

國 立 交 通 大 學

資訊科學與工程研究所

碩碩碩碩 士士士士 論論論論 文文文文

共軛焦顯微鏡產生之果蠅腦影像之顯像系統

A Visualization System for Confocal Microscopic

Image of Drosophila's Brain

研 究 生：林進錕

指導教授：荊宇泰 教授

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 七七七七 年年年年 九九九九 月月月月

 i

共軛焦顯微鏡產生之果蠅腦影像之顯像系統共軛焦顯微鏡產生之果蠅腦影像之顯像系統共軛焦顯微鏡產生之果蠅腦影像之顯像系統共軛焦顯微鏡產生之果蠅腦影像之顯像系統

學生學生學生學生：：：：林進錕林進錕林進錕林進錕 指導教授指導教授指導教授指導教授：：：：荊宇泰荊宇泰荊宇泰荊宇泰 博士博士博士博士

國立交通大學資訊科學與工程研究所國立交通大學資訊科學與工程研究所國立交通大學資訊科學與工程研究所國立交通大學資訊科學與工程研究所

摘摘摘摘 要要要要

為了了解果蠅腦的功能，三維立體影像的腦圖譜和腦內結構位置的建立，並

且進一步了解神經網路如何的連結是非常重要的。針對共軛焦顯微鏡產生之果蠅

腦資料，我們建立了一個以貼圖為基礎的立體資料描繪系統。為了比較不同果蠅

腦的結構，我們的系統可同時描繪多組立體資料。打光和陰影效果及預先積分之

立體資料描繪法更進一步的在我們系統中被支援以達到更精緻的描繪結果。經由

神經追蹤產生之幾何資訊也可以在我們的系統中被完美的結合。

 ii

A Visualization System for Confocal Microscopic Image of Drosophila's Brain

Student: Jin-Kuen Lin Advisor: Yu-Tai Ching

Institute of Computer Science and Engineering

National Chiao Tung University

ABSTRACT

In order to understand the fly brain functions, the three-dimensional knowledge

of the topography and localization of brain structures and how neuronal circuits to

connection is very important. We build a texture-based volume visualization system

for confocal microscopic image of Drosophila’s brain. In order to compare the brain

structures between two individuals, our system provides multi-volume rendering.

Furthermore the lighting, shadowing effect and pre-integrated volume rendering are

supported in the system to make it more sophisticated. Geometric information derived

by neuron tracing can be incorporate with our visualization system perfectly.

