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DDoS Detection with Decision Tree and Traceback with

Grey Relational Analysis

Student : Y1 - Ch1 Wu Advisor : Dr. Wuu Yang

Department of Computer Science National Chiao Tung University

Abstract

As modern life becomes increasingly closely bound to the Internet, network
security becomes increasingly important. We all live under the shadow of network
threats. The threats could cause leakage of “privacy and/or economic loss. Among
network attacks, the DDoS (distributeddeénial-of=Service) attack 1s one of the most
frequent and serious. In a DDoS rattack, an-attacker-first breaks into many innocent
hosts (called zombies) by taking advantages of known or unknown bugs and
vulnerabilities in the software. Thén the attacker sends a large number of packets from
these zombies to a server. These packets ‘either occupy a major portion of the server’s
network bandwidth or they consume much of the server’s time. The server is then
prevented from conducting normal business operations. To mitigate the DDoS threat,
we design a system to detect DDoS attacks based on a decision-tree technique and, after
detecting an attack, to trace back to the approximate locations of the attacker with a
traffic-flow pattern-matching technique. We conduct our experiment on the DETER
system. According to our experiment results, our system could detect the DDoS attack
with the false positive ratio about 1.29% ~ 2.49%, false negative ratio about %5 ~ 10%
with different kind of attack, attack sending rate and find the attack path in traceback

with the false negative rate 8%~ 12% and false positive rate 129~ 16%.

Keywords: DDoS detection, attacker traceback, decision tree, grey relational analysis
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Chapter 1| INTRODUCTION

1.1  Background

With the proliferation of computer networks come many kinds of network attacks.
On Feb 7, 2000, the first massive distributed denial-of-service (DDoS) attack, which was
targeted against the Yahoo web site [1], was launched. Yahoo servers crashed down
and could not provide services to their customers for about several hours, which
resulted m serious financial loss. But the attacks were never over. Many other
well-known commercial web sites, such as e-Bay, Buy.com, CNN.com, and Amazon,
etc., came under similar attacks [2]. These kirids.of DDoS attacks cause those web sites

serious loss.
1.2 Motivation

Due to the potential serious loss that DDoS attacks could bring up, effective and
efficient protection systems are urgently needed. First we must address the DDoS attack
methods.

Denial-of-service attacks, as the term suggests, attempt to deny legiimate users the
services that the servers provide. Together with the following security 1ssues in today’s
networks, attacks occur more and more frequently:

1. The whole network is formed by autonomous systems (AS). Every AS
enforces its own policy to manage its network environment. This makes it
hard or impossible for the individual intranets to cooperate closely.

2. Existing network protocols do not incorporate sufficient authentication



facilities to verify members in the network. For example, an attacker
could easily modify the source address of a packet, which results
difficulties in the traceback of an attack.

3. Software, such as operating systems, frequently contains known or
unknown bugs and vulnerabilities which an attacker could take advantage
of. This provides the chances to inject malicious code nto mnocent
computers.

Several methods are introduced in [3]|[4][5] that take advantage of the
vulnerabilities 1n network protocols and bugs in software for DDoS attacks. There are
two broad categories of DDoS attack methods:

1. It consumes all the limited resources and bandwidth allocated to the
victim, for example,./ TCP SYN flood attack, ICMP flood attack, UDP
flood attack, etc.

2. It takes advantagerof the vulnerability of processing packets in OS, for
example, Teardrop, Pingef death; etc.

[5] also classifies attack methods into Figure 1.1.

Remote Denial of Service Attack

Attacks on application| Attackson OS | Attacks on network | Attacks based on data |~ Attacks on protocol
level level device level flood feature

Figure 1.1 Classification of DoS (cited from [5])
CERT/TW [6] classifies DDoS attacks into two categories, flooding-based attacks
and software exploits. The latter are often referred to as worm attacks. Figure 1.2

lustrates the relationship between the classification in CERT/TW and classification in

[5].



Flooding - based Software Exploits

Data Flood I
OS Level Application Level

Network Device | Protocol Feature
Level Attack

Figure 1.2 Maps figure 1.1 to categories

Before we present our detecton: systeni; further understanding of the attack
methods 1s required. We will diseuss how|a DDoS attack 1s launched i what follows.
1 TCP SYN flooding attack (flooding-based):

The TCP SYN flooding attack 1s .ammed at the three-way-handshake
vulnerability mn network protocols of layer 4. A client and a server establish a
communication session with a three-way-handshake procedure. When a client
mtends to communicate with a server, he first submits a SYN (synchronize/start)
packet, which includes the IP address and the port number of the client. Upon
receiving a SYN packet, the server would send back to the client a SYN-ACK
(synchronize/acknowledge) packet. After sending the SYN-ACK packet, the server
will create a TCB (task control block) to maintain communication and wait for the
client to send back an ACK packet. A communication session is established when
the server receives the ACK packet from the client. Nevertheless the number of

the TCBs 1n the server 1s often imited. The attacker could send a large number of



SYN packets to the server and hence, occupies a lot of TCBs. Due to the lack of
available TCBs, the server could not provide services to legitimate clients.

TCP SYN flooding attack does not depend on the bugs in software, but on the
defects in the network protocols. The Mail Bombing DoS attack [7] 1s also a
variation of flooding attack. The land attack [8] 1s a variation of TCP SYN attacks
but 1s aimed at exhausting the resources in a server. The attacker fill the
source-IP-address and destination-IP-address fields in the SYN packet with the
victim’s  address, which means that the source-IP-address and
destination-IP-address are victim’s IP address. Therefore the vicim couldn’t
complete the three-way-handshake procedure and consumes the CPU and

memory usage of victim’s own.

2. UDP flooding attack (flooding-based):

Attacker send the UDP pagkét-wath-forged source IP address toward to any
port number (usually 7, echo) of the victim end. The victim end would find
out which application 1s occupying. If no applications are detected, the victim
end would send an ICMP destination unreachable back to the source IP
address. Therefore the method of attack i1s that the attacker sends huge
amount of UDP packets to vicim end and make the victim too busy send back
the ICMP packets to deal with sessions with other clients.

3. ICMP flooding (angry ping) :

Attacker also generates huge number of ICMP echo request packets toward
victim with forged source IP address, therefore the vicim end must reply the
number of packets as much as the attacker sends. The victim would not only

have to deal with the receiving the packets from attacker, but to reply the



ICMP echo response back. Consequently, the bandwidth, CPU, memory
resources of victim will be used up.
Smurf attack (flooding - based):

Smurf attack 1s a kind of variation of ICMP floods and similar to the land
attack; Attacker modify the source IP address of ICMP echo request as the
victim’s IP address as well, then sends this modified packet to the IP broadcast
address. The vicim would receive the ICMP echo reply from all the hosts
within the subnet it resides. Therefore the subnet network would be congested
due to those ICMP packets storm. This kind of attack has the effect of
amplifying the threat of ICMP flooding attack. The UDP version of smurf

attack 1s called fraggle attack.

Ping of death (software exploits):

This attack takes advantagerof the-procedure of processing the ICMP packets.
When a host receives an"ICMP_echo request (type 8), the network device
would 1ssue an interrupt to kernel for processing and sending the ICMP echo
reply (type 0) back to source and the original option data in ICMP echo
request must be copied to the reply packet without change (Figure 1.3). So the
attacker 1njects lots of garbage into the “Option Data” segment of ICMP
format(Figure 1.4) and extends the total length of packet to exceed the legal
length, 65535 bytes, therefore the victim would be crashed when receiving this
kind of malformed packet. This attack 1s aimed to the vulnerability in the

mmplementation of kernel.

(&3]



ICMP echo request ICMP echo reply

Network Interface Card

A

Step2
Send back ICMP echo
reply (type 0)

Interrupt =

Network Device Driver

Kernel

Figure 1.3 Processing ICMP echo requests

0 8 16 31

Type 0/8 | Code(0) Checksum

Identifier Sequence Number

Option Data

Figure 1.4 ICMP echo request/reply header
6. Teardrop (software exploits):
Teardrop attack’s target 1s the leakage in the reassembly of packet fragments.
Because the maximum transmission unit (MTU) i every network
environment 1s different (Table 1.1), therefore the IP packets are cut into
small fragments when transmitting to networks applied different protocol.
The teardrop attack modifies the offset in packet fragments to make some
them overlap. When the victim received these kinds of modified fragments

and try to reassemble them according to the offset, some kernel would be

6



crashed if it couldn’t handle this exception.

