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摘摘摘摘                要要要要    

    

    

為了了解果蠅腦的功能，三維立體影像的腦圖譜和腦內結構位置的建立，並

且進一步了解神經網路如何的連結是非常重要的。針對共軛焦顯微鏡產生之果蠅

腦資料，我們建立了一個以貼圖為基礎的立體資料描繪系統。為了比較不同果蠅

腦的結構，我們的系統可同時描繪多組立體資料。打光和陰影效果及預先積分之

立體資料描繪法更進一步的在我們系統中被支援以達到更精緻的描繪結果。經由

神經追蹤產生之幾何資訊也可以在我們的系統中被完美的結合。 
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ABSTRACT 

 

 

In order to understand the fly brain functions, the three-dimensional knowledge 

of the topography and localization of brain structures and how neuronal circuits to 

connection is very important. We build a texture-based volume visualization system 

for confocal microscopic image of Drosophila’s brain. In order to compare the brain 

structures between two individuals, our system provides multi-volume rendering. 

Furthermore the lighting, shadowing effect and pre-integrated volume rendering are 

supported in the system to make it more sophisticated. Geometric information derived 

by neuron tracing can be incorporate with our visualization system perfectly. 
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Chapter 1  

Introduction 

 

In this thesis, we present a volume data visualization system for confocal 

microscopic of Drosophila’s brain build based on using the texture-based volume 

rendering algorithm. A convenient visualization system which provides sophisticated 

lighting and shadowing models and convenient observation with multi-volume data 

can help the process of the bio-medical science. Our visualization system provides 

these powerful functions with intuitively graphic user interface. These features help 

biologist to gain detailed and useful insights into the volume data of Drosophila’s 

brain. 

Texture-based volume rendering [1][2][3][4] is an efficient visualization 

technique that takes advantages of the texture mapping hardware in the computer 

video card. In this approach, we process the volume data as a stack of parallel 

textured slices from back to front. To render the data, the integration of luminance and 

opacity are left to an image composition step. These steps can be efficiently 

performed by extensively using of image composition and texturing hardware. 

Although the texture-based volume rendering is a commonly used technique in 

visualization applications, there is a serious drawback caused by non-linear transfer 

functions. To visualize the region of interesting in the volume data, a non-linear 

complex transfer function is needed. In this case, we need additional slices for 

integrating non-linear transfer functions to approximate the volume rendering integral. 

That implies the lower frame rates would be gained on modern consumer graphics 

hardware. Klaus Engel [5] introduce a volume rendering integral approach that 



 2

improves the image quality by pre-integrated volume rendering which allows us to 

avoid additional slices caused by non-linear transfer functions in a pre-processing 

step.  

Lighting effect gives impressive result in terms of additional realism, and 

improved spatial comprehension can be achieved. Many applications provide lighting 

efficiently by an approximation to the Phong local surface shading model [6]. 

Furthermore, the surface normal information is required when implement Phong 

model. But no gradient estimation is supported in current consumer hardware when 

using texture mapping for rendering volumetric data. Allen Van Gelder describes a 

gradient-based shading criterion [7], in which the gradient magnitude is interpreted 

directly from volumetric data, and stored in another 3-D texture. In the rendering 

phase, the gradient 3-D texture could efficiently be combined with texture-based 

volume rendering and the gradient is used as normal information of lighting model. 

Although gradient-based shading criterion provides the normal information of 

volumetric data, one should store the pre-calculated gradient together with the 

volumetric data, and then four times memory as the dataset is stored in the graphics 

hardware. The storage of normal information makes the problem of limitation of the 

texture memory more badly. Unfortunately, since the surface normal is approximated 

by the normalized gradient of a scalar field, these methods are unsuitable for shading 

homogeneous regions. Joe Kniss provide a shadowing mechanism [8][9] for shading 

homogeneous regions without additional memory space. This technique also 

significantly improves the visual perception and spatial understanding of volume data. 

In order to compare the fly brain structures between two individuals, 

simultaneously visualization between multi-volume data is needed. We expand 

texture-based volume rendering technique to provide multi-volume rendering.  

In this thesis we present a volume data visualization system for confocal 
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microscopic image of Drosophila’s brain implemented by texture-based volume 

rendering. Our system provides basic texture-based volume rendering, high quality 

pre-integrated volume rendering, and volume rendering with lighting and shadowing. 

Furthermore, our system can render multi-volume data at the same time. In order to 

understand the three-dimensional knowledge of how neuronal circuits to connection, 

geometric information deprived by neuron tracing [10] can be incorporate with our 

visualization system perfectly. 

The structure of this thesis is described as follow. The first chapter gives the 

motivation and an introduction of our system. In chapter 2, we describe the 

background material used in our visualization system, including the optical model for 

direct volume rendering, volume rendering integral, pre-integrated volume rendering, 

and shading models. In chapter 3, the detail of visualization flowchart and the process 

of multi-volume rendering are reported. The results of our visualization system are 

demonstrated in chapter 4. Conclusion and future work are listed in chapter 5. 