 iii

致致致致 謝謝謝謝

感謝荊宇泰教授這兩年的細心指導，讓我有能力完成這個論文。感謝楊傳凱

老師及謝昌煥老師百忙之中抽空來參加我的口試，並給我很好的建議。也感謝昌

杰學長帶我體會程式語言和圖學的奧妙。秉璋學長在演算法部分也給我很好的意

見及思考方向。

感謝我的家人，念大學和研究所的這段期間很少回家，很想他們。現在終於

脫離學生生活了，當兵前的這段時間，當然要留給家人啦。祝我的家人身體永遠

健康，也祝我的朋友身體永遠健康

海角七號破了這幾年國片的票房紀錄，在我完成論文口試時，他的票房已經

默默的破了四千萬了。國片拍得那麼好看，真是台灣的驕傲。我還去電影院看兩

次呢。希望大家要多支持台灣的人事物。台灣很美，台灣好棒！！！

向工呆丸謀人宅！！！

誰說台灣沒人才！！！

 iv

Contents

摘摘摘摘 要要要要... i

ABSTRACT .. ii

致致致致 謝謝謝謝.. iii

Contents ... iv

List of Figures ... v

Chapter 1 Introduction .. 1

Chapter 2 Background Materials ... 4

2.1. Texture-based Volume Rendering .. 4

2.1.1 Optical Model and Volume Rendering Integral 5

2.1.2 Pre-integrated volume rendering .. 7

2.2. Volume rendering with Shading ... 10

2.2.1 Lighting .. 10

2.2.2 Shadowing.. 11

Chapter 3 Overview of Our Visualization System .. 12

3.1. Volume visualization .. 12

3.1.1 Texture-based volume rendering .. 12

3.1.2 Pre-integrated volume rendering .. 17

3.1.3 Volume rendering with lighting ... 19

3.1.4 Volume rendering with shadowing .. 21

3.1.5 Volume rendering with geometry information 26

3.2. Multi-volume rendering ... 28

3.3. Summary .. 29

3.3.1 Flowchart of Our Visualization System 29

3.3.2 Initialization Stage ... 31

3.3.3 Update Stage .. 31

3.3.4 Draw Stage ... 34

Chapter 4 Main Result... 36

Chapter 5 Conclusion and Future Work.. 40

 v

List of Figures

Fig. 2-1: Light ray passes through a volume. ... 6

Fig. 2-2: Viewing rays passes through a volume ... 6

Fig. 2-3: Sampling rate is smaller than the Nyquist frequency 8

Fig. 2-4: Front and back slice of the pre-integrated volume rendering 9

Fig. 3-1: Flowchart of the texture-based volume rendering algorithm 13

Fig. 3-2: Proxy geometry of texture-based volume rendering 14

Fig. 3-3: The shader code of the texture-based volume rendering algorithm 15

Fig. 3-4: The result of basic texture-based volume rendering 16

Fig. 3-5: A slab of the volume data between two slices. 17

Fig. 3-6: Shading code of pre-integrated volume rendering 18

Fig. 3-7: The result of pre-integrated volume rendering algorithm 18

Fig. 3-8: GLSL code of texture-based volume rendering with lighting 20

Fig. 3-9: The result of texture-based volume rendering with lighting effect 20

Fig. 3-10: Slice axis dependent on view and light directions 21

Fig. 3-11: Shadowing process .. 23

Fig. 3-12: Two passes of shadowing algorithm ... 24

Fig. 3-13: Texture-based volume rendering with shadowing effect 25

Fig. 3-14: Display segment as pipe .. 27

Fig. 3-15: A neuron Tadpole .. 27

Fig. 3-16: The result of multi-volume rendering ... 28

Fig. 3-17: Main process of our visualization system ... 30

Fig. 3-18: Initialization stage of main process ... 31

Fig. 3-19: Update stage of main process .. 33

Fig. 3-20: Shadow code for volume rendering with shadowing 35

Fig. 3-21: Draw stage of main process .. 35

Fig. 4-1: Result of fly brain.. 37

Fig. 4-2: Result of the multi-volume rendering algorithm 38

Fig. 4-3: A neuron in Drosophila’s brain, glomerulus ... 39

 1

Chapter 1

Introduction

In this thesis, we present a volume data visualization system for confocal

microscopic of Drosophila’s brain build based on using the texture-based volume

rendering algorithm. A convenient visualization system which provides sophisticated

lighting and shadowing models and convenient observation with multi-volume data

can help the process of the bio-medical science. Our visualization system provides

these powerful functions with intuitively graphic user interface. These features help

biologist to gain detailed and useful insights into the volume data of Drosophila’s

brain.

Texture-based volume rendering [1][2][3][4] is an efficient visualization

technique that takes advantages of the texture mapping hardware in the computer

video card. In this approach, we process the volume data as a stack of parallel

textured slices from back to front. To render the data, the integration of luminance and

opacity are left to an image composition step. These steps can be efficiently

performed by extensively using of image composition and texturing hardware.

Although the texture-based volume rendering is a commonly used technique in

visualization applications, there is a serious drawback caused by non-linear transfer

functions. To visualize the region of interesting in the volume data, a non-linear

complex transfer function is needed. In this case, we need additional slices for

integrating non-linear transfer functions to approximate the volume rendering integral.

That implies the lower frame rates would be gained on modern consumer graphics

hardware. Klaus Engel [5] introduce a volume rendering integral approach that

 2

improves the image quality by pre-integrated volume rendering which allows us to

avoid additional slices caused by non-linear transfer functions in a pre-processing

step.

Lighting effect gives impressive result in terms of additional realism, and

improved spatial comprehension can be achieved. Many applications provide lighting

efficiently by an approximation to the Phong local surface shading model [6].

Furthermore, the surface normal information is required when implement Phong

model. But no gradient estimation is supported in current consumer hardware when

using texture mapping for rendering volumetric data. Allen Van Gelder describes a

gradient-based shading criterion [7], in which the gradient magnitude is interpreted

directly from volumetric data, and stored in another 3-D texture. In the rendering

phase, the gradient 3-D texture could efficiently be combined with texture-based

volume rendering and the gradient is used as normal information of lighting model.

Although gradient-based shading criterion provides the normal information of

volumetric data, one should store the pre-calculated gradient together with the

volumetric data, and then four times memory as the dataset is stored in the graphics

hardware. The storage of normal information makes the problem of limitation of the

texture memory more badly. Unfortunately, since the surface normal is approximated

by the normalized gradient of a scalar field, these methods are unsuitable for shading

homogeneous regions. Joe Kniss provide a shadowing mechanism [8][9] for shading

homogeneous regions without additional memory space. This technique also

significantly improves the visual perception and spatial understanding of volume data.

In order to compare the fly brain structures between two individuals,

simultaneously visualization between multi-volume data is needed. We expand

texture-based volume rendering technique to provide multi-volume rendering.

In this thesis we present a volume data visualization system for confocal

 3

microscopic image of Drosophila’s brain implemented by texture-based volume

rendering. Our system provides basic texture-based volume rendering, high quality

pre-integrated volume rendering, and volume rendering with lighting and shadowing.

Furthermore, our system can render multi-volume data at the same time. In order to

understand the three-dimensional knowledge of how neuronal circuits to connection,

geometric information deprived by neuron tracing [10] can be incorporate with our

visualization system perfectly.