Protocol MTU (bytes)
Ethernet Used 1,500
Ethernet Actually 1,496
PPPoL 1,492
Dial-up 576
Table 1.1 MTU in different environments

Except the attacks we mentioned above, there are another two different attacks
ammed to the lack of authentication in routing protocol, such as RIP (Router
Information Protocol) vl and BGP (Border Gateway Protocol) v4 and DNS (Domain
name server). These vulnerability provides: the probability that attacker might
masquerade the routing information ‘or perpetrate the cache poisoning to modify the
mformation n routing table and cache in-DNS m order to redirect the legitimate user’s
connection to the attacker’s own malicious website.

Among all the attack mentioned above, attacker modifies the source IP address in
the packets (a.k.a. IP spoofing) to make traceback much more difficult. Therefore the
goal that our system will achieve 1s to detect the attack quickly, traceback to the attack
launching source with more accuracy. We could summary our demand to the detection
and traceback system as follow:

I. No need to modify the existing protocol of TCP/IP for increasing the
compatibility.
2. Only shightly setup procedures on routers.

3. Easy modification to accommodate novel attacks in the future.



4. Could fit to large-scale of topology.
5. Efficient while processing the traceback
6. Information about topology i1sn’t needed
In the thesis, we focus on the flooding-based attack aiming to layer 3/layer 4 in the
OSI 7 layers model and apply the Al-algorithm based decision tree to help distinguish
and detect between the abnormal and normal traffic flows. Then the traffic flow pattern

matching methodology would help us find the traffic flow most similar to the attack flow

and trace it back to the original source.

1.3  System Overview

Our system basically consists:of twosubsystems, the protection agent located only
m victim and the sentinels located i routers. The =sentinels record the “footprint”
(traffic signature aggregated in sentinel) ol the attacker. Both protection agent and
sentinels collect all the packets passing them, and retrieve the information in network
layer 3/layer 4 from those packets, then aggregating those retrieved information for the
purpose of detection and further traceback. The protection agent 1s in charge of the
DDoS attack detection and traceback procedures. The main concept of our DDoS
attack detection 1s based on the deciding the traffic flow pattern under the situation
without attack and the one under different attack. Therefore the detection of attack
from normal situation could be viewed as the classification problem and we propose 15
different attributes, which not only monitoring the incoming/outgoing packet/bytes rate
but also compiling the TCP SYN and ACK flag rate, to describe the traffic flow pattern.
Then we take these attributes as the tests mn decision tree and the decision tree

constructing algorithm, C4.5 classifier, would help us find the key attributes to

8



distinguish the difference between the traffic flow pattern under normal situation
without under attack and the ones under different attack with less time consuming and
more accuracy rate. The whole process cold exploit the traffic signature or regularity of
DDoS attack and our system could detect the attack according to the regularity as well.
For further zero-day attack, the increasing degree of various provided traffic flow
pattern also provides the possibility to constitute the detection approaches to deal with
the attack. In the traceback procedure, the whole traceback procedure is accomplished
by the message inter-communication between protection agent and sentinels.
Whenever the protection agent detects the DDoS attack, it raises the alarm and sends
out the designed traceback command containing the time when the attack has been
detected, traffic information as evidence of attack traffic, type of the detected attack.
When sentinels receive this kind ;6f command, they would find the possible sets of
NICs whose mput traffics are most related to-the ewidence i the received command
and send back the edge sampling to ithé profection agent to construct the attack path.
The BFS (bread-first-search) algorithmuis applied to traversal the whole topology. Then
the GRA (grey relational analysis) 1s responsible for the traffic flow pattern matching to

find the possible entrances of attack traffic.

1.4  Outline of Thesis

The remainder of this thesis consists of four chapters. We will discuss and analyze
existing detection and traceback mechanisms m chapter 2. In chapter 3, we introduce
the proposed detection and traceback methods in our system. In chapter 4, there will
be the experiment results, which indicate that our proposed system 1s capable of
detecting the attacks and tracing them back with high accuracy. In the last chapter, there

will be conclusion and future work.



Chapter 2 RELATED WORKS

In this chapter, we are going to introduce some techniques and mechanisms

for DDoS attack detection and the track down the attacker’s location.

2.1 Related DDoS Detection Mechanisms

The DDoS attack detection mechanism could be divided into two categories
depending on the locations of the DDoS attack detection systems. One category is
source-end based, in which the detection system is close to the attacker. The other
1s vicim-end based, in which the detection system 1s close to the vicim. We will

mtroduce some victim-end based at'2.1:1and source-end at 2.1.2.

2.1.1 Vicim-End Based Detection

2.1.1.1 Machine Learning

Machine learning has been widely applied for DDoS attack detection. The
detection policy 1s based on anomaly detection and the machine learning would
detect the DDoS attack according to the variance in traffic flows or distribution of
packet flags between the situation under normal situation and one under attack. In
[9], it monitors the distribution rate of flags in TCP packets and names it as TRA
(traffic rate analysis). This method actually only calculates two metrics as criterion
to detect the ongoing attack. One 1s T'CP flags rate and another 1s protocol rate. In
TCP flags rate, it counts the number of SYN, FIN, RST, ACK, PSH and URG
flags in TCP packets and the number of packets as well during a specific period of

time referred to observation sampling time. A flag rate 1s expressed as the ratio of
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the number of a T'CP flag to the total number of TCP packets. Equation 2.1 gives

the definition of flag rate.

total number of a flag(F)in_a TCP header

R, [Fi]=
alFll total _number of TCP _ packets

(inbound)

total number of a flag(F)in_a TCP header
total number of TCP _ packets

R,[Fo] = (outbound)

Equation 2.1

The protocol rate 1s just like Equation 2.1 which substitutes the total number
of TCP, UDP, ICMP packets for the numerator to calculate the protocol rate for
those layer 3/layer 4 protocols. Then it applies the machine learning method to
identify the pattern under attack from one under normal situation.

In [10], the system mot.only monitors the network traffic but also the
utilization of resources. Beeauseithe - DDoS attack aimed for the limited resources
as well, therefore the system takes the utilization of resources into account. The
whole system consists of five main components, which denoted as load-probes,
traffic-probes, server, filter, management. Load-probe 1s used for the purpose of
probing the utilization of resources to monitor them 1if they are overused.
Traffic-probe monitors the traffic header for later learning procedure. Server 1s the
central component using for handling the message passing and monitoring the
state of the system. Traffic-filter applies the filtering rules generated by the
machine learning according to the traming data to filter out the traffic and indicate
if the traffic 1s a malicious one or not. Management interface i1s a web-based
interface for user to view the state of system or to alter the configuration of system.
The DDoS attack detection in this system is based on back-propagation
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ANN (artificial neural network) as Figure 2.1.

Feature 1

Feature 2 pr—
-

Feature 3

o
Ve
WV

N\
LU

Feature N-2

)
Feature N-1 Gr—

Feature N

Input Netirons Hidden Neurons Output Neurons

Figure 2.1 Diagram of back-propagation' ANN (cited from [10])

2.1.1.2 Statistical-Based Model

In [11], the non-parametric CUSUM algorithm based on 1s used for

detection. It made a model for SYN, ACK packets instead of SYN-FIN and

defines the term Xu as Equation 2.2.

X, =aX,  +(1—a)SYN(n)

Equation 2.2
X(0)=0

Where SYN(n) represents the number of SYN packets received and a is

ranged from 0 to 1. If the observation has more favor for the past experience,

then the value of a could be higher. Then it also defines the term yn as
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Equation 2.3.

yn = max{(yn—l + Xn),O}

0 Equation 2.3
Yo =

The contiguous appearance of positive y represents the large number

SYN packet has been received. Therefore, there 1s a threshold to indicate 1f

the warning of attack should be 1ssued.

2.1.2  Source-End Based Detection

The source-end based detection deploys the detection system as possible as close
to the attacker, therefore the placement of this system would be on the edge router. In
[13], it introduces five observations tordesign and build an effective source-end
detection system, which are source-end firewall, threshold anomaly detection, two-way
traffic dynamics, spoofing detéetion and-‘connection semantics. One of famous
source-end based detection system named D-WARD[14] deployed as a gateway router
to detect the attack and limit the traffic flow for legitimate users mnside the intranet. The
observation component of D-WARD monitors not only the mcoming and outgoing
traffic between the intranet and iternet but also the IP address and port number for
the connections. Its observation applied the two-way traffic dynamics for building the
models of traffic and connections. D-WARD take advantage of the mechanism of
back-off in TCP data flow if the sending rate is low. But the attacker doesn’t slow down
the sending rate, therefore D-WARD could define the traffic flow model to identify if
the traffic belongs to malicious or legitimate one. ANTID [38] proposed the defense
system including the source-end and victim-end defense system to throttle the attack

traffic and reduce the collateral damage to legiimate chients. It provides the attacker
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traceback by hash-based mechanism to achieve the one-packet traceback.

