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32bit-16bit 混合指令集嵌入式系統程式碼減量爪哇即時編譯器 

 

學生：呂禮君     指導教授：楊 武 博士 

 

國立交通大學資訊科學與工程所碩士班  

 

摘 要  

隨著近年來嵌入式系統的市場快速蓬勃，嵌入式系統處理器的執行速度以相

當快的速度成長，在處理器的速度越來越快的情況下，機器執行程式的瓶頸，已

經由原先處理器的執行速度漸漸轉移到的與處理器與週邊儲存設備溝通的速

度，這主要來自於傳輸資料的速度與處理資料的速度落差所造成的處理器空轉的

情況。為使程式效能有效提昇，減少記憶體存取次數，以提昇快取成功的機率，

在效能提昇上成為一個可行且明確的方法。在嵌入式系統所使用的語言中，爪哇

程式語言基於跨平台的特性在嵌入式平台上，一直佔著重要的地位，而跨平台所

不得不付出的成本為效能上的低落，為解決此問題，將爪哇語言的 byte code

轉換成平台專屬的 machine code，藉以提昇效能的爪哇即時編譯器，為針對嵌

入式平台提昇爪哇程式語言執行效能的最佳解決方案。本篇論文修改爪哇即時編

譯器，使爪哇即時編譯器所產生的 machine code，能夠混合產生 32bit-16bit

指令，藉以有效減少程式碼的大小，以降低執行時指令快取失敗的機會，進而減

少存取記憶體的次數，以取得效能上的提昇。此外，為了更有效的漸少程式碼，

我們運行了一連串的實驗，針對 VM 處理器的特殊指定暫存器配置，及 Register 

Set 的設定調整。透過這些實驗，可以取得各種配置所能得到的程式碼減量情

形，並探討減量所帶來的優化效應，如程式碼大小與程式執行效率之間的變化關

西。實驗結果顯示，我們的方法平均可以減少百分之十左右的程式碼大小，同時
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幾乎沒有對效能造成負擔，當執行較大型的程式時，甚至能夠達到提昇效能的目

的。 

關鍵字：爪哇即時編譯器、程式碼減量、32bit-16bit 混合固定長度指令集

架構 
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ABSTRACT 

In recent years, because the market of embedded systems develops quickly, the 

process speed of embedded systems had rapidly grown. As the processors become 

faster and faster, the bottleneck of program execution shifts to the communication 

between CPU and the main memory. The main reason is the increasing gap between 

CPU speed and memory speed. Reducing code size may potentially reduce the 

number of memory accesses (by increasing cache hit ratio) and becomes an effective 

method to improve CPU performance. For this reason, new CPU architectures provide 

both 16-bit and 32-bit instructions. We developed a new method that can generate a 

mixture of 16-bit and 32-bit instructions. This method is implemented and tested in a 

Java just-in-time compiler of a Java virtual machine for the Andes platform. Our 

experiment shows that the code size can be reduced 10% at very little extra overhead 

(only 0.14%). The performance improvement for a long-running program can be quite 

significant. 

 

Keywords: JIT compiler, reduce code size, 32bit-16bit Mixed Instruction Set 

Architectures 
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Chapter 1   

Introduction 
In recent years, because the market of embedded systems develops quickly, the 

speed of embedded processor had rapidly grown. The speed of the processor is faster 

and faster, the bottleneck of program execution switches from processor speed to I/O 

speed, that is, the speed with a peripheral equipment communicates with a central 

processor. The main reason is that the difference in speed between transfer of data and 

handle of data that make processor idle. So reducing code size to decrease cache 

misses becomes an attractive approach to improve overall performance. We present a 

JIT compiler for processors with multiple fixed-width instructions. It will effectively 

reduce code size without undue overhead and will improve the performance of the 

generated code. 

1.1 Motivation 

Because embedded systems have many different instruction-set architectures 

(ISA), the Java language[1][2] becomes important for embedded systems due to its 

platform independence. But, platform-independence comes with serious performance 

penalty. To mitigate the performance penalty, Java VM proposes the just-in-time 

compiler architecture[3][4][5], which executes the target-machine code directly for 

improving performance. 

 Some RISC processors, such as ARM[6][7], MIPS[8] and ANDES[9][10], 

support the 32-bit/16-bit multiple fixed-width instruction sets. In this domain, the 

16-bit ISA is usually targeted at reduced code size and lower power consumption. 
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Some of these RISC processors, such as MIPS, requires a mode-switching instruction 

to switch between the 16-bit and 32-bit modes. This results in overhead at run time. 

On the other hand, some other processors, such as ANDES, do not need the 

mode-switch instructions. 16-bit and 32-bit instructions can mix freely in the 

program. 

We present a new code generator for a mixed-instruction JIT in this thesis. Our 

aim is to reduce the size and to improve the performance of the generated code.        

