&
2
i
\m
/i
HiR
kS
)
;In_{

=
-
2
<

AAGN R T RIRELZ S E TR s f T 6

Dynamic Load Balancing in Distributed Heterogeneous
Multi-Resource Servers

SRR L

RES SN 2

HTERBE Lt £t £t A

AAGCRE TR RIREZL S ETRE G L TG
Dynamic Load Balancing in Distributed Heterogeneous
Multi-Resource Servers

ForoA AR Student Chih-Chiang Yang
hERE W B’ Advisor: Chien Chen

AL ol G N - i

AV

A Thesis

Submitted to Institute ‘of Coamputer Science and &E&giing
College of Computer Science
National Chiao Tung University
In partial Fulfilment of the Requirements
For the Degree of
Master
In

Computer Science
July 2008
Hsinchu, Taiwan, Republic of China

1 gl e = & = K

SR B TR PREL S EFRE LT

FrA o B R M

et R
dot R R TS E B 0 O R RRIRIR DA U LE B e 0 F L
Bl R { FHPRIAPIRER PR BRI KRR X EGPRBZF R R pFi
S RIREE R AL oRE A 3 W8 A BT B g B RIRGE

RN o B e (AT R AR MRS 6 nR AL e AR RenE o

é?iﬁﬁ%ﬁ?%ﬁﬁﬁéﬂﬁﬁéi\W8é1~%?ﬁ§ian@Wﬁ
LA AR P R B A PR 4 b A BRI PR E T

Bt O RBAFIRBL O CEMRERE I ¥ R P EERE
KM TFPRIF PR BER AR D A At A g LIRIBPIRE
PRFAMG o @A 2 F BREPIREFEF AR g 404 > 2 ¥
R e Rarsr - R R ARG TR L RIREF AL LEFE T AR
fehf it 4 0@ IRIAGFRS P R R AE- BPIREDT IR FR R L -

R R B d RAH R L A TR o BRAMSS S %

Fos b e A SThE TR 4R 23 * Random Early Detection (RED)

b

] KL oRE A RIRESR G MR FIRE L R RT IR o 4 o
R IL R e TR o AR - A D s T 2

WL R L GREMPEFE 4 4R 1P FFRE A SEIR APE

Y

P i% 8 RED ehi & » $30 0 LA STen® IR E A & > NPT g sk M E RIRE

124

FRRFOER > 2 N E BN HPIRER 3 0 AN BT g
#0FET LG kR R BRI FIRERF 0 AR PIREPN TR LT G
o2 TR PIREOEFRER > AP RLG S FRFP T BT

MO T R FRPFRYFUE A BERERL -

Dynamic L oad Balancing in Distributed Heter ogeneous

Multi-Resour ce Servers

Sudent: Chih-Chiang Yang Advisor: Dr. Chien Chen

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

Due to the progress of the Internet, there areensrd more people using
Internet services nowadays. In order to satisfylthge service requirements, using
multiple servers to provide different serviceskat same time is necessary. However,
if we can’t effectively divide leads among.servessrver utilization could decline and
service quality could become uneven.-Because «f thason, there are many
researches have be presented to solve.this probleenload balancing methods can
be roughly classified to four architectures: dispat-based, DNS-based, client-based
and server-based, and different architectures hién&tr own advantages and
disadvantages. The conventional methods of loaanbalg always set a load buffer
range to decrease the state change frequency efvieces server in the geographic
distributed load balancing architecture, and mostdlysume that servers are
homogeneous and just consider single resource owitgn, such as CPU load.
However, the load buffer range would result in lasdillation among servers. On the
other hand, servers may not always have the sapazitg and jobs need many kinds
of resource requirements. Only considering singsource consumption would cause
the system bottleneck to derive from the lack efrall number of resources, and lead

to low system utilization. For this reason, in geographic distributed load balancing

\Y

architecture, we use the concept of Random Eartgdden (RED) to determine the
server state probabilistically, and in the clustexd balancing architecture, we present
a distributed market mechanism (MM) load balanemgthod which would consider
the server heterogeneity and multiple-resource wopsion simultaneously. In our
simulation, we show that the oscillation of servemrver load can be reduced by
using the concept of RED in the geographic disteduoad balancing architecture.
And distributed market mechanism load balancing hoet can improve the
inter-server and intra-server load balancing at #sne time, and keep the
performance even if the server heterogeneity istnga achieve high system

utilization and low request response time.

Keywords: dispatch-based, DNS-based, client=based, server-based, load balancing;

\Y

=1 2
PO 7

hpwme A AR RHHEA £ REI AR LRt o F LR F
Aendp Eg gE L TRERP T HE T 0 it mE A i E

SR AR BB T FIEERE Y F RAL AT Y b AUk RERE A 5 PR R A 1 1

o

AR A R b R P P B R e e T R
< g)

FEAFERLL 0 BALF

\4‘_!,;
M
2
ﬁf\

20 2 1R EFE T B ARGE B PR

% o

g

B#HEA- Y B LEMmP s RfFa d AP ET KL 2B
T AR R AN RBAF LY L ERL VAL BRMT KT PR
B350 fhpc- MBI 4RI R %‘ BRAME A R PRARES
BEIEZAFLLGE AR FRRBERAL T N IS R AR E TR A
Mg PP

FUE NP % 0 2 F IR BE R AT o WP A P A S
BB HECA P s g 3 PR AR e o A D T 3 S DA i
ARG p S e P PR ECRITR AR R G AR S AR
WlEaR T AR

Bt AERBRAHADMEE A B3 s g AENY

A2 BinB T kBT > AR W PR BF R B

Vii

Table of Content

PR AR s i
N 1 1 = o SR P PR %
= USRS Vii
TablE Of CONTENToviiicieee e viii
(@1 aF=To (= g0 S I 1 o [T o o S 1
Chapter 2: REQLEA WOIKcooieiieiecciecese sttt 5
Chapter 3: DNS-based Load BalanCing..........ccceovereerererseeiesieesessee e e ssee e 7
3.1 DINS OVEIVIBW.....iiiiiiiiiiiieieeeee et 41ttt e e e e e e e e e e e e e e s senseseees 7
3.2 Conventional DNS-based load balancing methaod............cccccoeeeiiiiinn.
3.3 Random Early Detection (RED) methodcccccevveeiiiiiiiieieee, 11
Chapter 4: Server-based Load BalanCing.........c.ccccceverieiienesiese s 15
A1 OVEIVIBW ..cceiiiieeee ittt et ettt et et e e e e e e e e e e e s e e s s bbb e e eeeaeeeeeas 15
4.1.1 Overview of centralized load balancing .eeewe...eeeeeeeeeeeeeeeeeninnnnn.. 15
4.1.2 Overview of distributed load balancing.............cccccvvvviiviiiiiiiinnnns 16
4.2 Overview of four of distributed load balancipgliciescccccovvvvinnnees 17
4.3 Design of four distributed foad balaneing p@c................cccoevvvvvvvvviinnnnnns 18
VG T R [{0 . F= Uu o] T oo [T 19.
4.3.2 TranSTer POlICY 1. s ailaisane s e eeeeeeeeeeeeassnnnsnnnsaaaseeeaeeeaaes 21
4.3.3 LOCAtiION POIICY ... i iarrrrrrrmrnes « e dassennnnnnnnnasseeeeeeeeseeereeememmmmnmnnnnn 22
4.3.4 SeleCtion POlICY it e eeeeee e idomnn e e e e e et a e e e e eeeaaeas 23
4.4 Market Mechanism (MM) load balancing method..........cccovvvvvviiiinnnnns 26
4.4.1 Definition Of COSt....cooiiiiiiiiireeee e 26
4.4.2 Information policy of distributed MM load laaicing method 28
4.4.3 Transfer policy of distributed MM load balamgmethod 28
4.4.4 Location policy of distributed MM load balamg method 29
4.4.5 Selection policy of distributed MM load batarg method............... 32
4.5 SIMUIALION ...cceiieiie et e e rree e e e e as 33
4.5.1 Simulation enVIFONMENT..........cooiiiiimiiieieee s 33
A.5.2 MEIICS vttt e e 34
A.5.3 RESUI ..coiiiiiiiee e 34
Chapter 5: Conclusions and fUtUr@ WOrKS.........ccueveererieseeneseseesieseeseesee e e 43
REFEIBNICES, ... bbbttt b e nbenae s 45

