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摘要摘要摘要摘要 

軟體測試是軟體工程用以確保軟體品質重要的一部分。此外，在程式中自動驗證特性是軟體

測試的遠程目標。近年來，結合具體與符號執行( concolic 測試)成為一個眾所周知的方法用來

路徑分支測試並且許多研究表明該方法可以結合全域檢查，來找出程式錯誤。在本論文中，

我們提出 CAST 的規範語言，建立於 concolic 測試結合全域檢查的基礎上，可以描述各種規格

檢查 C 語言程式的安全特性(從另一個角度來看，我們可以將此作為一種駭客攻擊，以獲得接

近 exploit 的測試資料)。CAST 是一個自動和動態軟體驗證工具，主要包括樣式匹配，全域檢

查和資料流分析，所以可以使我們的全域檢查比一般的 concolic 測試的更加靈活和複雜。 
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ABSTRACT 

Software testing is an essential part of software engineering for ensuring software quality. 

Furthermore, automatically verifying properties in programs is a long-time goal in software testing. 

In recent years, combining concrete and symbolic execution (concolic testing) becomes a 

well-known approach for branch testing and many researches indicate that the approach can combine 

with universal checks to find bugs. In this paper, we present the CAST specification language which 

can describe various kinds of specification for checking security properties of C programs (from 

another point of view, we can take this as a hack attack to attain test cases close to exploit) based on 

concolic testing with universal checks. CAST, an automatic and dynamic software verification tool, 

is mainly composed of pattern matching, universal check and data flow analysis such that we can 

make universal checks more flexible and complex than that general concolic testing uses. 
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1. Introduction 

Software validation is the process of evaluating a software system or component in order to 

determine whether it satisfies specified requirements and it is a very hard problem. Usually, most 

validation is associated with traditional execution-based testing, that is, exercising code with 

manually-generated test cases. 

Up to now software testing is the primary way to check the correctness and quality of software. 

Software testing is an essential part of software engineering and it not only costs United States 

economy tens of billions of dollars annually but also has high economic impacts because of 

inadequate infrastructure [1]. As software develops vastly and becomes more complex, we can’t only 

rely on manpower to find bugs because of time-consuming and inefficiency. Automation is the 

lowest requirement and many approaches have been proposed since 70’s [2]. Then, we implement a 

tool, CAST, which can automatically verify a c program with user-defined specifications depending 

on the power of concolic testing. In addition, combining concolic testing, pattern matching, dynamic 

data flow analysis and universal checks into CAST provides the ability to describe complex checks 

for testers who are eager to confirm whether the properties are violated or not. 

In this paper, we show that CAST can be easily used to describe properties to automatically 

exploit wargames from our secure programming course.  

1.1. Background 

The property checking problem is to check whether a program satisfies a specified safety property. 

According to the different kinds of property, different techniques are applied and different policies 

are adopted. Static analysis is complete and fast but imprecise. Dynamic analysis is usually sound 

and precise but slow. Model checking try to be sound and complete but it can’t be scalable. Concolic 
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testing balances the advantage and the disadvantage of these techniques above. We describe these 

techniques more clearly in Section 2. There are two broad approaches which have been proposed, 

and we describe them as below. 

1.1.1. Universal Checks 

Universal checks [3] support several universal symbolic checks which are more powerful than 

concrete checks since a symbolic check checks all possible values for a given program, whereas a 

concrete check only checks a specific value. These checks, called “universal”, mean that if the check 

passes, there is no possible value that the symbolic input could cause the check to fail on this 

program path. 

  

Figure 1: Testing to make sure that the implementation includes the features described in the 

specification will miss many security problems 

As implementation fails to meet a particular requirement in testing, a bug is found, but even 

testing software functionally, it will miss many security problems because security problems are 

often not violations of the requirements. The intersection of requirements and implementation shown 

in Figure 1 [4] is usually fully under testing because concolic testing traverses each execution path 

of branch, but as we are eager to find bugs or security problems which are not violated requirements, 

we need additional constraints to guide constraint solver through specific execution path. In order for 

testing to be wide-ranging, one has to add additional universal checks which can assist us in 
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verifying whether the program fits to our special requirement (specification) or cause some 

vulnerable errors on each program path.  

1.1.2. Dynamic Data Flow Analysis 

Dynamic data flow analysis (DDFA) is a useful technique that helps us to decide if a sensitive 

variable can be tainted from user inputs. DDFA usually maintains a map which records each 

variable’s address with its taint tag and set its taint tag when tainted variable is assigned to it. 

However, it encounters some problems with library function call and side effect described in Table 1. 

Table 1: DDFA instruments codes for each instruction pattern in C. 

Pattern Instruction/Instrumentation Difficulties 

SSA lhs = rhs1 op rhs2; 

taint_set_tag(&lhs, &rhs1, &rhs2); 

Easy. 

Outer user-defined function 

call 

taint_push_in_arg(&arg1); 

taint_push_in_arg(&arg2); 

ret = foo(arg1, arg2); 

taint_set_tag(&ret, taint_pop_out_arg()); 

Easy. 

Inner user-defined function 

call 

int foo(int form1, int form2){ 

taint_set_tag(&form1, taint_pop_in_tag()); 

taint_set_tag(&form2, taint_pop_in_tag()); 

… 

taint_push_out_arg(&fooret); 

return fooret; 

} 

Easy. 

Library function call strncpy(dest, src, n); 

taint_copy_buffer(dest, src, n); 

Manually instrument 

codes according to 

different library calls. 

Side effect (global variable) lhs = global; 

taint_set_tag(&lhs, &global); 

Imprecision when global 

variable was set in library 

call. 

 When we attempt to find a block of memory to insert shell code, DDFA direct us to find a series 

of tainted memory. 



 

4 
 

1.1.3. Static Program Analysis 

Static program analysis is automatic, complete, and scalable but imprecise because of false positives. 

It simulates program running on the abstraction (such as data flow, syntax tree, etc) instead of really 

running the program on concrete values. Static verification, syntax parser, and traditional symbolic 

execution are static program analysis techniques. Using some approaches, static program analysis 

techniques can deal with path explosion problem that concolic testing encounters.  

PREfix performs path-sensitive, interprocedural analysis and walks the abstract syntax tree 

(AST) to explore various execution paths [8]. Then the symbolic execution state is tracked in a 

virtual machine for checking errors. Avoiding a plenty of false alarms, PREfix adopts some heuristic 

analyses neither sound nor complete. It makes simplifying approximations that analysis can trace for 

huge codes of program with incomplete information. 

PREfast performs simple, intraprocedural checks on code and it is a “fast” version of the 

PREfix tool [9]. Based on pattern matching in the abstract syntax tree of the C/C++ program, certain 

PREfast analyses find simple programming mistakes. PREfix and PREfast take complementary 

approaches for finding errors. PREfix performs a complete, path-by-path analysis of an entire 

program to track information across function boundaries. In contrast, PREfast is a lightweight tool 

that looks for errors locally.  

Lint [10] , a c program checker like a compiler, does lexical and syntax analysis on the input 

text, constructs and maintains symbol tables, and builds trees for expressions. It is one of the earliest 

static C program checker that can detect many program errors. 

LCLint [11] , an extension of Lint, supports different levels of specification and takes 

advantage of abstract type to check errors without affecting the correctness of programs 

ESC/Java [12], an application of theorem proving, catches more errors than conventional static 

checkers such as type checkers and uses an automatic theorem-prover to reason about the semantics 

of programs, which allows ESC to give static warnings about many errors that are caught at runtime.  
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The Bandera Tool Set [13], an integrated collection of program analysis, abstraction, and other 

model-checking tool such as Spin, dSpin, SMV, and JPF, addresses the problem of state explosion, 

model construction, requirement specification, output interpretation. 

Cyclone [14], like a type theory checker, performs a static analysis on source code, and inserts 

run-time checks into the compiled output at places where the analysis cannot determine that an 

operation is safe. 

