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Abstract

Owing to that human eyes:are more sensitive to jerky effect caused by different
frame rate rather than quality variance caused by different quality of coded frames,
most encoder systems focus on distributing available bit budget among all frames and
are not willing to reduce frame rate to obtain better spatial resolution, even the quality
of each frame becomes worse for getting less available bits. However, there exists
quality requirements to surveillance systems and some mobile devices which care
about the quality of each coded frame.

As a result, how to solve the problem with both distortion- and rate-constraint is
the main issue in our research. In order to solve this multiple constrained problem, we
start by understanding the design of optimal solution; furthermore, we study how to
use Lagrangian parameters for rate-distortion trade-off optimization.

Compared with general rate control scheme, which only consider the rate/budget
requirement, our problem must use dynamic programming for optimal bit allocation.

Nevertheless, in order to reduce complexity, dominative line and successive



refinement methodology are proposed and analyzed.
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CHAPTER 1

Research Overview

In the beginning of this thesis, we will-introduce the blueprint of the proposed quality-
and rate-constrained streaming system, including the architecture, the objective and
the formulation to our constrained problem; then related works are mentioned. Finally,

the contribution and the organization of this thesis are described in the last section.

1.1 Introduction

1.1.1 Architecture

In this section, we propose a quality- and rate-constrained adaptive frame encoding for
specific video streaming applications such as surveillance and mobile systems. Assume
there exists a system architecture like Figure 1.1, the client requires high quality sur-
veillance video streaming from the server through the internet TCP/IP transmission.
The server has a bandwidth estimation mechanism, which estimates average bandwidth
BR in every time slot (10720 second for example) and we can allocate bits among ref-
erence and non-reference pictures according to the estimated BR. However, because

network congestion occurs from time to time, we need to provide another rate shaping

-1-
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Figure 1.1: Proposed video streaming system architecture.

mechanism such that coded picture buffer can adaptively drop non-reference pictures
to adviod short-term bandwidth fluctuation.
Within this architecture, we have constraints and requirements as follows:
e Constraints
— Real-time and live streaming over interenet
— Rate- and quality-constrained applications
— Time-shifted average bandwidth estimation
— TCP/IP connection
e Requirements
— A rate- and quality-constrained video encoding scheme

— A rate shaping mechanism

1.1.2 Objective and Formulation

In order to implement the above system, we need to provide an adaptive frame encoding
that

1. Ensures the quality of the reference frames subject to a bitrate constraint.

2. Allows a R-D optimal rate shaping by skipping the non-reference frames.

That is, we have to determine the frames to be skipped from coding and to find the
quantization parameters for the frames to be encoded,as Figure 1.2, with the following
constraints:

1. The bit of total coded frames is equal to bitrate R;.

2. The distortion of each coded frame is within [Dmin,Dmax].
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F(t-2)  F(t-1) F(t) F(t+1) F(t+2) F(t+3) F(t+4)

NR R NR R

# of Skipped Frames

Figure 1.2: Proposed adaptive frame coding.

3. The overall distortion is minimized.
We can further formulate our objectives and constraints as a quality- and rate-

constrained optimization problem that

N
*=a 1 Dz
q'=argmin Zl (q)

(1) ERi(Q) < Ry
s.t. vec

(21) Dmin S Dz(q) S DmaX7Vi eC

-~

where

D; : Distortion of the 7th frame

R; : Rate of the ¢th frame

q-= [q17QQ7 "'7qN]T>qi = {07 17 "'7517}a7; = {1727 "'7N}7
Skip

C={i:q+#52i={12 . N}

Owing to only coded frames having distortion constraints, the number of our con-

straints is a variable number as (1 + |C| ).

1.2 Related Works

Reed et al. used integer programming to analyze the temporal-, spatial- and psnr-

domain optimal bit allocation problem under maximal buffer size constraint in [8].
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Ortega et al. used integer programming as optimal solution to solve the buffer con-
strained problem for each individual macroblock in [6], also they applied Lagrange
multiplier to a nearly optimal solution for the budget constrained problem. Owing to
inter programming tests all possible data set to find the optimal solution to multiple
constrained or multiple dimensional optimization problems, the solution can be viewed
as an absolute optimal solution compared to other algorithms; however, the complexity
of integer programming is too large to implement in real time applications. As a result,
Lagrangian optimization is applied under several specific assumptions in video coding
domain for some fast algorithms.

As for optimization problems with multiple constraints by Lagrangian optimiza-
tion method, in [5], A. Ortega used Lagrangian method to solve the multiple buffer
constrained problem by iteratively adjusting Lagrange multiplier \. Ahmad et al. ap-
plied KKT conditions based on Nash bargaining solution and just-noticeable distortion
threshold for each macroblock to solving, the perceptual quality constrained problem in
[1]. In [12], Wang et al. also applied KKT conditions to each I frames for the long-term
distortion constrained problem..Based on KIK'T conditions, each constraint corresponds
to a Lagrange multiplier and the optimal solution dccurs when all costraints are sat-
isfied and the Lagrangian cost is at an minimum value by iteratively adjusting each
Lagrange multiplier in video domain.

Furthermore, Ramchandran et al. made use of Viterbi algorithm with Lagrangian
cost to solve the dependent constrained problem and developed pruning rules based
on monotonicity property for the optimization problem with single constraint in [7].
Then Liu et al. improved this pruning algorithm for frame skipping situation in [4].
In order to implement adaptive frame skipping in real time system, Song et al. pre-
defined Lagrange multiplier and which frames to be encoded for each sub-GOPs, and
solved the problem by grandient search in [11]. Because we only have to adjust one
Lagrangian multiplier to the optimize problem with single constraint, Viterbi algorithm
is applied based on dependent relation and monotonic property. Also, a fast algorithm
is developed based on independent relation and commonly used in modern encoder
structure.

