

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

32bit-16bit 混合指令集嵌入式系統

程式碼減量爪哇即時編譯器

Reducing Code Size in Java JIT Compilers

 for 32bit-16bit Mixed Instruction Set Architectures

研 究 生：呂禮君

指導教授：楊 武 博士

中 華 民 國 九 十 七 年 六 月

 1

32bit-16bit 混合指令集嵌入式系統程式碼減量

爪哇即時編譯器

Reducing Code Size in Java JIT Compilers
for 32bit-16bit Mixed Instruction Set Architectures

研 究 生：呂禮君 Student：Li-Jyun Lyu

指導教授：楊 武 博士 Advisor：Dr. Wuu Yang

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年六月

 2

32bit-16bit 混合指令集嵌入式系統程式碼減量爪哇即時編譯器

學生：呂禮君 指導教授：楊 武 博士

國立交通大學資訊科學與工程所碩士班

摘 要

隨著近年來嵌入式系統的市場快速蓬勃，嵌入式系統處理器的執行速度以相

當快的速度成長，在處理器的速度越來越快的情況下，機器執行程式的瓶頸，已

經由原先處理器的執行速度漸漸轉移到的與處理器與週邊儲存設備溝通的速

度，這主要來自於傳輸資料的速度與處理資料的速度落差所造成的處理器空轉的

情況。為使程式效能有效提昇，減少記憶體存取次數，以提昇快取成功的機率，

在效能提昇上成為一個可行且明確的方法。在嵌入式系統所使用的語言中，爪哇

程式語言基於跨平台的特性在嵌入式平台上，一直佔著重要的地位，而跨平台所

不得不付出的成本為效能上的低落，為解決此問題，將爪哇語言的 byte code

轉換成平台專屬的 machine code，藉以提昇效能的爪哇即時編譯器，為針對嵌

入式平台提昇爪哇程式語言執行效能的最佳解決方案。本篇論文修改爪哇即時編

譯器，使爪哇即時編譯器所產生的 machine code，能夠混合產生 32bit-16bit

指令，藉以有效減少程式碼的大小，以降低執行時指令快取失敗的機會，進而減

少存取記憶體的次數，以取得效能上的提昇。此外，為了更有效的漸少程式碼，

我們運行了一連串的實驗，針對 VM 處理器的特殊指定暫存器配置，及 Register

Set 的設定調整。透過這些實驗，可以取得各種配置所能得到的程式碼減量情

形，並探討減量所帶來的優化效應，如程式碼大小與程式執行效率之間的變化關

西。實驗結果顯示，我們的方法平均可以減少百分之十左右的程式碼大小，同時

 i

幾乎沒有對效能造成負擔，當執行較大型的程式時，甚至能夠達到提昇效能的目

的。

關鍵字：爪哇即時編譯器、程式碼減量、32bit-16bit 混合固定長度指令集

架構

 ii

Reducing Code Size in Java JIT Compilers for 32bit-16bit Mixed

Instruction Set Architectures

Student: Li-Jyun Lyu Advisor: Dr. Wuu Yang

Institute of Computer Science and Engineering

National Chiao Tung University

ABSTRACT

In recent years, because the market of embedded systems develops quickly, the

process speed of embedded systems had rapidly grown. As the processors become

faster and faster, the bottleneck of program execution shifts to the communication

between CPU and the main memory. The main reason is the increasing gap between

CPU speed and memory speed. Reducing code size may potentially reduce the

number of memory accesses (by increasing cache hit ratio) and becomes an effective

method to improve CPU performance. For this reason, new CPU architectures provide

both 16-bit and 32-bit instructions. We developed a new method that can generate a

mixture of 16-bit and 32-bit instructions. This method is implemented and tested in a

Java just-in-time compiler of a Java virtual machine for the Andes platform. Our

experiment shows that the code size can be reduced 10% at very little extra overhead

(only 0.14%). The performance improvement for a long-running program can be quite

significant.

Keywords: JIT compiler, reduce code size, 32bit-16bit Mixed Instruction Set

Architectures

 iii

ACKNOWLEDGEMENTS

我誠摯的感謝我的指導教授楊武博士在這兩年的研究時光，不斷的指導我的

研究，協助我發展完成這篇論文。老師熱情的教學熱和充分的耐心，不單單幫助

我在學業上的進步，同時令我個人全方面的成長。同時感謝產學合作計畫的徐慰

中教授及單智君教授在研究方面的指引，老師充滿建設性的建議和討論，令我的

論文大幅增加它的價值。感謝口試委員楊朝棟教授在論文上的建議，教授們對研

究嚴謹的態度是我學習的榜樣。

另外感謝陳裕生學長在論文發展過程中的指導及程式上的協助，由於學長的

指導使我的論文更加完美。感謝沈柏曄學長，在實驗上的協助及指導，令我在實

驗的過程中順利的完成收集資料。同時感謝「程式語言與系統實驗室」的同學、

顏子軒同學及蔡雙圓同學在這段時間的砥礪，有建設性的討論、建議和幫助。

最後，我要感謝我的父母及姊姊的支持，關心和照顧，如果我能有一點點微

小的成就，都是來自於他們，謹將這篇論文獻給我心愛的家人。

 iv

CONTENTS
摘 要...i
ABSTRACT... iii
ACKNOWLEDGEMENTS..iv

LIST OF FIGURES ...vii

LIST OF TABLES.. viii

Chapter 1 Introduction..1

1.1 Motivation...1
1.2 Related Studies ...2
1.3 Propose Approach ..3
1.4 Contribution ...4
1.5 Synopsis...5

Chapter 2 Java Just-In-Time compiler and Andes 32bit-16bit Instruction Set
Architectures 6

2.1 CVM Internals ...6
2.1.1 JIT Front End...7
2.1.2 JIT Back End..8
2.2 ANDES Instruction Set Architectures..10
2.2.1 General Purpose Register..11
2.2.2 The Andes Instruction Set ...11

