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Abstract -We present a novel and accurate full-wave mode-matching 
approach to analyze the dispersion characteristics of millimeter-wave 
and microwave transmission lines with finite conductivity, metallization 
thickness, and holding grooves. The approach is quite general but only 
the results for a unilateral finline are presented. The accuracy of the 
solution depends primarily on the correct and complete description of 
eigenfunction expansions in each of the uniform (stratified) or  nonuni- 
form layer regions. The latter consists of metallized strips of finite 
conductivity, which in turn produce the so-called metal modes (eigen- 
modes). The metal mode exists in the metallized region with high 
conductivity for the most part and decays sharply in the air region. 
Without incorporating the metal modes, the convergence studies will fail 
and the accuracy of the field theory solution deteriorates. 

Since the accuracy of the present approach is established, the compos- 
ite effects of the finite conductivity and metallization thickness can be 
studied rigorously. A numerical limiting case analysis shows that the 
mode conversion between the dominant finline mode and the dielectric- 
slab-loaded waveguide mode may happen through the reduction of the 
metallization thickness. The theoretical results for the dispersion pa- 
rameters of the dominant mode propagation constant and the character- 
istic impedance are reported. The effects of the conductor losses using 
various metallizing materials are also presented. 

I. INTRODUCTION 
HE ANALYSIS of conductor losses on integrated T millimeter-wave and microwave transmission lines 

plays an important role in the accurate computer-aided 
design (CAD) modeling required in many demanding 
applications. Three mechanisms constitute the attenua- 
tion in the transmission lines, namely, conductor loss, 
dielectric loss, and radiation loss [l]. The effects of dielec- 
tric losses on transmission lines have been analyzed thor- 
oughly [2], [3]. This paper will focus on the propagation 
characteristics of an electrically shielded transmission line 
for use in millimeter-wave and microwave component 
design. Therefore, we will restrict our attention to con- 
ductor loss. Recently, a few methods have been devel- 
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oped for this, among them a combined surface integral 
equation method [4], a phenomenological loss equivalence 
method [5], and a modified mode-matching method [6]. 

In formulating the combined surface integral equation 
[4], prior knowledge of quasi-TEM analysis of the field 
penetration into the microstrip line is required for later 
formulation. The phenomenological loss equivalence 
method is developed for a transmission line which sup- 
ports a quasi-TEM mode with conductor thickness of the 
order of the skin depth. For an integrated finline, how- 
ever, the above methods need modifications because the 
dominant mode is not quasi-TEM. In certain applications 
when a low-impedance microstrip line needs to operate at 
very high frequency, the quasi-TEM assumption fails to 
model the microstrip line faithfully. 

By way of example, Fig. 1 shows an electrically shielded 
symmetrical lossless microstrip line integrated on a 100- 
Fm-thick GaAs substrate ( E ~  = 13) that is analyzed by the 
spectral-domain approach (SDA) using a highly effective 
set of basis functions [7]. When operating at 150 GHz, the 
results indicate that the longitudinal and transverse sur- 
face current densities, J, and J, ,  are comparable in 
magnitude for impedances lower than 17.0 R. For the 
32.4 R microstrip line, the transverse current component 
is about 1/15 the longitudinal component. Thus, depend- 
ing on the structure and operating frequency, the quasi- 
TEM assumption may not apply for millimeter-wave cir- 
cuit designs. Another full-wave approach for analyzing a 
transmission line with conductor losses is the perturba- 
tional method [8], [9]. This approach assumes that the 
quasi-planar transmission lines have infinitely thin metal- 
lization with conductivity of infinite value. After the loss- 
less full-wave solution is obtained, a perturbational ex- 
pression is invoked for computing the conductor loss, e.g. 
[8, eq. (ll)]. The assumption is apparently valid for struc- 
tures with small losses. 