 

  



 4

 

Chapter 2  

Background Materials 

 

In this chapter, we take a brief introduction of the relative research of our 

visualization system. Section 2.1 reports the optical model for the direct volume 

rendering algorithm. We assume that any object in space is formed by many small 

particles like individual molecules. By simulating the state transition when light 

passing through the volume, we can integrate the change of light intensity to compute 

the 2-D projective image from 3-D volumetric data. “Volume rendering integral” is a 

formula derived from above optical model to implement the direct volume rendering 

algorithm. We then describe the pre-integrated volume rendering algorithm, which 

improves the artifact of 2-D projective image caused by insufficient sampling rate of 

the direct volume rendering algorithm. 

In section 2.2, we report some shading method; include the lighting model and 

the shadowing mechanism. Volume rendering with lighting effect gives impressive 

result in terms of additional realism, but there still some disadvantage with it. The 

lighting model with gradient as surface normal information is not suitable for 

homogeneous volumetric data. The shadowing mechanism is a good substitute for the 

lighting model to improve this problem. We also implement the shadowing 

mechanism in our visualization system. 

 

2.1. Texture-based Volume Rendering 

The using of three-dimensional texture mapping hardware to perform direct volume 

rendering, so-called “Texture-based Volume Rendering,” was described by Cabral. An 
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optical model is build to map the intensity of volumetric data to optical properties, 

such as color and opacity. During rendering time, optical properties are accumulated 

along each viewing ray to form a 2-D projective image from the 3-D volumetric data. 

This algorithm generates images of three-dimensional volumetric data set directly 

without explicitly extracting geometric surfaces from the original volume data. 

In this section, we describe the optical model of direct volume rendering and 

introduce “Volume rendering integral” [11] which is the formula to compute the 

accumulated optical properties along viewing ray. We then introduce the 

implementation of the texture-based volume rendering algorithm on consumer 

graphics hardware and describe the artifact caused by insufficient sampling rate. 

Engel presents the pre-integrated volume rendering algorithm to solve this artifact 

without the performance overhead caused by rendering additional interpolated slices. 

This algorithm is suited to achieve the goal of high-quality volume rendering at 

interactive frame-rates on standard PC hardware. 

 

2.1.1 Optical Model and Volume Rendering Integral 

Nelson Max proposes an optical model of volume visualization. He assumes that the 

objects in space are formed by many small particles like individual molecules. Each 

particle occludes incoming light and adds its own glow defined by its opacity and 

luminance property. The image of objects to the user’s eyes is the result of light ray 

passing through objects. So the optical properties of particles in the objects influence 

the light passing through volumetric data. The final projective image is due to the 

absorption and emission of light from such particles in the data. 
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Fig. 2-1: Light ray passes through a volume. 

 

By considering the optical model described above, we can simplify our analysis 

process of volume lighting computations by taking into account only a single long 

cylinder centered on the light ray that passes through the volume. As shown in Fig. 

2-1. The cylinder is thin enough to assume that the volume properties do not change 

on its breadth, but they will change on its length. At the back end of this cylinder, 

background light comes in, and at the front end of this cylinder, light exits and travels 

to the user’s eyes. We can compute such light ray pixel by pixel to generate a 2-D 

projection image from volumetric data, as shown in Fig. 2-2. The orthogonal 

projection and perspective projection is suited projection algorithm for this optical 

model. 

 

 

(a) Orthogonal projection           (b) Perspective projection 

Fig. 2-2: Viewing rays passes through a volume 
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For each viewing ray, the quantity �, which is the amount of light received at 

one point on the image plane, is: 

 ���� � � � �	
����
� � �	
����
� �� � �����
��
������
� ���

�   

Here the viewing ray ���� is parameterized by the distance � to the eyes. For the 

visualization of scalar field 	
����
, the transfer function is used to defined the color 

density ��	� and the extinction density ��	�, which map the scalar value 	��� to 

color and extinction coefficients. D is the maximum distance, i.e., there is no color 

density �
����
 for � greater than �. 

We call this formula the volume rendering integral, which is the fundamental 

element in the direct volume rendering algorithm. For implementation of the volume 

rendering integral, a numerical integration is required. The most common way to get 

the approximation of the volume rendering integral is the computation of a Riemann 

sum for n equal ray segments of length � � � �  . The approximate evaluation of the 

volume rendering integral can be stated as: 

 � � ∑ #$�$ ∏ 
1 ' #(
$�)(*�+$*�   

In the approximate evaluation of the volume rendering integral, opacity #$ 

approximates the absorption, and color �$ approximates the emission at sample ,. 
The product in the sum represents the amount of light attenuated at sample , before 

reaching the user’s eyes and the sum of the volume rendering integral accumulate the 

light effect when light passing through the volume.  

 

2.1.2 Pre-integrated volume rendering 

Volume visualization is implemented by integrating the color and opacity values 

across the 3D volume data. This integration in the texture-based volume rendering 

algorithm is performed by sampling the volume with parallel textured polygons, 



 8

called proxy geometry, at regular intervals.  

According to the sampling theorem, a correct reconstruction is only possible with 

the sampling rates larger than the Nyquist frequency. In the volume visualization 

algorithm, it is sufficient to sample at the resolution of the scalar field to avoid 

aliasing with respect to scalar value. However, the scalar field is sampled before being 

transformed by a transfer function. Non-linear transfer functions may add arbitrary 

frequencies to the data and increase the sampling rate required for the volume 

rendering integral. The higher sampling rates of the volume visualization algorithm 

are requires for capturing all details. 

