SN A

@Wj Am4\ﬂ

EAARSEE

C MBS AR

B+t @ X

/- SS F 3 SOE 1

£ RN W

Mining Repeating Pattern with Gap Constraint

Z"ERE Lt AF— A

RFREEZ T E BN FEH
Mining Repeating Pattern with Gap Constraint

T R Student : Shin-Yi Chiu
SEE e A 1 Advisor : Jiun-Long Huang
B o2l < F
A - A
oLz
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science
Jan. 2009

Hsinchu, Taiwan, Republic of China

63}%@]{4/_&_ n

3 &

"A¥E3T repeating pattern mining (A7 3 A & FEN K- Bd F B A RE

SIES I ﬂz,zmﬁ*:aiﬁf MIF F R o BE R A DT B 2 PR LR
PIC 2 F iR g d 22 tike Ao BERATHRNDFILES = 5 e
ik~ & B set #; 4\ repeating pattern > iz & 83 % e frequent patterns €
F & i B PR FE IR P o support A fiE @ 5@%%‘»#} Boo Bt B AP aRR Y P
”’L%z To— BATehpattern v aF s BAPARSet 2 B G ogap ey o AL

V- BIF &2 0 G-Apriori 0 45 1) ¥ gap mpattern G- Aprlorl B A
candidates * i% iE#F $7 database % 3* & candidates #osupport - 2@ 5 7 R #F G
$» database ~ % =x > Gwl-Apriori A #& & Kk f24-: B I 48 - & Gwl-Apriori ® 5 &
X1 - Bindexlists v & 2 - BRAEE- 2 ok 2 1% v X dr
frequent pattern e A i= ¥ o # g et index lists - Gwl-Apriori ¥ 2 & ¥ py
database — =t ® 4 * T i k& {7 f £ pattern ssupport st oo b 0 A
Gwl-Apriori # 4 i K30 pruning v ok 4o support ezt B o F Sk e E R AL
MR F ARG 0 ¥ B nis % B Gwl-Apriori i3 G-Apriori

Abstract

Previous studies on mining repeating patterns focus on discovering sub-strings which appear
frequently in a long string, converted from the music. An example of such repeating pattern is ”if the
stock price of companies A and B both goes up on day one, the stock price of company C will go up on
exactly day fifth.” But the problem proposed by Tung gives too much limitation for mining repeating
patterns from set sequence, the potential frequent patterns can not be found due to the frequencies
distrusted. Hence, in our paper we define a new pattern, which allows the gap between two adjacent
sets, and propose an algorithm, G-Apriori, to discover the repeating patterns with gap constraint from a
set sequence. G-Apriori algorithm generates candidates and counts the frequency of these candidates by
scanning the database. In order to avoid scanning the database so many times, the algorithm,
GwI-Apriori is proposed to solve the problem. In Gwl-Apriori method, it designs an index list, which
contains the start position (SP) and end position (EP) list, for recording the positions of the frequent
patterns. Besides, the GwI-Apriori also takes the additional strategy for pruning the searching space
among the index lists. By using the index lists, the Gwi-Apriori only scans the database once and
computes the frequency of frequent patterns through the index lists. The experimental results show that

the GwI-Apriori performs much better than G-Apriori.

* %

—'p*' A SRS ma‘ﬂ HaPF v X R HE AL TIERpN LS Ry
Jﬁﬁ%uﬁﬁéiﬁﬁﬁﬁﬁoﬂAiﬁ%ﬁ%amﬁﬁﬁﬁaﬁéw,gé
PErPZTEAGFH FEACP g ot RMrRLI o o Fa
3§?%ﬁﬁﬁii*%&%ﬁ“?lwm%ﬂéﬁia RiEAY R

TR RLE FE > RATHI N o

o)

PR BRHAT R T AT E RS R RSP o (R WP AN gL TT
2 BT AR 2 B R A B A A PR PR ik e 4 ey
xF.u:r;E o PR o ANy (AR WA A B P AEERP T‘F it s eV B A 2
i;’ E{HEin i o

B FERHMCARIPRPOAE B AN AABHZET
SR R RGP ERARRBGHEGY DE R

e 2009.01

Contents

1 Introduction 1
2 Preliminaries 4
2.1 RelatedWorks e e e 4
2.1.1 RepeatingPattern 4
2.1.2 Inter-transaction Association oo
2.2 Definition e e 12
3 The Proposed Algorithms 15
3.1 G-Apriori Algorithm 15
3.2 Gwl-Apriori Algorithm o 17
3.2.1 Pruning Strategies e 20
4 Correctness 26
5 Experiment 28
6 Conclusion 31

List of Figures

11
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6

5.1
5.2
5.3

A phrase excerpted from Brahms WaltzinAflat 1
Five extracts from Mozarts Piano Sonata K. 311 and a prototypical melody (ex-
cerpted from [Self98]). 2
Correlative Matrix o 5
Bit Sequence Representation 7
EpisodesClass e 9
Data Convert Process o e e e 10
ComparisonTable 11
lllustrative Example | o 12
lllustrative Example Il o 14
AprioriBased Exampleo 17
SetSequenceData 17
The example for Gwl-Apriori Algorithm 20
Flow Chart for Pruning Strategies 21
The example for Pruning Technique Part1 24
The example for Pruning Technique Part1l 25
Gap constraint versus Executiontime L o oL 29
Minimum support versus Executiontime 29
Summary lllustration 30

List of Tables

5.1 Stock number and name for companies

Vi

Chapter 1

Introduction

In our diary life, we can find that patterns appear repeatedly, such as in DNA sequence, music and
video, the behavior of a person, ups and downs relation of the stock price between each company,

so on. We show a example in Fig 1.1. However, if we can find the patterns from these data,
we can use these patterns to describe and forecast the future trend or behavior of these data. For
example, in music, we can extract music segment, appearing frequently, from the music data and
make use of these segment to represent the music. Therefore we can achieve both efficiency and
semantic-richness requirements for content-based music data retrieval. Besides, the investors may
also interested in the relation of stock prices among the companies, such as "When stock price of A
company rise 10 percent and stock price of B company rises 5 percent, the stock price of C company
will fall 4 percent within the following three days.” The investors can make a profitable investment

while obtaining these information.

T F%?. [
e

i

t
L | J
Segment A Segment A

Figure 1.1: A phrase excerpted from Brahms Waltz in A flat

The first application for discovering the pattern appearing repeatedly is in biological field [2].
In this field, we convert the DNA sequence into a string, we want to find the sub-string which is
tandem repeat in the converted string. In multimedia area, the indexing and searching techniques for
multimedia data are main topic, therefore Chen et al. propose the new problem, repeating pattern
mining, to discover the repeating music segment. The repeating pattern mining problem firstly
focused on finding exact frequent patterns in music database. [9] was the first work to solve the
problem. In this work, the music is converted into a sequence of notes, and a data structure called

correlative matrix which integrates associated algorithm is proposed to discovering the repeating

1

patterns efficiently. Fig 1.1 shows the example, where the sub-string "C6-Ab5-Ab5-C6” appears two
times in the string "C6-Ab5-Ab5-C6-C6-Ab5-Ab5-C6-D6-C6-B5-C6-A5-A5-E6.” However, music
segments with minor difference may be regard as the same segments and also could be important
patterns for indexing, shown in Fig 1.2, so Hsu et al. proposed the approximate repeating patterns

mining problem in [10].

Figure 1.2: Five extracts from Mozarts Piano Sonata K. 311 and a prototypical melody (excerpted
from [Self98]).

In [10], it defines the match operator which is used to determine whether the pattern match this
music segment, then divides the music into non-overlap music segments and sums up the number
of segments satisfying the match operator. Besides, Liu, et al.[14] proposed new definition for
approximate repeating patterns in 2005. The method in [14] applies edit distance to find out the
approximate repeating patterns in music data. However, in the following year, 2006, Koh, et al.
proposed the new problem for mining top-k fault-tolerant repeating patterns in [13]. The work used
bit strings to express the string data, and applied this bit strings to perform the "JAND” and "Shift”
operators to obtain the fault-tolerant repeating patterns. Nevertheless, the events may happen on the
same time and we may interested in finding the connection of these events which happen on the
different time. For example, investors may want to know whether the pattern, the stock price of A
company and B company both go up 5%, the following data the stock price of C company goes up
5%, appears frequently. Hence Tung proposed the related work to solve this problem in [20]. In this
paper, it views these events appearing on the same time as a set, then connects these sets of different
appearing time by order, and finds the relation among all sets.

