B, Jif{~§§
Y| T A

Rl

i

C A2 3% ¢ I f B #ic# ¥ & % 2 & R

Detection of Integer Signedness Faults in C Programs

FoyoA L EAR
RS ST SR

1% S Je ] = E



CAzzt P I f Frcid ezt Rl

Foyo4 3 A
¥R R s

Rzl « FFapgei /sy “T/LsL

¥ £

FXIG RTIHEALE G B Y § R E LR B BRSO R A P Blde B3
#F KU g %leﬁﬁ: REIRNFE dlce TS E R - B FRE AT
b A2 3N 33 BEAL B 4 5 F & gt 750 ;I*;rs itk AR 5N 33 8L > Gil4e Microsoft
Internet Explorer 14 % PHP % jodfc ioffss B8 o »0 B 8cE 08 > ALF* 2 0F f el
R o PG FHGE o fel ehic A AR ol B 0 e S S N e R R o

Tf Rl R AT ERCR AEn S Rh A o AV ok v ¢ FERE ORI SR AT E o

**éﬂ’ﬂWﬁm~ﬁ@Mﬁwvuﬁ%£ﬁﬁ&ﬁﬁw%@ﬁ’ﬁﬂCﬁﬁ?ﬁw

Bpoo gl 2 B AN an s e /g R £ oplE B (Concolic testing) o #

/P Fé | BB R REpE > SN B 4ie 4 (Universal Property Checking) @ { i&-
B A L~ D C Arirensi B0 PISTEE G5B 0 f B R AT o

awwg%aég,at_nmm2617i;1¢£%’%%wﬁfkiﬂﬁﬁ‘*ﬁﬂﬁﬁﬁﬂﬁ
WAl w s (DE S FEE LR (D S BRE D SR ()2 FLH
éf— ¥ E ?& PEER o AL R T gemu 0.8.2 ¢ RN 4R o

MaET ©RERRIE - IMRE & f FEcE g



Detection of Integer Signedness Faults in C
Programs

Student : Yung-Yi Li
Advisor : Shih-Kun Huang

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

New vulnerabilities in software come out every day. Some of them are so infamous that
most programmers are familiar with, e.g. misuse of unbounded copy functions or format
string functions. A new type of vulnerability, called integer errors, emerges in recent
years. Many major applications suffer from this kind of vulnerability, for example,
Microsoft Internet Explorer and PHP. The. vulnerability is caused by integer overflow
and the integer is then used as size field-te:allocate heap memory. Because of the integer
overflow, the allocated heap space is far less'than what the programmers expect, thereby
causing heap overflow then.

We have developed a technigue that-aims at finding integer signedness bugs in C
programs. This technique is based on CONCOLIC-testing (CONCrete and symbOLIC)
and control-path analysis. The control path analysis of the target program will help us
identify the program input data which cause a suspicious integer conversion. This
suspicious integer conversion may turn to integer signedness bugs by some rare input
data. Then we use concolic testing and universal checking to verify whether there is a
feasible bug that will be caused by this suspicious integer conversion.

The proposed method, called reflter algorithm, has been evaluated in Linux 2.6.17
with several representative program examples, including signed-to-unsigned and
unsigned-to-signed conversions, along with semantic bugs. This method also detects a
real bug in gemu 0.8.2.

Keywords: random testing, model checking, integer signedness fault



FREH KT PR A FARRHA PR R Y AR - &5 AR TS
FPEF SN AT RBEF O LR RN LG Y o AL SR H
L EELHAAD 2 PRI H I nfer s 0z L E G

Yfﬁ%%’ﬁﬁﬁ%%@,ﬁﬁﬁwp;%i&ﬁﬁgg?goﬁmg

(8
14};31
=%
B
g
3

/%éf;'_fﬂ')%fé‘, \%’ﬁ?’txlv \"\"3 N :“43—;‘,";{ ‘éi}é’-‘ﬁuiﬁj‘li

B LGP s Ay 2 Ei e R T Y S o - Y%
T ehd & 2R AR i o



Table of Contents

T 10T L1 T £ o] PP 1
1.1 Numbers in Computer Science and iNteger €rror .........cccvvvveeeeeeeeeeesiceveeeeneens 1
1.2 INtEGEI CONVEISION ...eeviieeeeiiciiiiee et e e e e e e e et e e e e e e e e s st r e e e e e e e e s annnrneeeeaeens 3
1.3 Potentially Dangerous Integer CONVEISION .........ccoeviiiiuiiiiiieieeee e eeiiiiiieeeeee e 4
1.4 SigNedness ProbIBMS ..........oviiiiiieee et 6
SN 1] o 1WAV 1T F= U o o PP 8
G @01 g o] ] {0 - T ISP PP 8
2 Software Verification, Testing Coverage and Concolic Testing ..........ccvveevrivieeennns 10
2.1 DYNamicC VEITICALION .....eeveeee et e e e e e 10
2.2 TSt gENEIALION .......eiiiiiieieee e e e e e e e e e e e e e e e e eannaees 10
2.3 Manually-generated and automatically generated test..........ccccceeeeiiiniinnnneen. 11
2.4 STAtiC VEIITICATION ... 12
2.5 CONCOIIC tESTING ....evviiiieeeeee e e e e e e e e e 12
2.8 ALERT .ottt e e nnes 13
S AIGOTTENML . 14
3.1 Refilter AlGOrithm ... 14
3.2 The SECONA PhaSE .......cueiiiiiiiie e 15
KRG 0001 (] 11 11 o] o 1RSSR 21
A IMPIEMENTALION ....vviieeieee et e e e e e e e e e e e e e e e e e e e s e annrrnereeaeeeeeans 22
4.1 ALERT Implementation:.. ... . i e 22
4.2 Refilter Algorithm ImMplememtation .. ilu.........cooeiiiiiieeniieee e 30
5 EVAIUALION . ....eeiiiiiieice s bbb b b s ettt 32
5.1 Signed-to-unsigned CONVEISION. .. . . .ouiuurreeeeeiiiiiieeesiieee e e sieee e e e siaeee e e eeees 32
5.2 teSting Of TS AN SN T et r i rmrerrse et e nteee e e e eiier e e e e e e e e e e e e e e e enees 34
5.3 Comparison of Calls to Universal Checker ...........ccccccvveeeiiiiiciiiiiiiieee e 37
5.4 Testing Detail of AntiSRIff et 38
B DISCUSSIONS ....teeeeeeeeeeeseeiitteee e e e e ae e s e s st be e e e e e e e e e s sannsbeeeeeeeaaeeseaannsbsseeeeaaeeeesannnnnees 42
6.1 FaISE POSITIVE ...ttt e e e e e e e e e e e e e e s e nnneees 42
6.2 FalSE NEQALIVE ...t e e e e e e e e e e e s e nnnnnees 42
7 REIAIEA WOIKS ....ceiieeeee ettt e e e e e e e e e nnenees 43
S I 0] o] 11151 o] SRR 45
O RETEIBICES ...eieiieiieee ettt ettt e et e e e sttt e e s e b e e e e e e nbaeee e 46
Appendix A: Source Code of Modified AntiSniff ..., 48



List of Figures

FIGURE 1: 4-BIT UNSIGNED NUMBER WHEEL ...cvuuuuiieeiiiiittiaeeeeeeeeattteseeeeeeesstnnnaseesssssstannaaaeseeesssnnssaaaseeens 2
FIGURE 2: 4-BIT SIGNED NUMBER WHEEL .....ccvttuuiiieeiieittttiaaeeeeeeeeatttseeeesesasannnseesssesstanaaaeaesseesssnnsseeeseeens 2
FIGURE 3: ALL CATEGORIES OF INTEGER CONVERSION IN C99......ooitiiiiiiiiiiiiice e 6
FIGURE 4: EXAMPLE OF INPUT VALIDATION ...cvvtuueieeeteeetttiaeeeeeeeesstunseeesessssannaseesssesstsnaaaeeeseessssnnsseeeseeens 7
FIGURE 5: SAFE RANGE AND UNSAFE RANGE WHEN SIGNED INTEGER AND UNSIGNED INTEGER CONVERT TO
EACH OTHER ..ttuuiiiiieet it e ettt e e ettt e e e et e e e e st e e s e st e s e aan e e e aaaseasatasaaestanesssanesannneessnnseesntnneasstaneerernns 8
FIGURE 6: EXAMPLE OF DISADVANTAGE OF RANDOM TESTING....uuuuuuuuuuuunnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 11
FIGURE 7: ILLUSTRATION OF REFILTER ALGORITHM.....ccutuuuiieeeeeeeetitieeeeseeesnnaaeeeessesssnnaaeeeeenesnnnnnaeeeeees 14
FIGURE 8: AN EXAMPLE OF SAFE AND UNSAFE RANGE ....uuuuuuuuuuunnusnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn. 15
FIGURE 9: SUCCESSFUL INPUT VALIDATION ...cvtuuuuieeetettttuuaeeeeeeeessnnnsseeesessesnnnnssessessssnnaaeeeseessnnnnnseeesees 18
FIGURE 10: UNSUCCESSFUL INPUT VALIDATION ...uuuieetittttttaeeeeeeeeasutnseeessesssnnnnsseesessssnnnaeaeseessnnnnnseeaeees 18
FIGURE 11: EXAMPLE OF PATH CONDITION ....etttuutiseeeteeettttaeeeeeeeeastnnsseeessesssnnnnsseesssssssnnaaeeeseesssnnnsseeeeees 19
FIGURE 12: EXAMPLE OF PATH CONDITION MIX INTEGER CONVERSION CONSTRAINT ....ccvvuieeeeerriiiiinnnnnnnn. 20
FIGURE 13: PSEUDO CODE OF REFILTER ALGORITHM ....ccvtuuiiiieeeeiiiiiieieeeeeeeetteeeeeeeeesstanaaeaeeeeessnnnnaeaaees 20
FIGURE 14: ARCHITECTURE OF ALERT .. e e e e e e e e e 23
FIGURE 15: ALERT SIMPLIFICATION ..1uuuieeeeeittttteeeeeeteettttiaaeeeeeeeesttanseeeesssssannaseeeseestsnnaaeeaeeeessssnnssaeesees 24
FIGURE 16: ALERT SIMPLIFICATION ..uuuuuieeieeittttteeeeeteetttuiaaeeeeeseesstanseeeesssssasnneeeessestsnnaaeeaeeeessssnnsseeesees 25
FIGURE 17: CONSTRAINTS REPRESENT POINTER READ GENERATED BY ALERT ..o 28
FIGURE 18: CONSTRAINTS REPRESENT POINTER WRITE GENERATED BY ALERT .....ovviiine 29
FIGURE 19: CIL INSTRUMENTATION OF CHECKER .. .uuuuuuuuutununnnnnnnnnnnnnnnnnnannnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 31
FIGURE 20: A BUG FOUND IN QEMU 0.8.2 NE2000_RECEIVE()++eeeevvreeeisrrereeiitreeeesntneeessnsneeessnsseeessnsneeensnns 33
FIGURE 21: SIGNED TO UNSIGNED, UPCAS T 548t 5u an s e+ e s evttunnsnseessessssnnsseeessssssnnnnsseesseessmnnnaeeeeseessmnnnneeerees 33
FIGURE 22: UNSIGNED TO SIGNED, THEISAME RANK 1L ilie itiuiii e i eieeiiiis e e eeeeeettee e e e e e e eettns e e e e e eeeannansaeeeees 34
FIGURE 23: TESTANTISNIFF_1.0.C i e 00 i s e s 34
FIGURE 24: DINS PACKET ..ttt iiiesesvs diiimee s e a kb s sk e sie s 40 e eaaeeeestannseeesssssssnnnssseessssstsnnnaaaessessssnnnssaaseens 35
FIGURE 25: TESTANTISNIFF L. i€ 11 iuuuuuuuuuuns aihaiinnnns s ta s s 35
FIGURE 26: TESTANTISNIFF_L1.1.C ..ottt ettt 36
FIGURE 27: TESTANTISNIFF_1.1.2:C ... cofs i T T el it e et e ettt e e st e e st e e s e e e s e e e nnnnee e e 37
FIGURE 28: NUMBERS OF CALLS TO'UNIVERSAL CHECKER . ......cceevvvttiiiieeeeeeertitiaeeeeesesstinaeeeeeeeessnnnnsaeaeees 38
FIGURE 29: WHILE LOOP WILL RUN FOREVER WHENCOUNT BECOMES =1 .......uuuuuuuuinnninnnninnnnnnnnnnnnnnnnnnnnnes 39
FIGURE 30: AWELL-FORMED INPUT ...uuuuuuuuuueunsnsnnnnsssansnnnnnnnnnnnnnnansnnnnnnnnnnnnnnnnnsnnnnnssnnsnnnnnnnnnnnnnn 40
FIGURE 31: A INPUT THAT CAUSE BUFFER OVERFLOW ....uuuuuuuuuununnusnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnns 40
FIGURE 32: THE ORIGINAL SOURCE CODE OF ANTISNIFF. ..uuuuiiiieiiiitiiiiiieeeeeeetniaseeeseesatnnaeeeeesessnnnnnseeaeees 41
FIGURE 33: AN EXAMPLE OF FALSE POSITIVE ..etuuuutteetitttttiaaeeeeseesstnnseeesessssnnnnseeessesssnnaaeeeeeessmnnnsaeesees 42
FIGURE 34: AN EXAMPLE OF FALSE NEGATIVE ...uuuiiiiiiiiitiieaeeeeeeestttaseeeeessssnnnnseeesessstnnnaeaesesssnnnnnseeaeees 42