1.1.4. Dynamic Program Analysis 

It is sound because it runs the program on concrete inputs, and doesn’t have a lot of false alarms like 

static program analysis. The objective of dynamic program analysis is to determine the software 

quality of a system through collecting information and analyzing the results by running it. 

1.1.5. Fuzz Testing (Fuzzing or Random Testing) 

It is a software testing technique that provides random data to the inputs of a program and is often 

used for software development to perform black box testing because of its simple design, high speed, 

scalability, and free of preconceptions about system behavior. However, fuzz testing usually wastes 

much time to produce duplicate test inputs because of using pseudo-random number that depends on 

the seed value. Even if we use other random number generators to avoid the problem, it is better but 

still slow. [5]. The severest shortcoming is that there is no assurance of coverage for random testing 

[15]. For example, the probability that the conditional statement of the branch “if(x == 5){ …}” is 

‘true’ to be executed is 1/232 if x is a 32-bit integer input and is randomly generated. 

1.1.6. Symbolic Execution 

Symbolic execution [16] is useful in the validation of software and can be used to aid in the 

generation of test input and program proving. Traditionally, it doesn’t execute a program with input 

values but run a program with symbolic values instead. The most common approach to use symbolic 
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execution is to analyze a program by traversing its flow graph from an entry point and collecting a 

list of assignment statements and branch predicates in terms of symbolic values along a particular 

path. After gathering these constraints, a test case can be generated by solving the path condition. It 

fails to scale for large software due to the limitations of underlying theorem proofers and symbolic 

analyzers [17]. 

1.1.7. Concolic Testing  

Concolic testing combines random testing, concrete and symbolic execution to iteratively generate 

test inputs to traverse all feasible paths and to partly overcome the limitations of each testing 

technique. It statically instruments codes according to each instruction and dynamically collects 

symbolic constraints. Based on dynamic methods for test input generation, Concolic testing doesn’t 

have false positives. Based on symbolic execution, it generates concrete test inputs so that the 

coverage of concolic testing is better than random testing. The primary disadvantage of concolic 

testing is that it doesn’t scale to large programs because of path explosion problem. The primary 

advantage of concolic testing is that it is better than pure symbolic execution because of the presence 

of concrete values, which can be used both to reason precisely about complex data structures and to 

simplify constraints for the sake of aiding the underlying constraint solver. It is unlike the traditional 

testing techniques only based on symbolic execution or static analysis. 

EGT [18], EXE [7], DART [19], Hybrid [20], CUTE [6] and LATEST [21] perform concolic 

testing, especially EXE addresses byte-level memory model, Hybrid combines with random testing 

switch, LATEST abstracts function call to reduce the execution path with the same branch coverage 

in main function. 

1.1.8. Static Data Flow Analysis 

Static data flow analysis, a mature technique adopted by complier and some application such as 

cqual[22], CIL[23], helps compiler generate the optimized assembly code from source code and 
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finds bugs like format string and command injection attack. By statically generating and analyzing 

AST (Abstract Syntax Tree), efficiency and scalability is its feature, but a large amount of false 

alarm is its disadvantage.  

x = a + b;

y = a * b;

while(y > a) {

a = a + 1;

x = a + b;

}

Program

x

=

a

+

b

while

y

>

a

Block

a

=

a

+

1

...

...

 

Figure 2: Static data flow analysis is based on abstract syntax tree. 

1.2. Common Vulnerabilities 

When a software contains a vulnerability, it may be exploitable. As long as a software is 

exploitable, it allows attackers from an authorized state to any unauthorized states to do harm to 

users. We introduce common vulnerabilities that cause wargames exploitable in section 3.  

1.2.1. Buffer Overflow 

Buffer overflow, the most notorious problem in software quality, is one of the OWASP Top 10 

2004[25] and it causes many well-known attacks and worms shown in CERT/CC Advisories 

[26]. By overwriting memory fragments of the process, buffer overflow may control values of 

the instruction pointer, base pointer and other registers to direct the flow of the process and 
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execute arbitrary codes. Buffer overflow contains stack overflow and heap overflow. 

1.2.1.1. Stack Overflow 

Local variables are allocated on the stack, along with parameters and linkage information that 

where to resume execution after a function returns. When data is written outside of the 

boundaries of the stack buffer, it is called stack overflow. Misuse of strcpy(), strcat(), gets(), 

sprint() or other analogous, self-implemented functions usually generates this kind of bug. 

  Figure 3 shows a simple code with the stack overflow caused by gets function and Figure 4 

shows the graph of the stack. When our input length is over than 256, we can write the data of b 

and further the data of the return address and ebp to control the flow of the process and execute 

arbitrary code. 

 

1 #include <stdio.h> 

2 #include <string.h> 

3 void doit(int a) 

4 { 

5      int b=0; 

6      char buf[256]; 

7      gets(buf); 

8      printf("%s %d %d\n", buf, b, a); 

9 } 

10  

11 int main() 

12 { 

13      printf("Start doit\n"); 

14      doit(10); 

15      printf("End doit\n"); 

16  

17      return 0; 

18 } 

Figure 3: An example of stack overflow. 
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Figure 4: A simple illustration of stack segment in Figure 3. 

 

1.2.1.2. Heap Overflow 

Heap overflow is a kind of buffer overflow that occurs in the heap data area. The most 

difference with stack overflow is that heap overflow is hard to exploit with regard to the 

implementation of malloc() in C or new in C++. 

1.2.2. Command Injection 

The command injection attack is to inject and execute commands specified by the attacker in the 

vulnerable application. In most cases, it can be injected because of lack of correct input data 

validation, which can be manipulated by the attacker. 

The following simple example accepts a filename as a command line argument, and 

displays the contents of the file. If the program runs with root privileges, the call to system() 

also executes with root privileges. If a user specifies a standard filename, the call works as 

expected. However, if an attacker passes a string of the form ";sh", then the call to system() fails 

to execute cat due to a lack of arguments and then execute sh with root privileges. Then, the 
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attacker can do anything that a root can do.  

1 #include <stdio.h> 

2 #include <unistd.h> 

3  

4 int main(char* argc, char** argv) { 

5      char cmd[256] = "/usr/bin/cat "; 

6       

7      strcat(cmd, argv[1]); 

8      system(cmd); 

9  

10      return 0; 

11 } 

Figure 5: An example with command injection vulnerability. 

 

1.3. Motivation 

Software bugs or errors are usually introduced by some inputs and cause program not to behave as 

designers expect. If we obtain inputs which trigger bugs, we can traverse the program in a systematic 

way to observe what inputs affect. Finding inputs which trigger bugs is important, but the premise is 

how to define bugs. One common definition of a software error is a mismatch between the program 

and its specification. Even though the specification is perhaps incorrect and then it induces the 

testing to find a non-realistic error [5], our target is to help developers obtain the information of what 

cause violation of specification as soon as possible. Take divide-by-zero as an example. CUTE [6] 

uses assert function which should be manually inserted into the check point every time when the 

division happens. Even thought EXE [7] uses universal checking by means of CIL to automatically 

insert the predicate into the check point, we can’t avoid writing an Ocaml module containing our 

analysis and transformation. As a consequence of the inconvenience, we want to design a C-like 

specification language to describe what we are eager to verify. 

Even though we find bugs or errors in a program, there are often other hurdles that we have to 

overcome, especially whether or not the vulnerability exists in a program. For this reason, we make 
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our specification language flexible and feasible enough to describe a bug which is more complicated 

than a bug found by CUTE and EXE and it approaches to the problem causing vulnerability. 

1.4. Objective 

Our objective is to make a specification language for convenience of defining many properties and 

verify it by our new concolic testing tool CAST to generate exploits automatically. In order to find a 

bug which violates some properties and has some specific flow relation in a program, we try to 

integrate universal checks, static code analysis and dynamic data flow analysis into one. 

1.5. A Motivation Example 

To illustrate why we need to combine universal checks with dynamic data flow analysis, consider the 

program in Figure 6.  

