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Abstract

Magnetoencephalography (MEG) and Electroencephalography (EEG) are the non-invasive
instruments that record the induced magnetic field and scalp electrical potential. To study
the functionality of human brain, inverse algorithms, involves forward model in lead field
vector space, are commonly used for estimating cortical source distribution. For more
precisely estimation, interferes, such as artifacts and environmental noises, must be re-
moved. Independent Component Analysis (ICA) can be used to remove interferes which
are assumed to be independent to brain acitivities. Moreover, ICA also provides the scalp
topography, or said the mixing matrix, of components. The proposed method aim to find
the cortical source distribution of given independent components by find a set of basis that
best represents the mixing matrix using Singular Value Decomposition (SVD). It provides
the spatiotemporal imaging of independent brain activities that cannot obtain from ICA. It
is demonstrated that the proposed method can provide accurate cortical source distribution

from experiment results of simulations.
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Introduction



Introduction

1.1 Backgrounds

For the past thousands of years, people had dedicated themselves to study the func-
tionality of human brain since it plays an important role in coordinating all parts of the
body. The researches were limited in technical skill and morality that it was not allowed
to do invasive anatomical experiments on living bodies. Recently, more and more non-
invasive instruments have been invented, such as Magnetoencephalography (MEG), Elec-
troencephalography (EEG), functional Magnetic Resonance Imaging (fMRI) and Near In-
frared Reflectance Spectroscopy (NIRS), because of the thriving development of technol-
ogy. Thus, it provides solutions for studying brain activities without physical harm. Ac-
cording to the neurophysiological knowledge, activation of neurons in brain causes changes
in bloo flow and oxygen levels and thus can be regarded as neural activity. fMRI and NIRS
are the instruments for detecting hemodynamic and hemoglobin changes with high spatial
resolution up-to 1 mm and 800 nm but with low temporal resolution resulted from the slow
hemodynamic changes in seconds. In contrast, MEG and EEG are two instruments that
measure induced magnetic field and scalp electric potential produced by iron flow and thus

have the higher temporal resolution‘in milliseconds-than fMRI has.

Because the brain activities may ‘dynamically change up-to-80 Hz and in accordance
with Nyquist sampling theorem [27], temporal resolution with at least 160 Hz sampling
frequency is required to reconstruct the original signals. Therefore, MEG and EEG are
more suitable for studying neural dynamics. In studying of brain functionality by record-
ing of MEG and EEG, the two major difficulties are the ill-posed inverse problem and low
Signal-Noise-Ratio (SNR). First, the forward model, including the lead field vector repre-
senting distribution of brain activities to sensor array, is involved in the inverse problem in
order to reconstruct brain activity and is going to be introduced in Section 2.2.

For low SNR, it results from the much smaller scale of electrophysiological signal than
of environmental noises. For instance, the magnitude of omnipresent static field of earth is
around 107! Tesla and is much larger than of the induced magnetic field which is around
10719 to 107!® Tesla. In addition, MEG and EEG signals are often corrupted with the
background brain activities and artifacts, such as the heartbeat, eye-blink, and environmen-

tal noises. Thus, data preprocessing, including bandpass filter and baseline correction, and



1.2 Thesis Scope

Independent Component Analysis (ICA) are some commonly adopted techniques for in-
creasing the SNR or rejecting artifacts. ICA was originally proposed for the purpose of
blind source separation to find components that are mutually statistical independent [21].
It performs best when raw or unaveraged signals are applied as inputs. Recently, it has
been proved a useful tool in neurological brain research and is widely-used for analyzing
MEGT/EEG signals [18, 19], especially for removing artifacts based on its independence as-
sumption [4, 8, 17,22]. Moreover, it may be probable to see the event-related fields (ERFs)
after removing noises. However, ICA has limitations that the number of independent com-
ponents is less than or equal to the number of sensors and it provides the sensor space
distribution of components but no cortical distribution. It is insufficient for studying brain

activites. The more details of ICA will be described in Section 2.3.

Electromagnetic Spatiotemporal Independent Component Analysis (EMSICA) was pro-
posed by Arthur C. Tsai et al. in 2006 [33] for estimating spatiotemporal independent EEG
components and the corresponding cortical source distribution simultaneously. It is im-
plemented using Bayesian statistical framework for imaging independent brain activities
under physiological source constraints. Hence, th€ max number of the output components
becomes tens of thousands since cottical-source location and orientation are used for esti-
mation. On the other hand, the'number of unknown parameters of EMSICA is much more
than of standard ICA and then it becomes harder to be solved.

We propose a new method to directly map independent components extracted by stan-
dard ICA to cortical surface by projection of lead field vector space. It provides an both
intuitive and efficient solution for studying interested components or the discovered fea-

tures further.

1.2 Thesis Scope

In this thesis, we focus on the imaging method for solving cortical source distribution
of independent components extracted using the standard ICA algorithms. It is neither for
solving the inverse problem nor for more precisely decomposing independent component,

but it can be helpful and provides a both intuitive and efficient solution for mapping the
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discovered features or interested components of MEG/EEG signals to cortical surface. Ac-
cording to the experiments result demonstrated in Chapter 4, it shows the high accuracy
and capability of our imaging method.

In this work, cortical surface were reconstructed by FreeSurfer , a set of software tools
for study of cortical and subcortical anatomy and VTK, a visualization toolkit and open
source software for 3D computer graphics. We implemented the proposed method using
C++ and matlab. The program for visualization of 3D cortical surface and source distribu-
tion were implemented using Java. All these program were executed on Win32 platform

except that FreeSurfer was executed on Linux x86_64 platform.

1.3 Thesis Organization

In the later Chapter, the proposed method will be described in detail. First, background
knowledge such as forward model with'corresponding imaging methods and ICA will be
introduced in Section 2.2 and 2.3. ‘Then, we will briefly describe EMSICA, the related
work, in Section 2.4 and compare with the proposed method in Chapter 5. Detail of the
proposed method will be illustrated-in Chapter-3-and experiments result will be displayed
in Chapter 4 and discussed in Chapter 5. Finally, the last two section will be conclusions

and future works.
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MEG and EEG detect the induced magnetic field and scalp electrical potential out side
of head. In studying of brain functionality by recording of MEG and EEG, the two major
difficulties are the ill-posed inverse problem and low Signal-Noise-Ratio (SNR).

First, the forward model, including the lead field vector representing distribution of
brain activities to sensor array, is involved in the inverse problem in order to reconstruct
brain activities. Therefore, based on the forward model, several groups of methods were
proposed to solve the inverse problem or to map sources to cortical surface. An inverse
algorithm aims for estimation of real source location and orientation, such as dipole fitting.
An imaging method tries to estimate the statistical map of MEG/EEG signals that indicates
the cortical source distribution in probability. The higher probability it is, the more possible
stronger activation it has. Otherwise, according to the approach of imaging method or
inverse algorithm, it can be separated into two categories such as scanning approach and
imaging approach.

For low SNR, it results from the mueh smaller scale of electrophysiological signal than
of environmental noises. In addition; MEG and EEG signals are often corrupted with the
background brain activities and artifacts, such as the heartbeat, eye-blink, and environmen-
tal noises. Thus, data preprocessing, including bandpass filter and baseline correction, and
Independent Component Analysis (ICA) are some widely used techniques for increasing
the SNR or rejecting artifacts.

ICA was originally proposed for the purpose of blind source separation to find com-
ponents that are mutually statistical independent [21]. Recently, it has been proved a use-
ful tool in neurological brain research and is widely-used for analyzing MEG/EEG sig-
nals [18, 19], especially for removing artifacts or finding features based on its indepen-
dence assumption [4,8,17,22]. Moreover, it may be probable to see the event-related fields
(ERFs) after removing noises. However, ICA has limitations that the number of indepen-
dent components is less than or equal to the number of sensors and it provides the sensor
space distribution of components but no cortical distribution. It is insufficient for studying
brain activites.

Electromagnetic Spatiotemporal Independent Component Analysis (EMSICA) was pro-
posed by Arthur C. Tsai et al. in 2006 [33] for estimating spatiotemporal independent EEG

components and the corresponding cortical source distribution simultaneously. Thus, it
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has the same ability of mapping sources to cortical surface as imaging methods for solving

inverse problem. It also has the same ability of separating independent components as ICA.

However, it may be harder to have a best solution for EMSICA than for standard ICA
since EMSICA has much more unknown parameters that results from the cortical surface

constraints.

We propose an imaging method for mapping independent components to cortical sur-
face with less unknown parameters by standard ICA. But it can achieve the same work like

EMSICA.

