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Non-primitive type Symbolic Input

for Concolic Testing

Student : Yan-Ting Lin Advisor . Dr. Shih-Kun Huang

Department of Computer Science and Engineering

National Chiao Tung University

Abstract

Concolic testing is a novel technique in automatic software testing. It
systematically achieves higher coverage by ¢ombining concrete and symbolic
execution. Some previous works. have implemented testing tools based on the
excellent idea. But it still meets some difficult,on real code testing. The interaction
with the running environment is one of them..In this paper, we try to deal with the file
operations in the source code. With the support of file handling, we can enhance the

ability of testing tools and improve the testing precision.
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1. Introduction

Software testing is an important and necessary procedure to assure software
quality during software development. But the process to do the testing is tedious and
labor-consuming so that the automatic testing has been studied many years ago[1-4].
In the recent years, a novel testing technique called concolic testing was proposed[5,
6]. It does software testing by combining concrete and symbolic execution[7-9]. This
method is quite systematic and shows feasibility on real program unit. Some previous
works have already implemented the testing tool according to this approach. They
mainly focus on the unit testing because of the complexity of implementation. But in
order to process real unit testing, it is necessary to isolate the program unit component
from its running environment. This is expensive.and hard to complete. In addition
after isolating the unit from the-environment,ssome possible vulnerability will not be
revealed. This will cause false negative.-and.the program corrected may still be

dangerous.

1.1. Motivation

Our original concolic implementation only focuses on the unit testing. When
trying to test a unit, we need to extract the interested unit and trim the code to isolate
it with the external environment, and then the test can be progressed[10]. Because of
the annoying process and the possibly lost external information, we try to deal with
the program external interfaces. Then we can ease the testing procedure and find out

some external vulnerability.

1.2. Objective

We focus on the file operation often used in the program and deals with the



problem by build a dummy environment. Once the external environment is
appropriately modeled, the tested target will get data from the outside. The data will

walk through the code, collect path information and trigger the related bug.

1.3. Background

1.3.1. Concolic Testing

Concolic testing is a testing approach by combining concrete and symbolic
testing[5, 6, 11-13]. It uses the concrete value to be the actual value of program
variable and simultaneously use the symbolic name to connect the relationship
between these variables. As the program runs, it can walk to any place the concrete
value can reach and collect the walking path constraints, including the branch and
assignment information, etc. At a spécific time,, the related constraints collected are
fed to the SMT solver[14-17], and the counterexample technique is used to find the
value fit to the next path.

To offer the original tested’.code the ability-to collect path information, it is
necessary to insert some extra function call to the original one. The action to translate
the code to another one is called instrument. Then once the program flows through the

specific branch, the inserted function will be called to record path information.

1.3.2. ALERT

ALERT is a concolic testing tools for C our laboratory previously implemented.
It is inspired by CUTE and uses a mixed execution model of CUTE and EXE. It use
depth first search to progress testing. The given test input data will only walk through
the related path. When the tested unit runs to the end, the ALERT driver will try to
negate the last unsolved branch constraint and use the new constraints context to

generate the next run input data. This procedure will last till a specific iteration



number is met.

ALERT uses CIL as instrument tool[18]. CIL first simplifies the tested source
code to a simple but equivalent form. And then ALERT uses it to insert corresponding
function call according to the matched pattern. After getting the instrumented source

code, ALERT will compile it and use it to do self-testing.



2. Related Work

Some previous works have studied on concolic testing. DART is the first work to
propose the idea to combine concrete run and symbolic analysis[6]. It mainly handles
the integer type, and it automatically extracts the unit from source code to test. CUTE
which is splintered from DART, can correctly handle some pointer access cases[11].
But it did not consider the situation where the index of array is symbolic. EXE is a
follow-up work of EGT, which can deal with more complex pointer access than
CUTE[12]. CUTE and EXE are similar on the functionality. They differ at the
execution and memory model. ALERT use the way EXE models memory and adopts
the execution model of CUTE. All works above interact with the running environment
concretely, and they do not generate input data for'file input.

Catchconv is a symbolic=execution and run-time integer conversion testing
tool[19]. It is a module of Valgrind[20];-which, is an instrumentation framework for
building dynamic analysis tools. Valgrind translates the executable binary to its IR
called VEX, and Catchconv uses Valgrind’s API to instrument VEX dynamically.
Catchconv only focus on testing integer conversion error.