However, in real world the frequent patterns may be concealed by the noise or delay, therefore
the work which proposed by Tung in [20] will give too much limitation for discovering the frequent
patterns, the potential frequent patterns may not be found. Therefore, in our study, we loosed the

restrictions and viewed these patterns the same by allowing the gaps (delay or noise) between two

adjacent sets. For example, consider the following patterdé\},{B} >, < {A},*,{B} > and

< {A},*,*,{B} >, we said that frequency of pattern{ A}, {B} > is 3 from above patterns by giving
thegap= 2, but the frequency of pattern {A}, {B} > is 2 by giving thegap= 1. The algorithm,
G-Apriori, is proposed to solve the problem. In this algorithm the candidates are generated based
on apriori property, and the frequent patterns, which frequency are larger than the user-defined
threshold, are obtained from these candidates by scanning the database for counting the frequency.
Nevertheless, the G-Apriori algorithm takes to much time to scan database for frequency counting.
Hence, we refined the G-Apriori algorithm and proposed GwlI-Apriori algorithm to avoid inherently
scanning database many times. The first stage of Gwl-Apriori is to scan the database and record the
index positions for each 1-length frequent pattern. For the patterns which length is larger than 1, we
only need to use the index positions, recorded in the first stage, for counting the frequency. Besides,
in order to speed up the frequency counting, we also design the pruning technique to reduce the
redundant comparison among these index positions.

The remainder of this paper is organized as follows: In Section 2, we present preliminaries, in-
cluding related work and definitions of our new pattern, the repeating pattern with gap constraint. In
Section 3, we propose two methods, G-Apriori method and GwI-Apriori method, to mine repeating
patterns with gap constraint efficiently. In Section 4, we prove correctness. In Section 5 shows

experimental results. Finally, we will conclude in Section 6.

Chapter 2

Preliminaries

2.1 Related Works

In this section, we review the related work on discovering repeating patterns. Besides, we also
discuss inter-transaction association. Section 2.1.1 provides a brief discussion about the existing
work on finding repeating patterns. The following section, the algorithm for finding inter-transaction

association rule will be offered.

2.1.1 Repeating Pattern

In this subsection, we will talk about three types of repeating pattern, exact, approximate and fault-

tolerant, sequentially.

Exact Repeating Pattern

[9] was the first work that proposed the repeating pattern mining problem in music field. In this
paper, the music is converted into a sequence of notes, and a data structure called correlative matrix
which integrates associated algorithms is proposed to discovering the repeating pattern efficiently,
which is a shorter sequence of notes appearing more than once in a music object. Consider the
phrase with 12 notes from Brahms Waltz in A flat. Its corresponding sequence of nodes is "C6-
Ab5-Ab5-C6-C6-Ab5-Ab5-C6-Db5-C6-Bb5-C6”. The correlative matrix of this sequence is shown
in Fig 2.1. The function of the correlative matrix is to preserve the intermediate results of substring
matching.

The first step for finding the repeating pattern is to initialize the matrix, and ifiygse indicate
the element of the i-th row and j-th column in the matrix T. The upper-triangle slots in the matrix

will be filled up based on the following principles: For any two ndgeandS; (i # j andi, j > 1) in

G | 4hS | AbS | €& 05 | 4b5 | bS5 | C& | DbS | & Bb5 | Ch
5 —_ 1 1 1 1 1
Ah5 o 1 Z 1
Ah5 — 1 3
ol — 1 4 1 1
o= — 1 1 1
Ah5 — 1
Ah5 —
= — 1 1
b5 —
= — 1
Bbs —_
=1 —

Figure 2.1: Correlative Matrix

the music string S, i§ = §j, we seflj j = T_1 j_1 + 1. If the value stored iffj j is n, it indicates a
repeating pattern of length n appearing in the positions (j V n+ 1) tojin S. Fig 2.1 shows the result
after all notes are processed. After filling up the correlative matrix, the following step is to find

all repeating patterns and their repeating frequencies. In this step, it uses a set called the candidate
set (denoted CS) to record the repeating patterns and their repeating frequencies. However, there
are only four cases which can be put into the CS.The cases ar§ (I 1 andTi,1j+1 =0, (2).
Tij=1landTi;1j+1#0, (3). Ti,j >1andTi11j+1#0and (4).Tij > 1 andTiyq1j+1 = 0. After

finding all candidate sets, there are extra two steps to implement. The first is the pruning step. If
a repeating pattern satisfies the pruning principle, it will be removed from the candidate set. The
principle is that for any repeating patterns in CS, if it is a substring of another repeating pattern and

they have the same frequencies, it will be pruned from the CS. The second step is that compute the

. . 1+£/IF8xrepcount
real repeating frequency for each repeating pattern based on the formslas? > .

Approximate Repeating Pattern

However, there exists another repeating pattern which loosens the condition for finding the repeating
pattern. [10] was the first proposed by Jia-Lien Hsu, et al. to solve this problem. In [10], it defines
the match operator which is used to determine whether the pattern match this music segment. The

match operator is stated as follow: Given= (p1, p2,...,Pm) andLL = (s1,Sp,...,S), wheren >

m. longlengmatchP,LL) =1, if pj =5, fori=1,2,... mwherdd =b; < by <... <bn=n,
otherwiseJonglengmatchP,LL) = 0. Based on the match operator, Jia-Lien Hsu also proposed
the method for compute the repeating frequency of a pattern P. The main idea of frequency counting
for a pattern P is dividing the music into non-overlap music segments and sum up the number of
segments which satisfies the match operator. In order to find the longer length pattern, Jia-Lien Hsu
uses thepattern join operator in level-wise approach.

Besides, Jia-Ling Koh, et al. [13] also proposed another new definition for approximate repeating
patterns, which allows insertiong/deletion errors occurring.

In [13], Jia-Ling Koh proposed two definitions of counting frequency for a pattern, IFT-contain
and DFT-contain. Given a data sequexr®eq= D1D,...D, and a patterd® = P,P,P;... Py, we
said that DSeq is FT-contain pattern P on position i wiihsertion errors iff there exist an integer
1 <i<n, such thaDj = P1, D(j;m-1)+e = Pm, @and P is a sub-sequence®Di1...D(jim-1)4¢
and DSeq is said to IFT-contain pattern P under fault toleranceéf DSeq FT-contain P witre
insertion errors and < g. The DSeq is FT-contain pattern P on position i watteletion errors iff
there exists an integerd i <n, such thaDiDj1...D(j.im 1), Is a sub-sequence of P, and we call
DSeq is DFT-contain pattern P by giving a fault toleragge iff DSeq FT-contains P on position
with € deletion errors, wher®; = P;. ande < gp. Consequently, the fault tolerant frequency for
a pattern P in DSeq is the number of different positions in DSeq where DSeq IFT/DFT-contains P.
The example is provided as follows.

Example Consider DSeq=ABCDCABAg = 2 andsp = 3. Given pattern®;=ABCC, »=BCDC,
Ps=ACAB,P,=AEF, Bs=BCFC. DSeq FT-contairng; on position 1 with 1 insertion error and DSeq
also FT-contain® on position 2 with 0 insertion error. Hence, DSeq IFT-cont&nandP,. How-
ever, DSeq doesn’t IFT-contais for the insertion error of it is larger tham. With regard toP,
andPs, DSeq DFT-contains both as they all satisfied the DFT-contain definition.

In order to speed up the time of frequency counting, the bit sequence representation of data
item andshift andand operation on bit sequence [5] are incorporated into two algorithms, named
TFTRP-Mine and RE-TFTRP-Mine which were proposed in [13]. Fig 2.2 shows the bit sequence
of each data item in data sequence, ’"ABCDABCACDEEABCCDEACD” .

In fig 2.2, the bit sequence for each data item N is denotefipgsear, and the length of bit
sequence for each data item is equal to the length of the data sequence. The numbers, 1 and O,
appearing in bit sequence represent whether some data item appears on the ith position of the data
sequence respectively. Therefore, we can obtain the frequency of data item by accumulating the all
none zero number in the bit sequence.