2.1 MEG/EEG Forward Model with Spherical Head Model

Inverse algorithms have to involve forward solution for estimating the properties of
brain sources when given a-set of MEG/EEG signals measured by an array of external
sensors. Therefore, the forward model, describes the distribution of magnetic field outside

of head when given a theoretical brain-source, should be constructed at first.

The most commonly adopted head model, the spherical model, assumes that it is com-
prised by a set of nested concentric sphere shells representing brain, skull and scalp [2,25].
Each sphere has homogeneous and isotropic conductivity. Under this assumption, consider
the simple case of a unit current dipole with the parameter § = {r,q}, located at r € R3
with orientation q € R3. The lead field vector 1, € RY, a column vector, indicates how
this current dipole distributes to the MEG sensor array and can be illustrated as a single

topography like Figure 2.1.

ly =G, *xq (2.1)

The gain matrix G € R™*3 describes the sensibility of N MEG/EEG sensors to the current

dipole in the three dimensional Cartesian coordinate system.

Furthermore, concentrate on the general case in volume domain, the MEG/EEG mea-

surement m(¢) € RY recorded at time ¢ is composed of many time-varying current densi-
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MEG measurment
(m(ty) ... m(ty)]

Brain activities
s1(t1) .. s1(tr)]

(www.neurevolution.net)

(ibru.vghtpe.gov.tw/chinese/meg.htm)

Figure 2.1: MEG Forward Model.

(The picture of MEG is excerpted from http://ibru.vghtpe.gov.tw/chinese/meg.htm.)

(The picture of sensor is excerpted from http://www.neurevolution.net.)

While an oriented current dipole generated by an activated neuron, the MEG instrument ac-
quires induced magnetic field by sensor array and output the time course, or measurement.
Each lead field vector with respect to a current dipole can be regarded as a topography or
source distribution to MEG sensors.
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ties with their respective lead field vector illustrated by the following equation

Sl(t)

m(t) =Y "l xs;(t) +n(t) = [lg, I, ...] | s2(t) | +n(t) (2.2)
Vi :
where n(¢) is the additive noise. Let L = [ly, ly, ...] denotes the lead field matrix and

s(t) = [s1(t) so(t) ...]* denotes the time-varying current densities. Then, the equation can
rewritten as

m(t) = Ls(t) + n(t). (2.3)

Figure 2.1 can be used for explaining the forward model. While a neuron is activated,
the induced magnetic field or scalp electric potential is detected by sensors of MEG or
EEG. The topography represents the distribution of the magnetic field or electric potential
produced by a unit dipole and is so called a lead field vector. Unit dipole with different
location and orientation will result in different lead field vector. Thus, linear combined
sources with the respective lead field-vectors and amplitude plus the additive noises are

included in measurement.

2.2 Inverse Solution

The inverse problem is an ill-posed problem of determining the neuronal sources from
MEG/EEG measurement and has no unique solution. Thus, it is impossible to specify
distribution of neuronal sources without any further assumptions or anatomical constraints.
According to the revealed MEG/EEG researchs, parametric and imaging methods are the

two general approaches for estimating neuronal sources [2,26].

Parametric or Scanning Methods

The parametric or scanning methods solving the inverse problem under the assump-
tion that sources can be represented by a few equivalent current dipoles (ECDs) of un-
known locations, orientations and amplitude to be estimated with nonlinear numerical

method [2, 13, 16, 26]. Thus, a current dipole is assigned to each tessellation elements,
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numbering in tens of thousands, on the cortical surface orientated to the radial line, or said
the local surface normal, during a period and trying to find the best fit of the MEG/EEG
measurements.

The most common model used for inverse solution is the least-squares source estimation
(Equation 2.4) [2,7,11]. It is a brute force approach, but with expensive resource and time
cost, of nonlinear search by scanning through all possible set of locations, orientations and
amplitude. It attempts to determine the set {6;, s;(t)} = {{r;,q;},s:(t)} fori =1...P
that minimizes the square error between recording and the field computed from estimated

sources §(t) using forward model L (Equation 2.3).
arg min ||m(t) — Ls(t)|| (2.4)

Recently, beamforming approaches, performing spatial filter W on data m(¢) (Eq. 2.5),
are applied in estimating cortical distribution of neuronal sources over least-squares with
extra constraints [31,32], such as minimum norm (MNE) [12,15,20,23], minimum variance

(LCMYV and SAM) [28-30, 34] and maximum contrast (MCB) [5] constraints. [7].

s(t) = W' m(t) (2.5)

However, these methods may result in spatial over-smothing that does not explicitly
express anatomical or physiological constraints in the source reconstruction process. It
may comprehensively yield unrealistic solution. Moreover, one of the limitations of beam-
forming is that coherent sources with the true signal from the scanning location can cause
cancellation of the interested signal. Not allowing source estimation throughout the entire

event period is another one, thus leaving parts of the event unexplained.

Imaging Approaches

The imaging approaches estimate amplitudes of a set of dipoles with fixed locations
within the brain volume. Similar to scanning method mentioned in last section, computing
on the volumetric grid is the basic technique for imaging methods. Moreover, since the
brain activities are believed to be restricted to the cortex and MEG is most sensitive to cor-

tical sources, the imaging method can be constrained to the cortical surface that extracted
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from an anatomical MR image of the subject. As aforementioned, sources can be placed on
each point that forms the triangle mesh with orientation that perpendicular to the surface.
Hence, the inverse problem is simplified to estimate linear parameters only. [6].

Bayesian statistic framework is a widely-used approximation of imaging method [1,2]

such as FOCUSS [10, 24].
p(M[S)p(S)
p(M)

p(S|M) denotes the conditional probability of an event S assuming M has occurred. That

p(SIM) = (2.6)

is, applying to the inverse problem, the conditional probability of sources S activated as-
suming MEG/EEG measurement M has been recored. In contrast, p(IM|S) describes the
forward problem that the conditional probability of the measurement M been recorded
assuming S has activated and p(S) is the prior. Therefore, the sources are estimated by

maximization of the posterior probability.

S'= argmaxp(M|S)p(S) (2.7)

However, it has been revealed by Hillebrand et al. [14] that small errors in anatomical
constraints can incur the large errors in source estimation. Moreover, the higher spatial res-
olution it is, the worse effects of errors it has. This may remove or decrease the advantage

of estimating sources using imaging approaches and anatomical constraints.
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2.3 Independent Component Analysis (ICA)

Topography A Component x(t)

. '
10
Iy
i ’___,\/\/\/V\/\/\/\
o 4
ots o
o o :

Measurement m(t) o I _W
1o v -
| Lol k )
N e ‘ 4 N
'

Brain activities

Artifacts

\_ ——

Figure 2.2: Independent Component Analysis. MEG/EEG signals are often corrupted by
additive noises including background brain activities, heartbeat, eye-blinking, other elec-
trical muscle activities and the environment noises. In general, these interferes occurs inde-
pendently to the stimuli or ERFs. Recently, ICA has been proved a useful tool in analyzing
MEGT/EEG signals, especially for artifacts removal. It attempts to find the unmixing matrix
W that makes the output components as independent as possible.

MEG/EEG signals are often corrupted by additive noises including background brain
activities, heartbeat, eye-blinking, other electrical muscle activities and the environment
noises (Figure 2.2). In general, these interferes occurs independently to the stimuli or

event-related fields (ERFs).

Independent component analysis (ICA) was originally proposed for the purpose of
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blind source separation to find components that are mutually statistical independent [21].
It performs best when raw or unaveraged signals are applied as inputs. Recently, it has
been proved a useful tool in neurological brain research and is widely-used for analyzing
MEG/EEG signals [18, 19], especially for removing the interferences mentioned above as
a preprocessing step based on its independence assumption [4,8, 17,22]. Moreover, it may
be probable to see the ERFs after removing noises and be helpful for the following source
estimation process.

The ICA task is casted as follows:
m(t) = Ax(t) (2.8)

, A € RY*K i5 50 called a mixing matrix that compounds the K independent components
x(t) € R¥ into MEG measurement m(¢). Each single column vector a; of mixing matrix A
is respected to the i component x; = [x;(t1)...x;(tr)], fori = 1... K, which specifies

its distribution to MEG sensors: In contrast, the equation 2.8 can also be written as
Wim(t) = x(t) 2.9)

where W € RV*K i the unmixing matrix. Each single column vector w; of unmixing

matrix W is a filter extracting the corresponding component x; from MEG measurement.
However, the amount of output independent components is limited to the number of

input channels. That is, at most /N components will be outputted if we send a N-channel

MEG measurement to ICA.

