sl ot 5pp A 2
Tl R SEE T R

A Y

—n

32b1t-16bit R4 a‘;q b %@]‘; NN
ARG AT INer EF T R

Reducing Code Size in'Java JIT Compilers
for 32bit-16bit Mixed: Instruction Set Architectures

R SRR

—

hi%km iy & gL

ArE Nl Juod = & A4

32bit-16bit /2 & #;q LR N AN RE
Rk R
Reducing Code Size in Java JIT Compilers
for 32bit-16bit Mixed Instruction Set Architectures

2 e R Student : Li-Jyun Lyu
hEREY & EL Advisor : Dr. Wuu Yang
Bz o2~ F
a8 % o1 e oAt
AL o
A Thesis

Submitted to Institute.of Computer Secience and Engineering
CoHege of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

June 2008

Hsinchu, Taiwan, Republic of China

PERAREAY S ER

32bit-16bit i &35 & F 4 » 3 J RARNHFE N2 TEEFE

B4 E hEREY & #L

B 2 % B T 1 e LT

¥ %
FATE KA 38 RS B o o 30k SUE B ehR TR R AP
B B AR R edT R R AR KA T o B T AR adg§E o @
B R A AL B T R SR R AR B R R R R
Boipd & kg W TR g R BRI TOR I R A AT S L F 5 D
Frim o 5 AR piy 5 i B R P Re iRl 5 B e R B B s g
R T L A L Toe e S L ST 20 IS 4
FNETANET SO Ao N S - B Y E R A BT L

72 e AL ek b oeniE o 5 R R 3T 0 R e 3E 2 e0 byte code

e A T 5 2 e machine code > %’ﬁ”a‘%ﬂ?mb it TR EREE 0 5 5

—\

NRT B RN T T M A ik RS R AH e B0 R TP
R BN TR HFRTA 4 o0 machine code vt 39R &£ A2 32bit-16bit
I d o FE R AR A S] LR £ B g 0 A R
b B B A e i 1B ARG R B o gt eh o 51 dkemmbr ALV AS
ANPEFT - e DR %o S W ASL B hE Rty R BfcE 0 2 Register
Set ek T AK - BHFE Rk 7 UBE LAY T BN B EN
A5 TARFHF B ATH KRB it sl Ao AR A S) AR T L B e it B

\}’,‘O?I‘fﬁﬁé—_%%ﬁfr ,—}\‘.frﬂgﬁ—is + T 1% Il,}g\ A,\ i?ﬁqﬁii\:ﬁ—k,y’}]ﬁf%

£ o

Wik

'l'\Vi ’F‘5 ggn—:i-ag 75 -
SIS S ﬁi_\' P2
2 H B /)i?“‘ﬂv_ ~ 32bit-16bit 2 & | Jf
l‘* 11:/**‘\:'?{‘5\'&&)
p=

Reducing Code Size in Java JIT Compilers for 32bit-16bit Mixed

Instruction Set Architectures

Student: Li-Jyun Lyu Advisor: Dr. Wuu Yang

Institute of Computer Science and Engineering

National Chiao Tung University

ABSTRACT

In recent years, because the market of embedded systems develops quickly, the
process speed of embedded systems had rapidly grown. As the processors become
faster and faster, the bottleneck aof program execution shifts to the communication
between CPU and the main memory. The main reasen is the increasing gap between
CPU speed and memory speed. Reducing-code size may potentially reduce the
number of memory accesses (by inereasing.cache hit ratio) and becomes an effective
method to improve CPU performance. For this reason, new CPU architectures provide
both 16-bit and 32-bit instructions. We developed a new method that can generate a
mixture of 16-bit and 32-bit instructions. This method is implemented and tested in a
Java just-in-time compiler of a Java virtual machine for the Andes platform. Our
experiment shows that the code size can be reduced 10% at very little extra overhead
(only 0.14%). The performance improvement for a long-running program can be quite

significant.

Keywords: JIT compiler, reduce code size, 32bit-16bit Mixed Instruction Set

Architectures

ACKNOWLEDGEMENTS

AR OR HA D ERRYP AR L L & T RS 7 Brendy B30

N
e

TR AFER LSRG c XFRFORE RIS chato 0 3 B H §es

X e P P
PRPRE EATR R AT

“‘.
‘—\-\!:

PABARIG IEE FHRMAS L THEDRR

S g a0 SRR R o B 0 £ A

AEE e O BB REE R P RRE AR L ko JERPHS
TR R AT Y ik

FARBAEE S L Ak H BB fy HE N e d HEE

R A A (e E R IARPEREL > AR R PR 2 R L AR
S ARY Ehx Sy T b R RSN e LR kR R E

FHEREE FERFE SRR aRSE > § 2K ot 2Rk .
Bfs s AR R BN A 2 Wbl o i s e R

BE 0 Ao A5 F - BRELAC
RS —-’g’rz{% BN R e BN A o

CONTENTS

ABSTRACT ...ttt ettt ettt b e bt e et st eer et st ne b e nes iii
ACKNOWLEDGEMENTS ..ottt ettt iv
LIST OF FIGURES ...ttt vii
LIST OF TABLES. ...ttt viii
Chapter 1 INtrOdUCTION.......coviie e ne s 1
1.1 IMOTIVALION. ...t e 1
1.2 Related SEUIESvovveveiiiiesiecee e 2
1.3 Propose APPIrOACHcc.iciiiicce et 3
1.4 CONTFIDUTION ..o 4
15)Y 410 €15 1SRRI 5

Chapter 2 Java Just-In-Time compiler and:Andes 32bit-16bit Instruction Set
Architectures 6

2.1 CVM INTErNals ...t cfoitiis et 6
2.1.1 JITFront ENd.......... o b i i it 7
2.1.2 L I = T Tt =t o PO e oSS 8
2.2 ANDES Instruction Set ArChiteCtUres..........ccoovvvieieienene s 10
2.2.1 General PUrP0SE REGISTETcviiveiieiecie e 11
2.2.2 The ANdes INSTFUCTION SET........ccvvieiiriieie e 11
Chapter 3~ The Multiple Fixed-width ISAEMItter.........ccccoevvviivv e, 15
3.1 Multiple Fixed-width ISA Emitter Introduction.............cccccoevevvenen. 16
311 Determine INSTIUCTIONcoviiiieieieie et 16
3.1.2 Translating RegISErSooviiiie e 17
3.1.3 Instruction AGNMENT..........ccoooi i 20
3.2 REQISTEN SETLING ...cvvicvieiice e 20
3.2.1 The VM ReQISIEr SEL....ccuviiiiiiiceee st 21
3.2.2 Code Generator RegiSter SEtccceiieiiiie e 22
3.3 Instruction Patch and AdJUSt............cccoveiiiiiiiccc e 24
331 FOorward BranCh...........ccociiiiiiiie e 24
3.3.2 GIUB COUR ...t ettt 24
3.3.3 Trap-based NUIl CheCKSccovoiiiiiiic e 25