It is difficult, however, to track the tangled effects of 
the finite conductivity, finite metallization thickness, and 
broad operating frequencies covered in the millimeter- 
wave and microwave regimes without skillfully managing 
the above-mentioned assumptions or simplifications. This 
paper presents a reliable and accurate method for solving 
the above problems by the full-wave mode-matching 
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Fig. 1. Longitudinal ( J : )  and transverse ( J , )  surface current densities 

of a lossless microstrip line integrated on a GaAs substrate at 150 
GHz. h = 10 mm, h l  = 100 pm, and h, = 1 mm. 

method [6], [lo], [ll].  The solutions are correct in the 
sense that the numerically truncated solutions should 
satisfy the so-called relative and absolute convergence 
criteria [lo]-[ 131 for various lossless waveguide structures. 
The convergence study is further complicated by the 
inclusion of the metal modes in the mode-matching for- 
mulation [14]. In this paper a series of convergence stud- 
ies is presented for a unilateral finline to illustrate the 
convergence properties of the present formulation taking 
into account the conductor losses. Such an accurate field 
theory approach enables us to investigate important prop- 
agation characteristics of transmission lines involving fi- 
nite metallization thicknesses and conductivities. 

11. FORMULATION: A MODE-MATCHING METHOD 
INCORPORATING THE METAL MODES 

Fig. 2 illustrates a particular example to be analyzed 
rigorously. The quasi-planar transmission line is sur- 
rounded by a perfectly conducting enclosure. The wave- 
guide cross section is subdivided into six regions with 
their respective relative dielectric constants. The subscript 
of each relative dielectric constant is the name of that 
region. Thus, region 31 is the region with relative dielec- 
tric constant E ~ ~ .  Throughout this paper, the e j w f P y z  fac- 
tor is assumed. Therefore, for a lossy transmission line, 
we will expect a complex propagation constant y ( y  = a + 
j P )  to exist. For a metallized region of finite conductivity, 
E ~ ,  = E, - ju/coEo, where cr is the conductivity of the 
metallization. If regions 1 and 4 are air-filled and region 2 
is the supporting dielectric substrate, Fig. 2 may become 
two different quasi-planar transmission lines. When re- 
gions 31 and 33 are metallized and region 32 is air-filled, 
the structure is a unilateral finline. The reverse of this is a 
suspended microstrip line. This paper will focus on the 
analysis of the unilateral finline to study the important 
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Fig. 2. A unilateral finline with finite conductivity, metallization thick- 
ness, and holding grooves. h = 3.556 mm, c = 1.6002 mm, d = 1.9558 
mm, g l = g , = O ,  h ,=3 .4925 mm, h2=0.127 mm, t +  h,=3.4925 
mm, E ,  = t4 = 1, E ,  = 2.22, c3, = = 1 - j u / w e , ,  and U = 
3.333 X 10' mhos/rn. 

physical characteristics of the lossy finline without loss of 
generality. 

The mode-matching formulation based on the TM-to-x 
and TE-to-x eigenfunction expansions for all regions is 
derived. They are summarized as follows. 

Region 1: 

(3) 

NZ 
T! = sin [ x + g,)]  

n = l  

(4) 
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Region 3: Region 4: 

(11) N1 cos [ P k ( h l +  h ,  + t - Y ) ]  
( a4n=n . s r /b ) .  

n = l  cos [ 
Because the sidewalls of the waveguide housing are 

assumed to be perfect electric conductors, the biorthogo- 
nality relationship holds for eigenfunctions in region 3, 
although it contains a lossy conductor layer [151. The 
biorthogonality relationship in this region reads as 

sin [ P?hn(hl+ h2 + t - Y 11 + F," } (6) (6) 
sin [ ~ t n t ]  

N 3  = N31 + N32 + N33 

(x)@,:,( X )  dx = 6: (12) 

dx = 8; (13) 

where N31, N32, and N33 can be either the number of 
metal modes or the number of air modes. When analyzing 

of metal modes associated with the metallized fins, 
whereas N32 is the number of air modes corresponding to 
the gap: 

Fig. 2 as a unilateral finline, N31 and N3, are the numbers 

where 6; is the Kronecker delta function. 

where The above equations indicate that 12 sets of unknown 
coefficients exist. These coefficients can be eliminated by 
matching all the necessary tangential boundary conditions 
at each interface and applying the biorthogonality rela- 
tionship governed by (12) and (13). Finally a nonstandard 
eigenvalue equation is derived, i.e., 

(a!31n)2 ='3lP,' - (P !3n ) '+Y2  

( a32n  i )L ' 3 2 P i  - ( P i n ) ' '  Y 2  

( a ~ n ) '  = E , , P ;  - ( P i n ) ' +  y 2  [A(Y)l[XI = [OI ( 14) 