The structure of this thesis is described as follow. The first chapter gives the

motivation and an introduction of our system. In chapter 2, we describe the

background material used in our visualization system, including the optical model for

direct volume rendering, volume rendering integral, pre-integrated volume rendering,

and shading models. In chapter 3, the detail of visualization flowchart and the process

of multi-volume rendering are reported. The results of our visualization system are

demonstrated in chapter 4. Conclusion and future work are listed in chapter 5.

 4

Chapter 2

Background Materials

In this chapter, we take a brief introduction of the relative research of our

visualization system. Section 2.1 reports the optical model for the direct volume

rendering algorithm. We assume that any object in space is formed by many small

particles like individual molecules. By simulating the state transition when light

passing through the volume, we can integrate the change of light intensity to compute

the 2-D projective image from 3-D volumetric data. “Volume rendering integral” is a

formula derived from above optical model to implement the direct volume rendering

algorithm. We then describe the pre-integrated volume rendering algorithm, which

improves the artifact of 2-D projective image caused by insufficient sampling rate of

the direct volume rendering algorithm.

In section 2.2, we report some shading method; include the lighting model and

the shadowing mechanism. Volume rendering with lighting effect gives impressive

result in terms of additional realism, but there still some disadvantage with it. The

lighting model with gradient as surface normal information is not suitable for

homogeneous volumetric data. The shadowing mechanism is a good substitute for the

lighting model to improve this problem. We also implement the shadowing

mechanism in our visualization system.

2.1. Texture-based Volume Rendering

The using of three-dimensional texture mapping hardware to perform direct volume

rendering, so-called “Texture-based Volume Rendering,” was described by Cabral. An

 5

optical model is build to map the intensity of volumetric data to optical properties,

such as color and opacity. During rendering time, optical properties are accumulated

along each viewing ray to form a 2-D projective image from the 3-D volumetric data.

This algorithm generates images of three-dimensional volumetric data set directly

without explicitly extracting geometric surfaces from the original volume data.

In this section, we describe the optical model of direct volume rendering and

introduce “Volume rendering integral” [11] which is the formula to compute the

accumulated optical properties along viewing ray. We then introduce the

implementation of the texture-based volume rendering algorithm on consumer

graphics hardware and describe the artifact caused by insufficient sampling rate.

Engel presents the pre-integrated volume rendering algorithm to solve this artifact

without the performance overhead caused by rendering additional interpolated slices.

This algorithm is suited to achieve the goal of high-quality volume rendering at

interactive frame-rates on standard PC hardware.

2.1.1 Optical Model and Volume Rendering Integral

Nelson Max proposes an optical model of volume visualization. He assumes that the

objects in space are formed by many small particles like individual molecules. Each

particle occludes incoming light and adds its own glow defined by its opacity and

luminance property. The image of objects to the user’s eyes is the result of light ray

passing through objects. So the optical properties of particles in the objects influence

the light passing through volumetric data. The final projective image is due to the

absorption and emission of light from such particles in the data.

 6

Fig. 2-1: Light ray passes through a volume.

By considering the optical model described above, we can simplify our analysis

process of volume lighting computations by taking into account only a single long

cylinder centered on the light ray that passes through the volume. As shown in Fig.

2-1. The cylinder is thin enough to assume that the volume properties do not change

on its breadth, but they will change on its length. At the back end of this cylinder,

background light comes in, and at the front end of this cylinder, light exits and travels

to the user’s eyes. We can compute such light ray pixel by pixel to generate a 2-D

projection image from volumetric data, as shown in Fig. 2-2. The orthogonal

projection and perspective projection is suited projection algorithm for this optical

model.

(a) Orthogonal projection (b) Perspective projection

Fig. 2-2: Viewing rays passes through a volume

 7

For each viewing ray, the quantity �, which is the amount of light received at

one point on the image plane, is:

 ���� � � � �	
����
� � �	
����
� �� � �����
��
������
� ���

�

Here the viewing ray ���� is parameterized by the distance � to the eyes. For the

visualization of scalar field 	
����
, the transfer function is used to defined the color

density ��	� and the extinction density ��	�, which map the scalar value 	��� to

color and extinction coefficients. D is the maximum distance, i.e., there is no color

density �
����
 for � greater than �.

We call this formula the volume rendering integral, which is the fundamental

element in the direct volume rendering algorithm. For implementation of the volume

rendering integral, a numerical integration is required. The most common way to get

the approximation of the volume rendering integral is the computation of a Riemann

sum for n equal ray segments of length � � � � . The approximate evaluation of the

volume rendering integral can be stated as:

 � � ∑ #$�$ ∏
1 ' #(
$�)(*�+$*�

In the approximate evaluation of the volume rendering integral, opacity #$

approximates the absorption, and color �$ approximates the emission at sample ,.
The product in the sum represents the amount of light attenuated at sample , before

reaching the user’s eyes and the sum of the volume rendering integral accumulate the

light effect when light passing through the volume.

2.1.2 Pre-integrated volume rendering

Volume visualization is implemented by integrating the color and opacity values

across the 3D volume data. This integration in the texture-based volume rendering

algorithm is performed by sampling the volume with parallel textured polygons,

 8

called proxy geometry, at regular intervals.