Furthermore, the code generator itself is quite efficient. Our target is ANDES 

32-bit/16-bit ISA, which has the following features: (1) there is no mode-change 

instructions; (2) the operation of the 16-bit instructions almost reflective to 32-bit 

instructions. Almost every 32-bit instruction can be mapped by a suitable 16-bit 

instruction. It increases the probability of instruction replacement. 

1.2 Related Studies 

In the domain of reduce code size, using 16-bit instruction set like Thumb must 

use mode change instruction to mix instruction between 32-bit instruction and 16-bit 

instruction and has some performance cost. Another disadvantage for the 16-bit 

instruction set is that fewer registers are available in the 16-bit mode. This will add 

additional Load/Store instructions.. To balance code size and performance, Lee, S. 

and Lee, J. proposed a method which is first compile code to 16-bit instruction set. 

Next, a selected subset of basic block are compiled to 32-bit instruction set. They 

profile or WCET(worst-case execution time) analysis to decide mixed instruction 

code.[11-18] Their method incurs much compilation time. For this reason, it is not 

suitable for a JIT compiler.  
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1.3 Propose Approach 

There are two issues in our study. First, a complex method is not acceptable 

because it will incur much compilation time, which is part of the total running time. 

Second, compiling with the 16-bit instruction set will generate more instructions than 

with the 32-bit instruction set. (However, a 16-bit instruction is only a half (in size) of 

a 32-bit instruction.) Increasing the number of instructions will decrease the overall 

performance. We analyze compiled 32-bit code in our benchmarks. We find a lot of 

opportunities for translating 32-bit instructions into 16-bit counterparts. To be more 

precise, almost 80% instructions can be translated into 16-bit equivalents. This 

observation motivates us to propose an efficient method to generate mixed code. 

Figure 1.1 is Analysis of translatable instruction. Figure 1.2 is Generating mixed code 

method 
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Figure 1.2 Generating mixed code method 

1.4  Contribution 

Our experiments show that this scheme is successful to reduce code size without 

too mach overhead. In addition, performance is improved. In the embedded domain, 

balance between memory size and performance are discussed. This paper presents a 

novel approach two points: the performance and code size which use ANDES 16-bit 

ISA. 
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1.5 Synopsis 

The remainder of this thesis is organized as follows. Chapter 2 discusses Java 

Just-In-Time compiler and Andes 32bit-16bit Instruction Set Architectures. In Chapter 

3, we introduce the Multiple Fixed-width ISA Emitter. In Chapter 4, experiments and 

the results are presented and be analyzed. In Chapter 5, the conclusion and future 

work are given. 
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Chapter 2  

Java Just-In-Time compiler and 
Andes 32bit-16bit Instruction Set 
Architectures 

As the Java language becomes more and more important for programming 

embedded systems, translation at the byte-code level has been proposed to increase 

program performance. Java VM proposes a just-in-time compiler architecture, which 

executes target-machine code for improve performance. 

ANDES ISA proposes a special architecture which uses mixed-mode instructions 

without the need of mode-switching instructions. Its 16-bit ISA almost reflects to 

32-bit ISA, but it has an alignment restriction: 32-bit memory instruction reference 

object that must be word-alignment. 

In our research, our target is the ANDES processor.  We port an existing JVM 

JIT to the ANDES platform and then modify the code emitter so that it can 

generate16-bit as well as 32-bit instructions. We use several benchmark tests to 

measure the performance of the code emitter. 

2.1 CVM Internals 

The virtual machine we use the Connected Device Configuration Hotspot 

Implementation (CVM) version of JAVA VM, which is highly optimized for 

resource-constrained devices, such as consumer electronic products and embedded 
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devices. Portability is the most important benefits of the Java system design. It 

includes a dynamic compiler, which is also called a just-in-time compiler (JIT). While 

a method in the Java program has been used frequently enough, JIT converts the 

method’s bytecodes to native code during execution time to improve future 

performance. This operation has two passes: First, the front end converts Java 

bytecode to an intermediate representation (IR); Second, the back end converts the IR 

to native code. The architecture is shown in Figure 2.1. 

 
Figure 2.1 Java program execute 

2.1.1 JIT Front End 

The front end is portable for different execution environments. It converts the 

bytecode to an intermediate representation (IR). Figure 2.3 is an example of IR. 
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Figure 2.2 Frontend 

 

2.1.2 JIT Back End 

The back end converts IR to native instructions. An IR tree is parsed by a parser. 

The parser

 
Figure 2.3 An example of IR. 