2.2  Related Traceback Mechanisms

Traceback technique is also an import part of DDoS attack defense due to the
IP spoofing by attackers. Hence the source IP 1s not reliable enough for the victim
to indicate the source of the attackers. According to [15], there are some basic IP

traceback methods introduced.

2.2.1  Link Testing

The basic procedure of link testing 1s that it starts from the router closest to victim
and test the links upstream to identify which.link forwards the attack packet to victim.
Then it recursively perform the procedure until ‘the source of attack was detected.
There two variation of the link testing, Whichlare input debugging[16] and controlled
flooding[17] .

The mput debugging needs that victim reports the attack signature to the specific
network operator when an attack was detected by the victim, then the network operator
applies the debugging filter on the egress port in victim’s upstream router. It continues
this debugging filter installation to the upstream router until the attacker’s site or the
edge router reached. This procedure reveals that the large overhead m manage and
makes 1t worse when the traceback across the AS-level network.

The controlled flooding, in fact, 1s a traceback method applying the DoS attack.
First, the victim works with the routers closet to itself, then launching the attack to every
mdividual link i the routers. If the rate i receiving malicious packets drops all of

sudden, then the specific link which 1s now under the self-launching attack is possibly

14



one of the routers and belongs to the attack path. Although this method needs not the
collection of attack signatures by victim itself, however this method itself 1s a kind of

attack toward to routers. Therefore the legitimate traffic would be influenced as well.

2.2.2  Packet Marking

The packet marking methods are probably the most economically traceback
procedure due to the less overhead on router. However, this 1s a trade-off between the
resources and accuracy on compatibility due the nature of packet modifying in packet
marking. The basic concept of packet marking 1s marking the address or 1d of router on
the unused or rare used fields in packet. The fields to place the marking depend on
different methods. There are lots of yariations of packet marking have been developed,

we will introduce the most classical three methods| 15}

2.2.2.1 PPM Node-Append

The PPM (probability packet marking) node-append is the foundation among
the variation of packet marking. Every individual router places its address or 1d
mto the option field in received packet and then forwarded it. If the option field in
packet has been marked, the next receiving router would append its address right
behind the address of the previous router. Therefore, when the victim received the
packet, the path that this packet passed 1s contained m the option field.
Nevertheless, the marking procedure on every router also brings overhead to
routers while forwarding the packets. And if the path of packet 1s too long, there 1s

no space in option field for appending the routers one after another.



2.2.2.2 PPM Node-Sampling

Due to the overhead that PPM node-append could bring to routers, the PPM
node-sampling applies the concept of probability to improve the node-append.
Every router in node-sampling only marks its address when a random number r 1s
smaller than a pre-defined p. When a router received a already marked packet, it
replaces its own address for the existed one instead of appending behind the
existed one. This probability marking procedure makes that the probability the
received  packet marked by the router d hops away is p(1-p)°™". But the
attack path reconstruction is heuristic. It has to send lots of sample packets toward
the victim to sample the order of routers. It makes the assumption that the farther
the router 1s, the receiving probability of packet marked by the router is smaller,
therefore the distance between the router and victim depends on the number of
marked packets received by victims““Ihe more the number of receiving marked
packets 1s, the less distance ‘between the router which marked the packet and
victim. Then the vicim constructs the attack path according to the number of
packets marked by the same router as the possible distance. However, this attack
path reconstruction procedure only works for DoS attack, because the DDoS
attack could generate lots of packet which could lead to the confusion of length

1dentification in attack path.

2.2.2.3 PPM Edge-Sampling

The edge-sampling method mmproves the node-sampling in the path

reconstruction. Every router in edge-sampling marks the packet when a random
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number r 1s smaller than pre-defined number p. But the format of marking has
been modified and consists of three fields, which are “start”, “end” and “distance”.
When a router decides to mark the packet, it places its address in the “start” field
and reset the “distance” field to zero. Whereas, if the router decides not to mark
the packet, it would check the value in “distance” field, if the value is zero, then
the router places its address in the “end” field and increases the value by 1. If the
value n “distance” field 1s not zero, the router only increases the distance value by
1 without marking its address in the “end” field. According to the marking
procedure described above, the victim could easily know how many hops the
marking router i1s away from the vicim and the “start” and “end” fields could

identify the relationship between routers. Figure 2.2 illustrate the algorithm of

packet marking in PPM edge-sampling.

Marking procedure at router R:
For each packet w
Let r be a random number from [0..1]
If r < p then
Write R into w.start and 0 into w.distance
Else
If w.distance = 0 then
write R into w.end

mcrement w.distance

Figure 2.2 Algorithm of packet marking
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2.2.3 ICMP Traceback

The origmal ICMP traceback[19] illustrates the traceback method applying the
ICMP packet with a designated router named “iTrace”. The idea of ICMP traceback 1s
like the packet marking procedure. The 1'Trace router copies the partial contents of the
received packet into a special designed ICMP packet which contains the address of the
previous router the packet has passed and the one of next router according to the
pre-defined probability. Then the iTrace router sends this kind of special ICMP packet
to the source address and destination address. Then the victim could easily reconstruct
the attack path according to those. ICMP packets:.However, the procedure could fail
due to the unwillingness in receiving ICMP packet and filtering the ICMP packet in

order to prevent the ICMP flooding attack.
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Chapter 3 PROPOSED SYSTEM

In this chapter we will describe the components in the entire system from the
overall view. Then we are going to apply the artificial intelligence-based (Al-based)
classifier in the DDoS detection to help us distinguish between the legitimate and
malicious traffic flow. In traceback procedure, the concept of traffic flow pattern

matching introduced i [29] would participate in the comparison of traffic signature.

3.1  System Architecture

In our system design concept, it consists of two different parts which are protection
agent and sentinel, separately. The objective.of.our System 1s to apply a protection agent
located in victim end to manage-the detection of attack and sentinels located in routers

to deal with traceback procedures The overall concept could be viewed as Figure 3.1.

Sentinel

‘Eio

(&

Sentinel

Figure 3.1 Setup scenario

The links between protection agent and sentinels are protected by the secure
tunnel (Figure 3.2) established to apply port forwarding in ssh-2(secure shell protocol

ver.2) for secure communication and prevent from main-in-the-middle attack.
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agent
Figure 3.2 Secure tunnel between protection agent and sentinel

3.2  System Modules

3.2.1  Packet Aggregator

The packet aggregator computes a traffic signature based on all the packets passing
through. The traffic signature 1s uséd for deteetion and traceback. With the help of
pcap [20], our system captures all incomirig and 'outgoing packets. For each packet, the
packet header from layer 3 to_layer 4715 extracted for cross-layer monitoring. The
header information 1s used to compute a traffi¢ signature, whose format 1s shown in

Table 3.1. Our system generates one traffic signature per minute.

1. Incoming packet count per t min. Numeric
2. Incoming total bytes per t min. Numeric
3. # of incoming TCP packets per t min. Numeric
4. # of incoming UDP packets per t min. Numeric
5. # of incoming ICMP packets per t min. Numeric
6. # of incoming unknown-protocol packets per t min. Numeric
7. # of incoming IP addresses / # of outgoing IP addresses Numeric
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8. outgoing packet count per t min.