viii

List of Figure

Fig. 1~ DNS-based load balancing architeCture ... eeeeeeeeeeevieiiiiiiiiiiineeennnn 4

Fig. 2~ Finite state machine of conventional load buffegamethod 9
Fig. 3~ Line chart of conventional load buffer range methad................cccccccee. 9
Fig. 4~ Server load oscillation phenomenon of conventionethod........................ 10
Fig. 5~ Line char of state change of RED method.....ccccceeecciiiiiiiiiiiiiiiieeeee, 11
Fig. 6~ Server load variation of RED method ..o, 12
Fig. 7~ Server load variation of load buffer range betw8@% and 90%................ 13
Fig. 8~ Server load variation of load buffer range betw8é% and 86%................ 13
Fig. 9~ Summary comparison of RED and LBR methods...eceevevveeevennnnnnn.. 14
Fig. 10~ Example of load balanCinguuuiimmiiiiiiiie e 19
Fig. 11~ Example of load calculationo.iceeeeeiiiiiiiiiiii e 21
Fig. 12~ Diagram of transfer POliCY...........coovvviiimeeee e 22.
Fig. 13~ Example of selection POliCIESccoviieeeeeeeiiiccee e 25
Fig. 14~ Example of cost calculation.............oovvieceiii i 1.2
Fig. 15~ Example of location POlCY. s it vurrreiieiee e 1.3

Fig. 16~ Average standard deviation of serverload in homegas environment...35
Fig. 17~ Average standard deviation: of server load in heggneous (150~250)

L2701V 7T (0] 0] 0 1T o s S 36
Fig. 18- Average standard deviationofrserver load in heggneous (100~300)
L2101V 7T (0] 0] 0 1T o s 36

Fig. 19 Average standard deviation of resource load in lggneous environment37
Fig. 20~ Average standard deviation of resource load inrbgeneous (150~250)

=701V 7T (0] o1 8 T o T 38
Fig. 21 Average standard deviation of resource load inrbgeneous (100~300)
=701V 7T (0] o1 8 T o T 38
Fig. 22~ Average server utilization in homogeneous enviromme........................ 39
Fig. 23~ Average server utilization in heterogeneous (15@) 2nvironment.......... 40
Fig. 24~ Average server utilization in heterogeneous (10@)&dvironment.......... 40
Fig. 25~ Average turn around time in homogeneous environment..................... 41
Fig. 26~ Average turn around time in heterogeneous (150~60yonment.......... 42
Fig. 27~ Average turn around time in heterogeneous (100~800yonment.......... 42

List of Equation

=2 T JO OO OO 28

(I ot (e I Yoy
C+C!

(CO: - COij,m)+ (Coj o Coij ,wz) ST EQ 5o 32

K

2%y’
k=1

BEQ. 4. 29

Chapter 1: Introduction

In recent years, the number of people using Inteservices is increasing due to
the rapid development of Internet. Single serviewer that provides Internet service
has become unable to cope with the growing Inteseetice demands. Constantly
improving the performance of a single server ndy ancreases the cost, it cannot
really solve the problem of rapidly growing Intetrservice demands. Instead, it is
necessary to use more service servers to provigdiess simultaneously.

However, even if there are multiple servers prowdservices at the same time,
if we can not effectively assign users among sepvidtis would cause some service
servers’ load to be too high, while others’ woukdrklatively low, resulting in bad and
unstable quality of service. There are,many resegr¢hat have been presented to
solve this server uneven load.problemy In‘[1]ldssifies load balancing architecture
into four classes: client-based, dispatcher-baB@tS-based, and server-based load
balancing architecture, summatrized.as'follows:

Firstly, in client-based load balancing architeefuclient hosts need to modify
their software or hardware or through the user raiywdepending on the service
quality of service server to choose a better sengerver. Its shortcoming is not
convenient to users.

Secondly, in dispatcher-based load balancing archite, all service servers are
usually placed in a geographically centralized amad through a dispatcher to
receive all user requests, and then depending @sttes of service servers at each
time, dispatcher can determine which service seiwéhe best to provide service.
Because of the service servers are placed in arggloigal central area, the state
information of servers can be more immediately tgehelp dispatcher to do load

balancing. However, its first disadvantage is $&tices would be suspended due to

the single dispatcher fault resulting in poor reli#y. The second disadvantage is that
only part of users who are closer to that systemged low propagation delay.

Thirdly, in DNS-based load balancing architectuservers can be placed in
geographical distributed areas. The users firsl sedomain name resolution request
to the DNS server to obtain an IP address of aseserver, and then send the service
request to the service server with that IP addieg®et services. DSN servers usually
do load balancing through assign users to diffesemters by random or round robin
manners or according to the server states, sudtadscondition, network situation,
which are periodically receiving from servers. Ag tmaster/slave DSN architecture
has been widely used, that is, once the master &&r failed, there is a slave DNS
server can take over its works resulting in highabglity. But the difficulty is that
because of servers are placed in geographical ttaiead area. Hence the service
server’s states are not allowed.to be obtained- idimely to avoid congesting or
wasting network bandwidth.

Finally, in server-based load balancing architextiir first needs the assistance
of a simple dispatcher or DNS server to simplyribste users among servers by
random or round robin manner. At time goes by,ptablem of load uneven between
servers could begin to appear because of diffeestgicution time and resource
requirements among jobs. At this time, servers mostietermine if they need to
exchange jobs or not by exchanging the states ¢h ether to raising the load
balancing degree. The advantage of this load badgrarchitecture is that the states
of servers can be exchanged more immediately becaluservers are placed in a
geographic central area to achieve more good |@@nbing degree. On the other
hand, load balancing is done by the coordinationalbfservice servers in this
architecture, small part of service servers faweould not dramatically affect the

quality of services, so this architecture has hajlability.