KLEE is a symbolic virtual machine built on top of the LLVM compiler
infrastructure[21, 22]. The tested sources are compiled to the LLVM virtual
instruction, and then KLEE instruments the virtual instruction for testing. KLEE
redirects the interactions with running environment to its inner models that understand
the semantics of the actions.

Catchconv and KLEE instrument the lower-level intermediate representations.
The sizes of the generated constraints are huger, and the lower-level semantics are
harder to be understood and debugged. We list briefly the comparison of the testing

tools above in table 1.



Table 1: The comparison of concolic tools

DART CUTE EXE CATCH-CONV | KLEE
mstrument | C C C Valgrind IR llvm IR
level
file concrete concrete concrete symbolic symbolic
mput




3. Methods

In this section, we will describe our method to deal with the file operations used
in the tested source. The basic of file operation in the UNIX environment will be
briefly presented, and then an overview of our method will be displayed.

3.1. Basic of file 10

To the OS kernel, all opened files are referred to by the file descriptors, which
are the non-negative integer. When a new file is created, a new file descriptor is return
to the process. The file descriptor can be used to identify the file programmers want to
access. By convention, each process will have 3 file descriptors exist when it starts.
The file descriptor 0 is associated with standard input, 1 is associated with standard
output and 2 is associated with standard error.

The standard library provides.a high level interface called file stream to access
file. It handles such details as buffet:allocation,and optimized operation to avoid the
inefficient and inconvenient way to use.file descriptor directly. Figure 1 summarizes

the process of file access.

void testme() { :’""t"_""l """ ;_t_' """"" k
L foets implementation
FILE “fo = fopen(“filel”, “), | %t 100P
faets(bufl, 4, fio);

if (stremp(bufl, “bug™ i =0 i
o wrappey for read
ETT, '

system call or system call

read systetmn call

implementatisn

Figure 1: The process of file access



3.2. The overview

When programmers need to do file operations, the most frequently used two
methods are accessing through stream-level library function and accessing through
low-level library function (system call wrapper). The stream-level function is more
flexible and usually more convenient, so we only consider stream-level function now.
The low-level function can be implemented in the similar way.

When writing a C program to access file with stream-level library function,
programmers need to get a file stream first, and then they can access the content via
the specified file stream. Other than the file explicitly opened, there always are three
implicit file descriptor, which are stdin, stdout, stderr. We do not care about operations
on stdout and stderr, because these two streams are for message output and they will
not affect the behavior of the program itself.

All that we need to do is to intercept the file access action, and then to redirect
them the buffer we can control. Nextiwe-associate the buffer with the storages used in
the program. The way to associate them depends-on the operation. At the end we will
have the information about these file operations and we can use it to generate the
content of file the next run will use.

We now have some choices on how to intercept the function call. The best choice
should be the one to intercept the call on system call. But this method suffers some
physical difficulties, including how to insert instrument code to the system call, how
to separate the call in the tested target from the normal call in our system, etc. So we
decide to instrument the tested source to change the called function name. Next the
instrumented code is compiled and linked to our library. The generated executable
program will use our function implementation when it calls the file operation. Figure

2 shows the procedure.



woid testme () {
FILE *p = myfopen( filel”, ),
myfgets(bufl, 4, fp);
if (stremp(bufl, "busi =0
BUG;

________________ ¥ .

r

-

myigets implementation

local buffer

butl

fd0_buf[0] =buf1{0]
fd0_buf[1] =buf1[1]
constraints fd0 buf[2] =1buf1[2]

collecting

Figure 2: The overview of our method




4. Implementation

4.1. The architecture of ALERT

instrument tool

(CIL)

tested >
source code

!

instrumented
source code

ALERT
library ﬂ

toolchains

input ‘::5 ‘::\ generated
data ) | Executable /| input data

solver
(CV(3) /

controlling script

Figure 3: The architecture of ALERT
As figure 3 shows, the tested source is modified by instrument tool. Next we

compile the instrumented code with ALERT library, and we can get an executable



binary. Then the executable binary can collect path information and interact with
solver to generate the next run inputs. Tester can use a controlling script to control the
execution of the binary. This is the original testing procedure.

4.2. The architecture of ALERT with file operation support

tested instrument tool
source code |:> (CIL)
instrumented
source code
ALERT library
(the file related @
Implementation ) i
toolchains
(gt
i input i> generated |
i data \:> Executable input data :
é ﬁ generated :
é file input file input :
i data data !
< | |
E controlling script |

Figure 4: The architecture of ALERT with file handling
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As figure 4 shows, the architecture is mainly the same with the original one. We
implement our method as a part of ALERT library. The main difference on the
architecture is that the input data come from two separated sources. We also use more
efficient solver called STP[17], which is designed to focus on the bit-vector type

constraints and performs well on more complex constraints.

