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摘要 

 

 同儕系統由於可以提供使用者相互合作及資源共享的環境，在近幾年來得到廣泛的

使用。而在同儕架構上一個重要的議題便是如何達到公平性，使得所有網路的參與者均

可公平的貢獻或獲得資源。關於這問題，在分散式檔案共享的應用上有廣泛的討論。但

公平性的問題並不只侷限在這種形式的資源共享，也應包括動態資源像是空閒機器等。

在這篇文章中我們提出一個比一般平衡負載方法更嚴謹的公平計算方式，更符合動態資

源共享的公平性。具體來說，此方法將整個同儕網路視為一個仲裁資源需求及供給的虛

擬佇列，而以個別要求被插隊的次數來做為公平性的基準。我們利用模擬來比較不同資

源排程方法的公平性，並提出一個樹狀方式的演算法作為改進。實驗結果顯示我們的方

法有不錯的反應時間，並同時能達到較佳的公平性。 

關鍵字：同儕網路、自主運算、公平性、資源排程 
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Abstract 

 

 The last few years saw the growing popularity of peer-to-peer (P2P) systems that enable 

collaborative, decentralized sharing of files or other types of resources such as machine cycles, 

communication bandwidth, storage space, and so on. One important issue of P2P architecture 

is to ensure fairness – whether all participants can contribute and/or receive their fair shares of 

resources. While there have been extensive studies on the problem of distributing data in a 

fair and fully decentralized manner, it remains an open question whether fairness can also be 

achieved for other types of resources, especially when resource requestors and providers 

behave highly dynamically and irregularly. In this thesis we propose a more stringent fairness 

measure than the usual load balancing indicators found in literature. Specifically, the entire 

P2P network is modeled as a virtual queue where requests for resource consumption and 

contribution arrive indefinitely. Fairness is judged by the degree of preemption, i.e. the 

number of times a given request is cut in line by other late-arriving requests. In such a model, 

existing approaches to load balancing fail to achieve fairness satisfactorily if consumption 

requests are scheduled based on local information. To address this problem, we first 

investigate the impact of the proposed fairness model on common P2P networks via 
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simulation, and then propose an alternate scheduling algorithm that routes consumption 

requests along spanning trees to awaiting providers. The results show reasonable performance 

in terms of average response time and locality when compared to other decentralized 

load-balancing algorithms, while keeping the fairness measure low when compared to 

scheduling via centralized queue. 

 

Keywords: peer-to-peer network, autonomic computing, fairness, resource scheduling 
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Chapter 1  Introduction 

 

The last few years saw the growing use of peer-to-peer (P2P) software among end users. 

One widely recognized application area of P2P-based technology is to enable sharing of files 

or other types of resources such as machine cycles, communication bandwidth, storage space, 

and so on. One important issue of P2P architecture is the notion of fairness – whether 

participants joining a P2P network can contribute and/or receive their fair shares of services, 

respectively, especially when resource allocation decisions are made in a distributed, 

decentralized manner. Fairness manifests itself in many forms in P2P networks depending 

heavily on the types of resource being shared, as well as the expected behavior of the resource 

requestors and providers. Free riding, for example, concerns those selfish or malicious 

participants who appear to conform to the specified protocol, and approaches to dealing with 

the problem via various reputation earning or other incentive mechanisms have been proposed. 

However, even when all the participants are well-behaved, other kinds of fairness issues still 

remain. The power law phenomena widely recognized for P2P networks are an immediate 

example, which states that P2P networks evolve into structure in which relative few 

participants will host most of the files or other resources than the rest. 

In this thesis we investigate the fairness issue when sharing generic, homogeneous 

resources such as machine cycles in a P2P network. This topic is closely related to the 

resource scheduling problem studied extensively in cluster or grid computing communities. 

However, most resource scheduling approaches in this context assume steady supply of 

resource providers, and their emphases are mainly on improving request fulfillment from the 

perspective of resource requestors. Such a biased view can easily lead to unfairness for 

resource providers, especially when scheduling decisions are based only on information local 

to some schedulers – a common design shared by many P2P networks. Moreover, there may 
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be application areas where the demand for fairness is so paramount that it trumps the other 

performance indexes, such that the provider who provides the resource “first” should receive 

the next available request, even though doing so may incur additional overhead when the 

request is issued by a remote requestor across the P2P network. 

The scenario described above leads to a first-come-first-serve (FCFS) requirement for 

the scheduling of resources across P2P networks. Accordingly, we propose a fairness measure 

based on such FCFS requirement, which is considerably more stringent than the usual load 

balancing measure commonly addressed in literature. Specifically, the entire P2P network is 

modeled as a virtual queue where requests for resource consumption and contribution arrive 

indefinitely, possibly in highly skewed patterns. To simplify terminology, in what follows we 

refer requests to the consumption requests issued by resource requestors, while resources to 

contribution requests from resource providers. In other words, the latter correspond to 

“vaporous” resources that are created by providers and are used at most once. Fairness is 

judged by the degree of preemption, i.e. the number of times a given request (resource) is 

queue-jumped by other late-arriving requests (resources) that are fulfilled sooner. In such a 

model, existing approaches to load balancing fail to achieve fairness satisfactorily, for 

example, if resources are scheduled based largely on information local to the scheduler. 

To address this problem, we investigate the impact of the proposed fairness model on 

common P2P networks via simulation, and propose a class of scheduling algorithms that 

routes requests along a spanning tree to awaiting providers. The results show reasonable 

performance in terms of average response time and locality when compared to other 

decentralized load-balancing schedulers, while keeping the fairness measure low when 

compared to scheduling via centralized servers. This thesis is meant as a first step towards the 

development of P2P networks with improved FCFS fairness measure. Although for the time 

being the application areas may be limited, we believe there could be important applications 
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in near future, especially because the continuously growing popularity of resource sharing and 

collaboration P2P networks can help drive the demand for true fairness that holds even for 

highly irregular access patterns. 