2

In the load balancing policy, the conventional noel of load balancing always
set a load buffer range to decrease the state etfeequency of a service server in the
geographic distributed load balancing architectargl mostly assume that servers are
homogeneous and just consider single resource ogign, such as CPU load;
however, the load buffer range would result in loadillation among servers. On the
other hand, servers may not always have the sapecita and jobs almost needs
many kinds of resource requirements, such as mespage, network bandwidth, etc.
Only consider single resource consumption wouldseatihe system bottleneck to
derive from the lack of a small number of resourcasd lead to low system
utilization.

In this thesis, we would integrate the DNS-based &erver-based load
balancing architecture to implement our load batamenethod. As shown in Fig. 1,
all service servers would be-first partitioned taltiple server clusters and placed in
geographical distributed areas. The servers wighniimimum ID in a server cluster
should determine the states of‘its:server clusyeRandom Early Detection (RED)
method. The idea of RED method is that the proliglwf the state of a server cluster
becoming overloaded is directly proportional to tbad of the server cluster at that
time. After determine the state of the server elyshe server with the minimum ID
in that server cluster would periodically send tettte to DNS server, then DNS
server can assign client requests among serveteduaccording to the state of each
server cluster.

Once the client requests arrived in a server ausier distributed market
mechanism load balancing method would do the sepbiade load balancing inside
the server cluster. The concept of our market mashaload balancing method is
that the cost of one job executed on a serviceesesvrelated to the proportion of its

different resource requirements, and the cost ol @asource requirement is directly

3

proportional to the load of that resource of thevee Hence, we would consider the
different cost of a job executed on each serveetermine the server with the best fit.
On the other hand, each server must consider it§ipheuheterogeneous resource
capacities and the multiple heterogeneous resaemérements of jobs, and through
exchanging state information of each other to deitez if they need to exchange jobs
or not in order to raise the overall system loatht@ing degree and provide stable,
reliable, and scalable high quality services furthe our simulation, we use four
metrics: average standard deviation of service esefwads, average standard
deviation of resource loads, average server utitinaand average turn around time

to analysis and compare our method with other cotmeal methods.

client client Local DNS server client client Local DNS server

Server
cluster n

Ser\m%
cluster 1

Fig. 1~ DNS-based load balancing architecture

Extended DNS server

e

Chapter 2: Related work

[1][3] introduce four load balancing architectures:client-based,
dispatcher-based[17], DNS-based, and server-baseti Halancing architecture, and
some comparison of load balancing policies. [1Hspnts an adaptive TTL policy to
do load balancing in DNS-based load balancing techire, and [18] proposes that
the TTL value must be carefully used. Also, in g@phically distributed network
architecture, [10] considers the load of serverseath zone and the cost of
transferring a job across zones to determine ifethe benefit of executing a job
across zones or not. Similarly, [5] considers dbst of transferring a job from one
server to another to determine whether to execydb m a local or remote server.

[8][7] simply introduce four policies ,of distribuleload balancing: information
policy, transfer policy, location: policy;jand. seélea policy. [16] presents the most
popular threshold-based transfer policy.

Recently, considering multiple-resource in loadabalng has become more and
more important. [9] presents a multiple-resourcaditvalancing method to a single
server, which defines a load balancing measurexifman load / average load), to
determine executing which job in the server camiobthe highest load balancing
degree, and then extend it to multiple servers@h [2] also considers multiple
resource requirements of a job, and uses bacosilest approach to do job scheduling,
on the other hand, it provides different QoS (Quatif Service) to different user
classes.

[13] presents a LDMA method, which, adds a mobderd into each server to
help do a reliable and scalable load balancing[1#2 introduce the characteristic of
heavy-tailed workload in web service, and claimt thi#ferent-sized jobs should be

executed in different servers. [19] adds an inwrtag into a packet according to its

priority, and opportunely drops some packets wadtvdr priority to achieve load
balancing between clients.

[22] presents Random Early Detection (RED) gatewWaysongestion avoidance
in packet-switched networks, avoiding the globahckyonization that results from

many connections decreasing their windows at theedane.

Chapter 3: DNS-based L oad Balancing

In today’s Internet, each host should have its uaitP address in the network.
Before sending a service request to a server,taierst know the IP address of that
server. According to the definition of IPv4 protgcan IP address is composed of
32-bit digital number. However, such a 32-bit addrés difficult to memorize for
users. For this reason, domain name system hasitesmted to replace the 32-bit
digital number with a domain name which is composéd number of English
words. Intuitively, a domain name is relatively ya® memorize for users.
Following we will simply introduce the operation BINS, and illustrate how to do

load balancing among service servers by using Di&es

3.1 DNS overview

DNS-based load balancing architecture is shown@slFAt first, clients would
be partitioned into several groups according tlsall®@NS (LDNS) server they used.
Once a client wants to obtain a service from aeyenith a particular domain name,
he would first send the domain name resolution yjuerhis LDNS server. After
receiving a domain name resolution query, the LDM&uld first check to see
whether there was a valid and unexpired IP addré$isat domain name or not. If
yes, LDNS would directly send the IP address todient. Otherwise, the LDNS
server would need to ask the root DNS server ferlthaddress of a DNS server (the
Extended DNS server in Fig. 1, also called EDNSex@rwhich is responsible for
resolving that domain name, and the LDNS serverlavthen forward the domain
name resolution query of the client to the EDNS@&eto obtain a new IP address of
a service server and a TTL time. Finally, LDNS casponse the new IP address to

the client, and record the IP address for the Tilet Before the TTL time expires,

each domain name resolution query for the same mhonzame can be directly sent
by the LDNS server without asking the EDNS server.

The characteristics of DNS-based load balancingi@cture are as follows:

1. All service servers can be placed in geographitibiged area.

2. There is no directly geographic relationship betwdaNS server and

service servers.

In DNS-based load balancing architecture, servesgess can be allowed to be
placed in geographic distributed areas. If we camser the geographic relationship
between service servers and clients, then we camider the advantage of low
propagation delay to clients. Moreover, because tltd mature master/slave
architecture of DNS, slave DNS servers may peraillicoackup the data of the
master server, and assist in apportioning the. domame resolution queries of the
master DNS server. If the master DNS server faitete of the slave DNS servers
would take over the subseguent. work-of. the mastdS Berver, so it has high
reliability.

However, there is usually no or little informatiexchange between the DNS
server and service servers because of no diregrgeloic relationship between the
DNS server and service servers. For this reasonyertional DNS-based load
balancing methods usually use a random or rounth reygproach to do simple load
balancing; however, this kind of method is moseljkto cause an unbalanced load
among service servers. Hence, what we need todem& how to use infrequent

server state information to achieve a high loaamehg degree.

3.2 Conventional DNS-based load balancing method

In conventional DNS-based load balancing methoel INS server uses a round

robin manner to distribute the load among serveitha conventional method, and the

8

service server periodically sends its overload mowerload state to the DNS server.
Then, when doing round robin, the DNS server wakig the service servers with an
overload state to raise the load balancing degreeng servers. As previously

mentioned, there is usually no direct geographatimship between the DNS server
and service servers, so the service server isllmved to immediately send its state
information to the DNS server to avoid too manyestaformation packets congesting
or wasting network bandwidth. For this reason, emwnal method usually defines a
load buffer range (LBR) in service servers. Thédirstate machine of LBR is shown

in Fig. 2. Before the load of a service serverngater than 90%, the state of that
server is no overload. That is, the DNS serverassign new client group requests to
that service server. Once the load of that sersem@er greater than 90%, its state
would become overload, and it:would keep: this @aatl state until its load is less

than 70%. The line chart of the service serveesgashown in Fig. 3.