Consider a thin spike in the transfer function, this spike results a very thin 

surface by the volume rendering algorithm. If the feature defined by transfer function 

is smaller than the sampling range, which is often encountered when drawing an 

iso-surface, some rays will sample the detail and others will miss it completely. The 

result of volume visualization is a series of aliasing bands rather than a continuous 

surface. If the feature is somewhat larger than the sampling range, a similar problem 

is still occurred because some rays will sample this feature once while others will 

sample it twice, as shown in Fig. 2-3. Fig.2-3a is a transfer function with a very thin 

spike, and Fig.2-3b displays the result of visualization. 

 

(a)                         (b) 

Fig. 2-3: Sampling rate is smaller than the Nyquist frequency 
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Such artifacts can be reduced in traditional volume renderings by sampling at 

high rates or using smooth, low-frequency transfer functions such as Gaussian curve 

to blur the feature. Unfortunately, high sampling rates induces the computation 

overhead and limit the performance of hardware and software. And smooth transfer 

functions limit the types of renderings result. Both of such improvements still not 

guarantee a sufficient sampling. 

The pre-integrated transfer functions algorithm solve this problem by 

pre-computing a 2-D table that stores the integral result of all possible sampling pairs 

of volume rendering. This table is then indexed during rendering by each ray 

sampling pair received from neighbor sampling slice, as shown in Fig. 2-4. The 

pre-integration volume rendering algorithm assumes that the transfer function 

between any two discrete sampling pairs is linear. Looking up the pre-integrated 

lookup table for any two sampling pairs guarantees that no transfer function detail is 

ignored. 

 

 

Fig. 2-4: Front and back slice of the pre-integrated volume rendering 

 

front slice
back slice

Sf
Sb
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2.2. Volume rendering with Shading 

In this section we introduce some shading technique, include lighting and shadowing. 

Lighting is a basic shading method and is easy to implement, but the additional 

memory space is needed to store the normal information. Further, the normal gained 

by gradient is undefined in homogeneous regions. Shadowing provides high quality 

rendering result without extra memory space. It also provides currently feasible 

solution for homogeneous volume data. 

 

2.2.1 Lighting 

For improving the quality of volume rendering, sophisticated shading model is 

required to capture characteristics of volume data and provide subtle lighting effects. 

A local illumination models can approximate the light intensity on the surface of an 

object by considering the lightings effects in three different ways, emission, 

transmission, and reflection. This model is evaluated as a function of the normal of 

the surface with respect to the position of a point light source and some material 

properties. Indirect light and shadows are not taken into account. The most popular 

lighting model is Phong model: 

� � -./. 0 -�/�
/1 · �31
 0 -�/�
431 · �31
+
 

Which computes the reflected intensity as a function of local surface normal �31, the 

lighting direction /1, ambient, diffuse, and specular intensity /., /�, /� of the light 

source, ambient, diffuse, specular, and shininess coefficients -., -� , -�, �  of the 

object, and the half-vector 431 of lighting and viewing direction. 

The gradient information is usually used as normal during rendering. The central 

differences at each voxel are used to gain the normal vector. The method of central 

differences approximates the gradient as the difference of data values of two voxel 
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neighbors along a coordinate axis, divided by the physical distance 4. The following 

formula computes the x, y, and z component of the gradient vector at voxel location 

631�$,(,7�, individually. 8
631
 is the function to get the value of volume data. 

9�
631�$,(,7�
 � 8
631�$:),(,7�
 ' 8
631�$�),(,7�

24  

9<
631�$,(,7�
 � 8
631�$,(:),7�
 ' 8
631�$,(�),7�

24  

9=
631�$,(,7�
 � 8
631�$,(,7:)�
 ' 8
631�$,(,7�)�

24  

The normal information computed from volume data is stored in a 3-D array. It is 

efficient to combine the normalized gradient and original volumetric data into a single 

RGBA texture to reduce the cost of texture lookup and interpolation. 

 

2.2.2 Shadowing 

Furthermore, the normal required for the Phong model is derived from the normalized 

gradient of the scalar field. For many volumes, homogeneous regions pose problems 

for typical gradient based surface shading. While this normal is well defined for the 

regions in the volume that have high gradient magnitudes, this normal is undefined in 

the homogeneous regions, where the gradient may be the zero vector. The use of the 

normalized gradient is also troublesome in the regions with low gradient magnitudes, 

where noise can significantly degrade the gradient computation. 

Kniss provides a shadowing technique with two important characteristics. First, 

the slice axis of proxy geometry is modified from the viewing direction to the 

direction halfway between the lighting and viewing directions. This allows the same 

slice to be rendered from both the eye and light points of view. Second, an off screen 

rendering buffer, called light-buffer, is needed to accumulate the amount of light 

attenuated from the light’s point of view.  
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Chapter 3  

Overview of Our Visualization System 

 

In this chapter, we introduce each part of our visualization system. Our system 

can be used to interactively visualize multi-volume data with pre-integrated transfer 

function, lighting effect, and shadowing effect. The geometry data produced by 

neuron tracing can also be combined with our volume visualization system perfectly. 