 

1 #include <stdio.h> 

2   

3 char Buffer[256]; 

4 int RespondHttpRequest(int Pos) 

5 { 

6      int kk=0; 

7      char tmpCad[20] 

8      char *p1; 

9      int idx, j=0; 

10       

11      fgets(Buffer, sizeof(Buffer), stdin); 

12      p1 = strstr(Buffer, "GET"); 

13      if(p1 == NULL) 

14           p1 = strstr(Buffer, "Get"); 

15      if(p1 == NULL) 

16           p1 = strstr(Buffer, "get"); 

17      if(p1 != NULL){ 

18           while(p1[j] != ' ' && p1[j]){ 

19                tmpCad[kk++] = p1[j++];  

20           } 

21      } 

22  
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23      ... 

24  

25      return 0; 

26 } 

Figure 6: An exploitable example of buffer overflow 

 

First, we describe the program’s objective shortly. It is common to copy a string to a local 

buffer after parsing. Then a buffer overflow occurs, because programmer forgets to check if the size 

of the target buffer is big enough. Therefore, in Figure 6, the variable kk will be set as tainted by 

dynamic data flow analysis, and universal checks check if kk is greater than tmpCad‘s bound. 

Traditional concolic testing is usually applied to detect buffer overflow, but it doesn’t know how to 

exploit it. However, we model a new object map and a byte-level symbolic execution to figure out 

the problem such that DDFA can check if the return address is tainted and if there are a lot of 

continuous symbolic values stuffed with shell codes. 
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2. Testing Sequential Programs with CAST Specification 

In this chapter, we present an idea to combine concolic testing with a specification language for 

describing many kinds of properties and focus on testing sequential programs. Concolic testing [6] 

[17] can automatically explore all of feasible execution paths of sequential programs, where concolic 

denotes cooperative CONCrete and symbOLIC execution. And we define a specification language to 

instrument the program at the feasible place where we check security properties with the help of 

universal check. Our concolic testing tool, CAST modified from ALERT [27, 28], helps us explore 

all feasible paths, especially those paths causing vulnerability.  

2.1. CAST Architecture 

We can view our concolic testing tool, CAST modified from ALERT [27-29], as a program path 

explorer to traverse all path of the execution tree of a program and then check every property 

described in a specification on each path. The components and the flow chart of CAST are shown in 

Figure 7 and described in detail as below. 
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Figure 7: ALERT and CAST system architecture flow graph. 

2.1.1. CIL Simplification 

CIL (C Intermediate Language) [23] is a tool that permits easy analysis and source-to-source 

transformation of C programs, then we uses CIL to instrument the C program for symbolic execution, 
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universal checks and dynamic data flow analysis. In order to instrument the code conveniently, we 

use CIL modules to simplify the structure of the code and preserve its semantics. We simply describe 

the simplification steps and functions as below: 

1. Simplified Control Flow (cilly --domakeCFG) 

We use this module to simplify the control flow structures described as below: 

A. Loop statement (while, for and do-while) 

Each loop statement will be changed into a while(1) statement with if-else 

statements, goto statements and break statements.  

B. Branch statement (if, if-elseif-else and switch) 

Each branch statement will be transformed into if-else statements. 

C. Predicate of if statement (if(A && B), if(A || B); A,B are C expression) 

Each predicate of if statement will be divided into many if-else statements that each 

predicate of them is a binary relation expression (such as if(x==y); x,y are variables). 

2. Simple Three-Address (cilly --dosimplify)  

The simplify.ml module simplifies the expressions of a program to gives us a form of 

three-address code. Moreover, all sizeof and alignof forms are turned into constants. 

Accesses to arrays and structures whose address is taken are turned into "Memory" 

accesses and all index and field computations are turned into address arithmetic. 

3. Simple Memory (cilly --dosimpleMem) 

The simplemem.ml module makes CIL lvalues that contain more than one memory access 

even further simplified via the introduction of well-typed temporary variables. After this 

simplification, all CIL lvalues involve at most one pointer dereference. 

4. One Return (cilly --dooneRet) 

The oneret.ml module transforms each function body to have at most one return 

statement.  
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2.1.2. CAST Parser 

CAST parser, written in Ocaml, reads specification and translates it into CIL instrumenter to 

statically analyze source codes for instrumenting specification check (a complex universal check) at 

appropriate position. 

2.1.3. CIL Instrumenter  

CIL instrumenter statically analyzes simplified source codes to instrument it with our dynamic 

analysis functions according to each instruction pattern. We show every kind of instruction with 

instrumented codes in Table 2.  

Table 2: CIL instrumenter instruments three-address code. 

Pattern Instruction/Instrumentation 

One-Address _sqPush( para1, T_INT, (unsigned int )(& para1)); 

_sqPush( para2, T_INT, (unsigned int )(& para2)); 

_sqPush( para3, T_INT, (unsigned int )(& para3)); 

function(para1, para2, para3) 

Two-Address _sqPush( para1, T_INT, (unsigned int )(& para1)); 

_sqPush( para2, T_INT, (unsigned int )(& para2)); 

_sqPush( para3, T_INT, (unsigned int )(& para3)); 

LHS = function(para1, para2, para3); 

_sqPopReturnValue( T_INT, (unsigned int )(& LHS)); 

LHS = RHS; 

_sqSymExec(T_INT, (unsigned int )(& LHS), OP_NOP,  

"RHS", (unsigned long long )RHS, T_INT, (unsigned int )(&RHS),  

"SQ_constant", 0, T_INT, 0, T_NON); 

LHS = (long)RHS; 

_sqSymExec(T_INT, (unsigned int )(& LHS), OP_NOP,  

"RHS", (unsigned long long )RHS, T_INT, (unsigned int )(&RHS),  

"SQ_constant", 0, T_INT, 0,  

T_LONG); 

LHS = *RHS; 

sqPointerRead( (unsigned int )(&LHS), T_INT, 

(unsigned int )RHS, (unsigned int )(&RHS)); 
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*LHS = RHS; 

sqPointerWrite((unsigned int )LHS, (unsigned int )(& LHS), T_INT, 

  (unsigned long long )RHS, (unsigned int )(& RHS)); 

Three-Address LHS = Operand1 op Operand2; 

_sqSymExec(T_INT, (unsigned int )(& LHS), OP_PLUS,  

"Operand1", (unsigned long long )Operand1, T_INT, (unsigned int )(& Operand1), 

  "Operand2", (unsigned long long )Operand2, T_INT, (unsigned int )(& Operand2), 

  T_INT); 

op: +, -, *, /, etc 

These instrumented functions trace data flow and collect symbolic constraints to dynamically 

make symbolic execution based on operands’ type, operator, and operands’ name got from object 

map by operand’s address. In Figure 8, a simple C program is simplified to three-address codes with 

a lot of CIL temporary variables for the convenience of instrumentation. Because of CIL 

simplification, pattern matching of CAST to instrument according to a specification has some 

difficulties we discuss in section 2.3.1. 
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Figure 8: A simple C example with CAST instrumentation. 
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2.1.4. Self-Tested Program 

When making a program to test it by itself, we should figure out the problem of how to input a value 

generated from constraint solver. As long as a variable is symbolic, that means its tainted origin 

comes from user’s setting (make_symbolic(&i, T_INT)) or stdin function like read(0, buf, size), 

fgets(buf , size , stdin), etc. If symbolic variable is set by user, we write its value into a file and read 

the file next time to make program to run next path. Otherwise, we write it into a file and pipe the 

file to the program next time to make program to run next path. Writing a shell script to 

automatically run self-tested program is easy to make all the process automatic. 

2.2. Implementation 

We show what CAST modifies ALERT to make it possible to test a vulnerable program and find 

exploits in this section. First, we simply describe symbolic execution applied to constraint solver; 

then secondly depict how to utilize symbolic execution to model a tested program into byte level 

precision. Thirdly, how to maintain an object map for recording sensitive data is shown in section 

2.2.3. Fourth, the most important issue about symbolic pointer dereference shown in section 2.2.4 

discuss how to query constraint solver for extra execution paths. 