However, two recursive functions of counting Insertion/Deletion fault tolerance frequency for a

Sequence Data ABCDABCACDEEABCCDEACD
Data Item Bit Sequence
A 100010010000100000100
B 010001000000010000000
C 001000101000001100010
D 000100000100000010001
E 000000000011000001000

Figure 2.2: Bit Sequence Representation

pattern are proposed. The functions are shows as follows,

(1) Recursive functions of getting Appeag (E):Suppose a pattefd= PiP,... Py is given. Let
P = PiP>...Py-1 and X denoteP,. Appeaé(E) is obtained from the following function for €@

E<g.

IF |P| = 1,then Appeaf (E)=Appeap; V1 < E < g ,Appeap (E) =0;

Else If E=0,thentemp(E) = Appearg (0); temp(E) = L_shift(Appea, |P| —1);

Elsetemp(E) =temp(E—1) VAp pear;,(E);

temp(E) = L_shift(temp(E —1),1); Appeaf (E) = temp (E) Atemp(E).

(2)Recursive functions of getting Appeap (E): Suppose a patterR = PiP,... Py is given,
whereR(i=1,...,m)is adata item. Let Y denof@, P, denotePPs. .. Py, Q denoté®Ps. .. Py_1,
and X denotePyn. When deletion fault tolerance E is giveAppeag (E) is obtained from the
following recursive function.

IF |P| <E+1,then Appeaf (E) = Appeay;

Elsetemp,(E — 1)=Appeat V (Appeag (E — 1) A L_shift(Appeak, |P"| —E,0));

temp, = tempy(E — 1) v (Appeag (E) A L_shift(Appeax,|P’ — E —1,0));

Appeaf (E) = Appear AL _shifttemp,”'(E),1,0).

In TFTRP-Mine algorithm, all fault tolerant patterns, denoted as FT-RPs, are obtain by using the
recursive functions defined in the previous paragraph. But in TFTRP-Mine algorithm, the top-k non-
trivial FT-RPs was extracted from all results which are found first, RE-TFTRP-Mine algorithm was
designed to improve TFTR-Mine algorithm. In RE-TFTRP-Mine method, the FT-RPs which are
not possible the top-k non-trivial FT-RPs are removed in advance by increasingrttfeeq during
the mining process, hence the FT-RPs with the fault-tolerant frequencies less than_theq will
not be employed in the following mining process. Besides, it also gives the priorities for the found
FT-RPs, the higher fault-tolerant frequency the patterns have, the higher the priorities the patterns

have. Then, the FT-RPs with higher frequencies are selected to generate the new candidates.

7

However, Ning-Han Liu, et al. [14] also proposed another new method to find the approximate
repeating pattern. The first step of this method is converting the pitch string of music into the
interval string, and then divide the interval string into the interval segments accordmgxbten
andmin_len constraints, which used to filter out unimportant music patterns. Then we regard these
segments as candidates ARP. Then, for each candidate, the edit distance was adopted to measure the
similarity degree between two music segments. Finally, according to the number of similar music
segments and how they overlap each other, we decide whether the candidate ARP has qualification
for being an ARP. In order to speed up the execution time, it also modifies the R*-tree to remove

impossible candidates before computing the edit distances.

2.1.2 Inter-transaction Association

There are several kinds of inter-transaction association mining problem, such as sequential pattern
mining [4], frequent episodes mining [17] [16], periodic patterns mining [7] [22] [24] [6] and fre-
guent continuities mining [21] [20] [11] [12] [15]. We will give a shorter introduction for sequential
pattern, frequent episodes, and periodic pattern mining, but give a detailed explanation for frequent

continuities mining which is most resemble to our work.

Sequential Pattern Mining

The sequential pattern mining problem was first introduced in [4] by Agrawal and Srikant. In order
to improve the speed for algorithm proposed in [4], there were a lot of methods are designed, such
as PrefixSpan [19], SPADE [25], SPAM [5], FreeSpan.[8]and so on. Since the sequential pat-

tern mining may generate many redundant patterns, it will decrease not only effectiveness but also
efficiency of mining. Therefore, closed pattern mining problem was gradually noticed by our. The

famous algorithms for it are Clospan [23] and BIDE [1].

Frequent Episodes

Different from the sequential pattern, the data for frequent episodes is a sequence of event sets
where the events are sampled regularly. An episodes is defined as a collection of events in a user-
defined windows interval that appear relatively close to each other in a given partial order [17]. In
[17], Mannila et at. defined three classes of episodes: serial, parallel and combination of serial and
parallel. Serial episodes consider order for patterns in the sequence, while parallel episodes do not
have constraints on the relative order of event sets. Fig 2.3 shows the three kinds of episodes.
Moreover, Mannila, et al. also proposed a new approach, WINEPI, for discovering the all fre-

guent serial/parallel episodes in [17]. For finding the exact relation among episodes, Mannila et al.

8

serial parallel combination

Figure 2.3: Episodes Class

also specify another classes of generalized epiosdes in [16] and designed an algorithm, MINEPI, for

discovering the frequent episodes based on minimal occurrences of episodes.

Periodic Patterns

Periodic pattern is defined as the pattern appears in the same time periodically. In last decades,
there exist many studies for finding periodic patterns. However, in these studies many definitions
of periodic pattern are proposed to apply in different situation which more conforms to real life.
For example, in early days, cyclic association rules mining was first proposed by(®aten, et

al. in [18], and the following is partial periodic patterns defined by Jiawei Han, et al. in [7] [6]

to loose the constraints on whether every point in time contributes to the periodicity. For example,
Bob eats breakfast from 8:00 to 9:00 every day, but do other things which is not regular at other
times. Moreover in order to solve the problem that the periodic pattern may occurs asynchronous,
the asynchronous periodic pattern is designed by Jiong Yang, et al. in [24] [22]. Take the previous

example, Bob may eats breakfast from 9:00 to 10:00, which also contribute to the periodic pattern.

Frequent Continuities

The name continuity pattern was coined by Huang in [11] which used to substitute the name inter-
transaction association rule defined by Anthony K.H. Tung in [20]. The continuity pattern, also
called inter-transaction association rule, is defined as the pattern that considers the occurring order
of each itemset in the pattern. Hence, we can also refer this patter as a looser constraint of peri-
odic pattern which has limitation on contiguous and disjoint match. An algorithm, FITI [21], was
proposed to solve this problem efficiently. FITI [21] have three stages:

(1) Mining and Storing Frequent Intra-transaction Itemsets, (2) Database Transformation, and
(3) Mining Frequent Inter-transaction Iltemsets. Nevertheless, it also takes to much time to find the

results, hence Huang in [11] designed PROWL algorithm to mine results efficiently. The central

(2|2 |4 |5 |6 (7|8 |9 |20(11|12(1=2|14|15 |18
AIE|B|A|B|B|A]|A E|A|B|D|A|E|EB
C oD|Cc(o|D|{C|C|D cC|D|E|C o
E E
|a] Tempo@l Trareaction Database
Event | TIDLEt= Code | Ewemtset | TIDLists MNote
A 1,4,7,8,11,14 #1 1t 14,7,8,11,14,15 |CFl
B 3,5691216 He {0} 3,56,91213,16 |CFlI
C 1,4,7,8,11,14,1% B {EL 2,5,8,10,13,15 C.F.l
o 3,5691213,16 H4 {ACH 14,7,8,11,14 C.F.l
E 2,5,8120,12,15 HE {E.O1 356,912,168 C.F.l
|b] \ertical database Ic) Encoding tablefor F.l [mimsup==4)

1|22 |4|& |6 | 7| & |9 |10|11(12|1=2|14 15|16

B | H2 | H2 [#] | H2 | #2 | F1 | H#H]1 | H2 | H2 | F1 | H2 | #2 | #]1 |[H1|#2
f1 HE [H#4 | #2 | #5 | W4 | #2| #E Ha4 [HE | H5 | #1 | H2 | #E
HE #4

|d] Encoded Horisontal Databa=e

Figure 2.4: Data Convert Process

thought of PROWL is to use the memory for both the event sequence and the indices in the mining
process.

Huang also integrates prune hash table into PROWL algorithm to design the algorithm, Closed-
PROWL [12]. In ClosedPROWL [12], there are three phrases for discovering the results. The first
phase is to find all 1-size closed frequent itemsets, called C.F.E.. Then in the second phase, encode
these C.F.E and construct them into a encoded horizontal database. Fig 2.4 shows the each step from
converting the temporal database into encoded horizontal database.

