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摘      要 

物件搜尋技術已被證明在網際網路中，不直接檢視每一個頁面，而是直接搜

尋如電話號碼與電子郵件地址等實際物件之功能十分有用，該技術透過將網路中

的文件模型轉換為物件模型使得直接搜尋物件變的更加直覺。然而，由於過去的

物件搜尋系統中的限制，對於搜尋多種物件之要求，唯有曾出現在同一頁面之物

件群能夠被搜尋。在這篇論文中，我們將物件搜尋的問題建置成一個解謎的模

型，本系統將對網際網路之文件進行分析後，創造一個宏觀的觀點並建立每一個

物件之間的關係圖，藉由物件之關係圖來搜尋無直接關聯性之物件群，我們使用

真實世界之資料作為實驗依據，並經由實驗證明本論文提出之系統在物件搜尋之

效率與準確性。 
 
關鍵字：物件搜尋，資訊擷取。 



Abstract

Entity search has been proved to be handy to search data “entities” such as phone number

and email without looking them indirectly from individual pages. The technique trans-

forms the web from the document view to the entity view, which enable more holistically

search. However, due to the limitation of previous models, the resulting entities are lim-

ited in the same pages. In this paper, we model the entity search problem as a puzzle

problem. The framework digests all pages and builds a global view on how the entities

should be combined. By utilizing the entity graph, the framework is able to composes

entities into tuples even they are not directly related. We evalulate our system using real

world web pages and show that the system is efficient for searching entity tuples.

Keywords — Entity search, information retrieval
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Chapter 1

Introduction

The web is an ultimate information repository, and it is still growing rapidly. In order to

search information in the unorganized and unstructured web, several search models has

been introduced. The document-based search engines provide users a page view of the

web. The basic unit in the page view is a document, which is good enough for some kind

of user intentions such as “Find blog posts which is related to a topic” and “Find related

information about a person”. However, the document-based search model is far from

intuitive for users who want to find specific entities; for example, “What is the phone

number and email address of someone”. Although users can narrow down the search

results by providing more precise keywords to the search engine, they still have to digest

the pages to find the exact entity they are looking for.

Due to the desire of a more intuitive way to retrieve structured information from the

web, vertical search, which search the target domain in a more organized way, has gain

focus in recent years. Although there are general frameworks to build vertical search,

building vertical search engines for arbitrary domains is still a very complicated task due
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Figure 1.1: An example of cross-page tuple

to the cost of data integration. As a result, the entity search, which provide user an

entity view of the web, is proposed. Instead of pages, users search for specific entity

tuples in the entity search engine. It is more efficient to specify what we are looking for

directly rather than digest the a set pages ourselves. Consider the following scenarios

which compare the page-based search with the entity-based search:

• Scenario One: An user who wants to find all universities that has the computer

science department may issue the query ”university computer science” in the page-

based search engine and try his best to view all the pages and digest the desired

tuples. Yet in the entity-based search engine, the user is able to issue the query

“#University #Department:‘computer science”’ to list all tuples directly.

• Scenario Two: An user wants to list all {zip code, address, phone number} tuples

in California, it is almost impossible to do this in keyword-based search model.

However, in the vertical search engine, one can issue the query “#State:California

#Zipcode #Address #Phone” to list the desired contact information.

The previous work of entity search[21] has studied the ranking criteria of tuples very

well; however, the system is limited by the proximity window size and page boundary.

As a result, the system is only able to find entity tuple which has appeared together in

at least one page; for example, the previous system can not find tuples in Figure 1.1.
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In this paper, we study a different approach to construct the entity search framework.

The framework is designed to search entity tuples of arbitrary sizes and consider the

relationship between different entities in a corpus-centric view in order to find entity

tuples across multiple pages.

To serve an entity search query, the system has to grab a set of entities from the

corpus and rank the composed tuples. The process is like solving a puzzle problem in

which the solver has a lot of puzzle pieces and want to compose the pieces into the desired

form.