P i =  W ' ~ ~ E ~ ,  i = e or h .  (9) where the column vector is [x]=[C,h 0,' E,h F,'IT, which 
contains the remainder sets of coefficients. The matrix 
[AI has the size 2(N2 + N, + 1) by 2(N2 + N3 + 1). The 

can be obtained in the same way as in a dielectric-slab- roots of the equation det([A(y)]) = 0 give rise to the 
loaded waveguide problem and will not be repeated here solutions for the complex propagation constants. The 
~ 5 1 .  nontrivial solution directly leads to the solution for [XI. 

The values of aixh,  K : , ~ ,  P:3h,  Y,'.~, LYSi;,, a;;",, and 
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TM mode TE mode 
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AIR 
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Given the solution for [XI, the characteristic impedance 
can be obtained in the same way as in [121. 

111. METAL MODES AND AIR MODES 
Section I1 presents a classical mode-matching method 

which is distinguished from the conventional one by the 
inclusion of the metal modes. Regions 1, 2, and 4 are 
expanded in a way similar to that in [12]. The eigenfunc- 
tions in these regions are classified as air modes. For a 
lossy unilateral finline, regions 31, 32, and 33 should have 
both air modes and metal modes to provide the mode 
completeness required in the mode-matching method. 
The first few TM-to-x air modes in the air region 32 and 
TM-to-x metal modes in the lossy conductor region 31 
were reported in [14, figs. 2 and 31 and will not be 
repeated here. To further clarify the concept of using 
both air modes and metal modes, Table I lists the values 
of the first three eigenvalues at 40 GHz for air modes of 
region 32 and metal modes of region 31 for the structural 
parameters shown in Fig. 2. When the conductivity is 
high, the eigenfunction corresponding to the metal mode 
confines itself in the metal region and decays abruptly in 
the air region. The eigenfunction corresponding to the air 
mode is much more familiar to us. In contrast to the 
metal mode, the air mode resides mostly in the air (di- 
electric) region bounded by good metals. 

, 

IV. CONVERGENCE STUDIES FOR A PARTICULAR 
LOSSY FINLINE 

As pointed out by various authors interested in analyz- 
ing the propagation characteristics of lossless waveguide 
structures using the mode-matching method, the relative 
convergence criterion should be satisfied to obtain good 
field matchings at discontinuities or interfaces [lo]-[13]. 
Failing to do this will result in inaccurate field solutions. 
In the case of a lossy quasi-planar transmission line, the 
convergence study is further complicated by the existence 
of the metal modes described in Section 111. Since most 
millimeter-wave and microwave integrated transmission 
lines are gold-plated to reduce the conductor losses that 
inevitably exist in these structures, we restrict our atten- 
tion to the convergence study for a transmission line with 
a good conductor coating. Under this condition and using 

0.3 0.35 0.4 0.45 0.6 
x/b 

Fig. 3.  Relative convergence studies of the tangential electric field E ,  
at the interfaces y = ( h i  + h z  + t ) -  and y = ( h ,  + h2  + t ) +  for vari- 
ous numbers of metal modes N,,, (N,,, = N31 + N33) at 40 GHz. NI = 

N2 = N4 = 160, N, = N32 = 16, t = 5 pm, and W / b  = 0.1. (Other 
structural and material parameters are listed in Fig. 2.) 

the structural and material parameters listed in Fig. 2, 
Figs. 3 to 5 summarize the results for the convergence 
study. 

The number of expansion terms used in the formula- 
tion in regions 1 to 4 are N , ,  N 2 ,  N,,, N32, N,,, and N4,  
respectively. In the particular case study for a symmetrical 
lossy finline, the sum of N,, and N,, is renamed N,, 
which represents the number of metal modes. N32 is 
renamed No, i.e., the number of air modes. When analyz- 
ing the complex modes of a lossless bilateral finline, it was 
found that the relative convergence criterion should be 
simultaneously satisfied at the interfaces near the dual 
slots to obtain the best field matchings in the interfaces 
[ 121. Since the symmetrical unilateral finline under inves- 
tigation assumes 5-Fm-thick gold-plated strips and the 
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under different controlling parameter: 
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W / b  = 0.1, t = 5 p m ,  and frequency = 40 GHz. (Other structural and 
material parameters are listed in Fig. 2.) 
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Fig. 5. Absolute convergence studies of the complex propagation con- 
stant for the dominant mode versus the normalized fin gap W / b ;  
t = 5 p m  and frequency = 40 GHz. The  N,,, values are determined by 
the aspect ratio discussed in Figs. 3 and 4. (Other structural and 
material parameters are listed in Fig. 2.) 