All constrained problems can be solved by dynamic programming either in con-

strained form or unconstrained form (Lagrangian method), though the complexity is
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huge. In order to reduce complexity, modern rate constrained bit allocation prob-
lem develop Lagrangian cost algorithm based on independent property for real time

applications.

1.3 Contribution and Organization of Thesis

Specially, our main contributions in this work include the following:
e Model for Quality- and Rate-constrained Adaptive Frame Encoding
We define our adaptive frame encoding problem as a optimization problem and
with multiple constraints and survey kinds of methodologies to solve constrained
problems.
e Design of Search Strategies for Optimal Solutions
We implement the dynamic programming to obtain the optimal solution to
our quality- and rate- constrained problem and find out the optimal path is
a stairway-like curve; besides, we comparé-the complexity of different dynamic
programming algorithms,
e Propose a Heuristic Algorithm Based on Sucecessive Refinement
We propose a greedy heuristic algorithm based on independency assumption and
successive refinement to reduce complexity after observing the optimal solution.
The remaining of this thesis is organized as follows: Chapter 2 contains a survey
of constrained optimization problem, and the differences between our problem and
other previous works are also compared. Chapter 4 presents the optimal solution and
its analysis in the beginning and then we introduce our heuristic solution and the
experimental results; also, an iterative algorithm with lower complexity is proposed in
the end. This thesis ends with the summary of our observations and a list of future

works.



CHAPTER 2

Constrained Optimization Problems :

Principles and Applications

We will introduce the theory background such as integer programming, Lagrangian
optimization and Viterbi algorithm for optimizing constrained problems in detail in

the chapter.

2.1 Background

In this section, we will introduce the methodologies to optimize constrained problems
and the dynamic programming is commonly used like integer programming and Viterbi
algorithm.

A simple algorithm for constrained optimization problem is to find the optimal solu-
tion among possible data set by dynamic programming and this algorithm is developed
as integer programming; on the other hand, the Lagrange multiplier is another math-
ematical tool to optimize constrained problems, and the Viterbi algorithm as forward
dynamic programming is applied. Although integer programming and Viterbi algo-

rithm are all trellis-based algorithm, the number of nodes at each stage is constant in

-6-
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Integer
Programming

Dynamic
Programming

Figure 2.1: Illustration of dynamic programming, integer programming and Viterbi
algorithm.

‘ Constrained Optimization Problem ‘

Constrained Mw R

Integer Programming ‘ ‘ Lagrange Multiplier ‘

Generalized Lagragngian Optimization

‘ KKT Conditions ‘

‘ Single (Equality) Constraint } ‘ Multiple (Equality+I nequalities) Constraints ‘
I ndependent Dependent I ndependent Dependent
‘ Constant Slope H Viterbi Algorithm [ ‘ Water Filling Principle ‘ ‘ Integer Programming ‘

Figure 2.2: Methodologies for constrained optimization problem.

Viterbi algorithm but is variable in integer programming. The relation among dynamic
programming, integer programming and Viterbi algorithm is illustrated in Figure 2.1.

Also, Figure 2.2 shows different methodologies to optimize constrained problems,
and we will introduce these methodologies in the following subsections: integer pro-
gramming in section 2.2, Lagrangian optimization in section 2.3, water filling principle

in section 2.3.1, and Viterbi algorithm in section 2.3.2.

2.2 Integer Programming

Integer programming is a trellis-based dynamic programming algorithm to solve the
constrained problems. Integer programming grows its paths stage by stage and prunes
the violated branches to form a trellis from the initial stage to the end stage; as Figure
2.3, the optimal path can be obtained by finding the node with minimal distortion

value at the final stage.



Chapter 2. Constrained Optimization Problems : Principles and Applications

Total Coding Bit
A

Pruned Node

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Congtraint

Branches

pFeesb{eNods

Figure 2.3: Illustration of integer programming.

Although the complexity raising exponentially while the number of stage increases,
it can be reduced by clustering the operation points to decrease the number of node or
using limited-lookahead window optimization to obtain an sub-optimal path at each
window size interval [8].

Ortega et al. used the algorithm to_solve.the problem with buffer constraint on each
frame [6]. Additionally, Reed et al: analyzed the best solution amaong the combination

of spatial, temporal, and psnr dimensions by this algorithm [8].

2.3 Lagrangian Optimization

While dealing with mathematical optimization problems, the method of using Lagrange
multiplier A can be applied to finding the extrema of a function of several variables
subject to one or more constraints. That is, suppose a function to be minimized, f(z,y),
and the solution set is constrained by another function, g(x,y) = 0, the auxiliary

function is

J(z,y,\) = f(2,y) + Ag(,y)

and the minimum occurs when
Veyrd (@, y,A\) =0

Furthermore, owing to the convexity characteristic of the rate-distortion curve in
video coding domain, for a given A\, the minimum occurs only at the minimal value

of J(z,y,A\) = f(z,y) + Ag(x,y). As for optmization problems with multiple con-
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straints, the generalized Lagrangian optimization, Karush-Kuhn-Tucker conditions, is
commonly used; besides, the water filling principle as a special case of Lagrangian

optimization based on independent and convex property is described.

2.3.1 Optimization Problems with Multilple Constraints
2.3.1.1 Karush—Kuhn—Tucker Conditions

The method of using Lagrange multiplier to solve the nonlinear constrained problem
is the basic tool in mathematical optimization problems; hence we introduce the gen-
eralized Lagrangian optimization (Karush-Kuhn—-Tucker Conditions) [3].