According to the sampling theorem, a correct reconstruction is only possible with

the sampling rates larger than the Nyquist frequency. In the volume visualization

algorithm, it is sufficient to sample at the resolution of the scalar field to avoid

aliasing with respect to scalar value. However, the scalar field is sampled before being

transformed by a transfer function. Non-linear transfer functions may add arbitrary

frequencies to the data and increase the sampling rate required for the volume

rendering integral. The higher sampling rates of the volume visualization algorithm

are requires for capturing all details.

Consider a thin spike in the transfer function, this spike results a very thin

surface by the volume rendering algorithm. If the feature defined by transfer function

is smaller than the sampling range, which is often encountered when drawing an

iso-surface, some rays will sample the detail and others will miss it completely. The

result of volume visualization is a series of aliasing bands rather than a continuous

surface. If the feature is somewhat larger than the sampling range, a similar problem

is still occurred because some rays will sample this feature once while others will

sample it twice, as shown in Fig. 2-3. Fig.2-3a is a transfer function with a very thin

spike, and Fig.2-3b displays the result of visualization.

(a) (b)

Fig. 2-3: Sampling rate is smaller than the Nyquist frequency

 9

Such artifacts can be reduced in traditional volume renderings by sampling at

high rates or using smooth, low-frequency transfer functions such as Gaussian curve

to blur the feature. Unfortunately, high sampling rates induces the computation

overhead and limit the performance of hardware and software. And smooth transfer

functions limit the types of renderings result. Both of such improvements still not

guarantee a sufficient sampling.

The pre-integrated transfer functions algorithm solve this problem by

pre-computing a 2-D table that stores the integral result of all possible sampling pairs

of volume rendering. This table is then indexed during rendering by each ray

sampling pair received from neighbor sampling slice, as shown in Fig. 2-4. The

pre-integration volume rendering algorithm assumes that the transfer function

between any two discrete sampling pairs is linear. Looking up the pre-integrated

lookup table for any two sampling pairs guarantees that no transfer function detail is

ignored.

Fig. 2-4: Front and back slice of the pre-integrated volume rendering

front slice
back slice

Sf
Sb

 10

2.2. Volume rendering with Shading

In this section we introduce some shading technique, include lighting and shadowing.

Lighting is a basic shading method and is easy to implement, but the additional

memory space is needed to store the normal information. Further, the normal gained

by gradient is undefined in homogeneous regions. Shadowing provides high quality

rendering result without extra memory space. It also provides currently feasible

solution for homogeneous volume data.

2.2.1 Lighting

For improving the quality of volume rendering, sophisticated shading model is

required to capture characteristics of volume data and provide subtle lighting effects.

A local illumination models can approximate the light intensity on the surface of an

object by considering the lightings effects in three different ways, emission,

transmission, and reflection. This model is evaluated as a function of the normal of

the surface with respect to the position of a point light source and some material

properties. Indirect light and shadows are not taken into account. The most popular

lighting model is Phong model:

� � -./. 0 -�/�
/1 · �31
 0 -�/�
431 · �31
+

Which computes the reflected intensity as a function of local surface normal �31, the

lighting direction /1, ambient, diffuse, and specular intensity /., /�, /� of the light

source, ambient, diffuse, specular, and shininess coefficients -., -� , -�, � of the

object, and the half-vector 431 of lighting and viewing direction.

The gradient information is usually used as normal during rendering. The central

differences at each voxel are used to gain the normal vector. The method of central

differences approximates the gradient as the difference of data values of two voxel

 11

neighbors along a coordinate axis, divided by the physical distance 4. The following

formula computes the x, y, and z component of the gradient vector at voxel location

631�$,(,7�, individually. 8
631
 is the function to get the value of volume data.

9�
631�$,(,7�
 � 8
631�$:),(,7�
 ' 8
631�$�),(,7�

24

9<
631�$,(,7�
 � 8
631�$,(:),7�
 ' 8
631�$,(�),7�

24

9=
631�$,(,7�
 � 8
631�$,(,7:)�
 ' 8
631�$,(,7�)�

24

The normal information computed from volume data is stored in a 3-D array. It is

efficient to combine the normalized gradient and original volumetric data into a single

RGBA texture to reduce the cost of texture lookup and interpolation.

2.2.2 Shadowing

Furthermore, the normal required for the Phong model is derived from the normalized

gradient of the scalar field. For many volumes, homogeneous regions pose problems

for typical gradient based surface shading. While this normal is well defined for the

regions in the volume that have high gradient magnitudes, this normal is undefined in

the homogeneous regions, where the gradient may be the zero vector. The use of the

normalized gradient is also troublesome in the regions with low gradient magnitudes,

where noise can significantly degrade the gradient computation.

Kniss provides a shadowing technique with two important characteristics. First,

the slice axis of proxy geometry is modified from the viewing direction to the

direction halfway between the lighting and viewing directions. This allows the same

slice to be rendered from both the eye and light points of view. Second, an off screen

rendering buffer, called light-buffer, is needed to accumulate the amount of light

attenuated from the light’s point of view.