2.2.1. Symbolic Execution 

Automatic theorem prover such as CVC3[30] we use in this paper, a tool to solve Satisfiability 

Modulo Theories (SMT) problems, is the kernel of symbolic execution such that symbolic execution 

is limited by the power of underlying theorem prover. We will explain how symbolic execution 

works in Figure 9 and turn it into CVC3 file format (.cvc) to experiment for finding why it fails 

without symbolic execution. 
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Figure 9: How to model a C program with symbolic execution. 

When not using symbolic execution in Figure 9(a), we collect the constraint formula is (i>100 

AND i=i+1) and then find that we can’t make the difference between (i>100 AND i=i+1) that means 

(if(i>100) i=i+1;) and (i=i+1 AND i>100) that means (i=i+1; if(i>100);). Therefore, to verify this, 

we turn the formula (i>100 AND i=i+1) to CVC3 query language shown in Figure 9(b) and call 

theorem prover, then get the error message “symbolic.cvc:7: this is the location of the error”. It, 

further, means that the solver doesn’t know the formula is the case of Figure 9(c) (i1>100 AND 

i2=i1+1) or Figure 9(d) (i2>100 AND i2=i1+1), whereas after applying symbolic execution into Figure 

9(a), we have the constraint formula (i1>100 AND i2=i1+1) which is the interpretation of the path of 

the program in Figure 9(a) that input i passes through line 3 and line 4. 

2.2.2. Symbolic Name and Symbolic Byte Name 

As ALERT, CUTE and CREST [31] adopt symbolic execution to query constraint solver, the 
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problem of type size in C comes with it. In Figure 10, the variable a is equal to a4@a3@a2@a1 

(where “@” denotes bitvector concatenation, and we use little-endian order for multi-byte values) 

due to buffer overflow that sets a1, a2, a3, a4 to be symbolic inputs. ALERT collect symbolic 

expression (buf[4]_0 = a1_0 && buf[5]_0 = a2_0 && buf[6]_0 = a3_0 && buf[7]_0 = a4_0) from 

line 13 to line 16 and try to query (a_0 = 5566) at line 17. Then it fails to generate inputs of the next 

path, because it doesn’t make the equation of a_0 and buf[7]_0@buf[6]_0@buf[5]_0@buf[4]_0. 

CUTE and CREST use the same symbolic expression memory model to map &buf[4] to a1 at line 

13 and to get a1 from finding &a in the map at line 17 to ask constraint solver if a1 = 5566. Then, 

they can’t generate next path inputs because the symbolic expression memory map model is not 

byte-sensitive enough to get the correct symbolic expression a4@a3@a2@a1=5566. After running 

the case in CUTE and CREST, we make the conclusion as above. 

1 #include <crest.h> 

2 #include <stdio.h> 

3  

4 int main(void) 

5 { 

6     char a1, a2, a3, a4; 

7     int a; 

8     char buf[4]; 

9     make_symbolic_char(&a1);//make a1 as symbolic char input 

10     make_symbolic_char(&a2); 

11     make_symbolic_char(&a3); 

12     make_symbolic_char(&a4); 

13     buf[4] = a1; 

14     buf[5] = a2; 

15     buf[6] = a3; 

16     buf[7] = a4; 

17     if(a==5566) 

18         fprintf(stderr,"a==5566\n"); 

19     else 

20         fprintf(stderr,"a!=5566\n"); 

21 } 

Figure 10: A C program with symbolic name problem. 

Instead of traditional symbolic name, CAST makes all variable into symbolic byte name and 
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check each byte of variable a by recording each bytes into symbolic expression memory map. 

Therefore, we can assert the formula (getByteExpr((char *)&a+3) @ getByteExpr((char *)&a+2) @ 

getByteExpr((char *)&a+1) @ getByteExpr((char *)&a) = 5566) to ask the correct symbolic 

expression (a4_0@a3_0@a2_0@a1_0=5566). EXE claims that they implement byte-level precision, 

but we can’t get the program to test the case. 

2.2.3. Object Map 

CAST implements an object map like CRED[32], which dynamically records the information of all 

variables, especially ebp and return address of each function about its memory address and type size 

that help us make extra symbolic assignment constraints by _sqSymExec() and symbolic branch 

constraints by _sqAddPredicate() to query not only precise but also exploitable inputs. We 

add/remove the object information of every function into object map when program enter/exit each 

function. Further, adding sensitive data such as global offset table, return address, etc into object 

map provides a chance to calculate more exploitable paths. Avoiding getting unknown objects from 

buffer overflow, we fill every stack frame with stuff objects by sqAddStuff() to make sure that 

symbolic execution works as usual. 

 

1 unsigned *sqEbp; 

2  

3 int testme(int a) 

4 { 

5      asm("movl %%ebp, %0\n": "=g" (sqEbp)); 

6      sqAdd((unsigned int) sqEbp+4, sizeof(int), "testme[ret]"); 

7      sqAdd((unsigned int) sqEbp, sizeof(int), "testme[ebp]"); 

8      sqAdd((unsigned int )(&a), sizeof(a), "a"); 

9      sqAddStuff(); 

10       

11      a=a+1; 

12  

13      sqRemove((unsigned int)_sqEbp +4); 

14      sqRemove((unsigned int) sqEbp; 

15      sqRemove((unsigned int)(&a)); 
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16      sqRemoveStuff(); 

17  

18      return a; 

19 } 

Figure 11: Instrumentation of inserting and removing object map.  

 GCC provides a large number of built-in functions for programmers to observe program, such 

as __builtin_frame_address() and __builtin_return_address(). When using these functions to get ebp 

and return address, we encounter some problems about its imprecision after calling some standard 

library. For the sake of getting precise ebp to solve the problem of imprecision, we write assembly 

code of the line 5 in Figure 11 such that an extra global variable sqEpb is necessary to record current 

ebp. Therefore, CAST can dynamically check the address from start to end of each frame to ensure 

that each byte is added into object map for symbolic byte name execution.  

2.2.4. Symbolic Pointer Read/Write with Symbolic Value 

One of the most notorious forms of attack to C program is buffer overflow which generates extra 

execution paths in which we are interested. Table 3 shows the cases that cause different kinds of 

buffer overflow with different exploitable levels of vulnerabilities. Here, we assume that variable a, 

b[i], *p and i are integer types. In the case (1), the variable a can be any value in the memory such 

that it has an influence on the branches directed by the variable a. The case (2) means that we can 

write 4 bytes at any memory location with value a. The most dangerous behavior of a program is the 

case (3) that users can write any value into any memory location, especially certain sensitive data 

like return address. 

Table 3: The cases of buffer overflow cause different vulnerabilities to a C program. 

Case Pattern Concrete Symbolic Exploitable 

(1)Symbolic Buffer Index/Symbolic Pointer 

Reading 

a = b[i]; B i possible 

a = *p;  p possible 

(2) Symbolic Buffer Index/Symbolic Pointer b[i] = a; b, a i possible 
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Writing *p = a; a p possible 

(3)Symbolic Buffer Index/Symbolic Pointer 

Writing with Symbolic Assignment 

b[i] = a; b i, a achievable 

*p = a;  p, a achievable 

Since CUTE and CREST attempt to efficiently traverse all feasible execution paths in a 

program, extra paths are not handled after bugs execution shown in Table 3, in the mean time they 

also cannot achieve printf(“GOAL”) in Figure 12. ALERT and EXE, however, handle it as a normal 

access to any element of buffer, so they can achieve all branches except printf(“sp is written by 

buffer overflow”) at line 17 and line 19.  