Chapter 3 The Multiple Fixed-width ISA Emitter..15

3.1 Multiple Fixed-width ISA Emitter Introduction.................................16
3.1.1 Determine Instruction ...16
3.1.2 Translating Registers ...17
3.1.3 Instruction Alignment..20
3.2 Register Setting ..20
3.2.1 The VM Register Set..21
3.2.2 Code Generator Register Set ..22
3.3 Instruction Patch and Adjust ..24
3.3.1 Forward Branch...24
3.3.2 Glue Code ...24
3.3.3 Trap-based Null Checks ..25

 v

3.4 Summary...26

Chapter 4 Experiments Results and Analyses ...30

4.1 Experimental Framework ...30
4.2 Correctness ...32
4.3 Compile Time ...33
4.4 Code Size...33
4.5 Performance ...34
4.6 Summary...35

Chapter 5 Conclusion and Future work ..36

References...37

 vi

LIST OF FIGURES
Figure 1.1 Analysis of translatable instruction. ...3
Figure 1.2 Generating mixed code method..4
Figure 2.1 Java program execute ...7
Figure 2.2 Frontend..8
Figure 2.3 An example of IR..8
Figure 2.4 Backend ..9
Figure 2.5 An example of a JCS rule ...9
Figure 2.6 Set Register Set...10
Figure 2.7 JCS rule calls emitter to emit native code ..11
Figure 3.1 (a) Original emitter. (b) Adding the “16-bitable” test..............................16
Figure 3.2 (a) Flow chart of testing the 333-form. (b) An example of Addi333.17
Figure 3.3 (a) Flow chart for testing the 45-form. (b) An example of ADDI45.18
Figure 3.4 (a) Flow chart for translating register encoding. (b) An example of register

translation...19
Figure 3.5 Register range of 333 mode and 45 mode ..20
Figure 3.6 Avoid the Data Alignment Check exceptions when writing a 32-bit

instruction into code buffer. ...21
Figure 3.7 Patch a forward branch instruction...26
Figure 3.8 The execution of glue code. Yet another kind of glue code does not need

patching the “Jarl” instructions. It functions like a subroutine.27
Figure 3.9 Adjust glue code flow chart..27
Figure 3.10 Determine the return address of a trap-based null check.29
Figure 4.1 Andes AG101 Main Board ...32
Figure 4.2 The compile time of benchmarks ..33
Figure 4.3 Code size of benchmarks...34
Figure 4.4 The performance of benchmarks ...35

 vii

LIST OF TABLES
Table 2.1 Andes General Purpose Registers ..12
Table 2.2 Add/Sub Instruction ...13
Table 2.3 Move instruction ..13
Table 2.4 Shift Instruction..13
Table 2.5 Bit Filed Mask Instruction ...13
Table 2.6 Branch and Jump Instruction ...13
Table 2.7 Load/Store Instruction..14
Table 2.8 Compare and Branch Instruction ...14
Table 3.1. The difference of two kinds of register set..19
Table 3.2. VM Register Setting..21
Table 3.3. RISC_CPU Register Setting ...23
Table 3.4. Register Manager register setting ...23
Table 3.5 Glue code list. ..28
Table 4.2 CLDC Evaluation Kit...31
Table 4.3 Grinder Bench ..31

 viii

Chapter 1

Introduction
In recent years, because the market of embedded systems develops quickly, the

speed of embedded processor had rapidly grown. The speed of the processor is faster

and faster, the bottleneck of program execution switches from processor speed to I/O

speed, that is, the speed with a peripheral equipment communicates with a central

processor. The main reason is that the difference in speed between transfer of data and

handle of data that make processor idle. So reducing code size to decrease cache

misses becomes an attractive approach to improve overall performance. We present a

JIT compiler for processors with multiple fixed-width instructions. It will effectively

reduce code size without undue overhead and will improve the performance of the

generated code.

1.1 Motivation

Because embedded systems have many different instruction-set architectures

(ISA), the Java language[1][2] becomes important for embedded systems due to its

platform independence. But, platform-independence comes with serious performance

penalty. To mitigate the performance penalty, Java VM proposes the just-in-time

compiler architecture[3][4][5], which executes the target-machine code directly for

improving performance.

 Some RISC processors, such as ARM[6][7], MIPS[8] and ANDES[9][10],

support the 32-bit/16-bit multiple fixed-width instruction sets. In this domain, the

16-bit ISA is usually targeted at reduced code size and lower power consumption.

 1

Some of these RISC processors, such as MIPS, requires a mode-switching instruction

to switch between the 16-bit and 32-bit modes. This results in overhead at run time.

On the other hand, some other processors, such as ANDES, do not need the

mode-switch instructions. 16-bit and 32-bit instructions can mix freely in the

program.

We present a new code generator for a mixed-instruction JIT in this thesis. Our

aim is to reduce the size and to improve the performance of the generated code.

Furthermore, the code generator itself is quite efficient. Our target is ANDES

32-bit/16-bit ISA, which has the following features: (1) there is no mode-change

instructions; (2) the operation of the 16-bit instructions almost reflective to 32-bit

instructions. Almost every 32-bit instruction can be mapped by a suitable 16-bit

instruction. It increases the probability of instruction replacement.

1.2 Related Studies

In the domain of reduce code size, using 16-bit instruction set like Thumb must

use mode change instruction to mix instruction between 32-bit instruction and 16-bit

instruction and has some performance cost. Another disadvantage for the 16-bit

instruction set is that fewer registers are available in the 16-bit mode. This will add

additional Load/Store instructions.. To balance code size and performance, Lee, S.

and Lee, J. proposed a method which is first compile code to 16-bit instruction set.

Next, a selected subset of basic block are compiled to 32-bit instruction set. They

profile or WCET(worst-case execution time) analysis to decide mixed instruction

code.[11-18] Their method incurs much compilation time. For this reason, it is not

suitable for a JIT compiler.

 2

1.3 Propose Approach

There are two issues in our study. First, a complex method is not acceptable

because it will incur much compilation time, which is part of the total running time.

Second, compiling with the 16-bit instruction set will generate more instructions than

with the 32-bit instruction set. (However, a 16-bit instruction is only a half (in size) of

a 32-bit instruction.) Increasing the number of instructions will decrease the overall

performance. We analyze compiled 32-bit code in our benchmarks. We find a lot of

opportunities for translating 32-bit instructions into 16-bit counterparts. To be more

precise, almost 80% instructions can be translated into 16-bit equivalents. This

observation motivates us to propose an efficient method to generate mixed code.