 12

Chapter 3

Overview of Our Visualization System

In this chapter, we introduce each part of our visualization system. Our system

can be used to interactively visualize multi-volume data with pre-integrated transfer

function, lighting effect, and shadowing effect. The geometry data produced by

neuron tracing can also be combined with our volume visualization system perfectly.

3.1. Volume visualization

3.1.1 Texture-based volume rendering

The texture-based volume rendering algorithm is a favorite technique to implement

the volume rendering integral. It is the technique we used to efficiently visualize

volumetric data by using texture mapping hardware. The flowchart of the

texture-based volume rendering algorithm is shown in Fig. 3-1.

 13

Fig. 3-1: Flowchart of the texture-based volume rendering algorithm

At the beginning of our system, volume data are loaded and stored in the CPU

memory as a single 3-D array. Then they are padding to power-of-two-size texture to

maximize rendering performance and downloaded to graphics memory [12]. Transfer

function texture and fragment shaders [13] are also created in the initialize stage.

Notice that this stage is usually performed only once in our system.

Initialize

Update

Draw

Start

End

Done
No

Yes

Input

Load and process data

Download textures

Create shaders

Viewing parameters

Transfer function

Update proxy geometry

Update textures

Set up rendering state

Draw proxy geometry

Restore rendering state

 14

Fig. 3-2: Proxy geometry of texture-based volume rendering

After our system receives user inputs, the proxy geometry is computed and

stored in a proxy pool in the update stage. Corresponding to the texture-based volume

rendering algorithm, the image of the volume data are created by drawing and

compositing the proxy geometry in sorted order. The proxy geometry is parallel

textured polygons and they are gained by firstly calculating the intersections between

each parallel plane which is vertical to the viewing direction and the edges of the

volume bounding box. Then the intersected vertices of each plane are sorted in a

counterclockwise direction around their center. The resulting is a set of polygons for

sampling the volume data. Fig. 3-2 illustrates the calculating process with two slice

polygons. The first polygon contains three vertices and the second is composed of six

vertices. For each vertex, the corresponding 3D texture coordinate is also calculated.

The calculations of proxy geometry are all done by the CPU.

During the update stage, the textures of transfer function lookup table are

refreshed if the transfer function is changed. The transfer functions are used to

emphasize the futures of the data by mapping the value of data to optical properties.

Typically, these transfer functions are implemented with 1-D texture lookup tables.

When the lookup table is built, color and opacity are usually assigned separately by

the transfer function.

Bounding Box of Volume Data

 15

Before the drawing stage, the alpha blending operator needs to be set up to

accumulated color and opacity. If the slice polygons are rendered in back-to-front

order, a single step of the compositing process in back-to-front order is known as the

“Over” operator [14]:

�>$+.? � ��@ABCD 0 �1 ' #�@ABCD� · ��D�E$+.E$@+

#>$+.? � #�@ABCD 0 �1 ' #�@ABCD� · #�D�E$+.E$@+

Where ��D�E$+.E$@+ and #�D�E$+.E$@+ are the color and opacity in the frame-buffer.

��@ABCD and #�@ABCD are the color and opacity obtained from the fragment shading

stage. �>$+.? and #>$+.? are the accumulated color and opacity. The final image is

computed along the viewing ray from the back of the volume.

If slice polygons are sorted in front-to-back order, the “Under” operator is used:

�>$+.? � �1 ' #�D�E$+.E$@+� · ��@ABCD 0 ��D�E$+.E$@+

#>$+.? � �1 ' #�D�E$+.E$@+� · #�@ABCD 0 #�D�E$+.E$@+

Where ��D�E$+.E$@+ and #�D�E$+.E$@+ are the color and opacity in the frame-buffer.

��@ABCD and #�@ABCD are the color and opacity obtained from the fragment shading

stage. �>$+.? and #>$+.? are the accumulated color and opacity from the front of the

volume.

Fig. 3-3: The shader code of the texture-based volume rendering algorithm

uniform sampler3D uTexVoxel;

uniform sampler1D uTexTf1d;

void main(){

float Voxel = texture3D(uTexVoxel, gl_TexCoord[0].xyz).r;

gl_FragColor = texture1D(uTexTf1d, Voxel).rgba;

}

 16

Fig. 3-4: The result of basic texture-based volume rendering

In the drawing stage, the slice polygons are rasterized and blended into the frame

buffer in sorted order. In the fragment shading stage, the interpolated 3-D texture

coordinate of each fragment is used for looking up the texture of volume data. Then

the data value gained by sampling the volume data is used as 1-D texture coordinates

for looking up the texture of transfer function. The shader code of the texture-based

volume rendering algorithm is shown in Fig. 3-3. After each slice polygon is rendered,

it is sent to the compositing stage of the rendering pipeline. Each slice polygon is

rendered once in back-to-front or front-to-back order with corresponding blending

function in the frame-buffer. Then the projective image of volume data is gained, as

shown in Fig. 3-4.