, which is produced by the Java Code Select (JCS) tool at build time, 

performs pattern matching for tree-based data structures in which the patterns are 

specified as a set of JCS rules. These rules are translated into C source code and 

initialized data structures. Code generation is done with rule-based pattern matching 

on trees.  When there are multiple possibilities, JCS choose the rules with the least 

x = y + 1000; 

Translate to IR Tree

Compile to bytecodes

iload y 
sipush 1000 
iadd 
istore x

ASSIGN

LOCAL(X) ADD

LOCAL(Y) CONSTANT (1000)

Byte 

Code 

 

IR Generator 
 

Frontend 

 

Method 
   IR 
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static costs. Figure 2.5(A) is an example of JCS rules. 
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IR 
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Emitter 

 
 

Backend 

 

 Method 

Machine 
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Figure 2.4 Backend 
 

 

Figure 2.5 An example of a JCS rule 

The first part of this rule is the result and the second part is a pattern. They are 

used for pattern matching. For instance, the subtree in Figure 2.5 (B) will be 

matched by the JCS rule in Figure 2.5 (C). If a subtree can be matched in multiple 

ways, the rule with the lowest static cost will be selected. The static cost is specified 

as the third part of a rule. After a match is found, the fourth and the fifth parts of the 

rule will be used for setting up a register set. This is shown in Figure 2.6(A). First, a 

bottom-up traversal of the matched tree passes the use register set, shown in Figure 

2.6(B). Second, a top-down traversal passes the accept register set, shown in Figure 

2.6(C). After these two passes, the register manager knows which registers are 

provided. Finally, the last part is the semantic actions which will call the code 

emitter to emit native instructions. It is shown in Figure 2.7(A) and Figure 2.7(B). 
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Figure 2.6 Set Register Set 

2.2 ANDES Instruction Set 
Architectures 

In our system, we use the ANDES instruction set, which is a RISC-style 

register-based instruction set. In Andes ISA, we may freely mix 16-bit and 32-bit  

instructions without the need of mode-switching instructions. The 16-bit ISA almost 

reflects the 32-bit ISA, but there is an alignment restriction: When a 32-bit 
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instruction is written to the code buffer, the address of the memory cell in the code 

buffer that will hold the instruction must be word-aligned. Otherwise, the 32-bit 

instruction must be broken into two 16-bit halves. Each half is written to the code 

buffer separately. A Word-Alignment exception will be thrown when we attempt to 

write a 32-bit instruction at half-word alignment.  

 

Figure 2.7 JCS rule calls emitter to emit native code 

2.2.1 General Purpose Register  

Andes 32-bit instructions can access thirty-two 32-bit general-purpose registers 

(GPR). A 16-bit instruction’s register index can be 5 bits, 4 bits, or 3 bits in different 

instruction formats. A 3-bit and 4-bit index can only access a part of the GPRs. The 

3-bit and 4-bit register indices are mapped to real registers according to Table 2.1.  

2.2.2 The Andes Instruction Set 
In this section, we introduce the part of the Andes instruction set that is related to 

our research. In Andes, the memory address accessed by a 32-bit memory instruction 

has to be word-aligned. Otherwise, a Data Alignment Check exception will be 
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generated. Table 2.2 - 2.8 are examples of which the maps of 32-bit instruction 

translate to 16 bit instruction.   

Table 2.1 Andes General Purpose Registers 

Register 32/16-bit (5) 16-bit (4) 16-bit (3) Comments 
R0 A0 H0 O0  
R1 A1 H1 O1  
R2 A2 H2 O2  
R3 A3 H3 O3  
R4 A4 H4 O4  
R5 A5 H5 O5 Implied register for beqs38 and 

bnes38 
R6 S0 H6 O6 Saved by callee 
R7 S1 H7 O7 Saved by callee 
R8 S2 H8  Saved by callee 
R9 S3 H9  Saved by callee 
R10 S4 H10  Saved by callee 
R11 S5 H11  Saved by callee 
R12 S6   Saved by callee 
R13 S7   Saved by callee 
R14 S8   Saved by callee 
R15 Ta   Temporary register for assembler 

Implied register for slt(s|i)45, 
b[eq|ne]zs8 

R16 T0 H12  Saved by caller 
R17 T1 H13  Saved by caller 
R18 T2 H14  Saved by caller 
R19 T3 H15  Saved by caller 
R20 T4   Saved by caller 
R21 T5   Saved by caller 
R22 T6   Saved by caller 
R23 T7   Saved by caller 
R24 T8   Saved by caller 
R25 T9   Saved by caller 
R26 P0   Reserved for Privileged-mode use. 
R27 P1   Reserved for Privileged-mode use. 
R28 S9/Fp   Frame pointer / Saved by callee 
R29 Gp   Global pointer 
R30 Lp   Link pointer 
R31 Sp   Stack pointer 
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Table 2.2 Add/Sub Instruction 

32-bit instruction 16-bit instruction Special case 
ADD ADD333  

 ADD45  
SUB SUB333  

 SUB45  
ADDI ADDI333  

 ADDI45  
 SUBI333  
 SUBI45  

Table 2.3 Move instruction 

32-bit instruction 16-bit instruction Special case 
MOVI MOVI55  

ADDI/ORI MOV55 ADDI  R#  R#  0 

Table 2.4 Shift Instruction 

32-bit instruction 16-bit instruction Special case 
SRAI SRAI45  
SRLI SRLI45  
SLLI SLLI333  

