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摘要 
 

以往對於 repeating pattern mining 的研究主要著重於從一個由音樂轉成較長

的字串中找出經常重覆出現的子字串。舉例來說，A 公司和 B 公司股價上漲，

則 C 公司股價則會在 4 天之後上漲。然而，鄧教授所提出的問題給予太多的限

制在從一長串 set 中找出 repeating pattern，這使得許多潛在的 frequent patterns 會
因為這個限制導致他們的 support 分散進而無法被找出。因此，在我們的論文中

定義了一個新的 pattern，它允許二個相鄰 set 之間有 gap 的存在，此外我們也提

出了一個演算法，G-Apriori，找出允許 gap 的 pattern。G-Apriori 演算法產生

candidates 且透過掃描 database 來計算 candidates 的 support。然而為了要避免掃

描 database 太多次，GwI-Apriori 被提出來解決這個問題。在 GwI-Apriori 中，我

們設計了一個 index list，它包含一個開始位置跟一串的結尾位且利用它來紀錄

frequent pattern 的所在位置。 透過這些 index lists，GwI-Apriori 只需要掃瞄

database 一次且利用它們來進行較長 pattern 的 support 的計算。此外，在

GwI-Apriori 中我們也設計了 pruning 策略來加速 support 的計算。實驗的資料是

以實際的資料評估，且實驗的結果顯示 GwI-Apriori 優於 G-Apriori。 



  
Abstract 

Previous studies on mining repeating patterns focus on discovering sub-strings which appear 

frequently in a long string, converted from the music. An example of such repeating pattern is ”if the

stock price of companies A and B both goes up on day one, the stock price of company C will go up on 

exactly day fifth.” But the problem proposed by Tung gives too much limitation for mining repeating

patterns from set sequence, the potential frequent patterns can not be found due to the frequencies

distrusted. Hence, in our paper we define a new pattern, which allows the gap between two adjacent 

sets, and propose an algorithm, G-Apriori, to discover the repeating patterns with gap constraint from a

set sequence. G-Apriori algorithm generates candidates and counts the frequency of these candidates by 

scanning the database. In order to avoid scanning the database so many times, the algorithm,

GwI-Apriori is proposed to solve the problem. In GwI-Apriori method, it designs an index list, which 
contains the start position (SP) and end position (EP) list, for recording the positions of the frequent 

patterns. Besides, the GwI-Apriori also takes the additional strategy for pruning the searching space

among the index lists. By using the index lists, the GwI-Apriori only scans the database once and 

computes the frequency of frequent patterns through the index lists. The experimental results show that

the GwI-Apriori performs much better than G-Apriori. 
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Chapter 1

Introduction

In our diary life, we can find that patterns appear repeatedly, such as in DNA sequence, music and

video, the behavior of a person, ups and downs relation of the stock price between each company,. . .,

so on. We show a example in Fig 1.1. However, if we can find the patterns from these data,

we can use these patterns to describe and forecast the future trend or behavior of these data. For

example, in music, we can extract music segment, appearing frequently, from the music data and

make use of these segment to represent the music. Therefore we can achieve both efficiency and

semantic-richness requirements for content-based music data retrieval. Besides, the investors may

also interested in the relation of stock prices among the companies, such as ”When stock price of A

company rise 10 percent and stock price of B company rises 5 percent, the stock price of C company

will fall 4 percent within the following three days.” The investors can make a profitable investment

while obtaining these information.

Segment A Segment A

Figure 1.1: A phrase excerpted from Brahms Waltz in A flat

The first application for discovering the pattern appearing repeatedly is in biological field [2].

In this field, we convert the DNA sequence into a string, we want to find the sub-string which is

tandem repeat in the converted string. In multimedia area, the indexing and searching techniques for

multimedia data are main topic, therefore Chen et al. propose the new problem, repeating pattern

mining, to discover the repeating music segment. The repeating pattern mining problem firstly

focused on finding exact frequent patterns in music database. [9] was the first work to solve the

problem. In this work, the music is converted into a sequence of notes, and a data structure called

correlative matrix which integrates associated algorithm is proposed to discovering the repeating
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patterns efficiently. Fig 1.1 shows the example, where the sub-string ”C6-Ab5-Ab5-C6” appears two

times in the string ”C6-Ab5-Ab5-C6-C6-Ab5-Ab5-C6-D6-C6-B5-C6-A5-A5-E6.” However, music

segments with minor difference may be regard as the same segments and also could be important

patterns for indexing, shown in Fig 1.2, so Hsu et al. proposed the approximate repeating patterns

mining problem in [10].

Figure 1.2: Five extracts from Mozarts Piano Sonata K. 311 and a prototypical melody (excerpted
from [Self98]).

In [10], it defines the match operator which is used to determine whether the pattern match this

music segment, then divides the music into non-overlap music segments and sums up the number

of segments satisfying the match operator. Besides, Liu, et al.[14] proposed new definition for

approximate repeating patterns in 2005. The method in [14] applies edit distance to find out the

approximate repeating patterns in music data. However, in the following year, 2006, Koh, et al.

proposed the new problem for mining top-k fault-tolerant repeating patterns in [13]. The work used

bit strings to express the string data, and applied this bit strings to perform the ”AND” and ”Shift”

operators to obtain the fault-tolerant repeating patterns. Nevertheless, the events may happen on the

same time and we may interested in finding the connection of these events which happen on the

different time. For example, investors may want to know whether the pattern, the stock price of A

company and B company both go up 5%, the following data the stock price of C company goes up

5%, appears frequently. Hence Tung proposed the related work to solve this problem in [20]. In this

paper, it views these events appearing on the same time as a set, then connects these sets of different

appearing time by order, and finds the relation among all sets.

However, in real world the frequent patterns may be concealed by the noise or delay, therefore

the work which proposed by Tung in [20] will give too much limitation for discovering the frequent

patterns, the potential frequent patterns may not be found. Therefore, in our study, we loosed the

restrictions and viewed these patterns the same by allowing the gaps (delay or noise) between two
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adjacent sets. For example, consider the following patterns< {A},{B} >, < {A},∗,{B} > and

< {A},∗,∗,{B}>, we said that frequency of pattern< {A},{B}> is 3 from above patterns by giving

thegap= 2, but the frequency of pattern< {A},{B} > is 2 by giving thegap= 1. The algorithm,

G-Apriori, is proposed to solve the problem. In this algorithm the candidates are generated based

on apriori property, and the frequent patterns, which frequency are larger than the user-defined

threshold, are obtained from these candidates by scanning the database for counting the frequency.