 

1 int main() 

2 { 

3      int i, sp=0, a[4]={1,2,3,4}; 

4      make_symbolic_int(&i);//make i symbolic 

5      a[i]=10; 

6      if(a[0]==10) 

7           printf(“GOAL”); 

8      if(a[0]==1) 

9           printf(“1”); 

10      if(a[1]==3) 

11           printf(“2”); 

12      if(a[2]==5) 

13           printf(“3”); 

14      if(a[3]==2) 

15           printf(“4”); 

16      if(a[4]==10) 

17           printf(“sp is written by buffer overflow”); 

18      if(sp==10) 

19           printf(“sp is written by buffer overflow”); 

20  

21      return a; 

22 } 

Figure 12: A C program of buffer accesses with symbolic index. 

Encountering a[i]=10 at line 5, EXE generates a big disjunction constraint (i == 0 && a[0] == 

10) || (i == 1 && a[1] == 10) || (i == 2 && a[2] == 10) || (i == 3 && a[3] == 10). CAST generates a 

bigger disjunction constraint (i == 0 && a[0] == 10) || (i == 1 && a[1] == 10) || (i == 2 && a[2] == 
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10) || (i == 3 && a[3] == 10 || … || (i==n && a[n]==nearest_return_address)) than EXE’s constraint 

for the purpose that we can explore extra execution path. Thus, printf(“sp is written by buffer 

overflow”) at line 17 and line 19 can be achieved by CAST. 

2.2.5. Use Object Map to Construct Shellcode Constraints 

When a symbolic pointer assigned with symbolic value taints a return address, we want to find 

a continuous memory large enough to allocate shellcode and make return address to point the start of 

the shellcode.  

void vc_mkShellCodeExpr(char *shellcode){ 

    vector<object>::iterator objmap_it; 

    vector<object>::iterator omtmp_it; /* objmap temp iterator */ 

    for(objmap_it = objmap.begin(); objmap_it != objmap.end(); objmap_it++){ 

        omtmp_it = objmap_it; 

        for(i=0; i< strlen(shellcode); i++){ // check if  there are continuous memory 

            if(omtmp_it != objmap.end()) 

                andExpr &= (omtmp_it->expr = shellcode[i]); 

            omtmp_it++; 

        } 

        orExpr |= (andExpr & retAddrExpr == objmap_it);  

    } 

    vc->assertFormula(orExpr); /* universal check for shellcode */ 

    vc->query(vc->falseExpr())); /* constraint solver check if it is valid */ 

} 

Figure 13: Pseudo code of generating shellcode constraints. 
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2.2.6. Dynamic Tainted Data Flow for Function Call 

When testing C programs by concolic testing, we must pass symbolic execution and tainted 

data flow to the parameter of function call. Instrumentation in Table 4 shows how to instrument a 

function when entering and exiting in order to make the equation of arg1 = para1 and LHS = ret_val. 

Table 4: CIL instrumenter instruments functions code. 

Case Instruction/Instrumentation 

(1)One-Address _sqPush( arg1, T_INT, (unsigned int )(& arg1)); 

_sqPush( arg2, T_INT, (unsigned int )(& arg2)); 

_sqPush( arg3, T_INT, (unsigned int )(& arg3)); 

function(arg1, arg2, arg3) 

(2)Two-Address _sqPush( arg1, T_INT, (unsigned int )(& arg1)); 

_sqPush( arg2, T_INT, (unsigned int )(& arg2)); 

_sqPush( arg3, T_INT, (unsigned int )(& arg3)); 

LHS = function(arg1, arg2, arg3); 

_sqPopReturnValue( T_INT, (unsigned int )(& LHS)); 

(3)Function int function(int para1, int para2, int para3){ 

   __parameterToSymbolic((unsigned int )(& para1), T_INT); 

   __parameterToSymbolic((unsigned int )(& para2), T_INT); 

   __parameterToSymbolic((unsigned int )(& para3), T_INT); 

   … 

   _sqPushReturnValue("ret_val", (unsigned int )(& ret_val), (unsigned 

int )ret_val, T_INT); 

     return ret_val; 

} 

2.2.7. Standard Library Testing by Using uclibc instead of glibc 

A C program usually calls library function, but when it is tested by concolic testing, library 

function is not instrumented like case 3 in Table 4. So we cannot collect the correct symbolic 

execution and tainted data flow after calling library function. The approach proposed by ALERT[27] 

assumes that constraints are generated by our human logical reasoning without instrumentation such 

that it is fast in concolic testing but time-consuming for us to reason a library function. Instead of 
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manually reasoning library, we instrument library with source code. We instrument uclib rather than 

glibc because uclibc is tiny and easy for debugging. Take function strcmp in string.h header file as an 

example, we use CIL to modify its name to alert_strcmp for each tested source code such that testing 

a C program calling standard library is just complied with uclibc object file compiled by gcc and 

instrumented by CAST. 

2.2.8. Post-condition for standard library fgets and read from stdin 

In the cause of testing programs with fgets and read from stdin, we apply the approach [27] to make 

post-condition constraints for fgets and read. Instead of instrumenting each stdin library function, we 

instrument each fgets and read from stdin with _sqPostFgets() and _sqPostRead for making 

symbolic byte name to each destination buffer. 

2.2.9. Environment 

Table 5 shows the environment and tools CAST uses. 

Table 5: Environment of CAST 

Operating System ubuntu-7.04-desktop-i386 

Memory 1.5G 

CPU Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz 

Compiler gcc 4.1.2 

Instrumenter CIL 

Theorem Prover CVC3 

2.3. Syntax of Specification 

Check properties are expressed using observer concolic testing with universal checks. These provide 

a way to specify vulnerable properties of C programs based on syntactic pattern matching of C 

code. The definition of an observer concolic testing consists of a set of declarations, each defining an 
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observer global variable, or a property. Figure 14 gives the grammar for specifying observer concolic 

testing. 

Observer: DeclSeq 

DeclSeq: Declaration | DeclSeq Declaration 

Declaration: “GLOBAL” CVarDef 

| “PROPERTY” ‘{‘ 

  Temporal 

“LOCATION” { #line num "filename" } 

  “PATTERN” ‘{‘ CStmt ‘}’ 

  “PRIORITY” ‘{‘ CIng ‘}’ 

  “ASSERT” ‘{‘ CCondExpr ‘}’ 

        “SHELLCODE” ‘{’ CString ‘}’ 

‘}’ 

Temporal: “BEFORE” | “AFTER” | “” 

SVar :  ‘$’Num 

Num :  1~65535 

Figure 14: The grammar of the CAST specification language 

 Observer global variable is instrumented into codes to analyze and determine some properties. 

Each observer global variable may have any C primitive type, and is declared following the keyword 

GLOBAL, where the nonterminal CVarDef stands for any C variable declaration. 

 Each property observes all program steps, if a pattern is matched, specifies what the property 

checks. The keyword PROPERTY is followed by up to five parts: a temporal qualifier, a priority, a 

location, a pattern, an assertion, and a shellcode. If more than one pattern matches, then CAST 

instrument the program with assertion at each matched point according to Temporal qualifier. 

Temporal qualifier is either BEFORE or AFTER. It specifies whether the assertion is checked 

before or after the source code that matches the pattern. The keyword PRIORITY is followed by a 
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C integer taken as the serious level to fix. The keyword ASSERT is followed by a C condition 

expression taken as a formula checked by universal checks. At each universal check point in the 

program execution, the observer checks the current program constraints formula with assertion 

formula. The keyword PATTERN is followed by a C statement that is matched against the program 

source code. The pattern is defined by the nonterminal CStmt, not a real C statement; it now only 

supports instruction list. Sometimes, there is no pattern to match, therefore the keyword 

LOCATION followed by a line number and a file name specifies where to be instrumented with 

universal checks. The keyword SHELLCODE is followed by a C string that is generated by 

Metasploit [33] to be executed after that any return address is overwritten. Finding if there are 

continuous symbolic memories to allocate this string is easy to query object map and make symbolic 

equation with each symbolic bytes and the shellcode.  

2.3.1. Pattern Matching  

During the execution of concolic testing we calculated a number of statistics on the performance of 

the pattern matching that resulted in the following interesting observations: 

� Instruction set (a = b + c) dominates all others. In most cases they accounted for more than 85% 

of all instructions. 