Generally, given a optimization problem in the standard form,

gi(x) <0, fori=1,2,...m
hi(x) =0, for j =1,2,...,1

min f(x) s.t.

where the objective function f(#) is the funetion to be minimized, and g;(z), h;(x)
are constraint functions. If z* is a local minimum;.then there exists constants u;(i =

1,2,...,m) and v;(j = 1,2, ..., 1) such that
J(X u, V + Z,uzgz + Zvjh] (X)
j=1

(1) Vaf () + Vo) + 03 Vi (o67) = 0
e .
(3
(4
(

5) urgi(x*) =0, for i = 1,2,...,m (Complementarity)

) hj(x*) =0, for j=1,2,....n
) gi(x*) >0, fori=1,2,.
) pf >0, fori=1,2,.
)

The above formulation is the famous Karush—Kuhn—Tucker conditions (KKT condi-
tions). It reveals that equalities must set up at the first place and then adjust violated
inequalities to boundary values iteratively to obtain minimum z*. An example is illus-

trated in section 3.1.



Chapter 2. Constrained Optimization Problems : Principles and Applications

2.3.1.2 Water Filling Principle

Water filling principle is known as a special case of KKT conditions. Suppose the

constrained problem to be optimized is

N
N (1)> Rr = RN
min ZDk(Rk), s.t. { k=1
k=1 (2)Rr >0
where R is the average rate. According to KKT conditions, the objective function
becomes
N N N
J(R, A w) =Y Dip(Re) + A _Ri — RN) + > up Ry
k=1 k=1 k=1

and optimal solution must satisfy

;

(la)D)(Rg) = —(A+ug) for k =1,2,..,N
N
(VIR X w) = 0 =) S RSB N

\ (1R > 0fork =1,2,..,N

Based on the above formulation, the optimal solution can be further discussed into
two cases:

Case 1l No Violated Inequality

IF R} > 0 for all k, then uj = 0 for all k (condition 5), then the problem degrades

to

N N
min ZDk(Rk), s.t. ZRk = RN
k=1 k=1

and the solution is

N
Dy(R;) ==X for k=1,2,..., N, where ZRZ = RN
—_—

Equal slope k=1

which represents the equal slope concept.

Case 2 With Violated Inequalities

-10-
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J=D+IR

Minimal Lagrangian Cost
within Constraint

oV

)
(Violating Constraint)

Figure 2.4: For each independent source, moving the violated value to boundary value
achieves minimal Lagrangian cost based on independent and convex properties.

The violated inequalities can be adjusted based on the following two assumptions
in video domain:
e Independency
Each source signal is independent of others. As a result, a violated source can
be adjusted to boundary value to satisfy the constraint without affecting rate-
distortion curves of other sources,
e Convexity
Each source has one and gnly one mimimal-Lagrangian cost operation point based
on convexity. Any violated source can be adjusted to boundary value of the
constraint to achieve the“eorresponding constrained local minimum as Figure
2.4.
According to the above assumptions and KKT conditions, if R; = 0, £ € H for
several source set H, then uj = 0 for k € T'= {IN — H}, then the original problem

becomes

N
N (1)> Ry = RN
min ZDk(Rk>a s.t. { k=1
=1 (2)R, =0 for ke H
N N
= min Y Dy(Ry), st. Y R=RN
keT keT

and the solution becomes

N
Dy (Ry) = =\ for k € N\H, where Y Rj = RN
~—_———

Equal slope keT

-11-



Chapter 2. Constrained Optimization Problems : Principles and Applications

Water Line

o

AZ*@

Allocated Bits

Figure 2.5: Illustration of water filling principle.

That is, the optimal solution includes the following steps:

1. Ingore the inequality constraints and bring constant slope into practice.

2. If all constraint are satisfied then the optimal solution is achieved. Otherwise,

adjusting the violated constraints by moveing them to the boundary values and

no more optimization operations for-them.

3. Update the equality constraint.

4. Repeat step 1, 2, 3 until ‘the optimal solution is achieved or there is no suitable

solution for current constrained problem.

A graphic illustration of the solution"is’ shown in Figure 2.5, and it is commonly

called a water filling principle.

2.3.2 Optimization Problems with Single Constraint

In [6], a theorem is proposed to solve the budget constrained problem that for any

real positive number A, the Lagrange multiplier, if the mapping z*(i) for i = 1,2, ....,n

minimizes

n

Zdix(i) + ATia(i)

=1

then it is also the optimal solution to the problem

min zn:dm(l), Stirm(z) S Rt
i=1 =1

-12-
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Budget !
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Figure 2.6: Illustration of optimization solution by minimal Lagrangian cost.

where
n

=1 =1

i=1

That is, referring to A as the slope (Figure 2.6), for a fixed A, we can obtain
the best possible solution that meets the budget constraint R; = Ryq. And the
A is needed to iteratively changetby bisection’search algorithm [6][10] until we find
the multiplier A*; such that thé total numiber of tsed bits meets the original budget
constraint, R(A\*) = Rytq, within aeonvex hull approximation.

Therefore, we can transform the original constrained problem to unconstrained
problem, and the solution by this constant-slope algorithm is optimal for rate distortion
trade-off. For example, the typical rate control problem is defined to minimize the
total distortion Zn:lDi(Ql,Q% o, Q;), where Q; € {q1,¢q2,...,qn}, subject to the total

rate/budget constraint Riyia as follows:

minZDz(Q1,Q27 w0 @i), st ZRi(Q17Q27 ey Qi) < Riotal
i=1 i=1
and the optimal solution is equal to finding Q*, \* and to minimize
J(Q’ )\) = ZJZ(Qh Q27 (X Qz)7
i=1
where Ji(@lv@% oo Qi) = Di(@la Q2, ---,Qi) + ARi(Ql?Q% e Qz’)

such that J(Q*, \*) < J(Q, \*) and R(X*) = Riotar-

Owing to that current coding unit can reference previous coded units to reduce tem-

-13-
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Figure 2.7: Different quantizer choice for frame 1 leads to different R-D curve of
frame 2, also the solution of minimal lagrangian cost to dependent problem.

poral redundancy in video coding, the quality of previous coded units will impacts the
coding efficiency of the following coding units. That is, the sum of minimal Lagrangian
cost at each individual stage will not always result in the optimal solution, as Figure 2.7
[7]. Song et al. assumed the dependengy relationship between sub-GOPs and propose
a real-time system to optimize low-bitrate.censttained problem with frame skipping,
where the Lagrange multiplier-and frames te be. encoded for each sub-GOPs are pre-
decided [11]. Schuster et al. also developed.an MINMAX distortion criterion based
on Lagrangian method to solve‘the minimum rate subject to each source distortion
constrained dependent problem [9].