 17

3.1.2 Pre-integrated volume rendering

For contacting the artifact caused by low sampling frequency, we use the

pre-integrated lookup table to replace 1-D transfer function lookup table. As the

transfer function changed, the corresponding pre-integrated lookup table is calculated

and stored as a 2-D texture. In the fragment shading stage, the interpolated 3-D

texture coordinate of each fragment is used as the sampling point in the front slice.

The sampling point in the back slice is calculated by front slice, viewing direction,

and slice interval. These two scalar values are used as a 2-D texture coordinate for a

third texture fetch operation, which performs the lookup of pre-integrated colors and

opacities from the 2-D texture map of the pre-integrated lookup table. The

relationship of these sampling points is shown in Fig. 3-5. The scalar value on the

front (back) slice for a particular viewing ray is called 	> �	F�. “uBackSliceDir” is the

vector from front to back slice.

Fig. 3-5: A slab of the volume data between two slices.

uBackSliceDir

front slice back slice

Sf
Sb

 18

The corresponding GLSL code of the pre-integrated volume rendering algorithm

is shown in Figure 3-6. The texture coordinate of each fragment on the front slice is

gained by interpolated 3-D texture coordinate. The texture coordinate of each

fragment on the back slice is gained by front coordinate and uBackSliceDir. The front

and back texture coordinates are used as 2-D coordinate (TexPreItgCoord) to fetch

pre-integrated lookup table (uTexTfPreItg). The result of the pre-integrated volume

rendering is shown in Fig. 3-7.

Fig. 3-6: Shading code of pre-integrated volume rendering

Fig. 3-7: The result of pre-integrated volume rendering algorithm

uniform sampler3D uTexVoxel; // volume data

uniform sampler2D uTexTfPreItg; // pre-integrated lookup table

uniform vec3 uBackSliceDir; // vector from front to back slice

void main(){

vec3 TexVoxelCoordFront = gl_TexCoord[0].xyz; // interpolated 3-D texture coordinate

float VoxelFront = texture3D(uTexVoxel, TexVoxelCoordFront).r;

vec3 TexVoxelCoordBack = TexVoxelCoordF - uBackSliceDir;

float VoxelBack = texture3D(uTexVoxel, TexVoxelCoordBack).r;

vec2 TexPreItgCoord;

TexPreItgCoord.x = VoxelFront ;

TexPreItgCoord.y = VoxelBack

gl_FragColor = texture2D(uTexTfPreItg, TexPreItgCoord).rgba;

}

 19

3.1.3 Volume rendering with lighting

After loading volume data into our visualization system, the surface normal vector of

each voxel is gained by computing the central difference at it. Then the surface

normal information is stored in a 3-D array. This 3-D array can be incorporated with

the original volume data to a single 3-D RGBA texture, and downloaded to graphics

memory. Notice that the value of normal vector should be normalized from 0 to 1 to

achieve the goal of maximizing rendering performance. The step of computing and

downloading the normal information to graphics memory is performed in initialize

stage only once in our system.

In the fragment shading stage, the textures of volume, normal, and transfer

function lookup table, and coefficients of lighting model are loaded into shaders.

Illumination techniques may modify the resulting color before it is sent to the

compositing stage of the pipeline. We present the most common shading model,

Phong model, which computes the reflected intensity as a function of local surface

normal, lighting direction, and coefficient of light. The corresponding GLSL code is

shown in Fig. 3-8. Notice that the value of normal vector is shift from -0.5 to 0.5 in

the shader to restore the original normal direction. The result of volume rendering

with lighting is shown in Fig. 3-9.

 20

Fig. 3-8: GLSL code of texture-based volume rendering with lighting

Fig. 3-9: The result of texture-based volume rendering with lighting effect

uniform sampler3D uTexVoxelNormal;

//light coefficients;

//…

void main(){

vec3 TexVoxelNormalCoord = gl_TexCoord[0].xyz;

// channel r of uTexVoxelNormal stores the volume data

// channel gba stores the normal information

vec4 VoxelNormal = texture3D(uTexVoxelNormal, TexVoxelNormalCoord).rgba;

vec4 Fragment;

// compute Fragment by transfer function

//…

vec3 Normal;

// shift the value of normal from 0 to 1 to -0.5 to 0.5

Normal.x = VoxelNormal.g - 0.5;

Normal.y = VoxelNormal.b - 0.5;

Normal.z = VoxelNormal.a - 0.5;

// perform Phong model

//…

gl_FragColor = Fragment;

}

 21

3.1.4 Volume rendering with shadowing

For the confocal microscopy image of Drosophila’s brain, homogeneous regions pose

problems on the typical gradient based surface shading. The surface normal vectors

are well defined in the regions with high gradient magnitudes. For homogeneous

regions, the gradient vector may be the zero vectors. The using of the normalized

gradient vectors is also troublesome in regions with low gradient magnitudes, where

noise can significantly degrade the normalization of gradient vectors.