3.4
Chapter 4

4.1
4.2
4.3
4.4
4.5
4.6

Chapter 5

References

SUMIMAIY ...ttt s b b e e s b e e e sbe e e nnbe e e nraeeaas 26

Experiments Results and ANalyses..........ccoveeiieeiivcve v 30
Experimental FrameworKcccooveiiiiiiecie e 30
(0] g=T0x 1 [T TSP OTRPPRTTPIN 32
(@011 0] 011 [T I T 1 USROS 33
(O T0 [T - USSR 33
PeITOIMANCE ... 34
SUMIMAIY ...ttt et e e st b e e st e e e snbe e e nnbeeenrbeeans 35

Conclusion and FUtUre Work ..o 36
... 37

Vi

LIST OF FIGURES

Figure 1.1 Analysis of translatable iNStruCtioN.cccoeveiieii i 3
Figure 1.2 Generating mixed code Method............cccccveveiiiiiieeic e 4
Figure 2.1 Java Program EXECULEcccecueieerieeieeeesieesieseesieeseesseessaesssaseesseessesseesseessens 7
FIQUIE 2.2 FIONTENG.ciiiieciice ettt et e re e aeaneenneene s 8
Figure 2.3 An example OF IR.......cvi i 8
FIQUIE 2.4 BACKENc.ueiieciie ettt ettt e e et neesneene s 9
Figure 2.5 An example 0f @ JCS TUIEoovvieiieeceee e 9
Figure 2.6 Set REGISIEN SeL......c.iiieieee et ns 10
Figure 2.7 JCS rule calls emitter to emit native Codeccoovvevveiiivevecie e 11
Figure 3.1 (a) Original emitter. (b) Adding the “16-bitable” test............cccccevvrrenee. 16
Figure 3.2 (a) Flow chart of testing the 333-form. (b) An example of Addi333. 17
Figure 3.3 (a) Flow chart for testing the 45-form. (b) An example of ADDI45. 18
Figure 3.4 (a) Flow chart for translating register encoding. (b) An example of register
tranSIation.oveveee BB i e s 19
Figure 3.5 Register range of 333 mode and 45.mMOde............cccevveieevveieniieseese e 20
Figure 3.6 Avoid the Data Alignment Check:exceptions when writing a 32-bit
instruction iNto COAERUTTER, .. it i 21
Figure 3.7 Patch a forward bran€h inStruCtiono....ii e 26
Figure 3.8 The execution of glue code. Yet another kind of glue code does not need
patching the “Jarl” instructions. It functions like a subroutine.................. 27
Figure 3.9 Adjust glue code fIow Chart............ccoevieiiiiieie e 27
Figure 3.10 Determine the return address of a trap-based null check. 29
Figure 4.1 Andes AG101 Main BOArdccceevverieieeiieeiesieseese et 32
Figure 4.2 The compile time of benchmarksccccoovveiiiieiicc e 33
Figure 4.3 Code size 0f benChmarks...........ccocevieiiiieene e 34
Figure 4.4 The performance of benchmarks.........ccccccovivviiiieiicic e 35

vii

LIST OF TABLES

Table 2.1 Andes General PUrp0Se REJISEISccuecveiierieiieseere e 12
Table 2.2 Add/SUD INSTFUCTIONecveiicecece e 13
Table 2.3 MOVE INSTIUCLIONc.veviiiecie e e e nne s 13
Table 2.4 Shift INSIFUCTION.oiiiece e 13
Table 2.5 Bit Filed Mask INSEIUCLIONcccoviiieiieiieieeie e 13
Table 2.6 Branch and Jump INSEIUCTIONc.ooveiiiiiiiece e 13
Table 2.7 Load/Store INStrUCTION.........cocvii e 14
Table 2.8 Compare and Branch INStrUCtioNcccovviiieiieereeie e 14
Table 3.1. The difference of two kinds of register Set.........cccccevvrvevireii i, 19
Table 3.2. VM ReQISter SELHNG......c.eiiveiiiieiieii e sie et nee s 21
Table 3.3. RISC_CPU RegiSter SEttiNgcccviverveiieiierie e e esiesiese e see e eie e 23
Table 3.4. Register Manager register SEttiNGcccccvvvererieerieere e 23
Table 3.5 GIUE COUE ST,c.veeieeee e 28
Table 4.2 CLDC Evaluation Kit.........at i oo seese e seese e seesse e e 31
Table 4.3 Grinder BENCNhivi .. os s e e essass e ereeseeensesseessesssesssssesssesseessesssesses 31

viii

Chapter 1
Introduction

In recent years, because the market of embedded systems develops quickly, the
speed of embedded processor had rapidly grown. The speed of the processor is faster
and faster, the bottleneck of program execution switches from processor speed to 1/0
speed, that is, the speed with a peripheral equipment communicates with a central
processor. The main reason is that the difference in speed between transfer of data and
handle of data that make processor idle. So reducing code size to decrease cache
misses becomes an attractive approach to improve overall performance. We present a
JIT compiler for processors with multiple fixed-width instructions. It will effectively
reduce code size without undue overhead and.will improve the performance of the

generated code.

1.1 Motivation

Because embedded systems have many different instruction-set architectures
(ISA), the Java language[1][2] becomes important for embedded systems due to its
platform independence. But, platform-independence comes with serious performance
penalty. To mitigate the performance penalty, Java VM proposes the just-in-time
compiler architecture[3][4][5], which executes the target-machine code directly for
improving performance.

Some RISC processors, such as ARMI6][7], MIPS[8] and ANDES[9][10],
support the 32-bit/16-bit multiple fixed-width instruction sets. In this domain, the

16-bit ISA is usually targeted at reduced code size and lower power consumption.

Some of these RISC processors, such as MIPS, requires a mode-switching instruction
to switch between the 16-bit and 32-bit modes. This results in overhead at run time.
On the other hand, some other processors, such as ANDES, do not need the
mode-switch instructions. 16-bit and 32-bit instructions can mix freely in the
program.