� Function call and other instruction sets (a = b op c, where op is not ‘+’) are the other remaining. 

Thus, in order for pattern matching to be efficient, CAST scans the program to match the less 

frequency instruction set, if any, of the pattern first. Then it sequentially searches the other 

instruction sets from the position of the matched instruction set backward and forward. In Figure 15, 

the steps of searching and matching the instruction follow the number in the middle of single arrow 

in increasing order. The multiplication of the expression like ($1*2) rarely appears in the source code; 

then we search it first. The dotted arrow line means it is unmatched, otherwise it is matched.  
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$3 = foo($1, tmp);

$1 = $1 * 2;

tmp = $2;

$2 = $2 + 1;

sum = foo(i, tmp);

i = i * 2;

tmp2 = j;

j = j + 1;

...

...

...

...

...

tmp1 = buf;

tmp3 = arr;

tmp3 = tmp3 + 1;

k = k +1;

1

4
7

10

Pattern{ $3 = foo($1*=2, $2++); }

3

2

5

6

8

9

pattern

source code

CIL simplification

 

Figure 15: The method of efficient pattern matching. 

 As CIL simplifies source codes into three-address codes, pattern might as well be simplified 

such that pattern matching will be precise. As downside, CIL simplification increases times of 

pattern matching. On the other hand, it makes simple semantic pattern matching.  

2.3.2. Universal Check (Specification Check Instrumentation) 

Intuitively, at each point in the program execution, the observer checks the current program 

statement (i.e., AST node) being executed according to the ASSERT of each property. A universal 

check, used for checking specification assertion, we call it specificationCheck given in Figure 16. 
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The function specificationCheck instrumented by pattern matching can check complex logical 

expressions such as integer overflow. We will show more other specifications that check 

vulnerabilities and generate exploits in the section 5. 

 

1 int main() 

2 { 

3      int a, b, c; 

4  

5      c = a + b; 

6      specificationCheck("(a>=0 && c<b) || (a<0 && c>b)”, "c a b", 

"T_INT T_INT T_INT", 3, (long long)c, (long long)a, (long long)b, 

&c, &a, &b); 

7      return 0; 

8 } 

Figure 16: Check integer overflow with universal checks. 

2.4. Semantic of specification 

The semantics of a trace property is given by running the concolic testing with the program. CAST 

accepts a trace property every time a pattern matches, the corresponding universal check is valid, 

and moreover, if shellcode is filled, then the string of the shellcode stuffs itself with the program 

memory. 

2.4.1. Specification of Integer Overflow 

Because our pattern matching is type-sensitive, type of each variable should be declared first. A 

post-condition of integer overflow in addition shown in guard block will be checked after each 

integer addition like the pattern.  

 

1 svar int $1; 

2 svar int $2; 

3 svar int $3; 

4  

5 property { 
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6       after 

7       pattern { $1 = $2 + $3; } 

8       guard { ($2>=0 && $1<$3) || ($2<0 && $1>$3) } 

9 } 

Figure 17: A specification checks integer overflow. 
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3. Experiment  

We will discuss the specification of test cases that come from the course of secure programming in 

this section. These test cases, called wargame, are used for training students to understand the 

security problem of vulnerable programs. 

3.1. Wargame 1 (Exploiting a Bug without ShellCode) 

Wargame 1 is a simple C program that can be exploited by buffer overflow because of the misuse of 

fgets(). Then it can enter an unauthorized region at line 29 without the correct password.  

 

1 #include <stdio.h> 

2 #include <string.h> 

3 #include <unistd.h> 

4 #include <sys/types.h> 

5 #include <fcntl.h> 

6 char pass[8]; 

7  

8 int main(int argc, char **argv){ 

9  

10   FILE *fp; 

11   int i = 0, auth = 0; 

12   char buf[8]; 

13  

14   printf("Input passwd: "); 

15   fgets(buf, 20, stdin); 

16  

17   if((fp = fopen("/home/wargame1/passwd", "r")) == NULL) { 

18     printf("fopen error!\n"); 

19     return 1; 

20   } 

21   fgets(pass, sizeof(pass), fp); 

22   pass[strlen(pass)-1] = '\0'; 

23  

24   for( ; i < strlen(buf); ++i) 

25     if(buf[i]<'a'|| buf[i]>'z') 

26       return 1; 
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27   if(!strcmp(buf, pass)) 

28     auth = 1; 

29   if(auth == 1 && buf[0] == '0'){ 

30     char fname[32]; 

31     uid_t uid = getuid(); 

32     sprintf(fname, "/home/wargame1/checkin/%u", uid); 

33     open(fname, O_CREAT | O_WRONLY, 0000); 

34   } 

35   return 0; 

36 } 

Figure 18: Wargame 1 contains a buffer overflow. 

After instrumenting fgets(), auth and i are set symbolic variables because of 19 bytes tainted by 

stdin from the address of buf to i shown in Figure 19.  

 

Variable Buf  auth i 

Address 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 

Figure 19: Simple memory allocation of wargame 1. 

Concolic testing, however, is able to get all concrete values of a tested program such that it 

always generates an input with bounded values at line 24 and correct password at line 27. Avoiding 

to this, we write a specification to check the value of auth, i and buf[0] at line 23. 

 

1 #include <stdlib.h> 

2 #include <stdio.h> 

3  

4 svar int $1; 

5 svar int $2; 

6 svar int $3; 

7  

8 svar int i; 

9 svar int auth; 

10 svar char buf[8]; 

11  

12 property { 

13       before 

14       location { #line 23 "wargame1.c" } 

15       pattern { $1 = i > 20 && auth == 1 && buf[0] == 30; } 

16       guard { i > 20 && auth == 1 && buf[0] == 30 } 



 

35 
 

17 } 

Figure 20: Specification of wargame 1. 

To enter line 29 should be assured that like the guard in Figure 20 and to check this should be at line 

23 described by label location. The pattern is nothing important but not empty to make CAST to 

work well. 

3.2. Wargame 2 (Exploiting a Bug with Command Injection) 

Wargame 2 can be exploited by command injection at line 46 because it calls system() without 

correct input data validation.  

 

1 #include <stdio.h> 

2 #include <stdlib.h> 

3 #include <string.h> 

4 #include <errno.h> 

5  

6 #define BIGSIZ 15 

7 char * Hmalloc (size) 

8     unsigned int size; 

9 { 

10     unsigned int s = (size + 4) & 0xfffffffc; /* 4GB?! */ 

11     char *p = malloc (s); 

12     if (p != NULL) 

13         memset (p, 0, s); 

14     else 

15         printf("Hmalloc %d failed", s); 

16     return (p); 

17 } /* Hmalloc */ 

18  

19 unsigned int findline (fbuf, siz) 

20     char * fbuf; 

21     unsigned int siz; 

22 { 

23     char * p; 

24     int x; 

25     if (! fbuf)     /* various sanity checks... */ 

26         return (0); 

27     if (siz > BIGSIZ) 
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28         return (0); 

29     x = siz; 

30     for (p = fbuf; x > 0; x--) { 

31         if (*p == '\n') { 

32             x = (int) (p - fbuf); 

33             x++;      /* 'sokay if it points just past the end! */ 

34             return (x); 

35         } 

36         p++; 

37     } /* for */ 

38     return (siz); 

39 } /* findline */ 

40  

41 void testcmd(char *p){ 

42     char buf[24]; 

43     strcpy(buf, "/usr/bin/cal \'"); 

44     strcat(buf, p); 

45     strcat(buf, "\'"); 

46     system(buf); 

47 } 

48  

49 unsigned int insaved = 0; /* stdin-buffer size for multi-mode */ 

50  

51 int main(int argc, char **argv) 

52 { 

53     char **tav;//replace argv for test 

54     char *cp; 

55     int x; 

56  

57     cp = argv[0]; 

58     tav = (char **) Hmalloc (128 * sizeof (char *));   

