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Abstract

We define the density finding problem on a rectangle(DFR for short) as follows. Given

an m-by-n rectangle R, each unit block is attached with a value and a weight. A subrect-

angle S in R is an m′-by-n′ rectangle where 1 ≤m′ ≤m and 1 ≤ n′ ≤ n. The value(weight)

of S is the sum of the value(weight) of each block in S. Let A and W be the value and

weight of S respectively. The goal is to find a subrectangle S in R such that the density

of S is closest to a specified real number δ, where the density of S is defined as the ratio

of A and W , and L ≤W ≤ U for two specified positive numbers L and U .

When m = 1, Luo et al. [10] give a O(n logn) time solution. Moreover, if δ → ∞,

Chung et al. [5] and Bernholt et al. [3] both give O(n) time solutions in different ways. In

this thesis, we will give a O(m2n logn) time solution for any δ and O(m2n) time solution

if δ →∞ when m < n. Besides, we show that solving DFR takes Ω(mn log n) when m < n.
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Chapter 1

Introduction

One of the topics in VLSI chip design is thermal analysis. The intent of the design

is to decrease the heat and cool down the hot chips by proper placement. The designers

may set a temperature limit. Once a region is found that it is too hot, i.e., exceeds the

specified temperature, some hot chips should be replaced. To handle this problem, we

abstract the thermal sources as unit squares attached with positive values on a 2D plane.

Thus, the problem reduces to finding a region with the largest density of thermal sources.

We describe the problem below.

Definition 1 (Abstracted VLSI chip design problem). Let R be a rectangle on a 2D plane.

The height and the width of R are m and n respectively, m,n ∈ N. We divide R into m×n

blocks. Each row has n blocks, and there are m rows totally. We call the block bij if it

locates at the ith row and the jth column. For each block bij, we assign a value-weight

pair (aij ,wij), where wij > 0 for all i = 1, . . . ,m and j = 1, . . . , n.

By the above definition, we may consider a block bij with value aij > 0 and wij = 1 as

a thermal source, and a block is empty if aij = 0 and wij = 1. Here wij represents the area

on a 2D plane.

In this paper, we generalize the abstracted VLSI chip design problem. We define the

problem formally.

Definition 2 (Rectangular density finding problem, DFR for short). Let (A,W ) be a pair

of m × n matrices. Each entry in value matrix A is a real number. Each entry in weight
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(0,1) (0,1) (0,1) (1,1) (0,1) (0,1)

(4,1) (0,1) (0,1) (0,1) (0,1) (0,1)

(0,1) (0,1) (2,1) (0,1) (0,1) (0,1)

(0,1) (0,1) (0,1) (0,1) (0,1) (1,1)

Figure 1.1: An example of abstracted VLSI chip design. Each block contains a

(value,weight)-pair.

matrix W is positive. A sub-matrix A′ of A is a matrix whose entries are the intersection

of the rows i, i + 1, . . . , j and the columns k, k + 1, . . . , l, 1 ≤ i ≤ j ≤ m, 1 ≤ k ≤ l ≤ n. We

say the sub-matrix A′ is defined by the 4-tuple indices (i, j, k, l). We define the sub-matrix

W ′ of W as the same of A′. We name the sum of all entries in A′ value, and the sum of

all entries in W ′ weight. The ratio of the value and the weight is called density. Given a

pair of matrices (A,W ), a lower bound of weight L, an upper bound of weight U , and a

real number δ, the goal is to find a 4-tuple indices (i, j, k, l), such that the weight of W ′

is between L and U , and the density is closest to δ.

The above is a generalization of abstracted VLSI chip design problem. It is a variation

of density finding problem. We list some original problems below.

When m = 1, it is the case of [8].

Definition 3 (Segmental density finding problem). Given a sequence S of number pairs

(ak,wk) with wk > 0 for k = 1, . . . , n, two numbers L and U and a real number δ, we

want to find a segment S(i, j) such that the density of the segment is closest to δ over all

(i, j)-pairs with L ≤ wi + ⋅ ⋅ ⋅ +wj ≤ U , i.e., find

min
i≤j
∣
ai + ai+1 + ⋅ ⋅ ⋅ + aj

wi +wi+1 + ⋅ ⋅ ⋅ +wj

− δ∣, where L ≤ wi + ⋅ ⋅ ⋅ +wj ≤ U.

If δ →∞, it reduces to the maximum-density segment problem [5].

Figure 1.2 is an example of segmental density finding problem.

In [11], the input is a set of points on a 2D plane, and no two points lie on the same

horizontal or vertical line.
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(2,3) (-1,2) (5,4) (3,1) (1,2) (1,3) (4,5)

Figure 1.2: An example of segmental density finding problem.