Figure 1.1 is Analysis of translatable instruction. Figure 1.2 is Generating mixed code

method

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Cry
pt

o.
t

Kxm
l.t

Que
en

.t

flo
at.

t

m
eth

od
.t

Delt
aB

lu
e.t

Pa
ra

lle
l.t

Rich
ar

ds
.t

lo
gi

c.t

sie
ve

.t

Im
ag

eP
ro

c.t
Pn

g.
t

ch
es

s.t

lo
op

.t

str
in

g.
t

Total Inst

Can Map to 16

Figure 1.1 Analysis of translatable instruction.

 3

Figure 1.2 Generating mixed code method

1.4 Contribution

Our experiments show that this scheme is successful to reduce code size without

too mach overhead. In addition, performance is improved. In the embedded domain,

balance between memory size and performance are discussed. This paper presents a

novel approach two points: the performance and code size which use ANDES 16-bit

ISA.

 4

1.5 Synopsis

The remainder of this thesis is organized as follows. Chapter 2 discusses Java

Just-In-Time compiler and Andes 32bit-16bit Instruction Set Architectures. In Chapter

3, we introduce the Multiple Fixed-width ISA Emitter. In Chapter 4, experiments and

the results are presented and be analyzed. In Chapter 5, the conclusion and future

work are given.

 5

Chapter 2

Java Just-In-Time compiler and
Andes 32bit-16bit Instruction Set
Architectures

As the Java language becomes more and more important for programming

embedded systems, translation at the byte-code level has been proposed to increase

program performance. Java VM proposes a just-in-time compiler architecture, which

executes target-machine code for improve performance.

ANDES ISA proposes a special architecture which uses mixed-mode instructions

without the need of mode-switching instructions. Its 16-bit ISA almost reflects to

32-bit ISA, but it has an alignment restriction: 32-bit memory instruction reference

object that must be word-alignment.

In our research, our target is the ANDES processor. We port an existing JVM

JIT to the ANDES platform and then modify the code emitter so that it can

generate16-bit as well as 32-bit instructions. We use several benchmark tests to

measure the performance of the code emitter.

2.1 CVM Internals

The virtual machine we use the Connected Device Configuration Hotspot

Implementation (CVM) version of JAVA VM, which is highly optimized for

resource-constrained devices, such as consumer electronic products and embedded

 6

devices. Portability is the most important benefits of the Java system design. It

includes a dynamic compiler, which is also called a just-in-time compiler (JIT). While

a method in the Java program has been used frequently enough, JIT converts the

method’s bytecodes to native code during execution time to improve future

performance. This operation has two passes: First, the front end converts Java

bytecode to an intermediate representation (IR); Second, the back end converts the IR

to native code. The architecture is shown in Figure 2.1.

Figure 2.1 Java program execute

2.1.1 JIT Front End

The front end is portable for different execution environments. It converts the

bytecode to an intermediate representation (IR). Figure 2.3 is an example of IR.

 7

Figure 2.2 Frontend

2.1.2 JIT Back End

The back end converts IR to native instructions. An IR tree is parsed by a parser.

The parser

Figure 2.3 An example of IR.

, which is produced by the Java Code Select (JCS) tool at build time,

performs pattern matching for tree-based data structures in which the patterns are

specified as a set of JCS rules. These rules are translated into C source code and

initialized data structures. Code generation is done with rule-based pattern matching

on trees. When there are multiple possibilities, JCS choose the rules with the least

x = y + 1000;

Translate to IR Tree

Compile to bytecodes

iload y
sipush 1000
iadd
istore x

ASSIGN

LOCAL(X) ADD

LOCAL(Y) CONSTANT (1000)

Byte

Code

IR Generator

Frontend

Method
 IR

 8

static costs. Figure 2.5(A) is an example of JCS rules.

Method

IR

Register

Manager

Emitter

Backend

 Method

Machine

Code

JCS

Parser

Figure 2.4 Backend

Figure 2.5 An example of a JCS rule

The first part of this rule is the result and the second part is a pattern. They are

used for pattern matching. For instance, the subtree in Figure 2.5 (B) will be

matched by the JCS rule in Figure 2.5 (C). If a subtree can be matched in multiple

ways, the rule with the lowest static cost will be selected. The static cost is specified

as the third part of a rule. After a match is found, the fourth and the fifth parts of the

rule will be used for setting up a register set. This is shown in Figure 2.6(A). First, a

bottom-up traversal of the matched tree passes the use register set, shown in Figure

2.6(B). Second, a top-down traversal passes the accept register set, shown in Figure

2.6(C). After these two passes, the register manager knows which registers are

provided. Finally, the last part is the semantic actions which will call the code

emitter to emit native instructions. It is shown in Figure 2.7(A) and Figure 2.7(B).

 9

Figure 2.6 Set Register Set

2.2 ANDES Instruction Set
Architectures

In our system, we use the ANDES instruction set, which is a RISC-style

register-based instruction set. In Andes ISA, we may freely mix 16-bit and 32-bit

instructions without the need of mode-switching instructions. The 16-bit ISA almost

reflects the 32-bit ISA, but there is an alignment restriction: When a 32-bit

 10

instruction is written to the code buffer, the address of the memory cell in the code

buffer that will hold the instruction must be word-aligned. Otherwise, the 32-bit

instruction must be broken into two 16-bit halves. Each half is written to the code

buffer separately. A Word-Alignment exception will be thrown when we attempt to

write a 32-bit instruction at half-word alignment.

Figure 2.7 JCS rule calls emitter to emit native code

2.2.1 General Purpose Register

Andes 32-bit instructions can access thirty-two 32-bit general-purpose registers

(GPR). A 16-bit instruction’s register index can be 5 bits, 4 bits, or 3 bits in different

instruction formats. A 3-bit and 4-bit index can only access a part of the GPRs. The

3-bit and 4-bit register indices are mapped to real registers according to Table 2.1.

2.2.2 The Andes Instruction Set
In this section, we introduce the part of the Andes instruction set that is related to

our research. In Andes, the memory address accessed by a 32-bit memory instruction

has to be word-aligned. Otherwise, a Data Alignment Check exception will be

 11

generated. Table 2.2 - 2.8 are examples of which the maps of 32-bit instruction

translate to 16 bit instruction.