Table 2.5 Bit Filed Mask Instruction 

32-bit instruction 16-bit instruction Special case 
ZEB ZEB333  
ZEH ZEH333  
SEB SEB333  
SEH SEH333  

ANDI XLSB33  
ANDI X11B33  

Table 2.6 Branch and Jump Instruction 

32-bit instruction 16-bit instruction Special case 
BEQ BEQS38 Branch on Equal Implied R5 
BNE BNES38 Branch on Not Equal Implied R5 

BEQZ BEQZ38  
BNEZ BNEZ38  

J J8  
JR JR5  

JRAL JRAL5  
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Table 2.7 Load/Store Instruction 

32-bit instruction 16-bit instruction Special case 
LWI LWI450  

 LWI333  
 LWI37 Load Word with Implied FP 

LWI.bi LWI333.bi  
LHI LHI333  
LBI LBI333  
SWI SWI450  

 SWI333  
 SWI37 Store Word with Implied FP 

SWI.bi SWI333.bi  
SHI SHI333  
SBI SBI333  

Table 2.8 Compare and Branch Instruction 

32-bit instruction 16-bit instruction Special case 
SLTI SLTI45  

SLTSI SLTSI45  
SLT SLT45  

SLTS SLTS45  
BEQZ BEQZS8 Branch on Equal Zero Implied R15 
BNEZ BNEZS8 Branch on Not Equal Zero Implied 

R15 
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Chapter 3  

The Multiple Fixed-width ISA 
Emitter 

The Multiple Fixed-width ISA Emitter can emit 32-bit and 16-bit instructions in 

any desired mixture. The register manager will assign a register to a particular 

instruction and then the emitter will determine if a 16-bit instruction can be use.  If 

not, a 32-bit instruction will generated instead. When a 16-bit instruction is to be 

generated, the register number must be converted according Table 2.1. Because, in 

Andes, the memory address accessed by a 32-bit memory instruction must be 

word-aligned, when the emitter wishes to write a 32-bit instruction to the code, it has 

to break that instruction into two 16-bit half-words and write the two half-words 

separately in order to avoid a Data-Alignment exception. It is essential for the register 

manager to choose an appropriate register if the emitter attempts to generate 16-bit 

instructions. The JIT writer can set up four register sets (CVMCPU_PHI_REG_SET, 

CVMCPU_BUSY_SET, CVMCPU_NON_VOLATILE_SET, and 

CVMCPU_VOLATILE_SET) for the register manager to choose appropriate registers.  

We may tune the four register sets to emit as many 16-bit instructions as possible. For 

certain patch points, we must be sure that patch instruction has the same size with the 

original instruction. 
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3.1 Multiple Fixed-width ISA Emitter 
Introduction 

While JCS rules select one instruction, the emitter will be called to emit the 

instruction to code buffer. The Multiple Fixed-width ISA Emitter adds a test 

(“16-bitable” in Figure 3.1(b)) to determine if the emitter can emit 16-bit instruction. 

If so, it will translate the 32-bit instruction to the corresponding 16-bit instruction.  

 

(a) (b) 

Figure 3.1 (a) Original emitter.  (b) Adding the “16-bitable” test. 

3.1.1 Determine Instruction 
In Andes ISA, there are six formats for 16-bit instructions---333–form, 45-form, 

37-form, 38-form, 8-form, and 55-form. (333-form and 45-form are the two most 

popular formats for 16-bit instructions.) Some 32-bit instructions even do not have the 
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16-bit counterparts. The emitter first needs to determine if a 16-bit instruction can be 

issued. Figures 3.2 (a) is the flow chart for testing the 333-form and Figure 3.3 (a) is 

the flow chart for testing the 45-form. For example, in Figure 3.2 (b), an add 

instruction has registers R0 and R1 and the immediate value imm. R0 and R1 fall in 

the ranger for registers in an addi333 instruction. Furthermore, if the immediate value 

is no more than 7 (0x111), this instruction will be translated into a 16-bit instruction in 

the 333-form. 

 

(a) (b) 

Ex:

((R0 |R1| imm)>>3) 

Addi    R0 R1 imm 

Addi333  R0 R1 imm 

Figure 3.2 (a) Flow chart of testing the 333-form. (b) An example of Addi333. 

When the immediate value is larger than 7, the emitter will try other forms, say 

the 45-form (4 bits for specifying a register and 5 bits for specifying the immediate 

value.) Figure 3.3 (a) shows the flow chart for testing if the 45-form can be used. 

There are other forms for 16-bit instructions. The emitter will try each form in turn. 

When no 16-bit form is applicable, a 32-bit instruction will be issued instead.  

3.1.2 Translating Registers 
A register may be encoded in 3, 4, or 5 bits according to the selected instruction 

formats. The encoding is shown in Table 3.1. For example, R17 is encoded as 10001 

(T1) in 5 bits and as 1101 (H13) in 4 bits. 
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(a) (b) 

Ex:
R16 == R16 

(31 >>5) ==0 

15<R16 <20 

Addi     R16 R16 31 

Addi45    H12 H12  31 

Figure 3.3 (a) Flow chart for testing the 45-form. (b) An example of ADDI45. 