2.4 Electromagnetic Spatiotemporal Independent Compo-

nent Analysis (EMSICA)

Electromagnetic Spatiotemporal Independent Component Analysis (EMSICA) was pro-
posed by Arthur C. Tsai et al. in 2006 [33] for estimating spatiotemporal independent EEG
components and the corresponding cortical source distribution. It is implemented using
Bayesian statistical framework for imaging independent brain activities under physiologi-

cal source constraints.
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First, it assumes that P brain activities are consisted of the K spatiotemporal indepen-

dent components and the matrix B € P % K describes the linear combination.
s(t) = Bx(t) (2.10)

Each column vector b; ,where B = [b;...bg]| , represents the cortical distribution of

component z;(t) fori = 1... P. Thus, the forward solution (Eq. 2.3) becomes

m(t) = Ls(t) = LBx(t). (2.11)
B A x(t)
Cortical distribution ~ Topography Component
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m(f) = LBx(¢) || Artifacts

Figure 2.3: EMSICA.

(This picture is excerpted from [33])

EMSICA attempts to estimate the cortical distribution B that makes the corresponding
output components as independent as possible. Moreover, compare equation 2.8 for ICA
and 2.11, distribution of independent components to sensors are obtained by Equation 2.12.
Thus, there are distributions to both cortical surface and sensor space.

Similar to ICA, EMSICA attempts to estimate the cortical distribution B that makes
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the corresponding output components as independent as possible and K, the amount of

components, must be less than or equal to P or said the number of brain activities.

2.5 Comparison between ICA and EMSICA

EMSICA and ICA both attempt to extract independent components from input signals
and to find the respected distribution. According to the Equation 2.8 from ICA and 2.11
from EMSICA, the relation between distribution to sensor space from ICA and to cortical

surface from EMSICA can be illustrated by

A =LB. (2.12)

Ce® o
@09 ;

2 ®
© O @ &

Figure 2.4: Infomax ICA in sensor space vs. EMSICA on cortical surface.

(These two pictures are excerpted from [33])

(a) Topography with respect to 12 components, accounting for sensorimotor mu, frontal
midline theta, central and lateral posterior alpha rhythms, separated using infomax ICA.
(b) Cortical distribution of the 12 components extracted by EMSICA and the corresponding
topography by applying lead field matrix to cortical distribution map. Results of EMSICA
similar to the ones of ICA demonstrates that EMSICA has the convinced ability to separate
components well like what the widely-used ICA has.
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Figure 2.4 displays the results of a two-back visual memory working memory task an-
alyzing by standard ICA and EMSICA. The topographies, outputted by ICA, displayed
in left-panel and the ones, transformed from cortical distribution by lead field matrix, dis-
played in right-panel are similar. This demonstrates that EMSICA has the convinced ability
to separate components well like what the widely-used ICA has.

Moreover, EMSICA, within a single procedure, solves not only independent compo-
nents but also the imaging of cortical source distribution by involving the forward solution
and implemented using Bayesian framework. This makes the difference between ICA who
is not an imaging method and just separates components in the same space as input signals.
On the other hand, ICA can split components in cortical space as the second procedure but
an imaging or inverse method to measurement required at first [35].

Comparing these two algorithms, EMSICA has the ability to estimate cortical source
distribution but also has too many variables, at least 110,000 triangular points consisted of
the cortical surface in our case, locations of dipolar Seurces need to be solved. In contrast,
standard ICA cannot estimate cortical source distribution directly when applied measure-
ment but not cortical sources. Furthermore, ICA has same accuracy in sensor space but

handles the smaller data and fewer variables than EMSICA does.



Chapter 3

Spatiotemporal Imaging of Independent

Brain Activities
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Under the assumption, described in Section 2.4 by the forward solution (Equation.
2.11), brain activities s(¢) are composed of numbers of spatiotemporal independent compo-
nents x(¢) with cortical distribution B. We propose a method for spatiotemporal imaging
of independent components, estimated using standard ICA, by lead field vector space pro-
jection. Thus, it has advantages of small data size and fewer variables like standard ICA

but also has the ability to map independent components to cortical surface like EMSICA.

3.1 Mixing Matrix Approach for Imaging Method

According to equation 2.12, each mixing vector a; has its corresponding cortical distri-
bution b;. They can be explained to the distribution of a component to sensors and cortical
surface. Moreover, b, represents the linear combination of lead field vector that consists the
respective mixing vector. Thus, if mixing matrix A and lead field matrix L are given, the
cortical source distribution can be solved by Equation 3.1 where Lt is solved by singular

value decomposition.

B=L*A 3.1

Since mixing matrix A are linearly combined from lead field matrix L. by the combina-
tion B, we apply SVD to L for finding a set of basis that well-represent the mixing matrix
A. Therefore, the linear combination B is solvable when L+ and A are known.

However, according to the definition of ICA, unmixing matrix W is estimated at first
for making the output components as independent as possible. Mixing matrix is calculated
by Equation 3.2 from unmixing matrix W for representing the distribution of components

to sensors. Because A is not real inverse of W, there must exist some distortion of A.

A=W (3.2)

Then, Equation 3.3 becomes Equation 3.3 but it remains in doubt. Both L* and A™ are
distorted. There must be too much distortion of the output B. The effect were observed by

simulation described in later chapter.
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B=L"WT. (3.3)

Consider the definition of ICA, W seems more suitable for calculating the cortical

source distribution and it is describe in next section.

3.2 Unmixing Matrix Approach for Imaging Method

The deduction starts from the forward equation 2.11 and assumes independent compo-
nents spanning the whole signal space. By applying standard ICA to measurement to obtain
the spatial filter or unmixing matrix W, the corresponding outputs x(t), representing the

time course of independent components at time ¢, can be illustrated by equation 3.4.
Wim(t) = WTLBx(t) = x(t) (3.4)

Moreover, the column vector x(#) is an eigenvector of matrix C if we let C = WTLB
and then Cx(t) = x(t). Based on the assumption that independent components x(¢) span
the whole signal space, C must bé an indentity matrix such that W? LB is indentity. Thus,
the cortical source distribution B can be solved by singular value decomposition (SVD)

(Eq. 3.5).

B = (WL)" (3.5)

In summary, Figure 3.1 illustrates the work flow of the proposed method. Standard
ICA is applied as a preprocessing procedure for picking features and removing uninterested
brain activities or other interferes. And then, project the interested components by lead field

to obtain the corresponding cortical source distribution.

Work Flow

Figure 3.1 shows the work flow for spatiotemporal imaging of independent components.
ICA is executed twice here. The first-stage ICA is for feature selection, or said reject the

uninterested components and is regarded as a preprocess step. Thus, measurement should
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be reconstructed using Equation 2.8 whenever the rejection is done. And then, second-stage

ICA is executed for separating independent components for imaging in later steps.
Moreover, the lead field is made up under physiological source constraints, that is lo-

cation and orientation is segmented from the MR image. Thus, it can be pre-cauculated for

each subject.

o ———————— -

® mixing matrix A

[4

1

1 ® components x(t)
1

l\ ® unmixing matrix W

Measurement m(t)

ICA

Wm(t)=x(t) Imaging of cortical

source distribution B

Interested components
® components x(t)

® mixing matrix A

® unmixing matrix W

Reconstruct
Measurement
m(t)=Ax(t)

Reconstructed
measurement m(t)

ICA

Interested components
® components x(t) Prepared

® mixing matrix A lead field matrix
® unmixing matrix W

Figure 3.1: Work flow - lead field vector space projection for spatiotemporal imaging
of Independent Brain Activities Standard ICA is applied as a preprocessing procedure for
picking features and removing uninterested brain activities or other interferes. And then,
project the interested components by lead field to obtain the corresponding cortical source
distribution.
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For verifying the algorithm we proposed, we have done experiment of three simula-
tions. These data were simulated with cortical surface constraints. Thus, in the first sec-
tion, materials such as MR images, MEG instrument and cortical surface are described.
The procedure of reconstructing cortical surface is consisted of three steps. It must be seg-
mented by FreeSurfer, which is a set of software tools for study of cortical and subcortical
anatomy, at first. Then, it is down sampled using VTK, which is a visualization toolkit
and open source software for 3D computer graphics. Moreover, for easy observation of
the cortical source distribution in sulcus, FreeSurfer is applied to inflate the down-sampled
surface.

The first simulation is the simplest one that only one dipolar source was placed at a
single position. Both the two approach using mixing and unmixing matrix were applied to
the first simulation. Apparently, the unmixing matrix approach is much more accurate then
mixing matrix approach. This is under our expectation. Thus, the imaging method must
apply approach by unmixing matrix butthe mixing matrix.

A tangent dipolar source is placed in simulation two for verify the accuracy of the imag-
ing method since tangent should be separated better theoréetically than sine when surround-
ing by lots of sine interferes. According to-the-experiment result, it is perfectly mapped
to cortical surface because it is separated better than sines placed in the same place of the
other simulations.