In the puzzle problem, each piece provides the solver some information about how

this piece can be combined with others. The same thing holds for the entity search

problem, in which each entity is a piece of the desired tuple. Due to the redundancy of

the web, the same information would appear several times in different websites. In the

web puzzle problem, each page provides the system information that how to compose

entities together. However, the answer of the web puzzle problem varies from query to

query; the tuple scheme defines what kind of pieces (entities) the solver need to compose

the answer (tuple) and the keywords give the solver hints about what is a good answer.

In summary, our contributions are as follows:

• We design the entity search framework in a new approach, which offers better

precision and functionality.

• We model the entity search as a puzzle problem utilizing the redundancy of web

and study the inference process to search entity tuples across page boundary.

• The framework is able to handle web scale data by paralleling the off-line relation

recognition with the map/reduce programming model and utilizing the distributed

3



index for on-line query serving.

We start in Section 2 to the conceptual model to solve the entity search problem

using the puzzle solving approach. Section 3 presents the entity graph and Section 4

materializes the tuple composition and the ranking criteria. We study the related works

in Section 5. Section 6 evaluate our prototype system using real world data set.

4



Chapter 2

Preliminaries

Looking for entity tuples from the web is like a puzzle problem. Each page provide some

hints about the solution tuple. When a user search for information, the user actually tries

to solve the web puzzle. Each page offers some evidence about how the entities should be

combine into the answer tuples. By surfing the pages in the partial web, the user digests

the relation between entities and composes the answer tuples based on his intention.

However, digesting all the pages in the web is an impossible task for a single user and

there is no guarantee that no information is missing by surfing only the limited number

of pages. As a result, the entity search system is crucial for such web data analysis tasks.

The entity search framework solves the following problem:

• Given: A set of documents {d1, d2, . . . , dn}.

• Input: The tuple scheme {E1, E2, . . . , Em} and keywords to narrow down the

returned tuples.

• Output: Ranked entity tuples in {E1 × E2 × · · · × Em}.

5



2.1 Data Model

The web is a collection of documents D = {d1, d2, . . . , dn} and each document di is a

collection of terms {t1, t2, . . . , t|di|}. In order to search entity holistically, we have to

model the web in the entity view. An entity is a (value, type) pair and each document

is annotated as a collection of entities. We will use type(e) to represent the type of the

entity e and use Et to represent all entities of type t. For example, an contact page

of a company may be annotated as {(012-345-6789, #phone), (contact@example.com,

#email), . . . }.

To relate entities with concept, keywords are also annotated as a type of entity.

Instead of page, the basic unit in the entity search system is entity. Given the document

repository, the system have to transform the documents into a set of entities and recognize

their relationship in order to support the tuple composition process.

An entity search query contains two parts: concept and tuple scheme. The concept is

in the form of keywords in the page-based search system while the tuple scheme is a set

of entity types. Each entity type is prefixed by the # symbol. For example, the query

“Turing Award #Person #University #Email” searches for {person name, university,

e-mail} tuples related to the concept “Turing Award”. It is also possible to narrow down

the search results by limiting the value in an entity type. For example, “Computer Science

#Person #University #State:California” lists only the {person name, university, state}

tuples related to the concept “Computer Science” and the value of the state entity is

“California”.

6



2.2 Entity Search Characteristics

Since the characteristics of an entity-based search system is different from the page-based

search system, the difference drives the different system requirements and design issues

between the two. Given the concept, which is represented in keywords, the desired entity

tuples are directly returned in entity-based search system while users have to digest the

results in page-based search system. Therefore, the entity search system should not

only be able to annotate entities but also to compose those entities into correct tuples.

Moreover, since not all entities in the resulting tuples in directly related to the keywords;

in the other words, they may not even appears in the same page with the keywords. As

a result, the system should consider the relation between entities in a global view rather

than being limited by only pages containing the keywords.

The major difference comes from that the page-based search system requires only the

returned pages to match the given concept and entity-based search requires the entities

to be annotated and composed into tuples. There are three major requirements in an

entity-based search system:

• Annotation: The system should be able to annotate entities in the unstructured

documents.

• Composition: Entities should be composed into tuples based on their relation in

the corpus.

• Ranking: The entity tuples should be ranked based on their correlation to the

given concept.