skin depth at 40 GHz is about 0.4 pm, it is plausible to 
expect that the value of Nu should be closely related to 
the proper aspect ratio as reported in [ll] and [121. By 
having N, = N2 = N4 = 160, and W/b  = 0.1, we set Nu = 

16. Varying the value of N, from 132 to 142, 144, 146, 
and 156, respectively, Fig. 3 plots the tangential electric 
field E, at the y = ( h ,  + h ,  + t ) -  and y = ( h ,  + h ,  + t)' 
interfaces. The tangential fields just underneath the 
5-pm-thick metal strip do not match well with those just 
above the metallized strip for N, = 132 and 142. When 
N, = 146 and 156, the interface field matchings seem to 

be good, but the nearly singular property imposed on the 
corner (x = 0.45b) of the good rectangular strip begins to 
degrade as the value of N, is increased. Notice that the 
field matching properties can change substantially by sub- 
tracting or adding just two terms to N, = 144. This is by 
no means a coincidence. It follows the rule of aspect 
ratio, i.e., N, ,=N, ,+ N3,=160X(1-O.1)=144. 

To give a broader idea on the effects of the relative 
convergence criterion for the particular case study, Fig. 4 
plots the normalized propagation constant against the 
number of metal modes N,, using N2 ( N I  = N2 = N4) as 
the controlling parameter. The data points under the 
circle (0) signs are for those obeying the relative conver- 
gence criterion confirmed earlier in Fig. 3. For each value 
of N,, the normalized propagation constant may change 
drastically as N, changes. The contour of the circle signs, 
however, represents a smooth convergence property 
against N, and converges quickly, as shown in Fig. 4, for 
the normalized propagation constant. 

Both the relative and absolute convergence studies 
depicted in Figs. 3 and 4 can be illustrated together as 
shown in Fig. 5, which plots the normalized propagation 
constant and conductor loss on both the left and right 
axes against the normalized gap width (W/b), respec- 
tively, using a different number of expansion terms N2 
(NI = N, = N4) and 4,. The value of N, is determined 
by the aspect ratio discussed in Fig. 3. When the finline 
has a narrow gap width, and consequently a smaller W / b  
ratio, our formulation requires that N2 be over 80 for 
solutions with better convergence, as shown in Fig. 5. The 
fact that the conductor loss converges slower than that of 
the propagation constant is clear in these plots. Each 
conductor loss plot is distinguishable from others, whereas 
the plot for the propagation constant overlaps for N, 
greater than 120. Higher loss for the finline with smaller 
gap is understandable since the dominant mode electro- 
magnetic field line is concentrated near the gap of the 
finline. This in turn will cause higher conductor loss 
associated with the metal fins. 

-. 

V. THE COMBINED EFFECTS OF FINITE 
CONDUCTIVITY AND THICKNESS 

ON A LOSSY FINLINE 
The power of the full-wave approach presented in this 

paper will be investigated by a case study, which investi- 
gates the same unilateral finline with the structural pa- 
rameters given in Fig. 2. The test conditions for our 
formulation are shown in Fig. 6. Given an operating 
frequency of 40 GHz, the solid lines in Fig. 6 are the 
corresponding plots of the normalized propagation con- 
stant ( p / p o )  and conductor loss with respect to the 
metallization thickness t .  The conductor loss increases 
gradually as t is reduced from 10 to 0.01 pm. Here 
caution should be exercised. The absolute lower limit to 
the macroscopic domain imposed on the Maxwe! equa- 
tions with a continuous dielectric constant is 100 A (lo-'  
pm) 1161. When t reaches a value of pm, it is 
regarded as a numerical limiting case analysis of the 
present formulation for an infinitely thin conductor. If the 
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Fig. 6. Complex propagation constant of the dominant mode versus 
the metallization thickness t .  v = 3 . 3 3 3 ~  10' mhos/m, W / b  = 0.1, 
and frequency = 40 GHz. (Other structural and material parameters 
are listed in Fig. 2.) 

physical environment were to support the Maxwell equa- 
tions in the limiting case analysis, we would not only test 
the validity of the present formulation but also establish 
the validity of using the assumption of an infinitely thin 
perfect conductor for analyzing lossless planar or quasi- 
planar structures [81, [91. 