The rest of this paper is organized as below. In Chapter 2 we survey research areas that 

are related to P2P systems from general autonomous systems studies to specific P2P 

scheduling and fairness mechanisms. In Chapter 3 we define the resource scheduling problem 

to be addressed in this thesis and the corresponding fairness model based on virtual queues. In 

Chapter 4, further assumption about scheduling resources based on FCFS fairness is discussed 

and several classes of scheduling algorithms are described, including some decentralized 

scheduling algorithms we propose based on spanning trees. In Chapter 5 we perform various 

experiments via simulation in order to grasp the effect of various centralized and 

decentralized scheduling approaches when the FCFS fairness index is concerned. In Chapter 6 

we evaluate the scheduling approaches investigated previous and discuss some future 

directions, and then conclude the thesis in Chapter 7. 

  



 

4 

Chapter 2  Background and Related Work 

 

 P2P networks [25] are now an important part of the emergent research discipline, 

called autonomic computing [3] [5] [13] [17] [20], that focus on the design and development 

of large-scale systems that are self-managing, self-organization, self-healing, and 

self-protecting, with less to none human intervention. Although P2P technology is commonly 

seen in file-sharing applications, today P2P networks have evolved into many application 

areas such as telephony, media streaming, etc., with drastically different internal structures.  

Some early P2P systems such as Napster adopt a client-server model, where the central 

server often serves as a registry through which clients can locate other clients, or the resources 

behind them. In contrast, pure P2P networks strive for scalability, fault tolerance, and 

decentralized control, and try to remove any form of central servers to avoid single point of 

failure. Early pure P2P systems are unstructured in that the network overlay evolves gradually 

when peers enter or leave. Gnutella, one of the earliest P2P file sharing networks, updates its 

overlay topology locally without global coordination, and requests for files are flooded along 

the overlay for a certain diameter; peers with matching files will response to the requests. In 

Freenet [4], in contrast, receiving a new peer may involve collaboration among multiple peers 

to decide the responsibility of the new-coming peer. File requests traverse, rather than flood, 

the overlay topology according to some traversal order based on the file key as well as the 

historical record kept in the visiting peer (summarized in each peer’s “routing table”). 

Accordingly, the overlay topology evolves as requests pass by, and the performance of search 

improves overtime, exhibiting an impressive self-optimizing and self-learning system.  

Gnutella and Freenet are often classified as a type of unstructured P2P network, where 

the network overlay does not evolve in a predetermined way but driven by peer dynamism. In 
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contrast, a structured P2P network employs a globally consistent protocol to ensure that any 

node can efficiently route a search to some peer that has the desired resource, even if the 

resource is extremely rare. 

Chord [30] is a well-known system that located peers and storage data in distributed 

manner. It uses a consistent hashing function to compute the peer responsible for storing the 

key’s value. Each peer maintains O(log N) routing information of other peers and solves 

lookups by O(log N) messages to other peers, N being the number of peers. Other structured 

P2P networks such as Pastry [29] and CAN [27] have similar idea but with different 

approaches to building the underlying network overlays. 

Beyond file sharing, P2P technology has also been used for resource scheduling in 

distributed computing environments. In this direction, P2P networks are closely related to grid 

computing. A grid computing environment attempts to bring together disparate machine 

resources scattered around the network behind a small set of standardized protocols and 

programming interfaces (e.g. [23]), so as to provide infrastructure on top of which multiple 

virtual organizations can be formed. To help grid applications make better use of the 

underlying resources, it is important that there is sufficient support for resource scheduling. 

The open-source Globus toolkit [10] is one widely used toolkit to help building large-scale 

grid environments, in which there have been established modules for resource allocation and 

scheduling. There are other grid-related projects or systems that support more elaborated 

resource scheduling systems. 

As mentioned previously, fairness is a crucial issue especially for P2P networks to 

operate and evolve soundly, and fairness manifests itself in many forms that are not easy to 

handle simultaneously. Different application areas have different set of requirements and 

considerations when fairness is concerned. Also, the same fairness mechanism that works in 

one domain may fail miserably in another domain. 



 

6 

Load balancing is probably the most basic and common criterion when fairness is 

concerned. Numerous researches concern this about the distribution of items and peers. 

Although there are still different interpretations about what load balance means in P2P 

network, they can all be characterized as measuring "how equally" the objects are allocated to 

the peers, and can best be illustrated by Jain’s fairness index [15]. The formula can be 

expressed as 

  

where xi represents the percentage of the resources assigned to peer i, and the measure ranges 

from 1/n (worst case) to 1 (best case). This fairness index and its variations have been used by 

many researchers to measure fair resource allocation for communication networks (e.g. 

congestion control). 

For P2P networks, as an example, many structured approaches based on DHTs attempt 

to achieve even distribution of items (or other load measures) to nodes in the DHT. In general, 

load balance is done by first randomizing the DHT address associated with each item with a 

“good enough” hash function, and then making each DHT node responsible for a balanced 

portion of the DHT address space. The assumption that item keys can be randomized 

uniformly allows DHT-based P2P networks to evenly distribute items among peers. 

The randomization step, although simple and effective, restricts the kinds of queries. 

Obviously, due to the randomization effect, content-based (e.g. keywords) or range-based 

queries become difficult to implement.  In [16], in addition to the usual DHT model where 

item keys can be randomized, another solution is also proposed that can tackle the case where 

the item distribution can be arbitrary. 

Another issue that is faced by key randomization is proximity awareness. [33] proposes a 

proximity-aware load balancing algorithm for DHT-Based P2P systems. In the approach, 
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landmark clustering is used to generate proximity information. It is based on an intuition that 

nodes physically close to each other are likely to have similar distances to a few selected 

nodes. The proximity information is computed in a decentralized manner, and is used to guide 

virtual server reassignments such that virtual servers are reassigned and transferred between 

physically close heavily loaded nodes and lightly loaded nodes.  