4.3. The main concepts

4.3.1. The intuitive idea

The intuitive idea to collect the constraint informations involved in our function
implementations is just to instrument the source codes of the functions together with
the tested source target. This is surely the simplest method but there is an annoying
shortcoming. That is that if *the | if-conditions  within the function source are
instrumented and the associated variable 'is symbolic, the related condition point
constraints will be collected and"be negated during the testing procedure. This will
generate the input data which can walk through the branch at the other side in the
library source implementation. This will cause their confusion in logic when the

testers try to evaluate the execution path of the target. Let’s see a simple example.

void testme() {
fgets(buf, 4, stdin);
if (stremp(buf, “bug™) ==10)
abort();

Figure 5: A case with a single fgets()

11



In figure 5, there is only one if-condition, so testers may expect that it will run
less than two iterations to cover all paths. If the fgets() source is instrumented
together with the tested source, however, concolic testing will try to expand all paths
when it meets condition point in the fgets(). This will not only mislead testers but also
generate the test input in conceptually the same path. Figure 6 shows the execution
paths of this case. The mark ‘X’ means it is not a valid path. There are total 5 valid

paths in this case, and 4 paths will go to the same side at strcmp() condition.

£0[0]

t= '.'__nr

£40[2]

l= “\n’

Figure 6: The execution path of the intuitive idea

12



buf I= buf =
“bug” “bug”

Figure 7: The ideal execution path

In figure 7, we show the ideal execution path in this case. To achieve the ideal

goal, we proposed a method called “list & pick”.

4.3.2. List & Pick

We first list all possible constraints ALERT can generate when it runs different
path in the function, and then “or” them togethersWhen a testing iteration is over, the
solver can pick one from these listed constraint sets and generate the proper input data.
These “or”ed constraints should-form mutual-exclusive sets so that solver can work

correctly.

The “list & pick” method offers the concept correctness, but a more serious
problem occurs when we implement it. That is where the next operation should start

from? Let’s see the next example.

void testme() |
toets(butl, 4, stdin);

if (stremp(butl, "bug™) =10}

BUG,
toets(buts, 4, stdin);

if (stremp(buf2, “bug™) =10}

EUG,

?

Figure 8: The source code to show List & Pick

13



In figure 8, we list a simple case, which contains two fgets() call. After we use
“OR” to create the first fgets() corresponding constraints composed of three sets
representing different lengths, we could get the simplified constraints blow. (Some
constraints about value limitation is not listed here, and we will describe them in

detail later.).

(buf1[0] = £dO[0])
OR ((buf1[0] = fdO[0]) AND (buf1[1] = fd0[1]))
OR ((buf1[0] = fd0[0]) AND (buf1[1] = fd0[1]) AND (buf1[2] = fd0[2]))

Then at the second fgets(), how do we decide which byte is the one which the
file index points? To solve this problem, we introduce an idea called “symbolic index”.
When the function involves with variant length, the file index will become undecided.
So we always mark the next file index symbelic and record extra length information

with the variant constraints. With thelexample.above, we should get the results below.

(buf1[0] =£d0[0]) AND (fd0_index 1 =0+1)
OR ((buf1[0] = £d0[0]) AND (bufl[1] = fdO[1]) AND (fd0_index 1 = 0+2))
OR ((buf1[0] = £fd0[0]) AND (bufl[1] = fdO[1]) AND (bufl[2] = fd0[2]) AND
(fd0_index_1 = 0+3))

Each “OR”-clause of the block is composed of two constraints. The former one
is the constraint about length, and the rear one after “AND” is the constraint about
index. In the first “OR”-clause, for example, the ‘0’ in the index constraint says that
the current concrete file index value is 0 when the first fgets() is called. The ‘1’ in the
constraint says that the former length constraint has length 1.

Next when program flow comes to the second fgets(), we again need to generate
all possible constraints. Because the file index is symbolic now, each file index is

possible. So we should generate constraints from the first possible index to the last

14



possible one, and “OR” these constraints about each index together. We list the result

here.