When the emitter wants to emit a 16-bit instruction, the emitter will test if the 

register assigned by the register manager could be used in a 16-bit instruction. For 

example, the 333-form is restricted to use registers R0 through R7 while the 45-form 

can use only registers R0-R11 and R16-R19 in the 4-bit field. (There is no restriction 

for the 5-bit field since 5 bits are enough to address any of the 32 general-purpose 

registers.) If the assigned register can fit in a 16-bit instruction form, then the emitter 

will translate the encoding of the register according to Table 3.1. This means that 

R16-R19 will be translated into H11-H15. The flowchart for the translation is shown 

in Figure 3.4 (a). The used registers of different mode are shown in Figure 3.5. 
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Table 3.1. The difference of two kinds of register set. 

Register 32/16 32/16-bit (5 bits) 16-bit (4 bits) 

R0  A0 H0 

R1  A1 H1 

R2  A2 H2 

R3  A3 H3 

R4  A4 H4 

R5  A5 H5 

R6  S0 H6 

R7  S1 H7 

R8  S2 H8 

R9  S3 H9 

R10  S4 H10 

R11 S5 H11 

R16 T0 H12 

R17 T1 H13 

R18 T2 H14 

R19 T3 H15 

 

 

 

(a) (b) 

R16 -4  =  H12

Ex:

Addi     R16  R16  31 

 
Addi45    H12  H12   31 

Figure 3.4 (a) Flow chart for translating register encoding. (b) An example of 
register translation. 
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r0 
r1 
r2 
r3 
r4 
r5 
r6 
r7 
r8 
r9 
r10 
r11 
r12 
r13 
r14 
r15 

a0 
a1 
a2 
a3 
a4 
a5 
s0 
s1        333mode  

a0 
a1 
a2 
a3 
a4 
a5 
s0 
s1        333mode  

r0 
r1 
r2 
r3 
r4 
r5 
r6 
r7 
r8 
r9 
r10 
r11 
r12 
r13 
r14 
r15 

 
s2 
s3 
s4 
s5        45mode 
s6 
s7 
s8 
ta 

r16 
r17 
r18 
r19 
r20 
r21 
r22 
r23 
r24 
r25 
r26 
r27 
r28 
r29 
r30 
r31 

t0 (h12) 
t1 (h13) 
t2 (h14) 
t3 (h15)   45mode 
t4 
t5 
t6 
t7 
t8 
t9 
p0 

p1 
fp 
gp 
lp 
sp  

Figure 3.5 Register range of 333 mode and 45 mode Figure 3.5 Register range of 333 mode and 45 mode 

3.1.3 Instruction Alignment 3.1.3 Instruction Alignment 
In Andes, there is a restriction that the memory address accessed by a 32-bit 

memory instruction (Load/Store) must be word-aligned, that the least significant two 

bits of the address must be 0. When the emitter wants to place a 32-bit instruction into 

the code buffer, it will break the instruction into two half-words. Each half-word is 

written into the code buffer separately. This is explained in Figure 3.6. 

In Andes, there is a restriction that the memory address accessed by a 32-bit 

memory instruction (Load/Store) must be word-aligned, that the least significant two 

bits of the address must be 0. When the emitter wants to place a 32-bit instruction into 

the code buffer, it will break the instruction into two half-words. Each half-word is 

written into the code buffer separately. This is explained in Figure 3.6. 

3.2 Register Setting 3.2 Register Setting 
A JIT writer may adjust the register setting to emit more 16-bit instructions. 

There are two places in the JIT that can be adjusted: the VM register set and the four 

code generator register sets. 

A JIT writer may adjust the register setting to emit more 16-bit instructions. 

There are two places in the JIT that can be adjusted: the VM register set and the four 

code generator register sets. 
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Ins32-1 Ins32-2 

           

Figure 3.6 Avoid the Data Alignment Check exceptions when writing a 32-bit 
instruction into code buffer. 

 

3.2.1 The VM Register Set 
The VM register set contains four special registers: JSP_REG, JFP_REG, 

CHUNKEND_REG, and CVMCPU_EE_REG.  They must be mapped to Andes 

registers properly. In our emitter, we use register FP for JFP_REG because it can use 

the special 37-form instructions. 

Table 3.2. VM Register Setting 

VM Register Register 

JSP_REG R11 

JFP_REG FP  

CHUNKEND_REG S2 

CVMCPU_EE_REG S3 

 Ins 32 
Ins 32 
Ins 32 

Code Buffer 

Ins 16 

Ins32-1 Ins32-2 

Data Alignment 
Check exception!! 