Nevertheless, the G-Apriori algorithm takes to much time to scan database for frequency counting.

Hence, we refined the G-Apriori algorithm and proposed GwI-Apriori algorithm to avoid inherently

scanning database many times. The first stage of GwI-Apriori is to scan the database and record the

index positions for each 1-length frequent pattern. For the patterns which length is larger than 1, we

only need to use the index positions, recorded in the first stage, for counting the frequency. Besides,

in order to speed up the frequency counting, we also design the pruning technique to reduce the

redundant comparison among these index positions.

The remainder of this paper is organized as follows: In Section 2, we present preliminaries, in-

cluding related work and definitions of our new pattern, the repeating pattern with gap constraint. In

Section 3, we propose two methods, G-Apriori method and GwI-Apriori method, to mine repeating

patterns with gap constraint efficiently. In Section 4, we prove correctness. In Section 5 shows

experimental results. Finally, we will conclude in Section 6.
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Chapter 2

Preliminaries

2.1 Related Works

In this section, we review the related work on discovering repeating patterns. Besides, we also

discuss inter-transaction association. Section 2.1.1 provides a brief discussion about the existing

work on finding repeating patterns. The following section, the algorithm for finding inter-transaction

association rule will be offered.

2.1.1 Repeating Pattern

In this subsection, we will talk about three types of repeating pattern, exact, approximate and fault-

tolerant, sequentially.

Exact Repeating Pattern

[9] was the first work that proposed the repeating pattern mining problem in music field. In this

paper, the music is converted into a sequence of notes, and a data structure called correlative matrix

which integrates associated algorithms is proposed to discovering the repeating pattern efficiently,

which is a shorter sequence of notes appearing more than once in a music object. Consider the

phrase with 12 notes from Brahms Waltz in A flat. Its corresponding sequence of nodes is ”C6-

Ab5-Ab5-C6-C6-Ab5-Ab5-C6-Db5-C6-Bb5-C6”. The correlative matrix of this sequence is shown

in Fig 2.1. The function of the correlative matrix is to preserve the intermediate results of substring

matching.

The first step for finding the repeating pattern is to initialize the matrix, and it useTi, j to indicate

the element of the i-th row and j-th column in the matrix T. The upper-triangle slots in the matrix

will be filled up based on the following principles: For any two notesSi andSj (i 6= j andi, j > 1) in

4
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Figure 2.1: Correlative Matrix

the music string S, ifSi = Sj , we setTi, j = Ti−1, j−1+1. If the value stored inTi, j is n, it indicates a

repeating pattern of length n appearing in the positions (j V n + 1) to j in S. Fig 2.1 shows the result

after all notes are processed. After filling up the correlative matrix, the following step is to find

all repeating patterns and their repeating frequencies. In this step, it uses a set called the candidate

set (denoted CS) to record the repeating patterns and their repeating frequencies. However, there

are only four cases which can be put into the CS.The cases are (1).Ti, j = 1 andTi+1, j+1 = 0, (2).

Ti, j = 1 andTi+1, j+1 6= 0, (3). Ti, j > 1 andTi+1, j+1 6= 0 and (4).Ti, j > 1 andTi+1, j+1 = 0. After

finding all candidate sets, there are extra two steps to implement. The first is the pruning step. If

a repeating pattern satisfies the pruning principle, it will be removed from the candidate set. The

principle is that for any repeating patterns in CS, if it is a substring of another repeating pattern and

they have the same frequencies, it will be pruned from the CS. The second step is that compute the

real repeating frequency for each repeating pattern based on the formulas:f = 1+
√

1+8×rep count
2 .

Approximate Repeating Pattern

However, there exists another repeating pattern which loosens the condition for finding the repeating

pattern. [10] was the first proposed by Jia-Lien Hsu, et al. to solve this problem. In [10], it defines

the match operator which is used to determine whether the pattern match this music segment. The

match operator is stated as follow: GivenP = (p1, p2, . . . , pm) andLL = (s1,s2, . . . ,sn), wheren >

5



m. long leng match(P,LL) = 1, if pi = sbi , f ori = 1,2, . . . ,m,where1 = b1 < b2 < .. . < bm = n,

otherwise,long leng match(P,LL) = 0. Based on the match operator, Jia-Lien Hsu also proposed

the method for compute the repeating frequency of a pattern P. The main idea of frequency counting

for a pattern P is dividing the music into non-overlap music segments and sum up the number of

segments which satisfies the match operator. In order to find the longer length pattern, Jia-Lien Hsu

uses thepattern join operator in level-wise approach.

Besides, Jia-Ling Koh, et al. [13] also proposed another new definition for approximate repeating

patterns, which allows insertiong/deletion errors occurring.

In [13], Jia-Ling Koh proposed two definitions of counting frequency for a pattern, IFT-contain

and DFT-contain. Given a data sequenceDSeq= D1D2 . . .Dn and a patternP = P1P2P3 . . .Pm, we

said that DSeq is FT-contain pattern P on position i withε insertion errors iff there exist an integer

1 ≤ i ≤ n, such thatDi = P1, D(i+m−1)+ε = Pm, and P is a sub-sequence ofDiDi+1 . . .D(i+m−1)+ε

and DSeq is said to IFT-contain pattern P under fault toleranceεI , iff DSeq FT-contain P withε

insertion errors andε ≤ εI . The DSeq is FT-contain pattern P on position i withε deletion errors iff

there exists an integer 1≤ i ≤ n, such thatDiDi+1 . . .D(i+m−1)−ε is a sub-sequence of P, and we call

DSeq is DFT-contain pattern P by giving a fault toleranceεD, iff DSeq FT-contains P on position

with ε deletion errors, whereDi = P1. andε ≤ εD. Consequently, the fault tolerant frequency for

a pattern P in DSeq is the number of different positions in DSeq where DSeq IFT/DFT-contains P.

The example is provided as follows.

ExampleConsider DSeq=ABCDCABA,εI = 2 andεD = 3. Given patternsP1=ABCC,P2=BCDC,

P3=ACAB,P4=AEF, P5=BCFC. DSeq FT-containsP1 on position 1 with 1 insertion error and DSeq

also FT-containsP2 on position 2 with 0 insertion error. Hence, DSeq IFT-containsP1 andP2. How-

ever, DSeq doesn’t IFT-containsP3 for the insertion error of it is larger thanεI . With regard toP4

andP5, DSeq DFT-contains both as they all satisfied the DFT-contain definition.