((buf2[0] = fdO[0]) AND (fd0_index 2 =fd0 index 1+1)
OR ((buf2[0] = fd0[0]) AND (buf2[1] = fdO[1]) AND (fd0_index 2 =
fd0_index 1+2))
OR ((buf2[0] = fd0[0]) AND (buf2[1] = fdO[1]) AND (buf2[2] = fd0[2]) AND
(fd0_index 2 =1{d0_index 1+3)) ) AND (fd0_index 1=0)

OR

((buf2[0] = fdO[1]) AND (fd0_index 2 =fd0 index 1+1)
OR ((buf2[0] = fdO[1]) AND (buf2[1] = fd0[2]) AND (fd0_index 2 =
fd0_index 1+2))
OR ((buf2[0] = fdO[1]) AND (buf2[1] = fd0[2]) AND (buf2[2] = fd0[3]) AND
(fd0_index_ 2 = fd0 index_ 1+3)) ) AND (fd0_index 1=1)

OR ...till (fd0_index 1 = the last index)

Each block of the result représents.a specific index constraint. Like constraints
generated due to concrete index, the constraints generated due to symbolic index is
composed of the "OR”-clauses. The differences are the current index name used in
each clause and the first element of file buffer to read. At the end of each block the
corresponding index constraint is appended to ensure the constraint is right.

Now we still can’t locate actual file index position, but we can generate all
possibilities and solve the problem with the power of solver.

Once the file index becomes symbolic, however, all the next file operation will
generate constraints about all possible indexes. This will generate a huge constraint
set. We list the approximate size of constraints to be (file size)* [ (size limit )*2 /2 *
(byte constraint factor) ]. In this formula, file size is the specified file size. Size limit

is a bound to the possible numbers of bytes accessed, such as the size parameter of

15



fgets() and the width field in the format string of fscanf(). When we create constraints
about content accesses in each length, we need extra constraints to limit the content of
bytes accessed. We call the ratio of the total constraints size to the basic constraints

“byte constraint factor”.

4.3.3. Index limitation

The generated set of constraints is a great challenge to the power of the solver.
To ease the complexity of constraints, we can limit possible index value by observing
the movement of file index during file access. (1) We can know that file index is
always moving forward during a single function call, except for fseek(), which can set
file index to anywhere. With this observation, we will record the index value when
file index is marked from concrete to symbolic. Then when we generate the
constraints about variant index;we.will go from the recorded symbolic index value,
rather than 0, the lowest file index.\Fhe-value, of the index always keeps the same
when the function involves contentsywith variant length, but is updated when the
function read concrete content. We can always use this property on the successive file
function call. But when we intercept the call to fseek(), we should change this value to
0 to avoid incorrectness. (2) The possible value of file index is affected by the
previous file access operations. So we do not need to list constraints about all possible
file indexes. We just need to list constraints about the indexes in the limited range.

This strategy can greatly ease the complexity at some special case and just add a
little overhead to the original system. We make some modifications to the example

above to show when the strategy can be used.

16



1 woid testme() {
2 FILE *fp = fopen{file”, "t);
3
4 seckifp, 6. SEEK_SET);
& fgets{bufl, 4. fp);
7 if (stremp(bufl, “bug™) =10)
8 BUG;
9
10 fgets{bufl, 4. ip);
11 if (stremp(bufl, “bug™) =10)
12 BUG;
13}

Figure 9: An example that shows limited index strategy

As we mention previously, the second fgets() should need to generate all the
constraints with index value from 0 to 19 (the default file size is 20). But in this
example, the fseek() at line 4 sets'the file .index to the 6-th byte in the file. The file
index after the first fgets() call will be never-less'than 6. In addition, the number of
bytes the first fgets() accesses will be limited from 1 to 3. So at the second fgets(), we
only need to generate constraints with index value from 7 to 9. This greatly improves

the performance in this case.

4.4. Function implementation detail

After mentioning all special properties, we will describe the functions we
implemented in detail. All the implementation of library functions can be split into
two parts, the functionality part and the part to generate related constraints. We will
focus on the nontrivial part of each function implementation. These functions we will
describe include fopen(), fgets(), fseek(), fscanf(). Finally we will list all the file

related function and describe how to implement these function with our technique.

17



4.4.1. fopen

FILE *fopen(const char *path, const char *mode);

Programmers can use fopen() to create a new file stream, and this stream can be
used in the following operations. The argument “path” is the file name to be opened,
and the name is mapped to the returned stream, which is actually connected to a
low-level file descriptor. We do not involve with the low-level file descriptor now. We
create an exclusive buffer for the corresponding stream, and we leave its size to be
tester specified. It will has default size 20 byte, but if tester need larger size, he can

enlarge it by argument “-n size”.