The abovementioned load balancing approaches are for structured (DHT-based) P2P 

networks, [8] concerns unstructured (Gnutella-like) P2P networks and proposes a 

load-balancing resource allocation scheme to distribute data in a decentralized manner. The 

idea is simple: a peer estimates its own fairness index as well as its neighbors’. When the peer 

finds itself has higher load then (the average of) its neighbors, it will try to replicate some of 

its (popular) items to its immediate neighbors hoping to shed some burden. To reduce 

overhead, their algorithm piggy-backs load measurement information in normal messages.  

Free-riding is another problem commonly faced by P2P networks where peers consume 

resources solely without contributing anything to the network. For the purpose of fair resource 

sharing, [12] presents a reputation based trust management system called TruthRep. It 

concerns the honest feedback of peers and uses a feedback generation formula to calculate the 

reputation value. By adjusting the reputation value from time to time, each peer can have a 

fair reputation value with fewest errors. [21] discusses how to avoid cheating and free riders 

under storage sharing P2P networks. It uses an auditing mechanism to require each peer 

monitors others and check that whether they are cheating or not. Using a proposed accounting 

mechanism, each peer gets credits by providing storages and consumes it by using bandwidth. 

Fair resource scheduling in P2P networks is a relatively new topic compared with the fairness 

mechanisms mentioned above, but it has been studied extensively in networking research 

community. [9] addresses the problem of scheduling divisible requests that can be distributed 

partially among providers. The resource model here is more general as there are many types 
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of services and resources, and each service corresponds to an allocation of a set of resources. 

Accordingly, the problem is translated into the rate control problem in IP networks, and the 

authors adapt an existing congestion pricing approach to ensure some form of fairness. 

Specifically, the P2P network is an unstructured network of peers with heterogeneous 

capacities and neighboring peers are associated with a rate. A request comes with a price offer 

and a distributed algorithm is proposed that computes the rates such that resources are 

allocated based on these prices. It is shown that with this approach a peer gets a fair share of 

the resources available in the P2P network weighted by its contribution to the network. 

  



 

9 

Chapter 3  FCFS Fairness for P2P Networks 

 

The fairness models described in the previous chapter do not cover the landscape of P2P 

networks for resource sharing and scheduling entirely. Many fairness measures are asymptotic 

in nature. For example, consider a DHT-based file sharing system that distributes files among 

peers evenly through file key randomization. The load balancing index (e.g. Jain’s fairness 

index) is measured over a long period of time. However, the measure assumes that new files 

enter the P2P network continuously. Before the number of files stored in the network grows to 

a certain point, load balance cannot be achieved with certainty. In addition, assume that files 

are large in quantity and have been evenly distributed among peers, there are still uneven 

distribution about the file request patterns – some files may receive significantly more 

interests than the others, and the peers hosting these popular files will see much more network 

traffic then the others. This scenario points out at least one important aspect of fairness: not 

only does it depend heavily on the types of resources being shared, but also depend 

subjectively from different point of views. In the example above, the network is fair in terms 

of file storage (more precisely, file counts), but unfair in terms of network traffic. 

For the sake of comparison, consider another important class of systems that share files 

over unstructured P2P networks. For example, Gnutella in its original form allows a user, 

through a representing peer, to issue (keyword-based) queries. Gnutella floods the queries 

over the P2P overlay with bounding distance, and peers what store files matching queries will 

reply the query with results. Because Gnutella peers (servents) mainly share their own files to 

the rest of the network and do not have to “cache” files they are not interested, applying the 

same load-balancing measure as the case for DHT-based systems is less relevant. Instead, it is 

more relevant if the fairness index is used to measure the overhead of replying requests (when 

the peer has matching files) plus forwarding requests (flooding). On the other hand, Freenet – 
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another well-known file sharing system over unstructured P2P networks – randomizes the 

keys of files in a way similar to DHT-based methods, and the user is supposed to know the 

hashed keys when forming queries (with the help of other auxiliary tools external to the core 

of Freenet overlay). Freenet then attempts to re-organize the overlay structure adaptively to 

increase query response time and hit rates. In this case, the load-balancing measures for both 

file storage and messaging overhead seem relevant. 

In this thesis, we focus on sharing generic, vaporous resources that can be consumed 

once only, which is quite different from sharing of files discussed above. For simplicity, we 

assume there is only one type of resources; hence the requests are also of the same type. All 

resource providers, each serving as a peer in the P2P network, provide the same type of 

resources, and requests for resources can be issued by any peer. The goal of such a resource 

sharing P2P system is, for each resource request, to locate a resource, preferably from among 

peers close to the requesting peer, to fulfill the request.  

The kind of resources described above is quite common, such as machine cycles or file 

storage. However, some adjustment, at least conceptually, is needed. Although both machine 

cycles and storage space are generic, they are not considered vaporous in literature in general. 

In our model, when machine cycles are the resources to be shared, a peer providing a resource 

means the peer is available for processing a request, and the availability may be advertized by 

the peer to some registry. In other words, each peer provides at most one resource at a time, 

and which the resource is matched by a request, the peer enters into a “computing” mode and 

cannot accept next request until the request is processed completely (or equivalently, the peer 

no longer provides the resource during request processing). Furthermore, upon completion, 

the peer needs to advertize again about its availability. Therefore, our resource model still 

differs slightly from the resource model assumed by the general resource scheduling problem 

studied in grid or cluster computing. Similarly, storage space as a generic, vaporous resource 
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in our model can be interpreted. The main point is that the allocated storage space is treated 

like a temporary working space since after the allocated space serves its job fulfilling a 

request, it cannot serve as a persistent entry in the P2P network for subsequent access (or the 

cost of accessing it subsequently should be assumed ignorable), otherwise the model falls 

back to file sharing. Note that the assumption of single-type requests does not prevent 

requests from representing different kinds of jobs, as long as all resources can perform all the 

jobs. Hence, for example, our model can describe “cycle-stealing” P2P systems such as 

SETI@Home directly. With additional modification, our model can also be used to deal with 

more general resource scheduling problems that are addressed, for example, in cluster or grid 

computing research. 