 

3.1. Volume visualization 

3.1.1 Texture-based volume rendering 

The texture-based volume rendering algorithm is a favorite technique to implement 

the volume rendering integral. It is the technique we used to efficiently visualize 

volumetric data by using texture mapping hardware. The flowchart of the 

texture-based volume rendering algorithm is shown in Fig. 3-1.  
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Fig. 3-1: Flowchart of the texture-based volume rendering algorithm 

 

At the beginning of our system, volume data are loaded and stored in the CPU 

memory as a single 3-D array. Then they are padding to power-of-two-size texture to 

maximize rendering performance and downloaded to graphics memory [12]. Transfer 

function texture and fragment shaders [13] are also created in the initialize stage. 

Notice that this stage is usually performed only once in our system. 

Initialize

Update

Draw

Start

End

Done
No

Yes

Input

Load and process data

Download textures

Create shaders

Viewing parameters

Transfer function

Update proxy geometry

Update textures

Set up rendering state

Draw proxy geometry

Restore rendering state
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Fig. 3-2: Proxy geometry of texture-based volume rendering 

 

After our system receives user inputs, the proxy geometry is computed and 

stored in a proxy pool in the update stage. Corresponding to the texture-based volume 

rendering algorithm, the image of the volume data are created by drawing and 

compositing the proxy geometry in sorted order. The proxy geometry is parallel 

textured polygons and they are gained by firstly calculating the intersections between 

each parallel plane which is vertical to the viewing direction and the edges of the 

volume bounding box. Then the intersected vertices of each plane are sorted in a 

counterclockwise direction around their center. The resulting is a set of polygons for 

sampling the volume data. Fig. 3-2 illustrates the calculating process with two slice 

polygons. The first polygon contains three vertices and the second is composed of six 

vertices. For each vertex, the corresponding 3D texture coordinate is also calculated. 

The calculations of proxy geometry are all done by the CPU.  

During the update stage, the textures of transfer function lookup table are 

refreshed if the transfer function is changed. The transfer functions are used to 

emphasize the futures of the data by mapping the value of data to optical properties. 

Typically, these transfer functions are implemented with 1-D texture lookup tables. 

When the lookup table is built, color and opacity are usually assigned separately by 

the transfer function. 

Bounding Box of Volume Data
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Before the drawing stage, the alpha blending operator needs to be set up to 

accumulated color and opacity. If the slice polygons are rendered in back-to-front 

order, a single step of the compositing process in back-to-front order is known as the 

“Over” operator [14]: 

�>$+.? � ��@ABCD 0 �1 ' #�@ABCD� · ��D�E$+.E$@+ 

#>$+.? � #�@ABCD 0 �1 ' #�@ABCD� · #�D�E$+.E$@+ 

Where ��D�E$+.E$@+ and #�D�E$+.E$@+ are the color and opacity in the frame-buffer. 

��@ABCD and #�@ABCD are the color and opacity obtained from the fragment shading 

stage. �>$+.? and #>$+.? are the accumulated color and opacity. The final image is 

computed along the viewing ray from the back of the volume. 

If slice polygons are sorted in front-to-back order, the “Under” operator is used: 

�>$+.? � �1 ' #�D�E$+.E$@+� · ��@ABCD 0 ��D�E$+.E$@+ 

#>$+.? � �1 ' #�D�E$+.E$@+� · #�@ABCD 0 #�D�E$+.E$@+ 

Where ��D�E$+.E$@+ and #�D�E$+.E$@+ are the color and opacity in the frame-buffer. 

��@ABCD and #�@ABCD are the color and opacity obtained from the fragment shading 

stage. �>$+.? and #>$+.? are the accumulated color and opacity from the front of the 

volume. 

 

 

Fig. 3-3: The shader code of the texture-based volume rendering algorithm 

uniform sampler3D uTexVoxel;

uniform sampler1D  uTexTf1d;

void main(){

float Voxel =  texture3D(uTexVoxel, gl_TexCoord[0].xyz).r;

gl_FragColor =  texture1D(uTexTf1d, Voxel).rgba;

}
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Fig. 3-4: The result of basic texture-based volume rendering 

 

In the drawing stage, the slice polygons are rasterized and blended into the frame 

buffer in sorted order. In the fragment shading stage, the interpolated 3-D texture 

coordinate of each fragment is used for looking up the texture of volume data. Then 

the data value gained by sampling the volume data is used as 1-D texture coordinates 

for looking up the texture of transfer function. The shader code of the texture-based 

volume rendering algorithm is shown in Fig. 3-3. After each slice polygon is rendered, 

it is sent to the compositing stage of the rendering pipeline. Each slice polygon is 

rendered once in back-to-front or front-to-back order with corresponding blending 

function in the frame-buffer. Then the projective image of volume data is gained, as 

shown in Fig. 3-4.  
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3.1.2 Pre-integrated volume rendering 

For contacting the artifact caused by low sampling frequency, we use the 

pre-integrated lookup table to replace 1-D transfer function lookup table. As the 

transfer function changed, the corresponding pre-integrated lookup table is calculated 

and stored as a 2-D texture. In the fragment shading stage, the interpolated 3-D 

texture coordinate of each fragment is used as the sampling point in the front slice. 

