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針對畫質與頻寬限制的串流系統，使用自適性跳

畫面機制的初步探討 

 
研究生: 林岳進 指導教授: 彭文孝 博士

 

國立交通大學 

資訊工程學系 資訊科學與工程研究所碩士班 

摘要 

由於人眼對於畫質好壞差異的感受比斷斷續續畫面所帶來的停頓效果較不

敏感，大多編碼器都會注重在將可用位元數分配到所有可編畫面上，即使個別畫

面會因此得到較少的可用位元而使得畫質變差，也大多不願意將畫面率降低來得

到較好的畫質。但是對於監控系統或是一些比較在意畫面品質的攜帶型設備而

言，則會對於編碼畫面品質上有一定要求。 

因此如何在同時具有畫質與頻寬限制的環境達到最佳化變成我們想要解決

的議題。為了解決多重限制的問題，我們首先從了解最佳解的設計出發，再深入

研究如何輔以 Lagrange multiplier 的方式來達到位元率-失真交換下 

(Rate-Distortion Trade-Off)最佳化。 

相較於一般流量控制的設計都是只考量頻寬限制的要求，我們的問題勢必

要使用動態規劃才能達到最佳位元分配；然而為了降低複雜度，支配線

(Dominative Line)與依次精修(Successive Refinement)的方法被提出並且分析

其結果。 
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Abstract 

Owing to that human eyes are more sensitive to jerky effect caused by different 

frame rate rather than quality variance caused by different quality of coded frames, 

most encoder systems focus on distributing available bit budget among all frames and 

are not willing to reduce frame rate to obtain better spatial resolution, even the quality 

of each frame becomes worse for getting less available bits. However, there exists 

quality requirements to surveillance systems and some mobile devices which care 

about the quality of each coded frame.  

As a result, how to solve the problem with both distortion- and rate-constraint is 

the main issue in our research. In order to solve this multiple constrained problem, we 

start by understanding the design of optimal solution; furthermore, we study how to 

use Lagrangian parameters for rate-distortion trade-off optimization.  

Compared with general rate control scheme, which only consider the rate/budget 

requirement, our problem must use dynamic programming for optimal bit allocation. 

Nevertheless, in order to reduce complexity, dominative line and successive 



refinement methodology are proposed and analyzed. 
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CHAPTER 1

Research Overview

In the beginning of this thesis, we will introduce the blueprint of the proposed quality-

and rate-constrained streaming system, including the architecture, the objective and

the formulation to our constrained problem; then related works are mentioned. Finally,

the contribution and the organization of this thesis are described in the last section.

1.1 Introduction

1.1.1 Architecture

In this section, we propose a quality- and rate-constrained adaptive frame encoding for

speci�c video streaming applications such as surveillance and mobile systems. Assume

there exists a system architecture like Figure 1.1, the client requires high quality sur-

veillance video streaming from the server through the internet TCP/IP transmission.

The server has a bandwidth estimation mechanism, which estimates average bandwidth

BR in every time slot (10~20 second for example) and we can allocate bits among ref-

erence and non-reference pictures according to the estimated BR. However, because

network congestion occurs from time to time, we need to provide another rate shaping
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Internet

Network
Interface
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Rate Shaping
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Buffer

Client
Surveillance

Video

Adaptive Video
Encoding
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Rate Shaping by
Dynamic Frame

Dropping

Adaptive Frame
Prediction/Skipping
with Rate Constraint

Figure 1.1: Proposed video streaming system architecture.

mechanism such that coded picture bu¤er can adaptively drop non-reference pictures

to adviod short-term bandwidth �uctuation.

Within this architecture, we have constraints and requirements as follows:

� Constraints

�Real-time and live streaming over interenet

�Rate- and quality-constrained applications

�Time-shifted average bandwidth estimation

�TCP/IP connection

� Requirements

�A rate- and quality-constrained video encoding scheme

�A rate shaping mechanism

1.1.2 Objective and Formulation

In order to implement the above system, we need to provide an adaptive frame encoding

that

1. Ensures the quality of the reference frames subject to a bitrate constraint.

2. Allows a R-D optimal rate shaping by skipping the non-reference frames.

That is, we have to determine the frames to be skipped from coding and to �nd the

quantization parameters for the frames to be encoded,as Figure 1.2, with the following

constraints:

1. The bit of total coded frames is equal to bitrate Rt.

2. The distortion of each coded frame is within [Dmin,Dmax].

-2-
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F(t+2) F(t+4)F(t)

R

F(t-1)F(t-2)

SkipNR

F(t+1) F(t+3) F(t+4)

R

# of Skipped Frames

F(t+1) F(t+3)

Skip Skip

F(t+1) F(t+3)F(t+1) F(t+3)

Skip SkipNR

F(t+2)

NR

F(t+2)

Figure 1.2: Proposed adaptive frame coding.

3. The overall distortion is minimized.

We can further formulate our objectives and constraints as a quality- and rate-

constrained optimization problem that

q�=argmin
q

NX
i=1

Di(q)

s:t:

8><>:
(1)

P
i2C
Ri(q) � Rt

(2i) Dmin � Di(q) � Dmax;8i 2 C| {z }
where

Di : Distortion of the ith frame

Ri : Rate of the ith frame

q = [q1; q2; :::; qN ]
T ; qi = f0; 1; :::; 51; 52

Skip

g; i = f1; 2; :::; Ng;

C = fi : qi 6= 52; i = f1; 2; :::; Ngg

Owing to only coded frames having distortion constraints, the number of our con-

straints is a variable number as (1 + jCj ).

1.2 Related Works

Reed et al: used integer programming to analyze the temporal-, spatial- and psnr-

domain optimal bit allocation problem under maximal bu¤er size constraint in [8].

-3-
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Ortega et al: used integer programming as optimal solution to solve the bu¤er con-

strained problem for each individual macroblock in [6], also they applied Lagrange

multiplier to a nearly optimal solution for the budget constrained problem. Owing to

inter programming tests all possible data set to �nd the optimal solution to multiple

constrained or multiple dimensional optimization problems, the solution can be viewed

as an absolute optimal solution compared to other algorithms; however, the complexity

of integer programming is too large to implement in real time applications. As a result,

Lagrangian optimization is applied under several speci�c assumptions in video coding

domain for some fast algorithms.