We implement the shadowing algorithm provided by Kniss. This algorithm has

two important characteristics. First, the slice axis of proxy geometry is modified from

viewing direction to the direction halfway between the viewing and lighting directions,

as shown in Fig. 3-10. When the dot product of the lighting and viewing directions is

positive, we slice volume data along the vector halfway between the lighting and

viewing directions, seen in Fig. 3-10a. In this case, the proxy geometry of the volume

data is rendered in front to back order with respect to the observer. When the dot

product is negative, we slice along the vector halfway between the lighting and the

inverted viewing directions, seen in Fig. 3-10b. In this case, the proxy geometry is

rendered in back to front order with respect to the observer. In both cases, the proxy

geometry is rendered in front to back order with respect to the light.

(a) (b)

Fig. 3-10: Slice axis dependent on view and light directions

θ

s
θ s

 22

Second, an off screen render buffer, light-buffer, is utilized to accumulate the

amount of light attenuated from the light’s point of view. This buffer is initialized to

light intensity. It can also be initialized using an arbitrary image to create effects such

as spotlights.

For the implementation of light-buffer with hardware, we introduce a powerful

technique, the frame-buffer object (FBO) [15]. FBO is an extension of OpenGL for

doing flexible off-screen rendering, include rendering to a texture. It allows result of

rendering to a frame-buffer to be directly read as a texture. FBO takes advantage of

good performance because the step of copy from a frame-buffer to a texture is

avoided.

Our shading process is shown in Fig. 3-11. At the beginning of rendering, the

sampling direction and sorting order of slices are decided. The slice axis is modified

for the requirement of rendering the same proxy geometry from both the eye and light

points of view.

 23

Fig. 3-11: Shadowing process

Draw

start

Cos(θ) > 0

Draw

end

Take a slice

in back to front order

Take a slice

in front to back order

No slice No slice

YesYes

No

No No

Yes

Render this slice

from observer’s view

refer to light buffer

In frame buffer

With “Under” operator

Render this slice

from light’s view

In light buffer

With “Over” operator

Render this slice

from light’s view

In light buffer

With “Over” operator

Render this slice

from observer’s view

refer to light buffer

In frame buffer

With “Over” operator

θ
θ

 24

(a)

(b)

Fig. 3-12: Two passes of shadowing algorithm

In the shading stage, each proxy polygon is rendered twice. In the first pass,

proxy polygon is firstly rendered from the observer’s point of view in the frame-buffer.

The light intensity at each fragment of this polygon is acquired by sampling the

Frame-buffer

Light-buffer

Proxy Geometry

Frame-buffer

Light-buffer

Proxy Geometry

 25

position it is projected in the light-buffer. The light intensity is used to modulate the

brightness of the fragment. In this pass, polygons are blended with over operator if the

dot product of lighting and viewing vector is negative, or with under operator if the

dot product is positive. This pass is illustrated in Fig. 3-12a.

In the second pass, this polygon is rendered from the light’s point of view in the

light-buffer to achieve the goal of accumulating the intensity of the light arriving in

the first pass of the next polygon. Each fragment of this polygon is firstly sampling

the texture of the volume data to get the interpolated data value. Then the data value is

used as texture coordinate to sample the texture of the transfer function. Only the

opacity of this fragment lookup from the transfer function is required. The fragment is

rendered with black color and the corresponding opacity with over operator to achieve

the goal of attenuating the intensity of the light. This pass is illustrated in Fig. 3-12b.

An example of volume rendering with shadowing can be seen in Fig. 3-13.

Fig. 3-13: Texture-based volume rendering with shadowing effect

 26

3.1.5 Volume rendering with geometry information

In the neuron study of Drosophila’s brain, the morphology and geometry of neuron

play important roles. Mostly the neuron is with complicated structure and the image

volume is derived from confocal microscope slice by slice and this makes it hard to

visually observe the neuron. In order to observe the neuron structure we combine the

traced neuron branch curve data and volume data to help the user to observe the

neuron.

In traditional way, the geometry information is stored as vertices and edges. If

we render such geometry information as segments, the depth and space relation is not

easy to understand. Display the geometry information as pipe is better than segment

because pipe can provide normal information and light shading is possible.

For rendering segments as pipes, each segment is shown as cylinder constructed

by polygons, and each end of segment is shown as spheres. We use an adjustable

radius to calculate the corresponding cylinders and spheres, as shown in Fig. 3-14.

To achieve the goal of blending the geometry information into the volume

rendering, the polygons of geometry information needs to be drawn before the volume

data with “Over” operator. The depth test of rendering pipeline culls the fragments of

volume rendering that are behind geometry data. If the “Under” operator is used,

render the geometry data and the volume data into separate frame-buffers and

composite two frame-buffers at the end. In this case, the depth values from the

geometry data are used for culling fragments in the volume rendering. The result of

volume rendering with geometry information is shown in Fig. 3-15.

 27

Fig. 3-14: Display segment as pipe

Fig. 3-15: A neuron Tadpole

 28

3.2. Multi-volume rendering

In order to compare the brain structures between two individuals, it is in general

essential to show all the volume data concurrently. For example, compare the different

neuron locations in a fly brain between different experiments to understand how

neuronal circuits to connection. Multi-volume rendering provide better observation

for bio-medical science.