The sampling point in the back slice is calculated by front slice, viewing direction, 

and slice interval. These two scalar values are used as a 2-D texture coordinate for a 

third texture fetch operation, which performs the lookup of pre-integrated colors and 

opacities from the 2-D texture map of the pre-integrated lookup table. The 

relationship of these sampling points is shown in Fig. 3-5. The scalar value on the 

front (back) slice for a particular viewing ray is called 	> �	F�. “uBackSliceDir” is the 

vector from front to back slice. 

 

Fig. 3-5: A slab of the volume data between two slices.  

uBackSliceDir

front slice back slice

Sf
Sb
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The corresponding GLSL code of the pre-integrated volume rendering algorithm 

is shown in Figure 3-6. The texture coordinate of each fragment on the front slice is 

gained by interpolated 3-D texture coordinate. The texture coordinate of each 

fragment on the back slice is gained by front coordinate and uBackSliceDir. The front 

and back texture coordinates are used as 2-D coordinate (TexPreItgCoord) to fetch 

pre-integrated lookup table (uTexTfPreItg). The result of the pre-integrated volume 

rendering is shown in Fig. 3-7. 

 

Fig. 3-6: Shading code of pre-integrated volume rendering 

 

Fig. 3-7: The result of pre-integrated volume rendering algorithm 

uniform sampler3D uTexVoxel; // volume data

uniform sampler2D uTexTfPreItg; // pre-integrated lookup table

uniform vec3 uBackSliceDir; // vector from front to back slice

void main(){

vec3 TexVoxelCoordFront =  gl_TexCoord[0].xyz; // interpolated 3-D texture coordinate

float VoxelFront =  texture3D(uTexVoxel,  TexVoxelCoordFront ).r;

vec3 TexVoxelCoordBack =  TexVoxelCoordF - uBackSliceDir;  

float VoxelBack =  texture3D(uTexVoxel, TexVoxelCoordBack ).r;

vec2 TexPreItgCoord;

TexPreItgCoord.x =  VoxelFront ;

TexPreItgCoord.y =  VoxelBack

gl_FragColor =  texture2D(uTexTfPreItg,  TexPreItgCoord).rgba;

}
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3.1.3 Volume rendering with lighting 

After loading volume data into our visualization system, the surface normal vector of 

each voxel is gained by computing the central difference at it. Then the surface 

normal information is stored in a 3-D array. This 3-D array can be incorporated with 

the original volume data to a single 3-D RGBA texture, and downloaded to graphics 

memory. Notice that the value of normal vector should be normalized from 0 to 1 to 

achieve the goal of maximizing rendering performance. The step of computing and 

downloading the normal information to graphics memory is performed in initialize 

stage only once in our system. 

In the fragment shading stage, the textures of volume, normal, and transfer 

function lookup table, and coefficients of lighting model are loaded into shaders. 

Illumination techniques may modify the resulting color before it is sent to the 

compositing stage of the pipeline. We present the most common shading model, 

Phong model, which computes the reflected intensity as a function of local surface 

normal, lighting direction, and coefficient of light. The corresponding GLSL code is 

shown in Fig. 3-8. Notice that the value of normal vector is shift from -0.5 to 0.5 in 

the shader to restore the original normal direction. The result of volume rendering 

with lighting is shown in Fig. 3-9. 
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Fig. 3-8: GLSL code of texture-based volume rendering with lighting 

 

Fig. 3-9: The result of texture-based volume rendering with lighting effect 

uniform sampler3D uTexVoxelNormal;

//light  coefficients;

//…

void main(){

vec3 TexVoxelNormalCoord =  gl_TexCoord[0].xyz;

// channel  r  of  uTexVoxelNormal stores  the  volume  data

// channel  gba stores  the  normal  information

vec4 VoxelNormal = texture3D(uTexVoxelNormal, TexVoxelNormalCoord ).rgba; 

vec4 Fragment;

// compute Fragment by transfer function

//…

vec3 Normal;

// shift  the  value  of  normal  from  0  to  1  to  -0.5  to  0.5

Normal.x =  VoxelNormal.g - 0.5;

Normal.y =  VoxelNormal.b - 0.5;

Normal.z =  VoxelNormal.a - 0.5; 

// perform Phong model

//…

gl_FragColor = Fragment;

}
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3.1.4 Volume rendering with shadowing 

For the confocal microscopy image of Drosophila’s brain, homogeneous regions pose 

problems on the typical gradient based surface shading. The surface normal vectors 

are well defined in the regions with high gradient magnitudes. For homogeneous 

regions, the gradient vector may be the zero vectors. The using of the normalized 

gradient vectors is also troublesome in regions with low gradient magnitudes, where 

noise can significantly degrade the normalization of gradient vectors. 

We implement the shadowing algorithm provided by Kniss. This algorithm has 

two important characteristics. First, the slice axis of proxy geometry is modified from 

viewing direction to the direction halfway between the viewing and lighting directions, 

as shown in Fig. 3-10. When the dot product of the lighting and viewing directions is 

positive, we slice volume data along the vector halfway between the lighting and 

viewing directions, seen in Fig. 3-10a. In this case, the proxy geometry of the volume 

data is rendered in front to back order with respect to the observer. When the dot 

product is negative, we slice along the vector halfway between the lighting and the 

inverted viewing directions, seen in Fig. 3-10b. In this case, the proxy geometry is 

rendered in back to front order with respect to the observer. In both cases, the proxy 

geometry is rendered in front to back order with respect to the light. 