Load >=190%

Load < 90% Load >=70%

Load < 70%

Fig. 2~ Finite state machine of conventional load buffergamethod

12

1
0.8
0.6
0.4
0.2

0

"

= State=reject
------- State=accept

S

olo

e

probability of reject request

load of server

Fig. 3~ Line chart of conventional load buffer range method

Noteworthy is that a service server with a statevadrload does not mean it will
not accept any client request, but instead notity DNS server not to assign new
client group requests to that service server. Betbe TTL time expires, the client
groups which are previously assigned to that sergierver could continually send
their service requests to that service server, @nad service server would also
continually provide services to those client graups

In this conventional method, when there are notyrservice servers and the
amount of requests is high, once one of the sesgceers is overloaded, it must keep
its overload state until its load is under 70% #reh notify DNS server to assign new
client group requests to that service server. RQutims period, the other service
servers need to assist in sharing the addition® gi0%-70%) load of that overload
service server. This would cause the other serséreers to overload and underload

by turns, as shown in Fig. 4, resulting in unstaelevice quality.

LBR (70~90)

110

100

'-% —e—gerverl

<990 —=—gerver2

E-«) server3
&0

% serverd

v 70 —%—gserverS

60
1 3 5 7 9 11 13 15 17 19 21 23 25

time

Fig. 4~ Server load oscillation phenomenon of conventionethod

10

3.3 Random Early Detection (RED) method

In order to solve the above load oscillation pheeoan of service servers, we
think that the state of overload or no overloadaddervice server in the load buffer
range should be a probability, but not absolutegrater to avoid burdening the other
service servers with too many loads. Hence, wethseconcept of random early
detection (RED) method to determine the overloach@roverload state of service
servers probabilistically. That is, the probabildf a service server state becoming
overloaded is directly proportional to its load.eTlne chart of the probability of a
service server state becoming overloaded is shawg. 5, as the load of a service
server becomes greater than 70%, its state startsave a chance of becoming
overload, as the load of the service server inesabe probability of a service server
state becoming overloaded also.increases. Ondedkeof a service server becomes
greater than 90%, the probability of its-state.lneiog overloaded should be 1.

1.2

0.
0.6 //
0.4 /
0.2 /
6)\0 Qo\o q’é;\o 0)00\0 b‘Qo'p <’)Q:;\lo Q:)Qo\o /\Qo\o S Qo\o o} QO\O !& 6;\0

probability of reject request

load of server

Fig. 5~ Line char of state change of RED method

11

RED

100
95
e —e—gerverl
Cﬁ —a— 2
e o \ SEerver
B R =9 server3
E: serverd
L ——
servers
2 s
70

1 3 5 7 9 11 13 15 17 19 21 23 25

time

Fig. 6~ Server load variation of RED method

As shown in Fig. 6, comparing to conventional metiand RED method, using
RED method to determine the state of service sesvaan effectively raise the load
balancing degree among service servers-in-the gaffie environment.

Then we try to decrease "the load buffer range aifventional methods to
observe the relationship between the range of bndfier and the standard deviation
of service server load. Fig. 7 and Fig. 8 are lbaffer ranges from 80% to 90% and
from 84% to 86% respectively. As we can see, redutche load buffer range of

conventional method can diminish the degree ofesdpad oscillation.

12

LBR (80~90)

100

server load

——serverl
—=—gserver?
server3
serverd

—*— gservers

70

1 3 5 7 9 11 13 15 17 19 21 23 25

time

Fig. 7~ Server load variation of load buffer range betw8@% and 90%

1 3 5 7 9 11 13 15 17 19 21 23 25

time

LLBR (84~86)

100

95
M e) ——gserverl
8 90 /R\ A —=— gerver?
— & AN ,"\[\
B 85 [o2 \‘/ .H\ V@Wv server3
= 80 B serverd
Qm) 75 —*—serverS

70

Fig. 8~ Server load variation of load buffer range betw8é% and 86%

Finally, we should make a summary comparison ofesestate change frequency
and the average standard deviation of service sdoagl for RED method and
conventional method with different load buffer rarggtting. As shown in Fig. 9, even

if we constantly reduce the load buffer range afvamtional method until it is zero,

13

its load balancing degree will become closer to diilt be slightly higher than the
RED method’s, and its server state change frequéasybecame 1.5 times of the
RED method’s at this time. Moreover, if we use dedault setting (70%~90%) of the
conventional method, although its sever state ahdrgguency is half of the RED
method’s, but its average standard deviation ofesdoad is greater than five times of
the RED method’s at this time. Hence, compared wahventional method, RED
method can use an acceptable server state chaageeficy to achieve excellent
average standard deviation of service server, anchaitter what load buffer range of

conventional method is set to, its load balanciegrde is still worse than RED

method’s.
summary comparison

6

5

A O RED (85~100)
B . BR(85~85)

3 O LBR(84~86)

) O LBR(83~87)
B .BR(70~90)

| - 0

0

Server state change frequence Average server load deviation

Fig. 9~ Summary comparison of RED and LBR methods

14

Chapter 4. Server-based L oad Balancing

For the convenience of management, service semearst case are placed in
geographical concentrated area. Now, we will ainthatload balancing in a server

cluster.

4.1 Overview

The characteristics of load balancing in a serlester are as follows:

1. Service servers are placed in geographical cendhkrea.

2. Information exchange between service servers candrse immediately.
The managements of server cluster can be classified centralized

(dispatcher-based) and distributed (server-based)the comparisons are as follows:

4.1.1 Overview of centralized load balancing

Centralized load balancing means there is a péatiadispatcher in a server
cluster which is responsible for monitor the statell service servers in the server
cluster, its advantages and disadvantages ardl@as$o

1. Advantages:

® High performance: dispatcher with knowledge of sdrvice server
state information and all user job requirements oake a more
comprehensive decision-making to get better peroca.

® Simple: service servers only need to focus on #exwion of client
requests without doing any additional decision-mgki

2. Disadvantages:

® \Worse response time and scalability: since theleinlispatcher is

responsible for the entire decision-making, henckoles system

15

bottleneck may occur in this single dispatcher ltesn response time
increasing and system scalability decreasing.
® Low reliability: as the above reason, this singkpdtcher failed would

lead to whole system service outage. Hence itabily is low.

4.1.2 Overview of distributed load balancing

Distributed load balancing means all service sarvmered to exchange their state
information to each other and cooperate to do #wsibn-making of load balancing.
Its advantages and disadvantages are as follows:

1. Advantages:

® High scalability: compared with centralized loaddoeing architecture,
distributed load balancing architecture can achibigher system
scalability through.apportioning the works of démismaking among
service servers:

® Better response’ time. .through apportioning the worlof
decision-making among servers can achieve reldietéer response
time.

® High reliability: load balancing is done by the peoation of all
service servers; a small number of service serfaliag would not
drastically affect the entire whole system’s operat Hence its
reliability is relative higher.