Definition 4 (Maximum-density region problem). Let R be a rectangle containing n

points. In R, every two points lie on the different horizontal and vertical lines. We attach

a positive real number ai to each point pi. We say that ai is the value of pi. An axis-

parallel region T is a rectangle contained in R and its boundaries are parallel to R′s. Let

A(T ) = ∑pi∈T ai and the area of T be W (T ). We define the density of T as the ratio of

A(T ) and W (T ). Given R with n points, the goal is to find T such that T covers at least

two points and the density of T achieves maximum.

We show an instance of maximum-density region problem in figure 1.3. For all six

points in R, the values are the same.

b

b

b

b

b

b

Figure 1.3: An example of maximum-density region problem.

Trees are variation of sequences. When the root of the tree and each internal node

have one child only, such a simplified tree can be regarded as a sequence. We state [9]

below.

Definition 5 (Maximum-density path problem). Let T = (V,E) be a rooted, undirected

tree with node set V and edge set E. Two functions a ∶ e→ R and w ∶ e→ N represent the

3



value and weight functions respectively for all e ∈ E. For a path p = e1e2 . . . ek, we denote

A(p) = ∑k
i=1 a(ei) and W (p) = ∑k

i=1 w(ei). We say that A(p) is the value of p and W (p) is

the weight of p. The density of a path p is defined as the ratio of A(p) and W (p). Given a

tree with n nodes, two functions a and w , a lower bound of weight L and an upper bound

of weight U , we would like to find a maximum-density path p with L ≤W (p) ≤ U .

See figure 1.4 as an example of maximum-density path problem. We assign a value and

a weight for each edge. We denote the value and the weight as a pair.

b

b

b

b b

b

b

b

b

b

b

root

(2,3)

(4,2) (2,2)

(1,3)

(5,2)

(1,1)
(3,4)

(2,1)

(4,5) (3,3)

Figure 1.4: An example of maximum-density path problem.

For the segmental density finding problem, Lee et al. give a O(n log2 m) time algorithm

where m =min{⌊
U −L

wmin

⌋, n} and wmin =minn
r=1 wr in [8]. Luo et al. give a O(n logn) time

result by Minkowski sum in [10]. When δ is close to infinity, the maximum-density segment

problem can be solved in O(n) time in [5], [6], [8] and [3]. If the value is uniform in the

maximum-density region problem, the problem takes O(n log2 n) time by [11], [1], and

[4]. In [9], Lin et al. give an algorithm that solves the maximum-density path problem

in O(nL) time when the weight of each edge is 1, and Lau et al. [7] present an algorithm

that runs in O(n log2 n) time for the generalized case.

In the past decade, a number of researches focus on the density finding problems. For

the network design, we want to upgrade the network by replacing a path with high speed
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edges. The weight of an edge may represent the building cost and the value may represent

the profit. We are also given a budget constraint which limits the weight of the path to

be upgraded. Thus, the goal is to find a weight-constrained path, and we hope the profit

of the path is as large as possible. [12] and [9] research the network design problem as

the maximum-density path problem. Specially, when the weight of each edge is uniform,

the time complexity reduces to O(n logn) in [12] and O(nL) in [9]. In [7], Lau et al.

extend the problem to finding a subtree with maximum density, which is NP-hard. They

also give a O(nL2)-time algorithm when the tree of integer edge weights is given.

In biology, GC content of the DNA sequences is considered. Given a DNA sequence,

we want to find a consecutive segment with the highest GC-ratio. The GC-rich problem

is formulated as the maximum-density segment problem, and [5] and [6] give optimal al-

gorithms with time complexity O(n). Furthermore, [8] gives a O(n logn)-time algorithm

that finds a segment whose density is closest to a given real number δ. When δ → ∞,

it reduces to the maximum-density segment problem. In [3], Bernholt et al. research

the Minkowski sum and give a O(n)-time algorithm that solves the maximum-density

segment problem and other subsequence problems in computational biology. Moreover,

Luo et al. [10] give a O(n logn)-time algorithm that solves the density-finding problem

mentioned above.

In this thesis, we present an algorithm solving the DFR(Rectangular density finding

problem, Definition 2) and give a lower bound of time complexity. The remainder of the

thesis is organized as follows. Chapter 2 shows the algorithms and proofs. In chapter 3

we discuss the lower bound of DFR. Chapter 4 gives more quasiconvex functions.

For convenience, we use the notations rectangle and matrix interchangeably. Given

two matrices with order m × n, value matrix A and weight matrix W , we use an m × n

rectangle R to describe them. The height and the width of R is m and n respectively.

Each unit square in R is called a block, and there are mn blocks in R. For each aij ∈ A

and wij ∈W , there is a (aij ,wij)-pair in the block of the ith row and jth column. See the

example in figure 1.5.
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(a11,w11) (a12,w12) (a13,w13) (a14,w14)

(a21,w21) (a22,w22) (a23,w23) (a24,w24)

(a31,w31) (a32,w32) (a33,w33) (a34,w34)
Rectangle R

Figure 1.5: The mapping between matrix and rectangle.
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Chapter 2

Finding a δ-density Sub-rectangle

In this chapter, we give an algorithm for the special case, finding a constant-height

rectangle first. Then, we give a method to solve the general case.