In order to speed up the time of frequency counting, the bit sequence representation of data

item andshift andand operation on bit sequence [5] are incorporated into two algorithms, named

TFTRP-Mine and RE-TFTRP-Mine which were proposed in [13]. Fig 2.2 shows the bit sequence

of each data item in data sequence, ”ABCDABCACDEEABCCDEACD” .

In fig 2.2, the bit sequence for each data item N is denoted asAppearN and the length of bit

sequence for each data item is equal to the length of the data sequence. The numbers, 1 and 0,

appearing in bit sequence represent whether some data item appears on the ith position of the data

sequence respectively. Therefore, we can obtain the frequency of data item by accumulating the all

none zero number in the bit sequence.

However, two recursive functions of counting Insertion/Deletion fault tolerance frequency for a

6



Sequence Data ABCDABCACDEEABCCDEACD

Data Item Bit Sequence

A 100010010000100000100

B 010001000000010000000

C 001000101000001100010C 001000101000001100010

D 000100000100000010001

E 000000000011000001000

Figure 2.2: Bit Sequence Representation

pattern are proposed. The functions are shows as follows,

(1) Recursive functions of getting Appear+P (E):Suppose a patternP = P1P2 . . .Pm is given. Let

P
′
= P1P2 . . .Pm−1 and X denotePm. Appear+P (E) is obtained from the following function for 0≤

E ≤ εI .

IF |P| = 1, then Appear+P (E)=Appearp; ∀1≤ E ≤ εI ,Appear+P (E) = 0;

Else If E=0, then temp1(E) = Appear+
p′
(0); temp2(E) = L shi f t(Appearx, |P|−1);

Elsetemp1(E) = temp1(E−1)∨Appear+
P′ (E);

temp2(E) = L shi f t(temp2(E−1),1); Appear+P (E) = temp1(E)∧ temp2(E).

(2)Recursive functions of getting Appear−P (E): Suppose a patternP = P1P2 . . .Pm is given,

wherePi(i = 1, . . . ,m) is a data item. Let Y denoteP1, P′′ denoteP2P3 . . .Pm, Q denoteP2P3 . . .Pm−1,

and X denotePm. When deletion fault tolerance E is given,Appear−P (E) is obtained from the

following recursive function.

IF |P| ≤ E +1, then Appear−P (E) = AppearY;

Elsetemp
′
p(E−1)=AppearQ∨ (Appear−Q(E−1) ∧ L shi f t(AppearX, |P′′|−E,0));

temp
′
p = tempQ(E−1) ∨ (Appear−Q(E) ∧ L shi f t(AppearX, |P′′ −E−1,0));

Appear−P (E) = AppearY ∧L shi f t(tempp” ′(E),1,0).

In TFTRP-Mine algorithm, all fault tolerant patterns, denoted as FT-RPs, are obtain by using the

recursive functions defined in the previous paragraph. But in TFTRP-Mine algorithm, the top-k non-

trivial FT-RPs was extracted from all results which are found first, RE-TFTRP-Mine algorithm was

designed to improve TFTR-Mine algorithm. In RE-TFTRP-Mine method, the FT-RPs which are

not possible the top-k non-trivial FT-RPs are removed in advance by increasing themin f reqduring

the mining process, hence the FT-RPs with the fault-tolerant frequencies less than themin f reqwill

not be employed in the following mining process. Besides, it also gives the priorities for the found

FT-RPs, the higher fault-tolerant frequency the patterns have, the higher the priorities the patterns

have. Then, the FT-RPs with higher frequencies are selected to generate the new candidates.

7



However, Ning-Han Liu, et al. [14] also proposed another new method to find the approximate

repeating pattern. The first step of this method is converting the pitch string of music into the

interval string, and then divide the interval string into the interval segments according tomax len

andmin len constraints, which used to filter out unimportant music patterns. Then we regard these

segments as candidates ARP. Then, for each candidate, the edit distance was adopted to measure the

similarity degree between two music segments. Finally, according to the number of similar music

segments and how they overlap each other, we decide whether the candidate ARP has qualification

for being an ARP. In order to speed up the execution time, it also modifies the R*-tree to remove

impossible candidates before computing the edit distances.

2.1.2 Inter-transaction Association

There are several kinds of inter-transaction association mining problem, such as sequential pattern

mining [4], frequent episodes mining [17] [16], periodic patterns mining [7] [22] [24] [6] and fre-

quent continuities mining [21] [20] [11] [12] [15]. We will give a shorter introduction for sequential

pattern, frequent episodes, and periodic pattern mining, but give a detailed explanation for frequent

continuities mining which is most resemble to our work.

Sequential Pattern Mining

The sequential pattern mining problem was first introduced in [4] by Agrawal and Srikant. In order

to improve the speed for algorithm proposed in [4], there were a lot of methods are designed, such

as PrefixSpan [19], SPADE [25], SPAM [5], FreeSpan [8]. . . and so on. Since the sequential pat-

tern mining may generate many redundant patterns, it will decrease not only effectiveness but also

efficiency of mining. Therefore, closed pattern mining problem was gradually noticed by our. The

famous algorithms for it are Clospan [23] and BIDE [1].

Frequent Episodes

Different from the sequential pattern, the data for frequent episodes is a sequence of event sets

where the events are sampled regularly. An episodes is defined as a collection of events in a user-

defined windows interval that appear relatively close to each other in a given partial order [17]. In

[17], Mannila et at. defined three classes of episodes: serial, parallel and combination of serial and

parallel. Serial episodes consider order for patterns in the sequence, while parallel episodes do not

have constraints on the relative order of event sets. Fig 2.3 shows the three kinds of episodes.

Moreover, Mannila, et al. also proposed a new approach, WINEPI, for discovering the all fre-

quent serial/parallel episodes in [17]. For finding the exact relation among episodes, Mannila et al.

8



A B

A A

C

B B

serial parallel combinationparallel

Figure 2.3: Episodes Class

also specify another classes of generalized epiosdes in [16] and designed an algorithm, MINEPI, for

discovering the frequent episodes based on minimal occurrences of episodes.

Periodic Patterns

Periodic pattern is defined as the pattern appears in the same time periodically. In last decades,

there exist many studies for finding periodic patterns. However, in these studies many definitions

of periodic pattern are proposed to apply in different situation which more conforms to real life.