1 Introduction

New vulnerabilities in software come out every day. Some of them are so infamous
that most programmers are familiar with, e.g. misuse of unbounded copy functions or
format string functions. Therefore, these vulnerabilities almost disappear in major

applications today[1].

A new class of vulnerability, called integer errors, emerges in recent years. Many
major applications suffer to this kind of wvulnerability, e.g., Microsoft Internet
Explorer[2] and PHPJ3].

The vulnerability is caused by integer overflow and the integer is then used to
allocate heap memory. Because of the integer overflow, the allocated heap space is far

less than what the programmer thinks, thereby causing heap overflow later.

1.1 Numbers in Computer Science and integer error

Numbers are ubiquitous_in computer system and mathematics. But numbers in
computer systems are different with-numbers in“mathematics. Numbers in mathematics
includes integer, rational number; real number, etc. Numbers in computer system are
several bytes in memory annotated with type. Char, short, int, long are some common
types of numbers used in computer systems. Usually they are in different size, that is,
they occupy different number of bytes in the memory. In mathematics numbers can be
as big as you wish in pen and paper, while numbers are limited by the type and its
representation in computer system. Therefore, numbers in computer system has some
limitation that one in mathematics does not have. For example, if x is in set Z, then x
can be 0, 1, -1, 2, -2, etc. But a variable of type unsigned char in computer system
usually has max value 255. If programmers do not realize this and perform operation on
number in computer system as in mathematics, some errors may occur. For example,
assume there is a 4-bit integer in computer system named n. If we store its value in 2’s
complement format, the value of n is illustrated in Figure 1. We can see that when nis 7,
performing of n+1 will result in -8 rather than 8. If n is a 4-bit unsigned integer and the
value is 15 then n+1 will result in O rather than 16, as illustrated in Figure 2. When this
happens, we say n is “wrap around.” Wrap around means when a number in computer
system increases beyond its upper bound or decreases below its lower bound, it is

1



forced to become another number that is different from what it should be in

mathematics. Sometimes wrap around causes integer error.

15 0 1
14 2

13 3
12 4

11 5

10 6
9 g8 7

Figure 1: 4-bit unsigned number wheel

1 0 1

-f 8§ 7

Figure 2: 4-bit signed number wheel

Integer errors happen when programmers use integer operation in computer system
but get unexpected result. For example, we increase a 4-bit unsigned integer 15 by 1 and
expect to get 16. But we will get O instead. If this is what we have expected, we may
assume it is 16 and use it in somewhere else and cause some errors. These errors may
become exploits in the worst case.

There are four kinds of integer error: integer overflow, integer underflow,
truncation problem, and signedness problem. Integer overflow and integer underflow

occur when the result of an integer operation exceed its range of representation.

2



Truncation problem and signedness problem occur when converted number is not in the
range of representation of new type. We will describe integer conversion and signedness

problem in the following sections.

1.2 Integer Conversion

Integer conversion is an assignment operation from an integer number to another
integer number. But the type of the converted number is different with the type of new
integer number. Because of different type, converted integer number must be
transformed into new type and trying not to lose original information. Not all integer
conversions can perfectly reserve the information carried in converted number,
sometimes they do lose information. This fact makes some integer conversion

potentially dangerous.

Every integer type has an integer conversion rank,which is used to decide the result
type of an integer conversion. Asta'general rule, the lager in size a type is, the higher
rank it is in the conversion rank. Thedetailed definition of conversion rank is defined in
C99 standard as follows:

1. No two signed integer:types shall-have the same rank, even if they have the same
representation.

2. The rank of a signed integer type shall be greater than the rank of any signed
integer type with less precision.

3. Therank of long long int shall be greater than the rank of long int, which shall be
greater than the rank of int, which shall be greater than the rank of short int, which
shall be greater than the rank of signed char.

4. The rank of any unsigned integer type shall equal the rank of the corresponding
signed integer type, if any.

5. The rank of any standard integer type shall be greater than the rank of any
extended integer type with the same width.

6. The rank of char shall equal the rank of signed char and unsigned char.

7. The rank of _Bool shall be less than the rank of all other standard integer types.

8. The rank of any enumerated type shall equal the rank of the compatible integer
type

9. The rank of any extended signed integer type relative to another extended signed



integer type with the same precision is implementation-defined, but still subject to
the other rules for determining the integer conversion rank.

10. For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has
greater rank than T3, then T1 has greater rank than T3.

The detail of rules of integer conversion of C language is defined in C99 standard.

The rules are as follows:

Signed and unsigned integers

1.  When a value with integer type is converted to another integer type other than
_Bool, if the value can be represented by the new type, it is unchanged.

2. Otherwise, if the new type is unsigned, the value is converted by repeatedly
adding or subtracting one more than the maximum value that can be
represented in the new type until the value is in the range of the new type.

3. Otherwise, the new type.isisigned and the value cannot be represented in it;
either the result is implementation-defined or an implementation-defined

signal is raised.

Usual arithmetic conversions

1. If both operands have the same type, then no further conversion is needed.
Otherwise, if both operands have signed integer types or both have unsigned
integer types, the operand with the type of lesser integer conversion rank is
converted to the type of the operand with greater rank.

2. Otherwise, if the operand that has unsigned integer type has rank greater or equal
to the rank of the type of the other operand, then the operand with signed integer
type is converted to the type of the operand with unsigned integer type.

3. Otherwise, if the type of the operand with signed integer type can represent all of
the values of the type of the operand with unsigned integer type, then the operand
with unsigned integer type is converted to the type of the operand with signed
integer type.

4. Otherwise, both operands are converted to the unsigned integer type corresponding

to the type of the operand with signed integer type.

1.3 Potentially Dangerous Integer Conversion
4



There are several integer conversions that are potentially dangerous. We will
discuss them under C99 standard. We categorize all integer conversions in C99 standard
into twelve kinds, as illustrated in Figure 3. We observe that four kinds of integer
conversion may cause truncation problem, three kinds of integer conversion may cause
signedness problem, and the others are safe. We summarize this table into three rules:

1. Converting any integer to lower rank is dangerous.

2. Converting a signed integer into an unsigned integer that has the same rank is

dangerous, and vice versa.

3. Converting a signed integer into an unsigned integer that has higher rank is

dangerous.



rank Down Cast Eqi Cast Up Cast
signed
Signed to b)Bit
o ®) (b)Sign
Unsigned (@) Truncate pattern )
extension
preserved
Unsigned to (b)Bit
] (d)Zero
Signed (@)Truncate pattern )
extension
preserved
Signed to c)Bit
o © (@Sign
Signed (@)Truncate pattern _
extension
preserved
Unsigned to (c)Bit
_ (d)Zero
Unsigned (@) Truncate pattern _
extension
preserved

Figure 3yAll categories.of integer conversion in C99

In these rules, some conversion is dangerous because some values cannot be
represented in the new type. There is a lot of vulnerabilities come from this unsafe
integer conversion. For each of those unsafe integer conversions, we define two ranges:
safe range and unsafe range. Safe range means that any value in this range can be
represented in the new type. On the other hand, the unsafe range means that any value in
the range that cannot be represented in the new type. For example, a signed integer i is
converted into an unsigned integer j, then i of value 0 is in the safe range, but i of value
-1 is in the unsafe range.

1.4 Signedness Problems

In C99 standard, a signed integer casts to an unsigned integer following these rules:



1. Convert to a number has lower conversion rank: truncate converted number to
match the size of new type

2. Convert to a number has the same conversion rank: preserve the bit pattern of the
converted number.

3. Convert to a number has higher rank: sign extension to a signed type whose
conversion rank is the same as new type, then do as convert to a number has the

same rank as 2 shows.