2.1 Constant Height

In the following paragraph, we assume that m ≤ n and the height of a sub-rectangle is

a constant t, 1 ≤ t ≤m. In order to apply [10], we need all t-by-n rectangles so that we can

find the δ-closest segment in O(n logn) time for each rectangle. We use an algorithm for

preprocessing step first. Then, for every t-by-n rectangle, we apply the algorithm in [10]

to accomplish our work. We state it below and use it as a subroutine.

Theorem 1 ([10]). Segmental density finding problem with input size O(n) can be solved

in optimal O(n logn) time. We call this algorithm DenFind.

Given a matrix P with order m × n, we construct a matrix Q such that each element

Qij represents the sum of P1j , P2j , . . . , Pij . The preprocessing algorithm PA does it. The

algorithm is listed in figure 2.1. The preprocessing step will be used in the next algorithm.

Lemma 1. Algorithm PA takes O(mn) time to compute Qij = ∑i
k=1 Pkj, 1 ≤ i ≤m,1 ≤ j ≤

n.

Proof. Line 1 to 3 cost O(n) time, and line 4 to 8 use O(mn) time. The correctness of

Qij follows by the recursive definition in line 4 to 8.

7



Preprocessing Algorithm (PA)

Input: An m × n matrix P .

Output: An m × n matrix Q that Qij = ∑
i
k=1 Pkj, 1 ≤ i ≤m,1 ≤ j ≤ n.

1: for j = 1 to n do

2: Q0j ∶= 0

3: end for

4: for i = 1 to m do

5: for j = 1 to n do

6: Qij ← Qi−1,j +Pij

7: end for

8: end for

Figure 2.1: Algorithm for Preprocessing

Figure 2.2 is an example of matrices P and Q.

3 -1 -2 5 -2

-4 7 0 -3 6

2 4 -1 -4 3

3 -1 -2 5 -2

-1 6 -2 2 4

1 10 -3 -2 7

(a) matrix P (b) matrix Q = PA(P )

Figure 2.2: Matrices P and Q = PA(P ).

Now we state an algorithm for the constant-height case. Given two matrices A and W

as input, we calculate A′ = PA(A) and W ′ = PA(W ) first. Next, we calculate A′i+t,j−A′ij =
Ai+1,j +Ai+2,j + ⋅ ⋅ ⋅ +Ai+t,j and W ′

i+t,j −W ′
ij =Wi+1,j +Wi+2,j + ⋅ ⋅ ⋅ +Wi+t,j for all j. They can

be regarded as a sequence of (value,weight)-pairs. Then, we apply the algorithm DenFind

to find a δ-density-close segment in the sequence. We iterate the above actions for all

feasible i and obtain a set of candidates. Finally, we choose one of them whose density is

8



closest to δ. We show the algorithm in figure 2.3.

Constant-Height Algorithm(CHA)

Input: Two m × n matrices, value matrix A and weight matrix W , a lower bound L, an

upper bound U , a constant height t, a real number δ.

Output: A t-height sub-rectangle whose weight is between L and U and its density is

closest to δ.

1: Let A′ be the output of PA(A) and W ′ of PA(W ).

2: for i = 1 to m − t + 1 do

3: for j = 1 to n do

4: aj ← A
′

i+t−1,j −A
′

i−1,j

5: wj ←W
′

i+t−1,j −W
′

i−1,j

6: end for

7: Let sequence S = {(a1,w1), . . . , (an,wn)}.
8: Apply DenFind algorithm on sequence S.

9: Output the result.

10: end for

11: Among all possible results, choose the one whose density is closest to δ.

Figure 2.3: Algorithm for Constant Height

We show an example of the results after executing line 3 to 6 of algorithm CHA. Matri-

ces A and W represent the value matrix and the weight matrix respectively. Furthermore,

A′ = PA(A) and W ′ = PA(W ). The constant height t is 2, and the pairs in each block

are (value,weight)-pairs.

Now we prove the correctness of CHA. The algorithm calculates all t-by-n sequences,

and use the algorithm DenFind stated in theorem 1. In other words, we examine all

possible solutions from the input. Therefore, we ensure that the rectangle whose density

is closest to δ would be found after the algorithm stops.