Table 2.1 Andes General Purpose Registers

Register 32/16-bit (5) 16-bit (4) 16-bit (3) Comments
R0 A0 H0 O0
R1 A1 H1 O1
R2 A2 H2 O2
R3 A3 H3 O3
R4 A4 H4 O4
R5 A5 H5 O5 Implied register for beqs38 and

bnes38
R6 S0 H6 O6 Saved by callee
R7 S1 H7 O7 Saved by callee
R8 S2 H8 Saved by callee
R9 S3 H9 Saved by callee
R10 S4 H10 Saved by callee
R11 S5 H11 Saved by callee
R12 S6 Saved by callee
R13 S7 Saved by callee
R14 S8 Saved by callee
R15 Ta Temporary register for assembler

Implied register for slt(s|i)45,
b[eq|ne]zs8

R16 T0 H12 Saved by caller
R17 T1 H13 Saved by caller
R18 T2 H14 Saved by caller
R19 T3 H15 Saved by caller
R20 T4 Saved by caller
R21 T5 Saved by caller
R22 T6 Saved by caller
R23 T7 Saved by caller
R24 T8 Saved by caller
R25 T9 Saved by caller
R26 P0 Reserved for Privileged-mode use.
R27 P1 Reserved for Privileged-mode use.
R28 S9/Fp Frame pointer / Saved by callee
R29 Gp Global pointer
R30 Lp Link pointer
R31 Sp Stack pointer

 12

Table 2.2 Add/Sub Instruction

32-bit instruction 16-bit instruction Special case
ADD ADD333

 ADD45
SUB SUB333

 SUB45
ADDI ADDI333

 ADDI45
 SUBI333
 SUBI45

Table 2.3 Move instruction

32-bit instruction 16-bit instruction Special case
MOVI MOVI55

ADDI/ORI MOV55 ADDI R# R# 0

Table 2.4 Shift Instruction

32-bit instruction 16-bit instruction Special case
SRAI SRAI45
SRLI SRLI45
SLLI SLLI333

Table 2.5 Bit Filed Mask Instruction

32-bit instruction 16-bit instruction Special case
ZEB ZEB333
ZEH ZEH333
SEB SEB333
SEH SEH333

ANDI XLSB33
ANDI X11B33

Table 2.6 Branch and Jump Instruction

32-bit instruction 16-bit instruction Special case
BEQ BEQS38 Branch on Equal Implied R5
BNE BNES38 Branch on Not Equal Implied R5

BEQZ BEQZ38
BNEZ BNEZ38

J J8
JR JR5

JRAL JRAL5

 13

Table 2.7 Load/Store Instruction

32-bit instruction 16-bit instruction Special case
LWI LWI450

 LWI333
 LWI37 Load Word with Implied FP

LWI.bi LWI333.bi
LHI LHI333
LBI LBI333
SWI SWI450

 SWI333
 SWI37 Store Word with Implied FP

SWI.bi SWI333.bi
SHI SHI333
SBI SBI333

Table 2.8 Compare and Branch Instruction

32-bit instruction 16-bit instruction Special case
SLTI SLTI45

SLTSI SLTSI45
SLT SLT45

SLTS SLTS45
BEQZ BEQZS8 Branch on Equal Zero Implied R15
BNEZ BNEZS8 Branch on Not Equal Zero Implied

R15

 14

Chapter 3

The Multiple Fixed-width ISA
Emitter

The Multiple Fixed-width ISA Emitter can emit 32-bit and 16-bit instructions in

any desired mixture. The register manager will assign a register to a particular

instruction and then the emitter will determine if a 16-bit instruction can be use. If

not, a 32-bit instruction will generated instead. When a 16-bit instruction is to be

generated, the register number must be converted according Table 2.1. Because, in

Andes, the memory address accessed by a 32-bit memory instruction must be

word-aligned, when the emitter wishes to write a 32-bit instruction to the code, it has

to break that instruction into two 16-bit half-words and write the two half-words

separately in order to avoid a Data-Alignment exception. It is essential for the register

manager to choose an appropriate register if the emitter attempts to generate 16-bit

instructions. The JIT writer can set up four register sets (CVMCPU_PHI_REG_SET,

CVMCPU_BUSY_SET, CVMCPU_NON_VOLATILE_SET, and

CVMCPU_VOLATILE_SET) for the register manager to choose appropriate registers.

We may tune the four register sets to emit as many 16-bit instructions as possible. For

certain patch points, we must be sure that patch instruction has the same size with the

original instruction.

 15

3.1 Multiple Fixed-width ISA Emitter
Introduction

While JCS rules select one instruction, the emitter will be called to emit the

instruction to code buffer. The Multiple Fixed-width ISA Emitter adds a test

(“16-bitable” in Figure 3.1(b)) to determine if the emitter can emit 16-bit instruction.

If so, it will translate the 32-bit instruction to the corresponding 16-bit instruction.

(a) (b)

Figure 3.1 (a) Original emitter. (b) Adding the “16-bitable” test.

3.1.1 Determine Instruction
In Andes ISA, there are six formats for 16-bit instructions---333–form, 45-form,

37-form, 38-form, 8-form, and 55-form. (333-form and 45-form are the two most

popular formats for 16-bit instructions.) Some 32-bit instructions even do not have the

 16

16-bit counterparts. The emitter first needs to determine if a 16-bit instruction can be

issued. Figures 3.2 (a) is the flow chart for testing the 333-form and Figure 3.3 (a) is

the flow chart for testing the 45-form. For example, in Figure 3.2 (b), an add

instruction has registers R0 and R1 and the immediate value imm. R0 and R1 fall in

the ranger for registers in an addi333 instruction. Furthermore, if the immediate value

is no more than 7 (0x111), this instruction will be translated into a 16-bit instruction in

the 333-form.

(a) (b)

Ex:

((R0 |R1| imm)>>3)

Addi R0 R1 imm

Addi333 R0 R1 imm

Figure 3.2 (a) Flow chart of testing the 333-form. (b) An example of Addi333.