In the third phase, refined PROWL [11] algorithm was utilized to find all closed frequent conti-
nuities. The mining process of refined PROWL is described as follows:

(1) First we find the 1-offset projected window list, denoted as PWL, of each encoded eventset
P, also called closed frequent continuity.

(2) Find all eventsets P which support surpass the minimum support, and record these eventsets
and their PWL into Prune Hash Table, denoted as PruneHT, through the hash function. Moreover,
using the pruning strategy to prune the redundant eventsets.

(3) For each eventsets X which are not removed after step 2, we connect it with P to generate

the new continuity,and then perform step (1), (2) and (3) recursively to produce the larger closed

10

frequent continuities until the length of the patter is larger the maxwin or its support is smaller than
minimum support.

(4) Find all possible closed frequent continuities, then use the Closed Continuity Checking Table,
denoted as CCCT, to filter the duplicated closed frequent continuities.

Finally we give the comparison among these patterns. Fig 2.5 shows the table.

Wi o o
Order | Ternporal Pattern type Input
P e constraint a

Repeating pattern
Exact by M ABC M A string
Approximate by M ABC by A string
Inter-transaction
sequential pattern ¥ f =[ANBIC)= § A custormer

. a 5 LIeCe

A-=F
Epizode pattern f f (&, B f A seguence
(A,B)->C

Periodic pattern b b 0 TR § A sequence
Frequent continuity f f S o f A sequence

Figure 2.5: Comparison Table

11

2.2 Definition

In this section, we present essential preliminaries.

Definition 1 (Set Sequence Database) Let | = {i1,ip,...,im} be a set of elements. Lef Be a
subset ofl, where $= (s1,%,...,5S) is a set of elements such thats| for 1 < k < n and each

element in Sis distinct. Theset sequence database SB defined as an order sets qf Be SD=<
LS, S >

Definition 2 (GG¢-contain instance) Given two set sequen@D =< $,S,...,$ >, and P=<
P1, P2,---, Pm >, Where n>> m, we say that SD G&contains P at position K iff there exists an
integerl <k <n, suchthat pC §y,wherep =K, 2 CS,,...,pmC S, ;andij—ij_1 <GC+1
for 1 < j <m. The GC (abbreviated from gap constraint and denoteg) @& a user-defined upper
bound number of gaps between two adjacent set of P in SD.

Example Consider SD < {A,B,C,D},{A,C} {A B,C} {A}{A,C,D,E},{A},{B,C,E,F}{B,D},
{A,C},{E} > and GC=1, we say that SD has two &C€ontain instances for pattern1P=<
{D},{C} >i.e. ml and m4 in Fig 2.6.

A B
v g
C A B D E B A
D C C A E A F D C E
S e . = ——
ml m2 - = > m3
m4 €<——>
m5
m6 m7
m8
m9

m10

Figure 2.6: lllustrative Example |

Definition 3 (Length and Size of a pattern) Given a pattern =< p1, p2, ..., Pm >, then size of P is
defined as the number of sets in P, denoted as size(P). The lerittis defined by the= S, |R].
Example Given P=< {A,B},{C},{A},{C} >, size of P is 4, length of P is 5.

Definition 4 (kth Position GG¢-Contain Set, abbreviated asKPCS) GivenaSD=< §,, S, ..., S >,
a pattern P=< ps, p2,..., pm >, Where sizéSD) > siz€P) and the GC, the kth Position GE
Contain Set consists of a starting position, k, and different ending positions which are the ending po-

sitions of distinct Gg-Contain instances for P in SD under GC is given. we {séng,ny,...,n;j)}

12

to record all positions, where;means the ending position for a pattern P fo€ i < j. We also use
< k,nj > to mean one instance of kth Position isContain Set, where Kk is a starting position and
n; is an ending position. i.e. Given a KPG$, (3,4,5,7)}, the instances of this KPCS atel, 3 >,
<l4><15>and<1,7>.

Example Given SD < {A,B,C,D},{A,C},{A B,C},{A},{A,.C,D,E} {A},{B,C,E,F},{B,D},
{A,C},{E} > and GC=1, we say thatP=< {D},{C} > has two GG-contain instances in SD, i.e.
m1 and m4 in Fig 2.6, where KPCS{$, (2,3)}. Besides the P1 also has a &€ontain instance,

i.e m2 and a Gg-contain instance, i.e m3.

Definition 5 (Repeating Pattern with Gap Constraint, abbreviated as RPGC) Given a set sequence
SD=<$&,S,...,$ > and all distinct kth Position GContain Sets of a pattern P, the frequency

of a pattern P, denoted as freq(P,SD), is the maximum number of non-overlap instances of all distinct
kth Position GG-Contain Sets of a pattern P. If P is called a RPGC, then fRe§D) > d , where

0 is a minimum support defined by user.

Example Consider SD = {A,B,C.D},{A.C}.{A.B.C},{A}.{A.C,D,E},{A}{B,C,E,F},{B,D},
{A,C},{E} >, GC=1and a pattern B=< {A,C}, {B},{A} > and R=< {A,C},{B},{C} >. The
freq(P1,SD)=2 and freq(P2,SD)=1 ,shown in Fig 2.6. Hence, P1is a RPGC, but P2 is not a RPGC.

Finally, we define the repeating pattern with gap constraint problem as follows,

Definition 6 (RPGC discovery problem) Given a set sequence SD and GC, find all RPGC P in SD,
where fredP,SD) > ¢ .

In order to give a clear explanation for the correctness of our algorithms, we define the following

definitions.

Definition 7 (Counting Basis Set, abbreviated as CBS) Given all distinct kth Position GEContain
Sets of pattern P in SD under GE m, the counting basis set is defined as a set of instances,
i.e. {<ko,ng>,<ki,ny>, ..., <kene >} obtained from KPCSs of different k and satisfied the
following condition :

1) For any pair of< ki,nj > and < kj,n; >, < kj,nj > can not overlaps< kj,n; > fori # |.

2) we select the instances, kj,nj >, from all distinct kth Position GContain Sets, where j
starts from 1 to e andjn- kj is the minimum valué.

ExampleGiven SD < {A B,C},{A,C},{A,B},{A,C},{A,C,D,E},{AC},{B,C,E,F} {B,D},
{A,C},{E} >, GC=1 and a pattern B=< {A,C}, {A},{C} >, We say that CBS for patternP-<
{A,C},{A},{C} > are< 1,4 > and< 5,7 >, which means m1 and m8in Fig 2.7.

13

A B
A C C
B A A A 5 A g B A i
c ¢ B C ¢ ¢ D C
] l l l l l l l l l |
! l | { 1 | 1 1 ! 1 1
m1l
m2
m3 €-=-=-—- >
mg €-—-=-=-=.-= >
mb €=+ === = = ->
m6 <€-------- >
(VAR S ——— >

Figure 2.7: lllustrative Example Il

Definition 8 (Unit Counting Set, abbreviated as UCS) Given all distinct k KPCS of a pattern P in
SD under GC= m and a starting position S and ending position E, denoted aspy&€E). The
Unit Counting Set is defined as a set of instances obtained from the KPCS, where ending position of
each instance in UCS is equal to E, and starting position of each instance in UCS is large or equal
to S. We regard all sets in Unit Counting Set being 1 of frequency count for we only need to compute
the non overlap instance.

Example In Fig 2.7, Given SD, S=1 and E=4 and GC=1, then the W(IS4) for pattern P=<
{A,C} {A},{C} >is<1,4>and< 2,4 >, which mean m1 and m3.

Definition 9 (Freguency Counting Set Group, abbreviated as FCSG) Given the CBS for a pattern

P under GC= m, we classified distinct kth Position GC-Contain Sets of P into a group of UCS
according to the CBS of a pattern P. FCSG contains these UCS, where eacB:W0GHd the
freq(P,SD) is equal to the number of UCS in FCSG.

Example Consider SB-< {A,B,C},{A C}.{A,B},{A,C}, {A,C,D,E},{A,C},{B,C,E,F},{B,D},
{A,C}, {E} >, GC=1 and a pattern RB=< {A,C},{A},{C} >. The CBS for P is (1,4) and (5,7),
which mean m1 and m8. The UCS according to the CBS of P isp(g4g$< 1,4>,<2,4>} and
UCSp(577){< 5,7 >}. Because non of UCS & the FCS contain these UCS and the freq(P,SD)=2.