9



3 -1 -2 5 -2

-4 7 0 -3 6

2 4 -1 -4 3

2 1 2 1 1

1 3 4 1 3

1 2 1 2 1

(a) matrix A (b) matrix W

3 -1 -2 5 -2

-1 6 -2 2 4

1 10 -3 -2 7

2 1 2 1 1

3 4 6 2 4

4 6 7 4 5

(c) matrix A′ (d) matrix W ′

(-1,3) (6,4) (-2,6) (2,2) (4,4)

(e) sequence of i = 1

(-2,2) (11,5) (-1,5) (-7,3) (9,4)

(f) sequence of i = 2

Figure 2.4: The execution of line 3 to 6.

Lemma 2. Algorithm CHA correctly constructs every t-height rectangle.

Proof. We show that line 3 to 6 construct a t-height rectangle. From algorithm PA,

Qij = ∑1≤k≤i Pkj by recursion. Hence,

aj = A
′

i+t−1,j −A
′

i−1,j = ( ∑
1≤k≤i+t−1

Akj) − ( ∑
1≤k≤i−1

Akj) = Aij + ⋅ ⋅ ⋅ +Ai+t−1,j ,

wj =W
′

i+t−1,j −W
′

i−1,j = ( ∑
1≤k≤i+t−1

Wkj) − ( ∑
1≤k≤i−1

Wkj) =Wij + ⋅ ⋅ ⋅ +Wi+t−1,j

for all i. Thus, the sequence {(a1,w1), . . . , (an,wn)} represents a t-by-n rectangle.

Then, we consider the time complexity of CHA. We prove that CHA takes at most

O(mn logn) time during the execution.

10



Lemma 3. Algorithm CHA takes O(mn logn) time.

Proof. Line 1 uses O(mn) time by lemma 1. Line 3 to 6 cost O(n) time. From Theorem 1,

line 7 to 9 take O(n logn) time. The first for loop runs at most (m−t+1) times. Therefore,

it takes O(mn logn) time.

In the last of this section, we give a theorem of DFR with constant-height constraint.

Theorem 2. DFR with constant height can be solved in O(mn log n) time.

Proof. Algorithm CHA solves DFR with any constant height t. The correctness follows

by lemma 2. The computing time follows by lemma 3.

2.2 General Case

Now we discuss the general case of DFR. We use the idea of algorithm PA and algo-

rithm CHA, and modify the latter to reach our goal.

The algorithm GA works as follows. We transpose the matrices A and W if the number

of rows are greater than the number of columns. This step saves execution time. Next,

for all possible height t, we call the algorithm CHA as a subroutine. Finally, among all

candidates, we choose one whose density is closest to δ. The algorithm GA is shown in

figure 2.5.

Now we prove the correctness of GA. Like CHA, the algorithm GA calculates all

n-width sequences whose height varies from 1 to m. It ensures that every possible sub-

rectangle is under consideration. The sub-rectangle whose density is closest to δ will be

output when the algorithm DenFind executes the corresponding sequence.

Lemma 4. The rectangle whose density is closest to δ will be output by algorithm GA.

Proof. The first and second for loop ensure that we check every sequence with any height.

The remainders then follows by lemma 2.

11



General Algorithm(GA)

Input: Two m × n matrices, value matrix A and weight matrix W , a lower bound L, an

upper bound U and a real number δ.

Output: A feasible sub-rectangle that its density is closest to δ.

1: if m > n then

2: A← AT

3: W ←W T

4: end if

5: for t = 1 to m do

6: Call CHA(A,W ,L,U ,t,δ).

7: end for

8: Among all possible results, choose the one whose density is closest to δ.

Figure 2.5: Algorithm for General Case

Then, we discuss the time consumed in GA. We prove that algorithm GA uses at most

O(m2n logn) time when m ≤ n and O(mn2 logm) when m > n.

Lemma 5. Let f =min{m,n} and g =max{m,n}. The algorithm GA takes O(f 2g log g)
time.

Proof. The algorithm executes line 1 to 4 if m is greater than n. It ensures that the

number of rows in input matrices is always smaller than the number of columns. In line

5, the for loop executes f times, and the subroutine CHA takes O(fg log g) time when

called. Therefore, it takes O(f 2g log g) time.

Therefore, we obtain the following theorem.

Theorem 3. Let f = min{m,n} and g = max{m,n}. Then, DFR can be solved in

O(f 2g log g) time.

Proof. The correctness and the computing time are immediately followed by lemma 4 and

lemma 5. Hence the result.

12



To compare the case of one-dimension sequences, we give the following corollary. Note

that the number of input is n.

Corollary 1. Assume that the rank of the input of DFR, value matrix and weight matrix,

is
√

n × √n. Then it costs O(n1.5 logn) time to find the boundary-parallel sub-rectangle

whose density is closest to δ.

We state the special case that δ → ∞ below. In order to improve the efficiency, we

need another faster algorithm that solves the maximum-density segment problem. The

following theorem describe it.

Theorem 4 ([5], [6], [8], [3]). The maximum-density segment problem can be solved in

optimal O(n) time. We call such a algorithm MaxDenFind.