When the immediate value is larger than 7, the emitter will try other forms, say

the 45-form (4 bits for specifying a register and 5 bits for specifying the immediate

value.) Figure 3.3 (a) shows the flow chart for testing if the 45-form can be used.

There are other forms for 16-bit instructions. The emitter will try each form in turn.

When no 16-bit form is applicable, a 32-bit instruction will be issued instead.

3.1.2 Translating Registers
A register may be encoded in 3, 4, or 5 bits according to the selected instruction

formats. The encoding is shown in Table 3.1. For example, R17 is encoded as 10001

(T1) in 5 bits and as 1101 (H13) in 4 bits.

 17

(a) (b)

Ex:
R16 == R16

(31 >>5) ==0

15<R16 <20

Addi R16 R16 31

Addi45 H12 H12 31

Figure 3.3 (a) Flow chart for testing the 45-form. (b) An example of ADDI45.

When the emitter wants to emit a 16-bit instruction, the emitter will test if the

register assigned by the register manager could be used in a 16-bit instruction. For

example, the 333-form is restricted to use registers R0 through R7 while the 45-form

can use only registers R0-R11 and R16-R19 in the 4-bit field. (There is no restriction

for the 5-bit field since 5 bits are enough to address any of the 32 general-purpose

registers.) If the assigned register can fit in a 16-bit instruction form, then the emitter

will translate the encoding of the register according to Table 3.1. This means that

R16-R19 will be translated into H11-H15. The flowchart for the translation is shown

in Figure 3.4 (a). The used registers of different mode are shown in Figure 3.5.

 18

Table 3.1. The difference of two kinds of register set.

Register 32/16 32/16-bit (5 bits) 16-bit (4 bits)

R0 A0 H0

R1 A1 H1

R2 A2 H2

R3 A3 H3

R4 A4 H4

R5 A5 H5

R6 S0 H6

R7 S1 H7

R8 S2 H8

R9 S3 H9

R10 S4 H10

R11 S5 H11

R16 T0 H12

R17 T1 H13

R18 T2 H14

R19 T3 H15

(a) (b)

R16 -4 = H12

Ex:

Addi R16 R16 31

Addi45 H12 H12 31

Figure 3.4 (a) Flow chart for translating register encoding. (b) An example of
register translation.

 19

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13
r14
r15

a0
a1
a2
a3
a4
a5
s0
s1 333mode

a0
a1
a2
a3
a4
a5
s0
s1 333mode

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13
r14
r15

s2
s3
s4
s5 45mode
s6
s7
s8
ta

r16
r17
r18
r19
r20
r21
r22
r23
r24
r25
r26
r27
r28
r29
r30
r31

t0 (h12)
t1 (h13)
t2 (h14)
t3 (h15) 45mode
t4
t5
t6
t7
t8
t9
p0

p1
fp
gp
lp
sp

Figure 3.5 Register range of 333 mode and 45 mode Figure 3.5 Register range of 333 mode and 45 mode

3.1.3 Instruction Alignment 3.1.3 Instruction Alignment
In Andes, there is a restriction that the memory address accessed by a 32-bit

memory instruction (Load/Store) must be word-aligned, that the least significant two

bits of the address must be 0. When the emitter wants to place a 32-bit instruction into

the code buffer, it will break the instruction into two half-words. Each half-word is

written into the code buffer separately. This is explained in Figure 3.6.

In Andes, there is a restriction that the memory address accessed by a 32-bit

memory instruction (Load/Store) must be word-aligned, that the least significant two

bits of the address must be 0. When the emitter wants to place a 32-bit instruction into

the code buffer, it will break the instruction into two half-words. Each half-word is

written into the code buffer separately. This is explained in Figure 3.6.

3.2 Register Setting 3.2 Register Setting
A JIT writer may adjust the register setting to emit more 16-bit instructions.

There are two places in the JIT that can be adjusted: the VM register set and the four

code generator register sets.

A JIT writer may adjust the register setting to emit more 16-bit instructions.

There are two places in the JIT that can be adjusted: the VM register set and the four

code generator register sets.

 20

Ins32-1 Ins32-2

Figure 3.6 Avoid the Data Alignment Check exceptions when writing a 32-bit
instruction into code buffer.

3.2.1 The VM Register Set
The VM register set contains four special registers: JSP_REG, JFP_REG,

CHUNKEND_REG, and CVMCPU_EE_REG. They must be mapped to Andes

registers properly. In our emitter, we use register FP for JFP_REG because it can use

the special 37-form instructions.

Table 3.2. VM Register Setting

VM Register Register

JSP_REG R11

JFP_REG FP

CHUNKEND_REG S2

CVMCPU_EE_REG S3

 Ins 32
Ins 32
Ins 32

Code Buffer

Ins 16

Ins32-1 Ins32-2

Data Alignment
Check exception!!

 Ins 16
Ins32-1 Ins32-2

Ins 32 Ins32-1
Ins32-2

Code Buffer

 21

3.2.2 Code Generator Register Set
There are four code generator register sets: CVMCPU_PHI_REG_SET,

CVMCPU_BUSY_SET, CVMCPU_NON_VOLATILE_SET, and

CVMCPU_VOLATILE_SET in the header file jitrisc_cpu.h. The four register sets are

used by the register manager to set up CVMRM_ANY_REG_SET,

CVMRM_SAFE_SET, and CVMRM_UNSAFE_SET. (The CVMRM_EMPTY_SET

is always an empty set.) When the JCS rules requests for a register, the register

manager will select a register out of one of these four register sets. We wish to

distribute the registers that can be used to generate 16-bit instructions into these four

sets so that such a register is available when JCS rules requests for a register. The best

distribution should be determined by extensive benchmarks. Currently, the

distribution is shown in Table 3.3.