 Ins 16
Ins32-1 Ins32-2 

Ins 32 Ins32-1 
Ins32-2

Code Buffer 
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3.2.2 Code Generator Register Set 
There are four code generator register sets: CVMCPU_PHI_REG_SET, 

CVMCPU_BUSY_SET, CVMCPU_NON_VOLATILE_SET, and 

CVMCPU_VOLATILE_SET in the header file jitrisc_cpu.h. The four register sets are 

used by the register manager to set up CVMRM_ANY_REG_SET, 

CVMRM_SAFE_SET, and CVMRM_UNSAFE_SET. (The CVMRM_EMPTY_SET 

is always an empty set.) When the JCS rules requests for a register, the register 

manager will select a register out of one of these four register sets. We wish to 

distribute the registers that can be used to generate 16-bit instructions into these four 

sets so that such a register is available when JCS rules requests for a register. The best 

distribution should be determined by extensive benchmarks. Currently, the 

distribution is shown in Table 3.3. 

The register manager sets up the four sets CVMRM_ANY_REG_SET, 

CVMRM_SAFE_SET, CVMRM_UNSAFE_SET, and CVMRM_EMPTY_SET as 

follows. The CVMRM_EMPTY_SET is always an empty set. The 

CVMRM_ANY_REG_SET includes all registers except those in the 

CVMCPU_BUSY_SET. The CVMRM_SAFE_SET includes all the registers that are 

in both CVMCPU_NON_VOLATILE_SET and CVMRM_ANY_SET. Equivalently, 

the CVMRM_SAFE_SET includes all the registers that are in 

CVMCPU_NON_VOLATILE_SET but not in CVMCPU_BUSY_SET. The 

CVMRM_UNSAFE_SET includes all the registers that are in both CVMCPU_ 

VOLATILE_SET and CVMRM_ANY_SET. Equivalently, the 

CVMRM_UNSAFE_SET includes all the registers that are in CVMCPU_ 

VOLATILE_SET but not in CVMCPU_BUSY_SET. Table 3.4 summarizes the above 

specification in the register manager. 
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Table 3.3. RISC_CPU Register Setting 

RISC_CPU Register Set Register 

CVMCPU_PHI_REG_SET S1, S4, S5 ,S6 ,S7 ,S8 ,GP 

CVMCPU_BUSY_SET TA, P0, P1, FP 

CVMCPU_NON_VOLATILE_SET S0-S8, FP, GP 

CVMCPU_VOLATILE_SET ALL & 

~CVMCPU_NON_VOLATILE_SET 

Table 3.4. Register Manager register setting 

JIT RegMan  Register Set Register set 

CVMRM_BUSY_SET CVMCPU_BUSY_SET |             

1U<<CVMCPU_SP_REG | 

1U<<CVMCPU_JSP_REG | 

1U<<CVMCPU_JFP_REG |      

CVMRM_CHUNKEND_BUSY_BIT |   

CVMRM_CVMGLOBALS_BUSY_BIT 

|  CVMRM_EE_BUSY_BIT |         

CVMRM_CP_BUSY_BIT |            

CVMRM_GC_BUSY_BIT 

CVMRM_ANY_REG_SET ALL &~(BUSY_SET) 

CVMRM_SAFE_SET (CVMCPU_NON_VOLATILE_SET & 

CVMRM_ANY_SET) 

CVMRM_UNSAFE_SET (CVMCPU_VOLATILE_SET & 

CVMRM_ANY_SET) 

CVMRM_EMPTY_SET Always empty set 
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3.3 Instruction Patch and Adjust 
While the emitter emits a forward branch or jump to glue code, the address field 

in this instruction will be patched later. Since we do not know the size of the actual 

offset in the instruction, to be on the safe side, we always use 32-bit instructions for 

forward branch or jump to glue code. 

Furthermore, the instructions for null check may also need additional patches. It 

is discussed in Sections 3.3.3. 

3.3.1 Forward Branch 
When the emitter emits a branch instruction with unknown offset, it will always 

issue a 32-bit instruction. The address field in this instruction will be patched later 

when the address of the branch target is known. Figure 3.7 shows that patch a forward 

branch instruction. 

3.3.2 Glue Code 
Sometimes the program has to calculate certain special values when it reaches a 

particular instruction the first time. (Ex. ResolveMethodTableOffsetGlue) The emitter 

will issue a “Jarl .glue” instruction to force the program to jump to the glue code.  

The special value is calculated in the glue code.  At the end of the glue code, the 

calculated vale will be written to the word immediately following the “Jarl” 

instruction and the “Jarl” instruction is changed to a “J .skip” instruction. Having 

done that, the program continues execution following the “Jarl” instruction. Note that 

the glue code is executed only the once during program execution because it is a 

waste of time to calculate the same special value more than once.  Changing the 

“Jarl” instruction to “J .skip” instruction can prevent the glue code being executed 
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again. Figure 3.8 shows the execution of glue code. Note that the “Jarl” instruction is 

changed to a “J .skip” instruction after the glue code is executed. A variation of glue 

code does not compute a special value; however, it is also executed only once—the 

first time it is encountered. This variation of glue code also needs patching as 

described above. 