With the use of theorem 4, we can enhance the efficiency by modifying the algorithms

mentioned in figure 2.3 and figure 2.5 above.

Theorem 5. When δ →∞, DFR with constant height can be solved in O(mn) time.

Proof. We modify the CHA in figure 2.3. In line 8, we replace the DenFind algorithm by

MaxDenFind algorithm. The remainder follows by theorem 2.

Theorem 6. When δ →∞, DFR can be efficiently solved in min{O(m2n),O(n2m)} time.

Proof. We modify the CHA in figure 2.3. In line 8, we replace the DenFind algorithm by

MaxDenFind algorithm. The remainder follows by theorem 3.

Like corollary 1, we list the special case that the input is a
√

n × √n rectangle, and

the number of input is n.

Corollary 2. Assume that the rank of the input of DFR, value matrix and weight matrix,

is
√

n × √n. Then it costs O(n1.5) time to find the boundary-parallel sub-rectangle with

maximal density.

13



Chapter 3

Lower Bound of the Rectangular

Density Finding Problem

We give a lower bound for the DFR by reduction in this chapter. We use the segmental

density finding problem (SDF for short), which has a lower bound Ω(n log n) time.

Theorem 7 ([6], [2]). Solving segmental density finding problem needs Ω(n log n) time in

the algebraic decision tree model of computation even when L = 1, U = n, δ = 0, and the

weights are uniform, i.e., wi = 1 for all i.

Proof. Let P = {b1, b2, . . . , bn+1} be the instance of element uniqueness problem. We

construct an instance of SDF as follows. Let S = {Zi = (bi − bi+1,1) ∣ i = 1, . . . , n}, L = 1,

U = n, δ = 0. If bi = bj for some i < j in P , then the value and the weight of the segment

(Zi,Zi+1, . . . ,Zj−1) are 0 and j − i respectively. That is, the density is 0. On the other

hand, if the density of the segment (Zi,Zi+1, . . . ,Zj−1) is 0, then the value of the segment

must be 0, i.e., bi − bj = 0. Hence, bi = bj . Since solving element uniqueness problem needs

Ω(n logn) time, and the reduction takes O(n) time, it is obvious that solving SDF needs

Ω(n logn) time.

In the following section, we reduce SDF to DFR, and discuss the time complexity.

14



3.1 Reduction Model

Assume that the input of SDF is a sequence S = {Z1 = (a1,1),Z2 = (a2,1), . . . ,Zn =

(an,1)}, two bounds L ≥ 1 and U ≤ n and a specified density δ. We divide S into some

groups,

G1 = {Z1,Z2, . . . ,ZU},
G2 = {ZU+1,ZU+2, . . . ,Z2U},
. . . ,

G⌊ n

U
⌋ = {Z(⌊ n

U
⌋−1)U+1, Z(⌊ n

U
⌋−1)U+2, . . . , Z⌊ n

U
⌋U},

G⌊ n

U
⌋+1 = {Z⌊ n

U
⌋U+1,Z⌊ n

U
⌋U+2, . . . ,Zn}.

The number of groups is ⌈ n
U
⌉. Each group has U elements except for the last group. If

n divides U , then the last group is G n

U
and ∣G n

U
∣ = U . Else, the last group is G⌊ n

U
⌋+1 and

∣G⌊ n

U
⌋+1∣ = n− ⌊ n

U
⌋. For the latter case, we insert some insignificant pairs x to G⌊ n

U
⌋+1 such

that the order of G⌊ n

U
⌋+1 is U . For simplicity, we assume that n is a multiple of U and

n = tU for some integer t.

S = {Z1,Z2, . . . ,Z12}

U = 3 U = 5

G1 = {Z1,Z2,Z3} G1 = {Z1,Z2,Z3,Z4,Z5}

G2 = {Z4,Z5,Z6} G2 = {Z6,Z7,Z8,Z9,Z10}

G3 = {Z7,Z8,Z9} G3 = {Z11,Z12, x, x, x}

G4 = {Z10,Z11,Z12} x is insignificant

Figure 3.1: Example of dividing SDF: ∣S∣ = 12 when U = 3 and U = 5.

After dividing S into t = n
U

groups, we construct a rectangle for DFR according to the

following conditions. There will be 2t − 3 rows and 2U columns in the rectangle.

◆ For odd rows 2k − 1, k = 1, . . . , t − 1, consider the groups Gk = {Z(k−1)U+1, . . . ,ZkU} and

Gk+1 = {ZkU+1, . . . ,Z(k+1)U}. The block b2k−1,j is Z(k−1)U+j for j = 1, . . . ,2U .

◆ For even rows 2k, k = 1, . . . , t− 2, the (value,weight)-pair of the block b2k,j is (ǫ,U), the

difference of ǫ and δU is large.