2. Disadvantages:

® Complicated: service servers need to spend sonma easts to carry
out the decision-making of load balancing, and isenservers are
difficultly to obtain complete system state infoima, hence it needs

more complicated design to achieve good load balgraegree.

16

® More information packets in LAN: because of thedeé all service
servers cooperate to do load balancing, the conuation packets

between service servers in server cluster woulckase.

4.2 Overview of four of distributed load balancing policies

Because of the increasing demands for Interneticg=y service servers
providing Internet services are growing as well.ne distributed load balancing
architecture with advantages of high reliabilityighh scalability, and a better
turnaround time, etc, gradually replaces centrdliead balancing architecture. In
general, the load balancing processes of distriblated balancing architecture can be
partitioned into the following four policies:

1. Information Policy: determine the kinds of statéormation exchanged

among service servers.

2. Transfer Policy: determining-the-service serverdctvtare needed to be
adjust. For example, as a. service server load ggreatin the maximum
threshold, its state would be a sender and tend@ntbanother service
server with lower load to take over part of its WrOn the other hand, if a
service server load less than the minimum threshtddstate would be a
receiver and tends to get part of works from aroevice server with
higher load.

3. Location Policy: as a service server state becoseesler or receiver, it
needs to find a matching service server at thisspha take over or to
obtain part of works.

4. Selection Policy: after determining the matchingvee server, the service
server with sender or receiver state would decitichvwork should be

taken over in this policy.

17

4.3 Design of four distributed load balancing policies

After introducing the objective of the four polisi®f distributed load balancing
architecture, we will illustrate the detail desigh these four policies for load
balancing. Before designing these four policiesyweeld first assume this distributed
system is resource-aware and capacity-aware, thatei can know the resource
requirements of each jobs and the capacity of sacker for every resources. Then
we would define what load balancing is. As the epkemn Fig. 10, there are two
persons, and their weight-bearing capacities atey @hd 40gk respectively. How
should we allocate 50kg of goods to them? We tltinait if we do not consider their
weight-bearing capacities and just allocate 50/Xg2®% each of them is not fair. On
the contrary, they should have the same level®idhd L after we allocate goods to

them. Through the following formula:

60* L +40*L =50
L=05
60* 05=3040* 05= 20

We can get the load level of each of them shoul®@¥, and can further get

they should carry 30kg and 20kg of goods respdgtive

18

Capacity=60kg Capacity=40kg

Fig. 10~ Example of load balancing
4.3.1 Information policy

As we can see from above example, in order to sehgood load balancing
degree, each service server should first know #pmaaty of all the other service
servers, and the total amount of current requirésaehlence we define the

information which service servers should exchawogeach other as follows:

1. d Capacity of server j for resource k.

k
2. |_J. : Load of server j for resource k. (including wagiqueue and execution

gqueue)

19

Because we assume this system is resource-awareapadtity-aware, hence

LIJ(can be obtained easily, and this value may grehagasr 100% due to it includes
the jobs in the waiting queue. With knowledge obwb information of the other
service servers, we can get the requirements o jloleach service server and the
total requirements of jobs in this system. Assuntimeye are M service servers and K

kinds of resources, there are some other symbdalsitien as follows:

k
[R(:C;x |_j: Total requirements of the jobs in server j fosaerce

K.

M
° ﬁotaJ:ZR-(: Total requirements of the jobs in this serveistdu for
=1

resource k.

K Qotal

° |_61 =M : Average load of whole server cluster for resource k

e

j=

Noteworthy the calculation of average load could be

sumof serviceserverload . . .
: in homogeneous environment, however, it
numberof serviceserver

mof totalrequirem .
should be sumot totalrequiremers in heterogeneous

sumof servicesrvercapacities

environment. As shown in Fig. 11, for example, ¢hare two service

servers with 100% and 50% of load respectivelysihg old method

would get the average Ioadw=75%, but the correct

+
average load isls(;)c—+55%:66.7%, hence these two service servers

should use 66.7% of load as the goal to adjust,fimatly execute 67

and 33 of the workloads respectively.

20

K
K
avg ;LJ
o | - _K : Load of server |.

avg
o | .= - Load of whole server cluster.
Vg K

100

Fig. 11~ Example-ofload calculation

4.3.2 Transfer policy

The common strategy is to use a threshold to daterie state of a service
server. According to current load of a service eerthe maximum threshold and the
minimum threshold of whole server cluster, we classify service server’s state to
sender, receiver and common. The maximum thresfolhd the minimum threshold

Tr are usually defined as follows:

® Ts: Average server cluster load plus a const@:tXZ& th) or multiplied by
a ratio which is greater than]r_czz x(@1+r)) o

® Tr: Average server cluster load minus a constelgij(—th) or multiplied

21

by a ratio which is less than]‘_C:g x(-r)) -

Sender
TS ceeeees
avg mmon
Tr ceceees
Receiver

Fig. 12~ Diagram of transfer policy

As shown in Fig. 12, we can define the state ddraise server as follows:

Sender: The service server with load greater treanfénding to take over
part of jobs to another.service server.with a lolsad.

Receiver: The service.server with load less thanTénding to take over
part of jobs from anether.service server with ahkigoad.

Common: The service ‘server with load between TsTan®o not have to

do any job take over.

4.3.3 Location policy

After determining the states of service servers, ghrvice server with sender

state needs to find an adaptable service serveak® over part of its jobs, and the
service server with receiver state needs to finddaptable service server to get some
jobs. The simplest transfer policy is that the sergerver with sender state sends part
of its jobs to the service server with the lowesdd in this server cluster, and the
service server with receiver state gets some jolw fthe service server with the

highest load in this server cluster.

22

4.3.4 Selection policy

After finding the matching service server for trervece server with sender or
receiver state, then we need to determine which ghtould be taken over. Three of
the most common methods are as follows:

1. Latest Arrival Job (LAJ): Sending the latest artiyab from the service
server with a higher load to the service servehvatlower load. This
method just considers the load balancing degreedsst servers but not
consider the load balancing degree of resourcaésda@sserver.

2. Backfill Lowest (BL): First finding the most availe resource of the
service server with lower load, and then take dwerjob which is most
needed for that resource from the:service servén wigher load. This
method would enhance the load balancing degree eestvservers and
between resources inside a server.

3. Backfill balance (BB):“Sending the job which carsuk in minimum

maximumload
averagdoad

value in the service server with a lower load frome

service server with a higher load.

As shown in Fig. 13, there are two service serwgith 3 jobs and 1 job
respectively, and the load of their three resouaresespectively 13, 15, 14 and 7, 5,
6 before doing job exchange as shown in Fig. 13A®B)his time, the state of the left
service server is sender, and tends to send ajaight service server. If using LAJ
selection policy, the latest job left job with 5, @nd 5 of the three resource
requirements respectively would be sent to thetsghvice server as shown in Fig. 13
(b). In BL selection policy, the most available aesce of right service server is the

second resource, and the job with 5, 7, and 5efliree resource requirements of the

23

left service server is most needed for the secesdurce, hence this job would be
sent to right server as shown in Fig. 13 (c). In B&ection policy, the result of

sending the three jobs of the left service server
max(7+ 55+ 36+5) 12 _116 max(’+35+56+4) _10
avg(7+55+36+5 103 =~ ' avg(7+35+56+4) 10

max(+ 55+ 7,6+5) 12
avg(7+55+76+5 117

=1 and

are

=103 respectively. As we can see, the second job can

get the minimum value, hence it would be sentdbtrservice server as shown in Fig.