       

(a)                     (b) 

Fig. 3-10: Slice axis dependent on view and light directions 

θ

s
θ s
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Second, an off screen render buffer, light-buffer, is utilized to accumulate the 

amount of light attenuated from the light’s point of view. This buffer is initialized to 

light intensity. It can also be initialized using an arbitrary image to create effects such 

as spotlights. 

For the implementation of light-buffer with hardware, we introduce a powerful 

technique, the frame-buffer object (FBO) [15]. FBO is an extension of OpenGL for 

doing flexible off-screen rendering, include rendering to a texture. It allows result of 

rendering to a frame-buffer to be directly read as a texture. FBO takes advantage of 

good performance because the step of copy from a frame-buffer to a texture is 

avoided. 

Our shading process is shown in Fig. 3-11. At the beginning of rendering, the 

sampling direction and sorting order of slices are decided. The slice axis is modified 

for the requirement of rendering the same proxy geometry from both the eye and light 

points of view.  
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Fig. 3-11: Shadowing process 
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(a)

(b) 

Fig. 3-12: Two passes of shadowing algorithm 

 

In the shading stage, each proxy polygon is rendered twice. In the first pass, 

proxy polygon is firstly rendered from the observer’s point of view in the frame-buffer. 

The light intensity at each fragment of this polygon is acquired by sampling the 
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position it is projected in the light-buffer. The light intensity is used to modulate the 

brightness of the fragment. In this pass, polygons are blended with over operator if the 

dot product of lighting and viewing vector is negative, or with under operator if the 

dot product is positive. This pass is illustrated in Fig. 3-12a. 

In the second pass, this polygon is rendered from the light’s point of view in the 

light-buffer to achieve the goal of accumulating the intensity of the light arriving in 

the first pass of the next polygon. Each fragment of this polygon is firstly sampling 

the texture of the volume data to get the interpolated data value. Then the data value is 

used as texture coordinate to sample the texture of the transfer function. Only the 

opacity of this fragment lookup from the transfer function is required. The fragment is 

rendered with black color and the corresponding opacity with over operator to achieve 

the goal of attenuating the intensity of the light. This pass is illustrated in Fig. 3-12b. 

An example of volume rendering with shadowing can be seen in Fig. 3-13. 

 

Fig. 3-13: Texture-based volume rendering with shadowing effect 
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3.1.5 Volume rendering with geometry information 

In the neuron study of Drosophila’s brain, the morphology and geometry of neuron 

play important roles. Mostly the neuron is with complicated structure and the image 

volume is derived from confocal microscope slice by slice and this makes it hard to 

visually observe the neuron. In order to observe the neuron structure we combine the 

traced neuron branch curve data and volume data to help the user to observe the 

neuron. 

In traditional way, the geometry information is stored as vertices and edges. If 

we render such geometry information as segments, the depth and space relation is not 

easy to understand. Display the geometry information as pipe is better than segment 

because pipe can provide normal information and light shading is possible.  

For rendering segments as pipes, each segment is shown as cylinder constructed 

by polygons, and each end of segment is shown as spheres. We use an adjustable 

radius to calculate the corresponding cylinders and spheres, as shown in Fig. 3-14. 

To achieve the goal of blending the geometry information into the volume 

rendering, the polygons of geometry information needs to be drawn before the volume 

data with “Over” operator. The depth test of rendering pipeline culls the fragments of 

volume rendering that are behind geometry data. If the “Under” operator is used, 

render the geometry data and the volume data into separate frame-buffers and 

composite two frame-buffers at the end. In this case, the depth values from the 

geometry data are used for culling fragments in the volume rendering. The result of 

volume rendering with geometry information is shown in Fig. 3-15. 
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Fig. 3-14: Display segment as pipe 

  

Fig. 3-15: A neuron Tadpole 
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3.2. Multi-volume rendering 

In order to compare the brain structures between two individuals, it is in general 

essential to show all the volume data concurrently. For example, compare the different 

neuron locations in a fly brain between different experiments to understand how 

neuronal circuits to connection. Multi-volume rendering provide better observation 

for bio-medical science. 

For rendering multi-volume data at the same time, the visualization stages of our 

system have a little modification from the process shown before. In the initialize stage, 

all volume data are loaded, processed and pushed into a volume pool. In the update 

stage, each volume data in the volume pool is sliced along the sampling direction, and 

all of such slices are pushed into a proxy pool. We sort all slices in the proxy pool; no 

matter what volume data they are corresponded.  

Our visualization system allows user to selectively set individual rendering 

coefficients such as transfer functions and material of lighting for different volume 

data. The deform matrix of each volume data can be set individually for providing 

better eyeshot and observation. User can also decide the usage of pre-integrated 

lookup table and lighting effect. See Fig. 3-16 for an example, where several different 

rendering coefficients have been set to visualize multi-volume data of a human head 

and a fly brain. 

 

Fig. 3-16: The result of multi-volume rendering 
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3.3. Summary 

In chapter 3.3, we introduce the flowchart of our visualization system; include 

the flowchart of data processing and the shading effects.  