The entity annotation is well studied in information extraction [4][8][3]. As a resutl
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we will focus on tuple composition and the ranking criteria of entity tuples in this paper.

2.3 Our Propose: Puzzle Solving

A very special characteristic of the web is the redundancy, which means the same in-

formation may appear several times in different form. The redundancy introduce the

following hypothesis.

Hypothesis 1. An entity tuple exists in the real-world if and only if there is a way to

discover all entities in the tuple starting from one of the entities.

The hypothesis actually matches the way how we discover information as well as how

we solve a puzzle problem. To solve a puzzle, we start from one piece of the puzzle; see

how it matches to the other pieces; add more pieces; and get to the answer after several

iterations. We know which piece to add because the piece itself gives us some information

about how it is related to other pieces. The same situation happens to the entities in

the web. Each pages provide us information about how entities are correlated. Suppose

whenever we see entity ei, we also see ej; we probably know that if a tuple contains ei, it

may also contains ej. The appearance of the entity itself gives us, the searcher, how it is

related to other entities.

In our framework, we first analysis the whole corpus and build the relation between any

two entities. The relation is represented in the conditional probability form. P (epost|epri)

is the probability that when epri is in the tuple, epost is also in the tuple. Given the

concept, we can choose some entities as the starting points and discover other entities

based on the relation.

8



Figure 2.1: Entity search framework architecture

The framework architecture is shown in Figure 2.1. The web pages is first annotated

and materialized into the entity graph. Whenever there is a user query, we choose some

entities in the entity graph and discover other entities based on the tuple scheme and

their relation with the concept.

9



Chapter 3

Entity Graph

To catch the global relation between entities, the system has to analysis the whole corpus

construct a global view of entities. The global is stored as an entity graph G = (V, E),

where V is the set of all entities and E is the correlation between entities. The entity

graph is a directed graph and the weight of an edge from ei to ej is the probability that

an user can discover ej by starting from ei. By utilizing the entity graph, the system is

able to compose entities into tuples based on their correlation.

The analysis process is generalize into two steps: document-centric analysis and

corpus-centric analysis. Each document is analyzed and provides the system some evi-

dence. The evidences from each documents is aggregated as a global view and the entity

graph is constructed. Since the recognition function can be varies for any two different

types, we study only the basic probability model which consider only co-occurrence of

entities but not context in the documents. However, the recognition can be easily replace

by arbitrary model based on domain knowledge.

10



Figure 3.1: Example web pages

3.1 Document-centric Analysis

Consider the documents in Figure 3.1, each document gives us some information about

the entities in them even without seeing other context in the document. Suppose there

is only one document 1, it is very possible the person name “John” is highly correlated

to the email “john@nasa.org”.

The confidence comes from the presentation of entities in the document. The more

complex a document, the lesser information it provides for an entity pair. For example,

in document 3, we are not so sure that which email is related to “John” because there

are two person name entity and two email entity in the document. Consider only the

co-occurrence of entities, we formulate the confidence estimation function for any two

entities ei and ej appears in document d as follow:

11



Cd(ej|ei) =
|{(ei, ej) ∈ d}|

|{(x, y) ∈ d|x ∈ type(ei), y ∈ type(ej)}|

The above function consider only the occurrence of entities in the document. The

more entities of same type in a document, the lower its confidence to an entity pair

contains entity of the type. It is also possible to consider other factors such as word

distance or the number of entities of the types between two entities.

Cd(ej|ei) =
1

distance(ei, ej)

One can simply use the occurrence-based function or optimize the document-centric

analysis function based on domain knowledge. It is also possible to choose different

function for different entity types. However, to make the system simply to bootstrap,

we use the occurrence-based function by default. A more detailed analysis on document-

centric analysis function is studied in the experiment section.

3.2 Corpus-centric Analysis

Given an entity, one can discover other entities of different types by surfing documents

in the corpus. With unlimited time and patient, one can summarize the impression and

analysis the relation between entities.

Definition 1. Given two entities eprior and eposterior of different types. P (eposterior|eprior)

is the probability that one discover eposterior from eprior rather than another entity of type

type(eposterior) by randomly surfing the corpus.