The register manager sets up the four sets CVMRM_ANY_REG_SET,

CVMRM_SAFE_SET, CVMRM_UNSAFE_SET, and CVMRM_EMPTY_SET as

follows. The CVMRM_EMPTY_SET is always an empty set. The

CVMRM_ANY_REG_SET includes all registers except those in the

CVMCPU_BUSY_SET. The CVMRM_SAFE_SET includes all the registers that are

in both CVMCPU_NON_VOLATILE_SET and CVMRM_ANY_SET. Equivalently,

the CVMRM_SAFE_SET includes all the registers that are in

CVMCPU_NON_VOLATILE_SET but not in CVMCPU_BUSY_SET. The

CVMRM_UNSAFE_SET includes all the registers that are in both CVMCPU_

VOLATILE_SET and CVMRM_ANY_SET. Equivalently, the

CVMRM_UNSAFE_SET includes all the registers that are in CVMCPU_

VOLATILE_SET but not in CVMCPU_BUSY_SET. Table 3.4 summarizes the above

specification in the register manager.

 22

Table 3.3. RISC_CPU Register Setting

RISC_CPU Register Set Register

CVMCPU_PHI_REG_SET S1, S4, S5 ,S6 ,S7 ,S8 ,GP

CVMCPU_BUSY_SET TA, P0, P1, FP

CVMCPU_NON_VOLATILE_SET S0-S8, FP, GP

CVMCPU_VOLATILE_SET ALL &

~CVMCPU_NON_VOLATILE_SET

Table 3.4. Register Manager register setting

JIT RegMan Register Set Register set

CVMRM_BUSY_SET CVMCPU_BUSY_SET |

1U<<CVMCPU_SP_REG |

1U<<CVMCPU_JSP_REG |

1U<<CVMCPU_JFP_REG |

CVMRM_CHUNKEND_BUSY_BIT |

CVMRM_CVMGLOBALS_BUSY_BIT

| CVMRM_EE_BUSY_BIT |

CVMRM_CP_BUSY_BIT |

CVMRM_GC_BUSY_BIT

CVMRM_ANY_REG_SET ALL &~(BUSY_SET)

CVMRM_SAFE_SET (CVMCPU_NON_VOLATILE_SET &

CVMRM_ANY_SET)

CVMRM_UNSAFE_SET (CVMCPU_VOLATILE_SET &

CVMRM_ANY_SET)

CVMRM_EMPTY_SET Always empty set

 23

3.3 Instruction Patch and Adjust
While the emitter emits a forward branch or jump to glue code, the address field

in this instruction will be patched later. Since we do not know the size of the actual

offset in the instruction, to be on the safe side, we always use 32-bit instructions for

forward branch or jump to glue code.

Furthermore, the instructions for null check may also need additional patches. It

is discussed in Sections 3.3.3.

3.3.1 Forward Branch
When the emitter emits a branch instruction with unknown offset, it will always

issue a 32-bit instruction. The address field in this instruction will be patched later

when the address of the branch target is known. Figure 3.7 shows that patch a forward

branch instruction.

3.3.2 Glue Code
Sometimes the program has to calculate certain special values when it reaches a

particular instruction the first time. (Ex. ResolveMethodTableOffsetGlue) The emitter

will issue a “Jarl .glue” instruction to force the program to jump to the glue code.

The special value is calculated in the glue code. At the end of the glue code, the

calculated vale will be written to the word immediately following the “Jarl”

instruction and the “Jarl” instruction is changed to a “J .skip” instruction. Having

done that, the program continues execution following the “Jarl” instruction. Note that

the glue code is executed only the once during program execution because it is a

waste of time to calculate the same special value more than once. Changing the

“Jarl” instruction to “J .skip” instruction can prevent the glue code being executed

 24

again. Figure 3.8 shows the execution of glue code. Note that the “Jarl” instruction is

changed to a “J .skip” instruction after the glue code is executed. A variation of glue

code does not compute a special value; however, it is also executed only once—the

first time it is encountered. This variation of glue code also needs patching as

described above.

Due to the existing implementation of glue code (which was written in the

assembly language for the 32-bit platform and always patched instructions at

word-alignment), whenever a “Jarl” instruction may be patched by glue code, that

“Jarl” instruction must be word-aligned. In this case, a two-byte “nop16” instruction

might be inserted before the “Jarl” instruction in order to satisfy the requirement of

word-alignment. This is because, in the existing glue code, instructions are always

assumed to be word-aligned while in our target platform (Andes) instructions may be

half-word aligned. In the future, we plan to rewrite glue code. Then the two-byte

“nop16” instructions will become unnecessary. On the other hand, if the “Jarl”

instruction will not be patched by the glue code, we can choose either a 16-bit (for

half-word aligned) or a 32-bit (for word aligned) “Jarl” instruction. Note that the four

reserved bytes (i.e., “.word ____”) following the “Jarl” instruction must always be

word-aligned. The flow chart is shown in Figure 3.9. The list is shown in Table 3.5.

3.3.3 Trap-based Null Checks
Every time VM references an new object, the object must be check is null or not.

While JIT wants to do null checks, a null-pointer trap will occurs, the return address

(which is the address of the instruction immediately following the trapping instruction)

will be saved in the link-pointer register (LP). If the trapping instruction is a 16-bit

instruction, the return address is 2 plus the address of the trapping instruction. On the

 25

other hand, if the trapping instruction is a 32-bit instruction, the return address is 4

plus the address of the trapping instruction. In Andes, an instruction is 16-bit if and

only if the first (leftmost) bit of the instruction is 1. The flow chart is shown in Figure

3.10.

translation in this thesis. In the next chapter, we will use benchmarks to verify the

Branch endPC
 Jump
 .
 .

StartPc:
Address Instruction

Branch offset StartPc:
Address Instruction

CVMJITcbufPushFixup StartPc
(Add patch point)

`

Figure 3.8 Patch a forward branch instruction

3.4 Summary
Our emitter will issue mixed 16-bit and 32-bit instructions in an attempt to

reduce the resulting code size. Due to the alignment requirement in the existing JIT

implementation, the emitter has to take care of the alignment of the issued instructions,

adding “Nop” instructions when necessary. Because only some, but not all, registers

can be used in 16-bit instructions, register allocations must be done carefully in order

to generate more 16-bit instructions. We propose a simple heuristic for instruction

EndPc: Branch endPC
CVMJITcbufPop

 26

usefulness of our heuristic for instruction translation.

 Jarl .Glue
.word ________
.skip

.G

e execution of glue code. Yet another kind of glue code does not need Figure 3.9 Th

patching the “Jarl” instructions. It functions like a subroutine.