All these three cases will cause some problems. For example, we often take a user
input data buf as well as its length. We save the length in a signed integer, len. And we
check it to make sure it is less than the maximum size, so we write a input validation as

aone in Figure 4.

if (len > max)
Raise exception
else

memcpy(buf2, buf, len);

Figure 4: Example of input validation

If len of value -1 then-it'will pass the check. But when len is used in memcpy(), it
Is converted into an unsigned integer,-so-it is actually Oxffffffff, nearly 4GB. And this
request will definitely denied“in.32-bit machines.

Recently, a lot of signedness vulnerability is discovered. This shows that many
programmers are not aware of the potential danger brought by careless conversion
operation. Even those experienced programmer can make mistake when using
conversion operation. And, sanity check added by programmer can act not as
programmers have expected. So we focus only on (b) in Figure 3. That is, we focus on
dangerous conversion between signed type variable and unsigned type variable. We will
provide an efficient method to discover this kind of bug.

When a signed int i is converted into an unsigned int j in a 32-bit system, the safe
range is 'l >= 0" and the unsafe range is 'i <0'. When an unsigned int j is converted into a
signed int i, the safe range is 'J<OX7ffffff' and the unsafe range is 'j >= OX7fffffff'. As a
rule of thumb, the safe/unsafe range can be determined by the MSB: it is in safe range if

the MSB is zero. Otherwise, it is in unsafe range as illustrated in Figure 5.




Integer Type of i Type of j Safe range Unsafe range

Conversion
= Unsigned Signed int j>=0 j<0
int
= Signed int Unsigned J <= OXT7fffffff J > OX7ffffff

int

Figure 5: Safe range and unsafe range when signed integer and unsigned integer convert to each other

1.5 Input Validation
The signedness bugs can be avoided when all the integers are declared as unsigned
because there is no conversion between signed and unsigned integer in the first place.

However, this is usually impossible in the real programs.

Another way to avoid this.ibug is -using accurate input validation. Almost all
programs receive input from‘the outside: Browsers read web pages from web servers via
the socket. Editors read documents from-the filezsystem. Console programs read options
from the command line. All these“programs accept the input data and perform their
work. However, if they usethe input data to-perform important operations, they must
check it first. The check process 1s called input validation. Programmers must assume
all the input data are malicious. For the integer type of input, the maximum and
minimum acceptable values must be checked with. All input values outside of the legal
range are rejected.

However input validation is usually absent, because there are many integers
areused in program that programmers often forget to check some of them. Sometime,
input validation is done but not correctly (e.g., not checking maximum value, not
checking minimum value, or both). Thus, we propose a testing mechanism to check all

suspect signedness conversion.

1.6 Our Approach

Our approach is like an automatic input validation method based on concolic

testing proposed by K Sen in year 2005.




Concolic testing is a technique that is capable of expanding all execution paths of a
program and collects symbolic data along the paths. By this we can accurately trace data
flow of input data in which we are interested. We will check data flow of input value to
decide whether it will be transformed to another type and lose its information after this
operation. Therefore, our method is able to detect unsafe input which is not filtered by
programmers’ input validation. This idea is inspired by some common mistake that
usually made by programmers, such as misuse of signed and unsigned integer type.
Programmers may have the following problems:

1. Programmers may not know the standard of C language well.

2. Programmers may assume they have known the standard of C language well but
actually they do not.

3. Programmers may forget to add input validation.

4. Programmers may assume they have added accurate input validation.

5. Even when programmers try. to fix an inaccurate input validation, there still may be
some cases that are not.considered.

All of the above problems will result in unconsciously writing of potentially dangerous

code.

Our method focuses on inaccurate input validation when input value is transformed
between signed type and unsigned type. Usual input validation requires programmers’
knowledge of what is valid input. Our method can be regard as a second input
validation automatically added to program which requires no program specification. In
the future, we hope to expand our method to make it suitable for all kinds of integer

conversion.



2 Software Verification, Testing Coverage and Concolic

Testing

Software verification is a set of methods that are used to assure that the all
expected requirements in developing software are achieved. There are two approaches

to verification: Dynamic verification and static verification.

2.1 Dynamic verification

Dynamic verification is usually called testing. It is proceed during the execution of
software to check whether program behavior is in accordance with expected
requirement. Testing can be categorized into the follows according to their test scope:

1. unit testing

2. module testing

3. integration testing

4. system testing

5. acceptance testing
Unit testing is a test only on single function. Complete unit testing is the root of a good

software testing.

2.2 Test generation
Testing is performed by using test suite as the input of the tested program. The base
of testing is generating a large number of effective input. An effective input can increase
the code coverage of the testing. Code coverage is usually measured by the following
basic metrics:
1. function coverage
2. statement coverage
3. condition coverage
4. path coverage
5. entry/exit coverage.
Function coverage measures the number of functions being executed in the
program. Statement coverage measures the line of code been executed in the program.
Condition coverage measures the possible execution path been executed in the program.

Entry/exit coverage measures the number of call and return of function been executed in
10



the program. Safe-critical applications are often required to achieve 100% of some

metrics in testing.

2.3 Manually-generated and automatically generated test

Test input used in testing can be generated in two different ways: manually
generate and automatically generate. Manually generated test input is generated by
developer, tester or even user. A developer can write down his own test suite and tester
can do the same. Users that come into program failure or annoying weird behavior of
program can send error trace back to the software vendor. All these are sources of
manually generated test input. Manually generated test input are usually well-formed
and have the corresponding expected result of program execution that be checked with.
But manually-generated test input has a main disadvantage: the cost per test generation
is high.

Automatically input generation overcome the disadvantage of manually-generated
input. Inputs are generated in asfast and- cheap way. The typical automatically input
generation technique is random testing. ‘Random testing is a technique that
automatically generates a Jarge number-of random test input. But random testing has
two main disadvantages:: generated input is' not well-formed and cannot avoid

generating repeated input.

An input that is not well-formed is unlikely to get pass the input validation of a
function. Therefore there is only little chance to increase code coverage whatever the
metric is. For example, probability of randomly generated input pass the if statement in
the line 2 in Figure 6 is 1/2732. Redundant input in random testing is another problem

although is not as severe as the former.

01 Void foo(int i){
02 If(i==0)
03 //Passed
04 Else

05  Abort();

06 }

Figure 6: example of disadvantage of random testing

11



2.4 Static verification

Static verification is another approach to verify software. It is proceed without
actually execution of software. The follows are common method of static verification:

1. Code Inspection

2. Formal Verification

3. Software Model Checking

4.  Program analysis
Software model checking is adapting the technique in model checking to check the
properties of program. There are two ways to do this:

1. Abstract a real program to a model which a model checker can handle.

2. Make a model checker capable of dealing with real program directly.

Software model checking is able to complete search for program states of a
program. Therefore it is able to check whether a property is hold in a program
completely. But it has a main disadvantage: state explosion. State explosion occurs
when the probable program state grows: rapidly during states transition. The speed of
growth is so quick that software model'.checking can hardly used in real program.
Recently, two software model-checking‘related-tool BLAST[4] and SYNERGY/[5]are
published. They improve:software“model checking by dynamically refine abstract

model and combine concrete’execution information, respectively.

2.5 Concolic testing
Concolic testing is a testing technique that combines symbolic information as in

software model checking and concrete information as in random testing. It is first
mentioned in DART]6].

Concolic testing is able to expand all execution paths of a real program. Therefore,
concolic testing achieves 100% of path coverage naturally. All program properties can
be checked along each execution path as long as the information needed for checking is
available. And it can be modified to achieve 100% of other metrics, too.

Concolic testing overcomes the disadvantages of random testing and software
model checking. High test coverage is easily achieved and there is much less state
explosion problem. Concolic testing is inspired by symbolic execution. Symbolic

execution is first mentioned in the paper of King[7], and is improved by God. Concolic

12



testing is a successful method of combining symbolic information and concrete

information.

2.6 ALERT

ALERT is a concolic testing tool inspired by CUTE. Like other concolic testing
tools, the main feature of ALERT is that it combines both dynamic execution and static
execution. ALERT is capable of expanding all distinct control flow path of a program.
The ALERT execution model is like a mix of CUTE and EXE[24]. ALERT uses a big
loop as a skeleton of execution model. An iteration of this big loop generates a distinct
control flow path of a program. This part of ALERT is just like CUTE. EXE uses a
different approach. EXE uses fork method to expand different control flow of a program.
Each fork call generates a child process to execute toward distinct control flow. If this
program contains a never ended loop, ALERT will stop tracking new branching of
control flow of a program on a threshold. For example, if an execution path flow
through a thousand if-statementssthen ALERT will stop tracking the if-statements in the
remaining execution.

ALERT uses a symbalicimemory model-like EXE does. ALERT uses real memory
address of a program and:its size-to track every memory region which is used by a
program. All primitive type,“array, structure-and dynamic allocated memory region will
be tracked. We uses a pair of value (start address, offset) to record every memory region.
A memory address which is not locates in any range of used memory objects is not legal.
CUTE uses a logic address to record all memory a program it used.

ALERT symbolically simulate all machine instruction in concrete execution. This
is the reason that ALERT can accurately find a distinct control flow path of a program.
ALERT simulate simplified C language. C language is first simplified by a source to
source transformation tool. After simplification, a C code will result in a 3-address like
code. Then ALERT can easily simulate all C language statements, i.e. all machine

instructions

13



3 Algorithm

In this section we will describe our algorithm to detect signedness conversion and
to check whether it is indeed result in software vulnerability. We can see a big picture of
this algorithm in Figure 7. First we generate input by concolic testing technique. Then
we execute this program and mark all signedness conversion. Then we check if it is
dangerous. If it is indeed dangerous, we finally check parameters of memory/string

related functions. We will describe in detail in the following paragraphs.

Figure 7: Illustration of Refilter Algorithm

3.1 Refilter Algorithm

Insecure coding style may cause problems. One of these problems becomes
vulnerability. There may be several kinds of bug that caused by these habits. There may
also be semantic bug that caused by these habits. It is inefficient to check all the bugs by
merely universal checking and execution path expanding. And it is also not possible to
check an unknown semantic bug by universal checking, because we do not know what
to check with the specification.
We propose a 2-phase approach to address this problem:

1. Find suspicious execution path that cause by bad coding habits.

14



2. Check whether there is any memory error along the suspicious execution path.
We focus on a specific kind of bad coding habit here: careless integer conversion and
lack of input validation. Careless integer conversion may cause buffer overflow and
other kinds of problem. To find all problems without describing them in detail first, we
find them by our refilter algorithm. Refilter algorithm is a specialized technique that
aimed at finding unfiltered or incorrectly filtered tainted data flow. Once we find an
unfiltered tainted data flow, we perform phase 2 of the Refilter Algorithm: universal
checking all memory operations along the suspicious execution path. In phase 2 we will
check whether there is some specific kind of bug that will easily caused by the

unfiltered taint data flow.