12



The corpus-centric analysis function, which aggregate the document-based confidence,

is defined as follow:

P (epost|epri) =

∑
d∈D Cd(epost|epri)∑

ej∈type(epost)

∑
d∈D Cd(ej|epri)

Each document in the corpus contribute some confidence to the estimation; however,

the final probability estimation is determined by the overall impression in the whole

corpus. Consider the example of six documents in figure 3.1, the person name “John”

has co-occured with three different emails. There are five (#Email | “John”) pairs with

different confidence estimation in the corpus. The probability that discover an email

entity from the person entity “John” are as follows:

P (“john@na...”|“John”) =
1 + 0.25 + 1

1 + 0.5 + (0.25 + 0.25) + 1

P (“mail@na...”|“John”) =
0.5

1 + 0.5 + (0.25 + 0.25) + 1

P (“mary@ie...”|“John”) =
0.25

1 + 0.5 + (0.25 + 0.25) + 1

We can construct the entity graph by estimating the discovery probability between

all entity pairs in the corpus. All entity pairs with discovery probability greater than 0.6

are shown in Table 3.1.

3.3 Entity Graph Construction

With the millions or even billions of entities in the web, constructing the entire entity

graph is a non-trivial task. As a result, the system should be able to parallel the entity

annotation as well as the relation recognition process. In the prototype system, we use

13



ei ej P (ej|ei)

John john@nasa.gov 0.75

Mary mary@ieee.org 0.833

Somebody mail@nasa.gov 1

John 012-345-0001 0.667

John NASA 0.833

Mary IEEE 0.667

john@nasa.gov John 0.9

mary@ieee.org Mary 0.833

john@nasa.gov 012-345-0001 1

mail@nasa.gov 012-345-0000 1

mary@ieee.org 012-345-0002 1

john@nasa.gov NASA 0.8

mail@nasa.gov NASA 1

mary@ieee.org IEEE 0.667

012-345-0001 John 1

012-345-0000 mail@nasa.gov 1

012-345-0001 john@nasa.gov 1

012-345-0002 mary@ieee.org 1

012-345-0000 NASA 1

012-345-0001 NASA 1

NASA John 0.833

IEEE Mary 1

NASA john@nasa.gov 0.667

IEEE mary@ieee.org 1

Table 3.1: Relations in Figure 3.1
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the Gate[9] toolkit for entity annotation. The entity graph construction process is im-

plemented in the Map/Reduce programming model[11] using the open source Hadoop[1]

framework.

The mapper and the reduce is shown in Algorithm 1 and Algorithm 2 respectively.

In the mapper function, each document is annotated based on the given tuple scheme

and a set of entities is produced. The document-centric analysis function Cd is also

done in the mapper function right after the entities are annotated. The function can be

arbitrary function that output the a confidence value between 0 to 1 given the annotated

document. Moreover, it is possible to set a threshold value for any two types in order to

prune less confident entity pairs. After the analysis is done, each entity pair is emitted

to the reducer to perform the corpus-centric analysis.

Algorithm 1 Entity graph constructor mapper

Input: document di in corpus D, object scheme

Output: ({epri, type}, {epost, confidence}) pairs

1: Entities E = annotate(di)

2: for all (ei, ej) ∈ E do

3: c = Cd(ej|ei)

4: if c > threshold[type(ei), type(ej)] then

5: emit({ei,type(ej)}, ej, c)

Before passing to the reducer function, the system group the entity pairs by the

value of epri and the type of epost. The confidence value for each entity is aggregated by

the corpus-centric analysis function. We introduce the null matrix Mnull here to handle

noise from the document-centric analysis function. The element mij in Mnull denote the

15



probability that an entity of type ti can not discover any entity of type tj. Conceptually,

we create a virtual entity with null value for each type. Each entity in the corpus has a

virtual edge link to the null entities with probability mij. All entities with corpus-centric

confidence value less than mij are pruned to eliminate the noise. Moreover, the pruning

saves the space to store the huge entity graph. The values in Mnull can be assigned based

on domain knowledge or any reasonable value that properly shrink the entity graph.