With the resource sharing model described above, what are the potential issues when 

fairness is concerned?  As mentioned, this topic is closely related to the resource scheduling 

problem studied extensively in cluster or grid computing communities. However, most 

resource scheduling approaches in this context assume steady supply of resources from 

providers, and different approaches emphasize mainly on improving request fulfillment 

performance from the perspective of resource (or job) requestors. Such a biased view can 

easily lead to unfairness for resource providers if resource assignment is based on expected 

turn-around time or locality. For example, consider a situation in which a series of requests 

come steadily and moderately from a particular requestor in a P2P network for a period of 

time, while other requestors in the network remain (relatively) silent. Assuming that all 

resource providers are of similar processing power, it is likely that decentralized schedulers 

that make decisions based on gradually accumulated status about other peers will select the 

providers in the vicinity of that requestor to process the requests. If such a pattern of requests 

persist, providers at a distance from the focal requestor will be driven into starvation. This 

situation poses no problems for clusters and grids not only because most existing systems are 
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based on centralized control, but also because the goal is to minimize job processing time 

from the requester’s perspective. In P2P settings, whether this result is considered unfair or 

not depends on the application. In case, for example, processing each request implies earning 

some credits for the providers; then naturally resource providers would contend for requests, 

and it is unprecedented that the scheduler should be fair all the time irrespective to any pattern 

of requests that may occur. Moreover, there may be application areas where the demand for 

fairness may override all other performance metrics, such that the provider who provides the 

resource “first” should receive the next available request, even though doing so may incur 

additional overhead when the request is issued by a remote requestor across the P2P network, 

leading to a FCFS requirement effectively. 

We are interested in such FCFS-oriented fairness measures for P2P networks. 

Accordingly, our resource sharing model can be viewed as a virtual producer-consumer 

problem as depicted in Figure 3.1 below, which in some sense is a reverse of the ordinary 

resource scheduling problem where what arrive are jobs that demands resources, and the 

scheduler (the middle man) dispatches jobs to available resources actively based on some 

scheduling policies. In contrast, in our model the scheduler, that is, a virtual 

producer-consumer queue played by the P2P overlay, serves largely as a passive registry, and 

queued resources are only consumed when requested. 
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Naturally, the FCFS fairness is achieved by ensuring that the P2P overlay collectively 

implements a central FCFS queue with the obvious property, that is, earlier arriving requests 

or resources expect to be fulfilled or consumed than those arrive later. However, unlike 

scheduling jobs in operating systems or clusters, the events of job arrivals as well as status 

changes of resource availability cannot take effect immediately and it takes time to propagate 

the knowledge throughout the P2P network. Accordingly, there is no straightforward means to 

evaluate which comes first when two events from two distant peers are generated roughly “at 

the same time.”  

To address this problem without going into the trouble of deriving a logical causality 

framework (e.g. [28]), in this thesis we simply assume the existence of a global timer solely 

for the measurement of FCFS fairness, although the global timer is not visible to the actual 

P2P system. Using this “non-existent” global timer, all events have their corresponding 

timestamps, and the time when a resource (request) enters the virtual queue is determined the 

moment the provider (requestor) expresses its intent, often by initiating some 

protocol-specific messages. With this model, it becomes straightforward to measure FCFS 

Figure 3.1. FCFS fairness modeled via a virtual producer-consumer queue 
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fairness: for a given resource (request) entering the queue, how many resources (requests) 

queue-jump it (i.e. cut in the line) subsequently. 

FCFS Fairness Index (FFI): for each request (resource) entering the virtual 

queue, the average numbers of requests (resources) that queue-jump it. 

To illustrate the idea of FFI further, consider Figure 3.2 in which there are three resource 

providers A, B, and C who enter the virtual queue successively (in the order A-B-C). Because 

B enters the queue after A, yet gets fulfilled earlier than A, it therefore queue-jumps A. On the 

other hand, C is served last and does not queue-jump others. Accordingly, the FFI is 1 for A, 

and the average FFI for the whole system is 1/3. 

 

Note that FFI measures requests and resources separately. Indeed, in this thesis we focus 

on minimizing FFI for resources only. Minimizing FFI for both resources and requests 

simultaneously and efficiently is considered future work. Also note that different variations of 

FFI measures are possible, especially if we measure the maximum number of queue-jumping 

experienced by the resources or requests rather than the average. The benefit of this variation 

is that it measures the “worst-case” scenario rather than averages. Nevertheless, our 

serve 
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enter

enter
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Figure 3.2: A cut in line example 
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simulation experiments are based on the average indexes only. Also note that the definition of 

FFI above makes it difficult, if not impossible to realize a true FCFS queue in P2P settings, as 

two requests occurring in a given order (based on the global timer) may reach a given peer in 

the reverse order due to unpredictable communication delays. However, the index is quite 

intuitive and straightforward to implement in simulator. 

With the definition of FFI in mind, our goal is to investigate suitable implementation of 

an efficient, decentralized virtual queue over P2P networks. The implementation should be 

decentralized such that each peer should communicate with its neighbors and made 

scheduling decisions based on local information, although some local information may in fact 

contain partial global knowledge accumulated gradually as the network evolves. The idea can 

be illustrate in Figure 3.3 below, where the virtual queue is implemented as a collection of 

distributed but mutually collaborating queues. 

 
Figure 3.3. FCFS fairness modeled via multiple distributed queues 
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The implementation should result in both low FFI and low request processing time, 

which are somewhat mutually conflicting since achieving low FFI suggests that some global 

knowledge should be accumulated or searched, e.g. to find the longest-waiting resources 

across the P2P network, which may result in longer response time in total when compared to 

simply searching for available resources nearby. 

In addition, the desirable implementation should be as proximity-aware as possible. A 

proximity-aware algorithm tries to locate resources whose peers are close to the requesters in 

terms of communication speed, which is important, for example, for grid applications where 

executing a job may imply large-volume data transfers. As discussed in Chapter 2, although 

proximity-aware algorithms are desirable, the property is not built-in in many well-known 

P2P systems and requires additional infrastructure support. 

Finally, the implementation should be adaptive. This is crucial because both the patterns 

of request generation and resource supply can vary over time, and the trend may last for a 

long period of time. As an illustration, simply consider different time zones around the globe. 