13 (d).

24

1E5

IF=

1ES -7 -5 —6

13 15 14 7 5 6

(a) Before job exchange

E -] - >
] i . -3 ;

1ES-] el e -~ <

9 12 8 11

(b) Result'of LA slélléc.tion policy

TElsany

| et | S

SO S = | ==

-5 EEE el syl e~ ©

10 10 10 10 10 10

(d) Result of BB selection policy

Fig. 13~ Example of selection policies

25

4.4 Market M echanism (MM) load balancing method

Conventional distributed load balancing method liguhave not bad load
balancing between service server, but the loadnbadg degree between resources
inside a service server is poor. This is becausenwtme load balancing degree
between service servers is good enough, then dvémeiload balancing degree
between resources inside a service server is fiawes not have chance to address
this condition because of its common state. Fa teason, we present a distributed
market mechanism load balancing method which wadd a changer state for
service servers to further improve the load balagdegree between resources inside

a service server to raise the utilization of whegever cluster.

4.4.1 Definition of cost

At first, we think the cost of a;job-executed oseavice server should be directly
proportional to the load of that service serveat tis, the higher the load of a service
server is, the higher the cost of a job executethahservice server is. We define the

cost per requirement of a job w executed on a serserver | as:

K

3o
Co, = Eq. 1

> J.

J'v‘v is the requirement of a job w for resource k. Teéason of why we define

the cost per requirement rather than the total abatjob executed on a service server
is that we hope to be more realistically awarehef adaptability of a job executed on
a service server. As the example shown in FigtHere is a service server with 80%,
80%, and 50% of its three kinds of resource loapeetively and two jobs J1 and J2

whose requirements of these three kinds of reseuaoe 1%, 1%, 5% and 2%, 2%,

26

1% respectively. If we just calculate the totaltonisthose two jobs we would get the
J2 as 370 which is less than 410 of J2's, howeher,is because the total requirement
of J2 is less than J1’s. In fact, it is not difficto find that J1 is more adaptable than
J2 to be executed on this service server. Therefbree calculate the cost per
requirement of these two jobs executed on thisieerserver, we would get the cost
per requirement of J1 as 58.57 which is less th&rof7J2’s. Hence J1 is more

adaptable than J2 to be executed on this servigerse

5
2 2
1 1 1
J1 J2
1x80+1x80+5x50=410 2x80+2x80+1x50=370
1><80+1><780+5><50=5857 ZX80+2>:380+1X50=74

Fig. 14~ Example of cost calculation
After defining the cost per requirement of a jole@xted on a service server, we
would do some modification for the four policies distributed load balancing
architecture to make our distributed market medraribad balancing method work

in a server cluster.

27

4.4.2 Information policy of distributed MM load balancing
method

Conventional load balancing methods usually justsater the load of a single

resource of a service server, such as the IoadFtLﬂ|§11. Now, we would do a

multiple resources load balancing, hence serviceese should exchange the load of

. 1 K
all their resourcesLj ~ |_j to each other.

4.4.3 Transfer policy of distributed MM load balancing method

As mentioned in 4-3-1’sz9 represents the average load of whole server cluste
for resource k, now we can define the,load imbatandegree of a service server as:
B=X(L;-L%) Eq.2

This would detect theZload imbalancing between isenservers. And the

absolute load imbalancing degree of a service s&s\aefined as:

k k
L] - Lavg

K

Ba, =

k=1

Eq. 3
This would detect the load imbalancing betweenuasas inside a service server.
Then we start to determine the state of a senaoees as follows:

® Sender:Ts< B,
® Receiver: B, <Tr

® Changer:Tr<B,<Ts and T <Bg,. then its state would be a changer.

Where T is a threshold.
® Common: service server with none of the above stateuld be common
state.

This method is broadly similar to conventional noethThe difference is that we

28

add a changer state for service servers to fummgrove the load balancing degree of

resources inside a service server.

4.4.4 Location policy of distributed MM load balancing method

The location policies for the sender and receivex the same as for the
conventional method.

It is different from the service server with sendad service server with receiver
state, which would respectively send jobs to armkixe jobs from their matching
service servers, the service server with changge sthould exchange jobs with its
matching service server. We define the load imlzten degree before a service

server i with changer state and its matching serserver j exchange jobs as:

Ba.:.Ba,
And the ideal load imbalancing degree after paisegvice server i and service

server j would be:

(I Jo o) cq. 4
C+C) |

The greater the load imbalancing degree beforeicgerserver i and service

K
ZXZ‘

k=1

server j exchange jobs minus the load imbalancegyek after they exchange jobs is,
the better to pair these two service servers tegesh

As an example shown in Fig. 15 (a), there are tbezeice servers, the ratio of
their capacities is 1:3:4 and their current loagimpared to the whole system load are
+4%, -4%, and +3% respectively. Before the job exge, Ba Ba and Ba are
respectively 4, 4, and 3. Without considering teeviee server’s capacity, we may
tend to pair service server 1 and service servéro®ever, the imbalancing degree

before pairing service 1 and service server 2 |is-|#4| = 8, and the imbalancing

29

degree after pairing service server 1 and servicerves 2 s

2x|4X1IJ(r_34)X3|=2X2:4 as shown in Fig. 15 (b), hence the improvement of

pairing service server 1 and service server 2-4s438= 4. If we pair service server 2

and service server 3, then before pairing, the lamzing degree is |-4| + |3| = 7, and

the imbalancing degree after pairing would BsI(_ 4)x33;+4(3)><4| =2x0=0 as

shown in Fig. 13 (c), hence the improvement ofipgiservice server 2 and service
server 3 is 7 — 0 = 7 which is greater than theteg from pairing service server 1

and service server 2.

30

+4% -4% +3%

S1 S2 S3

(a) Before job exchange

-2% -2% +3%

S5 5211153

(b) Result of pairing service-server-1 and sersgeeer 2

+4% 0% 0%

S1 S2 S3

(c)Result of pairing service server 2 and serverger 3.

Fig. 15~ Example of location policy

31

4.4.5 Selection policy of distributed MM load balancing
method

After pairing the service server with sender orereer state with its matching

service server, the service server i with a higbad would send its job w with a

minimum value of Coijw to the service server j with a lower load.

In the part of the service server with changeresgatd its matching service, we
want the two service servers to respectively temafjob which can give the most
benefit to each other. We define the benefit ofigfarring a job w from service i to
service server | is the cost of the job w be exatain service server i minus the cost

of the job w be executed on server |, that is:

co..~Coi
Assuming service server |.and service server j d@dt the maximum benefit
by transferring their job wl and job-w2-respectyy@e must also provide that sum of
the benefit of service server i and:j.respectiieiynsfer its job wl and w2 to each

other should greater than a threshold T, that is:
(Co..-Co.)*(C0...-CO,.)> T Eq. 5

Then the two service servers could be allowed tthamge jobs. This is because
the job exchange should change the resource Iddmtsloservice servers, resulting in
the cost of a job executed on these two servioeserarying. If there is no threshold
restriction, after service server i and serviceyesej respectively transfer their job wl
and w2 to each other result in the resource lohdemvice server i and service server
j varying, we may find that wl and w2 become refipely appropriate to be
executed on service server i and service servgaipaThis would lead to job w1l and

w2 continuing to be exchanged between service seara | without converging.