Due to the existing implementation of glue code (which was written in the 

assembly language for the 32-bit platform and always patched instructions at 

word-alignment), whenever a “Jarl” instruction may be patched by glue code, that 

“Jarl” instruction must be word-aligned. In this case, a two-byte “nop16” instruction 

might be inserted before the “Jarl” instruction in order to satisfy the requirement of 

word-alignment. This is because, in the existing glue code, instructions are always 

assumed to be word-aligned while in our target platform (Andes) instructions may be 

half-word aligned. In the future, we plan to rewrite glue code. Then the two-byte 

“nop16” instructions will become unnecessary. On the other hand, if the “Jarl” 

instruction will not be patched by the glue code, we can choose either a 16-bit (for 

half-word aligned) or a 32-bit (for word aligned) “Jarl” instruction. Note that the four 

reserved bytes (i.e., “.word ____”) following the “Jarl” instruction must always be 

word-aligned. The flow chart is shown in Figure 3.9. The list is shown in Table 3.5.  

 

3.3.3 Trap-based Null Checks 
Every time VM references an new object, the object must be check is null or not. 

While JIT wants to do null checks, a null-pointer trap will occurs, the return address 

(which is the address of the instruction immediately following the trapping instruction) 

will be saved in the link-pointer register (LP). If the trapping instruction is a 16-bit 

instruction, the return address is 2 plus the address of the trapping instruction. On the 
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other hand, if the trapping instruction is a 32-bit instruction, the return address is 4 

plus the address of the trapping instruction. In Andes, an instruction is 16-bit if and 

only if the first (leftmost) bit of the instruction is 1. The flow chart is shown in Figure 

3.10.  

   

translation in this thesis. In the next chapter, we will use benchmarks to verify the 

Branch endPC 
 Jump 
   . 
   . 

StartPc: 
Address Instruction 

Branch offset StartPc: 
Address Instruction 

CVMJITcbufPushFixup StartPc 
(Add patch point) 

` 

Figure 3.8 Patch a forward branch instruction 

3.4 Summary 
Our emitter will issue mixed 16-bit and 32-bit instructions in an attempt to 

reduce the resulting code size. Due to the alignment requirement in the existing JIT 

implementation, the emitter has to take care of the alignment of the issued instructions, 

adding “Nop” instructions when necessary. Because only some, but not all, registers 

can be used in 16-bit instructions, register allocations must be done carefully in order 

to generate more 16-bit instructions. We propose a simple heuristic for instruction 

EndPc: Branch endPC
CVMJITcbufPop
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usefulness of our heuristic for instruction translation. 

   Jarl    .Glue 
.word    ________ 
.skip 

.G

 

 

e execution of glue code. Yet another kind of glue code does not need Figure 3.9 Th

 

patching the “Jarl” instructions. It functions like a subroutine. 

 

Figure 3.10 Adjust glue code flow chart 

 

    J   
.word 1234567 
.skip 

.Glue  .. 
    .. 
    ..  
    ..  
    ..  

 .skip 
    0

lue  .. 
    .. 
    ..  
    ..  
    ..  
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Table 3.5 Glue code list. 

Case 1 : Only need .word after the call to be aligned. 
Case 2 : Only jal/jral need be p
Case 3 : Not only .word after the call need to

fter the call need to be aligned, but 

Case 1 

atch at runtime. 
 be aligned, but also jal/jral need to be 

patched at runtime.. 
Case 4 : Not only call instruction and .word a

also the length of two instructions after the call need to be known at 
compilation time.  

Only need word-alignment 

 CVMCCMruntimeLookupInterfaceMBGlue 

 CVMCCMruntimeCheckCastGlue 

 CVMCCMruntimeInstanceOfGlue 

Case 2 Only be patch 

 CVM lue CCMruntimeRunClassInitializerG

Case 3 Need Word-alignment and patched 

 CVMC itGlue CMruntimeResolveNewClassBlockAndClin

 CVMCCMruntimeResolveGetstaticFieldBlockAndClinitGlue 

 C  VMCCMruntimeResolvePutstaticFieldBlockAndClinitGlue

 CVMCCMruntimeResolveStaticMethodBlockAndClinitGlue 

 CVMCCMruntimeResolveClassBlockGlue 

 CVMCCMruntimeResolveArrayClassBlockGlue 

 CVM ue CCMruntimeResolveGetfieldFieldOffsetGl

 CVMCCMruntimeResolvePutfieldFieldOffsetGlue 

 CVMCCMruntimeResolveSpecialMethodBlockGlue 

 CVMCCMruntimeResolveMethodBlockGlue 

Case 4 Special Case 

 CV e MCCMruntimeResolveMethodTableOffsetGlu
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16bit instruction 16bit instruction   

32bit instruction-1 16bit instruction 

32bit instruction-2 32bit instruction-1 

Figure 3.11 Determine the return address of a trap-based null check.  