As for optimization problems with multiple constraints by Lagrangian optimiza-

tion method, in [5], A. Ortega used Lagrangian method to solve the multiple bu¤er

constrained problem by iteratively adjusting Lagrange multiplier �. Ahmad et al: ap-

plied KKT conditions based on Nash bargaining solution and just-noticeable distortion

threshold for each macroblock to solving the perceptual quality constrained problem in

[1]. In [12], Wang et al: also applied KKT conditions to each I frames for the long-term

distortion constrained problem. Based on KKT conditions, each constraint corresponds

to a Lagrange multiplier and the optimal solution occurs when all costraints are sat-

is�ed and the Lagrangian cost is at an minimum value by iteratively adjusting each

Lagrange multiplier in video domain.

Furthermore, Ramchandran et al: made use of Viterbi algorithm with Lagrangian

cost to solve the dependent constrained problem and developed pruning rules based

on monotonicity property for the optimization problem with single constraint in [7].

Then Liu et al: improved this pruning algorithm for frame skipping situation in [4].

In order to implement adaptive frame skipping in real time system, Song et al: pre-

de�ned Lagrange multiplier and which frames to be encoded for each sub-GOPs, and

solved the problem by grandient search in [11]. Because we only have to adjust one

Lagrangian multiplier to the optimize problem with single constraint, Viterbi algorithm

is applied based on dependent relation and monotonic property. Also, a fast algorithm

is developed based on independent relation and commonly used in modern encoder

structure.

All constrained problems can be solved by dynamic programming either in con-

strained form or unconstrained form (Lagrangian method), though the complexity is

-4-
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huge. In order to reduce complexity, modern rate constrained bit allocation prob-

lem develop Lagrangian cost algorithm based on independent property for real time

applications.

1.3 Contribution and Organization of Thesis

Specially, our main contributions in this work include the following:

� Model for Quality- and Rate-constrained Adaptive Frame Encoding

We de�ne our adaptive frame encoding problem as a optimization problem and

with multiple constraints and survey kinds of methodologies to solve constrained

problems.

� Design of Search Strategies for Optimal Solutions

We implement the dynamic programming to obtain the optimal solution to

our quality- and rate- constrained problem and �nd out the optimal path is

a stairway-like curve; besides, we compare the complexity of di¤erent dynamic

programming algorithms.

� Propose a Heuristic Algorithm Based on Successive Re�nement

We propose a greedy heuristic algorithm based on independency assumption and

successive re�nement to reduce complexity after observing the optimal solution.

The remaining of this thesis is organized as follows: Chapter 2 contains a survey

of constrained optimization problem, and the di¤erences between our problem and

other previous works are also compared. Chapter 4 presents the optimal solution and

its analysis in the beginning and then we introduce our heuristic solution and the

experimental results; also, an iterative algorithm with lower complexity is proposed in

the end. This thesis ends with the summary of our observations and a list of future

works.

-5-



CHAPTER 2

Constrained Optimization Problems :

Principles and Applications

We will introduce the theory background such as integer programming, Lagrangian

optimization and Viterbi algorithm for optimizing constrained problems in detail in

the chapter.

2.1 Background

In this section, we will introduce the methodologies to optimize constrained problems

and the dynamic programming is commonly used like integer programming and Viterbi

algorithm.

A simple algorithm for constrained optimization problem is to �nd the optimal solu-

tion among possible data set by dynamic programming and this algorithm is developed

as integer programming; on the other hand, the Lagrange multiplier is another math-

ematical tool to optimize constrained problems, and the Viterbi algorithm as forward

dynamic programming is applied. Although integer programming and Viterbi algo-

rithm are all trellis-based algorithm, the number of nodes at each stage is constant in

-6-
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VA

Integer
Programming

Dynamic
Programming

Figure 2.1: Illustration of dynamic programming, integer programming and Viterbi
algorithm.

DependentIndependentDependentIndependent

Generalized Lagrangian Optimization

Unconstrained OptimizationConstrained Optimization

Constrained Optimization Problem

Integer Programming Lagrange Multiplier

Single (Equality) Constraint Multiple (Equality+Inequalities) Constraints

KKT Conditions

Constant Slope Viterbi Algorithm Water Filling Principle Integer Programming

Figure 2.2: Methodologies for constrained optimization problem.

Viterbi algorithm but is variable in integer programming. The relation among dynamic

programming, integer programming and Viterbi algorithm is illustrated in Figure 2.1.

Also, Figure 2.2 shows di¤erent methodologies to optimize constrained problems,

and we will introduce these methodologies in the following subsections: integer pro-

gramming in section 2.2, Lagrangian optimization in section 2.3, water �lling principle

in section 2.3.1, and Viterbi algorithm in section 2.3.2.

2.2 Integer Programming

Integer programming is a trellis-based dynamic programming algorithm to solve the

constrained problems. Integer programming grows its paths stage by stage and prunes

the violated branches to form a trellis from the initial stage to the end stage; as Figure

2.3, the optimal path can be obtained by �nding the node with minimal distortion

value at the �nal stage.
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Total Coding Bit

Branches

Time

di+1 2

di+1 2

di 2

di 1

di+1 1

Ti-1 Ti

Stage i-1

ri-1

Ti+1

Stage i

di+1 1

Stage i+1

Path

Feasible Nodes

Constraint

Pruned Node

Figure 2.3: Illustration of integer programming.

Although the complexity raising exponentially while the number of stage increases,

it can be reduced by clustering the operation points to decrease the number of node or

using limited-lookahead window optimization to obtain an sub-optimal path at each

window size interval [8].

Ortega et al: used the algorithm to solve the problem with bu¤er constraint on each

frame [6]. Additionally, Reed et al: analyzed the best solution amaong the combination

of spatial, temporal, and psnr dimensions by this algorithm [8].

2.3 Lagrangian Optimization

While dealing with mathematical optimization problems, the method of using Lagrange

multiplier � can be applied to �nding the extrema of a function of several variables

subject to one or more constraints. That is, suppose a function to be minimized, f(x; y),

and the solution set is constrained by another function, g(x; y) = 0, the auxiliary

function is

J(x; y; �) = f(x; y) + �g(x; y)

and the minimum occurs when

rx;y;�J(x; y; �) = 0

Furthermore, owing to the convexity characteristic of the rate-distortion curve in

video coding domain, for a given �, the minimum occurs only at the minimal value

of J(x; y; �) = f(x; y) + �g(x; y). As for optmization problems with multiple con-

-8-
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straints, the generalized Lagrangian optimization, Karush-Kuhn-Tucker conditions, is

commonly used; besides, the water �lling principle as a special case of Lagrangian

optimization based on independent and convex property is described.