The skin depth obtained for the test case is 0.436 pm. 
As the value of t is reduced from 1 p m  (2.36) to 0.01 p m  
(0.0236), the excited currents start to distribute them- 
selves throughout the entire cross section of the thin 
rectangular metal strip. The cross-sectional area also be- 
comes smaller as t is reduced. Thus the ohmic loss 
increases. The slope for the conductor loss curve is nearly 
-1. This is a manifestation of the fact that the electro- 
magnetic fields are uniformly distributed inside the rect- 
angular strip and consequently the conductor loss is in- 
versely proportional to the thickness t .  

When t is reduced from lop2  to p m  (1 A), the 
conductor loss rises and declines. This is the region where 
a mode conversion takes place gradually. When the thick- 
ness t is reduced further from l o p 4  to pm,  the 
conductor loss becomes smaller. This region corresponds 
to the familiar first LSE mode region; i.e., the finline 
essentially becomes a dielectric-slab-loaded waveguide. 
The field distribution is no longer that of a dominant 
finline mode, which carries most of the electromagnetic 
energy in the vicinity of the gap between the metal fins. 
Therefore the loss is smaller. 

Next we test our formulation under the extreme condi- 
tion that simulates the situation as an infinitely thin per- 
fect conductor. This is done by increasing the conductivity 
by more than five orders of magnitude and reducing the 
thickness by five orders of magnitude from 1 pm. The 
results indicated by the triangle, circle, and cross signs 
show that the normalized propagation constant is very 
close to the solid line in the dominant mode region, and 
the conductor loss is decreased by increasing the conduc- 
tivity from 3.333 X 10" mhos/m to 6.666 x lo'* mhos/m. 

Increasing the conductivity by another five orders of mag- 
nitude, to 6.666 x 10'' mhos/m, the resulting dashed line 
represents the lossless case. 

It is obvious, based on the analyses presented above, 
that care should be exercised in extracting design parame- 
ters such as the propagation constant from a full-wave 
field-theory analysis of a quasi-planar transmission line 
assuming infinitely thin perfect conductor strips. It is im- 
plied in Fig. 6 that the thickness t should be about three 
skin depths or more to have the smallest conductor loss 
and to have the propagation constant closer to the theo- 
retical prediction when assuming infinitely thin perfect 
conductors. 

The electric field patterns corresponding to the points 
P ,  Q, and R in Fig. 6 in the dominant finline mode, 
transition, and the first LSE mode regions are plotted in, 
respectively, parts (a), (b), and (c) of Fig. 7. It is easy to 
identify that parts (a) and (c) are for the dominant finline 
mode and the familiar first LSE mode of a dielectric- 
slab-loaded waveguide, respectively. On the other hand, 
part (b) gives no clear indication of which mode the field 
pattern represents. Therefore point Q belongs to the 
transition region. 

VI. OTHER THEORETICAL RESULTS 
A comparison between the results obtained by this 

paper and the perturbational method [8], [9] is illustrated 
in Fig. 8. The results based on the perturbational method 
include the conductor losses of the waveguide housing 
and fins. In the limiting case where W / b  = 1, i.e., a 
dielectric-slab-loaded WR-28 waveguide, the conductor 
loss given by the dashed line [81 seems to be more 
accurate. As W / b  is reduced, the conductor loss in the 
broken line is close to the measured value [9]. Since our 
results in the solid line consider only the conductor losses 
of the metal fins, an accuracy comparison will be difficult. 
When the W / b  ratio is less than 0.3, our results are 
approximately twice those obtained by [8]. As W / b  ap- 
proaches unity, the conductor loss in the solid line re- 
duces to zero. This validates our solutions for conductor 
losses since the waveguide housing is assumed to be a 
perfect conductor in our analysis. 