We present a new code generator for a mixed-instruction JIT in this thesis. Our
aim is to reduce the size and to improve the performance of the generated code.
Furthermore, the code generator itself is quite efficient. Our target is ANDES
32-bit/16-bit ISA, which has the following features: (1) there is no mode-change
instructions; (2) the operation of the 16-bit instructions almost reflective to 32-bit
instructions. Almost every 32-bit instruction can be mapped by a suitable 16-bit

instruction. It increases the probability of instruction replacement.

1.2 Related Studies

In the domain of reduce code size, using 16-bit instruction set like Thumb must
use mode change instruction to mix instruction between 32-bit instruction and 16-bit
instruction and has some performance cost. Another disadvantage for the 16-bit
instruction set is that fewer registers are available in the 16-bit mode. This will add
additional Load/Store instructions.. To balance code size and performance, Lee, S.
and Lee, J. proposed a method which is first compile code to 16-bit instruction set.
Next, a selected subset of basic block are compiled to 32-bit instruction set. They
profile or WCET (worst-case execution time) analysis to decide mixed instruction
code.[11-18] Their method incurs much compilation time. For this reason, it is not

suitable for a JIT compiler.

1.3 Propose Approach

There are two issues in our study. First, a complex method is not acceptable
because it will incur much compilation time, which is part of the total running time.
Second, compiling with the 16-bit instruction set will generate more instructions than
with the 32-bit instruction set. (However, a 16-bit instruction is only a half (in size) of
a 32-bit instruction.) Increasing the number of instructions will decrease the overall
performance. We analyze compiled 32-bit code in our benchmarks. We find a lot of
opportunities for translating 32-bit instructions into 16-bit counterparts. To be more
precise, almost 80% instructions can be translated into 16-bit equivalents. This
observation motivates us to propose an efficient method to generate mixed code.
Figure 1.1 is Analysis of translatable instruction. Eigure 1.2 is Generating mixed code

method

20000

18000 |

16000

14000

12000

B Total Inst

10000 |
B Can Map to 16

8000

6000 [

4000

2000

X X v X \ X '\ X \
o 3 o A = O o o N
> 3 K & o . Q &
§ F ¢ ¥ <
5
2

N X N
= S
O

¥ O &

Figure 1.1 Analysis of translatable instruction.

JCS
GrammarRule

Emitter

16Bitable ?

Yes- NO
|
Regsiter No.
Translate
32Bit
Emitter
16Bit
Emitter

|

Code Buffer

Figure 1.2 Generating'mixed code method

1.4 Contribution

Our experiments show that this scheme is successful to reduce code size without
too mach overhead. In addition, performance is improved. In the embedded domain,
balance between memory size and performance are discussed. This paper presents a

novel approach two points: the performance and code size which use ANDES 16-bit

ISA.

1.5 Synopsis

The remainder of this thesis is organized as follows. Chapter 2 discusses Java
Just-In-Time compiler and Andes 32bit-16bit Instruction Set Architectures. In Chapter
3, we introduce the Multiple Fixed-width ISA Emitter. In Chapter 4, experiments and
the results are presented and be analyzed. In Chapter 5, the conclusion and future

work are given.

Chapter 2

Java Just-In-Time compiler and
Andes 32bit-16bit Instruction Set
Architectures

As the Java language becomes more and more important for programming
embedded systems, translation at the byte-code level has been proposed to increase
program performance. Java VM proposes a just-in-time compiler architecture, which
executes target-machine code for improve performance.

ANDES ISA proposes a special architecture which uses mixed-mode instructions
without the need of mode-switching instructions. Its 16-bit ISA almost reflects to
32-bit ISA, but it has an alignment restriction: 32-bit memory instruction reference
object that must be word-alignment.

In our research, our target is the' ANDES processor. We port an existing JVM
JIT to the ANDES platform and then modify the code emitter so that it can
generatel6-bit as well as 32-bit instructions. We use several benchmark tests to

measure the performance of the code emitter.

2.1 CVM Internals

The virtual machine we use the Connected Device Configuration Hotspot
Implementation (CVM) version of JAVA VM, which is highly optimized for

resource-constrained devices, such as consumer electronic products and embedded

devices. Portability is the most important benefits of the Java system design. It
includes a dynamic compiler, which is also called a just-in-time compiler (JIT). While
a method in the Java program has been used frequently enough, JIT converts the
method’s bytecodes to native code during execution time to improve future
performance. This operation has two passes: First, the front end converts Java
bytecode to an intermediate representation (IR); Second, the back end converts the IR

to native code. The architecture is shown in Figure 2.1.

Static Time / JAVA files /

b

Java Compiler
2

/ .Class files /

JAVA VM Class Loader

Run Time

JIT Compiler

IR Generator

—

~

[+

8|5
: I

Interpreter

Code
Generator

Machine
Code

(Execute Environment)

Figure 2.1 Java program execute

2.1.1 JIT Front End

The front end is portable for different execution environments. It converts the

bytecode to an intermediate representation (IR). Figure 2.3 is an example of IR.

Byte Method
IR Generator
Code T mm) IR

Frontend
Figure 2.2 Frontend

X =y + 1000:;

l Compile to bytecodes

iload y
sipush 1000
ladd

istore X

l Translate todR/Tree

ASSIGN

LOCAL(X) ADD

LOCAL(Y) CONSTANT (1000)

Figure 2.3 An example of IR.

2.1.2 JIT Back End

The back end converts IR to native instructions. An IR tree is parsed by a parser.
The parser, which is produced by the Java Code Select (JCS) tool at build time,
performs pattern matching for tree-based data structures in which the patterns are
specified as a set of JCS rules. These rules are translated into C source code and
initialized data structures. Code generation is done with rule-based pattern matching

on trees. When there are multiple possibilities, JCS choose the rules with the least

static costs. Figure 2.5(A) is an example of JCS rules.

Method JCS Register _ Method
=) =) mm) | Emitter | wmh| Machine
IR Parser Manager
Code
Backend
Figure 2.4 Backend
(A)
<rule> ::= <result> "' <pattern> "' <cost> "'
<synthesis-action>":'<inheritance-action> "'
<macro-list> ":'<semantic-action>
{B) ADD ©) reg32: IADD32 reg32 aluRhs
32-bit val 32-bit integer a constant
ILOCAL(Y) | [CONSTANT(1000 | R o operation aF

a computed value

Figure 2.5°An.example.of a JCS rule

The first part of this rule is the result and the second part is a pattern. They are
used for pattern matching. For instance, the subtree in Figure 2.5 (B) will be
matched by the JCS rule in Figure 2.5 (C). If a subtree can be matched in multiple
ways, the rule with the lowest static cost will be selected. The static cost is specified
as the third part of a rule. After a match is found, the fourth and the fifth parts of the
rule will be used for setting up a register set. This is shown in Figure 2.6(A). First, a
bottom-up traversal of the matched tree passes the use register set, shown in Figure
2.6(B). Second, a top-down traversal passes the accept register set, shown in Figure
2.6(C). After these two passes, the register manager knows which registers are
provided. Finally, the last part is the semantic actions which will call the code

emitter to emit native instructions. It is shown in Figure 2.7(A) and Figure 2.7(B).