2.3.1 Optimization Problems with Multilple Constraints

2.3.1.1 Karush�Kuhn�Tucker Conditions

The method of using Lagrange multiplier to solve the nonlinear constrained problem

is the basic tool in mathematical optimization problems; hence we introduce the gen-

eralized Lagrangian optimization (Karush�Kuhn�Tucker Conditions) [3].

Generally, given a optimization problem in the standard form,

min f(x) s:t:

8<: gi(x) � 0; for i = 1; 2; :::;m

hj(x) = 0; for j = 1; 2; :::; l

where the objective function f(x) is the function to be minimized, and gi(x), hi(x)

are constraint functions. If x� is a local minimum, then there exists constants ui(i =

1; 2; :::;m) and vj(j = 1; 2; :::; n) such that

J(x;u;v) = f(x) +
mX
i=1

�igi(x) +
nX
j=1

vjhj(x)

(1) rxf(x�) +
mP
i=1

��irxgi(x�) +
nP
j=1

v�jrxhj(x�) = 0

(2) hj(x
�) = 0; for j = 1; 2; :::; n

(3) gi(x
�) � 0; for i = 1; 2; :::;m

(4) ��i � 0; for i = 1; 2; :::;m

(5) ��i gi(x
�) = 0; for i = 1; 2; :::;m (Complementarity)

The above formulation is the famous Karush�Kuhn�Tucker conditions (KKT condi-

tions). It reveals that equalities must set up at the �rst place and then adjust violated

inequalities to boundary values iteratively to obtain minimum x�. An example is illus-

trated in section 3.1.

-9-
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2.3.1.2 Water Filling Principle

Water �lling principle is known as a special case of KKT conditions. Suppose the

constrained problem to be optimized is

min

NX
k=1

Dk(Rk); s:t:

�(1) NP
k=1

Rk = RN

(2)Rk � 0

where R is the average rate. According to KKT conditions, the objective function

becomes

J(R; �;u) =
NX
k=1

Dk(Rk) + �(

NX
k=1

Rk �RN) +
NX
k=1

ukRk

and optimal solution must satisfy8>>>>>>>>>><>>>>>>>>>>:

(1)rJ(R�; ��;u�) = 0)

(1a)D0
k(Rk) = �(�+ uk) for k = 1; 2; :::; N

(1b)
NP
k=1

R�k = RN

(1c)R�k � 0 for k = 1; 2; :::; N

(4)u�k � 0

(5)u�kR
�
k = 0

Based on the above formulation, the optimal solution can be further discussed into

two cases:

Case 1 No Violated Inequality

IF R�k > 0 for all k, then u
�
k = 0 for all k (condition 5), then the problem degrades

to

min

NX
k=1

Dk(Rk), s:t:
NX
k=1

Rk = RN

and the solution is

D0
k(R

�
k) = ��| {z }

Equal slope

for k = 1; 2; :::; N; where
NX
k=1

R�k = RN

which represents the equal slope concept.

Case 2 With Violated Inequalities

-10-
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R(λ*)
(Violating Constraint)

R

J=D+λR

Minimal Lagrangian Cost
within Constraint

Figure 2.4: For each independent source, moving the violated value to boundary value
achieves minimal Lagrangian cost based on independent and convex properties.

The violated inequalities can be adjusted based on the following two assumptions

in video domain:

� Independency

Each source signal is independent of others. As a result, a violated source can

be adjusted to boundary value to satisfy the constraint without a¤ecting rate-

distortion curves of other sources.

� Convexity

Each source has one and only one minimal Lagrangian cost operation point based

on convexity. Any violated source can be adjusted to boundary value of the

constraint to achieve the corresponding constrained local minimum as Figure

2.4.

According to the above assumptions and KKT conditions, if R�k = 0, k 2 H for

several source set H, then u�k = 0 for k 2 T = fN � Hg, then the original problem

becomes

min
NX
k=1

Dk(Rk); s:t:

�(1) NP
k=1

Rk = RN

(2)Rk = 0 for k 2 H

) min

NX
k2T

Dk(Rk); s:t:

NX
k2T

Rk = RN

and the solution becomes

D0
k(R

�
k) = ��| {z }

Equal slope

for k 2NnH ; where
NX
k2T

R�k = RN

-11-
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1*

2*

Allocated BitsWater Line

Figure 2.5: Illustration of water �lling principle.

That is, the optimal solution includes the following steps:

1. Ingore the inequality constraints and bring constant slope into practice.

2. If all constraint are satis�ed then the optimal solution is achieved. Otherwise,

adjusting the violated constraints by moveing them to the boundary values and

no more optimization operations for them.

3. Update the equality constraint.

4. Repeat step 1, 2, 3 until the optimal solution is achieved or there is no suitable

solution for current constrained problem.

A graphic illustration of the solution is shown in Figure 2.5, and it is commonly

called a water �lling principle.

2.3.2 Optimization Problems with Single Constraint

In [6], a theorem is proposed to solve the budget constrained problem that for any

real positive number �, the Lagrange multiplier, if the mapping x�(i) for i = 1; 2; :::; n

minimizes

nX
i=1

dix(i) + �rix(i)

then it is also the optimal solution to the problem

min

nX
i=1

dix(i), s:t:
nX
i=1

rix(i) � Rt
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D

R

Budget

Min. Lagrange
Cost Solution

Optimal Solution

|Slope|=λ

min. J=D+λR

Figure 2.6: Illustration of optimization solution by minimal Lagrangian cost.

where

D(�) =
nX
i=1

dix�(i) �
nX
i=1

dix(i), s:t:Rt = R(�) =
nX
i=1

rix�(i)

That is, referring to � as the slope (Figure 2.6), for a �xed �, we can obtain

the best possible solution that meets the budget constraint Rt = Rtotal. And the

� is needed to iteratively change by bisection search algorithm [6][10] until we �nd

the multiplier ��, such that the total number of used bits meets the original budget

constraint, R(��) = Rtotal, within a convex hull approximation.