In the last simulation, it becomes much more complicated that four sources were placed
at three location. It means there are two sources in one place. Moreover, one of these two
sources was placed elsewhere. Even in the hard condition, the imaging method still works

fine. The more detail are described in the following sections.

4.1 Materials

4.1.1 3D MR Images

T1-weighted MR head images were acquired on a 1.5 Tesla GE MR scanner, using 3D-
FSPGR pulse sequence (TR = 8.67 ms, TE = 1.86 ms, TI = 400 ms, NEX = 1, flip angle =
15°, bandwidth = 15.63 kHz, matrix size = 256 x 256 x 124, voxel size =1.02 x 1.02 x 1.5
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Figure 4.1: Surface of Brain.

(This picture is excerpted from; http://www.arts.uwaterloo.ca/ bfleming/psych261/)

The two kinds of surfaces reconstructed by FreeSurfer are pia mater and white mater. Ac-
cording to the physiological knowledge, pia mater closely envelopes the entire surface of
the brain and is the closet one of these two reconstructed surface to the cortex. Thus, it is
the picked physiological constraints of the proposed method for imaging of brain activities.

mm?).

4.1.2 Cortical Surface Reconstruction

Estimation of the proposed imaging method is based on physiological source con-
straints that brain activities locate on cortical surface with orientations, or said the surface
normal, perpendicular to the surface. On the other hand, the informations of cortical surface
are the prior knowledge.

The cortical surface is segmented using FreeSurfer [9] which is a set of software tools
for study of cortical and subcortical anatomy. FreeSurfer segments the 3D volume data,

MR image, into two kinds of surface that are pia mater and white mater representing by
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Figure 4.2: Reconstructed Pia Mater (a) Pia mater has been down sampled by 50% and
114,024 triangular points remain. (b) The original pia mater, composed of 228,044 tri-
angular points, reconstructed by FreeSurfer. (c) The down sampled surface is inflated by
FreeSurfer for clearly displaying the cortical source distribution. Gyrus is colored in gray
and sulcus is colored in dark gray.

triangle meshes and each of them formed by a set of triangular points.

According to the physiological knowledge,: electromagnetic fields are generate by a
layer of pyramid cells in the cortex and pia mater is the closest one of the three kinds of
brain surface outside the cortex, where the otherones are dura mater and arachnoid mater,
to the cortex (Fig. 4.1). Hence, we pick the pia mater which closely envelopes the entire
surface of the brain as the physiological constraint.

However, there are 228,044 points formed the triangle mesh of reconstructed pia mater
(Fig. 4.2(b)). For easy calculation but with the tolerable distortion and non-smoothness, the
pia mater surface is down sampled by 50% using VTK which is a visualization toolkit and
open source software for 3D computer graphics. Thus, there are 114,024 points remained
for our dipolar source imaging method (Fig. 4.2(a)). Moreover, the down sampled sur-
face was inflated by FreeSurfer for displaying cortical surface clearly, especially for sulcus

colored in dark gray (Fig. 4.2(c)).

4.1.3 MEG Device

The simulations was generated according to the device information from a real MEG

measurement. The measurement was acquired by a whole head MEG system “Neuromag
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Vectorview 306 which belongs to Taipei Veterans General Hospital. The MEG system is
placed in a magnetically shielded room and has the capability of 306 channels simultane-
ously recording at 102 distinct sites, 24 bits analog to digital conversion, and up-to-8 kHz

sampling rate which is sufficient to probe the fast dynamics inside human brain.

4.1.4 Data Preprocessing

For low SNR, it results from the much smaller scale of electrophysiological signal than
of environmental noises. For instance, the magnitude of omnipresent static field of earth is
around 107! Tesla and is much larger than of the induced magnetic field which is around
10719 to 107!® Tesla. In addition, MEG and EEG signals are often corrupted with the
background brain activities and artifacts, such as the heartbeat, eye-blink, and environmen-
tal noises. Thus, data preprocessing is required for noise reducing.

Independent Component Analysis (ICA) are some commonly adopted techniques for
in- creasing the SNR or rejecting artifacts. ICA was originally proposed for the purpose of
blind source separation to find,components that are mutually statistical independent [20].
It performs best when raw or unaveraged signals are applied as inputs. Recently, it has
been proved a useful tool in neurological brain research and is widely-used for analyzing
MEG/EEG signals [17, 18], especially for removing artifacts based on its independence as-
sumption [3, 7, 16, 21]. In the following experiments, the fisrt-stage ICA is applied for
noises removal in both simulation and real data. Moreover, for selecting useful trials from

real data, Signal-space-project (SSP) and EOG rejection is applied.

4.2 Experiments

As aforementioned in Section 2.2, simulation uses the forward solution with spherical
head model. And according to the electrophysiological basis, the MEG/EEG sensors are
most sensitive to the electromagnetic field with orientation that lying on the tangential plane
of the spherical shell. Therefore, the dipolar sources in our simulations are placed at sulcus
but not at gyrus and then the dipole orientations are almost tangential.

Three simulations were generated. Each of them was added 3000 random dipoles, or



26 Experiments

said the background noises, with standard deviation 0.1 nAm within the sphere with radius
of 7 cm and was simulated 10 trials in 1,001 sampling rate. Each trial was 1 second long.
The analysis steps follow the work flow described in chapter 3 by Figure 3.1

The first simulation is the simplest case that a single sine dipolar source is placed. The
second one places two dipolar sources, where one is a sine wave and the other is a tangent
wave, at two distinct positions. ICA performs well in the first two simulations. The given
dipolar sources are almost perfectly identified and the cortical distributions are agreeable
to the ground truth.

In the last simulations, four dipolar sources are placed at three distinct positions where
two of them are the same sine waves but differed in amplitudes and locations and the others
are two sine waves with different frequencies located at two distinct places. ICA also
performs well to identify three different time courses but one of them with additive leakage
from another component. But even with the leakage, the proposed method still produces
an agreeable imaging of cortical distributions.

The accuracy is examined by location error and similarity of temporal activities. Loca-
tion error is represented by distance between location of the peak of cortical source distribu-
tion and of the ground truth. Similarity between the given sources and picked components
is represented by correlation coefficient corr(x;, x;) = (x; - x;)/(||x;||||x;||). The smaller

location error and the higher similarity it has, the more accurate it is.

4.2.1 Simulation 1 - A Single Sine Dipolar Source
Ground Truth

In the first simulation, Figure 4.4 shows the ground truth that a 15 Hz sine wave (4.4(c))
is placed at r; = (—29.47,49.14,94.75) mm and oriented to q; = (0.80, —0.10, 0.60) in
MEG head coordinates (4.4(a)). Figure 4.4(b) displays the respective lead field vector with
parameter ¢, = {ry,q;}. Figure 4.3 is the simulated measurement and the distribution to
MEG sensors, so called a topography, at 250 ms which is the peak time. The distribution
of measurements to sensors at peak time is similar to the given lead field and is agreeable

to our expectation.
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Figure 4.3: Simulation 1 - The Output Measurement and Topography at 250 ms

(b)

lead field 42044 240,

Figure 4.4: Simulation 1 - Ground Truth. (a) The location r and orienation q of the
dipolar source are indicated by the blue arrow. In the right panel, (b) lead field vector of
the source with parameter § = {r, ¢} and (c) the 15 Hz sine wave are displayed.
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No. Method Similarity of Temporal Activities Location Error (mm)
1 | (B=WL)" 0.9954 4.67
N B=L"tA 0.9954 127.73

Table 4.1: Simulation 1 - Location Error and Similarity. The spatiotemporal imaging of
the two interested components are almost perfectly fit the ground truth.

ICA result

There are 105 independent components extracted from input measurement by the first-
stage ICA (Fig. 4.5). And then reconstruct measurement by 1 interested component, which
is closely correlated to the given source for simulation, and the respective mixing vector.
Finally, the second-stage ICA outputs 1 interested component and it is picked to be mapped

to cortical surface.

Cortical Source Distribution

There is 1 component regarded as the given source (Fig. 4.7(a)) and the respective
cortical distribution (Figure 4.7(c)) displayed in both cortical surface and the inflated sur-
face of the left hemisphere. The two figures in the bottom with green arrow and point
that indicate the ground truth. Consequently, the cortical distribution demonstrates that the
picked component was activated around the highlighted area and the location of peak of

this distribution is close to the ground truth at distance of 4.67 mm.