For example, in early days, cyclic association rules mining was first proposed by BanuÖzden, et

al. in [18], and the following is partial periodic patterns defined by Jiawei Han, et al. in [7] [6]

to loose the constraints on whether every point in time contributes to the periodicity. For example,

Bob eats breakfast from 8:00 to 9:00 every day, but do other things which is not regular at other

times. Moreover in order to solve the problem that the periodic pattern may occurs asynchronous,

the asynchronous periodic pattern is designed by Jiong Yang, et al. in [24] [22]. Take the previous

example, Bob may eats breakfast from 9:00 to 10:00, which also contribute to the periodic pattern.

Frequent Continuities

The name continuity pattern was coined by Huang in [11] which used to substitute the name inter-

transaction association rule defined by Anthony K.H. Tung in [20]. The continuity pattern, also

called inter-transaction association rule, is defined as the pattern that considers the occurring order

of each itemset in the pattern. Hence, we can also refer this patter as a looser constraint of peri-

odic pattern which has limitation on contiguous and disjoint match. An algorithm, FITI [21], was

proposed to solve this problem efficiently. FITI [21] have three stages:

(1) Mining and Storing Frequent Intra-transaction Itemsets, (2) Database Transformation, and

(3) Mining Frequent Inter-transaction Itemsets. Nevertheless, it also takes to much time to find the

results, hence Huang in [11] designed PROWL algorithm to mine results efficiently. The central
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Figure 2.4: Data Convert Process

thought of PROWL is to use the memory for both the event sequence and the indices in the mining

process.

Huang also integrates prune hash table into PROWL algorithm to design the algorithm, Closed-

PROWL [12]. In ClosedPROWL [12], there are three phrases for discovering the results. The first

phase is to find all 1-size closed frequent itemsets, called C.F.E.. Then in the second phase, encode

these C.F.E and construct them into a encoded horizontal database. Fig 2.4 shows the each step from

converting the temporal database into encoded horizontal database.

In the third phase, refined PROWL [11] algorithm was utilized to find all closed frequent conti-

nuities. The mining process of refined PROWL is described as follows:

(1) First we find the 1-offset projected window list, denoted as PWL, of each encoded eventset

P, also called closed frequent continuity.

(2) Find all eventsets P which support surpass the minimum support, and record these eventsets

and their PWL into Prune Hash Table, denoted as PruneHT, through the hash function. Moreover,

using the pruning strategy to prune the redundant eventsets.

(3) For each eventsets X which are not removed after step 2, we connect it with P to generate

the new continuity,and then perform step (1), (2) and (3) recursively to produce the larger closed
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frequent continuities until the length of the patter is larger the maxwin or its support is smaller than

minimum support.

(4) Find all possible closed frequent continuities, then use the Closed Continuity Checking Table,

denoted as CCCT, to filter the duplicated closed frequent continuities.

Finally we give the comparison among these patterns. Fig 2.5 shows the table.����� �������	 
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Figure 2.5: Comparison Table
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2.2 Definition

In this section, we present essential preliminaries.

Definition 1 (Set Sequence Database) Let I = {i1, i2, . . . , im} be a set of elements. Let Si be a

subset ofI, where Si = (s1,s2, . . . ,sn) is a set of elements such that sk ∈ I for 1 ≤ k ≤ n and each

element in Si is distinct. Theset sequence database SDis defined as an order sets of Si , i.eSD=<

S1,S2, . . . ,Sn >.

Definition 2 (GCk-contain instance) Given two set sequenceSD =< S1,S2, . . . ,Sn >, and P=<

p1, p2, . . . , pm >, where n≫ m, we say that SD GCk-contains P at position k iff there exists an

integer1≤ k≤ n, such that p1 ⊆ Si0,where i0 = k, p2 ⊆ Si1, . . . ,pm ⊆ Sim−1 and ij − i j−1 ≤ GC+1

for 1≤ j ≤ m. The GC (abbreviated from gap constraint and denoted asγ) is a user-defined upper

bound number of gaps between two adjacent set of P in SD.

Example Consider SD =< {A,B,C,D},{A,C},{A,B,C},{A},{A,C,D,E},{A},{B,C,E,F},{B,D},

{A,C},{E} > and GC=1, we say that SD has two GC1-contain instances for pattern P1 =<

{D},{C} > i.e. m1 and m4 in Fig 2.6.
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Figure 2.6: Illustrative Example I

Definition 3 (Length and Size of a pattern) Given a pattern P=< p1, p2, . . . , pm >, then size of P is

defined as the number of sets in P, denoted as size(P). The lengthl of P is defined by thel = ∑m
i=1 |Pi|.

Example Given P=< {A,B},{C},{A},{C}>, size of P is 4, length of P is 5.

Definition 4 (kth Position GCk-Contain Set, abbreviated as KPCS) Given a SD=< S1,S2, . . . ,Sn >,

a pattern P=< p1, p2, . . . , pm >, where size(SD) ≥ size(P) and the GC, the kth Position GCk-

Contain Set consists of a starting position, k, and different ending positions which are the ending po-

sitions of distinct GCk-Contain instances for P in SD under GC is given. we use{k,(n1,n2, . . . ,n j)}
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to record all positions, where ni means the ending position for a pattern P for1≤ i ≤ j. We also use

< k,ni > to mean one instance of kth Position GCk-Contain Set, where k is a starting position and

ni is an ending position. i.e. Given a KPCS{1,(3,4,5,7)}, the instances of this KPCS are< 1,3 >,

< 1,4 >, < 1,5 > and< 1,7 >.

Example Given SD =< {A,B,C,D},{A,C},{A,B,C},{A},{A,C,D,E},{A},{B,C,E,F},{B,D},

{A,C},{E}> and GC=1, we say that P1=< {D},{C}> has two GC1-contain instances in SD, i.e.

m1 and m4 in Fig 2.6, where KPCS is{1,(2,3)}. Besides the P1 also has a GC5-contain instance,

i.e m2 and a GC8-contain instance, i.e m3.

Definition 5 (Repeating Pattern with Gap Constraint, abbreviated as RPGC) Given a set sequence

SD=< S1,S2, . . . ,Sn > and all distinct kth Position GCk-Contain Sets of a pattern P, the frequency

of a pattern P, denoted as freq(P,SD), is the maximum number of non-overlap instances of all distinct

kth Position GCk-Contain Sets of a pattern P. If P is called a RPGC, then f req(P,SD) ≥ δ , where

δ is a minimum support defined by user.