 

3.3.1 Flowchart of Our Visualization System 

Fig. 3-17 shows a flowchart diagram illustrating the complete procedure of our 

visualization system for the data processing and visualization process. In the initialize 

stage, volumetric data and geometric information are loaded. In this stage, the texture 

and of each volumetric data are created and the polygons of geometry information are 

calculated. After user input the parameters of lighting, viewing, and rendering, and 

define the transfer function, we create the proxy geometries by sampling each volume 

data along the sampling direction in the update stage. Then we render all proxy 

geometry with the shading coefficient defined by user in the render stage. Thus, we 

complete one pass of rendering. 
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Fig. 3-17: Main process of our visualization system 
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Fig. 3-18: Initialization stage of main process 

 

3.3.2 Initialization Stage 

In the initialization stage, as shown in Fig. 3-18, volume data and the corresponding 

geometry data are loaded. If the lighting effect is enabled, the normal information of 

volume data is calculated in this stage. For multi-volume rendering, we build a 

volume pool and push all volume data into it.  
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In this stage, the proxy geometry of each volume data is calculated. First, the 

sampling direction is decided. Then every volume data is sampled from the volume 

pool along sampling direction. All proxy geometry gained in this stage are pushed into 
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lighting direction and viewing direction is smaller than 90°, it means that the dot 

product of the lighting and viewing directions is positive, the sampling direction is the 

vector halfway between the lighting and viewing directions. When the angle between 

lighting and viewing direction is larger than 90°, it means that the dot product of the 

lighting and viewing direction is negative, the sampling direction is the vector 

halfway between the lighting and inverted viewing directions. On the other way, if the 

shadowing effect is disabled, the sampling direction is the viewing direction. 

After deciding the sampling direction, pick one volume data from volume pool. 

The volume data is deformed by it’s deform matrix, which is decided by the 

translation, rotation, and scale of this volume. After deforming, the proxy geometry of 

this volume data is gained by sampling along the sampling direction. All volume data 

in the volume pool are processed by the procedure as described before.  

As all volume data in volume pool have been processed, the proxy geometry in 

the proxy pool should be sorted. The rule of sorting is decided by the distance 

between proxy geometry and observer. The procedure of this stage is shown in Fig. 

3-19.  
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Fig. 3-19: Update stage of main process 
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3.3.4 Draw Stage 

In this stage, the result of the volume visualization is created. First, check if the 

shadowing effect is enabled. If not, the proxy geometry in the proxy pool is rendered 

in back to front order (by the distance between proxy geometry and observer from 

near to far) in the frame-buffer with Over operator. 

If the shadowing effect is enabled, the locations of light and viewer should be 

checked. If the dot product of the lighting and viewing direction is positive, we start 

the two-pass rendering procedure as follow. Pick proxy geometry in the proxy pool in 

front to back order. First, render it in the frame-buffer with Under operator. In this 

pass, the corresponding coefficient of shadowing of each fragment is lookup in the 

light-buffer. And the final color of each fragment is modified by this coefficient. In 

the second pass, render the same proxy geometry in the light-buffer with Over 

operator to accumulate and calculate the shadow coefficient. This pass can be done 

efficiently with the technique called frame-buffer object. After the two-pass rendering 

procedure, if the proxy pool is not empty, repeat this procedure. 

If the dot product of the lighting and viewing direction is negative, the proxy 

geometry in the proxy pool is picked in back to front order. In pass one; each proxy 

geometry is firstly rendered in the frame-buffer with Over operator. In pass two, the 

same proxy geometry is rendered in the light-buffer with Over operator, two. The 

corresponding shader code is shown in Fig. 3-20. The flowchart of this stage is shown 

in Fig. 3-21.  



 35

 

Fig. 3-20: Shadow code for volume rendering with shadowing 

 

Fig. 3-21: Draw stage of main process 

uniform sampler3D uTexVoxel;

uniform sampler1D uTexTf1d;

uniform sampler2D uTexLightBuffer;

void main(){

// gl_TexCoord[0] is the texture coordinate for 3-D volume data

float Voxel = texture3D(uTexVoxel, gl_TexCoord[0].xyz).r;

vec4 FinalColor;

FinalColor = texture1D(uTexTf1d, Voxel).rgba;

// gl_TexCoord[1] is the texture coordinate for 2-D light-buffer

vec3 ShadowingWeight = texture2D(uTexLightBuffer, gl_TexCoord[1].xy).rgb;

FinalColor.r *= ShadowingWeight.r;

FinalColor.g *= ShadowingWeight.g;

FinalColor.b *= ShadowingWeight.b;

gl_FragColor = FinalColor;

}
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Chapter 4  

Main Result 

 

In this thesis, we build a volume data visualization system for confocal 

microscopic image of Drosophila’s brain. Although there are some software platforms 

for visualization and manipulating bio-medical and science data in the market, user 

need to pay high price for authorization and these software are hard to accord with 

biologist’s particular request. Our system provides high quality volume visualization 

to help biologist make profound diagnosis.  

The implementation of our volume renderer is based on C++, OpenGL, and 

GLSL. The performance measurements were conducted on a Windows XP PC with an 

Intel E4400 CPU and an NVidia GeForce 8800GT graphics board with 1024MB 

texture memory.  