Therefore, we can transform the original constrained problem to unconstrained

problem, and the solution by this constant slope algorithm is optimal for rate distortion

trade-o¤. For example, the typical rate control problem is de�ned to minimize the

total distortion
nP
i=1

Di(Q1; Q2; :::; Qi), where Qi 2 fq1; q2; :::; qNg, subject to the total

rate/budget constraint Rtotal as follows:

min

nX
i=1

Di(Q1; Q2; :::; Qi); s:t:

nX
i=1

Ri(Q1; Q2; :::; Qi) � Rtotal

and the optimal solution is equal to �nding Q�, �� and to minimize

J(Q; �) =

nX
i=1

Ji(Q1; Q2; :::; Qi);

where Ji(Q1; Q2; :::; Qi) = Di(Q1; Q2; :::; Qi) + �Ri(Q1; Q2; :::; Qi)

such that J(Q�; ��) � J(Q; ��) and R(��) = Rtotal.

Owing to that current coding unit can reference previous coded units to reduce tem-
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2

3

1

J1(2)

J1(1)

J1(3)

R1

D1

J2(1,2)

J2(2,2)

J2(3,2)

R2

D2

Figure 2.7: Di¤erent quantizer choice for frame 1 leads to di¤erent R-D curve of
frame 2, also the solution of minimal lagrangian cost to dependent problem.

poral redundancy in video coding, the quality of previous coded units will impacts the

coding e¢ ciency of the following coding units. That is, the sum of minimal Lagrangian

cost at each individual stage will not always result in the optimal solution, as Figure 2.7

[7]. Song et al: assumed the dependency relationship between sub-GOPs and propose

a real-time system to optimize low-bitrate constrained problem with frame skipping,

where the Lagrange multiplier and frames to be encoded for each sub-GOPs are pre-

decided [11]. Schuster et al: also developed an MINMAX distortion criterion based

on Lagrangian method to solve the minimum rate subject to each source distortion

constrained dependent problem [9].

In order to solve this dependent problem, the Viterbi algorithm with Lagrangian

cost is applied and we will introduce it in section 2.3.2.1.

2.3.2.1 Viterbi Algorithm for Dependent Problems

Viterbi algorithm [2] is a trellis-based forward dynamic programming procedure which

iteratively determines possible shortest paths and prunes out non-optimal paths stage

by stage.

For each stage, a node is an operating point of a quantizer, and a growing branch

is connected from node at the previous stage to node at the current stage with corre-

sponding Lagrangian cost J = D + �R. The optimal solution is the path of minimal

Lagrangian cost from the beginning stage to the end stage for a speci�c �. When �

increases, the optimal path is tend to smaller the total coding bits, and vice versa.

Still, we have to iteratively �nd �� by bisection search until R(��) = Rtotal.

-14-



Chapter 2. Constrained Optimization Problems : Principles and Applications

I

38.2

33.6

32.8

I P149.2

47.1
49.4 1

48.8
46.6

48.9 1

49.7 2
47.5 2
49.9 2

I P1B1=1

B1=1

B1=1

B1=1

57.08

57.43 1

57.08

57.45 1

I P1B1=1

B1=1

P269.29

68.39

69.64 1

68.75 1

69.18 2
69.55 2

I P1B1=1
P2

77.24

B2=2

B2=2
77.67 2

Figure 2.8: Illustration of Viterbi algorithm with minimal Lagrangian cost path in
IBBP case.

Ramchandran et al: applied VA algorithm with Lagrangian cost and propose prun-

ing rules based on monotonicity property, as Figure 2.8 [7]. Assume the quantizer

grades ordered from �nest to coarsest, for any � � 0, there exists monotonicity prop-

erty that for i � i0

J2(i; j) < J2(i
0
; j)

where quantizer j of frame 2 is dependent on quantizer i of frame 1. Afterwards, the

pruning conditions based on monotonicity property are used to eliminate suboptimal

operating points:

� Pruning Condition 1

If J1(i) + J2(i; j) < J1(i
0) + J2(i

0; j), for any i < i0, then (i0; j) can be pruned

out.

� Pruning Condition 2

If J2(i; j) < J2(i; j
0), for any j < j0, then (i; j0) can be pruned out.

� Pruning Condition 3

According to monotonicity property and pruning conditions, if J1(i) < J1(i0) for

i < i0, then state node i0 can be pruned (for I frames).

In [4], Liu et al: also improved VA by considering frame skipping situation, as Figure

2.9 [4], and assumed monotonicity property with frame skipping brings into being for
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I
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Figure 2.9: VA with skip nodes

any � � 0,

J(i; sij; j) � J(i0; si0j; j); if i � i0

J(i; sij; j) � J(i; sij0 ; j0); if j � j0

J(i; sij; j) � J(i0; si0j0 ; j0); if i � i0; j � j0

where sij represents skipped frame reconstructed from forward coding frame with

quantizer i and backward coding frame with quantizer j. Also, the new pruning rules

are:

� Pruning Condition 4

If J(i)+J(i; sij; j)+J(i; j) � J(i
0
)+J(i

0
; si0j; j)+J(i

0; j), for i < i0 then branch

J(i0; si0j; j) can be pruned out.

� Pruning Condition 5

If J(i; sij; j) + J(i; j) � J(i; sij0 ; j0) + J(i; j0), for j < j0 then branch J(i; sij0 ; j0)

can be pruned out.

2.3.2.2 Viterbi Algorithm for Independent Problems

Though dynamic programming can apply to �nding the optimal solution to depen-

dent problems, it takes too much computation considering frame-to-frame dependency.

In order to reduce complexity, solution to dependent problem usually reduced to in-

dependent problem; that is, take rate constrained problem for example, the problem

formulation becomes

min

nX
i=1

Di(Qi); s:t:

nX
i=1

Ri(Qi) � Rtotal
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The solution to independent problem only focuses on �nding the minimal La-

grangian cost at current stage despite of the e¤ect of other stages.

2.4 Complexity Comparison

Table 2.1 lists the complexity of two di¤erent dynamic programming procedures, integer

programming and Lagrangian cost based Viterbi algorithm, for the optimal solution to

optimization problems with multiple constraints.