Tainted data are those influenced by input directly or indirectly. These must be checked
before going into the trusted zone in the program. The task is usually called input
validation, which can reject unwanted data or accept desired ones. Programmers can use
predicates or regular expressions;itoscheck the value of data. These checks are
error-prone.

Unfiltered tainted data flow.may cause software vulnerability and make software

exploitable. Unfiltered tainted data flow may cause logical bug of a program.

3.2 The Second Phase

The key idea is: if programmers do input validation right, an unsafe input value
should never trigger the same execution path as its safe counterpart. If not, user may use
very large value as input and make program crash. We define a safe range as follows:
when an integer conversion operation happens in a program, the value of the converted
variable may not be able to be represented by the format of new type. When the logical
meaning of value is preserved, it is in “safe range.” Otherwise, it is in “unsafe range.”

This idea is illustrated in Figure 8.

01 chari;

02 unsigned char j;
03 i=-1,

04 j=i,

Figure 8: An example of safe and unsafe range

After execution of line 4 in Figure 8, j becomes 255(0xff) while its original
15



meaning is -1. So -1 is in the unsafe range of integer conversion in line 4. {So a
safe/unsafe range is actually goes with an integer conversion operation, but not a

variable alone.}

In dealing with signedness problem, we can expect safe/unsafe ranges of the
following form: a >= 0 or a < 0. For example, safe range of the integer conversion in

line 4 of Figure 8 is “i >= 0” while the unsafe range is “i<0.”

The goal is to find out whether unsafe input value can trigger the same execution
path as safe input value does. There may be a lot of potentially dangerous integer
conversions all over the program. To check them efficiently and soundly, we propose a
testing method based on ALERT. We call this method “refilter algorithm” because when
ALERT perform this algorithm, basically ALERT is doing extra input validation for
programmers. If unsafe input value does not filtered out by input validation in program,
ALERT will check (filter) it by refilter-algorithm.

The Refilter algorithm consists of twae steps:
1. Monitor the occurrence of unsafe value data flow.

2. Check whether targeted unsafe value data flow is dangerous.

A unsafe value is a value in‘unsafe range. An unsafe range is defined by a specific
integer conversion. Therefore, to monitor the occurrence of unsafe value, ALERT must
identify potentially dangerous integer conversions. To identify potentially dangerous
integer conversions, we have to search for all integer conversion in the program we
want to check. We use CIL for this task, which builds up an abstract syntax tree (AST)
for the program. Then we can traverse this AST and search for integer conversions.
Once we find an integer conversion, we insert a checker call into this AST. Then CIL

transforms this AST back to source code.

To check targeted unsafe value data flow is dangerous, ALERT must check
whether the unsafe value flow through the target integer conversion and flow along the
current execution path is dangerous. ALERT must know whether a unsafe value will
flow through the same path as a safe counterpart does. ALERT achieve this by checkers
and checking function executed at the end of each ALERT iteration. Checkers collects

information until the whole execution path is decided. Once the whole current execution
16



path is decided, we can check the complete unsafe value data flow of each potentially
dangerous integer conversion along this execution path. If ALERT checks an unsafe
value data flow when the current execution path is not complete, then it may find out a
unsafe value flow through partial execution path the same as safe value flow through.
But this unsafe value may be filtered out by some input validation in the following

execution path.

Just inserting checker call into source code does not fulfill our goal. Those checker
need to be triggered. ALERT will systematically search for all execution paths and
triggers all checker along the execution paths it finds. Therefore, all checkers will be

triggered, that means all integer conversions will be checked.

When checkers are triggered, they check whether a specific integer conversion is
really a dangerous one. This task can be performed by CIL, but can also be done during
runtime. If the integer conversion.checked by ALERT is a dangerous one, ALERT add
corresponding constraint to .CVCL ;and. theseconstraints will be solved together with
path conditions latter. What constraint 1S.going to be added is depend on types involved
in integer conversion and- concrete”value of ‘converted variable when conversion is
performed. The types involved in‘the integer conversion decide what is safe range and
unsafe range of this integer conversion. The concrete value of the converted variable
when conversion is performed in runtime decides whether we add a constraint
corresponds to safe range or unsafe range. If concrete value is in safe range, we add a
constraint corresponding to the unsafe range. Otherwise, we add the one corresponding

to the safe range.

At the end of current execution path triggered by ALERT, we enter the main part of
this algorithm. ALERT use information collected along current execution path to check
whether all integer conversions in the path are safe or unsafe one by one. ALERT keeps
track of each dangerous integer conversion and the safe/unsafe range of that. By this, we
can ask whether value of each dangerously converted variable can be in another range.
If they are in safe range when integer conversion is performed, we want to find out
whether they can be in unsafe range and still trigger the same execution path as current
path, and vice versa. The unsafe value should be filtered out by input validation of a

program. An unsafe value should be handled by exception handling part of a program.
17



Figure 9 & Figure 10 illustrate this idea. CVCL will solve this and tell ALERT whether
it is possible or not. This will generate false positives and false negatives because we do
not model all operations that a machine can perform. If CVCL tells ALERT it is possible,
ALERT will get input data. Then users can check whether it is feasible by execute the
uninstrumented program with input data generated by ALERT.

Input
Validation

Input
Validation

Memory
Related
Function

Figure 10: Unsuccessful input validation

18



When we solve a set of constraint by a solver, we are asking the solver whether
these constraints are true in all cases. If it is possible to make the set of constraints false,
the solver will give a counter-example that makes the set of constraints evaluates to
false. Path conditions are a set of constraints that every transition from initial state to
current state of a specific program counter must meet. For example: If the execution
path of this program marked by line number in Figure 11 is 1-2-3-6, then variable i must
larger than 10 or the execution path will lead to line 4. The path condition of 1-2-3-6 is
“i>=10.”

Refilter algorithm collects also the constraint of integer conversion itself. When
constraints of integer conversion are solved together with path conditions, ALERT are
simply checking whether a specific variable can be in a specific range when integer
conversion happens while follow current execution path. For example: If the solver
report invalid to this set of mixed constraints of Path 2 in Figure 12, then it is
impossible to make the variable i < 0 on executing line 4 while execution path is
1-2-3-4-5-6.

Source code Execution path Path condition
0linti; Path1: 1-2-3-6 i>=10

02 Int j; Path2:'1-2-3-4-6 (i<10)&(i+j <=5)
03 If(i < 10) Path3: 1-2-3-4-5-6 (i<10)&(i+j > 5)
04 if(i+j>5)

05 printf(“foo”);

06 return;

Figure 11: example of path condition

19



Source code Executoin Path Path Condition Integer conversion

constraint

01 int i=input(); Path 1: 1-2-3-6 (i>=10)

02 unsigned intj; | Path 2: 1-2-3-4-5-6 | (i<10) (i@line4 <0)
03 If(i < 10){

04 j=i+l;

05 malloc(j); }
06 return;

Figure 12: example of path condition mix integer conversion constraint

Our algorithm is shown in Figure 13.

while(there exist some path not searched){
inputData = getNextInput();
executeAndMarkUnsafe(inputData);

for(each of marked signetness conversion){
safeRange = markedConversion.safeRange;
unsafeRange-= markedConversion.unsafeRange;

if( solve(PathConstraint, SafeRange)&&
solve(PathConstraint, unsafeRange))

universalChecking();

}
generateNextInput();
¥
Figure 13: Pseudo code of refilter algorithm
We consider the following four kinds of bug are most related to the unfiltered taint
data flow:

1. Memory related library function. The functions with parameter of type size_t
should be checked, such as malloc(size_t). When calling these functions, the
corresponding argument should not be negative.

2. String library function with boundary checking, such strncpy(char*, const
char*, size_t).

3. Array index out of boundary

20




4. Big loop index variable

We can instrument a universal check before these instructions to check whether these

bugs will occur.

When ALERT executes the suspicious execution path, it will triggers checkers. If
any checkers should fail, ALERT will generates the input data that make it fail. Then we
can use these input data to check whether it will really cause a problem.

Universal checks are not able to find semantic bugs. If all universal check fails,
then programmer should consider this suspicious execution path is cause by a semantic

bug.

3.3 Contribution

1. We proposed a new method te find'all potential signedness errors. This method rely
on control flow information only:

2. The two-phase approach greatly reduces the overhead of the universal checking in

that only suspicious execution paths are tested with fully universal checking.

21



4 Implementation

4.1 ALERT Implementation

ALERT is a concolic software testing tool. The idea of ALERT implementation is
inspired by both CUTE[8] and EXE{ref}. Therefore, its implementation is like a mix of
them. ALERT learns the CUTE style of concrete execution, which is different from
EXE’s. CUTE uses depth-first search style in its path searching and finds out single
complete execution path at one iteration. EXE implement this in a different way. EXE
use depth-first search style, too. But EXE searches for all execution paths
simultaneously. When EXE reaches a control branch, it forks child processes to follow
each direction. Searching in other directions pauses until searching in one direction is

full completed.

There are differences in symbolic storage model of CUTE and EXE, too. CUTE
uses logical input map to record symbolic information of bytes in memory, while EXE
uses CRED-like memory .region .recording. CUTE marks memory regions with
primitive types or pointer type while all bytes in-EXE are non-type. CUTE is not able to
handle bitwise operation,which |[EXE handles ‘well. CUTE does not handle pointer
aliasing problem well while’'EXE do much better than CUTE in solve pointer aliasing.

The solvers they use are different, too. CUTE uses Ip-solver[9] as its solver while
EXE[24] uses CVCL[10] and STP[11].

ALERT uses CUTE’s style of concrete execution and EXE’s style of symbolic
storage model. Refilter algorithm is implemented as a module of ALERT platform. The
architecture of ALERT and refilter algorithm are both illustrated in Figure 14. The
refilter checker in Figure 14 is respond for check if the safe range and unsafe range

value trigger the same execution path.

The source code in test is first processed by CIL. CIL will do some simplification
and instrumentation to the source code. ALERT receives the instrumented source code
form CIL and add a test driver. ALERT then compiles the instrumented source code to
an executable. The executable will get the input data from a input file during each

ALERT iteration. Each input data will trigger an execution path. Finally, ALERT will
22



stop because of either there is no other path to be explored or the program in test

crashes.

Source
Code

2

Instrumented
Code

&

E@ Executable ‘—I>

< |

Refilter

<;:| ALERT Checker
Library Universal

Checker

New Input

Figure 14: Architecture of ALERT

ALERT uses another solver other than ones used by CUTE and EXE: CVC3. We
are preparing to try STP on ALERT recently.

ALERT uses CIL as its source code instrumentation tool and also its source to
source transformation tool. ALERT uses the source code simplification feature of CIL to
make things simpler to handle. CIL simplified C source code to a 3-address like code
while reserving the original semantic. For example, a for loop statement is transformed
to an infinite while loop with goto instruction and labels to jump on. This simplification
is illustrated in Figure 15. Another example is simplification of struct type. The
variables defined in the struct type are renamed. To preserve semantics, each location
that uses these variables is transformed too. The address relation between these

variables is calculated. This simplification is illustrated in Figure 16.