Algorithm 2 Entity graph constructor reducer

Input: ({epri, type}, {epost, confidence}) pairs

Output: Edges (epri, {epost, confidence})

1: E = new set()

2: for all e, c ∈ {epost, confidence} pairs do

3: if e /∈ E then

4: E.put(e)

5: e.confidence = c

6: else

7: e.confidence = e.confidence + c

8: total =
∑

e∈E e.confidence

9: for all e ∈ E do

10: e.confidence = e.confidence÷ total

11: if e.confidence > Mnull[ei.type, ej.type] then

12: emit(new Edge(epri, {e, e.confidence}))

16



(a) Sub-tree 1 (b) Sub-tree 2

(c) Sub-tree 3 (d) Sub-tree 4

Figure 3.2: Sub-trees of entity graph for documents in Figure 3.1

3.4 Tuple Composition

As in our hypothesis, if a tuple exists in real world, there should be a way to find all

entities in it from one of the entity. The entity graph provides the system about how to

“discover” entity one by one. The tuple composition process is like traverse the entity

graph in random walks. Suppose the user starts from knowing one entity, the root entity,

and want to discover the other entities of different types. With his knowledge about the

known entities, the weight of the edge gives him some hints about which entity to go

next. He may go back and forth in the entity graph and finally collect the desired tuple.

Figure 3.2 shows some sub-trees in the entity graph of documents in Figure 3.1.

17



The sub-trees are possible combination of entities and represents the discovery path of

entities in the tuple. Given all sub-trees which contains one entity for each type in the

tuple scheme, some of them are more likely to be discovered by random walking in the

entity graph starting from random entity. For example, it is more likely to discover tuple

in Figure 3.2(a) and 3.2(d) rather than the one in Figure 3.2(b). Suppose the we start

from entities that match the types in tuple scheme and only discover one entity for each

type in the scheme. We can define the confidence of a tuple in the following equation:

C(tuple) = max
sub-tree t→tuple

∏
edge e∈t

weight(e)

Consider starting from the root entity as the known entity and discover other entities

by following the edge in the entity graph; whenever a new entity is discovered by edge e,

we have a probability weight(e) to continue the discovery rather than another discovery

process. As a result, the probability of accepting a sub-tree is the product of the weight

of its edges. Since there may be multiple sub-trees represents the same tuple, such as the

two sub-trees in Figure 3.2(a) and 3.2(c). We choose the one with maximum probability

to represent the confidence of the tuple to avoid the noise in tuple composition since there

may be a lot of low confidence sub-trees represents the same tuple.
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Chapter 4

Entity Search

We will concretely materialize the entity search framework in this section. As the require-

ments for entity search, the entity tuples should not only be valid but also be relevant

to the user given keywords. The keywords in the query guide the system the starting

points to search in the entity graph and the system rank the tuples found based on their

relevance with the keywords. To enable the framework, we adapt the inverted list index

into entity index and search the entity graph with A* search algorithm.

4.1 Concept-Driven Tuple Ranking

Since there are a lot of entity tuples matching the tuple scheme, the entity search provide

a function to narrow down the search results by introducing the keywords. The keywords

describe the concept which the resulting tuples should be related to.

Given the query q, we can transform q as an entity of unique type in the entity graph

by computing the edges between q and other entities in the graph. With the keyword

index, we can obtain the subset Dq, which contains query q, in the corpus D. With the
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entity index, we can obtain the subset De, which contains the entity e, in the corpus.

The inlink and outlink between an entity e and query q can be calculated by P (e|q) and

P (q|e) respectively. The detail of computing P (e|q) and P (q|e) utilizing both keyword

index and entity index is discussed in the next sub-section.