One probable, recurring trend may be that machines generate more requests during day time, 

while providing more resources during midnight. Obviously, it is possible to improve overall 

response time if the knowledge about request and resource supply patterns can be exploited 

when routine requests to resources. 
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Chapter 4  Decentralized FCFS Fair Scheduling 

 

As mentioned in the previous chapter, our goal is to design efficient scheduling methods 

over P2P network that also have low FFI. In summary, a desirable virtual queue 

implementation should be: 

1. Decentralized, where resource scheduling involving multiple collaborative peers, 

2. Low FFI, so that queue jumpers are minimized, 

3. Low response time, so that improving FFI does not incur too much overhead, 

4. Non-starving, such that requests or resources, once enter the virtual queue, 

eventually get processed against skewed request patterns 

5. Proximity-aware, so that resource scheduling should respect the underlying 

network topology when possible. 

6. Adaptive, so that when mid-to-long term patterns of request or resource supply 

change, the virtual queue can adjust itself to minimize FFI and response time. 

To meet the requirements, we propose a general approach based on spanning trees. As 

shown in Figure 4.1, the virtual queue is implemented as collaborating managers that are 

connected as a spanning tree. In particular, each manager serves both a resource queue and a 

request queue. Furthermore, we assume a many-one mapping from resource providers and 

requestors to these managers, so that every provider or requestor belongs to exactly one 

manager. Although this assumption seems unnecessary, as will become clear shortly, the 

reason behind it is to give the virtual queue the ability to adjust the mapping gradually when 

the network evolves. This is important when, for example, the patterns of resources and 

requests supply changes over time, or knowledge about proximity is learned. Note that in our 
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implementation model, a peer can be a resource provider, a requestor, or both. The virtual 

queue implementation is outlined in Algorithm 4.1. 

 

 

Algorithm 4.1: Spanning Tree 

Manager m 

   round : int;  // current round number 

   roundCompleted : Boolean; 

   parent : Manager 

   children : Manager list 

   requests: Request queue 

   resources: Resource queue for current round 

   resourcesN: Resource queue for next round 

 

init(): 

   forming spanning tree 

   collect resources; 

   round = 0 

   roundCompleted = false; 
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Figure 4.1. Virtual FCFS queue implemented as a tree of managers 
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registerResource(Resource res): 

   enqueue res to resourcesN 

 

requestFromLocal(Request r): 

   match(r, resources.dequeue()) and updateStatus() 

   or, for each child in order given by order(children): 

      child.requestFromParent(r, m), 

   or, requestFromChildren(parent), 

   or, fail 

    

requestFromChildren(Request r, Manager ch): 

   similar to requestFromLocal, but skip children ch 

 

requestFromParent(Request r, Manager p): 

   similar to requestFromLocal, but only 

   downward (not calling requestFromChildren()) 

 

match(Request r, Resource res): 

   inform provider of res to process r; 

when the provider finishes, it will inform the requestor of r  

and then call registerResource() to its own manager 

 

updateStatus(): 

   if resources is empty and all children have reported roundCompleted 

     roundCompleted = true, 

     parent.updateStatus(), 

     of for the root, nextRound() 

 

 nextRound(): 

   increment round 

   swap resources and resourceN 

   for all children ch: ch.nextRound(); 

 

 

In short, the implementation assumes that initially, the managers form a spanning tree in 

a distributed environment, which can be done in a decentralized and fault-tolerant manner (e.g. 
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self-stabilizing trees) and is not exploited further in this thesis. When a requester issues a 

request, it calls requestFromLocal() to the manager it belongs to. The manager searches for an 

available resource locally first, then its children recursively. If no resource is found, the parent 

of the manager is searched lastly. 

The implementation is round-based in that resources in a given round are consumed 

before next round begin. A provider can issue at most one resource by calling 

registerResource(). New coming resources (created when a provider becomes available, 

possibly after processing a request several rounds ago) will be placed in the queue for the next 

round. 

Generally speaking, the search order is essentially hierarchical (i.e. bottom-up, 

children-first). However, for each manager, the order that its children are searched can still 

vary (via the order() function).  Different strategies can be conceived to adjust the search 

order in order to help exploiting the network dynamism, that is, the change of patterns of both 

requests and resource supply over time. In addition, the network topology can evolve by 

reassigning peer membership as well as restructuring the spanning tree in a decentralized 

manner, for example, by taking into account proximity information accumulated when the 

network evolves. The spanning tree has great advantage in this regard because different kinds 

of information can be gathered and computed to aid heuristic search. We have investigated 

several self-adaptation heuristics to help improving the scheduling performance. They are 

described below: 

Random Search among Children When a manager runs out of resource and attempts to 

forward a request to its children, it picks a child randomly from the set of children that have 

not reported to the manager that they have finished for the round. Note that such status 

updating is realized by updateStatus() in the base algorithm 4.1. Because it is still possible 

that the manager may not have the most up-to-date information at the time it is forwarding 
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requests, a child may still receive requests after it has reported round completion status to its 

parent. In this case the child simply replies as if it has run out of resources. This randomized 

strategy is outlined in Algorithm 4.2 with common part similar to the base algorithm 4.1 

skipped. 

 

Algorithm 4.2: Spanning Tree - Random 

Manager m 

 

order(): 

     collect children with !roundCompleted into childList 

     shuffle childList randomly 

     return the childList 

 

Excessive-Resource Child First The idea is to start from the child who “seems” to have 

most excessive resources, including the available resources in all of its sub-trees, hoping to 

guess the right path earlier. This approach also has to potential to prevent contention of 

resources among “busy” managers. For example, suppose a given child (including its 

sub-trees) generates requests more than the resources it provides for a given round. If the 

child is searched first (e.g. using the randomized strategy described previously) and an 

available resource is indeed found, this may make the requests generated from that sub-tree 

later unable to find a resource close-by, hence incur additional search steps. The expected 

“excessiveness” for a child can be accumulated and averaged round by round easily through 

the spanning tree (when nextRound() is called). 