In order to solve this dependent problem, the Viterbi algorithm with Lagrangian

cost is applied and we will introduce it in section 2.3.2.1.

2.3.2.1 Viterbi Algorithm for Dependent Problems

Viterbi algorithm [2] is a trellis-based forward dynamic programming procedure which
iteratively determines possible shortest paths and prunes out non-optimal paths stage
by stage.

For each stage, a node is an operating point of a quantizer, and a growing branch
is connected from node at the previous stage to node at the current stage with corre-
sponding Lagrangian cost J = D 4+ AR. The optimal solution is the path of minimal
Lagrangian cost from the beginning stage to the end stage for a specific A\. When A
increases, the optimal path is tend to smaller the total coding bits, and vice versa.

Still, we have to iteratively find A* by bisection search until R(A\*) = Ryotar-
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Figure 2.8: Illustration of Viterbi algorithm with minimal Lagrangian cost path in
IBBP case.

Ramchandran et al. applied VA algorithm with Lagrangian cost and propose prun-
ing rules based on monotonicity property,. as Figure 2.8 [7]. Assume the quantizer
grades ordered from finest to coatsest, for.any A*> 0, there exists monotonicity prop-

erty that for i < i
St 3 Y < s (i, j)

where quantizer j of frame 2 is dependent.on quantizer i of frame 1. Afterwards, the
pruning conditions based on monotonicity property are used to eliminate suboptimal
operating points:
e Pruning Condition 1
If Ji(i) + J2(i,5) < Ji(i") + Jo(7', j), for any i < i, then (¢, j) can be pruned
out.
e Pruning Condition 2
If J(i,7) < Jo(i,7"), for any j < j', then (7, ') can be pruned out.
e Pruning Condition 3
According to monotonicity property and pruning conditions, if J;(i) < Ji(7') for
i < i, then state node i’ can be pruned (for I frames).
In [4], Liu et al. also improved VA by considering frame skipping situation, as Figure

2.9 [4], and assumed monotonicity property with frame skipping brings into being for
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Figure 2.9: VA with skip nodes

any A > 0,
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where s;; represents skippedsframe;reconstructed from forward coding frame with
quantizer i and backward coding frame with quantizer j. Also, the new pruning rules
are:
e Pruning Condition 4
If J()+ (i, s865,5)+ I, 5) < J(@)+J (@, s05,5)+ (i, 5), for i < i’ then branch
J (7', sij,j) can be pruned out.
e Pruning Condition 5
If J(i,si5,7)+ J(t,7) < J(3, 8450, 5") + J(i,7"), for j < j’ then branch J(i, s, j)

can be pruned out.

2.3.2.2 Viterbi Algorithm for Independent Problems

Though dynamic programming can apply to finding the optimal solution to depen-
dent problems, it takes too much computation considering frame-to-frame dependency.
In order to reduce complexity, solution to dependent problem usually reduced to in-
dependent problem; that is, take rate constrained problem for example, the problem

formulation becomes

min ZDz(Ql), s.t. ZRz(Q@) < Riotal
i=1 i=1
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The solution to independent problem only focuses on finding the minimal La-

grangian cost at current stage despite of the effect of other stages.

2.4 Complexity Comparison

Table 2.1 lists the complexity of two different dynamic programming procedures, integer
programming and Lagrangian cost based Viterbi algorithm, for the optimal solution to
optimization problems with multiple constraints.

In the dependent case, these two DP algorithms both grow exponentially. However,
in the independent case, Lagrange multiplier method can reduce complexity enormously
by selecting the minimal Lagrangian cost node at each stage, though it still has to
iteratively refine the value of Lagrange multiplier; as for integer programming, because
it does not have a independent form, the complexity remains the same.

Besides, owing to each constraint corresponding to a Lagrange multiplier, and the
optimal solution by Lagrangian miethod needs to solve each Lagrange multiplier iter-
atively, integer programming for multiple constrained case is better than Lagrangian
optimization for lower complexity; however, as for singular equality constrained prob-
lem, Lagrangian optimization is.more*suitable for'only one Lagrange multiplier to be
solved, and a fast algorithm can be developed based on independency assumption. The

following lists the definition of variables:

: Number of Coding Units

: Number of Operating Modes per Coding Units
: Number of Constraints

: Number of Test Points per Lagrange Multiplier

NQE=

Table 2.1: Complexity comparison between DP

Integer Programming | Lagrange Multiplier
Optimal Convex Approx.
N (Dependent) TCNM (Dependent)
NM (Independent) T“MN (Dependent)
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CHAPTER 3

Related Works

In this chapter, we will introduce how retated=-works applied the optimization methods
described in previous chapter intQ their constrained problem. Also, the difference

between related works and our proposed problem is listed in the end.