In the dependent case, these two DP algorithms both grow exponentially. However,

in the independent case, Lagrange multiplier method can reduce complexity enormously

by selecting the minimal Lagrangian cost node at each stage, though it still has to

iteratively re�ne the value of Lagrange multiplier; as for integer programming, because

it does not have a independent form, the complexity remains the same.

Besides, owing to each constraint corresponding to a Lagrange multiplier, and the

optimal solution by Lagrangian method needs to solve each Lagrange multiplier iter-

atively, integer programming for multiple constrained case is better than Lagrangian

optimization for lower complexity; however, as for singular equality constrained prob-

lem, Lagrangian optimization is more suitable for only one Lagrange multiplier to be

solved, and a fast algorithm can be developed based on independency assumption. The

following lists the de�nition of variables:

N : Number of Coding Units
M : Number of Operating Modes per Coding Units
C : Number of Constraints
T : Number of Test Points per Lagrange Multiplier

Table 2.1: Complexity comparison between DP

Integer Programming Lagrange Multiplier
Optimal Convex Approx.

NM (Dependent) TCNM (Dependent)
NM (Independent) TCMN (Dependent)
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CHAPTER 3

Related Works

In this chapter, we will introduce how related works applied the optimization methods

described in previous chapter into their constrained problem. Also, the di¤erence

between related works and our proposed problem is listed in the end.

3.1 KKT Conditions

Wang et al: used Karush�Kuhn�Tucker Conditions to solve long-term distortion con-

strained problem for I frames [12]; the fomulation and algorithm for their problem are

in the following:

� Problem Formulation

Let # be a set of quantizers and letDmin andDmax be the lower and upper bounds

of the distortion for each source sample. Find Q� = (Q�1; Q
�
2; :::; Q

�
n), with Q

�
i 2 #

for i = 1; 2; :::; n, where n is the number of source samples, such that

Q� = argmin
Q2#

nX
i=1

Ri(Qi)
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s:t:

�(1)Dmin � Di(Qi) � Dmax; i = 1; 2; :::; n

(2)
nP
i=1

Di(Qi) � Dtotal =
(Dmin+Dmax)

2
� n

� Algorithm

1. Consider the original optimization problem with multiple constraints as an

equivalent problem with a total �distortion budget�, Dtotal =
(Dmin+Dmax)

2
�n.

2. Apply the Lagrangian method to solve the problem with Dmin = 0 and

Dmin = 1. The result is the constant slope solution with optimal �0 and

corresponding Q0, such that
nP
i=1

Di(Qi) � Dtotal. The approximation is due

to the fact that the operational rate-distortion function is a discrete function.

3. Impose the distortion constraints. The quantization found in the previous

step is the optimal solution that minimizes total bit rate for a given total

distortion. For any frame i, the constraint condition Dmin � Di(Q
0
i ) � Dmax

may be violated. Depending on the value of Di(Q
0
i ), frames are divided into

three groups:

(a) If Di(Q
0
i ) < Dmin, the constant slope solution for this frame is not

admissible. In this case, we need to replace Q0i by an admissible Q
�
i

such that Di(Q
�
i ) � Dmin.

(b) Similarly, if Di(Q
0
i ) � Dmax, replace Q0i by an admissible Q

�
i such that

Di(Q
�
i ) � Dmax.

(c) If Dmin � Di(Q
0
i ) � Dmax, the constant slope solution Di(Q

0
i ) does

not violate the distortion constraints, but, due to the changes of the

operating points of the frames in the other two groups, the Q values for

this group cannot be �nalized at this stage.

4. Initialize the next iteration. Let the number of frames in the above three

groups be Nmin, Nmax, and Nmid, respectively. If Nmin = Nmax = 0, then

the constant slope solution found in Step 2 is also the solution to the given

distortion-constrained problem. Otherwise, performs

N  Nmid

Dtotal  Dtotal �NminDmin �NmaxDmax

If the updated Dtotal value is positive, go back to Step 2; otherwise, end the
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algorithm and the Q found at this iteration is the approximated solution to

the given distortion-constrained problem.

3.2 Viterbi Algorithm with Lagrangian Cost

Liu et al: applied Viterbi algorithm with Lagrangin cost to solving the spatial quality

(QP) selection, temporal resolution (frame rate) optimization problem in [4], where

they use MCI as a temporal interpolation method to reconstruct skipped frames. The

formulation and algorithm for their problem are in the following:

� Problem Formulation

Let # be a set of quantizers ranging fromQmin toQmax. FindQ� = (Q�1; Q
�
2; :::; Q

�
n),

with Q�i 2 # for i = 1; 2; :::; n, where n is the number of source samples, and �nd

S� = (S�1 ; S
�
2 ; :::; S

�
n) with Si 2 [0; 1], where Si = 0 represents current frame is

skipped, Si = 1 represents current frame is encoded; the maximal number of

successive skipping frame Smax = 2, such that

(Q�; S�) = arg min
Q2#;S2[0;1]

NX
i=1

Di(Q;S) =
NX
i=1

fDi(Qi)j(Si = 1) +Di(Qi)j(Si = 0)g

s:t:
NX
i=1

Ri(Q;S) =
NX
i=1

Ri(Qi)j(Si = 1) � Rbudg et

where
S = [S1; S2; :::; SN ]; Si 2 [0; 1]; i = 1; :::; N

# = [Q1; Q2; :::; QN ]; Qi 2 [Qmin; Qmax]; i = 1; :::; N

� Algorithm

1. Initialize the value of �:

2. Calculate for the �rst frame, which is an I-frame, for every QP value within the

range i 2 [Qmin; Qmax], as shown in Figure 3.1 (a).

3. Prune unquali�ed I-nodes according to the monotonicity property as shown in

Figure 3.1 (b).

4. Grow the trellis to Stage 2 by coding the �rst P-frame with all QP values. The

skip node is reserved as shown in Figure 3.1 (c).

5. Prune at Stage 2 with Rules 1 and 2. Note that the skip node should be kept as
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I I I P1

Skip
Node

I P1 I P1 P2 I P1 P2

(a) (b) (c) (d) (e) (f)

I P1 P2 P3 I P1 P2 P3 I P1 P2 P3

(g) (h) (i)

Figure 3.1: Illustrative example of the Viterbi algorithm with skip nodes.

shown in Figure 3.1 (d).