9

A
A reg32: IADD32 reg32 aluRhs ; 1 :USE :Accept: {....}

(B)

statemment
.

Use: Rdivset
Accept

:
i
|
Use: RemptySet W
T Accept Y
.
ImDD32 o= | L0 CAL3Z | | LOCALZZ |

\ : e :
[rocain | | rocawn | r._ If there is no constraints, it use register
in RemptySet

LOCALZ2

First, bottom-up traversal for passing Use

(<€)

.

Use: Rdivset
AcceptRanySet - RemptySet

Use: RemptySet
w3l
- R B

e | LocaLz | | LocAL3: |

[1ocarz | | rocaraz |

Second,top-down traversal for passing Accept

Figure 2.6 Set Register Set

2.2 ANDES Instruction Set
Architectures

In our system, we use the ANDES instruction set, which is a RISC-style
register-based instruction set. In Andes ISA, we may freely mix 16-bit and 32-bit
instructions without the need of mode-switching instructions. The 16-bit ISA almost

reflects the 32-bit ISA, but there is an alignment restriction: When a 32-bit

10

instruction is written to the code buffer, the address of the memory cell in the code
buffer that will hold the instruction must be word-aligned. Otherwise, the 32-bit
instruction must be broken into two 16-bit halves. Each half is written to the code
buffer separately. A Word-Alignment exception will be thrown when we attempt to

write a 32-bit instruction at half-word alignment.

(A)
reg32: 1ADD32 reg32 reg32 (10 : 1 f
CWMREMResource™ dest =CWMRMgetResource(rc, GET_REGISTER_GOALS 17;
CWMCPUemitBinaryALU (con CWVWCPU_ADD _OPCODE,
h
(B) -
[40D | » | CVMCPUemitBinaryALU
[Localm | | consTanT(1000) | J'

ermitinstructionicon,

lhsReglD << NDS_RA_SHIFT|
rhsReqlD << NOS_F_RB_SHIFT |
destReqlD << NDS_R_RT_SHIFT |
ndsOpcode?;

Figure 2.7 JCS rule calls emitter'to emit native code

2.2.1 General Purpose Register

Andes 32-bit instructions can access thirty-two 32-bit general-purpose registers
(GPR). A 16-bit instruction’s register index can be 5 bits, 4 bits, or 3 bits in different
instruction formats. A 3-bit and 4-bit index can only access a part of the GPRs. The

3-bit and 4-bit register indices are mapped to real registers according to Table 2.1.

2.2.2 The Andes Instruction Set

In this section, we introduce the part of the Andes instruction set that is related to
our research. In Andes, the memory address accessed by a 32-bit memory instruction

has to be word-aligned. Otherwise, a Data Alignment Check exception will be

11

generated. Table 2.2 - 2.8 are examples of which the maps of 32-bit instruction

translate to 16 bit instruction.

Register

Table 2.1 Andes General Purpose Registers

32/16-bit (5)

16-bit (4)

16-bit (3)

Comments

RO

A0

HO

00

R1

Al

H1

01

R2

A2

H?2

02

R3

A3

H3

O3

R4

A4

H4

04

RS

A5

H5

05

Implied register for beqs38 and
bnes38

R6

SO

H6

06

Saved by callee

R7

S1

H7

o7

Saved by callee

R8

S2

H8

Saved by callee

R9

S3

H9

Saved by callee

S4

Saved by callee

S5

Saved by callee

S6

Saved by callee

S7

Saved by callee

S8

Saved by callee

Ta

Temporary register for assembler
Implied register for slt(s|i)45,
b[eq|ne]zs8

Saved by caller

Saved by caller

Saved by caller

Saved by caller

Saved by caller

Saved by caller

Saved by caller

Saved by caller

Saved by caller

Saved by caller

Reserved for Privileged-mode use.

Reserved for Privileged-mode use.