23



(Before simplification)
1 void testme(int i){

2 char j;

3 =

4 while(j <=5)

5 printf("j <=5");
6}

(After simplification)

6 #line 5 "test.c"

7 extern int printf() ;

8 #line 1 "test.c"

9 void testme(int i )
10 { charj;
11 int__cil_tmp3;
12 int__cil_tmp4;
13 int__cil_tmp5;

14

15 {

16 #line 3

17 j=(char)i;

18 #line 4

19  while (1) {

20 #line 4

21 __cil_tmp3 = (int)j;
22 #line 4

23 __cil_tmpd=__cil‘tmp3 <=5;
24 #line 6

25 __cil_tmp5="1__cil_tmp4;
26 #line 4

27 if (__cil_tmp5!=0){
28 goto while_0_break;
29 }

30 #line 5

31 printf("j <= 5");

32 }

33  while_0 break: ;

34 #line 1

35  return;

36 }

37}

Figure 15: ALERT simplification

(before simplification)
1 typedef struct FOO{
2 inti;
3 char c;

24




4 }Foo;

5
6 void testme(void){
7 Foo f;
8 fi=1;
9 fc="a}
10}

(after simplification)

6 #line 6 "test00.c"
7 void testme(void)

8{charf c2;
9 intf.i3;
10
11 {
12 #line 8
13 fi3=1;
14 #line 9

15 f c2=(char)a;
16 #line 6

17  return;

18 }

19}

Figure 26:ALERT simplification

The ALERT implementation .includes two main parts: concrete execution and

symbolic execution. Of course, the interaction between concrete execution and symbolic

execution is also very importantand will be described in this chapter.

The skeleton of the concrete execution of ALERT is a big loop. At each iteration of

this loop, ALERT will search for a new execution path and solve the input which will

trigger new execution path. This big loop contains the following steps:

1. Getinput data.

2. Execute test driver.

3. Execute the instrumented tested program.

4. Use SMT-solver to generate new input for next ALERT iteration.

The symbolic execution is blended with concrete execution in this big loop. Symbolic

execution of ALERT is basically simulation of all concrete information by SMT-Solver

constraints.

ALERT symbolically executes the program by simulating how program are

executed in real machine. ALERT achieves this by the follows:

25



1. ALERT defines a corresponding symbolic instruction for each possible
instruction in a program.

2. ALERT symbolically simulates every instruction in the current execution path
according the definition in 1.

3. ALERT keeps the symbolic information for every byte of memory used by the
program in bit-level precision.

In the following section the detail of the above will be described.

Basically ALERT keeps symbolic information of every byte in memory. But if
ALERT keeps a record for every byte in a 4GB system, ALERT will definitely need
more than 4GB of memory to do that. In order to avoid this, ALERT uses a CRED like
memory map called “object map” for record all memory used in the tested program.
ALERT keeps a record for each used variable in object map with its type, start address
in memory and size. An object is basically a sequence of bytes with a name attached to
it. An object can be a primitive typervariable, an array of some type, or variable of user
defined type. ALERT also keeps the.information of whether a single byte in memory is
symbolic. If a byte in memary.is symbolic, then- ALERT will trace all operations that it
involves in. ALERT uses some constraints to record the relation between this symbolic
byte and other bytes in memary. These relation are built up by symbolically simulating
instructions in a program one by one..ALERT does not keep redundant information
concrete variables because they are not influenced by the input. Note that ALERT

cannot control execution path only via manipulating the input.

Arithmetic operations are basically simulated by the build-in methods of CVC3
although the division operation is not supported. Therefore almost all arithmetic
operations that a program can perform are symbolically simulated by ALERT. Numbers
used in arithmetic operation are divided into two categories: integer numbers and
floating point numbers. All integer operations are simulated by ALERT. These
operations are: addition, subtraction, multiplication, division and modular operation.
Other arithmetic operations are transformed into these four basic operations by CIL.
The division operation is replaced by our self-assembly division operation by using the

CVC3 built-in multiplication operation.

ALERT does not handle floating point number operation. Therefore some false
26



positives may generate.

Relational, logical and bitwise operation are simulated by the build-ins of CVC3
although some functionally repetitive operations are missing. The missing operations
can be implemented with the counterpart operation. Therefore, all these three kinds of

operations are fully handled by ALERT.

Assignment statements are essential in any program. They are the main body of
data flow in program. ALERT handles assignment with the help from CIL. CIL will
simplify the program into 3-address like code. After CIL simplification, all assignment
statements in the program will become one of the following forms:

1. Lvalue=AopB

2. Lvalue=A
We do not consider memory related operation like dereference here. The memory

related operations are described in.the fellowing section.

The main task of simulating assignment statement is the symbolic information
linkage between the Lvalue and the right hand side of the assignment operator. But there
is a problem to be dealt with: first, variables.in'a SMT-solver have no time information.
For example: “int a; a=1; a=2;” in.C program is different from “int a; a=1; a=2; ” in a
SMT-solver. The result of the former is variable a has value 2 at the end of execution.
The later just gives message “Invalid” if we query the solver with a constraint “a=2".
Our solution is a variable renaming mechanism. For each variable used in SMT-solver,
we mark it with timestamp along the execution path. For example, variable i in time 0
will be i_0 in the solver. The time information of a variable gives us the capability to

trace the symbolic dataflow of every variable.

To propagate the symbolic information first we check whether the variables
involve in assignment statement is symbolic. All cases of are as follows:

1. Both Aand B are concrete

2. Otherwise
If both of A and B is concrete, then Lvalue is also concrete after this assignment. In this
case, we mark Lvalue as concrete and let the original program do its concrete execution.

Otherwise, the Lvalue is symbolic after assignment. In this case, we make a constraint
27



that Lvalue is equal to the right hand side of the assignment operator. For example:

assignment statement “a=b” may becomes “a_1 equals b_0" in SMT-solver.

ALERT handles most pointer operations. But pointer aliasing is not fully handled.
Pointer operation includes pointer read and pointer write. After simplification of CIL,
all pointer operations in program are as follows:

1.  Var = *(pointer)

2. *(pointer) = Var
The first is called pointer read, and the second is pointer write.

After simplification of CIL, pointer read operations are reduced to single form: Var
= *(pointer). All pointer read operations are divided into four cases:

1. Symbolic reference and symbolic referent.

2. Symbolic reference and concrete referent.

3. Concrete reference and symbolic referent.

4.  Concrete reference-and conerete.reférent.
In case 1, ALERT will expand pointer read. to-several conjunct constraints. Symbolic

information of referent is linked to Var after pointer read is expanded. This is illustrated

in Figure 17.
Source Code Constraints
1 void testme(int i,int j){ (((FALSEOR ((mem_16 1 1=
2 int b[3]; Obin10111111111011100111001010000100)
3 int k; AND (k 1 1=(b 97[3] . 1@b 97[2] 1 @
4 b[0] =1i; b _97[1]_1 @ b_97[0]_1)))) OR
5 b[1] = 2*i; (mem_16 1 1=
6 b[2] = i+10; 0bin10111111111011100111001010001000)
7 k =Db[j]; AND (k 1 1=(b 97[7]_ 1 @ b _97[6]_ 1 @
8} b _97[5]_1 @ b_97[4]_1)))) OR
(mem_16 1 1=
Obin10111111111011100111001010001100)
AND (k_ 1 1=(b_97[11] 1 @ b_97[10]_1
@ b_97[9]_1 @ b_97[8]_1))))

Figure 17: Constraints represent pointer read generated by ALERT

Case 2 is similar to casel except the reference is concrete. There is nothing to do.
Case 3 and 4 is similar to the cases in assignment statement. The way ALERT

handle them is similar, too. ALERT get referent and decide whether it is symbolic by a
28



way similar to how ALERT decide whether a variable is symbolic. The remains are the

same as in assignment statement.

After simplification of CIL, pointer write operations are reduced to one form:
*(pointer) = Var. All pointer write operations are divided into four cases:

1.  Symbolic reference and symbolic Var.

2. Symbolic reference and concrete Var.

3. Concrete reference and symbolic Var.

4. Concrete reference and concrete Var.
In case 1, ALERT will expand pointer read to several conjunct constraints. This step is
much like the one in pointer read case 1. But the difference is that ALERT will make
sure symbolic information of those bytes which are not assigned is keep not changed
after pointer write. To do this we have to expand pointer write operation to a large

conjunction of constraints. This is illustrated in Figure 18.

Source Code Constraints
1 void testme(int i,int j)§ (((FALSE OR ((mem_16 1 1=
2 int b[3]; 0bin10111111110011111001000010010100)
3 b[i] =j; AND(k 1 1=(b 97[3]. 1@b 97[2] 1 @
41} b 97[1] 1 @ b_97[0]_1)))) OR
((mem_16 1 1=

0bin10111111110011111001000010011000)
AND (k 1 1=(b 97[7] 1 @b 97[6] 1 @
b _97[5]_1 @ b_97[4]_1)))) OR
(mem_16 1 1=
0bin10111111110011111001000010011100)
AND (k_ 1 1=(b 97[11] 1 @ b_97[10]_1
@b_97[9]_1 @ b_97[8]_1))))

Figure 18: Constraints represent pointer write generated by ALERT

Case 2 is similar to casel except the Var is concrete. There is no need to link the

symbolic information.

Case 3 and 4 is similar to the cases in assignment statement. The way ALERT
handle them is similar, too. ALERT get the Var and decide whether it is symbolic like
ALERT decide whether a variable is symbolic. The remains are the same as in

assignment statement.

29




ALERT handle control flow related statement by help from CIL. CIL transform all

control related statement to a mixing of if, while, call/return statements.

When finding an if statement, CIL inserts two functions on the “then” block and the
“else” block. In the “then” block, the function records the path condition of an execution
path goes along the “then” side. The path condition includes:

1. Evaluation of the condition expression, “true” in this case.

2. Condition expression.

3. Other information needed in implementation.
When finding a call/return statement, CIL inserts functions that help to propagate the
information between the caller and callee. Without side-effect, the most important
relation between the caller and callee is the parameter and return value. ALERT will

link the relation between function parameters and return value by variable renaming.

4.2 Refilter Algorithm Implementation

Refilter Algorithm is implemented.asia module of ALERT. It works independently
and has no influence on the original ability of ALERT. Implementation of Refilter
algorithm consists of two parts: Cllizinsertion of refilter checker and refilter checker

implementation.