Fig. 9 plots the real parts of the characteristic 
impedance under the power-voltage definition [ 11, [12] 
and the normalized propagation constant against the nor- 
malized gap width. The data points with the circle signs 
are obtained by assuming lossless conductors. The imagi- 
nary parts of these curves are at least four orders of 
magnitude smaller and are not reported here. It is impor- 
tant to emphasize again that in practice a circuit designer 
should choose a good, thick metal coating for finline and 
other quasi-planar transmission lines if the actual physical 
design parameters are not to deviate from those obtained 
by assuming lossless conductors. Finally, Fig. 10 shows the 
effects of different conductivities on the conductor losses 
of the finline. As expected, lower conductivity will result 
in higher ac resistance for the metallization and conse- 
quently higher conductor losses for the finline. 
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Fig. 7. Electric field patterns of the different modes at (a )  point P ,  (b) point Q, (c) point R of Fig. 6 .  v = 3.333X lo7 
mhos/m, W / h  = 0.1, and frequency = 40 GHz. (Other 3tructural and material parameter5 are listed in Fig. 2.) 
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Fig. 8. Conductor loss 01,  of the dominant mode versus the normalized 
fin gap W /  h; U = 3.333 X lo7 mhos/m and frequency = 40 GHz. 
(Other structural and material parameters are listed in Fig. 2.) 

VII. CONCLUSION 
Full-wave theoretical analyses of a gold-plated unilat- 

eral finline have been presented. The mode-matching 
full-wave approach incorporating the metal modes has 
proved to be very accurate and reliable for analyzing lossy 
millimeter-wave quasi-planar transmission lines. Without 
including the metal modes or satisfying the relative con- 
vergence criterion for the particular case study on a 
unilateral finline with good, thick (one order of magni- 
tude greater than the skin depth) metal coating, the 
tangential electric field matchings become poor and result 
in inaccurate electromagnetic solutions. 

A limiting case study for the particular finline, under 
the condition that the metallization thickness t of Fig. 2 
approaches a value far below the limit of the Maxwell 
equations 1161, shows that a mode conversion between the 
dominant finline mode and the first LSE dielectric-slab- 
loaded waveguide mode is numerically possible. The same 

600 

500 

1.1 

1.0 

0.9 
0 
Q 
\ 

0.8Q 

2oo, /;/’, ;? I L j 0 . 7  
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100 0.6 

0.0 0.2 0.4 0 6 0.8 1.0 

W/b 
Fig. 9. Characteristic impedance Re(Z,,)  and the normalized phase 

constant P / P , ,  of the dominant mode versus the normalized fin gap 
W /  h. t = 5 p m ,  and U = 3.333 x 10’ mhos/m. (Other structural and 
material parameters are listed in Fig. 2.) 

limiting case study exposes two interesting aspects of the 
present full-wave formulation. 

First, when the good conductor coating is of the order 
of a skin depth or less, the conductor loss is essentially 
ohmic with current flowing evenly inside the metal strip. 
Second, the commonly accepted assumption of an in- 
finitely thin perfect conductor for use in many field theory 
analyses of millimeter-wave quasi-planar transmission 
lines is validated and proved to be a numerical limiting 
case of the present formulation. 

It is also confirmed that the dispersion parameters of a 
lossy finline are in good agreement with those obtained by 
assuming lossless metallizations if the lossy finline is 
formed by a good, thick metal coating. In practice, a 
circuit designer should keep this in mind to reduce con- 
ductor loss and manage to use the dispersion parameters 
generated by a field theory package assuming infinitely 
thin perfect conductors. 
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h loo; 

Fig. 10. Conductor loss of the dominant mode versus the normalized 
fin gap W / h  under different controlling parameters. uNIC, = 0.1OX lo7 
mhos/m, up, = 1.03 X 10’ mhos/m, U,, = 3.82 X lo7 mhos/m, a,, = 

4.10x lo7 mhos/m, uA, = 6 . 1 7 ~  lo7 mhos/m. Frequency = 40 GHz, 
and t = 5 p m .  (Other structural and material parameters are listed in 
Fig. 2.) 
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