Figure 3.2 shows the construction when ∣S∣ = 12 and U = 3.
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(a1,1) (a2,1) (a3,1) (a4,1) (a5,1) (a6,1)

(ǫ,U) (ǫ,U) (ǫ,U) (ǫ,U) (ǫ,U) (ǫ,U)

(a4,1) (a5,1) (a6,1) (a7,1) (a8,1) (a9,1)

(ǫ,U) (ǫ,U) (ǫ,U) (ǫ,U) (ǫ,U) (ǫ,U)

(a7,1) (a8,1) (a9,1) (a10,1) (a11,1) (a12,1)

Figure 3.2: The reduction from SDF to DFR.

We prove the correctness of the reduction. The reduction works because of the weight

constraint U . The construction ensures the mapping of SDF and DFR.

Lemma 6. If there exists a segment with density δ in SDF, then we can find a rectangle

whose density is δ in DFR.

Proof. Assume that the density of the segment S(i, j) is exactly δ, and the weight of

S(i, j) = j − i + 1 is between L and U . The element Zi and Zjbelong to the ⌈ i
U
⌉th and

⌈ j

U
⌉th group respectively. Since j − i + 1 ≤ U , we have

⌈
j

U
⌉ − ⌈ i

U
⌉ ≤ (

j

U
+ 1) − i

U
=

j − i

U
+ 1 =

j − i + 1

U
+ U − 1

U
≤ 1 + U − 1

U
< 2,

which means that either Zi and Zj are in the same group or they belong to two consequtive

groups. Consider the row 2⌈ i
U
⌉ − 1 in DFR. According to the reduction rule, the block

b
2⌈ i

U
⌉−1,i−(⌈ i

U
⌉−1)U is Z(⌈ i

U
⌉−1)U+i−(⌈ i

U
⌉−1)U , which is Zi exactly. On the other hand, consider

the block b
2⌈ i

U
⌉−1,j−(⌈ i

U
⌉−1)U in the same row. Since j − (⌈ i

U
⌉ − 1)U ≤ 2U , according to the

reduction rule, the block is equal to Zj. Hence, we find a rectangle in DFR whose density

is exactly δ.

Lemma 7. We can find a segment with density δ in SDF if there exists a rectangle whose

density is δ in DFR.

Proof. We argue that the δ-density rectangle in DFR is of size 1-by-x, x ≤ 2U and is

located in the odd rows first. By the construction rule, the value and the weight of each

block in the even rows are ǫ and U , and ∣ǫ − δU ∣ is large enough. That is, any block

combined with the (ǫ,U)-block will contravene the weight constraint since it exceeds U .
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The density of (ǫ,U)-block is ǫ
U
≠ δ, which is far from δ. Thus, the δ-density rectangle is

located in the odd rows.

Suppose that the density of a rectangle with the blocks b2k−1,i, b2k−1,i+1, . . . , b2k−1,j is

δ, 1 ≤ k ≤ t − 1,1 ≤ i ≤ j ≤ 2U,L ≤ j − i + 1 ≤ U . It implies that the rectangle Rδ =

{Z(k−1)U+i,Z(k−1)U+i+1, . . . ,Z(k−1)U+j} is of density δ and its weight satisfies the constraint.

Then in SDF, the Rδ is a consecutive sequence {(a(k−1)U+i,1), (a(k−1)U+i+1,1), . . . , (a(k−1)U+j ,1)}

with density δ exactly, and its weight is j − i + 1, which is between L and U .

From above, we know the correctness of the reduction. We analyze the time complexity

of the reduction now.

Assume that the input size of SDF is n, i.e., n pairs of (value,weight)-pair. Then, the

size of DFR is O(n) because of the construction rules. From Theorem 7, we know that

solving SDF needs Ω(n log n) time even the weights are uniform. Therefore, solving DFR

with height O(
n

U
) and width O(U) also needs Ω(n log n) time. That is, solving DFR with

height O(
mn

U
) and width O(U) takes Ω(mn log mn) time. We state it as a theorem.

Theorem 8. Solving DFR with input size O(mn), where height is O(
mn

U
) and width is

O(U) needs Ω(mn log mn) time.

Similar to Theorem 3, we give a simplified conclusion of the lower bound.

Theorem 9. Let f =min{m,n} and g =max{m,n}. Then, solving DFR needs Ω(fg log g)

time.
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Chapter 4

More Quasiconvex Functions

Let P,Q be the sets of points on a 2D plane. Define the Minkowski sum of two sets P

and Q be P ⊕Q = {p + q∣p ∈ P, q ∈ Q}. Let K be a set of the constraints ki ∶ aix + biy ≥ ci,

ai, bi, ci ∈ R, i = 1, . . . , r. The constrained Minkowski sum of two sets P,Q and a constraint

set K is (P ⊕Q)K = {(x, y) ∈ P ⊕Q ∣ aix + biy ≥ ci, i = 1, . . . , r}. A function f ∶ D → R is

called quasiconvex if for all points s1, s2 ∈D and all λ, 0 ≤ λ ≤ 1, we have

f(λs1 + (1 − λ)s2) ≤max{f(s1), f(s2)}.