9. outgoing total bytes per t min. Numeric
10. # of outgoing TCP packets per t min. Numeric
11. # of outgoing UDP packets per t min. Numeric
12. # of outgoing ICMP packets per t min. Numeric
13. # of outgoing unknown-protocol packets per t min. numeric
14. # of incoming TCP SYN packets / # of incoming TCP SYN-ACK packets Numeric
15. # of incoming packets / # of incoming IP addresses per t min Numeric
16. Time Interval Morning, afternoon,

evening, bed-time

Table 3.1 Format of traffic signature

Generally, the time interval “morning” defined above represents the time range
from 8:00 to 12:00, “afternoon” is ranged from 12:01 to 18:00, “evening” is ranged
from 18:01 to 00:00 and “bed-time” 1smwanged from 00:01 to 7:59 next day. “# of
mcoming TCP packets per t miin™ represents the number of mncoming TCP packets
received per t minutes. The attribute. “number of different incoming IP counts /
number of different outgoing IP counts”™ ecomputes the ratio between the number of
different source IP addresses in incoming packets and the number of different
destination IP addresses in outgoing packets. Because the DDoS attack often comes up
with IP spoofing attack, therefore the attack traffic is filled with packets with one-time
used IP address generated by PRNG (pseudo random number generator). Therefore
this would influence the ratio between incoming/outgoing IP counts and result in
difference between normal and attack situation. “number of incoming packets /
mcoming different number of source IP” 1s defined as the average number of packets
that one IP address would send per t minutes during interactive session and according
to the assumption, the spoofing rate should be more close to 1 when under attack.

Then the traffic signature was stored into the traffic signature repository with
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timestamp used to record the receiving time for further DDoS attack traceback
procedure. Plus, we aggregate the incoming and outgoing IP address of packet by
bloom filter [21] to reduce the memory overhead while storing the IP address. Figure
3.3 1s the design concept of our bloom filter. The Bloom filter computes k (which 1s the

number of hash function used in bloom filter) distinct digests for each IP address with

. ~ . . . . n .
mdependent hash functions, and uses the n-bit results to index mnto a 2 - bit array

TP address repository

o e Bl

SAX hash 1

function /
Dest or Src IP

address — — — — e o o
SDBM hash \ 1

function — — — —

Figure 3.3 Bloom Filter
The mmplementing hash furietions in bloom filter are SAX and SDBM created for
sdbm(a public-domain reimplementation  of “Neuros Database Manipulator(ndbm))
database library. The code sections of these two hash function are presented in Figure
3.3 and Figure 3.4. The whole picture of packet processing 1s as Figure 3.6. With the

help of bloom filter, we could reduce the 32-bits IP address into 2 bits.

SAX hash function
Input : IP address

Output : hash index

unsigned 1int sax hash (const char *key) {
unsigned int hash = 0;
while ( *key ) {
hash "= ( hash << 5 ) + ( has > 2 ) + ( unsigned char )*key++ ;
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}

return hash;

Figure 3.4

code of SAX hash function

SDBM hash function
Input : IP address

Output : hash index

unsigned int sdbm hash (const char *key) {

unsigned int hash = 0
while ( *key ) {

hash = (unsigned char )*key + ( hash << 6 ) + ( hash << 16 )

key ++;
}

return hash;

- hash ;

Figure 8.5 code section of SDBM hash function
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3.2.2  Protection Agent

The protection agent is the control center of the entire system. The DDoS attack
detection and attack path reconstruction are all handled in the protection agent.
Protection agent consists of mainly four components: a packet aggregator (to aggregate
the traffic signatures), a message manager (to construct the SSH-tunnel and handle
communication between the protection agent and sentinels), a DDoS attack detection
module, and a traceback module. The DDoS attack detecion module includes the
decision tree and rules. The message manager resides in traceback module. The
traceback module handles the attack path reconstruction. The more detailled about
decision tree and traceback module:will be described at chapter 3.3 and 3.4. Figure 3.7

presents the overview of the protection agent.

Trace back Module «—Link information reply

Path
reconstruction
center

-+——Link information request

Issue trace back

launching
DDoS attack detection
module Message manager
- Secure tunnel
Decision Tree Rule sets esaigher

Traffic signature

Packet aggregator .
Repository

Figure 3.7 Modules in protection agent

The DDoS attack detection and attack path reconstruction are all handled in the
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protection agent. When an attack was detected by the DDoS detection module, the
module 1ssues a command to traceback module for launching traceback procedure.
Then the traceback module would retrieve the attack signatures which are called
“evidence” from packet aggregator and the number of attack signatures used as
evidence depends on observed window (a user-predefined value to indicate the number
of attack signatures needed to form the evidence). Then the traceback module sends
traceback command to upstream sentinel and wait for the sentinel sending back the link
mnformation (which contains IP addresses of the two ends of the edge and distances
from victim) and then constructs the attack path by the received link information. The
flow chart of the operation in protection agent could be summarized below and
depicted i Figure 3.8.

1. Obtain the signature of the'traffic flow.

O

DDoS detection module determinessif an attack 1s ongoing according to the

received traffic information

3. Ifno attack, then the agentstores this traffic signature into the repository.

4. If there 1s an attack, then

4.1 The agent sends out a traceback command to the upstream
sentinel.

4.2  Wait until Iink information (which contains IP addresses of the two

ends of the edge and distances from victim) was collected.
4.3  Construct the attack paths by link information.

r

5. Gotostep 1.



‘ When protection agent receiving packet

l Send specific footprint request to
—{ related n-level sentinel, and indicate
Parsing packet into traffic signature form ‘ the type of attack

l

Input the traffic signature into decision
tree moule
Yes
Waiting for reply form sentinel
No Reconstruct the attack path
Store this traffic signature into
repository
Figure 3.8 Operating flow chart in protection agent

The network administrator could assign the parameter of protection agent, such as
recording time-interval. Therefore network administrator must give a configuration file
i the form of XML and start the protéction-agent with this configuration file. Figure

3.9 gives an example.

<Pxml version="1.0" encoding="UTF-8"?>

<body>

<attributes>
<time-slice>2</time-slice> // the unit of recording interval
<decision-tree>../../training </decision-tree> //tree file for decision tree module
<observed_window>4</observed_window> //the length of observed window

</attributes>

</body>

Figure 3.9 Configuration file format
The attribute “time-slice” tells the protection agent the value of “t” in Table 3.1.
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And the tree file gives the file directory in which the decision tree file locates. The
attribute “observed window” gives the number of traffic signatures needed to form the

evidence 1n traceback procedure.

3.2.3  N-hop Sentinel

The n-hop sentinel stands for the router that our sentinel program resides in. The
“_.»

n” represents the number of hops from the protection agent. Figure 3.10 gives an

example.

1-level 2-level 3-level n-level

victim

Figure 3.10 N-hop sentinel

The main goal for sentinel’is: to.aggregate the incoming packet into a simplified
format of traffic signature for later traceback purpose and it also consists of some
modules just like protection agent but simpler. There are four components within the
sentinel: message manager, simplified packet aggregator, traffic-pattern matching
module, and traffic signature repository. The simplified packet aggregator 1s the simpler
version of the original packet aggregator in protection agent and it needs not to record
as much information as the protection agent does. The overview of the sentinel is

represented in Figure 3.11.
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Figure 3.11 Modules in sentinel

Every packet passing through the $entinel’ would be collected and transformed into

traffic signature. The format of simplified trathe signature 1s showed in Table 3.2.

Attributes Value
1. # of incoming UDP packets per t min. Numeric
2. # of incoming ICMP packets per t min. Numeric
3. # of ncoming TCP SYN packets per t min Numeric
Table 3.2 Format of simplified traffic signature

“# of incoming TCP SYN packets per t min” represents the number of incoming
TCP SYN packets received after t minutes and the “t” is set to 1 as protection agent.

The operation in sentinel 1s to collect the packets and transforming them into
traffic signature, then wait for the traceback command forwarded from downstream

sentinel. While receiving a traceback command, the message manager would
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identify the attack type which indicates which kind of attack was detected in
protection agent and the traffic flow pattern matching module will perform the
traffic pattern matching procedure to find the possible entrances of attack traffic.
After 1dentifying the suspicious entrances of attack traffic, the traffic flow pattern
matching module would modify the traceback command, then forward the
command to upstream sentinels and send back the link information to protection
agent. The flow chart of the whole procedure 1s listed below and depicted in Figure
3.12.

1. Obtain the traffic signature from the traffic flow.

2. Upon receiving a traceback command, a sentinel modifies and forwards
the command to upstream sentinels through the NICs(network interface
cards) which are the paossible entrances of attack traffic identified by the
traffic-pattern matching module.

3. Send back the link information-to-protection agent.

The more detailled about traffic flow pattern matching procedure would be

mtroduced in paragraph 3.4.