P (e|q) = document frequency(e,Dq)

P (q|e) = document frequency(q, De)

Suppose we have the concept in mind, we can find the Dq document set by the keyword

index. By browsing all documents in Dq, we can get an impression that how all entities

are related to the concept. However, the entities of the desired tuple may not all appears

in Dq so we still have to traverse the entity graph to compose the tuple. Whenever we

discover a new entity in the graph, in addition to check the confidence of the edge, we also

check the confidence of the entity e given the query q. We have the probability C(q, e)

to continue the discovery process rather than re-starting the discovery. The probability

C(q, e) is defined as follow:

C(q, e) = min(max(P (q|e) + P (e|q), Pbase), 1)

Pbase is the base probability for those entities that does not co-occur with the query

in any document. P (e|q) may be much lower than P (q|e) since the concept can be

very general and matches much more documents than the entity. The function can be

explained as the confidence of an entity e given q is proportional to P (q|e) and breaking

tie by P (e|q).
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Figure 4.1: Relate tuple to query

Given the concept-driven query q, the tuples discovered in the entity graph are ranked

by the following ranking function.

Score(q, t) = C(t) ∗
∏
e∈t

C(q, e) (4.1)

We traverse the entity graph to compose the entity tuples. When we select the root

node, we have a probability to give up this traversal; whenever we expand the tuple, we

check the path so far as well as the confidence of the newly added entity. The score is the

probability that the discovery process from the root entity has successfully completed.

For example, we evaluate the tuple in Figure 4.1 by all its edges and the confidence of

each entity in it give the query.

4.2 The Entity Index

To enable entity search, we store the entity graph in a memory cached table for fast

look-up. Every entity is encode into a 8-bytes ID and the graph is stored in distributed
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machines. Moreover, we construct a entity-based inverted list for each type of entity with

the following structure.

#TYPE → {docID1, {(eID,
1

#doc(eID)
), . . . }}, . . .

The eID is the id of the entity and #doc(eID) is the number of documents contains

the entity with eID. By utilizing the entity index, we can join the inverted list of an

entity type with and keyword-based inverted lists. Given the inverted list lq of query q

and the inverted list lE of entity type E, we can join the two to obtain the joined list l′.

For each entity e, we can get its sub-list le in l′. Then we can calculate the confidence of

any entity e given query q by:

P (e|q) =
size(le)

size(l′)

P (q|e) =
∑
d∈le

1

#doc(eID)

4.3 Tuple Expansion by A* Search

The algorithm that serves entity search query is shown in Algorithm 3. Given the

query q and the tuple scheme S = {E1, E2, . . . , En}, the system first checks the index and

constructs the set of entities which are co-occured with q in the documents containing q;

then, it constructs size one tuples rooted by each entity in the set. The initial tuple set

is expanded based on the entity graph by A* search.
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Given a partial tuple t, the cost function g(t) and the hypothsis function h(t) are

defined as follows:

g(q, t) =
∏

entity∈t

C(q, entity)×
∏

edge∈t

weight(edge)

h(q, t) =
∏
Ei /∈t

max
entity∈Ei

C(q, entity)

The score of an incomplete tuple t is estimated by:

Score′(q, t) = g(q, t)× h(q, t)

The system aims to find tuples with top-k scores. The hyposthsis function h(q, t)

is admissible since the weight of each edge is always less equal than 1 and the function

utilize the max confidence of entities in each type. As a result, given the tuple t′ expanded

from t, the following equation holds and the algorithm satisfies the property of A*.

g(q, t′)× h(q, t′) ≥ g(q, t)× h(q, t)
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Algorithm 3 Entity search

Input: Query q and scheme S = {E1, E2, . . . , En}

Output: Ranked entity tuples

1: Get lq and lEi
,∀Ei ∈ S from the index

2: tuples = priority queue ranked by Score′(q, t)

3: for all Ei ∈ S do

4: l′i = join(lq, lEi
)

5: for all e ∈ l′i do

6: tuples.add(new tuple(e))

7: while tuples.empty() = false do

8: t = tuples.pop()

9: if size(t) = n then

10: results.add(t)

11: if size(results) = k then

12: return

13: T ′ = expand(t)

14: for all t′ ∈ T ′ do

15: tuples.add(t′)
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Chapter 5

Experiments

We evaluate the framework by building a prototype system using 0.5M web pages under

uiuc.edu domain crawled on April, 2008. We use the GATE framework to annotate enti-

ties by both statistical and dictionary-based methods. The number of entities annotated

including false-positive entities are shown in Table 5.1. The entity graph is constructed

using the Hadoop platform and in stored in a cluster of memory cache to enable fast

look-up. The entity index is distributed on two machines and the C(q, e) function is

computed by aggregating the index look-up in a portal machine to show that the system

can be linearly scale out. After aggregating the C(q, e) function, the machine performs

tuple composition by querying the cluster which stores the entity graph.