Here we verify the two approach solving cortical source distribution of the same com-
ponent by mixing and unmixing matrix according to Equation 3.1 and 3.3. The results are
displayed in Figure 4.7 and 4.8 with respect to the unmixing matrix approach and mixing
matrix approach. Apparently, the later performs awful even that the ground truth had been
found but the most activated region was far way from the ground truth with 127.73 mm

location error (Table. 4.1).
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Figure 4.5: Simulation 1 - ICA Decomposition.There are 105 components output but only
1 interested component according to the first-stage ICA.
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Figure 4.6: Simulation 1 - the reconstructed measurement and topography by 1 se-
lected ICA output components
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corr =-0.99536
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Figure 4.7: Simulation 1 - Cortical Source Distribution Using Unmixing Matrix Ap-
proach. (b) The interested component in red, closely correlated to the given source in blue,
extracted by the 2nd-stage ICA and its topography. The left-most picture represents the
reconstructed mixing vector a; = Lb;. (b) The measurement and topography at 250 ms
which is reconstructed by 1 component, extracted by the 1st-stage ICA, and the respective
mixing vector (c) Cortical source distribution b;. The green arrow and point indicate the
ground truth. Location of the peak of b; and ground truth are at distance of 4.67 mm.
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Figure 4.8: Simulation 1 - Cortical Source Distribution Using Mixing Matrix Ap-
proach. Cortical source distribution by,. The green arrow and point indicate the ground
truth. The region with strongest activation is located at inferior (the bottom two pictures)
that is far away from the ground truth. Location of the peak of by, and ground truth are at
distance of 127.73 mm.
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Location r; (mm) Orientation q;

7 x Y z T Y z
-29.47 49.14 9475 1 0.80 -0.10 0.60
21-3490 -18.64 89.52 080 0.12 0.59

(a)

Sources
No. | Fig. 4.10 waveform location freq. (Hz) duration (ms) strength (nAm)
© 1 (b) tangent ry 11 0-500 1.0
2 (©) sine ro 15 0-500 1.0

Table 4.2: Simulation 2 - Ground Truth Two dipolar sources were placed at (a) two
distinct locations and the distances between the two locations are listed in the right panel.
(b) Table on the bottom lists information of dipolar sources including location, frequency,
and duration. (See Fig. 4.10)

4.2.2 Simulation 2 - Two Uncorrealated Dipolar Sources
Ground Truth

Two uncorrelated dipolar sources, 11 Hz tangent and 15 Hz sine wave, were placed in
the second simulation. The ground truth is listed in table 4.2 and displayed in Figure 4.10.
The simulated measurement and topography for 250 ms is shown in Figure 4.9 which is

similar the to the given lead field vector ly, (Figure 4.10(c)).

topography 250 ms x10" x10" 250 ms
: T

Figure 4.9: Simulation 2 - The Output Measurement and Topography
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Figure 4.10: Simulation 2 - Ground Truth. (a) Two kinds of sources. (b) 11 Hz tangent
dipolar source and the respective lead field with parameter ¢, = {r, q; } indicated by the
green arrow. (c) 15 Hz sine dipolar source and the respective lead fields with parameter
05 = {ry, q2} indicated by the blue arrows. (d) Ground truth on cortical surface.

ICA result

There are 93 independent components extracted from input measurement by the first-
stage ICA (Fig. 4.11). And then reconstruct measurement by 2 interested component,
which are closely correlated to the given sources, and the respective mixing vector. Finally,
the second-stage ICA outputs 2 component and they are picked to be mapped to cortical

surface.

Cortical Source Distribution

There are 2 components regarded as the given sources (Figure 4.12(a) and Figure 4.13(a))
and the respective cortical distribution (Figure 4.12(c) and Figure 4.13(c)) displayed in
both cortical surface and the inflated surface of the left hemisphere. The two figures in
the bottom with green arrow and point that indicate the ground truth. In this simulation,
the spatiotemporal imaging of the two components are almost perfectly fit the ground truth

with small location errors with location error less than 1 mm(Table 4.3).
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Figure 4.11: Simulation 2 - ICA Decomposition. There are 93 components output but
only 2 interested component according to the first-stage ICA.

No. | Wave Freq. (Hz) Similarity of Temporal Activities Location Error (mm)
1 | tangent 11 0.9997 0.00
2 sine 15 0.9953 0.91

Table 4.3: Simulation 2 - Location Error and Similarity. The spatiotemporal imaging of
the two interested components are almost perfectly fit the ground truth.
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Figure 4.12: Simulation 2 - Cortical Distribution of the 1st component. (a) The out-
put component and its topography is compared to the given tangent source. The left-most
picture represents the reconstructed mixing vector a; = Lb;. (b) According to the recon-
structed measurement, topography for 227 ms which is the peak time the tangent source
but with weaker activation of the other source. (c) According to the cortical distribution,
the strongest activation of the tangent component is exactly located at the ground truth
position.
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Figure 4.13: Simulation 2 - Cortical Distribution of the 2nd component. (a) The output
component and its topography is compared to the given sine source.The left-most pic-
ture represents the reconstructed mixing vector a, = Lbs. (b) According to the recon-
structed measurement, topography for 250 ms which is the peak time the sine source but
with weaker activation of the other source. (c¢) According to the cortical distribution, the
strongest activation of the sine component is located around the ground truth position in
distance of 0.91 mm.
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Location r; (mm) Orientation q; .

Distance ||r; — ;]|
1 x Y z T Y z i\j ) 4

(a) 1,3 |-2947 49.14 9475 0.80 -0.10 0.60
1,3 | 50.75 50.90

2 | -26.82 -036 10564 | 0.83 045 0.34
2 63.32

4 | 23.63 3500 98.09|094 0.08 -0.34

Sources (sine)

No. | Figure 4.15 wave color location freq. (Hz) duration (ms) strength (nAm)

1 (b) green ry 7 0-500 0.3

© 2 (©) blue Iy 17 50-350 0.5
3 (b) red r3=ry 31 0-200 0.7

4 (d) red ry 31 0-200 1.0

Table 4.4: Simulation 3 - Ground Truth Four dipolar sources were placed at (a) three
distinct locations and the distances between the three locations are listed in the right panel.
(b) Table on the bottom lists information of dipolar sources including location, frequency,
and duration. (See Figure 4.15)

4.2.3 Simulation 3 - Four Sine Dipolar Sources
Ground Truth

In the third simulation, Figure 4.15 and Table 4.4 shows the ground truth that four
dipolar sources are placed at three distinct positions which means two of the sources, the

first and the third one, are at the same location.

In Figure 4.15, temporal activities and locations of the four dipolar sources are distin-
guished by colors and locations are numbered. temporal activity of the first source, a 7
Hz sine wave with duration 0-200 ms, in green (Figure 4.15(b)) is located where the green
arrow numbered in 1 indicates (e). Temporal activity of the second source, a 17 Hz sine
wave with duration 50-350 ms, in blue (Figure 4.15(c)) is located where the blue arrow

numbered in 2 indicates (Figure 4.15(e)).

Temporal activities of the third and the fourth source, 31 Hz sine waves with duration

0-200 ms but with different strength 0.7 and 1 nAm, in red numbered in 3 and 4 (Fig-
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topography 250 ms
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time (ms)

Figure 4.14: Simulation 3 - The Output Measurements and Topography. The simulated
measurements contain 4 dipolar sources and 3000 random dipoles. The topography in 250
ms is displayed in the left panel and the peak is around the location of the given 17 Hz sine.

ure 4.15(c)) are located at two distinct positions. The weaker one is located at the same
place as the 7 Hz sine in green and the stronger one is individually placed at location No.

3. The output measurements and topography in 250 ms are displayed in Figure 4.14.

ICA result

There are 105 independent components extracted from input measurement by the first-
stage ICA (Figure 4.17). And then reconstruct measurement by 3 interested components
(Figure 4.16), which is closely correlated to the given sources for simulation, and the re-
spective mixing vectors. Finally, the second-stage ICA outputs 3 interested component and
they are picked to be mapped to cortical surface.