4.4.2. fgets

char *fgets(char *s, int size, FILE *stream);

Programmers can use fgets() to read a single line from a file. fgets() accepts a
“size” argument which is used to limit the number of character it read. It is very
similar with another function “gets”, and their only difference is the “size” parameter.
Because of the lack of “size”, the “gets” was the most common source of buffer
overflow. In the same way, if programmers use improper size in fgets(), the buffer
overflow will also happen.

To write the part to generate constraints, we must know the behavior of fgets().
The man page says that fgets() reads in at most one less than “size” characters from
“stream” and stores them into the buffer pointed to by “s”. Reading stops after an

EOF or a newline. If a newline is read, it is stored into the buffer. A "\0' is stored after

the last character in the buffer.

18



The behavior of fgets() could be affected by the actual file size, so we need to
calculate the numbers of character could actually be read. After comparing this value
with size-1, we can get a value “maxCanGet” to limit the numbers of character read.

The read string can be partitioned into two categories according to its length. The
first is that the string length is less than “maxCanGet”. This situation happen because
fgets() read EOF or a newline. We will get a string end with a newline following with
a null character (null char is appended automatically by fgets()).

The second one is that the string length is just “maxCanGet”. This happens
because the numbers of character read reaches the size limit. So we just need to limit
the last character of the string to be the appended null character.

Let’s see an example.

fgets(buf, 4, stdin);

In this example, the givenssize limit-is- 4550 the maximum number of character
can be read is 3 and a trailing “\0*"will.be appénded. We list all the possible resulted
string below.

The length of the string is 0. ( This happens when “maxCanGet” is 0).

\0

The length of the string is 1.

\n [\O

The length of the string is 2.

"n [\n |\O

The length of the string is 3.
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"n [ "\n |any |[\O

The “any” in the final case represents any character. If the character is a newline,
it means fgets() stops because the character read is a newline. If the one is not a
newline, it mans fgets() stops because size limit or EOF is met after the character is
read.

In addition to these limit constraints, basic assignment constraints are necessary,
so that we can associate the destination local buffer with the stream exclusive buffer.
But because we do not know how many bytes will be written during this access, we
need to mark the “maxCanGet” bytes in the local buffer symbolic. If the destination
local buffer is not actually written, those unwritten characters will be associated with

the previous constraints in the samé character so that they can be correctly solved.

4.43. fseek

int fseek(FILE *stream, long offset, int whence);

Programmers can use fseek() to set file position indicator for the stream pointed
by “stream”. The new position is obtained by adding “offset” byte to the position
specified by “whence”, which has three valid values SEEK SET, SEEK CUR, and
SEEK END. Because the file size is fixed in our model, some functionality of fseek()
will be limited.

According to the combination of “offset”, “whence” and current file index, we
can decide whether the new file index is marked symbolic or not. We need to update

the recorded symbolic index value to be 0 when the new index is marked symbolic.
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4.4.4. fscanf

int fscanf(FILE *stream, const char *format, ...);

fscanf() should be the famous input function in the C library. Programmers can
use “format” to specify the input data type which programmers desire to store. The
implementation of fscanf() is more complex relatively. We parse the format string and
record the information of each const string and conversion specification in an array.

In the part to generated constraints, we deal with the recorded item sequentially.
If the item is a conversion specification, we first generate constraints of successive
white space in different length. After generating the variant length white space
constraints, the file index is always symbolic. And then we handle the conversion
specification, we create constraints‘about converting number string to a corresponding

number in different length. The number constraint.is looked like the block below.

num = (([0] —“0’) * 10+ ([1]—“0") ) * 10 + ([2]-°0")

(The actual content is different based on the base of conversion specification.).
Next we extract the proper byte from the number constraint based on the length
modifier, and make a connection between the extracted bytes and the corresponding
parameter.

If the item is const string, we handle two cases depend on the position of the
const string. When the string is placed before some conversion specification, the
string must be fully matched so that fscanf() can progress that conversion
specification. On the other hand, when the string is not placed before any conversion
specification in a single format string, the string can be matched with any prefixed

string in different length. Let’s see a simple example
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“1d: %d,cost: %d dollars”

The const string “id:” and “,cost:” is need to be fully matched, while “dollars”
can be matched with “!d”, “d!o”, “do!l”, “dol!l”, etc.(the ‘!’ before letter means “not™)

The functionality of fscanf() is also troublesome because of involving with
variant arguments. Our original idea is just passing the format string and variant
argument list to the vsscanf() function. This does work on the functionality, but we
can not get the number of contents it read. Without this information, file index will
not be updated, and the next operation will get wrong result. To solve this problem,
we partition the format string based on conversion specification so that we can deal
with the corresponding argument separately. And then we append a special conversion
specification “%n” to the partitiohed format string, and offer an extra variable to
record the number of bytes read. After successively handle the partitioned string with
vsscanf(), the extra variable will record the-number of bytes read. Finally we sum all

the numbers, and update the file index:

4.4.5. The file input related functions

In table 2, we categorized the related functions according to their functionality
and the functions we implemented are marked in bold. We will briefly describe how
the other functions can be implemented. Implementing the category about byte access
is easier, because they do not involve with variant lengths. The file index is the only
one point to be noticed.