Frame pointer / Saved by callee

Global pointer

Link pointer

12

Stack pointer

32-bit instruction

Table 2.2 Add/Sub Instruction

16-bit instruction

Special case

ADD

ADD333

ADDA45

SUB

SUB333

SuUB45

ADDI

ADDI333

ADDI45

SUBI333

32-bit instruction

I SUBI45 I

Table 2.3 Move instruction

16-bit instruction

Special case

MOVI

MOVI55

ADDI/ORI

MOV55

ADDI R# R# O

32-bit instruction

Table 2.4 Shift Instruction

16-bit instruction

Special case

SRAI

SRAI45

SRLI

SRL145

SLLI

32-bit instruction

SLLIZ33

Table 2.5.Bit Filed Mask Instruction

16-bit instruction

Special case

ZEB

ZEB333

ZEH

ZEH333

SEB

SEB333

SEH

SEH333

ANDI

XLSB33

ANDI

32-bit instruction

X11B33

Table 2.6 Branch and Jump Instruction

16-bit instruction

Special case

BEQ

BEQS38

Branch on Equal Implied R5

BNE

BNES38

Branch on Not Equal Implied R5

BEQZ

BEQZ38

BNEZ

BNEZ38

J

J8

JR

JR5

I JRAL JRALS I

13

32-bit instruction

16-bit instruction

Table 2.7 Load/Store Instruction

Special case

LWI

LWI1450

LWI333

LWI37

Load Word with Implied FP

LWI.bi

LWI333.bi

LHI

LHI333

LBI

LBI333

SWiI

SWI450

SWI333

SWI37

Store Word with Implied FP

SWI1.bi

SWI333.bi

SHI

SHI333

SBI

32-bit instruction

SBI333

Table 2.8 Compare and Branch Instruction

16-bit instruction

Special case

SLTI

SLTI45

SLTSI

SLTSI45

SLT

SLT45

SLTS

SLTS$45

BEQZ

BEQZSS

Branch-on Equal Zero Implied R15

BNEZ

BNEZS8

14

Branch on Not Equal Zero Implied
R15

Chapter 3
The Multiple Fixed-width ISA
Emitter

The Multiple Fixed-width ISA Emitter can emit 32-bit and 16-bit instructions in
any desired mixture. The register manager will assign a register to a particular
instruction and then the emitter will determine if a 16-bit instruction can be use. If
not, a 32-bit instruction will generated instead. When a 16-bit instruction is to be
generated, the register number must be converted according Table 2.1. Because, in
Andes, the memory address accessed by a 32-bit memory instruction must be
word-aligned, when the emitter wishes to write'a 32-bit instruction to the code, it has
to break that instruction into two.16-bit half-words and write the two half-words
separately in order to avoid a Data-Alignment-exception. It is essential for the register
manager to choose an appropriate” register_if the emitter attempts to generate 16-bit
instructions. The JIT writer can set up four register sets (CVMCPU_PHI_REG_SET,
CVMCPU_BUSY_SET, CVMCPU_NON_VOLATILE_SET, and
CVMCPU_VOLATILE_SET) for the register manager to choose appropriate registers.
We may tune the four register sets to emit as many 16-bit instructions as possible. For
certain patch points, we must be sure that patch instruction has the same size with the

original instruction.

15

3.1 Multiple Fixed-width ISA Emitter
Introduction

While JCS rules select one instruction, the emitter will be called to emit the

instruction to code buffer. The Multiple Fixed-width ISA Emitter adds a test

(“16-bitable” in Figure 3.1(b)) to determine if the emitter can emit 16-bit instruction.

If so, it will translate the 32-bit instruction to the corresponding 16-bit instruction.

JCS
GrammarRule
ICS Emitter
GrammarRule
Yes 16Bitable ? NO
!
Regsiter No.
Emitter Translate
32Bit
—— Emitter
16Bit :
Emitter
Code Buffer
Code Buffer

(a) (b)

Figure 3.1 (a) Original emitter. (b) Adding the “16-bitable” test.

3.1.1 Determine Instruction

In Andes ISA, there are six formats for 16-bit instructions---333—form, 45-form,

37-form, 38-form, 8-form, and 55-form. (333-form and 45-form are the two most

popular formats for 16-bit instructions.) Some 32-bit instructions even do not have the

16

16-bit counterparts. The emitter first needs to determine if a 16-bit instruction can be
issued. Figures 3.2 (a) is the flow chart for testing the 333-form and Figure 3.3 (a) is
the flow chart for testing the 45-form. For example, in Figure 3.2 (b), an add
instruction has registers RO and R1 and the immediate value imm. RO and R1 fall in
the ranger for registers in an addi333 instruction. Furthermore, if the immediate value
is no more than 7 (0x111), this instruction will be translated into a 16-bit instruction in

the 333-form.

Test=(destReglID| srcReglD| shiftAmount) Ex:

((RO |R1] imm)>>3)
Yes N‘o

Addi RO R1 imm

, oy v

Return Return
CVM TRUE CVM FALSE Addi333 RO R1imm

(a) (b)
Figure 3.2 (a) Flow chart of testing the 333-form. (b) An example of Addi333.

When the immediate value is larger than 7, the emitter will try other forms, say
the 45-form (4 bits for specifying a register and 5 bits for specifying the immediate
value.) Figure 3.3 (a) shows the flow chart for testing if the 45-form can be used.
There are other forms for 16-bit instructions. The emitter will try each form in turn.

When no 16-bit form is applicable, a 32-bit instruction will be issued instead.

3.1.2 Translating Registers

A register may be encoded in 3, 4, or 5 bits according to the selected instruction
formats. The encoding is shown in Table 3.1. For example, R17 is encoded as 10001

(T1) in 5 bits and as 1101 (H13) in 4 bits.

17

Ex:
R16 == R16

(31 >>5) ==
15<R16 <20

Addi R16 R16 31

Yes
¥

bbb
, Addi45 H12 H12 31

Yes Yes
¥

déstReglD N
—Yes No___ |

h 4

Return Return
CVM_ TRUE CVM FALSE

(a) (b)

Figure 3.3 (a) Flow chart for testingthe'45-form. (b) An example of ADDI45.

When the emitter wants to emit a 16-bit instruction, the emitter will test if the
register assigned by the register manager could be used in a 16-bit instruction. For
example, the 333-form is restricted to use registers RO through R7 while the 45-form
can use only registers R0-R11 and R16-R19 in the 4-bit field. (There is no restriction
for the 5-bit field since 5 bits are enough to address any of the 32 general-purpose
registers.) If the assigned register can fit in a 16-bit instruction form, then the emitter
will translate the encoding of the register according to Table 3.1. This means that
R16-R19 will be translated into H11-H15. The flowchart for the translation is shown

in Figure 3.4 (a). The used registers of different mode are shown in Figure 3.5.

18

Table 3.1. The difference of two kinds of register set.

Register 32/16 32/16-bit (5 bits) 16-bit (4 bits)
RO i) HO
R1 Al H1
R2 A2 H2
R3 A3 H3
R4 A4 H4
RS A5 H5
R6 SO H6
R7 S1 H7
R8 S2 H8
R9 S3 H9
R10 S4 H10
R11 S5 HI11
R16 TO H12
R17 Tl H13
R18 T2 H14
R19 T3 H15
'
Ex

o '3 R16 -4 = HI12

Addi R16 R16 31

RegNo - 4 vy vy

Addi45 H12 H12 31

l

16Bit Emitter

(a) (b)

Figure 3.4 (a) Flow chart for translating register encoding. (b) An example of
register translation.

19

a0 t0 (h12)
al tl (h13)
a2 t2 (h14)
a3 t3 (h15) 45mode
a4 t4

a5 t5

sO 16

sl 333mode t7

s2 t8

s3 19

s4 pO

s5 45mode pl

s6 fp

s’ ap

s8 Ip

ta sp

Figure 3.5 Register range.of 333 mode and 45 mode

3.1.3 Instruction Alignment

In Andes, there is a restriction that the-memory address accessed by a 32-bit
memory instruction (Load/Store) must be word-aligned, that the least significant two
bits of the address must be 0. When the emitter wants to place a 32-bit instruction into
the code buffer, it will break the instruction into two half-words. Each half-word is

written into the code buffer separately. This is explained in Figure 3.6.

3.2 Register Setting

A JIT writer may adjust the register setting to emit more 16-bit instructions.
There are two places in the JIT that can be adjusted: the VM register set and the four

code generator register sets.