32

4.5 Simulation

In this thesis, we use C language to simulate thegss of jobs with multiple
resources requirements executed on distributedrdggreous servers. We would
compare the following five kinds of methods:

1. NO: Once a job is assigned to a service servequtd not be transferred to

another service server anymore.

2. LAJ (Latest Arrival Job): Using the four distribdtéoad balancing policies
of the conventional method as mentioned in secdd) and the LAJ
selection policy as illustrated in section 4.3.4.

3. BL (Backfill Lowest): Using the four distributeddd balancing policies of
the conventional method as mentioned in sectionahd the BL selection
policy as illustrated in section 4.3:4.

4. BB (Backfill Balance): Using-the-four distributedad balancing policies of
the conventional method as.mentioned in sectionahd the BB selection
policy as illustrated in section 4.3.4.

5. MM (Market Mechanism): Our method as mentioned.t 4

4.5.1 Simulation environment

As illustrated in [2][6][9], we assume that a jolmwid be executed on a service
server only after all its requirements can be fatdy that service server. Moreover,
in order to emphasize the heterogeneous environmeninade the following setting
for jobs and service servers respectively:

® Job: a job needs three kinds of resources and dheirements of each

resource is independently random from 1 to 9. Ttexetion time of a job

is random from 5 to 25.

33

® Service server: there are three heterogeneousealagr®llows:

B Homogeneous: the capacities of a service serveedoh resource are
200.

B Heterogeneous (150~250): the capacities of a semsecver for each
resource are independently random number from 4 260.

B Heterogeneous (100~300): the capacities of a semsecver for each
resource are independently random number from 430®.

We respectively simulate the situation of 2 to 2’ servicer servers, and get the
result by averaging 20 times simulation resulthwiifferent random seeds. Each job
would be randomly assigned to any one of the sers#vers first. In our simulation,
we control the request traffic between 70% and &@%he capacity of this server

cluster.

4.5.2 Metrics

We would use the following four'metrics.to-comptre result of each method:

1. Average Standard Deviation of Server Load: the lbaldncing degree between
service servers. Smaller is better.

2. Average Standard Deviation of Resource Load: thed Ibalancing degree
between resources of a service server. Smallestisrb

3. Server Utilization: system throughput. Larger istéie

4. Average Turn Around Time: the elapsed time fromol yvas generated to it

finished, also called response time. Smaller itehet

4.5.3 Result

We first observe the average standard deviatigenfice server load. As shown

in Fig. 16, when service servers are homogeneampared with the NO method,

34

which doesn’t detect load imbalancing between serservers, load balancing
methods, such as LAJ, BL, BB, and MM have relagivetter load balancing degrees,
and the effect of using which selection policiemdd obvious. And as shown in Fig.
17 and Fig. 18, as the heterogeneity of serviceesglnincreases, the variation of the
results of the NO method is small, and the redulh@se methods (LAJ, BL, and BB)
which just detect the load imbalancing among sergiervers would become worse as
the heterogeneity of service servers increases.p@oed with the above methods, as
the heterogeneity of service servers increasesMdlirmethod not only detects load
imbalancing between service servers, but also tetead imbalancing between
resources inside a service server could keep geedage standard deviation of
service server load. And as the heterogeneity miceservers increasing, the gap of

our MM method and the other methods is more obvious

Homogeneous
o] 12 . * . . .
E e
— 10 -—
g - NO
2 8 - LAJ
g 6 BL
ge)
Pape - BB
%ﬂ) - MM
(&)
= 0

2 4 8 16 32 64 128
of servers

Fig. 16~ Average standard deviation of server load in homegas environment

35

Heterogeneous (150~250)

< 14

% 12

(D) —
= "
= 8

> BL
:Qg) 6 — BB
<

?1;) 2

S0

2 4 8 16 32 64 128

of servers

< 14

% 12

(D) —
= "
= 8

> BL
:Qg) 6 — BB
<

?1;) 2

S0

2 4 8 16 32 64 128

of servers

Fig. 18~ Average standard deviation of server load in hgiemeous (100~300)

environment

36

Then we observe the standard deviation of resdaszk As shown in Fig. 19, in
the homogeneous environment, the methods whosetiselepolicy considers
multiple resources, such as BL, BB, and MM, haveawead of the LAJ and NO
methods, and BB method is slightly ahead of BL radtiHowever, our MM method
is obviously leading the other methods. On the obi@ad, as shown in Fig. 20 and
Fig. 21, as heterogeneity of service servers irsimga the result of NO, LAJ, BL,
and BB method are rapidly deteriorating, but our MiMthod is still maintaining a

good load balancing of resources.

Homogeneous

16

14 e
12 —-—NO
10 — = LAJ

- - BL
ﬂ% : . BB
— MM

average stdev of resource load

S N A~ O 0

2 4 8 16 32 64 128

of servers

Fig. 19+ Average standard deviation of resource load in lggneous environment

37

Heterogeneous (150~250)

—~NO
= LAJ
BL
BB
~ MM

average stdev of resource load

2 4 8 16 32 64 128

of servers

Fig

Heterogeneous (100~300)

=2

S

o

2 = LAJ
kS BL
-

3 ~ BB
o - MM
e

O

=

2 4 8 16 32 64 128

of servers

Fig. 21+ Average standard deviation of resource load inrbgeneous (100~300)

environment

38

In the part of average service server utilizates shown in Fig. 22 and Fig. 23,
in the homogeneous environment, the service sarikzation of each method is
similar, even the NO method without dynamic loadabeaing can get the similar
average service server utilization to the otherho@s$. However, as the heterogeneity
of service servers increases, NO method staracethe bottleneck condition derived
from a small number of resources overloading. Aewshin Fig. 24, when the
heterogeneity of service server is higher, theayeservice server utilization of NO,
LAJ, BL, and BB methods have started to decreaspeaally the NO method.
Nevertheless, the average service server utilizaifoour MM method is still similar

to it in the homogeneous environment.

Homogeneous

75
£ ™5 3
SEVER .
é 7 BB
(D)

T2.
2 5 ~— MM
= 12

71.5

1 2 4 8 16 32 64 128

of servers

Fig. 22~ Average server utilization in homogeneous enviromme

39

Heterogeneous (150~250)

—~NO
= LAJ
BL
~ BB
- MM

average server utilization

1 2 4 8 16 32 64 128

of servers

Fig. 23~ Average server u Igeneous (150y 2nvironment

Heterogeneous (100~300)

=

S

5 ~NO
B —LAJ
o BL
é BB
&

=

1 2 4 8 16 32 64 128

of servers

Fig. 24~ Average server utilization in heterogeneous (1003 &dvironment
Finally, we will analyze the average turn arourdetiof each method. Because

of the execution time of a job is random from 28 the average execution time of a

40

job is about 15, hence the more closer to 15 tleeage turn around time is, the better
the load balancing method is. As shown in Fig. i85 homogeneous environment,
although the NO method has similar service sertiération as the other methods,

however, its average turnaround time is worse ti@nother methods. And as the
heterogeneity of service servers increases, as rshiawFig. 26, each average

turnaround time of the methods except MM methodasse and worse, and the gap
between the NO method and the other methods atzmnies larger and larger. On the
other hand, as shown in Fig. 27, in the heterogen¢b00~300) environment, when

the number of service servers is small, the he&reiy of service servers is too big
to get a good average turnaround time, but as tingber of service server increases,
our MM method can obtain a similar average turnadotime as in the homogeneous

environment.