 

Algorithm 4.3: Spanning Tree – Excessive Resources First 

Manager m 

   requestCount : int; 

   resourceCount: int; 
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   requestCountAvg : float; 

   resourceCountAvg: float; 

totalRequestCountAvg : float; 

   totalResourceCountAvg: float; 

 

registerResource(Resource res): 

   resourceCount++ 

same as registerResource(res) in 4.1 

 

requestFromLocal(Request r): 

   requestCount++ 

   same as requestFromLocal (r) in 4.1 

 

 averageCounts(): 

   compute requestCountAvg based on requestCount and old 

 requestCountAvg 

   compute totalRequestCountAvg based on requestCount, 

      requestCountAvg, and childrens’ totalRequestCountAvg 

   compute resourceCountAvg and totalResourceCountAvg similarly 

 

nextRound(): 

   (root only) perform averageCounts() bottom-up 

same as nextRound () in 4.1 

 

order(): 

     order children according to their (totalResourceCountAvg – 

       totalRequestCountAvg) 

 

Note that how averages are obtained is not explicitly given in Algorithm 4.3. With a 

spanning tree, the averages can be computed easily in a bottom-up manner. Also, we do not 

give specific formula in averageCounts() for computing the averages for each manager 

because there may be alternatives. An extreme case is to compute the averages based solely 

on resourceCount and requestCount recorded in the current round disregarding the past 
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records. A more typical approach is to account for the averages from previous rounds using 

some weighting factors. 

Member Reassignment. The idea behind this strategy is to distribute requests and 

resources evenly among managers by gradually reassigning producers and requesters to new 

managers in a decentralized manner. Intuitively, we would like to reassign the membership 

between a parent and a child if they have large difference in terms of net resource supply (i.e. 

average resources count minus average request count). Like the accumulation of 

request/resource counts in Algorithm 4.3, the net resource supply can be derived by 

considering both current and past resource/request statistics. With this reassignment step, it is 

hoped that the whole P2P network can evolve according to the patterns of resource supply and 

requests over time. The algorithm is depicted below: 

 

Algorithm 4.4: Member adjustment 

Manager m 

 

exchangePeers(parent, child) 

   parentRequests = 0; 

   parentResources = 0; 

   halfRequests = (parent.requestAvg + child.requestAvg) / 2 

   halfResources = (parent.resourceAvg + child.resourceAvg) / 2 

   collect all peers belong to parent and child in l 

   shuffle l randomly 

   for each peer p in l 

      if p is a provider 

         if (parentResources < halfResources) 

            assign p to parent 

            parentResources += p.resourceAvg 

         else 

            assign p to child 

      else similar for requestor p 
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Note algorithm 4.4 does not stated when and how a given parent-child pair is chosen to 

perform the member reassignment. Although it can be determined using a threshold, in our 

experiments in the next chapter we pick the pair that exhibit maximum difference in net 

resource supply, with the goal to examine the effectiveness of such member reassignment 

approach. 
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Chapter 5  Experiments 

 

In this chapter we evaluate several resource scheduling approaches for P2P networks via 

simulation. In addition to FFI and response time, there are also other important performance 

indexes we would like to investigate for different approaches:  

 Turn-around time: the time interval between the request issue time and complete 

time. 

 Overhead: the number of (control) messages for request routing, book-keeping 

messages, and so on. 

In order to compare our spanning tree-based scheduling approach to other P2P networks 

with different topologies, we also modify existing P2P search algorithms to suite our resource 

model. They are outlined below: 

Decentralized Search. This method assumes Gnutella-like networks. The search is over 

a similar unstructured overlay where peers (including requestors and providers) maintain a 

limited number of neighbors. However, when a request is issued by a requestor, the request is 

searched (unlike flooding in Gnutella) among its neighbors. Like Freenet, some information 

is accumulated in each peer that is used to decide the order of search among its neighbors. 

Specifically, each peer maintains a round counter similar to our spanning tree-based approach, 

although the round number is not synchronized throughout the network. Like the spanning 

tree-based method, newly registered resources to a manager are always placed in the queue 

for the next round. In addition, new requests arrived at a manager will not be served locally if 

the manager knows that some of its neighbors have lower round number. In this case it will 

forward the request to the neighbor with lowest round number (but only up to a constant 

number of hops, called TTL, or time to live). The requests are served locally when all the 
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neighbors have equal or higher round numbers. Once the local resources are run out, the 

manager will advance to the next round and notify its neighbor about its new round number. 

Figure 5.1 shows an example of a decentralized search over such a network in which 

each manager maintains a round number. Suppose manager B has round number 6 and it 

receives a request locally, it will forward the request to manager A, who will process the 

request locally because it still have resources available (otherwise it would have advanced to 

round 6 earlier). On the other hand, when manager C receives a request, it will process the 

request locally, and if the resource is the last one, manager C will increment its round number 

to 7 and notify its neighbors. 

 

Centralized Manager. This method, somewhat similar to Napster, uses the same setup 

as our tree-based method, except that the root is assigned the responsibility of request registry, 

resource registry, and match making. In other words, the root implements the centralized 

producer-consumer queue, and all requests and resources that arrive at different managers are 
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H 

D 

E

F 

A 

C
B 

I 

G

KJ



 

27 

routed through the spanning tree to the central manager. Figure 5.2 depicts the centralized 

architecture.  

 

Table 5.1 shows the list of parameters that are varied in our experiment. Each data point 

is obtained by performing 20 simulations each with a distinct, randomly generated network 

topology under the same network parameters. In the table, the communication speeds among 

participating peers and managers are relative. 

 

Table 5.1: The environment parameters of simulation: 

Network Size 1000~2000 

Percentage of managers 5%, 15%, 50%, 75%, 100% 

Percentage of Requesters 1%, 5%, 10%, 20% 

Communication speed between managers 0.05,  0.25,  0.5 

Communication speed between managers 
and managed peers  

0.5 

Communication speed between peers  0.5~1.5 
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Figure 5.2. Centralized managers 
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Figure 5.3 shows the simulation result of FFI for a typical network setting, namely when 

there are 5% of managers among the overall network of peers (hence there are 20 peers in 

average assigned to each manager), where the number of nodes ranges from 1000 to 2000. 