Figure 4.1 shows a quasiconvex function.

The motivation for studying constrainted Minkowski sum is that many subsequence

problems from computational biology can be solved by maximizing a quasiconvex func-

tion over the points of a constrained Minkowski sum. In [3], the authors indicate some

quasiconvex functions such as f(x, y) = y
x,

y√
x
,
∣y∣
x and y, for x > 0. Moreover, ax + by

and
by
ax are also quasiconvex functions introduced in [10]. In this chapter, we give more

quasiconvex functions,
yn

xn
, for all n ∈ N.

4.1 Objective Function f(x, y) = yn

xn

First, we show that the objective function f(x, y) =
yn

xn
(x > 0) is quasiconvex. Math-

ematical induction is used for the proofs. We prove the first statement of n = 1 and n = 2

by the definition of quasiconvex.
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4.0

Figure 4.1: Quasiconvex function f(x, y) =
y

x
.

Lemma 8. f(x, y) = y
x is quasiconvex.

Proof. Let s1 = (x1, y1), s2 = (x2, y2), s = λs1 + (1 − λ)s2. Without loss of generality, we

assume that f(s1) ≤ f(s2), i.e.,
y1

x1

≤
y2

x2

or y1x2 ≤ y2x1.

Then,

f(s) = f(λs1 + (1 − λ)s2) = f((λx1 + (1 − λ)x2, λy1 + (1 − λ)y2)

=
λy1 + (1 − λ)y2

λx1 + (1 − λ)x2

=
λy1x2 + (1 − λ)y2x2

x2(λx1 + (1 − λ)x2)

≤
λy2x1 + (1 − λ)y2x2

x2(λx1 + (1 − λ)x2)

=
y2((λx1 + (1 − λ)x2))
x2(λx1 + (1 − λ)x2)

=
y2

x2

=max{
y1

x1

,
y2

x2

} =max{f(s1), f(s2)}, Q.E.D.

Lemma 9. f(x, y) = y2

x2
is quasiconvex.
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Proof. Let s1 = (x1, y1), s2 = (x2, y2), s = λs1 + (1 − λ)s2. Without loss of generality, we

assume that f(s1) ≤ f(s2), i.e.,
y2

1

x2

1

≤
y2

2

x2

2

.

Then,

f(s) = f(λs1 + (1 − λ)s2)

=
(λy1 + (1 − λ)y2)2

(λx1 + (1 − λ)x2)2

=
x2

2
(λ2y2

1
+ 2λ(1 − λ)y1y2 + (1 − λ)2y2

2
)

x2

2
(λx1 + (1 − λ)x2)2

≤
λ2y2

2
x2

1
+ 2λ(1 − λ)y1y2x

2

2
+ (1 − λ)2y2

2
x2

2

x2

2
(λx1 + (1 − λ)x2)2

≤
λ2y2

2
x2

1
+ 2λ(1 − λ)y2

2
x1x2 + (1 − λ)2y2

2
x2

2

x2

2
(λx1 + (1 − λ)x2)2

=
y2

2

x2

2

× (λx1 + (1 − λ)x2)2

(λx1 + (1 − λ)x2)2

=
y2

2

x2

2

=max{
y2

1

x2

1

,
y2

2

x2

2

} =max{f(s1), f(s2)}, Q.E.D.

Then we prove the induction steps. We discuss two cases when n is even and n is

odd respectively. The proofs follow the definition of the quasiconvex functions mentioned

above.

Lemma 10. If f(x, y) = y2k

x2k is quasiconvex, then so is g(x, y) = y2k+2

x2k+2 , k ∈ N.

Proof. Let s1 = (x1, y1), s2 = (x2, y2), s = λs1 + (1 − λ)s2. Without loss of generality,

we assume that f(s1) ≤ f(s2), i.e.,
y2k

1

x2k
1

≤
y2k

2

x2k
2

. Then, [(
y1

x1

)
2

]
k

≤ [(
y2

x2

)
2

]
k

implies

[(
y1

x1

)
2

]
k+1

≤ [(
y2

x2

)
2

]
k+1

since (
y1

x1

)
2

≥ 0 and (
y2

x2

)
2

≥ 0.

Consider g(s),

g(s) = g(λs1 + (1 − λ)s2)

=
(λy1 + (1 − λ)y2)2k

(λx1 + (1 − λ)x2)2k
× (λy1 + (1 − λ)y2)2

(λx1 + (1 − λ)x2)2

≤
y2k

2

x2k
2

× y2

2

x2

2

(by lemma 9)

=
y2k+2

2

x2k+2
2

=max{g(s1), g(s2)}, Q.E.D.
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Lemma 11. If f(x, y) = y2k−1

x2k−1 is quasiconvex, then so is g(x, y) = y2k+1

x2k+1 , k ∈ N.