Start

b N]CS aEhaols Modified the command
possible entrances of

attack traffic by traffic e forwa{d .lt oceh
. those suspicious NICs
pattern matching

Fill the edge information
Processing the next packet and send the 1nf0rmatlon
back to protection agent

Figure 3.12 Operating flow chart in sentinel

3.3 DDoS Detection Phase

According to all of the papers we surveyed about the DDoS attack, it is reasonable
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to assume that the attack traffic would be different from the normal traffic in some
aspects. According to the heuristic assumption described above, we take this kind of
DDoS attack detection mto a problem of how to identify the traffic that which one 1s
malicious or legitimate according to the traffic signature. Therefore, we build a base-line
traffic profile from the normal network traffic. Whenever the network traffic deviates
from the base-line profile significantly, an attack 1s alarmed. Nevertheless, the problem
of how to analyze the relationship between attributes for normal and attack traffic and
construct a classification model to identify 1s quite complex. We adopt a machine
learning technique which 1s the process of extracting useful and previously unnoticed
models or patterns from large data stores to solve the classification problem. There are
four common machine learning techniques: “association rules learning”, “sequential
patterns learning”, “clustering leatning (unsupervised learning)” and “classification
learning (supervised learning)”. "Fo fit our design requirement, we are going to apply the
“classification learning” in our=system:-Also,-there~are four kinds of methods for
classification, which are “Iinduction rdecision” free”, “Bayesian classification” and
“back-propagation”. The most common applied technique 1s induction decision tree
classifiers [22][23] and back-propagation ANN (artificial neural network)[24]. The basic
requirement of our DDoS attack detection module 1s to detect the ongoing attack as
soon as possible, the advantage of the decision-tree classifier is its efficiency in both
generalization and new attack detection [25]. We adopt C4.5 [26][27] algorithm
developed by J.R Quinlan to generate the desired decision tree from training data. The
latest version of C serious 1s C5.0, but it’s not an open source software [28]. The basic
1dea 1s that the classification model could be expressed as a tree and C4.5 decision tree
structure consists of leaf node indicating a class and non-leaf node that specifies test to

be carried out on a single attribute value. A leaf node represents the result of a
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classification as well. Figure 3.13 gives an example.

O : Non-leaf node (attribute)
|:| : leaf node (class)

There’ s no

counts alftants
> 10000
There’ san There’ s no
attack attack
Figure 3.13 Example of decision tree

The base-line profile 1s basically in the form of decision tree m Figure 3.13. The
construction of decision tree 1s based on nstances that are already known which classes
they belong to beforehand. This kind of beforehand istances are called “traming data”.
Then the training data 1s feed into the C4.5 algorithin to construct the decision tree and
predict the newly coming traffic signatures af there’s an attack. C4.5 chooses the
attribute as non-terminal node by the entropy-based gain ratio to reduce the problem of
over-fitting. First, it defines the mfo(f)as Equation 3.1. info(T) represents the entropy

of the training data set 7.

K, freq(C;,T freq(C;,T)

mfo(T Z | | >< log, T (3.1)
freq(C;,T) . . .
Where T represents the probability that one random mstance from a

set T belongs to class Cj (there are four classes i our system: Normal, TCP SYN attack,
UDP attack, and ICMP attack and one traffic signature aggregated per 1 minute would
be considered as one instance n our system). Then the gain information for an
attribute or test is defined as Equation 3.2. gain(X) measures the quantity of

mformation that 1s gained by partitioning T according to the attribute X.
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gain(X) =info(T Z—|><1nf0 T (3.2)
i1

Where 77 1s represents the number of instances was assigned to a specific class.

Then define the gain ratio as (3.3.

gain(X)

Mg (T

- =)
Z| o8

According to the gain ratio, we could choose the attributes with the most gain ratio

(3.3)

gain_ratio(X) =

to be the non-terminal node i decision tree. Therefore the whole tree construction
procedure could be summarized as following:

1.  select attribute with highest gain ratio as root node, and create a branch for

each possible attribute value.

2. divide instances(i.e. each'row is an‘instance)’into subsets.

3. repeat steps 1 and 2 for each branch:

In our system, we define four classes which are ---Normal, TCP SYN flooding,
UDP flooding, ICMP flooding--- as leaf nodes and the predefined traftic signature listed
as Table 3.1 as attributes(non-leaf nodes) in decision tree structure, respectively. And
we have to aggregate the packets mto traffic signature flows under normal situation
without attack in the form of Table 3.1 and classify them into class “Normal” and the
attack traffic signatures. After the inductive learning and pruning, the decision tree
could then classify the newly incoming traffic flow into class and determine if the
malicious attack was launched by the classificaion model. The scenario of this whole

picture 1s at Figure 3.14.
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Figure 3.14 DDoS detection scenario

3.4  Traceback Phase

When the protection agent detects an ongoing attack, then i1t would raise an alarm
and traceback module starts the traceback procedure. Because the attacker would
modify the source IP address while sending out the malicious packets toward victim to
hide its real IP address and prevent from being traced. Therefore 1t makes the source
IP address of packets not to be trusted and icreases the difficulty while tracking down
the attacker. Due to this circumstance, we are going to apply the traffic flow pattern
matching with logging mechanism and there’s no need to take the IP address into
account. In our system, we refer to the concept of traffic flow pattern introduced in [29]
and solve the weakness of correlation coefficient while dealing with the small sample
size with the help of grey relational analysis. The concept in the traffic flow pattern

matching could be divided mto two vparts: “aend-pattern matching” and
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“volume-pattern matching”. The work of traffic flow pattern matching was done in
sentinels and the protection agent collects the attack link mformation forwarded from
the sentinels and constructs the attack paths according to these received attack link

information.
3.4.1 Attack Edge Determination

When a DDoS attack was detected, the traceback module will wait for sentinels to
aggregate the traffic signatures. Then the traceback module puts the attack trafhic
signatures aggregated during the attack and the timestamp when the attack was detected

mto the traceback command (see Table 3.3).

Time stamp Thetime when attack was detected

Observed window Thenumber of traffic signature used in pattern matching

Distance Thenumber ofhops from protection agent

IP address The address of NIC which forwards the command

Typeofattack Attack type detected by protection agent ({TCP SYN, UDP, ICMP
}loodingattack)

Attack evidence sequences Sequences of traffic signature aggregated during attack (the length is

defined by observed window)

Table 3.3 Format of traceback command

The traceback module mn the protection agent issues a traceback command to the
upstream sentinel, which 1is referred to as the /-hop sentinel. When the /-hop sentinel
recewves the traceback command, it searches the traffic signature repository for every
network mterface card (NIC) to retrieve the traffic signatures with the appropriate attack
type and the aggregated timestamp that matches the timestamp in the traceback
command. Afterwards, the sentinel applies the traffic-flow pattern matching algorithm
to 1dentify the set of NICs that are the possible entrances the attack traffic may come
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from. If a router 1s equipped with n network interface cards, there will be 92"-9 different
combinations (the two cases—no NIC and all NICs—are ignored). And if n = 1, then this
only one NIC will be considered as the entrance of attack traffic. After identifying the
suspicious entrances of the attack traffic, the sentinel would send the connection
mformation (which includes IP addresses of the two ends of the link and their distances

from victim, see Figure 3.15) to the protection agent through a SSH tunnel.

Edge_info_t {
mt distance; //represents the hop counts from the victim
char start_ip[20]; //the start IP address of the edge

char end_ip[20]; // the end IP address of the edge

Figure 3.15 Structure of hinksinformation

After sending back the link information to protection agent, the sentinel puts the
traffic signatures aggregated by the suSpictous NIC into the command as new evidence,
fill the IP address of suspicious NIC mto the “ip” field and increment the “distance”
field, then forwards this command to the upstream sentinel through the suspicious NIC.
When the upstream sentinel receives the traceback command, it processes the whole
procedure recursively until the edge sentinels are reached or the defined termiation
condition 1s satisfied (see paragraph 3.4.3). Figure 3.16 illustrates the algorithm of the

edge of attack path sampling.

Moditied edge sampling

find the set of NICs whose traflic closet to the evidence in command;
It command.ip == NULL then

fill the IP address of suspicious NICs in the “ip” field of command;
else then

edge_info.start_ip = command_Ip;




edge_info.end_ip = ip address of suspicious NIC:
edge_info.distance = command.distance + 1;
send edge_info back to protection agent;
endif
command.start = Ip address of suspicious NIC:
mcreament the command.distance;
hll the trattic through suspicious NICs into the “evidence” field as new evidence;

forward new_command through the suspicious NICs;

Figure 3.16 Algorithm of attack edge sampling
Protection agent could reconstruct the attack paths by the received link
mformation. Figure 3.17 gives an example of Iink information and the format will be:
(start IP address) € =2 (end IP address) : distances. Therefore the protection agent could

receive the edge that the attack traffic might pass through.