6. Grow the trellis to one more stage. The skipped frame in the previous stage is

reconstructed by the neighboring reference frames coded with selected QPs as

shown in Figure 3.1 (e).

7. Prune at Stage 3 based on the monotonicity property, i.e., Rules 1 and 2 for

pruning the third coded frames, Rules 3 and 4 for pruning previous skipped

frames. The skip node at Stage 3 is reserved as shown in Figure 3.1 (f).

8. Similar to Step 4, grow trellis to Stage 4 as shown in Figure 3.1 (g).

9. Prune paths that have more successive skipped frames than Smax as shown in

Figure 3.1 (h).

10. Similarly to Step 7, pruning is performed based on the monotonicity property as

shown in Figure 3.1 (i).

11. Repeat Step 8�10 until the last frame. Update and return to Step 2.

12. Stop when � converges.

3.3 Variable Frame Rates Encoding

Song et al. proposed a rate control mechanism for low-bit-rate video via variable-

encoding frame rates in [4]. In order to implement this variable frame rate encoding

under real time environment, they divide each gop into 8 sub-GOPs with size=12 for

complexity issue and de�ne the value of each Lagrange multiplier for each sub-GOP
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under the consideration of dependency relationship between sub-GOPs. The proposed

algorithm consist of two parts:

1. Frame-Rate Control

Decide the frame rate (number of encoded frames) and encoded frame positions

for each sub-GOP before encoding based on the histogram of di¤erence image.

2. Bit Allocation

Use gradient search method to obtain the optimal QP setting for individual frame

encoding in each sub-GOP, such that the following problem statement is satis�ed.

� Problem Formulation

Determine
!
qm, m=1,2,...,M to minimize

MX
m=1

(Dm(
!
qm) + wqEm(

!
qm))

s:t:
MX
m=1

rm(
!
qm) � Bsubgop �M

where
!
qm = (qm;1; qm;2; :::; qm;Nm) is the quantization parameter vector for the mth

sub-GOP, and

Nm : encoded frame number of the mth sub-GOP;
rm(

!
qm) : assigned number of bits for the mth sub-GOP;

M : number of sub-GOPs in a GOP;
Nsubgop : total frame number of a sub-GOP;
Ngop : total frame number of a GOP;
wq : weighting factor for abrupt quality change and �ickering;
di(q1; q2; :::; qi) : distortion measure for the ith frame;
ri(q1; q2; :::; qi) : allocated bit rates for the ith frame;

and

Dm(
!
qm) =

1

Nm

NmX
i=1

di(q1; q2; :::; qi);

Em(
!
qm) =

1

Nm

NmX
i=1

(di(q1; q2; :::; qi)� di�1(q1; q2; :::; qi�1))2

Dm(
!
qm) represents the distortion measure of encoded frames, andEm(

!
qm) represents

the distortion variance measure of two successive encoded frames; besides, wq is a

weighting factor for abrupt quality change and �ickering controlling and it is set to 2
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Table 3.1: Comparison among the proposed problem and related works

Author Thesis Wang et al: [12] A. Ortega [5]
Constraints Rate, Distortion(Multiple) Distortion(Multiple) Bu¤er(Multiple)
Frame Skipping Y N N
Recovery Method Frame Copy NA NA
Frames to be Encoded Unknown Pre-Decided Pre-Decided
Lagrange Multiplier Value Bisection Search Bisection Search Bisection Search
Proposed Algorithm VA KKT Conditions KKT Conditions

Author Schuster et al:[9] Ahmad et al:[1]
Constraints Distortion(Multiple) Perceptual Quality(Multiple)
Frame Skipping N N
Recovery Method NA NA
Frames to be Encoded Pre-Decided Pre-Decided
Lagrange Multiplier Value Bisection Search (Dmax) Bisection Search
Proposed Algorithm DP KKT Conditions

Author Liu et al: [7] Song et al: [11]
Constraints Rate Rate
Frame Skipping Y Y
Recovery Method Temporal Interpolation Frame Copy
Frames to be Encoded Unknown Pre-Decided
Lagrange Multiplier Value Bisection Search Pre-Decided
Proposed Algorithm VA Gradient Search

in their experiments.

After de�ning the penalty function for the mth sub-GOP as

Pm(
!
qm) =

mX
i=1

ri(
!
qi)�m �Bsubgop

and applying the pre-de�ned Lagrange multiplier �m, the above constrained prob-

lem becomes to minimize the following unconstrained function

�m(
!
qm; �m) = Jm(

!
qm) + �mmaxf0; Pm(

!
qm)g; for m = 1; 2; :::;M

where Jm(
!
qm) = Dm(

!
qm) + wqEm(

!
qm)

and a gradient search method was used to �nd the optimal solution.

3.4 Comparison

In order to understand the di¤erences between the proposed quality- and rate-constrained

problem and other constrained problems, we compare and list several features in Table

3.1.

From the above table, we can clearly observe that our problem is di¤erent from the

others and our problem is di¢ cult for having variable multiple constraints, uncertain to
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number of skipped frames, and the dependent relation between frames to be skipped

and frames to be encoded. Besides, The best method of getting the optimal solu-

tion to our constrained problem is to use integer programming instead of Lagrangian

optimization.
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CHAPTER 4

Experiments and Analyses

In this chapter, we implement the integer programming to solve our quality- and rate-

constrained problem, and analyze the optimal solution path; then, in order to reduce

complexity, we propose a simple heuristic solution based on independent relationship

and successive re�nement assumption. Figure 4.1 shows our experiment procedures;

the experiment settings, experiment results and observations for each experiment are

described in each section. We use jm 12.3 and CIF format with 37~39 psnr constraints

in all experiments.

4.1 Optimal Solution Analyses

We implement the integer programming algorithm to solve our constrained problem,

and observe the R-D data from the view of MSE, optimal path, and then propose the

concept of dominant lines.
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4.1.1 MSE Weighting E¤ect

Setting:

Sequence Akiyo, Mobile
Algorithm Integer Programming
Total Frame 8
Experimental Group Coded Frame MSE, Copy Frame MSE, Total MSE with

Frames to be Encoded=7
Control Group Coded Frame MSE, Copy Frame MSE, Total MSE with

Frames to be Encoded=2

Observation

� Copy frame MSE e¤ect:

From Figure 4.2 and 4.3, we can clearly observe the copy frame MSE weights

overwhelmingly compared to the coded frame MSE.

