134145 |51]5

Miller 11212314444 /4]5

Anderson | 111|123 |4|4]|5|6/|6

Taylor 1111212345667

Thomas 1121314556 |7|819

Martin 112121334 |5|6|7|7

Scott I 2 | Sundatao 16 | 7| 7|78

Table 5.3: Different Tuples for Common Surnames
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o
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Figure 5.4: Number of valid tuples under various ranks
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Chapter 6

Related Works

The objective of the web puzzle framework is to search entity tuples that match the tuple
scheme and the given concept from the weh. Fhe system provide the possibility to search
the web with entity view, which matehes the emerging trend towards searching with entity
and relationship over unstructuréd corpus.collection [7][23]. Unlike most similar works,
our system simulate the process that.-human discover knowledge by utilizing the entity
graph. In this section, similar works are compared with our system in both conceptual
model and system design aspects.

Like most entity-based search system, entity annotation is the basic component in the
web puzzle framework. Information extraction techniques have been widely studied and
[4][8][3] have summarized the state of the art. There are many information extraction
works in the web domain [13][18][22][19]. Open source frameworks such as GATES[9],
which we used in our system, and UIMA[10] are public available. The web puzzle frame-
work utilizes the excellent existed information extraction works and further expand them

to build the entity graph to support entity search.
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Question answering[12][5][16] system are widely applied for knowledge discovery. The
AskMSR QA system [12] rank answers based on entity occurrence. Closeness to keywords
is the main criteria for the Mulder system [5] to rank their answer candidates; the system
also clustering similar candidates for voting to strength the precision. The Aranea system
[16] uses a scoring function from the candidate frequency and keyword inverse document
frequency in the candidates. However, the question answering system still provides page-
based model rather than search entity holistically.

To support an “object view”, ExDB [17] offers a SQL-like query language to extract
singular objects and binary predicates of the web. Libra [20] model the web objects as
records with attributes, which is similar to our presentation. However, due to the infor-
mation granularity difference, its languageiretrieval model is is quite different from ours.
The above approaches, which tried-to search fully‘extracted entities and relationships over
the web, is heavily depends on the precision of entity-and relation recognition while our
system utilize the redundancy nature of the web.and a degree of information extraction
error can be tolerant. Thus, the performance of web puzzle framework is mainly depends
on the large-scale analysis rather than precision of individual document.

Efficient index structure is an important part to support on-line entity-based search.
BE [6] utilize a special index, “neighborhood index”, to efficient processing phrase queries,
“interleaved phrase”. In the entitiy index, we utilize a similar structure to inverted key-
word index; as a result, we can integrate the entity search function with existed system
with less cost. Chakrabarti et al. [14] introduce a class of text proximity queries and
study scoring function and index structure optimization for such queries. Local proxim-

ity information within document is the main concern of its scoring function while our
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system focus on global relation among entities which is more suitable for the information
distribution of web objects.

ObjectFinder [24] compose “object” from a collection of documents that are related
with it. As what we do in our system, it aggregate object score over document scores.
However, our approach is more entity-centric, where document scores is aggregated per

entity relation. The score is mainly based on its structure and the entity in the tuple.
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Chapter 7

Conclusions

In this paper, we model the entity search problem as the web puzzle problem. By build
the entity graph and entity index, the framework extend entity search to provide better
accuracy and data coverage. The design of the framework and internal algorithm supports
scale horizontally which meets the requirement of a search service. The experiments show
that our framework is able to discéver entities which do not directly co-occur with the
keyword query. Moreover, the system is able to list entity tuples related to a fuzzy concept

based on the overall impression of the web.
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