Fig. 4-1 shows a fly brain of size 256*256*67. Fig. 4-1a is rendered by basic 

texture-based volume rendering with 60 frames per second (fps). Fig. 4-1b is rendered 

by pre-integrated volume rendering with 60 fps. Fig. 4-1c is rendered by 

pre-integrated volume rendering with lighting between 53 to 57 fps. Fig. 4-6d is 

rendered by pre-integrated volume rendering with shadowing between 13 to 18 fps. 

Fig. 4-6e is rendered by pre-integrated volume rendering with lighting and shadowing 

between 13 to 18 fps. 
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Fig. 4-1: Result of fly brain 
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Fig. 4-2: Result of the multi-volume rendering algorithm 

 

Fig. 4-2 shows the result of the multi-volume rendering algorithm. The left side 

of Fig. 4-2 is a human head of size 256*256*256 and the right side of Fig. 4-2 is a fly 

brain of size 256*256*67. As shown that the human head causes some shadows in the 

fly brain. The fps of Fig. 4-2 is between 7 to 10 fps. 
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Fig. 4-3: A neuron in Drosophila’s brain, glomerulus 

 

Fig. 4-3 shows the result of texture-based volume rendering with geometry data. 

The fly brain of size 512*512*123 was rendered between 7 to 10 fps. 
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Chapter 5  

Conclusion and Future Work 

 

In this thesis, we build a visualization system for more reality and interactive 

volume rendering for confocal microscopic image of Drosophila’s brain. We combine 

and reference many important researches to build this system, include improving low 

sampling rate by the pre-integrated volume rendering algorithm, providing reality 

volume rendering by lighting and shadowing, providing more space information by 

the volume rendering with geometry data and comparing between many volume data 

by the multi-volume rendering. 

Although our system can provide interactive volume rendering with consumer 

graphics hardware, the performance is not good enough to provide good result with 30 

fps. Our visualization system can be improved by referencing some accelerating 

texture-based volume rendering algorithm, like empty space skipping technique. 

The data size of confocal microscopic image is usually larger than the texture 

memory of consumer graphic card. The volume rendering algorithm for large data is a 

important question. Our system can be improved by referencing some large volume 

data visualization algorithm, like level of detail or octree technique. 

Although lighting and shadowing effect can improve the reality of volume 

rendering, the difference between materials cannot be observed. A shading system is 

needed to rendering more detail in different materials, like bone, skin, or tissue. 

 

 

 

 



 41

 

Bibliography  

 

[1] A. V. Gelder, K. Kim, “Direct volume rendering via 3D texture mapping hardware,” 

Proc. of Vol. Rend. Symp. ’96, pp. 23-30, 1996.  

 

[2] B. Cabral, N. Cam, J. Foran, “Accelerated volume rendering and tomographic 

reconstruction using texture mapping hardware,” Symp. on Volume Visualization ’94, 

pp.91-98, 1994. 

 

[3] A. Kaufman, K. Mueller, “Overview of Volume Rendering,” The Visualization 

Handbook, 2005. 

 

[4] M. Ikits, J. Kniss, A. Lefohn, C. Hansen, “Volume Rendering Techniques,” GPU 

Gems, chapter 39, pp. 667-692, 2004.  

 

[5] K. Engel, M. Kraus, T. Ertl, “High-quality pre-integrated volume rendering using 

hardware-accelerated pixel shading,” SIGGRAPH/Eurographics Workshop on 

Graphics Hardware 2001, pp. 9-16, 2001. 

 

[6] B. T. Phong, “Illumination for computer generated pictures,” Communications of 

the ACM, pp.311-317, 1975. 

 

[7] A. V. Gelder, K. Kwansik, “Direct Volume Rendering with Shading via 

Three-Dimensional Textures,” ACM Symposium on Volume Visualization ’96, pp. 

23-30, 1996. 



 42

[8] J. Kniss, G. Kindlmann, C. Hansen, “Interactive volume rendering using 

multidimensional transfer functions and direct manipulation widgets,” IEEE 

Visualization ’01, pp. 255-262, 2001. 

 

[9] J. Kniss, S. Premoze, C. Hansen, P. Shirley, A. McPherson, “A model for volume 

lighting and modeling,” IEEE Transactions on Visualization and Computer Graphics, 

pp. 150-162, 2003. 

 

[10] P.-C. Lee, Y.-T. Ching, H.-M. Chang, A.-S. Chiang, “A semi-automatic method 

for neuron centerline extraction in confocal microscopic image stack,” ISBI 2008, 5th 

IEEE International Symposium on Biomedical Imaging, pp. 959-962, 2008. 

 

[11] N. Max, “Optical Models for Direct Volume Rendering,” IEEE Transactions on 

Visualization and Computer Graphics, Vol. 1, Issue 2, pp. 99-108, 1995. 

 

[12] T. McReynolds, D. Blythe, B. Grantham, S. Nelson, “Advanced Graphics 

Programming Techniques Using OpenGL,” SIGGRAPH’98 Course Notes, 1998. 

 

[13] E. Persson, “Framebuffer Objects,” ATI Technologies, Inc, 2005. 

 

[14] T. Porter, T. Duff, “Compositing digital images,” Computer Graphics (Proc. 

Siggraph ‘84), pp. 253-259, 1984. 

 

[15] R. J. Rost, “OpenGL Shading Language, 2
nd

 edition,” Addison Wesley, 2006. 

 

 


	論文封面
	論文完稿