� Variation line in local view, horizontal line in global view:

Though the coded frame MSE varies among di¤erent coding bit range in Figure

4.2 (b) and 4.3 (b), the overall MSE looks like horizontal lines for copy frame

MSE e¤ect.

� Larger MSE gap with more frame skipped:

From Figure 4.2 (a), 4.4 (a) and Figure 4.3 (a) ,4.4 (b), the gap between di¤erent

coding frame selections is larger while more frames are skipped.

� Unobvious dominant lines in static sequence:

There does not exist obvious horizontal dominant lines in static sequence, how-

ever, the gap among di¤erent coding frame selections is minor with less frame

Complexity Issue

Frame Selection Effect

Dominant Lines

Optimal Path Analyses
Total Frame MSE
Coded Frame MSE Analyses
Copy Frame MSE

Optimal Solution

Independent Heuristic Algorithm

Two Frame Selection
Methodologies

Successive Refinement
Mechanism

Figure 4.1: Our experiment procedures.
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Figure 4.2: Total MSE(a), coded frames MSE(b) and copy frames MSE(c) in Akiyo
when encoding 2 frames.

skipped as Figure 4.2 (a) and 4.4 (a).

� Obvious dominant lines in motion sequence:

There exists a dominant line for each di¤erent total coding frame in motion

sequence as Figure 4.3 (a) and 4.4 (b).

Remarks

Because the copy frameMSE weights overwhelminly compared to coded frameMSE,

choosing the correct combination of coding frames is more important than allocating

bits among these frames; besides, since the gap between di¤erent coding frame selec-

tions is large and there exists a dominant line for each di¤erent total coding frames,

we can reduce the original multiple constraints dependent problem to independent

problem by always �nding the corresponding dominant line of current encoding frame

numbers, which is the basic idea of our heuristic solution.
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Figure 4.3: Total MSE(a), coded frames MSE(b) and copy frames MSE(c) in Mobile
when encoding 2 frames.
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Figure 4.4: Total MSE in Akiyo(a) and in Mobile(b) when encoding 7 frames.
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Figure 4.5: Optimal path from low bit budget to high bit budget of (a)Akiyo,
(b)Mobile, (c)Football.

4.1.2 Optimal Path Analyses

Setting:

Sequence Akiyo, Mobile, Football
Algorithm Integer Programming
Total Frame 8

Observation

� Optimal path is a stairway-like curve:

Figure 4.5 shows the optimal path of (a)Akiyo, (b) Mobile, (c) Football when

coding bits range from low to high. The optimal path is a stairway-like curve,

which means number of frames to be encoded and coding frame selection should

be di¤erent to optimize our constrained problem while the available bit budget

changes.

� Optimal path chooses di¤erent total coding frames interactively in static se-

quence:

In static sequence like Akiyo, when available bit budget decreases, the number
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Figure 4.6: Overall distortion may interlace in static sequence like Akiyo(a); the
correct Qp selection for each coding frame may not only reduce coding bits but also
reduce overall distortion(b); while available bit budget decreases, the optimal solution
may choose di¤erent frames to be encoded instead of skipping another frame immedi-
ately(c).

of total coding frames may increase, as the interlacing part in Figure 4.6 (a);

however, this situation would not occur in motion sequence such as Football and

Mobile for Frame copy MSE weights largely.

� Encoding more bits does not always results in smaller distortion:

Not always using more bits results in smaller distortion, as Figure 4.6 (b). Be-

cause skipped frame makes temporal dependency decrease and the frame copy

e¤ect, even we allocate bits among the same selected frames, the correct Qp set-

ting for each frame sometimes not only reduce coding bits but also reduce overall

distortion.

� Choosing another coding frame combination is better than skipping another

frame immediately:

In Figure 4.6 (c) we can observe the clear stair-way curve, which means the

optimal path should select another frame combination instead of choosing another

frame to be skipped immediate when bit budget decrease.
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Figure 4.7: Dominative lines of di¤erent total number of coded frames.

� Selecting another frame to be skipped immediately for complexity issue when less

frame skipped:

From Figure 4.6 (d), the bit range of number of coded frame=5 is overlapped with

the bit range of number of coded frame=4; however, the bit range of number of

coded frame=3 is not overlapped with the bit range of number of coded frame=2.

That is, when available bit decreases, to select a frame to be skipped is a good

choice with less frame skipped, but it is better to select another coding frame

combination with more frame skipped.

Remarks

The optimal solution to our proposed constrained problem is to use dynamic pro-

gramming. However, in Figure 4.5, each line represents a coding frame combination,

e.x. when enocding 3 frames, 1-4-5, among total 8 frames, the optimal solution chooses

di¤erent coding frame combinations to adapt di¤erent bit budget constraint and it

must be iteratively solved. Therefore, we want to reduce complexity from dependent

problem to independent problem, which becomes to �nd each dominate line among

di¤erent total number of coded frames as Figure 4.7.
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Figure 4.8: Illustration of heuristic solution for independent problem with multiple
constraints by Viterbi algorithm.

4.2 Proposed Heuristic Solution

Figure 4.8 illustrates the algorithm �ow, and described in the following:

1. Set � = 0:

2. Choose the quantization parameter operation point of I frame where lagrangian

cost J = D + �R is minimal.

3. Grow the branch from the minimal node of this stage to next stage with QPnext =

QPcurrent � 5, and prune out the node with unsatis�ed quality constraint.

4. Select the operation point with minimal lagrangian cost among current stage,

and repeat 3, 4 until to the end stage.

5. Increase � gradually until any more increase to � will result in skipping another

frame.

4.2.1 Coding Frame Selection Methodologies

Setting:

Sequence Akiyo, Mobile, Football
Total Frame 8
Experimental Group Two Coding Frame Selection Methodology with Heuristic Algorithm
Control Group Non-Coding Frame Selection Methodology with Heuristic Algorithm
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Figure 4.9: Illustration of methodology 1.
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Figure 4.10: Illustration of methodology 2.