Furthermore, there are also 20% of requestors. 

 

The result in Figure 5.3 shows that the tree-based method outperforms the decentralized 

method when FFI is concerned. When the response time is concerned, the tree-based method 

lies between the centralized and decentralized method, as shown in Figure 5.4 below: 

 

Figure 5.4: Average response time 
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20% requestors 
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Figure 5.3: FFI Statistics 
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Similar results are also obtained when the request-only peers are set to 1%, as shown in 

Figure 5.5, where both the response time and turn-around time for the tree-based method is 

comparable to decentralized method; both of which are better than the centralized method. 

 

Figure 5.6 shows the the average hops for different methods. Note that similar to P2P 

networks such as Gnutella or Freenet, the decentralized method also imposes a fixed 

time-to-live (TTL) constant that limits the search range. Here it is set to 3. Accordingly, it is 

indicated in the figure that our tree-based mehod also has average hops of 3, while the 

centralized method has the averagel hop number doubled, due to the required bottom-up 

request routing. In general, based on our performance study, the tree-based method has good 

response time when compared to the decentralized method (which typically have higher FFI) 

while maintaining low FFI when compared to the centralized method (which typically have 

higher response time). 

Figure 5.5: Average response time and turnaround time 

Average response time Average turnaround time

peers 
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In the next set of experiments we would like to vary the percentage of request-only peers 

and observe the effects. In particular, we consider the cases for 1%, 5%, 10%, and 20% 

request-only peers assuming there are 5% managers overall (Figure 5.7). 

Figure 5.6: Average hop number 

1000~2000 peers 
5% managers 
20% requestors peers

Average hop number 
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As shown in Figure 5.7, when the percentage of requesters increases, the FFI results for 

the tree-based method stay with centralized method in general, and their growth rates are less 

significant than the decentralized method. In the case of 20% requesters, the centralized 

method has quite small FFI as it should be, but the tree-based method is about four times 

better than the decentralized methods.  

Figure 5.7: FFI results with 1%, 5%, 10%, 20% requestors 
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Figure 5.8 shows the response time results. As indicated there, the decentralized method 

has best response time overall, which is natural since it only acts based on local information 

and avoids many control overhead. When the requests are relative low in quantity, the 

tree-based method has comparable response time to the decentralized method. On the other 

hand, when the requests are abundant, the response time for both tree-based and centralized 

methods grows larger than the decentralized method, although it is within the 200%-250% 

range. Similar results are also indicated in Figure 5.9 when measuring the average hop 

numbers. 

Figure 5.8: Average response time between 1%, 5%, 10%, 20% requestors 
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Figure 5.10 shows the change of FFI over time for the case of 2000 nodes with 5% 

managers. We measure the FFI for each of the 10 intervals. As indicated there, both the 

tree-based and centralized methods have their FFI stabilized quickly. This implies that 

requests and resources get fulfilled steadily and timely. In contrast, the growth of FFI over 

time for the decentralized method indicates that some peers in the network may suffer from 

unfair scheduling and wait longer than the others. 

Figure 5.9: Average hop number between 1%, 5%, 10%, 20% requestors 
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Figure 5.11 shows an interesting observation about the distribution of requests among 

resource providers. Specifically, the centralized method exhibits the desirable behavior 

because the requests are distributed evenly among resource providers. This is not surprising 

because the all resource providers that become ready need to (re)enter the central queue and 

get fulfilled in an FIFO manner. The decentralized method, on the other hand, has the worst 

request distribution. This is due to the uneven request pattern generated among the requesters 

and the fact that requests are served by the resource providers closer to them. 

 

Figure 5.11: Average job number among resource providers 
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The next set of experiments are concerned with the impact of the manager percentage, 

which represents the degree of decentralization – the larger the percentage of the managers, 

the more decentralized the resulting network is. We investigate the cases of 5%, 15%, 50%, 

75%, and 100% managers when the requesters are 20%. 

Figure 5.12 shows the FFI for different methods and different manager percentages. As 

before, the centralized method has lowest FFI, and is relatively insensitive to the change in 

manager percentage. On the contrary, the decentralized method is quite sensitive to the 

manager percentage change, and its FFI is larger in general. In all three methods, the FFI 

improves when the number of managers increases. 

 
Figure 5.12: FFI for the cases of 5%, 15%, 50%, 75%, 100% managers 
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Figure 5.13 shows the simulation results of the response time. It is shown that the 

centralized method has similar response time under different manager percentages. The 

centralized method has roughly same response time. This is due to the fact that the average 

path length from managers to the root is roughly the same for different node sizes. On the 

other hand, the tree-based and decentralized methods have the response time decreased when 

the manager percentage decreases. This is reflected by the fact that with more managers in the 

network, the longer it takes to search for available resources in these two methods. 

 

Figure 5.13: Average response time between 5%, 15%, 50%, 75%, 100% managers 
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In the following experiments we are interested in the effectiveness of some 

self-adaptation strategies on the scheduling. We investigate two independent approaches that 

have been described in the previous chapter for the tree-based method: by changing the search 

order among children, and by re-assigning members between a parent and its child. To better 

exploit the effectiveness, we also change the request generation pattern such that 10% of the 

requesters have higher request generation rate than normal. Here the managers are set to 15% 

and requesters are set to 20%. 

Figure 5.14 shows both the FFI and response time for the tree variations of tree-based 

methods. The result shows that both self-adaptation schemes improve the FFI and response 

time, and in the case of member reassignment the response time dropped significantly when 

compared to the base tree-based methods. 

 

To further appreciate the effect of the two self-adaption strategies, Figure 5.15 shows the 

communication overhead over time (2000 nodes, 15% managers), where the overhead 

represents the amount of messages for both request/resource fulfillment and network 

Figure 5.14: FFI and average response time 

peers peers
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maintenance. The results show that both self-adaption approaches can reduce unsuccessful 

searches, with the member reassignment approach improves the most. 