Figure 3.17 Example of link information

3.4.2 Traffic Flow Pattern Matching

In a DDoS attack, the attack traffic enters the network from multiple routers and
flows to a single victim. The communication links that the attack traffic passes through
form a tree (under normal routing) with the victim as the root and the entrances as the
leaves. Our traceback method starts from the victim and identify the routers on the tree
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one by one. Each sentinel will find the upstream routers on the tree.

The major problem in our traceback method lies m identifying the upstream
routers of attack traffic in the sentinels. Therefore, the aim of traffic-flow pattern
matching 1s to 1dentify the subset of NICs on a router whose collective incoming traffic
has similar signature as the attack traffic that goes out of that router. We apply two
kinds of pattern matching techniques which measure both the trend and the volume of

network traffic.

3.4.2.1 Trend - Pattern Matching

In trend-pattern matching, the foundation is the assumption that “the DDoS attack
should dominate the changes in outgoing traffic”. Therefore we intend to identify the
entrances of attack traffic by finding the sets of NICs whose aggregated traffic signatures
are similar to the outgoing trafficcaccording tol the variation in developing degree, speed,
and direction. Hence, the problem 1s turned into how-to describe the developing trend

quantitatively and determine 1f they are similar as-thé question in Figure 3.18.

Ex :
Referenced sequence : X;
Comparative sequences : X, , X3

Which of X, and X3 influences X,
the most? 1 2 3 4 5 6

Figure 3.18 Example of the similarity problem
Unlike other system which achieves the comparison of traffic signature with the
conventional statistic method [29] and the statistic method couldn’t fit our requirements
because it favors the major sample space instead of small sample space and 1s easily
affected by the extreme value. Therefore we applied GRA(Grey Relational Analysis) a

novel kind of method to analyze the correlation degree between factors to achieve our
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goal. This theorem 1s introduced 1n grey system theory proposed by J. L. Deng [30][31]
at 1989. GRA could overcome the weakness of conventional statistic method by
analyzing the relation between factors from a small amount of data set. Because the
concern of the efficiency in traceback, the value of observed window was always a small
number and restricts us to process under a small sample space. Therefore the GRA
could satisfy our need and achieve the relational comparison in less effort within a large
number of NICs. There are three steps needed to be preprocessed before we analyze
the similarity, which are:

1. Grey relational generating operation

2. Grey relational coefficients computation

3. Grey relational grade computation

First, we compute the sequences through the process of grey relational generating
operation depicted from Equation. 3.4 to Equation 8.8 we applied the “maximizing
operation”. The purpose of the-genérating-operation is to diminish the magnitude of
sequences and make them comparable:

® Initializing operation

x(k) (
kKy=——= 3.4
y(k) x() (8.4)
®  Averaging operation
k
y(k) = xtk) (3.5)
avg
® Maximizing operation
k
y(k) = Xt (3.6)
Xmax
®  Minimizing operation
k
Yk =2 (37)

® Intervalizing operation
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y(k) = ———mn (3.8)
X .

Where original sequence x= {x(1), x(2),..., x(7} and generated sequence y= {j(1),
N2),..., m}. After processing the generating operation above, the sequences have
become comparable and could be computed the grey relational coefhicients by
Equation 3.9.

Amin + é’Amax ( 3.9 )
AOi(k)_i_é’Amax -

r(yo(k)a Yi (k)) = (

Where the referenced sequence : yi= {vi(1), yo(),..., vo(n)} and comparative sequence :

vi = ill), yi(D,..., )}  €(0,1), Aoik) = | yo(k) - y(k) | : the absolute value of
difference between referenced series and compaved series. And

Ay = minmin A, (k) = miaminfy(k) <, (k)

min vi v

A oy, = max max Ay (k) = max rhax|yg(k)r ¥ ()|
vi vk Vi vk
{ 1s a parameter and can be adjusted’to any value. The main purpose of { is to adjust

the ratio between Aoiand Amax. Therefore the value of { could directly affect the
value of grey relational coefficient. But the grey relational order will stand the same and
not be affected by the adjusting of . The default value of ¢ 1s recommended as 0.5.
The smaller the { 1s, the smaller range that the grey relational coefficient will distribute
within and vice versa. After the computation of grey relational coefhcient, Equation

3.10 depicts the grey relational grade computation:
m
r(Yo, i) = 2 B (Yo (K), i (k) (3.10)
k=1

m
1
Where [« weighted-value, and z B¢ =1. Generally, S« denotes as B, = —
m

k=1
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After computing the grey relational grades for the comparative sequences, the
magnitude of relation between referenced sequence and comparative sequences could
be ranked according to the computed grades. The above traditional grey relational
analysis operation emphasizes on the ordinal analysis. But we not only concern the rank
of the relations but also the computed weighted grey relational grades of every
comparative sequence. Therefore, we apply the modified grey relational grade
computation proposed by Chen and Hsia [32], which emphasizes and enhances the
cardinal of the grey relational grade. It combines the grey relational coefhcient and
grade computation as Equation 3.11. Because different zeta could result in different
grey relational grade, therefore the modified approach sets the value of zeta as 1 without

exception to diminish the variance with different zeta value by this unifying.

A - Ag
r(yo,yi)=(—A = j (3.11)

Where fm = lz A, (k) » accordingtosthe-grey relational analysis described above,
Nia

we could determine which set of NICs has the most similarity to the outgoing attack
traffic. For example: if we assume attack traffic sequence: yo= {yi(1), yo(2), ..., yo(n)} as the
outgoing attack traffic and traffic signatures from NIC set no.1: yi = {vi(1), yi(2), ..., yi(n)},
no.2: y» = {ys(1), y2(2),..., y2(n)} as two possible sets of NICs. If r(yo,y1) > r(y,y2), we could
make a conclusion that yi 1s more similar to yo than y.1n developing trend, which means
if yo 1s an attack traffic, then 1t’s high probability that the attack traffic flowed and passed

through the interface who aggregated y..

3.4.2.2 Volume - Pattern Matching

Trend-pattern matching is not sufficient in traffic flow pattern matching when the



legitimate traffic flow reflects the similarity to outgoing traffic. The degree in volume 1s

needed to be considered. The volume of DDoS attack traffic flowing into a router
should be close to the volume of traffic flowing out of the router, which means the Vain

Figure 3.19 of traffic which passed through the entrances of attack traffic should be

close to the one of outgoing traffic flow.

observed window

Pkt counts
p |
‘j;a \
> Time
Figure 3.19 Example of traffic pattern

Therefore volume-pattern matehing 1s used'to complement the nsufficiency in
trend-pattern matching. Because the geometrnc mean 1s less influenced by extreme
value than arithmetic mean, therefore wwe-apply: the geometric mean ratio to help us

measure the degree of volume matching;.

N RGEAR
3 %, (K)
k=1

(3.12)

Where attack traffic sequence: Xo= {Xo(1), Xo(2), ..., Xo(n)} and traffic signatures

from NICs set 1: Xi = {Xi(1), Xi(2), ..., Xi(n)}.

3.4.3 Traceback Command Forward Policy

The grade r(ys, y) represents the similarity in shape of the two sequences y, and vy

while the volume coefficient g represents the similarity in volume of the two sequences.



When the grade r(y,, y) is greater than a selected threshold 7iuend, we claim that the two

sequences have the same shape. Similarly, when the volume coefficient g 1s greater than

a certain threshold 77os, we claim that two sequences have the same volume. In our

system, we use 7uend = 0.8 and 7ior= 0.9. This would reduce the false positive/negative

ratios In our experiment.

We consider only the sequences x: for which r(y,, v)> Zhend and g> Tio. Among
these sequences, we choose the sequence with the largest r(ys, y). The subsets of NICs
corresponding to the chosen sequence are deemed as the entrances for the attack traffic
to enter the router. When there 1s no sequence for which g > 770, we claim that all the

NICs are the entrances for the attack traffic to‘enter the router. Otherwise, the router 1s
not on the attack path and the s¢ntinel on:the routerwill stop forwarding the traceback

command.