20

Ins 32 Ins32-1 | Ins32-2
Ins 32 Ins32-1 | Ins32-2
Ins 32 Ins32-1 | Ins32-2
E_ Ins 16 | Ins32-1
Ins32-2
Data Alignment =

Check exception!!

Code Buffer Code Buffer

Figure 3.6 Avoid the Data Alignment Check exceptions when writing a 32-bit
instruction into code buffer.

3.2.1 The VM Register|Seét

The VM register set contains I four special’ registers: JSP_REG, JFP_REG,
CHUNKEND_REG, and CVMCPU.EE REG. They must be mapped to Andes
registers properly. In our emitter, we use register FP for JFP_REG because it can use
the special 37-form instructions.

Table 3.2. VM Register Setting

VM Register Register
JSP_REG R11
JFP_REG FP
CHUNKEND_REG S2
CVMCPU_EE_REG S3

21

3.2.2 Code Generator Register Set

There are four code generator register sets: CVMCPU_PHI_REG_SET,
CVMCPU_BUSY_SET, CVMCPU_NON_VOLATILE_SET, and
CVMCPU_VOLATILE_SET in the header file jitrisc_cpu.h. The four register sets are
used by the register manager to set uyp CVMRM_ANY_REG_SET,
CVMRM_SAFE_SET, and CVMRM_UNSAFE_SET. (The CVMRM_EMPTY _SET
is always an empty set.) When the JCS rules requests for a register, the register
manager will select a register out of one of these four register sets. We wish to
distribute the registers that can be used to generate 16-bit instructions into these four
sets so that such a register is available when JCS rules requests for a register. The best
distribution should be determined by extensive benchmarks. Currently, the
distribution is shown in Table 3.3!

The register manager sets up the four sets CVMRM_ANY_REG_SET,
CVMRM_SAFE_SET, CVMRM _UNSAFE SET, and CVMRM_EMPTY_SET as
follows. The CVMRM_EMPTY _SET is always an empty set. The
CVMRM_ANY_REG_SET includes all registers except those in the
CVMCPU_BUSY_SET. The CVMRM_SAFE_SET includes all the registers that are
in both CVMCPU_NON_VOLATILE_SET and CVMRM_ANY _SET. Equivalently,
the CVMRM_SAFE_SET includes all the registers that are in
CVMCPU_NON_VOLATILE_SET but not in CVMCPU_BUSY _SET. The
CVMRM_UNSAFE_SET includes all the registers that are in both CVMCPU _
VOLATILE_SET and CVMRM_ANY_SET. Equivalently, the
CVMRM_UNSAFE_SET includes all the registers that are in CVMCPU _
VOLATILE_SET but not in CVMCPU_BUSY _SET. Table 3.4 summarizes the above

specification in the register manager.

22

Table 3.3. RISC_CPU Register Setting

RISC_CPU Register Set

Register

CVMCPU_PHI_REG_SET

S1, S4, 85,56 ,57,S8 ,GP

CVMCPU_BUSY_SET TA, PO, P1, FP
CVMCPU_NON_VOLATILE_SET S0-S8, FP, GP
CVMCPU_VOLATILE_SET ALL &

~CVMCPU_NON_VOLATILE_SET

Table 3.4. Register Manager register setting

JIT RegMan Register Set

Register set

CVMRM_BUSY_SET

CVMCPU_BUSY_SET |
1U<&CVMCPU_SP_REG |
1U<<CVMCPU_JSP_REG |
1U<<CVMCPU_JFP_REG |
CVMRM_CHUNKEND_BUSY BIT|
CVMRM_CVMGLOBALS_BUSY_BIT
| CVMRM_EE_BUSY BIT|
CVMRM_CP_BUSY _BIT |

CVMRM_GC_BUSY_BIT

CVMRM_ANY_REG_SET

ALL &-(BUSY_SET)

CVMRM_SAFE_SET

(CVMCPU_NON_VOLATILE_SET &

CVMRM_ANY_SET)

CVMRM_UNSAFE_SET

(CVMCPU_VOLATILE_SET &

CVMRM_ANY_SET)

CVMRM_EMPTY_SET

Always empty set

23

3.3 Instruction Patch and Adjust

While the emitter emits a forward branch or jump to glue code, the address field
in this instruction will be patched later. Since we do not know the size of the actual
offset in the instruction, to be on the safe side, we always use 32-bit instructions for
forward branch or jump to glue code.

Furthermore, the instructions for null check may also need additional patches. It

is discussed in Sections 3.3.3.

3.3.1 Forward Branch

When the emitter emits a branch instruction with unknown offset, it will always
issue a 32-bit instruction. The address field-in-this instruction will be patched later
when the address of the branch target is known. Figure 3.7 shows that patch a forward

branch instruction.

3.3.2 Glue Code

Sometimes the program has to calculate certain special values when it reaches a
particular instruction the first time. (Ex. ResolveMethodTableOffsetGlue) The emitter
will issue a “Jarl .glue” instruction to force the program to jump to the glue code.
The special value is calculated in the glue code. At the end of the glue code, the
calculated vale will be written to the word immediately following the “Jarl”
instruction and the “Jarl” instruction is changed to a “J .skip” instruction. Having
done that, the program continues execution following the “Jarl” instruction. Note that
the glue code is executed only the once during program execution because it is a
waste of time to calculate the same special value more than once. Changing the

“Jarl” instruction to “J .skip” instruction can prevent the glue code being executed

24

again. Figure 3.8 shows the execution of glue code. Note that the “Jarl” instruction is
changed to a “J .skip” instruction after the glue code is executed. A variation of glue
code does not compute a special value; however, it is also executed only once—the
first time it is encountered. This variation of glue code also needs patching as
described above.

Due to the existing implementation of glue code (which was written in the
assembly language for the 32-bit platform and always patched instructions at
word-alignment), whenever a “Jarl” instruction may be patched by glue code, that
“Jarl” instruction must be word-aligned. In this case, a two-byte “nop16” instruction
might be inserted before the “Jarl” instruction in order to satisfy the requirement of
word-alignment. This is because, in the existing glue code, instructions are always
assumed to be word-aligned while:in our target platform (Andes) instructions may be
half-word aligned. In the future, we plan to-rewrite glue code. Then the two-byte
“nopl6” instructions will become unnecessary. On the other hand, if the “Jarl”
instruction will not be patched by the-glue code, we can choose either a 16-bit (for
half-word aligned) or a 32-bit (for word aligned) “Jarl” instruction. Note that the four
reserved bytes (i.e., “.word ___ ") following the “Jarl” instruction must always be

word-aligned. The flow chart is shown in Figure 3.9. The list is shown in Table 3.5.