ALERT uses CIL to insert checker before every integer conversion. The
instrumentation is illustrated in Figure 19. ALERT can only insert checker before
potentially dangerous integer conversion rather than all, but the difference is little.
ALERT uses CIL to collect the follows in an integer conversion: variable name, variable

type, constant value. The collected information is used in runtime.

(Before instrument)

1 void testme(int i){
2 unsigned char c;
3 c=1;
4 if(c ='a")
5 printf(foo");
6}

(After instrument)

21 #line 3

22 ¢ = (unsigned char )i;

30



23 #line 3

24 _sqSymExec("c", T_UCHAR, OP_NOP, "i", (unsigned int )i, T_INT,
"SQ_constant", 0,

25 T_INT, T_UCHAR, -1, -1);

26 #line 3

27  _signednessCheck("c", T_UCHAR, OP_NOP, "i", (unsigned int )i, T_INT,
"SQ_constant”,

28 0, T_INT, T_UCHAR, -1, -1);
29 #line 4

30 ¢ = (unsigned char )a’;

31 #line 4

32  _sqSymExec("c", T_UCHAR, OP_NOP, "SQ_constant", (unsigned int )'a’,
T_INT, "SQ_constant",

33 0, T_INT, T_UCHAR, -1, -1);

34 #line 4

35 _signednessCheck("c", T_UCHAR, OP_NOP, "SQ_constant", (unsigned
int)a’, T_INT, "SQ_constant",

36 0, T_INT, T UCHAR, -1, -1);

Figure 19: CIL instrumentation of checker

The implementation of refilter.checker consists of two parts: Add corresponding

constraints and solve constraint. These two parts are implemented in different functions.

Refilter checker decides whether it is a potentially dangerous integer conversion at
runtime. If so, ALERT records.this-integer-conversion and its corresponding constraint.
The corresponding constraint is @ constraint to limit the value of converted variable. If
the concrete value of the converted variable is in safe range, ALERT adds a constraint

which limits the value in unsafe range and vice versa.

Another part of refilter checker is executed at the end of an ALERT iteration. In
this part ALERT will ask SMT-solver to solve the path constraints and the integer
conversion constraints one by one. If the SMT-solver answers “valid”, then there is
unfiltered unsafe input value. ALERT will warn the user if it finds an unfiltered unsafe

input value.

31



5 Evaluation

The evaluation was performed on a machine with Intel Core 2 Duo 1866 MHz
CPU and DDR2-667 1GB memory.

The operating system of our machine is linux of kernel version 2.6.17. The version
of CIL is 1.3.6. The version of CVC3 is 1.2.1. And the version of GCC is 4.1.2.

Most signedness errors are easy to exploit if the variable is used as the size for
memory-related library, such as malloc, memcpy and memset. Our method can find not
only this kind of bug, but also semantic bug. In this section, we evaluate our method
with four test cases, which are signed-to-unsigned conversion, unsigned-to-signed
conversion, signed-to-unsigned upcast, and a semantic bug. The first one is the real bug
in gemu and the others are our test cases. We successfully found all the bugs in these

test cases.

5.1 Signed-to-unsigned Canversion

Figure 20 shows a bug found in"gemu 0.8.2. The original advisory can be found in
http://taviso.decsystem.org/virtsec:pdf.” The .test case is the minimized version of
function ne2000_receive and only thecore part of this vulnerability, which is a typical

example of signed-to-unsigned conversion bug.

The parameters index and s_stop are controlled by the user, which make the user
be able to control the variable and make its value negative while prarameter size is not
controllable. In line 13, the sanity check can be bypassed as long as the variable avail is
negative. In line 14, memcpy uses the variable len as third parameter, which denote the
size. The negative signed integer becomes a large unsigned integer. The size is
definitely not expected. Our method finds that the signed variable len is implicitly cast

into an unsigned variable, so the variable len is taken into tracking.

1 #include <stdlib.h>

2 void

3 testme(int index, unsigned s_stop, int size){
4 intavalil, len;

5 unsigned char mem[48*1024];

32



6  unsigned char buf[48*1024];
7
8 if(size > 0){
11 avail = s_stop - index;
12 len = size;
13 if (len > avail)
14 len = avail;
15 memcpy(mem + index, buf, len);
16 }
17}

Figure 20: A bug found in gemu 0.8.2 ne2000_receive()

Figure 21 is a test case to demonstrate the signed-to-unsigned upcast operation. In
line 8, we assign the unsigned integer m with a signed character n. If n is negative
number, e.g., -1, then m becomes a very big number (Oxffffffff in this case). In line 9, m
IS using as the size parameter of function malloc. Function malloc can hardly allocate a
memory space of this size. If this program does not check the return value for NULL,

subsequence use of the pointer p will result in memory error.

1 #include <stdlib.h>

2

3 void testme(char n){

4 unsigned int m;

6 unsigned int *p;

7

8 m=n;

9 p = malloc(m);
10}

Figure 21: signed to unsigned, upcast

Figure 22 is a test case to demonstrate the unsigned-to-signed conversion. We
assign an unsigned character n into a signed character m, which is used as the index of

the array dat. If n is 255, then m is -1. This will result in a buffer underflow in line 10.

33



1 #include <stdlib.h>
2
3 #define size 300
4
5 void testme(unsigned char n){
6 char m;
7 unsigned char buf[size];
8 unsigned char dat[size];
9 m =n;
10 *(buf) = *(dat+m);

Figure 22: unsigned to signed, the same rank

5.2 testing of TestAntiSniff

AntiSniff is network card promiscuous mode detector. The following demonstrates
how a bug in the DNS packet-parsing code of AntiSniff is wrongly fixed and how the
problem of fix can be caught by our method.

1 #include "test.h"

2 #include <stdlib.h>

3 #define MAX_LEN 256
4 void testme(char *pkt)

5{

6 char *indx;

7 int count;

8 char nameStr[MAX_LEN]; //256

9 memset(nameStr, \0', sizeof(nameStr));
10 indx = (char *) (pkt);
11 count = (char) *indx;
12

13 while (count) {
14 (char *) indx++;

15 strncat(nameStr, (char *) indx, count);

16 indx += count;

17 count = (char) *indx;

18 strncat(namestr, ".", sizeof(nameStr) - strlen(nameStr));
19 }

20 nameStr[strlen(nameStr) - 1] = "\0’;

21

22 }

Figure 23: testAntiSniff_1.0.c

34



This code which in Figure 23 snippet shows a process that extract the domain
name from the packet and copy it into the nameStr string. The packet looks like the one

in Figure 24.

4 N c t u 3 e d u 0

Figure 24: DNS packet

The condition expression of the while loop in linel3 check whether count is equal
to 0. When it is not, this loop goes on. If the length of the domain named that copied is
larger than MAX_LEN, which is 256 in this case, a buffer overflow bug will occur.
Refilter algorithm reports nothing about linel3 because it is not a signedness bug. But
refilter algorithm reports that there is an signedness bug in linel6. If the value of count
is negative and used as the length parameter of the strncpy function in line9, which

means count is translated to a large unsigned value, a buffer overflow occurs.

1 #include "test.h"
2 #include <stdlib.h>
3 #define MAX_LEN 256
4 void testme(char *pkt)
54
6 char *indx;
7 int count;
8 char nameStr[MAX LEN]; _//256
9 unsigned int count2;
10 memset(namesStr, \0', sizeof(namesStr));
11 indx = (char *) (pkt);
12 count = (char) *indx;
13 while (count) {
14 if (strlen(namesStr) + count < (MAX_LEN - 1)) {
15 (char *) indx++;
16 strncat(nameStr, (char *) indx, count);
17 indx += count;
18 count = (char) *indx;
19 strncat(nameStr, ".", sizeof(nameStr) - strlen(hameStr));
20 }else {
21 printf("Alert! Someone is attempting "
22 "to send LONG DNS packets\n™);
23 count = 0;
24 }
25 }
26 nameStr[strlen(nameStr) - 1] = "\0’;
27
28 }

Figure 25: testAntiSniff_1.1.c

35



Refilter algorithm reports that a signedness bug is detected in linel4(Figure 25).
This is the same bug that shows up in linel6 in AntiSniffl.0.c. The negative value in
count will passed the check in line 15. When count is added with the return value of
function strlen, it will be casted first to unsigned int, which means count will becomes a
large unsigned int variable. Then count is added with strlen(nameStr), and easily cause
it result in wrap around. The result of count plus strlen(nameStr) will be a unsigned

integer smaller than MAX_LEN-1 and get pass the check in line 14,

1 #include "test.h"
2 #include <stdlib.h>
3 #define MAX_LEN 256
4 void testme(char *pkt)
54
6 char *indx;
7 int count;
8 char nameStr[MAX_LEN]; //256
9 unsigned int count2;
10 memset(namesStr, \O', sizeef(nameStr));
11 indx = (char *) (pkt);
12 count = (char) *indx;
13 while (count) {
14 if ((unsigned int) strlen(nameStr) + (unsigned int) count <
15 (MAX_LEN -1)){
16 (char *) indx++;
17 strncat(nameStr, (char *) indx, count);
18 indx += count;
19 count = (char) *indx;
20 strncat(nameStr, ".", sizeof(nameStr) - strlen(nameStr));
21 }else {
22 printf("Alert! Someone is attempting "
23 "to send LONG DNS packets\n™);
24 count = 0;
25 }
26 }
27 nameStr[strlen(nameStr) - 1] = "\0’;
28
29 }

Figure 26: testAntiSniff_1.1.1.c

In testAntiSniff_1.1.1.c(Figure 26), refilter algorithm reports the same bug that
found in AntiSniffl.1.c(Figure 25). This is because that the explicit cast added right

before the strlen() is redundant. The return value of strlen is unsigned int type from the

36



very begining.

1 #include "test.h"
2 #include <stdlib.h>
3 #define MAX_LEN 256

4
5 void testme(char *pkt)
64
7 unsigned char *indx;
8 unsigned int count;
9 unsigned char nameStr[MAX_LEN]; //256
10 memset(namesStr, \0', sizeof(namesStr));
11 indx = (char *) pkt;
12 count = (char) *indx;
13
14 while (count) {
15 if (strlen(nameStr) + count < (MAX_LEN - 1)) {
16 indx++;
17 strncat(nameStr, indx, count);
18 indx += count;
19 count = *indx;
20 strncat(nameStr; ™., sizeof(nameStr) - strlen(nameStr));
21 }else {
22 printf("Alert! Someone is.attempting "
23 "to send:LONG DNS packets\n™);
24 count = 0;
25 }
26
27 }
28 nameStr[strlen(nameStr) - 1] = "\0’;
29
30}

In the final fix of AntiSniff(Figure 27), the three variable indx, count and nameStr
is declared as unsigned type. This solves all problems and Refilter algorithm reports

nothing.