Example Consider SD =< {A,B,C,D},{A,C},{A,B,C},{A},{A,C,D,E},{A},{B,C,E,F},{B,D},

{A,C},{E}>, GC=1 and a pattern P1=< {A,C},{B},{A}> and P2=< {A,C},{B},{C}>. The

freq(P1,SD)=2 and freq(P2,SD)=1 ,shown in Fig 2.6. Hence, P1 is a RPGC, but P2 is not a RPGC.

Finally, we define the repeating pattern with gap constraint problem as follows,

Definition 6 (RPGC discovery problem) Given a set sequence SD and GC, find all RPGC P in SD,

where f req(P,SD)≥ δ .

In order to give a clear explanation for the correctness of our algorithms, we define the following

definitions.

Definition 7 (Counting Basis Set, abbreviated as CBS) Given all distinct kth Position GCk-Contain

Sets of pattern P in SD under GC= m, the counting basis set is defined as a set of instances,

i.e. {< k0,n0 >,< k1,n2 >,. . . ,< ke,ne >} obtained from KPCSs of different k and satisfied the

following condition :

1) For any pair of< ki ,ni > and< k j ,n j >, < ki ,ni > can not overlaps< k j ,n j > for i 6= j.

2) we select the instances,< k j ,n j >, from all distinct kth Position GCk-Contain Sets, where j

starts from 1 to e and nj −k j is the minimum value.1.

Example Given SD =< {A,B,C},{A,C},{A,B},{A,C},{A,C,D,E},{A,C},{B,C,E,F},{B,D},

{A,C},{E}>, GC=1 and a pattern P1=< {A,C},{A},{C}>, We say that CBS for pattern P1=<

{A,C},{A},{C}> are< 1,4 > and< 5,7 >, which means m1 and m8 in Fig 2.7.
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Figure 2.7: Illustrative Example II

Definition 8 (Unit Counting Set, abbreviated as UCS) Given all distinct k KPCS of a pattern P in

SD under GC= m and a starting position S and ending position E, denoted as UCSP(S,E). The

Unit Counting Set is defined as a set of instances obtained from the KPCS, where ending position of

each instance in UCS is equal to E, and starting position of each instance in UCS is large or equal

to S. We regard all sets in Unit Counting Set being 1 of frequency count for we only need to compute

the non overlap instance.

Example In Fig 2.7, Given SD, S=1 and E=4 and GC=1, then the UCSP(1,4) for pattern P=<

{A,C},{A},{C}> is < 1,4 > and< 2,4 >, which mean m1 and m3.

Definition 9 (Frequency Counting Set Group, abbreviated as FCSG) Given the CBS for a pattern

P under GC= m, we classified distinct kth Position GC-Contain Sets of P into a group of UCS

according to the CBS of a pattern P. FCSG contains these UCS, where each UCS6= /0 and the

freq(P,SD) is equal to the number of UCS in FCSG.

Example Consider SD=< {A,B,C},{A,C},{A,B},{A,C}, {A,C,D,E},{A,C},{B,C,E,F},{B,D},

{A,C}, {E} >, GC=1 and a pattern P1 =< {A,C},{A},{C} >. The CBS for P is (1,4) and (5,7),

which mean m1 and m8. The UCS according to the CBS of P is UCSP(1,4)
{(< 1,4 >,< 2,4 >} and

UCSP(5,7)
{< 5,7 >}. Because non of UCS is/0, the FCS contain these UCS and the freq(P,SD)=2.

Fig 2.7 shows the example.
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Chapter 3

The Proposed Algorithms

In this section, we propose a algorithm, G-Apriori, to find the RPGC. Besides, we also design an

index list which is incorporated into G-Apriori algorithm to generate a refined method, GwI-Apriori,

for efficiency.

3.1 G-Apriori Algorithm

According to anti-monotonic property, any length-(n-1) pattern of length-n RPGC must be RPGC.

Hence, G-Apriori algorithm employs the property to generate the candidatesCk from Lk−1 then

findsLk by scanning the set sequence and counting the support ofCk,whereCk is a set of length k

candidate for RPGC andLk is a set of length-k RPGC. Here, we also name a RPGC as a frequent

pattern. The process is as follows: 1) Scan the set sequence to find all length 1 frequent patterns

L1. 2) Generate all lengthk candidatesCk from length k-1 frequent patternsLk−1 by pattern-grow

method. 3) Scan the set sequence to count support ofCk and findLk from Ck which support is larger

than the minimum support. 4) Go to step 2) untilLk is empty. However, the method of generating

candidates for a RPGC is different from the method of generating candidates for association rule [3]

because each set in a RPGC has its order. Hence, we propose the pattern-grow method to generate

all possible candidatesCk from Lk−1. Based on anti-monotonic principle, we can know that for

every lengthl frequent pattern, all itsl-1 length patterns are frequent. The pattern-grow method is

designed as follows. Given two patternsp1 andp2 in Lk−1, then we delete the first element fromp1

to obtainp′1 and delete the last element fromp2 to obtainp′2. First, we need to checkp′1 andp′2. If

p′1 andp′2 are both /0, two possible length-2 patterns will be generated by two methods, appending

set ofp2 to set ofp1 and adding element in set ofp2 into set ofp1. Otherwise, bothp′1 andp′2 are

not /0, length k pattern will be generated by combiningp1 andp2, which means if the length of the

last set ofp1 equals to 1, we append the last set ofp2 to p1, otherwise we add the deleted element
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of p2 into the last set ofp1. The detailed steps of G-Apriori is described inAlgorithm 1.