Figure 3.10 Adjust glue code flow chart

 J
.word 1234567
.skip

.Glue ..
 ..
 ..
 ..
 ..

 .skip
 0

lue ..
 ..
 ..
 ..
 ..

 27

Table 3.5 Glue code list.

Case 1 : Only need .word after the call to be aligned.
Case 2 : Only jal/jral need be p
Case 3 : Not only .word after the call need to

fter the call need to be aligned, but

Case 1

atch at runtime.
 be aligned, but also jal/jral need to be

patched at runtime..
Case 4 : Not only call instruction and .word a

also the length of two instructions after the call need to be known at
compilation time.

Only need word-alignment

 CVMCCMruntimeLookupInterfaceMBGlue

 CVMCCMruntimeCheckCastGlue

 CVMCCMruntimeInstanceOfGlue

Case 2 Only be patch

 CVM lue CCMruntimeRunClassInitializerG

Case 3 Need Word-alignment and patched

 CVMC itGlue CMruntimeResolveNewClassBlockAndClin

 CVMCCMruntimeResolveGetstaticFieldBlockAndClinitGlue

 C VMCCMruntimeResolvePutstaticFieldBlockAndClinitGlue

 CVMCCMruntimeResolveStaticMethodBlockAndClinitGlue

 CVMCCMruntimeResolveClassBlockGlue

 CVMCCMruntimeResolveArrayClassBlockGlue

 CVM ue CCMruntimeResolveGetfieldFieldOffsetGl

 CVMCCMruntimeResolvePutfieldFieldOffsetGlue

 CVMCCMruntimeResolveSpecialMethodBlockGlue

 CVMCCMruntimeResolveMethodBlockGlue

Case 4 Special Case

 CV e MCCMruntimeResolveMethodTableOffsetGlu

 28

16bit instruction 16bit instruction

32bit instruction-1 16bit instruction

32bit instruction-2 32bit instruction-1

Figure 3.11 Determine the return address of a trap-based null check.

16bit instruction

Last

Instruction

 32bit instruction-2
(Ipc)

+2 uc_mcontext.nds32_lp uc_mcontext.nds32_lp +4

 29

Chapter 4

Experiments Results and Analyses

4.1 Experimental Framework

In this section, we will show some experimental results of the Java JIT Compiler

for 32bit-16bit Mixed Instruction Set Architectures. Experiments for this study were

performed at the Andes ADP-AG101 platfrom at 400Mhz. (Figure 4.1) First, we

design a lot experiment program for 16bit-32bit emitter to verify correctness. They

test single target function of emitter Ex. Add operation. Next , we run a global test

case: Testclass. Testclass provide by Sun Microsystems. Which Correctness are

verified we run a lot of benchmark to collect date like code size and score

(performance). The benchmarks are Embedded CaffineMark 3.0[19], CLDC

Evaluation Kit and Grinder Bench[20]. Their program are shown in table 4.1, 4.2 and

4.3.

Table 4.1 Embedded CaffineMark 3.0
Name Brief Description

Sieve The classic sieve of Eratosthenes finds prime numbers.
Loop The loop test uses sorting and sequence generation as to

measure compiler optimization of loops.
Logic Tests the speed with which the virtual machine executes

decision-making instructions.
Method The Method test executes recursive functional calls to see how

well the VM handles method calls.
String String Comparison and concatenation.

 30

Table 4.2 CLDC Evaluation Kit

Name Brief Description
Richards Richards is a benchmark that simulates the task dispatcher in the

kernel of an operating system.
DeltaBlue DeltaBlue solves one-way constraint systems.
Queens A solver of the n-queens problem. It is a classical problem used to

illustrate several techniques such as general search and
backtracking.

Image
Processing

The Image Processing benchmark reads an image file and
performs various transformations on it, such as Sobel, threshold,
3x3 convolver, and so forth.

Table 4.3 Grinder Bench

Name Brief Description
Chess A complete chess playing engine that is used to determine a set of

chess moves.
Crypto This suite of algorithms measures the performance of Java

implementations in cryptographic transactions.

kXML Measures XML parsing and/or DOM tree manipulation.

PNG Shows how fast a Java implementation can decodes a PNG photo
image of a typical size used on a mobile phone.

 31

Figure 4.1 Andes AG101 Main Board

4.2 Correctness

Correctness is verified by SUN test class. It test 411 tests includes Null check,

GC check, float number and others.

 32

4.3 Compile Time

Figure 4.2 is the compiled time of two version of JIT. We can observe that the

compile time between 32-only and mixed-ISA only has few increase. It mean low

overhead of compile the code.

0

100

200

300

400

500

600

700

800

Rich
ar

ds

Delt
a B

lu
e

Im
ag

e M
an

ip
ul
ati

on

Que
en

s p
ro

bl
em

Si
ev

e
Loo

p
Log

ic

St
rin

g

M
eth

od
Fl

oa
t

Che
ss

Cry
pt
o

kX
M

L

Pa
ra
lle

l

PN
G d

ec
od

e

32-only

mix-isa

Figure 4.2 The compile time of benchmarks

4.4 Code Size

The reduce code size of the benchmark is shown in Figure 4.3. Average, we

reduce almost 10% code size.

 33

Reduce size %

0

2

4

6

8

10

12

14

16

Rich
ar

ds

Del
ta

Blu
e

Im
ag

e M
an

ip
ul

ati
on

Que
en

s p
ro

bl
em Siev

e
Loo

p
Log

ic

Stri
ng

M
eth

od
Flo

at

Che
ss

Cry
pt

o

kX
M

L

Par
al

lel

PNG
 d

ec
od

in
g

Ave
ra

ge

GEO
M

EAN

reduce size %

Figure 4.3 Code size of benchmarks

4.5 Performance

The Performance is shown in Figure 4.4. Our method decreases average 0.14%

the performance of benchmarks. Specially, KXML program gets many performance’s

benefit. We analysis this program. Then we observe that KXML is the biggest

program of our benchmark and it run longer time than others small programs. For

other benchmark programs, the performance is actually decreased. The reason is that

these benchmark programs run only for a very short time. The additional time we

spent on run-time compilation dominates the overall performance. For a long running

program, reducing the code size should result in significant performance

improvement.