59     tav[0] = cp;      /* leave old prog name intact */ 

60     cp = Hmalloc (BIGSIZ); 

61     tav[1] = cp;      /* head of new arg block */ 

62     fprintf (stderr, "Cmd line: "); 

63     insaved = read (0, cp, BIGSIZ);    cp[BIGSIZ-2] = '\n'; 

64     x = findline (cp, insaved); //ok for cp 

65     if (x) 

66         insaved -= x;   /* remaining chunk size to be sent */ 

67     cp = strchr (tav[1], '\n');//tav[1] ok 

68     if (cp) 

69         *cp = '\0';  

70     cp = tav[1]; 

71     cp++;       /* skip past first char */ 
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72     x = 2;        /* we know tav 0 and 1 already */ 

73     for (; *cp != '\0'; cp++) { 

74         if (*cp == ' ') { 

75             *cp = '\0';     /* smash all spaces */ 

76             continue; 

77         } else { 

78             if (*(cp-1) == '\0') { 

79                 tav[x] = cp; 

80                 x++; 

81             } 

82         } /* if space */ 

83     } /* for cp */ 

84     argc = x; 

85     switch (tav[1][1]) { 

86         case 'x': 

87             if(tav[2]!=NULL) 

88                 testcmd(tav[2]); 

89             break; 

90         default: 

91             errno = 0; 

92             printf("\033[1;33mnc -h for help\033[0m"); 

93     } 

94     return 0; 

95 } 

Figure 21: Wargame 2 contains a command injection. 

Concolic testing dynamically analyzes tainted data flow from read() to the argument of system() 

call. Thus, if the argument of system() is symbolic, how to make it to execute our desired system 

commands is easy to add a constraint formula into constraint solver to solve if the string equals to a 

illegal string (“;”, “&”, “&&”, “|”, “||”) followed with a command. 

 

1 svar char* $1; 

2  

3 property { 

4       before 

5       pattern { system($1); } 

6       guard { $1[14] == '2' && $1[15] == '\'' && $1[16] == ';' &&  

$1[17] == 's' && $1[18] == 'h' } 

7 } 

Figure 22: Specification of wargame 2 checks command injection. 
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Therefore, checking for wargame2 if it can be exploited with command injection, we make sure that 

it can execute `sh` after CAST generating an input fitting to our specification.  

 

3.3. Wargame 3 (Exploiting a Buffer Overlfow Bug with ShellCode Injection) 

Wargame3 contains a buffer overflow at line 34 in Figure 23. It copies the content from a global 

buffer Buffer to a local buffer tmpCad, but Buffer’s size is greater than tmpCad’s size such that it can 

cause buffer overflow. 

 

1 #include <stdio.h> 

2 #include <string.h> 

3 #include <stdlib.h> 

4  

5 char  Buffer    [140]; 

6 int   SirveWeb = 0; 

7 char *CabeceraHTTP = "HTTP/1.0 200 OK\nContent-Type: 

text/html\n\n<html><head><title>test</title></head><body><H1><Ce

nter> HELLO</H1><HR></Center>"; 

8 char *FinalHTTP = "<br><hr></center></body></html>"; 

9 int   MaxPartidas; 

10 int   PuertoWeb; 

11 int   PuertoMus; 

12 int   PosPrimeraPartida = -1; 

13 int   NumPartidas; 

14 unsigned *w3ebp; 

15 void RespondeHTTPPendiente(int Pos) 

16 { 

17     int j, kk, faltan, tmp; 

18     char tmpCad[64], *p1, *p2; 

19     FILE *f; 

20      

21     Buffer[130] = 0; 

22     p1 = strstr(Buffer, "GET"); 

23     if (p1 == NULL) 

24         p1 = strstr(Buffer, "Get"); 

25     if (p1 == NULL) 

26         p1 = strstr(Buffer, "get"); 
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27     if (p1 != NULL) { 

28         /* Bug position */ 

29         j = 5; 

30         kk = 0; 

31         if (j < strlen(p1)) 

32             while (p1[j] != ' ' && p1[j]){ 

33                 tmpCad[kk] = p1[j];  

34                 kk++; 

35                 j++; 

36             } 

37         tmpCad[kk] = '\0'; 

38     } 

39     printf("Sirve Web [%s]\n", tmpCad); 

40     if (SirveWeb && strcmp(tmpCad, "/") && tmpCad[0]) { 

41         if (strstr(tmpCad, ".jar") || strstr(tmpCad, ".class")) 

42             p1 = "application/x-java"; 

43         else if (strstr(tmpCad, ".jpg") || strstr(tmpCad, ".jpeg")) 

44             p1 = "image/jpeg"; 

45         else if (strstr(tmpCad, ".gif")) 

46             p1 = "image/gif"; 

47         else if (strstr(tmpCad, ".txt")) 

48             p1 = "text/plain"; 

49         else 

50             p1 = "text/html"; 

51  

52         sprintf(Buffer, "./web/%s", tmpCad); 

53         f = fopen(Buffer, "rb"); 

54         if (f != NULL) { 

55             sprintf(Buffer, "HTTP/1.0 200 OK\nContent-type: %s%c%c", 

p1, 10, 10); 

56             write(1, Buffer, strlen(Buffer)); 

57             do { 

58                 j = fread(Buffer, 1, 140, f); 

59                 if (j) 

60                     write(1, Buffer, j); 

61             } while (j == 140); 

62         } else { 

63             strcpy(Buffer, "HTTP/1.0 404 FILE NOT 

FOUND\nContent-type: text/html\n\n<h1>404 FILE NOT FOUND.</h1>"); 

64             write(1, Buffer, strlen(Buffer)); 

65         } 

66         if (f != NULL) 

67             fclose(f); 

68     } else { 
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69         write(1, CabeceraHTTP, strlen(CabeceraHTTP)); 

70         sprintf(Buffer, "Puerto por el que escucha este servidor de 

partidas: %d <br> Numero maximo de partidas simultaneas: % 

71         strcat(Buffer, "<br>Listado de partidas en 

curso:<br><UL>");//problem global constant is not sqAdd in alert... 

72         write(1, Buffer, strlen(Buffer)); 

73         write(1, FinalHTTP, strlen(FinalHTTP)); 

74     } 

75 } 

76 int main(int argc, char **argv) 

77 { 

78     int   j         , k, l, p; 

79     int   PonAyuda, PonAyudb; 

80     int   NuevoSocket; 

81     time_t    Ahora; 

82     time_t    Ahorb; 

83  

84  

85     PonAyuda = 0; 

86     MaxPartidas = 5; 

87     PuertoWeb = 0; 

88     PuertoMus = 0; 

89     k = 0; 

90  

91     srandom(time(NULL)); 

92  

93     for (j = 0; j < argc; j++) { 

94         if (argv[j][0] == '-') { 

95             switch (argv[j][1]) { 

96                 case 'w': 

97                     k = atoi(argv[j + 1]); 

98                     if (k > 0) 

99                         PuertoWeb = k; 

100                     break; 

101                 case 'p': 

102                     k = atoi(argv[j + 1]); 

103                     if (k > 0) 

104                         PuertoMus = k; 

105                     break; 

106                 case 'm': 

107                     k = atoi(argv[j + 1]); 

108                     if (k > 0) 

109                         MaxPartidas = k; 

110                     break; 
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111                 case 'd': 

112                     SirveWeb = 1; 

113                     break; 

114                 default: 

115                     PonAyuda = 1; 

116             } 

117         } 

118     } 

119  

120     k = read(0, Buffer, 140); 

121     if (k > 0) 

122         RespondeHTTPPendiente(j); 

123     else if (k == 0) { 

124         fprintf(stderr, "error: recv!!\n"); 

125     } 

126  

127     return 1; 

128 } 

Figure 23: Wargame 3 constains buffer overflow. 
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High memory address   
Pos   

return address tmpCad[92] 0xbfbfebe0 

…   
j tmpCad[72] 0xbfbfebcc 

kk tmpCad[71] 0xbfbfebc8 
faltan  0xbfbfebc4 

tmp  0xbfbfebc0 
tmpCad[63]   

…   

…   

tmpCad[0]  0xbfbfeb80 

p1   

p2   
f   

Low memory address   

Figure 24: The memory map of wargame 3. 