Algorithm 1 G-Apriori Algorithm
Input: A set sequence SD, thresholdδ , Gap Constraintγ
Output: All large RPGC

1: L1 = {i|i ∈ I, f req(SD, i)≥ δ}
2: for k = 2;Lk−1 6= /0;k++ do
3: Ck =Candidate-Generate(Lk−1);
4: for all patten c inCk do
5: count = freq(c,SD,γ)
6: Lk = {c∈Ck| f req(c,SD,γ)≥ δ}
7: RSPSet=

⋃
k Lk

Algorithm 2 Candidate-Generate Algorithm
Input: Lk−1
Output:Ck

1: for each pair(csi ,csj ) wherecsi andcsj∈ Lk−1 do
2: cs′i = delete first element ofcsi

3: cs′j = delete last element ofcsj

4: if equal(cs′i , /0) and equal(cs′j , /0) then
5: csk1 = append the last set ofcsj to csi

6: csk2 = add the last element ofcsj to csi last set
7: if length(csk1)=i+1 then
8: addcsk1 to Ck

9: if length(csk2)=i+1 then
10: addcsk2 to Ck

11: else
12: if equal(cs′i ,cs′j ) then
13: if last element ofcs′i is the set of length 1 thenthen
14: csk = append the last set ofcsj to csi

15: else
16: csk = add the last element ofcsj to csi last set
17: if length(csk)=i+1 then
18: addck toCk

19: returnCk

We give an example to show the merging process forCandidateGeneratestep. LetL3 be{<
{A},{B,C}>,< {B,C},{D}>,< {D},{A},{B}>,< {B,C,F} >}. For patterns< {A},{B,C} >

and< {B,C},{D}>, after theCandidateGeneratestep,C4 will be {< {A},{B,C},{D}>,< {A},

{B,C,F} >} and{< {D},{A},{B,C}>}.

Example

Given a set sequencesd=< {B,C},{D},{A},{B,C},{E,G},{A,B,C},{C},{A,F},{A,C},{H}>,

shown in fig 3.2, where min-support=2 and GC=1.L1 is obtained by scanning the set sequence and

checking frequency for each item, and then we useL1 to generateC2, line 3 of Algorithm 1. After

frequency counting for each candidate inC2, line 5 in Algorithm 1, L2 is computed by removing
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those patterns inC2 which support is under the threshold. Whole process will terminate when no

large pattern is derived. In this example, sinceL6 is empty set, the process will stop. The frequent

patterns are inLi , whereI = {1,2,3,4}. Fig 3.1 shows the process for discovering allLk.

3.2 GwI-Apriori Algorithm

Since G-Apriori algorithm takes too much time to scan database for counting support of the patterns.

Hence, we propose GwI-Apriori (abbreviated from Gap with Index Apriori) algorithm to solve this

problem. The GwI-Apriori algorithm also bases on G-Apriori algorithm to generate the candidates,

but only scans database once and records the positions information ofL1, then uses the positions
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information for further counting the support of the patterns. Moreover, we devise an index list,

which consists aS P andE P list, to record a start and end positions where the pattern may appear

in the set sequence, i.e KPCS of the pattern in kth position. Here, we need to notice that for each

pattern, it has a set of index lists where every index list stands for KPCS of the pattern at distinct

S P position. Besides, we also design a pruning strategy to speed up the execution time.

As the G-Apriori algorithm, we scan the set sequence and construct the index lists to record the

positions whereL1 locate. However, We modifyCandidateGeneratedin G-Apriori algorithm to

derive theMergeCheckshown inAlgorithm 3 for generating the candidates. InMergeCheck, the

candidates and their corresponding extended type and extended pattern are return. After finding the

L1, C2 are generated fromL1 by calling theMergeCheck. ForC2, distinct strategies to construct in-

dex lists are adopted according to different extended types, sequence-extended (S-Step) and itemset-

extended (I-Step) [5]. For example, given a set sequence s=< {A},{B} >, then the S-Step for the s

is < {A},{B},{C}> and the I-Step for the s is< {A},{B,C}>. When a patternci in Lk can merge

c j in Lk underγ = n. According to the returned extend type and extend pattern, two different range

check are applied to construct the index lists for merged pattern. The steps for constructing the index

lists for merged pattern is stated as follows, we takes each value EV inE P list from each index list of

patternci to check which values inS P from all index lists of last element of patternc j are contained

in corresponding range, where range (EV,EV+n+1] is for S-Step but range [S P,S P] is for I-Step,

then we construct the index list whichS P equals toS P in current checked index list of patternci

and record the values which stratified the corresponding range into theE P list. This process will

continue until all index lists of patternCi are checked. However, the patterns which supports are less

than theδ are removed from theCk. To be mentioned that we count the frequency while constructing

the result index lists. For instance, consider the the followingL2, pattern< {A},{C}>, which index

lists are{1,(2,3,4)}, {3,(4,5)}, {4,(5)}, pattern< {C},{B}> which index lists of pattern< {B}>

are{2,(2)}, {3,(3)}, {5,(5)}, {6,(6)}, {10,(10)} and pattern< {C,D}> which index lists of pat-

tern< {D}> are{4,(4)}, {5,(5)}, {9,(9)}. C3 are< {A},{C},{B}> and< {A},{C,D}> where

the index list,{1,(2,3,5,6)}, for the pattern< {A},{C},{B}> underγ = 2 is generated by taking

each value inE P list of {1,(2,3,4)} to do S-Step range check in index lists of pattern< {B} >,

hence the times of comparison are 3*5. Besides{3,(5,6)} and{4,(6)} are also the index lists for the

pattern< {A},{C},{B} >. And the index lists for pattern< {A},{C,D} > are{1,(4)}, {3,(4,5)}
and{4,(5)} by applying the I-Step range check. The pattern mining process will terminate untilLk

is /0.

An example for RwI-Apriori Algorithm

Let us consider the example as shown in Fig 3.2, whereδ = 2 andγ = 1. We scan the sequence
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Algorithm 3 Merger Check
Input: Lk−1
Output: All merged patternCk and corresponding extended typeCk.T and extended patternCk.L E

1: for each pair(csi ,csj ) wherecsi andcsj∈ Lk−1 do
2: cs′i = delete first element ofcsi

3: cs′j = delete last element ofcsj

4: if equal(cs′i , /0) and equal(cs′j , /0) then
5: csk1 = append the last set ofcsj to csi

6: csk2 = add the last element ofcsj to csi last set
7: if length(csk1)=i+1 then
8: add 1 toCk.T
9: addcsk1 to Ck

10: if length(csk2)=i+1 then
11: add 0 toCk.T
12: addcsk2 to Ck

13: add last element ofc j toCk.L E
14: else
15: if equal(cs′i ,cs′j ) then
16: if last element ofcs′i is the set of length 1 thenthen
17: add 1 toCk.T
18: csk = append the last set ofcsj to csi

19: else
20: add 0 toCk.T
21: csk = add the last element ofcsj to csi last set
22: if length(csk)=i+1 then
23: addck toCk