Chapter 4 EXPERIMENT

4.1  Simulation Design

We verified the performance of our proposed DDoS attack detection and
traceback system on the DETER test-bed [32] built with the Utah’s Emulab.
DETER test-bed provide users the environment to emulate the real-work network
situation with easy to use web interface. Researchers could set the network
topology with NS-format file to configure the detailed parameter about the
topology and even replay the collected data trace in real-world on the test-bed with
the various tools the DETERprovided, such as SEER [34], a benchmark for
DDoS defense mechanism: The test=bed has also been configured and extended
to provide security experiment environment for experimenting various network
threats, including defense againstattacks suchas DDoS, worms, viruses, and other
malware, as well as attacks on the routing infrastructure and the various researches
about network security have been evaluated on the DETER test-bed.

There are three major components to form our DDoS attack experiment:
topology design, legitimate traffic (background traffic) and attack traffic. We will

mtroduce them in the next few paragraphs.

4.1.1  Topology Design

In our experiment topology and due to the limited number of node in DETER,
we design 5 malicious zombie attackers, 20 routers used for forwarding the packets and

as the role of sentinels and 20 clients which performance the legitimate web browsing to
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form the mixed network traffic

with attack traffic and legiimate traffic through the

entire experiment domain. All the nodes are generated by the Waxman algorithm

Equation 4.1 generating the randomly graphs based on Eedos-Reny random graph

model and the probability of link between two nodes s depend on Equation 4.1.

P,

-d/ ([)L)

v) =ae (4.1)

Where 0 < a, b <=1, dis the distance between node u and node v, L is the

maximum distance between any two nodes. An increase in the parameter “a”increases

the probability of edges between any nodes, an increase in b distributes larger ratio of

long edges than short edges. Therefore the topology m our experiment 1s depicted as

Figure 4.1.
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4.1.2  Legiimate Traffic Generator

We used the “harpoon”[36] - a flow-level traffic generator which uses a set of
distributional parameters, such as inter-connection time(thinking time), active session,
file size, that can be automatically extracted from Netflow traces to generate flows that
match the same statistical attributes present in measured Internet traces, including
temporal and spatial characteristics. Harpoon can be used to generate representative
background traffic for application or protocol testing, or for testing network switching
hardware. With the use of harpoon, we take the internet traffic traces collected by
tcpdump at one main world-wide web proxy server located in the computing center of

department of computer science in National Ciao Tung University.

4.1.3  Experiment Scenario

The background traffic was ¢ollected-fromJune-25, 2008 (Wednesday) midnight
to June 27, 2008 (Thursday) midnghts (48 hours in total), which 1s divided into two
groups: the traffic on June 25 (denoted as data2)) is used as training data set while the
traffic collected on June 26 (denoted as data26) for testing purpose. Each day 1s further
divided into four periods: bed-time (0 am - 7 am), morning (7 am -12 pm), afternoon
(12 pm -18 pm), and evening (18 pm - 24 am).

There are four iterations in our experiment. The first two iterations constitute the
traimning phase while the last two the testing phase. First we feed the simulation
environment with data25. We obtain 1440 signatures (one per minute) for the
background traffic. Second, we feed the simulation with data25 plus randomly
generated attack traffic. We obtain another 1440 signatures and these signatures with

attack traffic would be denoted as attack traffic signatures. The two sets of signatures are



used to build the decision tree with the C4.5 algorithm. Third, we feed the simulation
with data26. The resulting 1440 signatures are used to calculate the false positive ratio.
Finally, we feed the simulation with data26 and randomly generated attack traffic. The
resulting 1440 signatures will be used to calculate the false negative ratio and the false

classification ratio.

4.1.4  Attack Traffic Generator

The attack traffic 1s randomly generated with the SEER tool. We tested three
kinds of attacks: TCP SYN flood, UDP flood, and ICMP flood. In order to simplify
the experiment, at most one attack 1s underway at any time. Each attack lasts for one
hour as attack traffic sample in the training phase and for 15 minutes during the testing
phase. The amount of attack traffigtor each attack'during the training phase 1s shown in
Figure 4.2. The amount of attack traffic during:the testing phase 1s shown i Figure 4.3.

The testing phase is repeated three times, each-with different attack traffic.

TCP SYN flood UDP flood ICMP flood
150pkt/per sec 150pkt/per see 150pkt/per sec
Packet size:66bytes Packet size:256 bytes Packet size:256 bytes
Figure 4.2 Attack scenario in training data

Scenario 1:

TCP SYN flood UDP flood ICMP flood

250pkt/per sec 250pkt/per sec 250pkt/per sec

Packet size:66 bytes Packet size:256 bytes Packet size:256 bytes

Scenario 2:

TCP SYN flood UDP flood ICMP flood
150pkt/per sec 150pkt/per sec 150pkt/per sec
Packet size:66 bytes Packet size:256 bytes Packet size:256 bytes

Scenario 3:

TCP SYN flood UDP flood ICMP flood

70pkt/per sec 70pkt/per sec 70pkt/per sec

Packet size:66 bytes Packet size:256bytes Packet size:256 bytes
Figure 4.3 Attack scenario for evaluating purpose



4.2 Performance Evaluation

4.2.1 Performance Metrics

In this section, we will take the following definitions as the performance of metrics
to evaluate our system. FNR, FCR, FPR, and Detection Latency are metrics used for
the DDoS attack detection and MAER, MNER are applied to evaluate the traceback
algorithm as well. The definition of these metrics will be introduced in the next two

paragraphs.

4.2.1.1 DDoS Detection Performance Metrics

In DDoS detection, we foeus.on four parameters from the foregoing parameters:
FNR, FPR, FCR, and Detection Latency—ENR 1s -the false negative ratio and the
formula 1s listed as Equation 4.2 according to-Table 4.1. FPR is the false positive ratio

and the formula 1s listed as Equation 4.3.

Detection Result Attack Normal

Actually Situation

Attack A B
Normal C D
Table 4.1 Situation analysis in detection.

“A” is the number of attack signatures that are successfully and correctly detected by the protection agent; “B” is the
number of attack signatures that the protection agent failed to detect; “C” is the number of reported attack signatures
while there is actually no attack; and “D” is the number of normal traffic signatures that are recognized as normal
(that is, not identified as an attack)

B
B+A

FNR =

Equation 4.2



C

FPR = Equation 4.3
C+D
TCP SYN flooding UDP flooding ICMP flooding
Equation | 'N_ 0 +Ni_yop Ni_icmp + Nirer Niree + Niuoe
Ri=TCP Rj:UDP Rj:ICMP
Table 4.2 Equation for FCR

NI represents the number of attack traffic signatures that the protection agent detected as attack 7, Kjrepresents the

number of attack traffic signatures actually generated by attack /.

Table 4.2 defines the false classification ratio for different attack. In TCP SYN
flooding attack, the false classification represents the ratio between the number of TCP
SYN flooding attack traffic signatures are detected as UDP flooding attack or ICMP
flooding attack and the total numberof TCP SYN flooding attack traffic signatures. The
false classification ratio in UDP #loeding attack and IEMP flooding are deduced as the
same way. Detection Latency, as impheéd-bhy-the; name, 1s the average number of time
slice that the protection agent needs to-be-aware of the attack when the attack was

launched.

4.2.1.2 DDoS Traceback Performance Metrics

In DDoS traceback performance evaluation, we define the MAER
(misidentified attack edge ratio) and MNER (misidentified normal edge ratio) as
our metrics for traceback. According to Table 4.3, MNER (see Equation 4.5)
represents the ratio between the numbers of edges that are not on the attack paths
but are claimed as attack edges by the sentinels and the total number of attack

edges. MAER (see Equation 4.6) represents the ratio between the number of
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attack edges that are not identified by the sentinels and the total number of attack

edges.

Report Result Attack Normal
Actually Situation Path Path
Attack Path E F
Normal Path G H
Table 4.3 Situation analysis in traceback.

E” is the number of attack edges that are successfully and correctly reported by sentinels; “F” is the number of attack
edges the sentinels failed to identify; “G” is the number of edges that are not on the attack path but are mistakenly
identified as attack edges by the sentinels; and “H” is the total number of edges that are not on the attack path and

are claimed as an attack edge by the sentinels.