The result is in Figure 4.11

1. Suppose there are total i frames in the pre-analysis bu¤er, and j skipped frames

to be chosen, the overall candidates are i!
i!(i�j)! combinations. This methodology

is towards to �nd the minimal sum of di¤erence between coding frame and copy

frame. As Figure 4.9, suppose there are 8 frames in the bu¤er, and we are going

to choose frame 1, 4, and 7 as coding frames.

2. Almost the same as methodology 1, excepts that this methodology also considers

the di¤erence between coding frames. Figure 4.10 shows a candidate combination.

Observation

� In static sequence, methodology 1 and 2 doesn�t have too much performance

di¤erence.

� Methodology 1 obtains smaller MSE curve than methodology 2 in motion se-

quence.

� These two methodology doesn�t perform too bad compared with independent

R-D curve.

Remarks

Once we know how many coded frames available to encode, we can use these two

methodologies to choose which frames to be encoded and reduce complexity compared
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Figure 4.11: Comparison among proposed heuristic solution, methodology 1 and
methodology 2 in Akiyo (a), Mobile(b) and Football(c).
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Figure 4.12: Illustration of successive re�nement.

to independent solution, though it still needs to try i!
i!(i�j)! combinations, which means

once the window size increases, the calculation will also increases exponentially.

4.2.2 Successive Re�nement

De�nition of Successive Re�nement

Once we decide to skip frame i, then when it is necessary to skip another frame,
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Figure 4.13: Comparison among proposed heuristic solution and its successive re-
�nement(a), methodology 1 and its successive re�nement(b), methodology 2 and its
successive re�nement(c) in Akiyo.

then frame i must be skipped �rst, as Figure 4.12.

Setting:

Sequence Akiyo, Mobile, Football
Total Frame 8
Experimental Group Successive Re�nement
Control Group Non-Successive Re�nement

The result for Akiyo is in Figure 4.13, for Mobile in Figure 4.14 and for Football in

Figure 4.15

Observation

No matter which coding frame selection methodology is used, the di¤erence between

successive re�nement R-D curve and non-successive re�nement R-D curve is minor.

Remarks

While using successive re�nement, the complexity can reduce from exponential

increasing to linear increasing.
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Figure 4.14: Comparison among proposed heuristic solution and its successive re-
�nement(a), methodology 1 and its successive re�nement(b), methodology 2 and its
successive re�nement(c) in Mobile.

4.3 Proposed Rate Control Mechanism

As Figure 4.16, we propose an iterative successive re�nement mechanism to solve the

original problem in the independent way. The main idea of the algorithm is to decide

which frames to be encoded at the �rst place for MSE of di¤erent copy frames com-

binations are huge; then we can allocate available bits among these chosen frames to

encode and achieve the objective of total minimal distortion. Suppose that there is a

R-D model which can estimate the needed coding bits, the rate control algorithm is

the following:

Step 1 :

Use the r-d model to calculate the needed coding bits while encoding pre-selected

frames at distortion=Dmax. If the required bits are smaller than available bits, go to

Step 3, else go to Step 2.

Step 2 :

Use frame selection methodology to select a frame to be skipped with successive

re�nement mechanism, and go to Step 1.
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Figure 4.15: Comparison among proposed heuristic solution and its successive re-
�nement(a), methodology 1 and its successive re�nement(b), methodology 2 and its
successive re�nement(c) in Football.
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Figure 4.16: Proposed algorithm �owchart. At the �rst stage to decide which frames
to be encoded; to allocate bit among selected frames at the second stage.
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Step 3 :

Since skipped frames are out of the optimization target, we can simply allocate

available bits among those selected coding frames and achieve the goal of minimum

overall distortion.
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CHAPTER 5

Conclusions and Future Works

In our work, we attempted to solve the quality- and rate-constrained problem and

survey di¤erent constrained optimization problem methodologies. After comparing

with related works and analyze our problem, we �nd out the best methodology for

optimal solution is to use dynamic programming and the optimal path is a stairway-

like curve, with huge complexity, the following lists our discoveries:

1. Constrained problems can be solved by dynamic programming. A simple algo-

rithm for constrained optimization problem is to �nd the optimal solution among

possible data set as integer programming; another commonly used mathematical

tool for optimization problems is Lagrangian method, which turns the original

constrained problem into unconstrained problem form.

2. For optmization problems with multiple constraints, each constraint correspond-

ing to a Lagrangian multiplier, and the optimal solution should be obtained by

iteratively adjusting each Lagrangian multiplier according to KKT conditions. As

a result, the solution by constrained optimization problem like integer program-

ming requires lower complexity than Lagrangian optimization; however, as for

the single equality constrained problem, the Viterbi algorithm with Lagrangian
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cost is commonly used owing to only one Lagrange multiplier variable to be solve,

and the modern rate control apply this algorithm to real time system based on

independency assumption.

3. According to optimal solution by integer programming for our problem, the op-

timal path is a stairway-like curve, which means number of frames to be encoded

and coding frame selection should be di¤erent to optimize our constrained prob-

lem while the available bit budget changes. Furthermore, as long as more frame

skipped, the MSE gap between each rate distortion line of di¤erent coding frame

combination is larger; also, the interlacing part among coding bit range of di¤er-

ent coding frame combination is getting smaller. From the above observation, it

is a good choice to select another frame to be skipped while the available bit bud-

get decreases in less frame skipped case for complexity issue, but it should choose

another coding frame selection instead of skipping another frame immediately

while more frame skipped.

4. In order to reduce complexity and to implement the proposed architecture in a

real-time system, we try to develop a heuristic algorithm based on independent

assumption and successive re�nement and devide the solution into two stages:

2.1) to �nd which frames to be encoded under rate constraint and distortion

constraints;

2.2) to allocate available bit budget among these chosen frames to achieve the

objective of minimize total distortion.

The experimental result shows this heuristic solution can reduce complexity ex-

ponentially, though it does not achieve a good performance because the optimal

path reveals that the encoder should choose di¤erent frames to encode when

target rate changes.

Our work is still in its early stage, we plan to extend our investigation in several

directions:

1. To survey other adaptive frame skipping methods and continue to research if

there exits a better algorithm for our problem.

2. To replace the frame copy with temporal interpolation methodology and analyze

the e¤ect.

3. To develop R-D models based on heuristic algorithm to allocate bits and minimize
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total distortion for real-time systems.
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