24: add last element ofc j toCk.L E
25: returnCk, Ck.T andCk.L E
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data and construct the index lists forL1, shown in Fig 3.3 (a), where the pattern{A} occurs at posi-

tions of 3, 6, 8, 9 in set sequence sd.C2 are generated byL1, where one of pattern< {B,C},{A} >

is generated by combining pattern pattern< {B,C} > and< {C},{A} >. The index lists for pat-

tern < {B,C},{A} > are generated by taking each index lists of pattern< {B,C} >, which are

{1,(1)} {4,(4)} and{6,(6)}, to do range check in index lists of pattern< {A}>, which are{3,(3)},

{6,(6)}, {8,(8)}, {9,(9)}. Fig 3.3 shows the index lists forL1, L2, L3 andL4, respectively, where

theS P underlined means that it is contributed to the frequency counting.
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Figure 3.3: The example for GwI-Apriori Algorithm

3.2.1 Pruning Strategies

Because times of comparisons between index lists take much time, in order to resolve this problem,

we design the pruning strategies, based on order of index lists for a pattern, to speed up the mining

process. The pruning strategies is stated as follows.

(1)Range pruning: The general concept is that for a pattern P1, whichS P=ps1 andE P=pe1,

if we want to extend a pattern P2 of size 1 underγ=n, then based on distinct extended type, the the

position of pattern P2 must locate at the range (pe1,pe+n+1] or [pe1,pe1]. For detailed description,

if IL.E P[i] + γ + 1 < PL[ j], then we check ifIL.E P[i + 1] + γ + 1 < PL[ j], if TRUE then check
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IL.E P[i + 2], if FALSEthen scan the PL from position j. The reason is thatTrue means we have

scanned the previousE P and put result positions into the result index list.

(2)Last value pruning: The general concept is that for a pattern P1, whichS P=ps1 and

E P=pe1, if we want to extended a pattern P2 of size 1 underγ=n, then the position of pattern

P2 must larger than pe1. For detailed description, if thePL[i].E P[0]≥ the last value in PL then stop

comparison. The reason is thatPL[i].E P[0] ≥ last value in PL means theS P of following index

lists must≥ last value in PL, so we do not need to scan the following index lists.

Algorithm 4 shows the pruning strategies which is integrated into frequency counting process,

wherenext rangeis used to range contained pruning andcur L elementis used to last value pruning.

Besides Fig 3.4 shows the flow chart for the pruning strategies.
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Figure 3.4: Flow Chart for Pruning Strategies
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Algorithm 4 f req count
Input: extended typeT, index lists of patternci (Ind list), position list of patternc j (Pos list), thresh-
old δ , Gap Constraintγ
Output: result index lists and count

1: initialize next range, count,cur L element, ptr L E, L E C=0
{type=0 means S-Step, type=1 means I-Step}

2: for each index list of patternci do
3: if cur L element≤ Ind list.E P[0] then
4: break
5: i=0
6: j=ptr L E
7: for eachE P of currentInd list pair;i++ do
8: L E List = NULL
9: if T=0 then

10: range =Ind list.E P[i]+GC+1
11: if range≥ next rangethen
12: for each index position ,Pos list, of patternc j ;j++ do
13: if c j .Pos list[ j]≤ range&c j .Pos list[ j] > Ind list.E P[i] then
14: if Ind list.E P[i] > L E C & Ind list.S P > L E C then
15: count++;
16: L E C = c j .Pos list[ j]
17: ptr L E=j
18: Add c j .Pos list[ j] to L E List.E P
19: if c j .Pos list[ j +1] = NULL then
20: cur L element= c j .Pos list[ j]
21: else ifc j .Pos list[ j] > rangethen
22: next range= c j .Pos list[ j]
23: break
24: else ifT=1 then
25: j = ptr L E
26: for each index position ,Pos list, of patternc j ;j++ do
27: if c j .Pos list[ j] = Ind list.E P[i] then
28: if Ind list.E P[i] > L E C & Ind list.S P > L E C then
29: count++;
30: L E C = c j .Pos list[ j]
31: ptr L E=j
32: Add c j .Pos list[ j] to L E List.E P
33: if c j .Pos list[ j +1] = NULL then
34: cur L element= c j .Pos list[ j]
35: else if Ind list.E P[i] ¡ c j .Pos list[ j] then
36: break
37: else ifc j .Pos list[ j +1] = NULL & Ind list.E P[i] 6= c j .Pos list[ j] then
38: cur L element= c j .Pos list[ j]
39: break
40: L E List.S P=Ind list.S P
41: Add L E List to R Ind list
42: return[R Ind list,count]
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An example for pruning strategies

Fig 3.5 shows the example of pruning process for S-Step, whereγ = 4. We start in the first index

list of pattern< {A},{B} >, and scan the index list of pattern< {C} >. First, we start to scan the

first value ofE P list, and sequentially to scan the values in the position list of pattern< {C} >.

When we find the position value which is first satisfied the range contained condition, we record

the position value to be following used, then we start to find next value inEP list. This process

terminates until the position value that is not satisfied the range condition, then we add the position

value, which is satisfied the range condition, into temporaryE P list. Because the position value, 10,

is the last value in index list of pattern< {C}>, we need to record this position value for future 2nd

pruning strategy used. Then we check next value, 3, inE P list and base on 1st pruning strategy to

do pruning process. In this example,γ +1 to 3, denoted 8, is not larger than 10, so we start the next

value inE P list. We end this process until all values inE P list of this index list are all been check.

We recordS P and corresponding satisfied position values forE P list to the result index list, Fig 3.5

(d) shows the result. We start to check next index list. Similarly, we compare the first value inE P

list of this index list to 10, last value in index list for pattern< {C}>. According to the 2nd pruning

strategy, because 3 is smaller than 10, we start the same process that we have explained previous,

here we must pay attention that when we start to check next index list of pattern< {A},{B} >, the

first checked value in index lists of pattern< {C} > is started in the value which is the lastE P

value contributed to the last frequency count. Fig Fig 3.6 (a) shows the lastE P value equals to 3.

However, when we check the index list, whichS P is equal to 10, we check the first value inEP list

of this index list, if the position value is larger than the last value in index list of pattern< {C} >,

then we start to check next index list of pattern< {A},{B} >. In Fig 3.6 (d), the first value inEP

list of this index list, 11, is smaller than 10. Hence based on 2nd pruning strategy, we do not need to

check the following index lists.
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Figure 3.5: The example for Pruning Technique Part I
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Figure 3.6: The example for Pruning Technique Part II
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Chapter 4

Correctness

We also prove the correctness of the G-Apriori algorithm in the following.