G

MNER = —=+— Equation 4.4
G+H

F . ,

MAER = Eguation 4.5
o

4.2.2  Performance Evaluation

4.2.2.1 Performance of DDoS Detection Evaluation

Figure 4.4 depicts the false positive ratios for the four periods in a day. The result
indicates that the false positive ratio ranges from 1.2% (bed time) to 2.4% (morning). In
[10], the false positive ratio ranges from 19 to 8% depending on the background traffic.
However, it 1s not clear the amount of attack traffic in [10]. In D-WARD [13], the false
positive ratio (which 1s called false alarm mn [13]) 1s about 2%. However, it 1s clear about

the amount of attack and normal traffic in [13]
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0.026
0.024
0.022

0.02
0.018
0.016
0.014
0.012

0.01
0.008
0.006
0.004
0.002

Figure 4.5, Figure 4.6 and Figure 4.7 depict the false negative ratios of TCP SYN
flooding, ICMP flooding, and UDP flooding, separately. Because the sending rates in
the ICMP flooding attack and the UDP flooding attack are the same, the results in
ICMP and UDP flooding attacks are similar. When the attack rate 1s 150 packets per
second (note that in the training phase the attack rate 1s 150 packets per second), the
false negative ratio ranges from 5%, 10% for, UDP and ICMP flooding. The false
negative ratio is 2% ~ 3% for the TCP. SYN floodmg. Because we didn’t detect the
UDP\ICMP flooding attack by “# of incoming UDP packet counts” and “# of incoming

ICMP packet counts” and also the attack rate for WDP\ICMP flooding is the same in

False Positive Ratio

\\

P

—&— False Positive Ratio

bed-time morning

afternoon night

Figure 4.4 False Positive Ratio in DDoS detection

test\traiing data, therefore the results for UDP and ICMP are look similar.

0.05
0.045
0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005

False Negative ratio

W

—

-

bed-time morning

afternoon night

—4—TCP SYN (250 pkts/sec)
—%—TCP SYN (150 pkts/sec)
TCP SYN (70 pkts/sec)

Figure 4.5 False negative ratio of TCP SYN flooding attack
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0.13

False Negative Ratio

0.12

0.11

0.1
0.09

0.08

——ICMP ( 250 pkts/sec )

0.07

0.06 L
0.05 x

—¥—ICMP ( 150 pkts/sec )

—#—|CMP ( 70 pkts/sec )

0.04

0.03

0.02 >

0.01

bed-time

morning afternoon night

Figure 4.6

False negative ratio of ICMP flooding attack

False Negative Ratio

—— UDP ( 250 pkts/sec )

0.06
N

—¥— UDP ( 150 pkts/sec )

~—#— UDP ( 70 pkts/sec )

002 -

bed-time

morning afternoon night

Figure 4.7

Figure 4.8, Figure 4.9 and_Figure 4. l@?ﬂ%plet tﬁlﬁ
ratios. The results show that théﬁfals@;;lasmﬁﬁduoi tatio for the TCP SYN attacks is
lower than that for ICMP and UDP"ﬁoo_eﬁrfg attacks Nearly 40% to 509% of ICMP
attacks may be mistaken as UDP attacks. Similarly, nearly 409% to 509% of UDP attacks

may be mistaken as ICMP attacks. On the other hand, TCP SYN attacks are seldom

mis-classified.

False ngg,ap.vg Igatlo of UDP flooding attack

e ’E"

" ke 7
o rr- . .
' HART S e
" = | .
EAE 5\

A4 Jm E
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False Classification Ratio
0.05
0.045 /.\‘—__‘
0.04
0.035
_—x
003 — —
0.025 — ——TCP SYN (250 pkts/sec)
002 —#—TCP SYN (150 pkts/sec)
0.015 e ~—#—TCP SYN (70 pkts/sec)
0.01
0.005
0
bed-time morning afternoon night
Figure 4.8 False classification ratio of TCP SYN flooding attack

63

results 1n the false classification




Another important issue 113_ PﬁoS d.e;e;;c QI'I s Itﬁe detection latency, that 1s, how

system, time 1s sliced into 1-minute slots. /A c&ffdmg to the results in Figure 4.11, Figure

4.12 and Figure 4.13, our system could claim an attack within 1 to 1.4 minutes under

False Classification Ratio
0.6
05 1 —— e
04 e ==
03 —4—|CMP ( 250 pkts/sec )
’ ——ICMP ( 150 pkts/sec )
0.2 —4—ICMP ( 70 pkts/sec )
0.1
0
bed-time morning afternoon night
Figure 4.9 False classification ratio of ICMP flooding attack
False Classfication Ratio
0.6
/
05 /(
04 *.fsz*; —r
03 = UDP ( 250 pkts/sec )
’ k= UDP ( 150 pkts/sec )
0.2 —#— UDP ( 70 pkts/sec )
0.1
0
bed-time morning afternoon night
R 7,
Z \.-‘.7‘
Figure 4.10 F@é ¢ assa'ﬂé tmxﬁ‘aﬂb Q;ﬁ UDP flooding attack
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different attack rates.
Detection latency
1.6
1.4
1.2
: . ——
o8 —&— TCP SYN (250 pkts/sec)
~k—TCP SYN (150 pkts/sec)
o6 —4— TCP SYN (70 pkts/sec)
0.4
0.2
o
bed-time morning afternoon night
Figure 4.11 Detection latency of TCP SYN attack
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Detection latency

1.6

1.4

o8 —&— ICMP (250 pkts/sec)

——ICMP ( 150 pkts/sec )
0.6
ICMP ( 70 pkts/sec )

0.4
0.2

bed-time morning afternoon night

Figure 4.12 Detection latency of UDP attack

Detection latency

1.6

12 W —————

08 —+— UDP ( 250 pkts/sec )
—¥— UDP ( 150 pkts/sec )

0.6
UDP ( 70 pkts/sec )
0.4

0.2

bed-time morning afternoon night

Figure 4.13 Detection latency of ICMP attack
4.2.2.2 Performance of Attacker Traceback

When reconstructing the attack paths, it 1s possible to mistake an edge that 1s not
on the attack path as an attack edge andsice versa. Figure 5.14 and Figure 5.15 show
MNER and MAER with different observed .windows and different trend-pattern
thresholds. Remember the observed window is the amount of time the sentinels collect
traffic data after an attack 1s claimed. Figure 4.15 shows that MAER 1is almost a constant

while Ttrend < 0.9 regardless of the observed window, which means that the attack path

shows high trend value (> 0.8) and above the Tuend. Also MNER has burst increasing

while the Tuena > 0.9 due to the too high Tuend and the upstream sentinels wouldn’t

forward the traceback command because the computed trend-pattern value 1s less than

Tuend. The results also verify that the grey relational analysis 1s suitable for small sample

space (size of sample space < 30).

When we keep MAER low (that 1s, the Truend < 0.9), the lowest MNER 1s around



129% - 18.5% (from Figure 4.14). Furthermore we enforce an observed window for at
least 3 minutes, MNER falls between 129% and 14%. In [38], MNER is 179 ~ 19% in
old 1Trace model and 6% in new proposed model under different network traffic.
MNER in [37] is less than 10% but that system makes use of a modified probability

packet marking mechanism, which involves many other issues.
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Chapter 5 CONCLUSIONS

In this thesis, we propose a DDoS defense system, which includes attack detection
by decision tree and attacker traceback with traffic-pattern match. Our system 1s based
on the observation that the network traffic under DDoS attack would differ from the
traffic in normal situation. We apply the decision tree (C4.5) generating algorithm to
construct the classification model and detect abnormal traffic flow. In traceback phase,
we use a novel traffic pattern matching procedure with grey relational analysis to 1dentify
the traffic flow that is similar to the attack flowsand, based on this similarity, to trace
back the origin of an attack. Theattack path reconstruction is then accomplished by the
protection agent and the sentinels. We econduct our experiment on the DETER system.
According to our experiment resulfs, our system could detect the DDoS attack with the
false positive ratio about 1.2% ~ 2.49%, false negative ratio about 5% ~ 10% with
different kind of attack, attack sending rate and find the attack path in traceback with
the misidentified attack edge ratio about 8%~ 129 and misidentified normal edge ratio
about 129~ 149%. The result indicates that our proposed system is capable of detecting
the attacks and tracing them back with high accuracy.

In the future we will improve our system according to the following list.

1. In our current experiment, there are only flooding-based attacks being tested.
In the future, there are other attacks such as ping of death, smurf attack, should being
tested and constructed a more comprehensive attack detection system.

2. The attributes that our system provided might not be sufficient to describe
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the attack in the future, therefore the more detailled and preciously attributes for
describing the whole network environment should be provided to deal with the novel
attack created i the future.

3. The large amount of packet loss that the DDoS attack generates could result
mn the loss of traceback command and results in the false negative. The message passing

mechanism could be refined and improved n the future.
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