In the entity graph construction process, we set each element in the threshold matrix

and each element in Mnull as 0.2 since it is quite reasonable to filter out noise. Moreover,

to isolate the annotation error from performance evaluation, we do not consider entity

tuples containing any false-positive annotated entities.
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Type #Entities

Person Name 632,511

Email 34,408

Phone Number 29,731

Zipcode 38,656

State 103

University 85

Table 5.1: Number of entities annotated

5.1 Precision

In the precision evaluation, we randomly select 100 person names which is correctly

annotated. Moreover, their related entites are also correctly annotated at least one time

in the corpus.

The query used in entity search is “name #Person #Email #Phone”, which searches

the complete person name, email, and phone number related to a person name string.

We compare the web puzzle powered entity search with the other two competitors:

• keyword search: The keyword search is implemented based on the open source

search framework Lucene[2] and all pages are boosted by their Pagerank[15]. The

query used in keyword search is “name AND (phone OR email)”. In the keyword

search, we suppose that the user will not miss any entities appear in the result

pages and combine the entities he has seen correctly.

• Naive Count: Simply count the number of co-occurrence of entities in the inverted
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Figure 5.1: Satisfied query percentage under various ranks

list matching the query. Since there is no composition in naive counting, we suppose

the user can compose the entities in the top ranks correctly. The rank is considered

as the maximum rank among the three entities in the query.

In Figure 5.1, we compare the number of search results viewed in order to satisfy

the query. The keyword-based search is sometimes mislead by the other phone number

or e-mail texts such as contact information of the organization. The same problem

occurs in the naive counting approach since the common shared entities appears more

frequently than the personal phone number or email. The web puzzle framework utilize

the conditional probability in tuple composition thus avoid the problem.

In Figure 5.2, we compare the number of different entities viewed in the top results

to satisfy the query. It shows that keyword search will show more ambiguous entities

comparing to the web puzzle framework because there are some directory listing pages

that list personal information for a lot of people. The naive counting beats the web
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Figure 5.2: Satisfied query percentage under various number of entity viewed

puzzle framework in rank 6 because the naive counting approach consider only entities

appearing in pages that also contains the query keywords; thus, less noise was introduced

to the result.

Although we suppose that the user can compose all entities seem in both keyword

search and naive counting approaches, it is impossible without spending a sufficient

amount of time. In addition to the precision, the web puzzle framework satisfies more

queries in top ten.

5.2 Study of Tuple Size

To evaluate the system with different tuple size, we re-use the 100 person names in the

previous experiment and issue the query “name #Email #Person #Phone #University

#State #Zipcode” by adding one entity type at a time. The result is shown in Figure
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Figure 5.3: Satisfied query percentage under various ranks for different size of tuple

scheme

5.3.

Querying for less entity types gives better precision in top results; however, when it

goes to top-10, there is no much different. 4 of the 100 query cases is shown in Table 5.1.

It shows that querying for more entity types may mislead the tuple composition as in

case 12 and 24. However, in case 7 and 16, it shows that some entity may not be directly

found by the keywords without traversing the entity graph. In summary, the accuracy of

overall result is stable even the number of entity type required increases.

5.3 Tuple Listing

In the third experiment, we exam the system’s ability to list different entity tuples given

a fuzzy concept. 10 of 100 common surnames in United States are selected and make sure
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C\TS 1 2 3 4 5 6

7 X 8 7 3 2 X

12 1 1 5 9 8 4

16 X 3 6 3 8 6

24 1 2 9 6 10 7

Table 5.2: Ranking for case\tupleSize

there are at least 5 different {#Person #Phone #Email} tuples related to the surname

in the corpus. The query “surname #Person:surname #Phone #Email” is issued to

the prototype system and we count the number of correct tuples referring to different

real-world instances in top ranks.