Fig 2.7 shows the example.

14

Chapter 3

The Proposed Algorithms

In this section, we propose a algorithm, G-Apriori, to find the RPGC. Besides, we also design an
index list which is incorporated into G-Apriori algorithm to generate a refined method, GwI-Apriori,

for efficiency.

3.1 G-Apriori Algorithm

According to anti-monotonic property, any length-(n-1) pattern of length-n RPGC must be RPGC.
Hence, G-Apriori algorithm employs the property to generate the candi@ateéem Ly ; then

finds Lk by scanning the set sequence and counting the supp@gwhereCy is a set of length k
candidate for RPGC anld is a set of length-k RPGC. Here, we also name a RPGC as a frequent
pattern. The process is as follows: 1) Scan the set sequence to find all length 1 frequent patterns
L1. 2) Generate all lengtk candidate€ from length k-1 frequent patterng_, by pattern-grow
method. 3) Scan the set sequence to count supp@gtand findLy from C, which support is larger

than the minimum support. 4) Go to step 2) uhiilis empty. However, the method of generating
candidates for a RPGC is different from the method of generating candidates for association rule [3]
because each set in a RPGC has its order. Hence, we propose the pattern-grow method to generate
all possible candidateS, from Ly_;. Based on anti-monotonic principle, we can know that for
every lengthl frequent pattern, all it6-1 length patterns are frequent. The pattern-grow method is
designed as follows. Given two pattenqmsandp, in Li_1, then we delete the first element frqm

to obtainp] and delete the last element frama to obtainp’,. First, we need to checl; andp). If

p; and p, are both 0, two possible length-2 patterns will be generated by two methods, appending
set of p, to set ofp; and adding element in set pp into set ofp;. Otherwise, botlp; andp,, are

not @, length k pattern will be generated by combinpgand p2, which means if the length of the

last set ofp; equals to 1, we append the last sepgfto p;, otherwise we add the deleted element

15

of py into the last set op;. The detailed steps of G-Apriori is describedAilgorithm 1.

Algorithm 1 G-Apriori Algorithm
Input: A set sequence SD, threshadGap Constrainy
Output: All large RPGC

1: Ly ={ili €, freq(SD;i) > &}

2: for k=2;Lx_1 # 0;k++do

3: Cy=Candidate-Generalg(1);

4: for all patten c inCy do
5: count = freq(c,SDy)
6
7:

Lk = {C < Ck‘ freq<C7SD7 V) = 5}
RSPSet- |, Ly

Algorithm 2 Candidate-Generate Algorithm
Input: Ly 1
Output: Cy
1: for each pair¢s,csj) wherecs andcsjc Li_1 do
2: cg = delete first element afs

3. cs = delete last element af;

4: if equal€g,0) and equalfs;,0) then

5: cs, = append the last set of; to cs

6: CS, = add the last element @f; to cs last set

7: if length€s,,)=i+1then

8: addcs,, to Gy

9: if length€s,,)=i+1 then

10: addcs, to Cy

11: else

12: if equals,cs)) then

13: if last element otyq is the set of length 1 thethen
14: cs = append the last set 0§; to cs

15: else

16: cs = add the last element @f; to cs last set
17: if length€s()=i+1 then

18: addcy to Cy

19: returnCy

We give an example to show the merging procesiandidateGeneratestep. LetLz be {<
{A},{B,C} >, < {B,C},{D} >,< {D},{A},{B} >,< {B,C,F} >}. For patterns< {A},{B,C} >
and< {B,C},{D} >, after theCandidateGeneratestep,C4 will be {< {A},{B,C},{D} >, < {A},
{B,C,F} >} and{< {D},{A},{B,C} >}.

Example
Given a set sequensd=< {B,C},{D},{A},{B,C},{E,G},{A B,C},{C},{AF},{A,C},{H} >,
shown in fig 3.2, where min-support=2 and GC+1.is obtained by scanning the set sequence and
checking frequency for each item, and then we lusto generaté&,, line 3 of Algorithm 1. After

frequency counting for each candidateGQy, line 5 in Algorithm 1, L, is computed by removing

16

G L G L,

Pattern | freq || Patbern | freq Pattern freq Pettern freq
AR | 4 | dAr | 4 <ALAB | 1 <ALCH | 3
 | 3 <{Bp> | 3 <ALBPE | 1 <ACH | 2
L B ‘ <aicr | 3 | [<eap | 2
<o | 1 <ABP> | 1 <BC> | 3
<{ep | 1 <ACH | 2 <CHLAB | 3
(> | 1 <BLAP | 2 <chcr | 2
{6 | 1 <BLBK | 1
<{H}> 1 <(B}L{C}> 1
G Ls <{B,C}> 3

Pattearn freq Pattern F req <{C}{A}> 3
<{A}L{C},{A}> 1 <{B},{A},{C}> 2 <{C},{B}> 1
<{A}L{C}L{C}> 1 <{B,C},{A}> 2 <{c}L{C}> 2

<{A,C}L{A}> 1 <{C},{A},{C}> 2

<{A,C}L{C}> 1 <{C}L{A,C}> 2

<BLANCP | 2 . L,
<{BL{AC> 1 Pettern freq Pettern freq
<BCLA> | 2 <BCLALCH | 2 || <«BaiaLcs | 2
<BCck | 1 <BCLACH | 1
<CLALICH | 2

<{CHLIACH 2
QCLichiap | 1
epiaicy | 1

Figure 3.1: Apriori Based Example

Index |4 1 ol 3lalsfel7]8]|9 10
Position
A
B B E Al A
Sets C D|A cla 2 C Elc H

Figure 3.2: Set Sequence Data

those patterns i€, which support is under the threshold. Whole process will terminate when no
large pattern is derived. In this example, sithgds empty set, the process will stop. The frequent

patterns are ih;, wherel = {1,2,3,4}. Fig 3.1 shows the process for discoveringlLall

3.2 Gwl-Apriori Algorithm

Since G-Apriori algorithm takes too much time to scan database for counting support of the patterns.
Hence, we propose Gwl-Apriori (abbreviated from Gap with Index Apriori) algorithm to solve this
problem. The Gwl-Apriori algorithm also bases on G-Apriori algorithm to generate the candidates,

but only scans database once and records the positions informatign thien uses the positions

17

information for further counting the support of the patterns. Moreover, we devise an index list,
which consists & P andE_P list, to record a start and end positions where the pattern may appear
in the set sequence, i.e KPCS of the pattern in kth position. Here, we need to notice that for each
pattern, it has a set of index lists where every index list stands for KPCS of the pattern at distinct
S P position. Besides, we also design a pruning strategy to speed up the execution time.

As the G-Apriori algorithm, we scan the set sequence and construct the index lists to record the
positions wherd_q1 locate. However, We modif¢andidateGeneratedn G-Apriori algorithm to
derive theMerge Checkshown inAlgorithm 3 for generating the candidates. MrergeCheck the
candidates and their corresponding extended type and extended pattern are return. After finding the
L1, Cy are generated from; by calling theMerge Check ForC,, distinct strategies to construct in-
dex lists are adopted according to different extended types, sequence-extended (S-Step) and itemset-
extended (I-Step) [5]. For example, given a set sequence{#g,{B} >, then the S-Step for the s
is < {A},{B},{C} > and the I-Step for the s is {A},{B,C} >. When a patterg; in Ly can merge
¢j in Ly undery = n. According to the returned extend type and extend pattern, two different range
check are applied to construct the index lists for merged pattern. The steps for constructing the index
lists for merged pattern is stated as follows, we takes each value EVPilist from each index list of
patternc; to check which values i6.P from all index lists of last element of pattechare contained
in corresponding range, where range [EV+ n+ 1] is for S-Step but ranges[P,S_P] is for I-Step,
then we construct the index list whiéhP equals taS_P in current checked index list of patteen
and record the values which stratified the corresponding range inte_thést. This process will
continue until all index lists of pattei@ are checked. However, the patterns which supports are less
than thed are removed from th€,. To be mentioned that we count the frequency while constructing
the result index lists. For instance, consider the the followingattern< {A}, {C} >, which index
listsare{1,(2,3,4)},{3,(4,5)},{4,(5)}, pattern< {C},{B} > which index lists of patterr: {B} >
are{2,(2)},{3,(3)},{5,(5)},{6,(6)}, {10,(10)} and pattern< {C,D} > which index lists of pat-
tern< {D} > are{4,(4)},{5,(5},{9,(9)}. Csare< {A},{C},{B} > and< {A},{C,D} > where
the index list,{1,(2,3,5,6)}, for the pattern< {A},{C},{B} > undery = 2 is generated by taking
each value irE_P list of {1,(2,3,4)} to do S-Step range check in index lists of patterdB} >,
hence the times of comparison are 3*5. Besif®$5,6) } and{4, (6)} are also the index lists for the
pattern< {A},{C},{B} >. And the index lists for pattera {A},{C,D} > are{1,(4)}, {3,(4,5)}
and{4,(5)} by applying the I-Step range check. The pattern mining process will terminate gintil
is 0.