In string access category, gets() is a general form of fgets(). Because of the
lacking of size limit, the file index can be anywhere at the next access. We need to
generate constraints about all possible indexes.

Scanf(), which reads content from stdin, is just a special form of fscanf(). When
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we handle conversion specification, we need the corresponding parameter name to
associate it with the number. Vscanf() and vfscanf() do not have the corresponding
parameter name. They use a va_list type variable to pass the necessary information.
So if we want to implement the two functions, we need to handle the variant argument
function in the C library first.

Block access function is similar to the low-level function. They try to read
contents with the specified size. The actual size read will be affected by the file size.

Fopen() and freopen() involve with the file name to handle, so we need to record
the file names so that we can associate them to their original exclusive buffers when
we open the same file many times.

The file position function is easy to implement when the symbolic index idea is
introduced. We just need to connget the file index to the return value in ftell(). The

other functions are special forms of fseek().

Table 2¢ The file input functions

category function prototype

byte int fgetc(FILE *stream);

access int getc(FILE *stream);
int getchar(void);

int ungetc(int ¢, FILE *stream);

string char *fgets(char *s, int size, FILE *stream);
access char *gets(char *s);

format int scanf(const char *format, ...);

string & | int fscanf(FILE *stream, const char *format, ...);
variant int vscanf(const char *format, va_list ap);
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argument int vfscanf(FILE *stream, const char *format, va_list ap);
block size t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
access
stream FILE *fopen(const char *path, const char *mode);
open & | FILE *freopen(const char *path, const char *mode, FILE
stream *stream);
close int fclose(FILE *fp);
file int fseek(FILE *stream, long offset, int whence);
position long ftell(FILE *stream);

void rewind(FILE *stream);

int fgetpos(FILE *stream, fpos_t *pos);

int fsetpos(FILE *stream, fpos_t *pos);
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5. Results and Evaluation

5.1. The results

In the section, we use two examples to demonstrate the functionality of our
implementation.

5.1.1. Example 1

This example is a wargame program which contains a vulnerability of buffer
overflow. The players can use this vulnerability to skip all security checks and finally

enter the forbidden area. Here is the source code with vulnerability.

1 #include <stdio b=

2 #hnclude <string h=

2 danclude <unistd h=

4 dnclude <sysitypes h>

5 d#anclude =fontl b=

&

7 char pass[3],

B int main(int arge, char *argv[ [11{
9
10 FILE *fp;
11 mti1=10, auth=10;
12 char buf[=];
13
14 printf"Input passwd: "),
15 foets(buf, 20, stdin);
16
17 it {({fp = fopen("fhomefwargame lifpasswd", "t") = NULL) {
1a printf] "fopen erroriny;
15 return 1,
20 )
21 foetspass, sizeofipass), f);
a2 pass[strlen{pass)-1] ="0"
23
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24 tor (1 = sizeofibuf), +i)

25 if (bufli]='a|| buf[i]='2")

26 return 1;

27

28 if (lstremplbuf, pass))

29 auth=1;

30 if (auth =1 & & buf[0]="0"{

31 char thame[32];

32 uid twd = getuid();

33 sprintfifhame, "‘homefwargame 1/icheckin/m", uid);
24 open(tname, ©O_CEEAT | O_WEOINLY, 00003,
35 )

36 return 0

a0

Figure 10; The wargamersource code
The vulnerability occurs in*fgets() atline 15. The size parameter of fgets() is too

73T
1

big, so that it is possible to write beyond “buf’ and' to modify the variable and

“auth”. When the program flows:through security check at line 24 and line 30, the

3L
1

cracked variable “i” and “auth” will take effect, so the player can guide the program
flow to the forbidden area.

We use ALERT with our file operation support to do testing on the source.
ALERT will try to walk through each execution path. When the process is done, we

can collect corresponding input at each path. Next we feed the inputs to the wargame

program, and can succeed to reach the target. We list some exploits in figure 11.