3.3.3 Trap-based Null Checks

Every time VM references an new object, the object must be check is null or not.
While JIT wants to do null checks, a null-pointer trap will occurs, the return address
(which is the address of the instruction immediately following the trapping instruction)
will be saved in the link-pointer register (LP). If the trapping instruction is a 16-bit

instruction, the return address is 2 plus the address of the trapping instruction. On the

25

other hand, if the trapping instruction is a 32-bit instruction, the return address is 4
plus the address of the trapping instruction. In Andes, an instruction is 16-bit if and
only if the first (leftmost) bit of the instruction is 1. The flow chart is shown in Figure

3.10.

Address | Instruction
StartPc: | Branch offset

CVMJITcbufPushFixup StartPc
(Add patch point)

!

Address | Instruction
StartPc: | Branch endPC
Jump

EndPc: . Branch endPC
CVMJITcbufPop

Figure 3.8 Patch a forward branch instruction

3.4 Summary

Our emitter will issue mixed 16-bit and 32-bit instructions in an attempt to
reduce the resulting code size. Due to the alignment requirement in the existing JIT
implementation, the emitter has to take care of the alignment of the issued instructions,
adding “Nop” instructions when necessary. Because only some, but not all, registers
can be used in 16-bit instructions, register allocations must be done carefully in order
to generate more 16-bit instructions. We propose a simple heuristic for instruction

translation in this thesis. In the next chapter, we will use benchmarks to verify the

26

usefulness of our heuristic for instruction translation.

Jarl .Glue Glue
.word

skip \
1l

J .skip .Glue
.word 01234567

.skip

Figure 3.9 The execution of glue code. Yet another Kind of glue code does not need
patching the “Jarl” instructions. It functions like a subroutine.

Call Glue code

Pad with
Nopl
oplé 3
32-bit Jump 16-bit jump
instruction instruction

Figure 3.10 Adjust glue code flow chart

27

Table 3.5 Glue code list.

Case 1 : Only need .word after the call to be aligned.

Case 2 : Only jal/jral need be patch at runtime.

Case 3 : Not only .word after the call need to be aligned, but also jal/jral need to be
patched at runtime..

Case 4 : Not only call instruction and .word after the call need to be aligned, but
also the length of two instructions after the call need to be known at
compilation time.

Only need word-alignment

CVMCCMruntimeLookuplnterfaceMBGlue

CVMCCMruntimeCheckCastGlue

CVMCCMruntimelnstanceOfGlue

Only be patch

CVMCCMruntimeRunClasslnitializerGlue

Need Word-alignment and patched

CVMCEMruntimeResolveNewClassBlockAndClinitGlue

CVMCCMruntimeResolveGetstaticFieldBlockAndClinitGlue

CVMCCMruntimeResolvePutstaticFieldBlockAndClinitGlue

CVMCCMruntimeResolveStaticMethodBlockAndClinitGlue

CVMCCMruntimeResolveClassBlockGlue

CVMCCMruntimeResolveArrayClassBlockGlue

CVMCCMruntimeResolveGetfieldFieldOffsetGlue

CVMCCMruntimeResolvePutfieldFieldOffsetGlue

CVMCCMruntimeResolveSpecialMethodBlockGlue

CVMCCMruntimeResolveMethodBlockGlue

Special Case

‘ CVMCCMruntimeResolveMethodTableOffsetGlue |

28

16bit instruction 16bit instruction
32bit instruction-1 16bit instruction
32bit instruction-2 Last > 32bit instruction-1
v o : < |nstruction o : M
16bit instruction (1p0) 32bit instruction-2
pc
uc_mcontext.nds32_Ip +2 uc_mcontext.nds32_Ip 44

Figure 3.11 Determine the return address of a trap-based null check.

29

Chapter 4
Experiments Results and Analyses

4.1 Experimental Framework

In this section, we will show some experimental results of the Java JIT Compiler
for 32bit-16bit Mixed Instruction Set Architectures. Experiments for this study were
performed at the Andes ADP-AG101 platfrom at 400Mhz. (Figure 4.1) First, we
design a lot experiment program for 16bit-32bit emitter to verify correctness. They
test single target function of emitter Ex. Add operation. Next , we run a global test
case: Testclass. Testclass prowvide. by Sun Microsystems. Which Correctness are
verified we run a lot of benchmarkto-collect date like code size and score
(performance). The benchmarks “are.. Embedded CaffineMark 3.0[19], CLDC
Evaluation Kit and Grinder Bench[20]. Their program are shown in table 4.1, 4.2 and

4.3.

Table 4.1 Embedded CaffineMark 3.0

Name Brief Description

Sieve The classic sieve of Eratosthenes finds prime numbers.

Loop The loop test uses sorting and sequence generation as to
measure compiler optimization of loops.

Logic Tests the speed with which the virtual machine executes
decision-making instructions.

Method The Method test executes recursive functional calls to see how
well the VM handles method calls.

String String Comparison and concatenation.

30

Table 4.2 CLDC Evaluation Kit

Name Brief Description

Richards Richards is a benchmark that simulates the task dispatcher in the
kernel of an operating system.

DeltaBlue DeltaBlue solves one-way constraint systems.

Queens A solver of the n-queens problem. It is a classical problem used to
illustrate several techniques such as general search and
backtracking.

Image The Image Processing benchmark reads an image file and

Processing performs various transformations on it, such as Sobel, threshold,
3x3 convolver, and so forth.

Table 4.3 Grinder Bench

Name Brief Description

Chess A complete chessiplaying engine that is used to determine a set of
chess moves.

Crypto This suite of algorithms measures the performance of Java
implementations in-cryptographic transactions.

kXML Measures XMLiparsing and/or DOM tree manipulation.

PNG Shows how fast a Java implementation can decodes a PNG photo

image of a typical size used on a mobile phone.

31

S
2
=
=
x
3

5"; L

,';' &
1] Y NG 1
Figure 44 A{nd&%ﬁ;bi“ Maqn Board
'L':l_:J..\‘-\. _"-\-

4.2 Correctness

Correctness is verified by SUN test class. It test 411 tests includes Null check,

GC check, float number and others.

32

4.3 Compile Time

Figure 4.2 is the compiled time of two version of JIT. We can observe that the
compile time between 32-only and mixed-ISA only has few increase. It mean low

overhead of compile the code.

700

600

W 32-only
W mix-isa

Figure 4.2 The compile time of benchmarks

4.4 Code Size

The reduce code size of the benchmark is shown in Figure 4.3. Average, we

reduce almost 10% code size.