An example for Rwl-Apriori Algorithm

Let us consider the example as shown in Fig 3.2, widere2 andy = 1. We scan the sequence

18

Algorithm 3 Merger.Check

Input: Ly 4

Output: All merged patteri€, and corresponding extended typeT and extended patte@y.L_E
1: for each pair¢s,csj) wherecs andcsjc Li_1 do
2: cg = delete first element afg

3. cs; = delete last element @f;
4; if equal€g,0) and equalfs;,0) then
5: cs, = append the last set o§; to cs
6: CS, = add the last element of; to cs last set
7 if lengths,,)=i+1 then
8: add 1 toCy. T
9: addcs,, to Gy
10: if length€s,,)=i+1 then
11: add 0 toCy. T
12: addcs, to Cy
13: add last element afj to C,.L_E
14: else
15: if equal€s,cs;) then
16: if last element oy is the set of length 1 thethen
17: add 1 toCy. T
18: cs = append the last set 0§; to cs
19: else
20: add 0 toCy. T
21: csc = add the last element @f; to cs last set
22: if length€s()=i+1 then
23: addcy to Cy
24: add last element afj to Cy.L _E

25: returnCy, C.T andCy.L_E

19

data and construct the index lists tor, shown in Fig 3.3 (a), where the patterA} occurs at posi-
tions of 3, 6, 8, 9 in set sequence §4.are generated blyl, where one of pattera {B,C}, {A} >
is generated by combining pattern patter{B,C} > and< {C},{A} >. The index lists for pat-
tern < {B,C},{A} > are generated by taking each index lists of patterfiB,C} >, which are
{1,(1)} {4,(4)} and{6, (6)}, to do range check in index lists of pattetr{ A} >, which are{3,(3)},
{6,(6)}, {8,(8)}, {9,(9)}. Fig 3.3 shows the index lists far, Ly, L3 andL4, respectively, where
the S_P underlined means that it is contributed to the frequency counting.

Pattern S P Pattern Pattern

1
- 1
GE ()G -—r» |
oA | |
F : : |
- : ——:ﬁ '
® |—(] i v (L]
#] i [8 |
(2] |{C}{A}{C}| ;
© 1] (7]
a b (a0]
s |
(6] HiF|C (-]
| ()= -5]
7 -
L (2]

(a) (b) (c) (d)
Figure 3.3: The example for GwlI-Apriori Algorithm

3.2.1 Pruning Strategies

Because times of comparisons between index lists take much time, in order to resolve this problem,
we design the pruning strategies, based on order of index lists for a pattern, to speed up the mining
process. The pruning strategies is stated as follows.

(1)Range pruning: The general concept is that for a pattern P1, wi8dP=ps1 ande_P=pel,
if we want to extend a pattern P2 of size 1 ungen, then based on distinct extended type, the the
position of pattern P2 must locate at the range (pehpeH or [pel,pel]. For detailed description,
if IL.E_P[i]+ y+ 1 < PL[j], then we check ifL.E_P[i + 1] + y+ 1 < PL[j], if TRUEthen check

20

IL.E_P[i + 2], if FALSEthen scan the PL from position j. The reason is {frate means we have
scanned the previods P and put result positions into the result index list.

(2)Last value pruning: The general concept is that for a pattern P1, whHiR=ps1 and
E_P=pel, if we want to extended a pattern P2 of size 1 under, then the position of pattern
P2 must larger than pel. For detailed description, iRhg|.E_P[0] > the last value in PL then stop
comparison. The reason is tHRk[i].E_P[0] > last value in PL means th&P of following index
lists must> last value in PL, so we do not need to scan the following index lists.

Algorithm 4 shows the pruning strategies which is integrated into frequency counting process,
wherenextrangeis used to range contained pruning aoa_L_elemenis used to last value pruning.

Besides Fig 3.4 shows the flow chart for the pruning strategies.

START
nd o Y
> Ind_list
Cur_L_element < Y
E_P[0] of current >
Ind_list
N |
set starting position of
Pos list = ptr L E
Extended Type
S-Step Check
I-Step
\
S-Frequency Y I-Frequency
Counting Counting
N | Read next E_P I(— Read next E_P

Read next Ind_list Pair

END <

Figure 3.4: Flow Chart for Pruning Strategies

21

Algorithm 4 freg.count

Input: extended typd, index lists of patteris; (Ind_list), position list of patterj (Poslist), thresh-
old 4, Gap Constrainy
Output: result index lists and count

1: initialize nextrange count,cur_L_elementptr L_E, L_.E_C=0

{type=0 means S-Step, type=1 means |-$tep

2: for each index list of patterq do

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24.
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

3
4
5:
6:
7:
8
9

if cur_L_element< Ind_list.E_P[Q] then
break
i=0
j=ptr_L_E
for eachE_P of currentind_list pair;i++do
L_E_List=NULL
if T=0then
range =Ind_list.E_P[i]+GC+1
if range> nextrangethen
for each index positiorPoslist, of patterncj;j++ do
if cj.Poslist[j] < range&c;.Poslist[j] > Ind_list.E_PJi] then
if Ind_list.E_P[i] > L_.E.C & Ind_list.SP > L_E_Cthen
count++;
L_.E_C =cj.Poslist[j]
ptr_L_E=j
Add c;.Poslist|j] to L_E_List.E_P
if cj.Poslist[j + 1] = NULL then
cur_L_element= c¢;.Poslist|j]
else ifcj.Poslist[j| > rangethen
nextrange= c;j.Poslist|]]

break
else ifT=1then
j=ptrLE

for each index positiorPoslist, of patterncj;j++ do
if cj.Poslist[j] = Ind_list.E_P[i] then
if Ind_list.E_P[i] > L_.E_C & Indlist.SP > L_E _C then
count++;
L_E_C =cj.Poslist][j]
ptr L_E=j
Add c;j.Poslist[j] to L_.E_List.E_P
if cj.Poslist[j + 1] = NULL then
cur_L_element= cj.Poslist|]
else if Ind_list.E_P][i] j cj.Poslist[j] then
break
else ifcj.Poslist[j + 1] = NULL & Ind_list.E_PJi] # c;.Poslist[j] then
cur_L_element= c;.Poslist|]
break
L_E_List.S.P=Ind_list.S.P
Add L_E_List to R.Ind_list

42: return[R_Ind_list, counf

22

An examplefor pruning strategies

Fig 3.5 shows the example of pruning process for S-Step, wheré. We start in the first index
list of pattern< {A},{B} >, and scan the index list of pattern{C} >. First, we start to scan the
first value of E_P list, and sequentially to scan the values in the position list of pattef€} >.
When we find the position value which is first satisfied the range contained condition, we record
the position value to be following used, then we start to find next valugsifist. This process
terminates until the position value that is not satisfied the range condition, then we add the position
value, which is satisfied the range condition, into tempoEaR list. Because the position value, 10,
is the last value in index list of pattern {C} >, we need to record this position value for future 2nd
pruning strategy used. Then we check next value, & _Rlist and base on 1st pruning strategy to
do pruning process. In this exampjet 1 to 3, denoted 8, is not larger than 10, so we start the next
value inE_P list. We end this process until all valuesknP list of this index list are all been check.
We recordS_P and corresponding satisfied position valuesHdP list to the result index list, Fig 3.5
(d) shows the result. We start to check next index list. Similarly, we compare the first vatue in
list of this index list to 10, last value in index list for pattern{C} >. According to the 2nd pruning
strategy, because 3 is smaller than 10, we start the same process that we have explained previous,
here we must pay attention that when we start to check next index list of pattei, {B} >, the
first checked value in index lists of patteen{C} > is started in the value which is the |d5tP
value contributed to the last frequency count. Fig Fig 3.6 (a) shows thg IRstalue equals to 3.
However, when we check the index list, whiSIP is equal to 10, we check the first valuekp list
of this index list, if the position value is larger than the last value in index list of pattef@} >,
then we start to check next index list of pattetn{A}, {B} >. In Fig 3.6 (d), the first value ifp
list of this index list, 11, is smaller than 10. Hence based on 2nd pruning strategy, we do not need to

check the following index lists.