16bit instruction 

Last  

Instruction

 

 

 32bit instruction-2 
(Ipc) 

+2 uc_mcontext.nds32_lp uc_mcontext.nds32_lp +4 
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Chapter 4   

Experiments Results and Analyses 

4.1 Experimental Framework 

In this section, we will show some experimental results of the Java JIT Compiler 

for 32bit-16bit Mixed Instruction Set Architectures. Experiments for this study were 

performed at the Andes ADP-AG101 platfrom at 400Mhz. (Figure 4.1) First, we 

design a lot experiment program for 16bit-32bit emitter to verify correctness. They 

test single target function of emitter Ex. Add operation. Next , we run a global test 

case: Testclass. Testclass provide by Sun Microsystems. Which Correctness are 

verified we run a lot of benchmark to collect date like code size and score 

(performance). The benchmarks are Embedded CaffineMark 3.0[19], CLDC 

Evaluation Kit and Grinder Bench[20]. Their program are shown in table 4.1, 4.2 and 

4.3.  

Table 4.1 Embedded CaffineMark 3.0 
Name Brief Description 

Sieve The classic sieve of Eratosthenes finds prime numbers. 
Loop The loop test uses sorting and sequence generation as to 

measure compiler optimization of loops.  
Logic Tests the speed with which the virtual machine executes 

decision-making instructions. 
Method The Method test executes recursive functional calls to see how 

well the VM handles method calls. 
String String Comparison and concatenation. 
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Table 4.2 CLDC Evaluation Kit 

Name Brief Description 
Richards Richards is a benchmark that simulates the task dispatcher in the 

kernel of an operating system. 
DeltaBlue DeltaBlue solves one-way constraint systems. 
Queens A solver of the n-queens problem. It is a classical problem used to 

illustrate several techniques such as general search and 
backtracking. 

Image 
Processing 

The Image Processing benchmark reads an image file and 
performs various transformations on it, such as Sobel, threshold, 
3x3 convolver, and so forth. 

 

Table 4.3 Grinder Bench 

Name Brief Description 
Chess A complete chess playing engine that is used to determine a set of 

chess moves. 
Crypto This suite of algorithms measures the performance of Java 

implementations in cryptographic transactions. 

kXML Measures XML parsing and/or DOM tree manipulation. 

PNG Shows how fast a Java implementation can decodes a PNG photo 
image of a typical size used on a mobile phone. 
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Figure 4.1 Andes AG101 Main Board  
 

 

4.2 Correctness 

Correctness is verified by SUN test class. It test 411 tests includes Null check, 

GC check, float number and others. 
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4.3 Compile Time 

Figure 4.2 is the compiled time of two version of JIT. We can observe that the 

compile time between 32-only and mixed-ISA only has few increase. It mean low 

overhead of compile the code. 
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Figure 4.2  The compile time of benchmarks 

4.4 Code Size  

The reduce code size of the benchmark is shown in Figure 4.3. Average, we 

reduce almost 10% code size.  
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Figure 4.3  Code size of benchmarks 

4.5 Performance 

The Performance is shown in Figure 4.4. Our method decreases average 0.14%  

the performance of benchmarks. Specially, KXML program gets many performance’s 

benefit. We analysis this program. Then we observe that KXML is the biggest 

program of our benchmark and it run longer time than others small programs. For 

other benchmark programs, the performance is actually decreased. The reason is that 

these benchmark programs run only for a very short time. The additional time we 

spent on run-time compilation dominates the overall performance. For a long running 

program, reducing the code size should result in significant performance 

improvement. 
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Performance change %
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Figure 4.4  The performance of benchmarks 

4.6 Summary 

 

Our Java JIT compiler for 32bit/16bit Mixed Instruction Set Architecture 

successfully reduces code size by 10% on the average, with only slight additional 

compilation overhead. For a long running program, reducing the code size should 

result in significant performance improvement. 
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Chapter 5  

Conclusion and Future work 
This paper proposes an effectively method for reducing code size. This method is 

implemented in a Java JIT compiler. Our JIT compiler generates smaller code by 

making use of 32bit-16bit mixed instruction set than the original JIT that only uses 

32-bit instruction set. Specially, the performance of the code generated by our method 

is almost equal to that by the original JIT compiler, sometimes even better. For a long 

running program, we expect the benefit will exceed the overhead.  

There are a few slots in the code buffer that are reserved for the glue code to fill 

in appropriate offsets or modify the instructions at run time. The slots must be 

word-aligned in order to fit the existing glue code. Therefore, the emitter sometimes 

needs to add the nop instructions in the code buffer before the word-aligned slots. In 

the future, we can modify the glue code in order to remove the useless nop 

instructions. 

In the process of emitting instructions, the registers assigned by the register 

manager decide if a 16-bit instruction can be used. In the future, the register-allocation 

algorithm deserves further investigation for performance improvement. 
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