3.1 KKT Conditions

Wang et al. used Karush-Kuhn-Tucker Conditions to solve long-term distortion con-
strained problem for I frames [12]; the fomulation and algorithm for their problem are
in the following:
e Problem Formulation
Let 9 be a set of quantizers and let D,;, and D,,., be the lower and upper bounds
of the distortion for each source sample. Find Q* = (QF, @3, ..., Q%), with QF € ¢

for i = 1,2, ...,n, where n is the number of source samples, such that

Q" = arg glelgilei(Qi)
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{(1)Dmln S Dl(QZ) S Dmaxai = 1727 N
s.t. n
(2% Di(Q:) < Diotas = (DuintDmes) .,

o Algorithm
1. Consider the original optimization problem with multiple constraints as an
equivalent problem with a total “distortion budget”, Dy = M -n
2. Apply the Lagrangian method to solve the problem with D.;, = 0 and

Diin = 00. The result is the constant slope solution with optimal A\° and

corresponding Q°, such that iDz(Ql) ~ Diotq1- The approximation is due

to the fact that the operationaﬁﬁa’ce—distortion function is a discrete function.

3. Impose the distortion constraints. The quantization found in the previous
step is the optimal solution that minimizes total bit rate for a given total
distortion. For any frame 7, the constraint condition Dy, < Di(Q9) < Diyax
may be violated. Depending on the value of D;(QY), frames are divided into
three groups:

(a) If D;(Q?) < Dy, thefeonstant slope solution for this frame is not
admissible. In thigicase, we'need to replace QY by an admissible Q}
such that D;(QF) ~ Dyjin-

(b) Similarly, if D;(Q%) = Dy, replace QY by an admissible Qf such that
D;i(QF) = Diax-

(¢) If Duin < Di(Q?) < Dpax, the constant slope solution D;(QY) does
not violate the distortion constraints, but, due to the changes of the
operating points of the frames in the other two groups, the ) values for
this group cannot be finalized at this stage.

4. Initialize the next iteration. Let the number of frames in the above three
groups be Nyin, Nmax, and N,,q, respectively. If Ny = Npax = 0, then
the constant slope solution found in Step 2 is also the solution to the given

distortion-constrained problem. Otherwise, performs
N Nmid

Dtotal — Dtotal - Nmianin - NmaxDmax

If the updated D, value is positive, go back to Step 2; otherwise, end the
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algorithm and the ) found at this iteration is the approximated solution to

the given distortion-constrained problem.

3.2 Viterbi Algorithm with Lagrangian Cost

Liu et al. applied Viterbi algorithm with Lagrangin cost to solving the spatial quality

(QP) selection, temporal resolution (frame rate) optimization problem in [4], where

they use MCI as a temporal interpolation method to reconstruct skipped frames. The

formulation and algorithm for their problem are in the following;:

e Problem Formulation

Let ¥ be a set of quantizers ranging from Quin t0 Qmax. Find Q* = (QF, @3, ..., Q%),
with QF € ¥ for ¢ = 1,2, ...,n, where n is the number of source samples, and find
S* = (57,55,...,5%) with S; € [0,1], where S; = 0 represents current frame is
skipped, S; = 1 represents current frame is encoded; the maximal number of

successive skipping frame Sgax = 2, such that

Qev9,8€(0,1]

(Q7,S") =arg _min Y DIQS)= Z{Dz(Qz)|(Sz = 1)+ Di(Qy)|(S;i = 0)}

i=1

N

N
s.t. ZRZ(Q, S) = ZRz(Q'L>’(Sz = 1) S Rbudget
=1

=1

where

S == [Sl,SQ,...,SN},SZ' € [0, 1],2 - 1, ,N
19 = [Q17Q27 JQNLQz € [Qmina@max]ui = 17 7N

e Algorithm

1.
2.

Initialize the value of \.
Calculate for the first frame, which is an I-frame, for every QP value within the

range ¢ € [Qmin, @max|, as shown in Figure 3.1 (a).

. Prune unqualified I-nodes according to the monotonicity property as shown in

Figure 3.1 (b).
Grow the trellis to Stage 2 by coding the first P-frame with all QP values. The

skip node is reserved as shown in Figure 3.1 (c).

. Prune at Stage 2 with Rules 1 and 2. Note that the skip node should be kept as
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10.

11.
12.

Figure 3.1: Illustrative example of the Viterbi algorithm with skip nodes.

shown in Figure 3.1 (d).

Grow the trellis to one more stage. The skipped frame in the previous stage is
reconstructed by the neighboring weference frames coded with selected QPs as
shown in Figure 3.1 (e).

Prune at Stage 3 based 'on.the monotonicity property, i.e., Rules 1 and 2 for
pruning the third coded frames;“Rules- 3 and 4 for pruning previous skipped
frames. The skip node at Stage 3 is reserved as shown in Figure 3.1 (f).

Similar to Step 4, grow trellis to Stage 4 as shown in Figure 3.1 (g).

. Prune paths that have more successive skipped frames than Sp., as shown in

Figure 3.1 (h).

Similarly to Step 7, pruning is performed based on the monotonicity property as
shown in Figure 3.1 (i).

Repeat Step 8-10 until the last frame. Update and return to Step 2.

Stop when A\ converges.