When the length of Buffer is greater than 71, kk will be tainted and tmpCad[kk] = p1[j] in the loop at 

line 32 in Fiugre 22 will cause symbolic pointer writing with symbolic value. Then, users can control 

the content of program’s memory, especially return address. Because we model concolic testing to 

add a complex constraint composed of a large logic formula when encountering symbolic pointer 

dereference, the taint information of return address can be queried to constraints solver if it is valid 

to point the return address to the start address of the shellcode. 

 

 

1 svar char* $1; 

2  

3 property { 

4       shellcode { 

5 "\x33\xc9\x83\xe9\xf6\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x6

7\xf9\x51\x6f\x83\xeb\xfc\xe2\xf4\x0d\xf2\x09\xf6\x35\x9f\x39\x

42\x04\x70\xb6\x07\x48\x8a\x39\x6f\x0f\xd6\x33\x06\x09\x70\xb2\

x3d\x8f\xfa\x51\x6f\x67\x8a\x39\x6f\x30\xaa\xd8\x8e\xaa\x79\x51

\x6f" 

6       } 

7       pattern { tmpCad[$1] = $any; } 

8       guard { $1 >= 64 } 
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9 } 

Figure 25: Specification of wargame 3 checks buffer overflow and exploit. 

After all, we write a specification given in Figure 25 to check if the index of tmpCad is greater than 

its size 64, and find a large enough memory to allocate shellcode. 
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4. Related Work 

KRYSTAL [34] uses a variant of symbolic execution, called universal symbolic execution to 

infer likely local data structure invariants for testing data structure such as binary search tree. 

CREST [31], an open source concolic testing tool for C, combines concolic testing with 

heuristic search strategies to achieve significant branch coverage on large software systems. 

Splat [35], a directed random testing tool guided by symbolic execution, detects buffer overflow 

by checking a symbolic length that may exceed the size of the symbolic prefix of the buffer. 

SAGE [36] , a tool for scalable, automated, guided execution, can test any file-reading program 

by symbolic execution and dynamic test generation. Active Property Checking [37] extends 

SAGE by checking whether the property (buffer overflow, null pointer dereference, etc) is 

satisfied by all program executions that follow the same program path, which we call universal 

checks. EXE [38], an effective bug-finding tool that automatically generates inputs that crash 

real code, can be view as a concolic testing tool with byte-level precision. RWset [39] not only 

generate high-coverage test inputs but also dynamically reduce the number of paths by 

discarding those that will produce the same effects as some previously explored path. KLEE [40] 

models file system for symbolic execution to automatically generate high-coverage tests for 

complex systems programs. Above works address the problem of finding more bugs and 

efficiently explore execution paths, but our work focus on exploring more execution paths when 

bug happens. After testing CUTE, CREST and reading EXE, we make a table as below. Other 

related works mention nothing about these. 

Table 6: Comparison between CAST, CUTE, CREST and EXE 

Tool Symbolic Pointer Read 

(a = b[i]) 

Symbolic Pointer Write 

(b[i] = a) 

Symbolic Pointer Write with 

Symbolic Value 

(b[i] = sym) 
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EXE Yes- Yes- No 

CUTE No No No 

CREST No No No 

CAST Yes Yes Yes 

BLAST, the Berkeley Lazy Abstraction Software verification Tool, is an automatic software 

model checker that uses counterexample-guided predicate abstraction refinement to verify 

temporal safety properties of C programs. The BLAST Query Language [41], based on the 

BLAST, can specify program verification tasks. 

Table 7: Comparison between CAST and BLAST Query Language 

 

Execute 

program 

Pattern 

matching 

Ability of 

describing 

complex 

bugs 

Type 

sensitive 

matching 

Handle 

shellcode 

BLAST No Weak Low NO No 

CAST Yes Strong High Yes Yes 

BLAST’s pattern matching only focuses on single instruction without matching operator. It 

also doesn’t care about the variable’s type of pattern matching. It can’t describe specification of 

wargames in Section 5 and can’t find where to allocate shellcode in a program.  
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5. Conclusion 

It is possible to use concolic testing to find exploit, but also need the knowledge to check where may 

cause vulnerabilities. Any exploit comprises a lot of complex constraint formula such that it is 

important to model concolic testing to handle special behavior of instruction or function. Concolic 

testing for generating exploits needs a strong constraint solver. Debugging a concolic testing tool is a 

hard work that we may need to model a architecture for this in the future. 
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6. Future Work and Discussion 

6.1. Concrete Value Bound to Symbolic Value 

We find in some test cases that CAST, using theorem prover, attempts to reach full branch coverage, 

but fails because some predicates are too complex to be solved.   

1 #define MAX_NUM 100 

2 void testme(int stu_id) 

3 { 

4      int num=0, i=0; 

5      for(; i<stu_id; i++) 

6           num=num+1;  

7      if(num>MAX_NUM) 

8           ... 

9      else 

10           ... 

11 } 

Figure 26: Concrete values bound to symbolic values 

In Figure 26, controlled under the symbolic value stu_id, the concrete value num can make the 

branch if(num>MAX_NUM) true or false, but since it is concrete, CAST don’t collect it to be solved 

by theorem prover and don’t know how to collect it with the relation to symbolic value stu_id to the 

solver. Figuring out this problem will help us to explore more and more branches that cause 

hard-found errors.  

6.2. The Influence of Alignment of gcc Compiler 

Because we try to make specification describing undefined behavior in C language, some things are 

hard to predicate and confuse us how to implement CAST. 
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1 void foo(int a, char b, short c)

2 {

3 char d[16];

4 ...

5 }

(a)function foo with different size parameters

ret (linkage information)

d

c (parameter area)

...

ebp (linkage information)

...

b (parameter area)

a (parameter area)

(b)stack information after calling function foo 

without alignment

high

low

ret (linkage information)

d

c (parameter area)

...

ebp (linkage information)

...

b (real used)

b (parameter area)

a (parameter area)

c (real used)

(c)stack information after calling function foo 

with alignment

high

low

 

Figure 27: The influence of gcc alignment on function parameter. 

Figure 27(c) show that gcc applies alignment mechanism to a function with different size 

parameters and the memory addresses of parameter b and c at local area are different from those in 

Figure 27(b) so that if buffer d is overflow, it is hard to overwrite the value of b and c after 

alignment.   
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6.3. Source Level Testing without the Details of Low Level Implementation 

 

Figure 28: The same semantic instruction with different assembly codes after gcc compiler. 

It is common that compiler optimizes some variables from memory into register to make the 

program execution faster, but sometimes this optimization causes some errors to happen. Therefore, 

certain type qualifiers are designed to avoid it. The case in Figure 28 that gcc optimizes variable i 

and j into register in (a), (b) and (c) only except (d) confuses us why type qualifier fails in (b). Then, 

even though buffer tmp is overflow to overwrite the memory of variable i and j, it doesn’t have any 

influence on the value of i and j in for loop. In conclusion, source level testing can find bugs without 

the information about complier constructing a program but it is hard to exploit bugs accurately (false 

positive).  
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6.4. How to Debug a Debug Tool 

The biggest problem in CAST is how to debug rather than how to implement. A huge of temporary 

variables are generated after CIL simplification, a lot of constraints are collected after program 

execution, and names of these variables are so similar that to differentiate and to trace back is tough. 

When encountering that a set of constraint formula should be invalid to generate the next path inputs 

but valid, we must manually trace and filter hundreds of constraint formula to find the minimum set 

of constraint formula causing valid. Delta Debugging [42] and Locating Causes of Program Failures 

[43] have an excellent idea about automatically finding the minimum codes causing errors. Applying 

these techniques will help us debug CAST quickly for extending CAST to be scalable. 
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