23

1 S P EP

Pattern

EP

11,12,13

1
L} | (1]

11,12,13

) m
-
~
a —
~ w = S
© ©
[[
a o | o a ol °~
I c | | c |
w c | < w [SE IR
Il o — I on
3 o) %
[~ [
o (= < 2
[%]
€ €
$ T
S 5 = 5 =
°, 5 -
2T |
£l T S g s g
A - 5 £
£ ° 8 ° @
a
m
i
o
i
L)
— ~
g |2
c |
C |
1| o
~~ -
x
(a [
c
mfﬂ
NV
zm.t
L »n
e_.II__
c | =~ - a
[<) 5 E
5| L 3 o
£ 5
a

3,4,5,6,7

R_ind_list

)

«d

(©)

Figure 3.5: The example for Pruning Technique Part |

24

/, ! /, !
Cur_L_elerfient Cur_L_elerfient next_range

Temp_List —7[] Temp_List —7[4.5.6.7]
34,567 R_ind_list 3,4,5,6,7

Cur_L_eIerﬁént next_range Cur_L_eIerﬁént
Temp_List —r[4.5.6.7,10] Temp_List ~>[4.5.6.7,10]

r_ind_list

(© (d)

Figure 3.6: The example for Pruning Technique Part Il

25

Chapter 4

Correctness

We also prove the correctness of the G-Apriori algorithm in the following.

Lemma 1: For each patterR, in Ly, the each 1 size pattern Bfis in L.
Theorem 1. For each patter® in Ly under GC=m, the k-1 size patternfis also inLy_1 under
GC=m.
Proof: GivenR =< pg, p2,...,pn >, wherep; C I forl < j < nand frequency counting sets under
GC=m forPR. While we delete the first element &y to obtainP_.D_F =< p_d_f1, p2,..., pn >,
we can know FCSG(PX FCSGP_D_F). We delete the last element f8r to obtainP_D_L =<
P1, P2,...,p-dl1 >, FCSR) C FCSGP_D_L). We can clear know that for each patt&n Ly, the
k-1 size pattern oP, is in Ly_1.

Lemma 2: Based on the conditions for finding the CBS among the KPCS for pattern P in SD
underGC = m, the number of instances in CBS is the maximum non overlap instances.
Proof: In here, we need to prove two ideas: 1) Greedy choice property and 2) Optimal substructure
property.
(1) LetS= {< ko,no >,< kg,n1 >,..., < ki,nj >} be a set of instances obtained from the KPCS
of P. The instances in S are first sorted by ending positions, after the first stage we have made, if
the ending positions of the instances are the same then we need to sort these instances by starting
positions progressively. It implies that instancekg, ng > has the earliest starting position and
ending position. Suppose, AS is a subset of S and is an optimal solution then let instances in AS
are first ordered by ending positions then ordered by starting position. Suppose, the first instance
in AS is < kj,nj >. If <kj,nj >=< kg,ng >, then AS begins with greedy choice and we are
done. If < kj,nj >#< ko,ng >, we want to show that there is another solution BS that begins
with greedy choice, instance ko,ng >. Let BS= AS— {< kj,n; >}U{< ko,np >}. Because
< ko, np ><< kj,nj >, the instances in BS are disjoint and since BS has same number of instances
as AS, i.e.|JAS = |BY, BSis also optimal.

26

(2) Now we prove optimal substructure. If AS is an optimal solution to SABe= S— {< ko,no >}
is an optimal solution foB = {< kp,Np >€ Skp > no}. Therefore, after each greedy choice we are
left with an optimization problem of the same from as the original. Induction on the number of
choices, the greedy strategy produces an optimal solution.

Theorem 2. The GwI-Apriori algorithm can find maximum frequency for a pattern.
Proof: The frequency counting strategy of GwlI-Apriori algorithm for a pattern P based on greedy
choice. According the Theorem 2, we can assure that the GwlI-Apriori algorithm can find the max-
imum number of non overlap instances for a pattern, which means the maximum frequency for a

pattern.

27

Chapter 5

Experiment

In this section, we present the experiment results of both G-Apriori and GwI-Apriori algorithms. All
programs were implemented in Microsoft Visual C++ 6.0. All experiments are performed on Intel
Pentium4 CPU 3.20GHz with 1 Gigabytes main memory, running on Linux. For our experimental
evaluation we used real data.

We perform our algorithms on real world data, stock data, to get the useful pattern in a set se-
guence. Stock data are collected form eight companies from Tawian Stock Exchange Daily Official
list from January 1, 1995 to December 31, 2007 using Perl and the number of trading days are
3388. We discretize the stock price go-up/go-down into five categories: (1) Up-High¢UB15%,
Up-Low(UL): < 3.5% and> 0%, Unbiased(UN): 0%, Down-Low(DL)+ -3.5% and< 0%, Down-
High(DH): < -3.5%. Hence, we have 40 different elements. The average size of the transactions are

8. Table 5.1 shows the companies.

Stock Number Company Name

2330 TSMCE
2308 AELTA?
2317 Foxconr?
2324 Compaf
2311 ASE?®
2321 TECOM®
2312 Kinpo’
2313 Compe§

Table 5.1: Stock number and name for companies

http://www.tsmc.com/chinese/default.htm
2http://www.delta.com.tw/ch/index.asp
3http://www.foxconn.com.tw/
“http://www.compal.com/inden.htm
Shttp://www.asetwn.com.tw/
Shttp://www1.tecom.com.tw/
http://www.kinpo.com.tw/ChineseT/index.htm
8http://www.compeg.com.tw/home.htm

28

GC

GC

035 —~0—G-Apriori <-Gwi-Apriori 14 ~4=G-Apriori =l=GwkApriori 35 ~4=G-Apriori ==Gwl-Apriori
~ 03 5 12 3
%) o
[9 Q
& 025 - 1 225
: : :
£ 08
g 0 z g2
§ 015 6 06 § 15
- € s
3 01 g 04 5 1
: g g
00 -\'\I*._. o e
0 0 0
5 16 17 18 19 2 Lo B DX 5 16 17 18 19 20
Minimum Support (%) Minimum Support (%) Minimum Support(%)
(a) GC=0 (b) GC=1 (c) GC=2
6 =4=G-Apriori =li=Gwl-Apriori 7 =4=G-Apriori =fli=GwHApriori 8 =4=G=Apriori =li=GwI=Apriori
25 36 3!
3 § § 6
< <5 A
g 4 0 '
£ Ey £
F 3 = F 4
c c c
g g3 8
£ 2 .
¢ g2 § 2
X ¢ g
w1 a oy wy
0 0 0
5 1 17 18 19 516 17 18 19 20 5 16 17 18 19 2
Minimum Support (%) L . Minimum Support (%)_ Minimum Support (%)
(d) GC=3 (e) GC=4 (f) GC=5
Figure 5.1: Gap constraint versus Execution time
8 =4=GApriori =li=GwI-Apriori 25 =&=G-Apriori =f=GwApriori 16 =4=G-Apriori
7 _ 14
) I |)
g6 g 812
7 L
ES g 15 B
C 4 F F 08
2 § 1 5
aé 3 g g 0.6
0 2 17} o
x 2 05 g 04
1 “ 02
0 0 0
0 12 34 5 o 1 2 3 4 5 0 1 2 3 4 5
GC GC GC
(a) GC=0 (b) GC=1 (c) GC=2
12 =4=G-Apriori =li=GwlI-Apriori 08 =4=G-Apriori =li=GwlI-Apriori 0.5 =4=G-Apriori =li=GwI-Apriori
07 0.45
o 1) m
o 08 v p
£ g0 E03
% 0.6 % 0.4 ';0.25
2 2 2 0.
2 04 5 03 % e
g $ 02 g01>
& 02 &, 2ol
’ 0.05
0 0 0
0 1 2 3 4 5

GC

(d) GC=3

(e) GC=4

(f) GC=5

Figure 5.2: Minimum support versus Execution time

29

The execution time of both algorithms with varying GC are shown in Fig 5.1. From these figures,
we can clearly know that when we increase the value of GC, although GwI-Apriori algorithm run
faster than the G-Apriori algorithm, the time difference between execution time of them is getting
much nearly. The reason is that we may record more index lists needed to compare.