33

Reduce size %

M reduce size %

Figure 4.3 Code size of benchmarks

4.5 Performance

The Performance is shown in Figure 4.4. Our method decreases average 0.14%
the performance of benchmarks. Specially, KXML program gets many performance’s
benefit. We analysis this program. Then we observe that KXML is the biggest
program of our benchmark and it run longer time than others small programs. For
other benchmark programs, the performance is actually decreased. The reason is that
these benchmark programs run only for a very short time. The additional time we
spent on run-time compilation dominates the overall performance. For a long running
program, reducing the code size should result in significant performance

improvement.

34

Performance change %

~ o

(OS]

B Performance

Figure 4.4 Theperformance of benchmarks

4.6 Summary

Our Java JIT compiler for 32bit/16bit Mixed Instruction Set Architecture
successfully reduces code size by 10% on the average, with only slight additional
compilation overhead. For a long running program, reducing the code size should

result in significant performance improvement.

35

Chapter 5
Conclusion and Future work

This paper proposes an effectively method for reducing code size. This method is
implemented in a Java JIT compiler. Our JIT compiler generates smaller code by
making use of 32bit-16bit mixed instruction set than the original JIT that only uses
32-bit instruction set. Specially, the performance of the code generated by our method
is almost equal to that by the original JIT compiler, sometimes even better. For a long
running program, we expect the benefit will exceed the overhead.

There are a few slots in the code buffer that are reserved for the glue code to fill
in appropriate offsets or modify the instructions at run time. The slots must be
word-aligned in order to fit the existing glue code. Therefore, the emitter sometimes
needs to add the nop instructions in the code.buffer before the word-aligned slots. In
the future, we can modify the glue’code-in order to remove the useless nop
instructions.

In the process of emitting instructions, the registers assigned by the register
manager decide if a 16-bit instruction can be used. In the future, the register-allocation

algorithm deserves further investigation for performance improvement.

36

References

[1]. Sun Microsystems. Java ME CDC,
http://java.sun.com/javame/technology/cdc, 2008

[2]. Sun Microsystems. Java ME,

http://java.sun.com/javame , 2008

[3]. Sun Microsystems. CDC HotSpot Implementation Dynamic Compiler
Architecture Guide, 2005.

[4]. Sun Microsystems. CDC Porting Guide, 2005.

[5]. Sun Microsystems. The CDC application management system, 2005.

[6]. Furber, S. 1996. ARM System Architecture. Addison-Wesley. ISBN
0-201-40352-8.

[7]. Goudge, L. and Segars, S. 1996. Thumb: Reducing the cost of 32-bit RISC
performance in portable and consumer applications. In Proceedings of COMPCON.
[8]. Kissel, K. 1997. MIPS16: High-density MIPS for the embedded market.

Tech. rep., Silicon

Graphics MIPS Group.

[9]. Andes Technology. Andes Instruction Set Architecture Specification, 2007.
[10]. Andes Technology. Andes Programming Guide, June, 2007.

[11]. Lee, S., Lee, J., Park, C..Y., and"Min;S. L. 2004. A flexible tradeoff
between code size and WCET using a:.dual instruction set processor. In Proceedings of
the 8th International Workshop on Software and Compilers for Embedded Systems
(SCOPES). Amsterdam. 244-258.

[12]. Shin, 1., Lee, I., And Min, S. L. 2002. Embedded system design framework
for minimizing code size and guaranteeing real-time requirements. In Proceedings of
the 23rd IEEE Real-Time Systems Symposium (RTSS). Austin, TX. 201-211.

[13]. Lee, S., Lee, J., Min, S. L., Hiser, J., and Avidson, J. W. 2003. Code
generation for a dual instruction set processor based on selective code transformation.
In Proceedings of the 7th International Workshop on Software and Compilers for
embedded Systems (SCOPES). Vienna. 33-48.

[14]. Naswamt, A. and Gupta, R. 2003b. Mixed width instruction sets.
Communications of the ACM 46, 8 (Aug.), 47-52.

[15]. Krishnaswamy, A. and Gupta, R. 2003a. Enhancing the performance of
16-bit code using augmenting

instructions. In Proceedings of the ACM SIGPLAN Conferece on Languages,
Compilers,and Tools for Embedded Systems (LCTES). San Diego, CA. 254-264.
[16]. Halambi, A., Shrivastava, A., Biswas, P., Dutt, N., and Nicolau, A. 2002. An

37

efficient compiler technique for code size reduction using reduced bit-width ISAs. In
Proceedings of the Design, Automation and Test in Europe (DATE). Paris.

[17]. Kirner, R. 2003. Extending optimising compilation to support worst-case
execution time analysis.Ph.D. thesis, Vienna University of Technology.

[18]. Sheayun L, Jaejin L, Chang Yun Park, Sang Lyul Min, Selective Code
Transformation for Dual Instruction Set Processors in ACM Transactions on
Embedded Computing Systems, 2007
[19]. Pendragon Software Corporation, Embedded CaffeineMark 3.0 benchmark,
http://www.webfayre.com, 1997
[20]. EEMBC. GrinderBench, http://www.grinderbench.co

38

	 LIST OF FIGURES
	 LIST OF TABLES
	
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Related Studies
	1.3 Propose Approach
	1.4 Contribution
	1.5 Synopsis

	Chapter 2 Java Just-In-Time compiler and Andes 32bit-16bit Instruction Set Architectures
	2.1 CVM Internals
	2.1.1 JIT Front End
	2.1.2 JIT Back End

	2.2 ANDES Instruction Set Architectures
	2.2.1 General Purpose Register
	2.2.2 The Andes Instruction Set

	Chapter 3 The Multiple Fixed-width ISA Emitter
	3.1 Multiple Fixed-width ISA Emitter Introduction
	3.1.1 Determine Instruction
	3.1.2 Translating Registers
	3.1.3 Instruction Alignment

	3.2 Register Setting
	3.2.1 The VM Register Set
	3.2.2 Code Generator Register Set

	3.3 Instruction Patch and Adjust
	3.3.1 Forward Branch
	3.3.2 Glue Code
	3.3.3 Trap-based Null Checks

	3.4 Summary

	Chapter 4 Experiments Results and Analyses
	4.1 Experimental Framework
	4.2 Correctness
	4.3 Compile Time
	4.4 Code Size
	4.5 Performance
	4.6 Summary

	Chapter 5 Conclusion and Future work
	 References