 34

Performance change %

-3

-2

-1

0

1

2

3

4

5

6

Rich
ar

ds

Delt
a B

lu
e

Im
ag

e M
an

ip
ul

ati
on

Que
en

s p
ro

bl
em Siev

e
Loo

p
Log

ic

Stri
ng

M
eth

od
Flo

at

Che
ss

Cry
pt

o

kX
M

L

Par
all

el

PNG d
ec

od
in

g

Ave
ra

ge

Performance

Figure 4.4 The performance of benchmarks

4.6 Summary

Our Java JIT compiler for 32bit/16bit Mixed Instruction Set Architecture

successfully reduces code size by 10% on the average, with only slight additional

compilation overhead. For a long running program, reducing the code size should

result in significant performance improvement.

 35

Chapter 5

Conclusion and Future work
This paper proposes an effectively method for reducing code size. This method is

implemented in a Java JIT compiler. Our JIT compiler generates smaller code by

making use of 32bit-16bit mixed instruction set than the original JIT that only uses

32-bit instruction set. Specially, the performance of the code generated by our method

is almost equal to that by the original JIT compiler, sometimes even better. For a long

running program, we expect the benefit will exceed the overhead.

There are a few slots in the code buffer that are reserved for the glue code to fill

in appropriate offsets or modify the instructions at run time. The slots must be

word-aligned in order to fit the existing glue code. Therefore, the emitter sometimes

needs to add the nop instructions in the code buffer before the word-aligned slots. In

the future, we can modify the glue code in order to remove the useless nop

instructions.

In the process of emitting instructions, the registers assigned by the register

manager decide if a 16-bit instruction can be used. In the future, the register-allocation

algorithm deserves further investigation for performance improvement.

 36

References
[1]. Sun Microsystems. Java ME CDC,
http://java.sun.com/javame/technology/cdc, 2008
[2]. Sun Microsystems. Java ME,
http://java.sun.com/javame , 2008
[3]. Sun Microsystems. CDC HotSpot Implementation Dynamic Compiler
Architecture Guide, 2005.
[4]. Sun Microsystems. CDC Porting Guide, 2005.
[5]. Sun Microsystems. The CDC application management system, 2005.
[6]. Furber, S. 1996. ARM System Architecture. Addison-Wesley. ISBN
0-201-40352-8.
[7]. Goudge, L. and Segars, S. 1996. Thumb: Reducing the cost of 32-bit RISC
performance in portable and consumer applications. In Proceedings of COMPCON.
[8]. Kissel, K. 1997. MIPS16: High-density MIPS for the embedded market.
Tech. rep., Silicon
Graphics MIPS Group.
[9]. Andes Technology. Andes Instruction Set Architecture Specification, 2007.
[10]. Andes Technology. Andes Programming Guide, June, 2007.
[11]. Lee, S., Lee, J., Park, C. Y., and Min, S. L. 2004. A flexible tradeoff
between code size and WCET using a dual instruction set processor. In Proceedings of
the 8th International Workshop on Software and Compilers for Embedded Systems
(SCOPES). Amsterdam. 244–258.
[12]. Shin, I., Lee, I., And Min, S. L. 2002. Embedded system design framework
for minimizing code size and guaranteeing real-time requirements. In Proceedings of
the 23rd IEEE Real-Time Systems Symposium (RTSS). Austin, TX. 201–211.
[13]. Lee, S., Lee, J., Min, S. L., Hiser, J., and Avidson, J. W. 2003. Code
generation for a dual instruction set processor based on selective code transformation.
In Proceedings of the 7th International Workshop on Software and Compilers for
embedded Systems (SCOPES). Vienna. 33–48.
[14]. Naswamt, A. and Gupta, R. 2003b. Mixed width instruction sets.
Communications of the ACM 46, 8 (Aug.), 47–52.
[15]. Krishnaswamy, A. and Gupta, R. 2003a. Enhancing the performance of
16-bit code using augmenting
instructions. In Proceedings of the ACM SIGPLAN Conferece on Languages,
Compilers,and Tools for Embedded Systems (LCTES). San Diego, CA. 254–264.
[16]. Halambi, A., Shrivastava, A., Biswas, P., Dutt, N., and Nicolau, A. 2002. An

 37

efficient compiler technique for code size reduction using reduced bit-width ISAs. In
Proceedings of the Design, Automation and Test in Europe (DATE). Paris.
[17]. Kirner, R. 2003. Extending optimising compilation to support worst-case
execution time analysis.Ph.D. thesis, Vienna University of Technology.
 [18]. Sheayun L, Jaejin L, Chang Yun Park, Sang Lyul Min, Selective Code
Transformation for Dual Instruction Set Processors in ACM Transactions on
Embedded Computing Systems, 2007
[19]. Pendragon Software Corporation, Embedded CaffeineMark 3.0 benchmark,
http://www.webfayre.com, 1997
[20]. EEMBC. GrinderBench, http://www.grinderbench.co

 38

	 LIST OF FIGURES
	 LIST OF TABLES
	
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Related Studies
	1.3 Propose Approach
	1.4 Contribution
	1.5 Synopsis

	Chapter 2 Java Just-In-Time compiler and Andes 32bit-16bit Instruction Set Architectures
	2.1 CVM Internals
	2.1.1 JIT Front End
	2.1.2 JIT Back End

	2.2 ANDES Instruction Set Architectures
	2.2.1 General Purpose Register
	2.2.2 The Andes Instruction Set

	Chapter 3 The Multiple Fixed-width ISA Emitter
	3.1 Multiple Fixed-width ISA Emitter Introduction
	3.1.1 Determine Instruction
	3.1.2 Translating Registers
	3.1.3 Instruction Alignment

	3.2 Register Setting
	3.2.1 The VM Register Set
	3.2.2 Code Generator Register Set

	3.3 Instruction Patch and Adjust
	3.3.1 Forward Branch
	3.3.2 Glue Code
	3.3.3 Trap-based Null Checks

	3.4 Summary

	Chapter 4 Experiments Results and Analyses
	4.1 Experimental Framework
	4.2 Correctness
	4.3 Compile Time
	4.4 Code Size
	4.5 Performance
	4.6 Summary

	Chapter 5 Conclusion and Future work
	 References