Fig 5.2 shows the execution time of both algorithms with varying minimum support. When the
minimum support increase from 15% to 20%, the execution time of both algorithms decrease for
the average pattern length being shorter. However, the Gwl-Apriori algorithm still performs much

better than the G-Apriori as the minimum support increasing.

700 - 85% -
600 -
75% -
500 ~—&—minsup=15%

65% -
400 1 —l—minsup=16% 5

== minsup=15%
=—minsup=16%

Number of Patterns

300 1 —h—minsup=17% 55% - —A—minsup=17%
200 - —>=minsup=18% —>=minsup=18%
100 - =¥=minsup=19% 5% 1 =¥=minsup=19%
0 T T T : . . =®—minsup=20% 35% : =®—minsup=20%
0 1 2 3 4 5 0 1 2 3 4 5
GC GC

(&) Number of patterns for different GC versus miiiiz) Time rate for different GC and minimum support
mum support

600 -

200 1 +—GC=0

9
2 -~
0% T —— = : ——x ——GC=0
400 - | E &:‘ t %

~-GC=1 P ——-GC=1

300 - —GC=2 | | /A —h—GC=2
! 50% - /
200 —=GC=3 / —=GC=3

100 —H=GC=4 62 H=GC=4

0 i . . i Geeswinl ! . ; . . 6e=s

15 16 17 18 19 20 15 16 17 18 19 20

700 - - E _‘\ !—_9-0_%_" 3)y o
|
|
|
|
|

Number of Patterns

Minimum Support (%) ‘ ‘ Mininum Support (%)

(c) Number of patterns for different minimum suppdd) Time rate for different GC and minimum support
versus GC

Figure 5.3: Summary lllustration

Fig 5.3 (a) and (c) show the number of frequent patterns for different GC versus minimum

support. Besides, in order to clearly show how Gwl-Apriori algorithm run faster than G-Apriori

(Execution time of G-Apriori)(Execution time of GwI- ApI’IOI’I))
(Execution time of G-Apriori)

and apply this formula to compute the rate of difference of execution time between G-Apriori and

GwiI-Apriori. Fig 5.3 (b) and (d) show the rate.

algorithm, we define a formulat

30

Chapter 6

Conclusion

In this paper, we propose a new problem, mining repeating patterns with gap constraint from the set
sequence. Besides, we also propose a algorithms, G-Apriori, to mine the repeating pattern with gap
constraint. The refined algorithm, GwlI-Apriori, is proposed to prevent set sequence from scanning
many times to obtain frequent patterns. In Gwl-Apriori method, a new data structure is designed
to record the appearing start and end positions of a pattern, hence we only need to scan the set
sequence once that can save a lot of time to scan database while finding the longer patterns. Besides,
the pruning strategies also designed to reduce the comparing times among the index lists. The
experimental results show that GwlI-Apriori outperforms G-Apriori algorithm. In addition, we can

obtain potential repeating patterns while adopting gap constraint.

31

Bibliography

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Bide: Efficient mining of frequent closed sequences.

E. F. Adebiyi, T. Jiang, and M. Kaufmann. An efficient algorithm for finding short approximate
non-tandem repeat8ioinformatics 17(90001):S5-S12, 2001.

R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in
large databases. Iroceedings of ACM SIGMOD International Conference on Management
of Data (SIGMOD1993)pages 207-216, 1993.

R. Agrawal and R. Srikant. Mining sequential patterns.Phaceedings of the 11th Interna-
tional Conference on Data Engineering (ICDE1995ages 3—14, 1995.

J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using a bitmap repre-
sentation. InProceedings of the 8th International Conference on Knowledge Discovery and
Data Mining (KDD2002) pages 429-435, 2002.

J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time se-
ries database. Iroceedings of the 15th International Conference on Data Engineering
(ICDE1999) pages 106-115, 1999.

J. Han, W. Gong, and Y. Yin. Mining segment-wise periodic patterns in time-related databases.
In Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining
(KDD1998) pages 214-218, 1998.

J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. Hsu. Freespan: frequent pattern-
projected sequential pattern mining. Pmoceedings of the 6th International Conference on
Knowledge Discovery and Data Mining (KDD200prges 355—-359, 2000.

J.-L. Hsu and A. L. P. Chen. Efficient repeating pattern finding in music databadesdeed-
ings of Conference on Information and Knowledge Management (CIKM1p8ggs 281—-288,
1998.

J.-L. Hsu, A. L. P. Chen, and H.-C. Chen. Finding approximate repeating patterns from se-
quence data. Iﬁ’roceedlngs of 5th International Conference on Music Information Retrieval
(ISMIR2004) 2004.

K.-Y. Huang, C.-H. Chang, and K.-Z. Lin. Prowl: An efficient frequent continuity mining algo-
rithm on event sequences. Data Warehousing and Knowledge Discovery, 6th International
Conference, (DaWakK 2004)ages 351-360, 2004.

K.-Y. Huang, C.-H. Chang, and K.-Z. Lin. Closedprowl: Efficient mining of closed frequent
continuities by projected window list technology. Proceedings of 5th VLDB Workshop on
Secure Data Management (SDM2003)05.

J.-L. Koh and Y.-T. Kung. An efficient approach for mining top-k fault-tolerant repeating pat-
terns. InProceedings of the 11th International Conference on Database Systems for Advanced
Applications (DASFAA 2006pages 95-110, 2006.

N.-H. Liu, Y.-H. Wu, and A. L. P. Chen. An efficient approach to extracting approximate

repeating patterns in music databases?roceedings of the 10th International Conference on
Database Systems for Advanced Applications (DASFAA 208§gs 240-252, 2005.

32

[15] H. Lu, L. Feng, and J. Han. Beyond intratransaction association analysis: mining multi-
dimensional intertransaction association rulesCM Transactions on Information Systems
(TOI1S2000)18(4):423-454, 2000.

[16] H. Mannila and H. Toivonen. Discovering generalized episodes using minimal occurrences. In
Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining
(KDD1996) pages 146-151, 1996.

[17] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event se-
quences. 1(3):210-215, 1995.

[18] B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rulesodredings of the
14th International Conference on Data Engineering (ICDE1998pes 412—-421, 1998.

[19] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. Min-
ing sequential patterns by pattern-growth: The prefixspan apprd&tfE Transactions on
Knowledge and Data Engineering (TKDE2004%(11):1424-1440, 2004.

[20] A. K. Tung, H. Lu, J. Han, and L. Feng. Breaking the barrier of transactions: mining inter-
transaction association rules.Pnoceedings of the 5th International Conference on Knowledge
Discovery and Data Mining (KDD1999pages 297-301, New York, NY, USA, 1999. ACM.

[21] A. K. H. Tung, H. Lu, J. Han, and L. Feng. Efficient mining of intertransaction association
rules. IEEE Transactions on Knowledge and Data Engineering (TKDE2003]1):43-56,
2003.

[22] W. Wang, J. Yang, and P. S. Yu. Mining patterns in long sequential data with ritigeeed-
ings of ACM SIGMOD International Conference on Management of Data (SIGMOD2000)
2(2):28-33, 2000.

[23] X. Yan, J. Han, and R. Afshar. Clospan: Mining closed sequential patterns in large databases.
In Proceedings of the 3rd SIAM International Conference on Data Mining (SDM2Q0838.

[24] J. Yang, W. Wang, and P. S. Yu. Mining asynchronous periodic patterns in time series data.
IEEE Transactions on Knowledge and Data Engineering (TKDE20IR)3):613-628, 2003.

[25] M. J. Zaki. Spade: An efficient algorithm for mining frequent sequenbtechine Learning
42(1/2):31-60, 2001.

33