3.3 Variable Frame Rates Encoding

Song et al. proposed a rate control mechanism for low-bit-rate video via variable-

encoding frame rates in [4]. In order to implement this variable frame rate encoding

under real time environment, they divide each gop into 8 sub-GOPs with size=12 for

complexity issue and define the value of each Lagrange multiplier for each sub-GOP
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under the consideration of dependency relationship between sub-GOPs. The proposed
algorithm consist of two parts:
1. Frame-Rate Control
Decide the frame rate (number of encoded frames) and encoded frame positions
for each sub-GOP before encoding based on the histogram of difference image.
2. Bit Allocation
Use gradient search method to obtain the optimal QP setting for individual frame
encoding in each sub-GOP, such that the following problem statement is satisfied.
e Problem Formulation

. — . . .
Determine ¢,,, m=1,2,....M to minimize

Z (Dm(q_,;) + qum(q;z))

m=1

M
s.t. Zrm(qj%) S Bsubgop - M

m=1
where ¢, = (Gm,1s Gm2s - Ginonge) 18 the guiantization parameter vector for the mth

sub-GOP, and

N,, : encoded framémnumber of the mth sub-GOP;

T (Gm) : assigned number of'bits for the mth sub-GOP;

M : number of sub-GOPs in a GOP;

Nsubgop : total frame number of a sub-GOP;

Nyop : total frame number of a GOP;

Wy : weighting factor for abrupt quality change and flickering;

di(q1, 42, .., q;) : distortion measure for the ith frame;
ri(q1,q2, ...,q;) : allocated bit rates for the ith frame;

and

N,

. 1 <&
Dm(qm) - N E di(q17qQa“'7Qi)a

™ =1

Nm
- 1

En(gm) = 77~ _(di(ar, ¢, 40) = dica(ar, g2, - 6i-1))?
=1

—_— . . e
D, (gm) represents the distortion measure of encoded frames, and F,,(¢,,) represents
the distortion variance measure of two successive encoded frames; besides, w, is a

weighting factor for abrupt quality change and flickering controlling and it is set to 2
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Table 3.1: Comparison among the proposed problem and related works

Author Thesis Wang et al. [12] A. Ortega [5]
Constraints Rate, Distortion(Multiple) | Distortion(Multiple) Buffer(Multiple)
Frame Skipping Y N N
Recovery Method Frame Copy NA NA
Frames to be Encoded Unknown Pre-Decided Pre-Decided
Lagrange Multiplier Value | Bisection Search Bisection Search Bisection Search
Proposed Algorithm VA KKT Conditions KKT Conditions

Author Schuster et al.[9] Ahmad et al.[1]
Constraints Distortion(Multiple) Perceptual Quality(Multiple)
Frame Skipping N N

Recovery Method NA NA

Frames to be Encoded

Pre-Decided

Pre-Decided

Lagrange Multiplier Value

Bisection Search (Dyax)

Bisection Search

Proposed Algorithm

DP

KKT Conditions

Author Liu et al. [7] Song et al. [11]
Constraints Rate Rate
Frame Skipping Y Y

Recovery Method

Temporal Interpolation

Frame Copy

Frames to be Encoded

Unknown

Pre-Decided

Lagrange Multiplier Value

Bisection Search

Pre-Decided

Proposed Algorithm

VA

Gradient Search

in their experiments.

After defining the penalty fun¢tion for the mith sub-GOP as

and applying the pre-defined Liagrange multiplier \,,, the above constrained prob-

lem becomes to minimize the following unconstrained function

Pm<q_'r)n) = ZTz(CZ) — . Bsubgop
i=1

<I>m(q7n, Am) = Jm(cﬁ) + A max{(),Pm(q;)}, form=1,2 ..M

where Jo(qm) = Din(gm) + e B (gm)

and a gradient search method was used to find the optimal solution.

3.4 Comparison

In order to understand the differences between the proposed quality- and rate-constrained
problem and other constrained problems, we compare and list several features in Table
3.1.

From the above table, we can clearly observe that our problem is different from the

others and our problem is difficult for having variable multiple constraints, uncertain to
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number of skipped frames, and the dependent relation between frames to be skipped
and frames to be encoded. Besides, The best method of getting the optimal solu-
tion to our constrained problem is to use integer programming instead of Lagrangian

optimization.
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CHAPTER 4

Experiments and Analyses

In this chapter, we implement the inteéger-programming to solve our quality- and rate-
constrained problem, and analyze‘the optimal solution path; then, in order to reduce
complexity, we propose a simple heuristic solution based on independent relationship
and successive refinement assumption. Figure 4.1 shows our experiment procedures;
the experiment settings, experiment results and observations for each experiment are
described in each section. We use jm 12.3 and CIF format with 37739 psnr constraints

in all experiments.

4.1 Optimal Solution Analyses

We implement the integer programming algorithm to solve our constrained problem,
and observe the R-D data from the view of MSE, optimal path, and then propose the

concept of dominant lines.
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4.1.1 MSE Weighting Effect

Setting:
Sequence Akiyo, Mobile
Algorithm Integer Programming

Total Frame

8

Experimental Group

Coded Frame MSE, Copy Frame MSE, Total MSE with
Frames to be Encoded=7

Control Group

Coded Frame MSE, Copy Frame MSE, Total MSE with
Frames to be Encoded=2

Observation

e Copy frame MSE effect:

From Figure 4.2 and 4.3, we can clearly observe the copy frame MSE weights

overwhelmingly compared to the coded frame MSE.

e Variation line in local view, horizontal line in global view:

Though the coded frame MSE yaries mmong different coding bit range in Figure
4.2 (b) and 4.3 (b), the oyerall MSElooks'like horizontal lines for copy frame

MSE effect.

e Larger MSE gap with more framé-skipped:
From Figure 4.2 (a), 4.4 (a):and Figure 4.3.(a) ,4.4 (b), the gap between different

coding frame selections is larger while more frames are skipped.

e Unobvious dominant lines in static sequence:

There does not exist obvious horizontal dominant lines in static sequence, how-

ever, the gap among different coding frame selections is minor with less frame

Optimal Path Analyses

Total Frame MSE
Coded Frame MSE Analyses
Copy Frame MSE

Optimal Solution

Dominant Lines

Independent Heuristic Algorithm

Frame Selection Effect

Two Frame Selection

Methodologies

Complexity Issue

Successive Refinement

Mechanism

Figure 4.1: Our experiment procedures.
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"
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—A— Coded Frame=13 x\x\x
] —%— Coded Frame=1,4
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400 4

380
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320 4
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AKIYO

-
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K Bits

Figure 4.2: Total MSE(a), coded frames MSE(b) and copy frames MSE(c) in Akiyo
when encoding 2 frames.

skipped as Figure 4.2 (a) and 44" (a).

e Obvious dominant lines in motion sequence:

There exists a dominant line for each different total coding frame in motion

sequence as Figure 4.3 (a) and 4.4 (b).