[teration |File content

6 F49c T8ff 6174 6c66 0100 0000 0400 0000 000a 0000
7 3000 0000 6161 6161 0100 0000 0400 0000 000a 0000
13 O0ff 7a6l1 6168 7070 0100 0000 0200 0000 000a 0000

Figure 11: The actually generated file in the wargame
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In figure 11, the file content is displayed in hexadecimal code. The ninth byte

[13%2]
1

will overwrite variable “auth”, and the twelve byte will overwrite variable “i”. We can

see these files are valid exploits for this wargame.

5.1.2. Example 2

The second example is a simple application of concolic testing. The property of
concolic testing can separate the program input domain to several mutual exclusive
sets, and the input in these sets will walk on the different execution paths. We can use
the property to judge whether different implementations have the same functionality.

Here is a homework assignment to write a program to judge that the given three
integers whether can compose a triangle. We try to implement two versions to the
question, one considers integer overflow and another one does not. Figure 12 shows

the two implementation sources:
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int maini)

{

unsigned char tmp=0;

facanfi stdin,

unsigned char a=0, b=0, c=0;

"Yohhutohhutohhu", &a, &b, &c);

int main()

{
unsigned char a=0, b=0, c=0;
unsigned char tmp = 0;
facanfi stdin,

"Yohhutohhu%ohhu, &a, &b, &c);

tmp = b+, if (a=0 || b=0 || c=0) {
if {a == tmp) { return 0; }
return 0, tmp = b,
1 if (tmp >=b && tmp == &&
tmp = atc; a==tmp) {
if (b == tmp) { return 0;}
return 0, tmp = cta;
1 if (tmp >=c && tmp >=a &&
tmp = ath; bo==tmp) |
if (o == tmp) { return 0;}
return 0, tmp = ath;
1 if (tmp >=a && tmp >=h &&
return 1; cE=tmp) |
1 return 0;}
Version A } retorn 1
Vergion B

Figure 12: Two implementations of the same problem

We call the version which takes care of overflow version B, and call the other
version A. Version A is just implemented by using the principle that the sum of any
two edges is larger than the other edge. But in C language, the storage size of the
specified type is fixed in memory. So if the sum of the two numbers is larger than the
number that the corresponding size can express, the integer overflow will occur.

Version B handles the integer overflow, and therefore it will not suffer the same
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problem.
First we do concolic testing on version B. After the testing procedure is done, we
feed all test input to the two original implementations and compare the return values

at each input. We list the input which version A can not handle correctly in figure 13.

Tnput? (129, 127, 64 )

Tnputd ( 115, 64, 142

Input10 ( 192, 84, 128 )

Tnputl2 ( 248, 250, 6 )

Tnputl3 ( 16, 128, 128 )

Tnputl5 (247, 247,9)

Tnputl7 (128, 80, 188 )

Figure 13: The.inputs which can cause integer overflow

5.2. The evaluations

5.2.1. Comparison with CREST

We compare our implementation with the CREST, which is an open-source
version of CUTE. When testers use CREST, they needs to specify his interested
targets with the function CREST char(), CREST int(), etc. Then CREST will
generate symbolic inputs for them. Because the supported input type in CREST is
limited to be integer, the only way we can use is to make the whole character array

symbolic. We use an example to describe it.
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int main{void) § int main{void) §

char buf[20] =10, char buf[20] =10,
int 11
foeta(buf, &, stdin), for(in=0; m<é; 1+ {

CEEST char(buf[ii1]);
if [ lstrempibuf, “str1™) 0 1
: if [ lstrempibuf, “str1™) 0
fgeta(buf, 10, stdin), :
if [ lstrempibuf, “str2™ 0
; for(in=0; m1<10; 1i++) {
return 1; CEEST char(buflui]);
1 1
if { lstrempibuf, “str2™ )

return 1;

Figure 14: Unit'test on CREST

In Figure 14, the left side is the tested source. Before testers use CREST to test it,
they need to translate it to the code at right side. The original fgets() call is translated
to be loops of CREST _char() call.

Because the tested targets are specified by testers, the actual file will not be
generated. Testers need to do it by themselves it. They need to feed the file back to the
original program. Some programs reveal now. The translation from string to character
array will lose the association in the string, so the content of array can not be directly
outputted to the file. In addition the function about file position is hard to be handled
in CREST.