Figure 27: testAntiSniff_1.1.2.c

5.3 Comparison of Calls to Universal Checker

We try to use refilter algorithm to decrease the original ALERT way of detecting some
bug trigger by integer signedness problem like the one in Figure 21. If the program
logic is complicated, ALERT may performs many unnecessary universal checks.
Refilter algorithm can help ALERT by filter out the execution path without any
signedness conversion. We do universal check only when the current execution path fail

37




to pass refilter algorithm. This means that we may avoid a lot of calls to universal
checker.

We use AntiSniff as our target again. The detail of testing is in the next section. We can
see the result in Figure 28. The result is promising. We can see that the number of calls
to universal checker of refiler algorithm is 1/6 of the counterpart. When the program has
no signedness bug like AntiSniffl.1.2, refilter algorithm spends no universal check

while original ALERT spends thousands before halt.

AntiSniff 1.0 AntiSniff 1.1 AntiSniff 1.1.1 | AntiSniff 1.1.2

Refilter
_ 295 298 298 0
Algorithm
Original
1881 1868 1868 4289
ALERT

Figure 28:-Numbers of calls to universal checker

5.4 Testing Detail of AntiSniff
This section record the detail of 'our testing of AntiSniff. Because of the prototype

ALERT is unstable, our testing task-is full of surprises. The details is listed as following:

1. We have used the original version of AntiSniff (Figure 32) rather than simplified one

(Figure 23) in the evaluation of efficiency.

2. If variable count in line 37 equals to -1, then the while loop in line37 will run
forever. To explain this, we can see while loop will be stop if count is equals to 0. If
count is set to -1 by the value pointed by indx in line35 or line41, it will pass the
stop condition of while loop in line37. In line38, pointer indx increase by 1. Then in
line40 indx is added by count, which make it point to the original position in line35

or line41. This is illustrated in Figure 29.

38



F count="indx = -1
B ERE

T

-1

[" iIndx=indx+ 1
l ‘a |

| ] |

r indh = indx + count
e | | ] l — =indx+ -1

T

F count="indx = -1
B ERAE

Figure 29: While loop will runforever when count becomes -1

3. During including the standard library source code, we found the ntohs library calls
is implemented by in-line-assembly which-cannot be analyzed by CIL. This problem
is not solved yet, we simply omit this function call and some code related to it. This
omission brings no effect to the absence and presence of the integer signedness bug.

Therefore, this omission brings little effect to the evaluation of our algorithm.

4. When adding universal checker to the code, we found the execution time is very
long. If we set MAX_LEN to 256 as the original code, the SMT-solver will hang.
We try to set MAX_LEN to 100 or lower, but the execution time is still too long that
we do not sure whether it will going to stop. Finally we set MAX_LEN to 20. We
also make size of function parameter pkt to 20. Using this configuration, we have

tested AntiSniff successfully.

5. When MAX_LEN is 256, the original AntiSniff has a buffer overflow problem as
illustrated in Figure 31. Usually a input data of pkt will looks like Figure 30. But

when a input looks like a one in Figure 31, a buffer overflow problem will occur.

39



This is due to the lack of checking in the original code. Unfortunately, the solver
does not care whether the generated input will cause a buffer overflow problem. So

we have to write a checking code that make the input looks like a one in Figure 30.

We write some lines of checking code to ensure the input will be well formed.

/’_\’/—\‘/indx
T

Figure 30: A well-formed input

/\‘/_N- indx |\‘
[0 ] & ] 1] | 17 ] |

Figure 31: A input that cause buffer overflow

. We have implemented our own library to replace the standard C library. The reason
is that the source code of standard.C.library is been optimized, and some of them

using in-line assembly. The CIL is not.capable of handle in-line assembly or gcc

extensions. Our own implementation can-be found in Appendix A, together with the

modified AntiSniff.

1 #include "includes.h”
2 #include "anti_sniff.h"
3
4 int watch_dns_ptr(char *pkt, int len, char *ip_match){
5 HEADERdns_h;
6 intdns_offset, rr_offset, rr_size;
7 int count, questionEntries;
8  char *indx;
9  char nameStr[MAX_LEN];
10  char matchPTR[32];
11 int min_str_len;

13 memset(nameStr, \0', sizeof(nameStr));

15 if (Ymake_ptr_str(ip_match, matchPTR)){

16 fprintf(stderr, "error making ptr lookup address\n™);
17 return FALSE,;

18 }

20  dns_offset = SIZE_ETHER_H + SIZE_IP_H + SIZE_UDP_H,;
21  rr_offset = dns_offset + SIZE_DNS_H;

40




23 if(len<SIZE_ETHER_H + SIZE_IP_H + SIZE_UDP_H + SIZE_DNS_H)

24 return FALSE;

25

26  rr_size = len - rr_offset;

27

28  memcpy(&dns_h, (char *)(pkt + dns_offset), sizeof(HEADER));

29

30  questionEntries = ntohs(dns_h.qdcount);

31

32 if (lquestionEntries)

33 return FALSE;

34 indx = (char *)(pkt + rr_offset);

35  count = (char)*indx;

36

37 while (count){

38 (char *)indx++;

39 strncat(nameStr, (char *)indx, count);

40 indx += count;

41 count = (char)*indx;

42 strncat(nameStr, ".", sizeof(nameStr) - strlen(nameStr));

43

44 nameStr[strlen(namesStr)-1} = \0*;

45

46 min_str_len = (strlen(nameStr) < strlen(matchPTR)) ? strlen(nameStr) :
strlen(matchPTR);

47 if (strncmp(nameStr, matchPTR, min_str:len) == 0){

48 return TRUE;

49 1}

50

51  return FALSE;

52}

Figure 32: The original source code of AntiSniff.

41




6 Discussions

6.1 False Positive
Our algorithm has false positive when the unfiltered unsafe value is not used. For

example:

1 Void testme(int 1){
2 unsigned int j;
3 i=i

4}

Figure 33: An example of false positive

The signedness conversion in line3 in Figure 33 makes value -1 of integer i unsafe. But
the converted value in j is used nowhere. In this kind of situation, the signednss

conversion does no harm.

6.2 False Negative
Our method has false negative:when the unsafe value is used before it is separated from

safe value. For example:

1 void testme(int i){
2 unsigned int j;
3void * p;

4j=i,

5 p = malloc(j);

6 if(i<0)

7  return;
8*p=1,

9}

Figure 34: An example of false negative

The signedness conversion in line3 in Figure 34 makes value -1 of integer i unsafe. It is
latter used in function malloc in line4 and generates a null pointer p. But unsafe value
like -1 will be filtered out in the if statement in line6. Therefore, our method report no

bug but the null pointer p will cause null pointer dereference in line8.

42



7 Related Works

RICH[12]has the same motivation as us. This work covers more integer problems
than us, including integer overflow, underflow and truncation. The authors of the paper
conduct a detailed survey about integer security and try to detect them at run time.
Every integer operation is instrumented with a piece of detection code. The detection is
instrumented with either CIL[13] or a GCC extension. RICH formally model a
dangerous integer related operation in C program and detects its happening in runtime.
RICH does not check parameters of memory/string related functions. RICH has high

false positive and false negative rate but good performance.

Because of integer problems are easy to exploit with memory allocation.
Catchconv[14]uses the Valgrind framework[15] to collect symbolic constraints, then
intercept function malloc() and related functions to check whether the high bit of the
parameter about size is set. In addition, it checks for program crash. We can find more
kinds of bugs than memory errors. Moreover; the constaints they collected is too much
to be solved by current solver. This greatly limits its usability.

The Big Loop Integer. Protection-(BLIP)[16] compiler extension transforms
programs to detect overly large counters in loops. BLIP does not detect whether a
dangerous integer operation happens. BLIP does not check the parameters of
memory/string related functions, neither. BLIP uses a fixed threshold of loop index,

resulting in many false negatives and false positives.

The constraint solver, CVC3, plays an important role in our testing framework
because it does refilter checking and generates inputs for full path coverage. CVC3 is
one of the SMT solvers. EXE and Catchconv use STP as their solver. There is an annual
SMT-LIB competition which uses the benchmark[17]. Yices[18] and UCLID[19]
performs well in this competition. We are currently conducting a survey about these

solvers and their capabilities in use with symbolic execution.

Synergy[5] takes a formal approach to property checking by either proving the
property as valid or disproving the property as invalid. , SLAM[20], BLAST[4]

43



Autodafe[21] use the well-form input and randomly change some of the input data.

In this approach, it is supposed to explore more paths than pure random testing.

Active property checking that implemented on SAGE system[22] that is aim at bug
finding. SAGE system processes a program in machine instruction level, therefore,
SAGE add checkers that checks for low level program properties. Active property
checking uses universal checkers in finding specific bug while Refilter algorithm add
checker as a helper that point out the most common vulnerabilities that a bad

programming style can lead to.

BOONJ[23] is a static analysis tool which aim at finding buffer overflow bugs.
BOON uses pure static approach and is control flow insensitive. BOON has higher false
positive rate because of lacking of control flow information. ALERT is able to take
advantage of control flow information thus reduce the false positive rate. Possible value
of a variable is modeled as ranges:in:-BOON while ALERT uses constraint strictly to

describe all possible values of each byte.in memory.

44



8 Conclusions

We propose a new algorithm to check for signedness faults in C programs. Our
approach is based on concolic testing. We use concolic testing to expand computation
tree of a C program. For each execution path of this tree, we check if safe value and
unsafe value of a signedness conversion can both trigger this path. If they do, we
consider this as a signedness fault and uses universal checker to check parameters of
memory/string related fucnctions. We call this algorithm “refilter algorithm.”We have
implemented it as a module of ALERT software testing platform. We use a gemu ,
AntiSniff and other manually crafted integer conversion testcases to evaluate the
algorithm. The result shows we can find all integer signedness faults in a C program.
Moreover, we show that our approach is more efficient than original concolic testing
technique.

45



9 References

[1] J. Koziol, D. Litchfield and D. A. and, The Shellcoder's Handbook : Discovering
and Exploiting Security Holes. John Wiley Sons, 2004.

[2] SecurityTracker, "Microsoft Internet Explorer Integer Overflow in Processing
Bitmap Files Lets Remote Users Execute Arbitrary Code,” feb. 2004.

[3] SecurityTracker, "PHP emalloc() Integer Overflow May Let Remote Users Execute
Arbitrary Code,” apr. 2004.

[4] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala and R. Majumdar, "The blast
query language for software verification,” in SAS, 2004, pp. 2-18.

[5] B.S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori and S. K. Rajamani,
"SYNERGY: A new algorithm for property checking," in SIGSOFT '06/FSE-14:
Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2006, pp. 117-127.

[6] P. Godefroid, N. Klarlund and K. Sen, "DART: Directed automated random
testing,” in PLDI '05: Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2005, pp. 213-223.