Remarks

Because the copy frame MSE weights overwhelminly compared to coded frame MSE;,

choosing the correct combination of coding frames is more important than allocating

bits among these frames; besides, since the gap between different coding frame selec-

tions is large and there exists a dominant line for each different total coding frames,

we can reduce the original multiple constraints dependent problem to independent

problem by always finding the corresponding dominant line of current encoding frame

numbers, which is the basic idea of our heuristic solution.
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Figure 4.3: Total MSE(a), coded frames MSE(b) and copy frames MSE(c) in Mobile

when encoding 2 frames.
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Figure 4.4: Total MSE in Akiyo(a) and in Mobile(b) when encoding 7 frames.
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4. Experiments and Analyses

Figure 4.5: Optimal path from®low bit
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(b)Mobile, (c)Football.

4.1.2 Optimal Path Analyses

Setting:
Sequence Akiyo, Mobile, Football
Algorithm Integer Programming

Total Frame

8

Observation

e Optimal path is a stairway-like curve:

200 300

400

K Bits

budget to high bit budget of (a)Akiyo,

Figure 4.5 shows the optimal path of (a)Akiyo, (b) Mobile, (c) Football when

coding bits range from low to high. The optimal path is a stairway-like curve,

which means number of frames to be encoded and coding frame selection should

be different to optimize our constrained problem while the available bit budget

changes.

quence:

Optimal path chooses different total coding frames interactively in static se-

In static sequence like Akiyo, when available bit budget decreases, the number
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Figure 4.6: Overall distortion may interlace, in static sequence like Akiyo(a); the
correct Qp selection for each coding frame . may mot only reduce coding bits but also
reduce overall distortion(b); while available bit:budget decreases, the optimal solution
may choose different frames to-be encoded instead of skipping another frame immedi-

ately(c).

of total coding frames may increase, as the interlacing part in Figure 4.6 (a);
however, this situation would not occur in motion sequence such as Football and
Mobile for Frame copy MSE weights largely.

e Encoding more bits does not always results in smaller distortion:
Not always using more bits results in smaller distortion, as Figure 4.6 (b). Be-
cause skipped frame makes temporal dependency decrease and the frame copy
effect, even we allocate bits among the same selected frames, the correct Qp set-
ting for each frame sometimes not only reduce coding bits but also reduce overall
distortion.

e Choosing another coding frame combination is better than skipping another
frame immediately:
In Figure 4.6 (c) we can observe the clear stair-way curve, which means the
optimal path should select another frame combination instead of choosing another

frame to be skipped immediate when bit budget decrease.
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Figure 4.7: Dominative linestof différent total number of coded frames.

e Selecting another frame to be skipped immediately for complexity issue when less
frame skipped:
From Figure 4.6 (d), the bit range of number of coded frame=?5 is overlapped with
the bit range of number of coded frame=4; however, the bit range of number of
coded frame=3 is not overlapped with the bit range of number of coded frame=2.
That is, when available bit decreases, to select a frame to be skipped is a good
choice with less frame skipped, but it is better to select another coding frame
combination with more frame skipped.
Remarks
The optimal solution to our proposed constrained problem is to use dynamic pro-
gramming. However, in Figure 4.5, each line represents a coding frame combination,
e.x. when enocding 3 frames, 1-4-5, among total 8 frames, the optimal solution chooses
different coding frame combinations to adapt different bit budget constraint and it
must be iteratively solved. Therefore, we want to reduce complexity from dependent
problem to independent problem, which becomes to find each dominate line among

different total number of coded frames as Figure 4.7.
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Figure 4.8: Illustration of heuristic solution for independent problem with multiple
constraints by Viterbi algorithm.

4.2 Proposed Heuristic Solution

Figure 4.8 illustrates the algorithm flow, and described in the following:

1. Set A =0.

2. Choose the quantization parameter operation point of I frame where lagrangian
cost J =D + AR is minimal.

3. Grow the branch from the minimal node of this stage to next stage with QP,,c.: =
QP.rrent £ 5, and prune out the node with unsatisfied quality constraint.

4. Select the operation point with minimal lagrangian cost among current stage,
and repeat 3, 4 until to the end stage.

5. Increase A gradually until any more increase to A will result in skipping another

frame.

4.2.1 Coding Frame Selection Methodologies

Setting:
Sequence Akiyo, Mobile, Football
Total Frame 8
Experimental Group | Two Coding Frame Selection Methodology with Heuristic Algorithm
Control Group Non-Coding Frame Selection Methodology with Heuristic Algorithm
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Candidate combination ! ‘ !

(2-)+(3-1)+(5- 4)+(6- 4)
Figure 4.9: Illustration of methodology 1.

Original frame

{ { { { ( ( ﬁ

{(2-1)+(3-1)+(5- 4)+(6- 4)}
+{(4-1)+(7- 4)+ (8- 7)}

Figure 4.10: Tllustration of methodology 2.

The result is in Figure 4.11

1. Suppose there are total i-frames in the pre-analysis buffer, and j skipped frames
to be chosen, the overall ¢andidates are. ; ( il combinations. This methodology
is towards to find the minimal sum of difference between coding frame and copy
frame. As Figure 4.9, suppose there are 8 frames in the buffer, and we are going
to choose frame 1, 4, and 7 as coding frames.

2. Almost the same as methodology 1, excepts that this methodology also considers
the difference between coding frames. Figure 4.10 shows a candidate combination.