Proof. Let s1 = (x1, y1), s2 = (x2, y2), s = λs1 + (1 − λ)s2. Without loss of generality, we

assume that f(s1) ≤ f(s2), i.e.,
y2k−1

1

x2k−1
1

≤
y2k−1

2

x2k−1
2

.

Consider g(s) = g(λs1 + (1 − λ)s2) =
(λy1 + (1 − λ)y2)2k−1

(λx1 + (1 − λ)x2)2k−1
× (λy1 + (1 − λ)y2)2

(λx1 + (1 − λ)x2)2
. Assume

that a =
λy1 + (1 − λ)y2

λx1 + (1 − λ)x2

, b =
y2

x2

, a2k−1 ≤ b2k−1. There are three cases of a and b, (1)a <

0, b < 0, (2)a < 0, b ≥ 0 and (3)a ≥ 0, b ≥ 0. We discuss these cases below.

Case (1), a < 0, b < 0 implies a2 ≥ b2 > 0. Thus, a2k+1 = a2k−1 × a2 ≤ b2k−1 × b2 = b2k+1.

Case (2), a < 0, b ≥ 0 implies a2k+1 < 0 ≤ b2k+1.

Case (3), a ≥ 0, b ≥ 0 implies 0 ≤ a2 ≤ b2. Thus, a2k+1 = a2k−1 × a2 ≤ b2k−1 × b2 = b2k+1.

Therefore,

g(s) =
(λy1 + (1 − λ)y2)2k+1

(λx1 + (1 − λ)x2)2k+1
= a2k+1 ≤ b2k+1 =

y2k+1
2

x2k+1
2

= max{g(s1), g(s2)}, Q.E.D.

Therefore, we obtain the following theorem for f(x, y) =
yn

xn
.

Proposition 1. The objective function f(x, y) =
yn

xn
is quasiconvex.

Proof. By mathematical induction, lemma 8, lemma 9, lemma 10 and lemma 11, we

obtain the result.
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Chapter 5

Efficiency Comparison over two

algorithms of Maximum-density

Finding Problem

In chapter 2, we mention that the maximum-density segment problem can be solved

in linear time when the input size is O(n). [5] and [3] both give a O(n) time algorithm.

In the former, the algorithm executes according to density comparison between segments.

In the latter, it reduces to geometric problem and use Minkowski sum to solve it. We

compare the time efficiency in this chapter.

For convenience, we call the algorithm proposed by [5] A1, the algorithm proposed

by [3] A2. Besides, an algorithm called A3, which uses two for loops and takes O(n2) time

to solve the maximum-density finding problem, would be compared with A1 and A2. We

show the algorithm below.

We take advantage of the function clock() for the time measurement. For each algo-

rithm, we execute it 100 times for each input size N (N = 5000,10000, . . . ,50000), average

the consuming time and plot them on the same diagram. Figure 5.2 shows the result.

According the data, the average executing time of A2 is about 8 times to A1. Though

both take linear time to solve the maximum-density finding problem in time complexity,

A2 seems to consume more time than A1. The reason that leads to this result is probably

the computation of the convex hull.
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Pseudocode of A3

Input: A sequence of pairs {(a1,w1),(a2,w2),. . . ,(an,wn)}, two positive numbers L and U.

Output: A segment whose weight is between L and U achieves the maximum density.

1: MaxDensity ← −∞
2: for i = 1 to n do

3: for j = i to n do

4: Calculate Aij = Σj

k=iak and Wij = Σj

k=iwk.

5: if L ≤Wij ≤ U then

6: Calculate the density Dij =
Aij

Wij

.

7: end if

8: if Dij > MaxDensity then

9: MaxDensity ← Dij

10: end if

11: end for

12: end for

13: Output the index i and j.

Figure 5.1: Pseudocode of A3
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Figure 5.2: Comparison Diagram of A1(Chung [5]), A2(Bernholt [3]) and A3.
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Chapter 6

Conclusion

We briefly state the conclusion in this paper.

In the rectangular density finding problem, we assume that the order of input matrices

is m-by-n. Let f = min{m,n} and g = max{m,n}. We present an algorithm solving

rectangular density-finding problem in O(f 2g log g) time. We also give a lower bound

of Ω(fg log g) time. If the specified density approaches infinity, we decrease the time to

O(f 2g).

Rectangular density finding problem

maximum density O(f 2g)

any density O(f 2g log g) and Ω(fg log g)

Table 6.1: Table of results.

For DFR, whether the upper bound can be decreased or the lower bound should be

increased is still unknown. We leave it as an open problem.
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