We run the same example on ALERT with file handling, and list the file content

with hexadecimal code in figure 15.
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filel 0000 0000 0000 0000 Q000 0000 Q000 0000 DOO0 OO0
fileZ 778 000a 7374 7232 0000 000a 0000 0000 0000 0000
file3 77477231 0000 0000 0000 0000 0000 0000 0000 0000
filed T4 7231 00737472 3200 0a00 0000 0000 0000 0000

Figure 15: The actual generated file

In this case, we specify the file size to be 20 byte. The generated file can be used to go

through all execution paths.

5.2.2. Comparison with the original intuitive method

We compare the “list & pick” with the intuitive idea which is to instrument our
implementation source together with tested source. We use three cases to show their
difference in the execution time.

5.2.3. Case 1

int testme{) {
char buf[20];
feets(buf, 6, stdin);
char *strl ="ABC";
if (Istremp(buf, strl))
printflALERT"buf = ABC'n");
else
printflALERT "buf = ABC'n");
fezets(buf, 6, stdin);
str]l ="CDE";
if (Istremp(buf, strl))
printflALERT"buf == CDE'n");
else
printflALERT "buf '= CDE'n");

return 0;

Figure 16: The source code of case 1 in evaluation
In figure 16, we call two fgets() which both have size limit 6. And we change the

actual file size we want to generate. We get the following result.
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g 2 — the intuitive idea
2 — list & pick
g LS5 limited index
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file size (bytes)
Figure 17: The result of casel in evaluation
The intuitive idea runs 64 itera he testing procedure. The other two
methods use only 4 iterations® Whe A small, the time on solving is
insignificant, and the time is mainly affec i c/time of iterations. Because list &

pick needs to list constraints about every indqzs.-f'- suffers performance penalty as file
size grows up. The time on solving of the other two methods almost keeps the same

when file size increases. The main difference comes from the times of iterations.
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5.2.4. Case 2

int testme() {
char buf[20];
fgets(buf, 10, stdin);
char *strl ="ABC";
if ('stremp(buf, strl))
print fALERT"buf =—= ABC'n");
else
printf(ALERT"buf = ABC'n");
fgets(buf, 10, stdin);
strl ="CDE";
if ('stremp(buf, strl))
printf{ALERT"buf == CDE'n");
else
printf(ALERT"buf = CDE'n");
return 0;

14

12

10

R — the intuitive idea
2 — list & pick
g 6 limited index

4

2

0

N
PP T PRSP

file size (bytes)

Figure 19: The result of case 2 in evaluation
In case 2, the only difference from case 1 is the fgets() size limit. We enlarge it to

be 10. The intuitive idea uses 104 iterations when the specified file size is 10 bytes,
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and it uses 256 iterations on all other file size. The other two methods run 4 iterations
again. The shape of the graph is almost the same with the one of case 1. The main
difference is the increase on execution time, which is due to the increased size limit
parameter.

We can compare the three methods here. The intuitive method is affected by the
times of iterations. The list & pick is mainly affected by the file size. When file size
grows up, the time will significantly increase. With the limited index, list & pick can
limit the possible index, so the time will dramatically decrease. But when the called
times of the function which involve variant length increase, the improvement that

limited index provides will diminish.

5.2.5. Case 3

We run case 1 source code with larger file size to evaluate the performance on
real case. In figure 20, we can+see the execution time of the three methods. List &
pick with limited index has outstanding performance in this case, so we use this

method to run on much larger file size.

90
80
70

60

50 — the intuitive idea

— list & pick
limited index

40

time (seconds)

30

20

10

0

(’)QQ

Q
S 8 4

L . \ L .0 N\
DO @«"9%@%"9@@@@‘“@‘“\@@

NN

file size (bytes)

Figure 20: The result of case 1 on larger file size
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Figure 21: The result of casel on much larger file size

In figure 21, we show the total execution time and the time on solving, and we

can see both times significantly increase. The time used on solving increases

unexpectedly. The statistic of the solver sho VS clause sizes of constraints always
heis due to the larger memory used.
In this case, when file size comes tosl 70 { ' the reported memory used is up
to 431MB. This will be a main obstacleto o ;rcome when we want to handle the real

case.
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6. Conclusions

The concolic testing is a simple and powerful method for software testing. But
when it comes to the real case, it meets some limitations, like the power of
instrumentor, the handling of library function call, the number of constraints. In this
paper, we proposed some ideas to handle frequently used file access functions. We
compare these ideas with the most intuitive one to show the feasibility of our ideas.

With this support, we can expect it to achieve higher path coverage, and detect

the lurking vulnerabilities.
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