Observation

e In static sequence, methodology 1 and 2 doesn’t have too much performance
difference.

e Methodology 1 obtains smaller MSE curve than methodology 2 in motion se-
quence.

e These two methodology doesn’t perform too bad compared with independent
R-D curve.

Remarks

Once we know how many coded frames available to encode, we can use these two

methodologies to choose which frames to be encoded and reduce complexity compared
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Figure 4.11: Comparison among, proposed heuristic solution, methodology 1 and
methodology 2 in Akiyo (a), Mobﬂe(b) and FOoﬁhall( ).

Iteration 1

Iteration 2

i l o D

ol

Figure 4.12: Tllustration of successive refinement.

Iteration 3

Iteration 4

to independent solution, though it still needs to try - ( ), combinations, which means

once the window size increases, the calculation will also increases exponentially.

4.2.2 Successive Refinement

Definition of Successive Refinement

Once we decide to skip frame i, then when it is necessary to skip another frame,
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AKIYO

AKIYO AKIYO
—-—A—  Independent

300 4

250 4

200 4

150

Figure 4.13: Comparison among, proposedrheuristic solution and its successive re-
finement(a), methodology 1 and/its successive refinement(b), methodology 2 and its
successive refinement(c) in Akiyo.

then frame ¢ must be skipped firgt, as*Figure4.12,

Setting:
Sequence Akiyo, Mobile, Football
Total Frame 8
Experimental Group | Successive Refinement
Control Group Non-Successive Refinement

The result for Akiyo is in Figure 4.13, for Mobile in Figure 4.14 and for Football in
Figure 4.15

Observation

No matter which coding frame selection methodology is used, the difference between
successive refinement R-D curve and non-successive refinement R-D curve is minor.

Remarks

While using successive refinement, the complexity can reduce from exponential

increasing to linear increasing.
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Figure 4.14: Comparison among proposédrheuristic solution and its successive re-
finement(a), methodology 1 and fts successive refinement(b), methodology 2 and its
successive refinement(c) in Mobile.

4.3 Proposed Rate Control Mechanism

As Figure 4.16, we propose an iterative successive refinement mechanism to solve the
original problem in the independent way. The main idea of the algorithm is to decide
which frames to be encoded at the first place for MSE of different copy frames com-
binations are huge; then we can allocate available bits among these chosen frames to
encode and achieve the objective of total minimal distortion. Suppose that there is a
R-D model which can estimate the needed coding bits, the rate control algorithm is
the following:

Step 1:

Use the r-d model to calculate the needed coding bits while encoding pre-selected
frames at distortion=D,,,,. If the required bits are smaller than available bits, go to
Step 3, else go to Step 2.

Step 2 :

Use frame selection methodology to select a frame to be skipped with successive

refinement mechanism, and go to Step 1.
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Figure 4.16: Proposed algorithm flowchart. At the first stage to decide which frames
to be encoded; to allocate bit among selected frames at the second stage.
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Step 3 :
Since skipped frames are out of the optimization target, we can simply allocate
available bits among those selected coding frames and achieve the goal of minimum

overall distortion.
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CHAPTER 5

Conclusions and Future Works

In our work, we attempted to,solve the-quality- and rate-constrained problem and
survey different constrained optimization preblem methodologies. After comparing
with related works and analyze our problem, we find out the best methodology for
optimal solution is to use dynamic programming and the optimal path is a stairway-
like curve, with huge complexity, the following lists our discoveries:

1. Constrained problems can be solved by dynamic programming. A simple algo-
rithm for constrained optimization problem is to find the optimal solution among
possible data set as integer programming; another commonly used mathematical
tool for optimization problems is Lagrangian method, which turns the original
constrained problem into unconstrained problem form.

2. For optmization problems with multiple constraints, each constraint correspond-
ing to a Lagrangian multiplier, and the optimal solution should be obtained by
iteratively adjusting each Lagrangian multiplier according to KKT conditions. As
a result, the solution by constrained optimization problem like integer program-
ming requires lower complexity than Lagrangian optimization; however, as for

the single equality constrained problem, the Viterbi algorithm with Lagrangian
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cost is commonly used owing to only one Lagrange multiplier variable to be solve,
and the modern rate control apply this algorithm to real time system based on

independency assumption.

. According to optimal solution by integer programming for our problem, the op-

timal path is a stairway-like curve, which means number of frames to be encoded
and coding frame selection should be different to optimize our constrained prob-
lem while the available bit budget changes. Furthermore, as long as more frame
skipped, the MSE gap between each rate distortion line of different coding frame
combination is larger; also, the interlacing part among coding bit range of differ-
ent coding frame combination is getting smaller. From the above observation, it
is a good choice to select another frame to be skipped while the available bit bud-
get decreases in less frame skipped case for complexity issue, but it should choose
another coding frame selection instead of skipping another frame immediately

while more frame skipped.

. In order to reduce complexity and _to implement the proposed architecture in a

real-time system, we try to develop'a heuristic algorithm based on independent
assumption and successive refinement and devide the solution into two stages:
2.1) to find which framesto bé encoded:under rate constraint and distortion
constraints;

2.2) to allocate available bit budget among these chosen frames to achieve the
objective of minimize total distortion.

The experimental result shows this heuristic solution can reduce complexity ex-
ponentially, though it does not achieve a good performance because the optimal
path reveals that the encoder should choose different frames to encode when

target rate changes.

Our work is still in its early stage, we plan to extend our investigation in several

directions:

1.

To survey other adaptive frame skipping methods and continue to research if

there exits a better algorithm for our problem.

. To replace the frame copy with temporal interpolation methodology and analyze

the effect.

. To develop R-D models based on heuristic algorithm to allocate bits and minimize
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total distortion for real-time systems.
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