See Figure 4.18 for more detail about the first component. There are three temporal
activities plotted in the figure on top. The 1st output component is plotted with red solid
line. The given 7 Hz sine is plotted with green dashed line. The similarity between temporal
activities of the output component and the given 7 Hz sine is 0.9886. Look at the blue
dashed line in figure on top, it represents the combination of 7 and 17 Hz sines, by 98.86%
7 Hz sine minus 10% 17 Hz sine, and its similarity between the component becomes higher
to 0.9985. Apparently, this component is strongly correlated to 7 Hz sine but also receives
a little leakage from 17 Hz sine at the later segment of temporal activity. In addition, the
leakage effect can be observed from the mixing vector and lead field vector of the given 17

Hz sine, plotted in blue.
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Figure 4.15: Simulation 3 - Ground Truth. (a) Three kinds of dipolar sources. (b) 7
Hz and 31 Hz dipolar sources with;duration 50-350 ms and 0-200 ms. Topography is
the respective lead field. Location and orientation of the two sources are indicated by the
arrow both in red and green humbered in 1 and 3. (c) A 17 Hz sine dipolar sources with
duration 0-500 ms and the respective lead field where location and orientation are indicated
by the blue arrow numbered-in 2. (d) A 31 Hz sine dipolar source with duration 0-200 ms
and the respective lead fields.where location-and orientation are indicated by the red arrow
numbered in 4. Attention that this 31 Hz sine is almost the same as the red one in (a) except
that 31 Hz sine has stronger activation on this position than on the first position. (e¢) Ground
truth on cortical surface.

topography 250 ms 250 ms

0.03
r0s8
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0.015
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Figure 4.16: Simulation 3 - the reconstructed measurement and topography The mea-
surements m(¢) were reconstructed by 3 selected components x(t) the the respective mix-
ing vectors A where m(t) = Ax(t). (See Figure 4.17)
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Figure 4.17: Simulation 3 - ICA Decomposition. After the first-stage ICA, there are 105
components output but only 3 interested components that closely correlated to the given

sources. The similarity of temporal activities of given sources and components are listed in
Table 4.5

Lead field ¥ so *(t)

Figure 4.18: Simulation 3 - Leakage of the 2nd Component. There are three temporal
activities plotted in the figure on top. The Ist output component is plotted with red solid
line. The given 7 Hz sine is plotted with green dashed line. The similarity between temporal
activities of the output component and the given 7 Hz sine is 0.9886. Look at the blue
dashed line in figure on top, it represents the combination of 7 and 17 Hz sine sources,
by 98.86% 7 Hz sine minus 10% 17 Hz sine, and its similarity between the component
becomes higher to 0.9985. Apparently, this component is strongly correlated to 7 Hz sine
but also receives a little leakage from 17 Hz sine at the later segment of temporal activity.
In addition, the leakage effect can be observed from the mixing vector and lead field vector
of the given 17 Hz sine, plotted in blue.
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No. | Sine (Hz) Similarity of Temporal Activities Location Error (mm)
1 7 and 17 0.9985 3.64 and 2.18
2 17 -0.9851 3.62
3 31 -0.9810 3.38 and 0.00

Table 4.5: Simulation 3 - Location Error of Cortical Source Distribution

Cortical Source Distribution

There are 3 components (Figure 4.17) regarded as the given sources (Figure 4.15) and
the respective cortical distribution (Figure 4.19-4.21) displayed in both cortical surface and
the inflated surface of the left hemisphere.

It differs from the first two simulations that the first component shown in Figure 4.18 is
not perfectly fit the given 7 Hz sine but also.receives a little leakage from the 17 Hz sine.
In addition, the leakage effect can also be observed from the corresponding mixing vector
and the cortical distribution. In Figure 4.19, Cortical distribution of the 7 Hz sine, the main
element of the first component, shows-that it is activated around the left frontal, the ground
truth. And 17 Hz, the other element, is activated around the left posterior met the ground
truth in the distance of 4.67 mm.

Cortical source distribution of the second component, meets the given 17 Hz sine, is
displayed in Figure 4.20. The 17 Hz sine was placed at a single position and the strongest
activation of cortical distribution is around the location of the ground truth in the distance
of 2.17 mm.

Unfortunately, the location error of the peak of cortical source distribution of the third
component, meets the given 31 Hz sine, is 16.33 mm that much larger than the other com-
ponents and the peak is located across the gyrus from the ground truth (Figure ??). This

phenomenon is going to be discussed in the next chapter.
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Figure 4.19: Simulation 3 - Cortical Distribution of the 1st component. (a) The output
component and its topography is compared to the given sources. The left-most picture
represents the reconstructed mixing vector a; = Lb;. (b) Cortical distribution with strong
activation at both ground truth location of 7 Hz near left frontal and 17 Hz sines in left
posterior. Location of cortical distribution peak and the given 7 Hz sine is at distance of
3.64. Location of cortical distribution peak and the given 17 Hz sine is at distance of 2.18
mm.
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Figure 4.20: Simulation 3 - Cortical Distribution of the 3rd component. (a) The output
component and its topography is compared to the given sources. The left-most picture
represents the reconstructed mixing vector a, = Lbs. (b) Cortical distribution with strong
activation around the ground truth location of 17 Hz sine in left posterior. Location of
cortical distribution peak and the ground truth are at distance of 3.62 mm.
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Figure 4.21: Simulation 3 - Cortical Distribution of the 2nd component. (a) The output
component and its topography is compared to the given sources. The left-most picture
represents the reconstructed mixing vector ag = Lbs. (b) Cortical distribution with strong
activation around the ground truth location of 31 Hz sine in right hemisphere. Location of
cortical distribution peak and the ground truth are at distance of 3.38 and 0.00 mm.
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4.2.4 Experiments of Gender Discrimination

We propose the method for imaging of independent components extracted using the
standard ICA algorithms. Even thought this method is neither for solving the inverse prob-
lem nor for more precisely decomposing independent component, but it has proved to be
helpful and provides a both intuitive and efficient solution for mapping the discovered fea-
tures or interested components of MEG/EEG signals to cortical surface. Consequently,
the discovered features can be directly mapped to cortical surface without redo the experi-
ments.

In this section, the experiment result and cortical source distributions are calculated
from the real recordings. Bipolar Disorder (BD) patients and normal subjects were asked
to specify the genders of presented faces that prevents the subject’s explicit recognition
or categorization of the emotion expressed. In the following subsections, the more detail
of experiment paradigm will be described and we demonstrated the experiment result that

calculated from the recording of angry condition of one normal subject.

Experiment Paradigm of Gender Discrimination

Twenty normal subjects and twelve bipolar disorder patients participate this experiment.
Face images are gray-scaled photographs of faces, depicting neutral, angry, happy and sad.
The task is to specify the gender of the presented faces that prevents the subject’s explicit
recognition or categorization of the emotion expressed. Subjects are instructed to lift the
right or left index finger while recognizing the presented face image as female or male.
For each condition, about 288 trials, 20 minutes are retrieved. The experiment paradigm is
shown in Figure 4.22. Each stimulus is separated in 3000 ms by the sign of plus. First, one
image of emotional face is displayed for 1500 ms. The following is 1000 ms blank. Then,
a cue to ask subjects to response for male or female by image of the question mark for 500

ms.

ICA Result and Preprocessing

We analyze the recordings of angry condition of one normal subject that there are 60

trials and the duration of each trial is from 0 to 500 ms. The sampling rate is 1001 Hz
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Figure 4.22: Experiment Paradigm of Gender Discrimination. The task is to specify the
gender of the presented faces that prevents the subject’s explicit recognition or categoriza-
tion of the emotion expressed. Subjects are instructed to lift the right or left index finger
while recognizing the presented face image as female or male. For each condition, neutral,
happy, angry and sad, 20 minutes about 288 trials are retrieved. Each stimulus is separated
in 3000 ms by the sign of plus. First, one image of emotional face is displayed for 1500
ms. The following is 1000 ms blank. Then, a cue to ask subjects to response for male or
female by image of the question mark for 500 ms.

and thus there are 500 sample points of each trial. The flow-chart and result of ICA and
preprocessing are shown in Figure 4.23 that all temporal activities are averaged out for 60
trials and plotted with duration of 0 to 200 ms except the top two pictures are plotted with
duration of 0 to 500 ms. By the first-stage ICA as a de-noise step, there are 193 independent
components extracted from input measurement. Then, reject 154 components by kurtosis
value v € R'% of each component [3] and thus 39 components remain. Components are
rejected if ||v; — Unean|| = 1.7 X vgq Where v; is the kurtosis value of the i" component,
Umean 1S Mmean of v and vy is the standard deviation of v. The number of output compo-
nents in second-stage ICA 1is also 39. Moreover, preprocessing steps, like band-pass filter
and baseline correction, are applied to temporal activities of all 39 components. The pass
band is from 2 to 50 Hz. Mean values of temporal activities during 350 to 450 ms, indi-
cated by with red frame of the image on left-top side (Figure 4.23), are used for baseline

correction. Then, these preprocessed components are all mapped to cortical surface.