Homogeneous

16.5
()
é 16 - NO
- Vel - Lal
= . /.\./I
= 155 M BL
)
o BB
%ﬁ 15 - MM
=

14.5

1 2 4 8 16 32 64 128

of servers

Fig. 25~ Average turn around time in homogeneous environment

41

Heterogeneous (150~250)

O

£

= ~NO
5 - LAJ
: BL
g

2 BB
20

=

1 2 4 8 16 32 64 128

of servers

Fig. 26~ Average turn around time in'heterogeneous (150~&6Gyonment

Heterogeneous (100~300)

g

é —-—NO
g - LAJ
= BL

=5

& BB

&

=

1 2 4 8 16 32 64 128

of servers

Fig. 27~ Average turn around time in heterogeneous (100~86@yonment

42

Chapter 5: Conclusions and futureworks

In the thesis, we integrate geographic distriblbed and geographic centralized
load balancing method. We first use DNS server doadsimple and efficient load
balancing among geographic distributed server etastand then use a more
complicated, heterogeneous, and multiple resouroasidering load balancing in a
server cluster.

Compared with the conventional load buffer rangého@, our RED method can
efficiently reduce the average standard deviatibseovice servers load to 1/5 of the
conventional method’s, smooth the load variatiosaice servers, and provide more
stable quality of services. Moreover, in our siniola no matter what we set the load
buffer range of the conventional method to, it doubt get better load balancing
degree than our RED method.

In a server cluster, we present a distributed ntamkechanism load balancing
method which would consider- the'-consumption of ipldt resources, and
heterogeneity between service servers at the same In the transfer policy, we add
a changer state for service servers. Thereforgicgeservers can dynamically adjust
the load imbalancing of their resources. And iresgbn policy, compared with other
methods, our market mechanism method can moretiggcselect the job to be sent
to achieve higher load balancing degree.

In our simulation, we show that our distributed Md&d balancing method can
efficiently avoid a system bottleneck derived frahe lack of a small number of
resources while other resources are idle. Compangld previous methods, our
distributed MM load balancing method can raiseaherage service server utilization
about 4%~9%, reduce 2 to 3 times of the averagelatd deviation of service servers

and resources, keep the average turnaround timeclmwpared with the other

43

methods, and provide high system performance.

In future works, we will consider more realistic tklmads to do load balancing.
In that case, the resources of service serversduoole likely to be consumed by a
small number of jobs. Hence the four policies aftributed load balancing should be
more carefully designed to determine the stateseofice servers and the jobs to be

taken over.

44

References:

[1] V. Cardellini, M. Colajanni, and P. S. Yu, “Dynamicoad Balancing on

Web-Server Systems,” IEEE Internet Computing, MAYNE 1999.

[2] YD Lin, CM Tien, SC Tsao, RH Feng, and YC Lai, “Niple-resource request
scheduling for differentiated QoS at website gateiv@omputer Communication,

JAN. 2008.

[3] H. Bryhni, E. Klovning, and O Kure, “A Comparisonf coad Balancing

Techniques for Scalable Web Servers,” IEEE Netwauky/August 2000.

[4] K. Tumer, and J. Jawson, “Collectives for MultifResource Job Scheduling
Across Heterogeneous Servers,” In Proc. of the rskcmternational joint

conference on Autonomous agentsjand.multiagergésgstJuly 2003.

[5] M. Arora, S. K. Das, and R. Biswas, “A De-centratizScheduling and Load
Balancing Algorithm for Heterogeneous Grid Enviremts,” In Proc. of the

International Conference on Parallel’ProcessingRéhmps, 2002.

[6] W. Leinberger, G. Karypis, and V. Kumar, “Load Balag Across
Near-Homogeneous Multi-Resource Server,” Heterogese Computing

Workshop, Aug. 2000.

[71 D. L. Eager, E. D. Lazowska, and J. Zahorjan, “A nfparison of

Receiver-Initiated and Sender-Initiated Adaptivat&haring,” ACM, 1985.

[8] N. G. Shivaratri, P. Krueger, and M. Singhal, “LoBdstributing for Locally

Distributed Systems,” Computer, Dec. 1992.

[9] W. Leinberger, G. Karypis, and V. Kumar, “Job Sahedy in the presence of

Multiple Resource Requirements,” ACM/IEEE, 1999.

45

[10] Z. Zhang, and W. Fan, “Web server load balancinggueueing analysis,”
European Journal of Operational Research, Feb..2007

[11] M. Colajanni, and P. S. Yu, “Dynamic Load Balanciimg Geographically
Distributed Heterogeneous Web Servers,” Distribu@@mnputing Systems, May
1998.

[12] M. E. Crovella, M. H. Balter, and C. D. Murta, “TasAssignment in a
Distributed System: Improving Performance by Unbeaiag Load,” Measurement
and Modeling of Computer Systems, Oct. 1998.

[13] M. Aramudhan, and V. R. Uthariaraj, “LDMA: Load Baicing Using
Decentralized Decision Making Mobile Agents,” Ledunote in computer
science, 2006.

[14] G. Ciardo, A. Riska, and E. Smirni, “EquiLoad: adobalancing policy for
clustered web servers,” Performance Evaluation1200

[15] C. Lu, and S.M. LAU,““An Adaptive Load Balancing gdrithm for
Heterogeneous Distributed System with Multiple T&lksses,” In Proc. of the
16th International Conference on Distributed ConmmuSystems, May 1996.

[16] T. Osogami, M. Harchol-Balter, A. Scheller-Wolf, ca.. Zhang, “Exploring
Threshold-based Policies for Load Sharing,” In Paddhe 42th Annual Allerton
Conference on Communication, Control, and Computiep. 2004.

[17] M. Harchol-Balter, “Task Assignment with Unknown iiation,” ACM, 2002.

[18] A. Shaikh, R. Tewari, and M. Agrawal, “On the Eftigeness of DNS-based

Server Selection,” In Proc. of IEEE Infocom, 2001.

[19] D. D. Clark, and W. Fang, “Explicit Allocation ofd3t-Effort Packet Delivery

Service,” IEEE/ACM Transactions on Networking, 1998

46

[20] E. Rahm, and R. Marek, “Dynamic Multi-Resource Ld2alancing in Parallel

Database Systems,” In Proc. of the 21th VLDB Casriee, 1995.

[21] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, dndHansen, “A Scalable
Solution to the Multi-Resource QoS Problem,” IEEEaRTime Systems

Symposium, 1999.

[22] S. Floyd, and V. Jacobson, “Random Early DetecGateways for Congestion

Avoidance,” IEEE/ACM Transactions on Networking (N 1993.

47