 

  

Figure 5.15: Change of overhead over time 

Overhead 
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Chapter 6  Discussion and Future Work 

 

It is interesting to compare DHTs and virtual queues at an abstract level. A DHT 

implements a virtual hash table using a set of multiple collaborating peers, and there are many 

approaches to implementing DHTs – the main differences being the mechanisms for 

requesting routing and object-peer assignment. Similarly, a virtual queue also implements a 

(doubly-ended) FCFS queue using multiple, distributed peers, and the goal is to meet the key 

requirements mentioned previously. 

FCFS queues or the associated scheduling policies are not a new concept per se and they 

have been an important research topic in operating systems, parallel computing, networking, 

and other research fields. However, its use as a fairness measure for resource scheduling in 

P2P networks is uncommon. This is quite expectable for several reasons. First, to be effective, 

FCFS policies and other closed related policies such as least-used-first policy (when deciding 

which item to kick out off the cache) or earliest-starting-time-first heuristics (when scheduling 

jobs over multiple processors) more or less need global and timely status about the resources 

to be scheduled. Implementing FCFS policies in P2P networks will most likely incur 

unnecessary overhead. 

Secondly, and probably more importantly, network-wise FCFS fairness is irrelevant in 

application areas such as file sharing supported by P2P systems, where resources offered by 

providers (who earn some credits as reward) being shared are expected to last for some time. 

Even for P2P networks sharing generic, uniform resources such as machine cycles, as 

mentioned, the usual goal is to improve job processing rate, in which case imposing FCFS 

fairness seems to reduce the processing rate, especially when the network grows larger and 

the request pattern is highly skewed. 
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When resource scheduling is concerned, it is interesting to compare SETI@Home with 

traditional systems such as operating systems, clusters, or grids, which often need to predict 

the performance characteristics of the participating resource providers painstakingly in order 

to derive a suitable execution plan, yet only to find that the predicted performance model 

disagrees with actual machine statistics due to machine dynamism. In the SETI@Home 

architecture, instead, the scheduling is done automatically by the resource providers since 

their act of registration indicates that they are available for the moment, fully respecting 

machine dynamism. Our resource sharing model bears the same idea as SETI@Home’s, but 

generalized it in some aspects. First, unlike in SETI@Home where the central server is the 

one who keeps the work to be done, ours leaves what to be done to resource requestors. In 

addition, the central server is replaced with a set of collaborating managers that implements 

the virtual FCFS queue, hoping to improve locality, load balance, fault tolerance, and 

ultimately scalability. Despite the fact that our virtual queue may incur unavoidable 

communication delay due to FCFS requirements.  

Interestingly, however, the FCFS fairness can play an important role in designing sound 

incentive mechanisms. For example, if the resource consumers and resource providers are the 

same set, and whether a consumer can receive resources it needs only after it has earned 

corresponding credits by providing matching resources. This scenario is not uncommon, and 

similar works have been done on file-sharing P2P systems ([1] and [11]) where a peer gets 

paid for providing a specific file to a remote peer, and earned credits are subsequently used 

for the peer to request a file at another peer. Clearly, without proper FCFS fairness, such 

incentive mechanisms cannot guarantee that participants with equal capability and willingness 

to contribute (and consume) may receive unfair treatment. 

Our investigation focuses nevertheless on a narrow scope that can be outlined as follows. 

First, in our simplified model, jobs are uniform, that is, they are of the same type and same 
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processing complexity statistically. Secondly, providers are of the same processing power so 

that the execution time for a given job is the same when run by different providers.  These 

assumptions are made to avoid some pathological cases. Although it is possible to drop these 

assumptions, doing so may raise new issues of fairness again, but they are nevertheless 

interesting questions that can be pursued further. 

As an example, what is considered a proper pricing of processing a job? It is natural to 

associate prices with number of instructions and/or space used rather than by mere job counts. 

By distinguishing job counts from job pricing, however, the notion of fairness needs to be 

re-evaluated. By ensuring that each awaiting provider receives fair treatment in terms of job 

counts, as demanded by our fairness model addressed above, can some providers eventually 

earn much more than the others under certain request patterns? The problem becomes more 

challenging when providers can have quite diverse processing power. Although it is natural to 

demand a “capitalism-oriented” policy that capable providers should receive requests 

proportional to their processing capabilities. Again, assume all providers participate eagerly in 

a P2P network and all other aspects being equal, can some providers eventually earn much 

more than their peers in a way disproportional to their processing capabilities?  

Another aspect that needs further investigation is to ensure FCFS fairness for both 

resource requestors and providers simultaneously. Certainly, a straightforward centralized 

implementation can achieve this goal, but more effective scheduling algorithms not only need 

to minimize additional management overhead, but also to resist as many pathological patterns 

of requests from both consumers and providers. 
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Chapter 7  Conclusion 

 

We have proposed a fairness model that measures the degree of preemption seen from 

each resource provider and consumer, and showed that this more stringent requirement makes 

existing approaches to resource scheduling in P2P networks unsatisfactory. To investigate the 

impact of this fairness criterion, we have compared several scheduling approaches, including 

centralized and decentralized algorithms as well as several variants of round-based algorithms 

based on spanning trees. The decentralized algorithms we implement choose resource 

providers based on local information, which can lead to unfair scheduling results for resource 

providers. In contrast, our decentralized algorithm and its variants search for providers along 

some spanning tree established among schedulers. Fairness in our approach is improved 

because all providers who “register” to their associated schedulers, respective, for a given 

round will be served before next round begins. Simulation result shows that average response 

time is acceptable compared to straightforward decentralized algorithms while providing 

better fairness in the FCFS sense. 

It should be noted that this thesis is meant as a first step towards the development of P2P 

networks with improved FCFS fairness. We investigate only the cases where spanning trees 

are used to search for resource providers, and our scheduling methods are quite reasonable 

and efficient, and a good tradeoff between response time and fairness. There may be other 

better approaches that differ from ours dramatically, possibly with (slightly) different request, 

resource, and network models. Further research into these possibilities is needed. 
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