4.2 Experiments 47

— = - - — - -
rTemporal activities I Temporal activities I
| of all 39 components Band -pass filter: 2 -~ 50 Hz | of all 39 components
1k " M | ,E|:>Baseline correction: 350 ~ 450 ms 1 ] 1
| KT | !
W ‘ 1 , 1

[ V 39 components A [ 39 components V)
x(t) x(t) x(t) x(t)

QIW«WMMW OIMNOI“”W
© 1™ @ {uigy OIWOIM
B If”ﬁ*f*wWw ® I”“"“*‘”“”W ] [ @

\. : J \ : J

d 39 selected components A
x(t)
ICA ' [WM\W ° lWWW
LLR truct m ements o & ‘a ER
Topography (70 ms) Measurements ’ I»WW ’ MIW
\ J
4 N
154 rejected components
De-noise (t) ’
(ICA and kurtosis >' ‘;;I
des | ” L“' “N‘ '

Topographv (70 ms) Measurements

Figure 4.23: ICA Result of Real Data. We analyze the recordings of angry condition of
one normal subject that there are 60 trials and the duration of each trial is from 0 to 500 ms.
The sampling rate is 1001 Hz and thus there are 500 sample points of each trial. This figure
shows the flow-chart and result of ICA and preprocessing that all temporal activities are av-
eraged out for 60 trials and plotted with duration of 0 to 200 ms except the top two pictures
are plotted with duration of 0 to 500 ms. There are 193 independent components extracted
from input measurement by the first-stage ICA. Then, 154 components are rejected using
kurtosis and 39 components remain. Moreover, preprocessing steps, like band-pass filter
and baseline correction, are applied to temporal activities of all 39 components. The pass
band is from 2 to 50 Hz. Mean values of temporal activities during 350 to 450 ms, indicated
by with red frame of the image on left-top side, are used for baseline correction.
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Lead Field

It has been revealed that cortical constraint is help for improving imaging method, such
as beamformer, if the co-registration and segmentation errors are smaller than 2 mm and
10° [14]. Otherwise, even small errors in anatomical constraints can give rise to large errors
in source reconstructions. Moreover, the higher spatial resolution it is, the worse effects it
has.

Thus, to avoiding the effects resulted from errors in anatomical constraints, dipole
orientations used in the forward model must be determined on the other way. In this
experiment, dipole orientations are estimated using the maximum contrast beamformer
(MCB) [5]. Before apply MCB to measurements, a few steps of data preprocessing are
performed. First, 70 trials remain after EOG rejection and filtered by SSP matrix. Then,
baseline correction is performed using mean of signals during -300 to -100 ms and the pass
band are 2 to 50 Hz. The spatial filter is calculated using control state from -300 to -100
ms and active state from 35 to 235 ms. The trade-off value « is 0.02. The active state of

f-statistic map is from 85 to 185 ms:

Cortical Source Distribution

According to the cortical source distributions (Figure 4.25-4.34), the 39 components
are separated in to eight groups that strongly activated in auditory area, frontal cortex,
V3, supplementary (SMA) and motor area, motor area, somatosensory area, SMA and
Wernicke’s area. In each figure, temporal activities averaged out for 60 trials with duration
0 to 200 ms, topographies or said mixing matrix A, reconstructed topographies A =LB
by lead field matrix L, tomographies B or said the cortical source distribution shown in
left-lateral, superior and right-lateral view are displayed in the order from left to right for a
single group.

There are two components, numbered in 6 and 32, in the first group with strong ac-
tivations in the left and right auditory area (Figure 4.25). There is only one component,
numbered in 5, in the second group that is strongly activated in the right frontal cortex
(Figure 4.26). There are three components, numbered in 4 and 13, in the third group with

strong activations in V3 area which is part of the occipital lobe cortex (Figure 4.27). There
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Figure 4.24: Preprocessed Measurements and Cortical Source Distribution Calculated
by MCB of Real Data. Before apply MCB to measurements, a few steps of data prepro-
cessing are performed. First, 70 trials remain after EOG rejection and filtered by SSP
matrix. Picture in the left panel is the preprocessed measurements, plotted during -350 to
250 ms, that the pass band are 2 to 50 Hz and the duration of baseline correction is from -
300 to -100 ms. Then, the dipole orientations for calculating lead field matrix are estimated
using MCB. The spatial filter is calculated using control state from -300 to -100 ms and
active state from 35 to 235 ms. The trade-off value « is 0.02. The active state of f-statistic
map is from 85 to 185 ms. The f=Statistic map in posterior view is shown in the right panel
with strong activation in left oecipital'cortex.

are two components, numbeted in 20 and 27, in the fourth group with strong activations in
both the supplementary (SMA)‘and primary motor cortex that played a role in plaining of
complex and movement coordination (Figure 4.28). There are five components, numbered
in 3, 15, 21, 28 and 39, in the fifth group with strong activations in the primary motor cortex
around the central sulcus (Figure 4.29). There are six components, numbered in 9, 11, 12,
23, 24 and 38, strongly activated in the somatosensory cortex that believed in visuomotor
coordination (Figure 4.30). There are six, numbered in 2, 7, 17, 18, 25 and 35, compo-
nents in the seventh group strongly activated in the somatosensory cortex that believed in
visuomotor coordination (Figure 4.31). In the last group, the eighth one and the biggest
one, shown in Figure 4.32, 4.33 and 4.34, there are fifteen components, numbered in 1, 8,
10, 14, 16, 19, 22, 26, 29, 30, 31, 33, 34, 36 and 37, strongly activated in Wernicke’s area

involved in the understanding and comprehension of spoken language.
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Figure 4.25: Cortical Source Distribution of Real Data - Group 1. Temporal activity
of each component averaged out for 60 trials with duration 0 to 200 ms, topographies
or said mixing matrix A, reconstructed topographiecs A = LB by lead field matrix L,
tomographies B or said the cortical source.distribution shown in left-lateral, superior and
right-lateral view are displayed in the order from left to right. In the first group, there are
two components, numbered in 6 and 32, with strong activations in the left and right auditory
area.
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Figure 4.26: Cortical Source Distribution of Real Data - Group 2. Temporal activity
of each component averaged out for 60 trials with duration 0 to 200 ms, topographies
or said mixing matrix A, reconstructed topographies A = LB by lead field matrix L,
tomographies B or said the cortical source distribution shown in left-lateral, superior and
right-lateral view are displayed in the order from left to right. There is only one component,
numbered in 5, in the second group that is strongly activated in the right frontal cortex.
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Figure 4.27: Cortical Source Distribution of Real Data - Group 3. Temporal activity
of each component averaged out for 60 trials with duration 0 to 200 ms, topographies
or said mixing matrix A, reconstructed topographies A = LB by lead field matrix L,
tomographies B or said the cortical source distribution shown in left-lateral, superior and
right-lateral view are displayed in the order from left to right. There are two components,
numbered in 4 and 13, in the third group with strong activations in V3 area which is part of

the occipital lobe cortex.
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Figure 4.28: Cortical Source Distribution of Real Data - Group 4. Temporal activity
of each component averaged out for 60 trials with duration O to 200 ms, topographies or
said mixing matrix A, reconstructed topographies A = LB by lead field matrix L, to-
mographies B or said the cortical source distribution shown in left-lateral, superior and
right-lateral view are displayed in the order from left to right. There are two components,
numbered in 20 and 27, in the fourth group with strong activations in both the supple-
mentary (SMA) and primary motor cortex that played a role in plaining of complex and
movement coordination.
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Figure 4.29: Cortical Source Distribution of Real Data - Group 5. Temporal activity
of each component averaged out for 60 trials with duration 0 to 200 ms, topographies
or said mixing matrix A, reconstructed topographies A = LB by lead field matrix L,
tomographies B or said the cortical source distribution shown in left-lateral, superior and
right-lateral view are displayed in the order from left to right. There are five components,
numbered in 3, 15, 21, 28 and 39, in the fifth group with strong activations in the primary
motor cortex around the central sulcus.
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Figure 4.30: Cortical Source Distribution of Real Data - Group 6. Temporal activity
of each component averaged out for 60 trials with duration 0 to 200 ms, topographies
or said mixing matrix A, reconstructed topographies A = LB by lead field matrix L,
tomographies B or said the cortical source distribution shown in left-lateral, superior and
right-lateral view are displayed in the order from left to right. There are six components,
numbered in 9, 11, 12, 23, 24 and 38, strongly activated in the somatosensory cortex that
believed in visuomotor coordination.
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Figure 4.31: Cortical Source Distribution of Real Data - Group 7. Temporal activity
of each component averaged out for 60 trials with duration 0 to 200 ms, topographies or
said mixing matrix A, reconstructed topographies A =1B by lead field matrix L, to-
mographies B or said the cortical source distribution shown in left-lateral, superior and
right-lateral view are displayed in the order from left to right. There are six, numbered in 2,
7,17, 18, 25 and 35, components in the seventh group strongly activated in the somatosen-
sory cortex that believed in visuomotor coordination.
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Figure 4.32: Cortical Source Distribution of Real Data - Group 8-1. Temporal activity
of each component averaged out for 60 trials with duration 0 to 200 ms, topographies
or said mixing matrix A, reconstructed topographies A = LB by lead field matrix L,
tomographies B or said the cortical source distribution shown in left-lateral, superior and
right-lateral view are displayed in the order from left to right. In the last group, the eighth
group, there are fourteen components with strong activations in Wernicke’s area involved
in the understanding and comprehension of spoken language. The first seventh components
are numbered in numbered 1, 8, 10, 14, 16 and 19. The others are shown in Figure 4.33.
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Figure 4.33: Cortical Source Distribution of Real Data - Group 8-2. Temporal activity
of each component averaged out for 60 trials with duration 0 to 200 ms, topographies
or said mixing matrix A, reconstructed topographies A = LB by lead field matrix L,
tomographies B or said the cortical source distribution shown in left-lateral, superior and
right-lateral view are displayed in the order from left to right. In the last group, the eighth
group, there are fourteen components with strong activations in Wernicke’s area involved
in the understanding and comprehension of spoken language. Another six components in
the eighth group are numbered in numbered, 22, 26, 29, 30, 31 and 33. The others are
shown in Figure 4.32 and 4.34.
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Figure 4.34: Cortical Source Distribution of Real Data - Group 8-3. Temporal activity
of each component averaged out for 60 trials with duration 0 to 200 ms, topographies
or said mixing matrix A, reconstructed topographies A = LB by lead field matrix L,
tomographies B or said the cortical source distribution shown in left-lateral, superior and
right-lateral view are displayed in the order from left to right. In the last group, the eighth
group, there are fourteen components with strong activations in Wernicke’s area involved
in the understanding and comprehension of spoken language. The last three components
are numbered in numbered 34, 36 and 37. The others are shown in Figure 4.32 and 4.33.
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5.1 Discussion