Table 5.2 shows the detailed result and Figure 5.4 shows the average number of dif-

ferent correct entity tuples in top ranks. The experiment shows that the web puzzle

framework is able to show different tuples without introducing extra noises.
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Case\Rank 1 2 3 4 5 6 7 8 9 10

Smith 1 2 3 4 4 5 5 6 7 7

Johnson 1 2 3 4 5 5 5 5 5 5

Williams 1 2 2 3 4 4 4 5 5 5

Brown 1 1 2 2 3 4 4 5 5 5

Miller 1 2 2 3 4 4 4 4 4 5

Anderson 1 1 1 2 3 4 4 5 6 6

Taylor 1 1 2 2 3 4 5 6 6 7

Thomas 1 2 3 4 5 5 6 7 8 9

Martin 1 2 2 3 3 4 5 6 7 7

Scott 1 2 3 4 5 6 7 7 7 8

Table 5.3: Different Tuples for Common Surnames
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Figure 5.4: Number of valid tuples under various ranks
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Chapter 6

Related Works

The objective of the web puzzle framework is to search entity tuples that match the tuple

scheme and the given concept from the web. The system provide the possibility to search

the web with entity view, which matches the emerging trend towards searching with entity

and relationship over unstructured corpus collection [7][23]. Unlike most similar works,

our system simulate the process that human discover knowledge by utilizing the entity

graph. In this section, similar works are compared with our system in both conceptual

model and system design aspects.

Like most entity-based search system, entity annotation is the basic component in the

web puzzle framework. Information extraction techniques have been widely studied and

[4][8][3] have summarized the state of the art. There are many information extraction

works in the web domain [13][18][22][19]. Open source frameworks such as GATES[9],

which we used in our system, and UIMA[10] are public available. The web puzzle frame-

work utilizes the excellent existed information extraction works and further expand them

to build the entity graph to support entity search.
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Question answering[12][5][16] system are widely applied for knowledge discovery. The

AskMSR QA system [12] rank answers based on entity occurrence. Closeness to keywords

is the main criteria for the Mulder system [5] to rank their answer candidates; the system

also clustering similar candidates for voting to strength the precision. The Aranea system

[16] uses a scoring function from the candidate frequency and keyword inverse document

frequency in the candidates. However, the question answering system still provides page-

based model rather than search entity holistically.

To support an “object view”, ExDB [17] offers a SQL-like query language to extract

singular objects and binary predicates of the web. Libra [20] model the web objects as

records with attributes, which is similar to our presentation. However, due to the infor-

mation granularity difference, its language retrieval model is is quite different from ours.

The above approaches, which tried to search fully extracted entities and relationships over

the web, is heavily depends on the precision of entity and relation recognition while our

system utilize the redundancy nature of the web and a degree of information extraction

error can be tolerant. Thus, the performance of web puzzle framework is mainly depends

on the large-scale analysis rather than precision of individual document.

Efficient index structure is an important part to support on-line entity-based search.

BE [6] utilize a special index, “neighborhood index”, to efficient processing phrase queries,

“interleaved phrase”. In the entitiy index, we utilize a similar structure to inverted key-

word index; as a result, we can integrate the entity search function with existed system

with less cost. Chakrabarti et al. [14] introduce a class of text proximity queries and

study scoring function and index structure optimization for such queries. Local proxim-

ity information within document is the main concern of its scoring function while our
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system focus on global relation among entities which is more suitable for the information

distribution of web objects.

ObjectFinder [24] compose “object” from a collection of documents that are related

with it. As what we do in our system, it aggregate object score over document scores.

However, our approach is more entity-centric, where document scores is aggregated per

entity relation. The score is mainly based on its structure and the entity in the tuple.
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Chapter 7

Conclusions

In this paper, we model the entity search problem as the web puzzle problem. By build

the entity graph and entity index, the framework extend entity search to provide better

accuracy and data coverage. The design of the framework and internal algorithm supports

scale horizontally which meets the requirement of a search service. The experiments show

that our framework is able to discover entities which do not directly co-occur with the

keyword query. Moreover, the system is able to list entity tuples related to a fuzzy concept

based on the overall impression of the web.
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