Lemma 1: For each patternPi in L2, the each 1 size pattern ofPi is in L1.

Theorem 1: For each patternPi in Lk under GC=m, the k-1 size pattern ofPi is also inLk−1 under

GC=m.

Proof: GivenPi =< p1, p2, . . . , pn >, wherep j ⊆ I f or1≤ j ≤ n and frequency counting sets under

GC=m for Pi. While we delete the first element forPi to obtainP D F =< p d f1, p2, . . . , pn >,

we can know FCSG(P)⊆ FCSG(P D F). We delete the last element forPi to obtainP D L =<

p1, p2, . . . , p d l1 >, FCS(Pi) ⊆ FCSG(P D L). We can clear know that for each patternPi in Lk, the

k-1 size pattern ofPi is in Lk−1.

Lemma 2: Based on the conditions for finding the CBS among the KPCS for pattern P in SD

underGC= m, the number of instances in CBS is the maximum non overlap instances.

Proof: In here, we need to prove two ideas: 1) Greedy choice property and 2) Optimal substructure

property.

(1) Let S= {< k0,n0 >,< k1,n1 >,. . . ,< ki ,ni >} be a set of instances obtained from the KPCS

of P. The instances in S are first sorted by ending positions, after the first stage we have made, if

the ending positions of the instances are the same then we need to sort these instances by starting

positions progressively. It implies that instances< k0,n0 > has the earliest starting position and

ending position. Suppose, AS is a subset of S and is an optimal solution then let instances in AS

are first ordered by ending positions then ordered by starting position. Suppose, the first instance

in AS is < k j ,n j >. If < k j ,n j >=< k0,n0 >, then AS begins with greedy choice and we are

done. If < k j ,n j >6=< k0,n0 >, we want to show that there is another solution BS that begins

with greedy choice, instance< k0,n0 >. Let BS= AS− {< k j ,n j >}U{< k0,n0 >}. Because

< k0,n0 >≤< k j ,n j >, the instances in BS are disjoint and since BS has same number of instances

as AS, i.e.,|AS|= |BS|, BS is also optimal.
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(2) Now we prove optimal substructure. If AS is an optimal solution to S, theAS
′
= S−{< k0,n0 >}

is an optimal solution forS
′
= {< kp,np >∈ S|kp ≥ n0}. Therefore, after each greedy choice we are

left with an optimization problem of the same from as the original. Induction on the number of

choices, the greedy strategy produces an optimal solution.

Theorem 2: The GwI-Apriori algorithm can find maximum frequency for a pattern.

Proof: The frequency counting strategy of GwI-Apriori algorithm for a pattern P based on greedy

choice. According the Theorem 2, we can assure that the GwI-Apriori algorithm can find the max-

imum number of non overlap instances for a pattern, which means the maximum frequency for a

pattern.
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Chapter 5

Experiment

In this section, we present the experiment results of both G-Apriori and GwI-Apriori algorithms. All

programs were implemented in Microsoft Visual C++ 6.0. All experiments are performed on Intel

Pentium4 CPU 3.20GHz with 1 Gigabytes main memory, running on Linux. For our experimental

evaluation we used real data.

We perform our algorithms on real world data, stock data, to get the useful pattern in a set se-

quence. Stock data are collected form eight companies from Tawian Stock Exchange Daily Official

list from January 1, 1995 to December 31, 2007 using Perl and the number of trading days are

3388. We discretize the stock price go-up/go-down into five categories: (1) Up-High(UH):≤ 3.5%,

Up-Low(UL): < 3.5% and> 0%, Unbiased(UN): 0%, Down-Low(DL):> -3.5% and< 0%, Down-

High(DH):≤ -3.5%. Hence, we have 40 different elements. The average size of the transactions are

8. Table 5.1 shows the companies.

Stock Number Company Name
2330 TSMC1

2308 AELTA 2

2317 Foxconn3

2324 Compal4

2311 ASE 5

2321 TECOM6

2312 Kinpo7

2313 Compeq8

Table 5.1: Stock number and name for companies

1http://www.tsmc.com/chinese/default.htm
2http://www.delta.com.tw/ch/index.asp
3http://www.foxconn.com.tw/
4http://www.compal.com/indexEn.htm
5http://www.asetwn.com.tw/
6http://www1.tecom.com.tw/
7http://www.kinpo.com.tw/ChineseT/index.htm
8http://www.compeq.com.tw/home.htm
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Figure 5.1: Gap constraint versus Execution time
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Figure 5.2: Minimum support versus Execution time
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The execution time of both algorithms with varying GC are shown in Fig 5.1. From these figures,

we can clearly know that when we increase the value of GC, although GwI-Apriori algorithm run

faster than the G-Apriori algorithm, the time difference between execution time of them is getting

much nearly. The reason is that we may record more index lists needed to compare.

Fig 5.2 shows the execution time of both algorithms with varying minimum support. When the

minimum support increase from 15% to 20%, the execution time of both algorithms decrease for

the average pattern length being shorter. However, the GwI-Apriori algorithm still performs much

better than the G-Apriori as the minimum support increasing.
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Figure 5.3: Summary Illustration

Fig 5.3 (a) and (c) show the number of frequent patterns for different GC versus minimum

support. Besides, in order to clearly show how GwI-Apriori algorithm run faster than G-Apriori

algorithm, we define a formula ((Execution time of G-Apriori)−(Execution time of GwI-Apriori)
(Execution time of G-Apriori) )

and apply this formula to compute the rate of difference of execution time between G-Apriori and

GwI-Apriori. Fig 5.3 (b) and (d) show the rate.
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Chapter 6

Conclusion

In this paper, we propose a new problem, mining repeating patterns with gap constraint from the set

sequence. Besides, we also propose a algorithms, G-Apriori, to mine the repeating pattern with gap

constraint. The refined algorithm, GwI-Apriori, is proposed to prevent set sequence from scanning

many times to obtain frequent patterns. In GwI-Apriori method, a new data structure is designed

to record the appearing start and end positions of a pattern, hence we only need to scan the set

sequence once that can save a lot of time to scan database while finding the longer patterns. Besides,

the pruning strategies also designed to reduce the comparing times among the index lists. The

experimental results show that GwI-Apriori outperforms G-Apriori algorithm. In addition, we can

obtain potential repeating patterns while adopting gap constraint.
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