5.1.1 Accuracy and Capabilities

According to the simulations and experiment results, there is at least one source located
at the same position, (—29.47,49.14, 94.75) mm, in each simulation and the tangent wave
in the second simulation has the highest similarity and the least location error (Table 4.1,
4.3 and 4.5).

Although that tangent wave is not a feasible electrophysiological signal, but it can be
extracted more precisely than a set of time-locked sine waves because of its independence
from the surrounding random interferes, numbers in thousands, consisted of sine waves.
Moreover, even in the case of the third simulation that leakage of component occurs, the
method still works fine to show the reasonable cortical distribution.

Moreover, in case of a single source placed at more than one position, the cortical distri-
bution still be rational that it indicates all the activated regions. Thus, the proposed method
is both helpful and reliable since the cortical distributions of well-extracted components are

agreeable to the expectation.

5.1.2 Cortical Surface Constraints

Itis believed that the large pyramidal cortical neurons, numbers in tens of thousands, are
the main MEG/EEG generators and their dendrites are oriented to the cortical surface. And
the coherent distribution are produced by the dendrites oriented in parallel. In accordance
with the spherical head model, MEG is sensitive only to the tangential component of the
primary current. Thus, dipoles in sulcus are the main contributors to MEG measurements.

The spatiotemporal imaging estimated using the proposed imaging method indicates
that components attempt to distribute to the adjacent sulcus aligned in parallel around the
ground truth. Therefore, it is a rational explanation for the output cortical distribution of
components (Figure 5.1).

In Figure fig:real-B-8-1, component No. 14 is strongly activated in the left hemisphere
of brain according to the reconstructed topography A but is strongly activated in the right

hemisphere of brain according to the tomography B. It seems not a reasonable topography.
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Figure 5.1: Lead Fields of Given Source and Peak of Cortical Source Distribution of
Simulation 1. (a) Lead field of the given 15 sine of the first simulation. (b) Lead field
of the peak of calculated cortical source distribution using unmixing matrix. According to
the proposed method, it attempts to find a basis of lead field matrix that best represents the
mixing matrix. The location error, in the first simulation, is up-to-4.67 mm because these
two positions are close and with almost parallel orientations that result in similar the lead
fields. Moreover, it is a rational result since brain activities are believed to be generated by
a group of neighboring neurons with parallel orientation.

For observation, we plot the lead field vectors of vertices where peaks of tomography locate
in the left and right hemisphere (Figure 5.2).. Moreover, the norm 0.0027 of the lead field
vector, with location in left hemisphere, plotted inleft panel is much greater than the norm
0.0019 of the lead field vector, with location in right hemisphere. Consequently, a small
value by4; of tomography in left hemisphere can result in stronger effect in topography
than in right hemisphere. It may explain why topography shows strong activation in left

hemisphere but not in the right one.

5.1.3 Estimation With Less Parameters

One of the assumptions made by ICA is that N, the number of sensors, is greater than
or equal to K, which is the number of sources [21]. In our case, N is the number of the
used channels of MEG measurement and equals to 204, the number of gradiometer sensors.
Besides, the cortical surface is formed by triangle mesh with P, which equals to 114,024
mentioned in Section 4.1.2, points.

Therefore, the max number of extracted independent components is 204 because ICA
applying to measurement is used in sensor space. For other algorithms that decompose

component in source space, the max number of independent components becomes 114,024.
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Figure 5.2: Two Lead Fields Vectors Calculated by MCB Using Real Data. In Figure
figireal-B-8-1, component No. 14 is strongly activated in the left hemisphere of brain ac-
cording to the reconstructed topography A but s strongly activated in the right hemisphere
of brain according to the tomography B. It seems not a reasonable topography. For ob-
servation, we plot the lead field vectors of vertices where peaks of tomography locate in
the left and right hemisphere. Moreover, the norm 0.0027 of the lead field vector, with
location in left hemisphere, plotted in left panel is much greater than the norm 0.0019 of
the lead field vector, with location in right hemisphere. Consequently, a small value byg4;
of tomography in left hemisphere can result in stronger effect in topography than in right
hemisphere. It may explain why topography shows strong activation in left hemisphere but
not in the right one.

Compare to the two kinds of algorithms, the former-has the advantage of less unknown
parameters, said 204, but has the limitation that no more components can be found. In
contrast, the later one, such as EMSICA or beamformer-based ICA [35], has the ability to
handle much more components but is difficult to have the optimal solution with too many

unknown parameters, said 114,024.

5.1.4 Limitations

As mentioned above, the number of output independent components is limited to the
number of used channels. Also, it is neither able to automatically pick components nor to

provide the exact distribution of a badly-separated component.



5.2 Conclusions 63

5.2 Conclusions

ICA algorithms has been proposed for blind source separation. Recently, it has been
proved a useful tool in neurological brain researches and is widely used for analyzing
MEGT/EEG signals, such as artifact removal and ERFs studying. However, one of the lim-
itations of the standard ICA algorithms is that there is no imaging capability of it. On the
other hand, there is no cortical information of the decomposed components will be ob-
tained if applying a standard ICA to measurement. This is insufficient for studying brain

activities.

We have proposed the method for imaging of independent components extracted using
the standard ICA algorithms. Even thought this method is neither for solving the inverse
problem nor for more precisely decomposing independent component, but it has proved to
be helpful and provides a both'intuitive and efficient solution for mapping the discovered
features or interested components. of MEG/EEG signals to cortical surface. Consequently,
the discovered features can be directly mapped to cortical surface without redo the experi-

ments.

It has the advantages that simplifying the imaging problem to the small set of param-
eters. It has the accuracy of small location error up-to-5 mm when the components are
well-seprated. Besides, even a component activated at more than one place, the cortical
source distribution still has been mapped well. Therefore, it is also help for study neural
network that believed to be completed by the same sources. However, it is not capable to
well map a badly-extracted component since it has not been separated well and corrupted

by noises.

Moreover, based on the anatomical constraints, the lead field matrix for a set of data
recorded by a single subject in the same time can be prepared in advanced that makes the

imaging procedure easier and more efficient.
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5.3 Future Works

Real Data Studying

ICA is widely used for extracting features or neurological brain research in MEG/EEG.
Besides, We propose this algorithm for imaging of independent components. It can be a
helpful technique for finding the further explanation of the discovered features or picking

new features where ignored because of insufficient informations from real data.

Cortical Constraints

It has been revealed that cortical constraint is help for improving imaging method, such
as beamformer, if the co-registration and segmentation errors are smaller than 2 mm and
10°. Otherwise, even small errors in anatomical constraints can give rise to large errors
in source reconstructions. Moreover, the higher spatial resolution it is, the worse effects it
has [14].

Thus, to avoiding the effects resulted from errors in anatomical constraints, dipole ori-
entations used in the forward solution must be determined on the other way, for instance,

estimated using the maximum contrast beamformer or else.
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