[7] J.C. King, "Symbolic:execution and pregram testing,” Commun ACM, vol. 19,
pp. 385-394, 1976.

[8] K. Sen, D. Marinov and G. Agha, “CUTE: A concolic unit testing engine for C," in
ESEC/FSE-13: Proceedings.of the 10th European Software Engineering
Conference Held Jointly with*13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2005, pp. 263-272.

[9] Ip_solve. web page: http://tech.groups.yahoo.com/group/lp_solve/.

[10] C. Barrett and S. Berezin, "CVC lite: A new implementation of the cooperating
validity checker," in Proceedings of the 16Th International Conference on
Computer Aided Verification (CAV '04); Lecture Notes in Computer Science, 2004,
pp. 515-518.

[11] V. Ganesh and D. L. Dill, "A decision procedure for bit-vectors and arrays," in
Computer Aided Verification (CAV '07), 2007,

[12] D. Brumley, T. Chiueh and R. J. and, "Efficient and accurate detection of
integer-based attacks,” in Proceedings of the Annual Network and, 2007,

[13] G. C. Necula, S. McPeak, S. P. Rahul and W. Weimer, "CIL: Intermediate language
and tools for analysis and transformation of C programs,” in CC '02: Proceedings
of the 11th International Conference on Compiler Construction, 2002, pp. 213-228.

[14] D. Molnar and D. Wagner, "Catchconv: Symbolic execution and run-time type
inference for integer conversion errors,” feb 2007.

46



[15] N. Nethercote and J. Seward, "Valgrind: A framework for heavyweight dynamic
binary instrumentation,” in PLDI '07: Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2007, pp.
89-100.

[16] O. Horovitz, "Big loop integer protection,” Phrack, dec. 2002.

[17] S. Ranise and C. Tinelli, "The Satisfiability Modulo Theories Library (SMT-LIB),"
2006.

[18] B. Dutertre and L. d. Moura, "A fast linear-arithmetic solver for DPLL(T)," in
Proceedings of the 18th Computer-Aided Verification Conference; LNCS, 2006, pp.
81-94.

[19] R. E. Bryant, S. K. Lahiri and S. A. Seshia, "Modeling and verifying systems using
a logic of counter arithmetic with lambda expressions and uninterpreted functions,"
in Computer Aided Verification; Lecture Notes in Computer Science, 2002, pp.
78-92.

[20] T. Ball and S. K. Rajamani, "Automatically validating temporal safety properties of
interfaces,"” in SPIN '01: Proceedings of the 8th International SPIN Workshop on
Model Checking of Software, 2001, pp. 103-122.

[21] M. Vuagnoux, "AUTODAFE an Act of Software Torture,” 2005.

[22] P. Godefroid, M. Levin and D. Molnar, "Automated Whitebox Fuzz Testing,"
2007.

[23] D. Wagner, J. S. Foster;.E. A-Brewer and A. Aiken, "A first step towards
automated detection of buffer-overrun'vulnerabilities," in NDSS, 2000,

[24] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill and D. R. Engler, "EXE:
Automatically generating inputs of death.” in ACM Conference on Computer and
Communications Security, 2006, pp. 322-335

47



Appendix A: Source Code of Modified AntiSniff

1 void * mymemcpy( void *to, void *from, size_t count ){

2 size ti;
3 char * myFrom = (char *)from;
4 char * myTo = (char *)to;
5
6 for(i=0;i<count;i++)
7 *(myTo+i) = *(myFrom+i);
8 return to;
9}
10
11 void* mymemset( void* buffer, int ch, size_t count ){
12 size ti;

13 char * mybuffer;
14 mybuffer = (char *)buffer;

15 for(i=0;i<count;i++)

16 *(mybuffer+i) = (char)ch;
17 return buffer;

18}

19 size_t mystrlen( char *str ){

20 size_t count;

21 count = 0;
22 while(*(str+count) !="0")

23 count++;

24 return count;

25}

26

27 char *mystrncpy( char *to, char-*from, size.t.count ){
28 size ti;

29 size_tn;

30 for(i=0;i<count;i++){

31 *(to+i) = *(from+i);

32

33 n = mystrlen(from);

34 if(count < n)

35 for(i=count;i<n;i++)

36 *(to+i) = "\0";

37 return to;

38}

39

40 char *mystrncat( char *strl, char *str2, size_t count ){
41 size ti;

42 size tn;

43 n = mystrlen(strl);
44 for(i=0;i<count;i++){

45 *(strl+n+i) = *(str2+i);

46 if( *(str2+i) =="\0")

47 break;

48 }

49 return stri,

50 }

51 char * mystrchr( char *s, int ch ){
52 unsigned char *char_ptr;

53 unsigned char c;

54 ¢ = (unsigned char)ch;

55 for(char_ptr= (unsigned char *) s;; ++char_ptr){
56 if(*char_ptr ==c)

57 return (void *)char_ptr;

48



58

59 if(*char_ptr =="0")
60 return NULL,;
61 }

62 return NULL;

63}

64

65 size t

66 mystrspn (s, accept)

67 char *s;

68 char *accept;

69 {

70 char *p;

71 char *a;

72 size_tcount=0;

73

74 for (p=s; *p 1="\0"; ++p)
75

76 for (a = accept; *a !1="\0"; ++a)
77 if (*p ==*a)
78 break;

79 if (*a=="0"
80 return count;
81 else

82 ++count;

83 }

84

85  return count;

86 }

87

88 char *

89 mystrpbrk (char * s, char * accept){
90 char * a;
91 while( *s 1="0")

92 {
93 *a = accept;
94 while (*a 1="0"
95 if (*a++ ==*3)
96 return (char *) s;
97 ++s;
98 }
99
100  return NULL;
101}
102
103 static char *olds;
104
105 char *
106 mystrtok (s, delim)
107 char *s;
108 char *delim;
109 {
110  char *token;
111

112 if (s==NULL)

113 s = olds;

114

115 s +=mystrspn (s, delim);
116 if (*s=="0"

117 {

49



118 olds = s;

119 return NULL;
120 }

121

122 token=s;

123 s =mystrpbrk (token, delim);
124 if (s == NULL)
125 olds = mystrchr (token, \0);

126  else

127 {

128 *s="0";
129 olds=s+1;
130 }

131 return token;
132}

133 int make_ptr_str(char *address, char *returnHolder){

134 char *ptrl, *ptr2, *ptr3, *ptr4;

135  char holder[MAX_LENJ;

136 intdot_cnt=0, i;

137  char delims[2];

138  delims[0] ="

139  delims[1] = "0

140

141 mystrncpy(holder, address, MAX_LEN);

142

143 for (i=0 ; i < mystrlen(holder); i++){

144 if (holder[i] =="")

145 dot_cnt++;

146 }

147

148  if (dot_cnt 1= 3)

149 return FALSE;

150

151  ptrl = mystrtok(holder, delims);

152  ptr2 = mystrtok((char *)NULL; delims);

153 ptr3 = mystrtok((char *)NULL, delims);

154 ptrd = mystrtok((char *)NULL, delims);

155

156  snprintf(returnHolder, MAX_LEN, "%s.%0s.%s.%s.in-addr.arpa", ptr4,
157 ptr3, ptr2, ptrl);

158

159  return TRUE;

160 }

161

162 /* watch_dns_ptr examines DNS packets for Query types of PTR (has an IP
163 address and is atempting to look up a name. It returns true if the IP
164 address in the DNS packet matches the one handed to it.

165

166 A couple of caveat's... we only check one Query though you could be seeing
167 a variable number of queries in one packet. This is not seen too often
168 in the wild and hell... this is beta code. .mudge */

169

170 int testme(char *pkt, int len, char *ip_match){

171 HEADER dns_h;

172  intdns_offset, rr_offset, rr_size;

173 int count, questionEntries;

174 char *indx;

175  char nameStr[MAX_LEN];

176  char matchPTR[128];

177  intmin_str_len;

50



178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

mymemset(nameStr, \0', sizeof(hamesStr));

if (!Imake_ptr_str(ip_match, matchPTR)){
fprintf(stderr, "[DEBUG][TESTED] error making ptr lookup address\n");
return FALSE;

}

dns_offset = SIZE_ETHER_H + SIZE_IP_H + SIZE_UDP_H;
rr_offset = dns_offset + SIZE_DNS_H,;

if (len < SIZE_ETHER_H + SIZE_IP_H + SIZE_UDP_H + SIZE_DNS_H)
return FALSE;

rr_size = len - rr_offset;

[Imymemcpy(&dns_h, (char *)(pkt + dns_offset), sizeof(HEADER));
mymemcpy(&dns_h, (char *)(pkt), sizeof(HEADER));

questionEntries = ntohs(dns_h.gdcount);

/I XXX temporarily removed code
[* if (YquestionEntries)
return FALSE; */

rr_offset = 0;
indx = (char *)(pkt + rr_offset);
count = (char)*indx;
count = (char)*indx;
if(count == -1){
return FALSE;
}
if(count > 5){
return FALSE;
}
(char *)indx++;
indx += count;
count = (char)*indx;
if(count == -1){
return FALSE;
}
if(count > 5){
return FALSE;

(char *)indx++;

indx += count;

count = (char)*indx;

if(count 1= 0){
return FALSE;

}

rr_offset = 0;

indx = (char *)(pkt + rr_offset);

count = (char)*indx;
fprintf(stderr,"[DEBUG][TESTED] check point 2\n");

while (count){
fprintf(stderr,"[DEBUG][TESTED] count=%d

mystrlen(nameStr)=%d\n",count,mystrlen(nameStr));

234
235

fprintf(stderr,"[DEBUG][TESTED] count=%d\n",count);
printf("[DEBUG][TESTED] indx=%x\n",indx);

51



236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

260}

261

}

printf("[DEBUG][TESTED] strlen(nameStr)=%d\n" strlen(nameStr));
(char *)indx++;

mystrncat(nameStr, (char *)indx, count);

indx += count;

count = (char)*indx;

/I if count = -1, this loop will run forever

if(count == -1){
printf("[DEBUG][TESTED] count == -1, fall into endless loop\n");
break;

}
//mystrncat(nameStr, ".", sizeof(nameStr) - strlen(nameStr));
mystrncat(nameStr, "...", sizeof(nameStr) - strlen(nameStr)); // [8]

printf("[DEBUG][TESTED] out of loop\n");
fprintf(stderr,"[DEBUG][TESTED] check point 3\n");

/I XXX temporarily removed code

/* min_str_len = (strlen(nameStr) < strlen(matchPTR)) ? strlen(nameStr) : strlen(matchPTR);

if (strncmp(nameStr, matchPTR, min_str_len) == 0){

return TRUE;
¥l

return FALSE;

52