For rendering multi-volume data at the same time, the visualization stages of our

system have a little modification from the process shown before. In the initialize stage,

all volume data are loaded, processed and pushed into a volume pool. In the update

stage, each volume data in the volume pool is sliced along the sampling direction, and

all of such slices are pushed into a proxy pool. We sort all slices in the proxy pool; no

matter what volume data they are corresponded.

Our visualization system allows user to selectively set individual rendering

coefficients such as transfer functions and material of lighting for different volume

data. The deform matrix of each volume data can be set individually for providing

better eyeshot and observation. User can also decide the usage of pre-integrated

lookup table and lighting effect. See Fig. 3-16 for an example, where several different

rendering coefficients have been set to visualize multi-volume data of a human head

and a fly brain.

Fig. 3-16: The result of multi-volume rendering

 29

3.3. Summary

In chapter 3.3, we introduce the flowchart of our visualization system; include

the flowchart of data processing and the shading effects.

3.3.1 Flowchart of Our Visualization System

Fig. 3-17 shows a flowchart diagram illustrating the complete procedure of our

visualization system for the data processing and visualization process. In the initialize

stage, volumetric data and geometric information are loaded. In this stage, the texture

and of each volumetric data are created and the polygons of geometry information are

calculated. After user input the parameters of lighting, viewing, and rendering, and

define the transfer function, we create the proxy geometries by sampling each volume

data along the sampling direction in the update stage. Then we render all proxy

geometry with the shading coefficient defined by user in the render stage. Thus, we

complete one pass of rendering.

 30

Fig. 3-17: Main process of our visualization system

Initialize

Update

Draw

Start

End

Done
No

Yes

Input

Load and process data

Lighting coefficient

Viewing parameters

Rendering mode

Transfer function

Proxy geometry

Proxy geometry

 31

Fig. 3-18: Initialization stage of main process

3.3.2 Initialization Stage

In the initialization stage, as shown in Fig. 3-18, volume data and the corresponding

geometry data are loaded. If the lighting effect is enabled, the normal information of

volume data is calculated in this stage. For multi-volume rendering, we build a

volume pool and push all volume data into it.

3.3.3 Update Stage

In this stage, the proxy geometry of each volume data is calculated. First, the

sampling direction is decided. Then every volume data is sampled from the volume

pool along sampling direction. All proxy geometry gained in this stage are pushed into

a proxy pool and rendered in the next stage.

Before deciding the sampling direction, the shading coefficient of the shadowing

effect must be checked firstly. If the shadowing effect is enabled, the sampling

direction is decided by the locations of light and observer. When the angle between

Push volume data to

volume pool

Create texture of volume

data base on data size

Initialization

start

Initialize

end

 32

lighting direction and viewing direction is smaller than 90°, it means that the dot

product of the lighting and viewing directions is positive, the sampling direction is the

vector halfway between the lighting and viewing directions. When the angle between

lighting and viewing direction is larger than 90°, it means that the dot product of the

lighting and viewing direction is negative, the sampling direction is the vector

halfway between the lighting and inverted viewing directions. On the other way, if the

shadowing effect is disabled, the sampling direction is the viewing direction.

After deciding the sampling direction, pick one volume data from volume pool.

The volume data is deformed by it’s deform matrix, which is decided by the

translation, rotation, and scale of this volume. After deforming, the proxy geometry of

this volume data is gained by sampling along the sampling direction. All volume data

in the volume pool are processed by the procedure as described before.

As all volume data in volume pool have been processed, the proxy geometry in

the proxy pool should be sorted. The rule of sorting is decided by the distance

between proxy geometry and observer. The procedure of this stage is shown in Fig.

3-19.

 33

Fig. 3-19: Update stage of main process

θ

s
θ s

s

Create proxy geometries

along sampling direction

Push proxy geometries

to proxy pool

Sort proxy geometries

by distance to viewer

Update

start

Update

end

Shadow

Cos(θ) > 0

Set sampling axis

as view direction

Set sampling axis between

view and light

Set sampling axis between

negative view and light

Yes

NoYes

No

Take a deformed

volume data

Volume

pool empty

No

Yes

 34

3.3.4 Draw Stage

In this stage, the result of the volume visualization is created. First, check if the

shadowing effect is enabled. If not, the proxy geometry in the proxy pool is rendered

in back to front order (by the distance between proxy geometry and observer from

near to far) in the frame-buffer with Over operator.

If the shadowing effect is enabled, the locations of light and viewer should be

checked. If the dot product of the lighting and viewing direction is positive, we start

the two-pass rendering procedure as follow. Pick proxy geometry in the proxy pool in

front to back order. First, render it in the frame-buffer with Under operator. In this

pass, the corresponding coefficient of shadowing of each fragment is lookup in the

light-buffer. And the final color of each fragment is modified by this coefficient. In

the second pass, render the same proxy geometry in the light-buffer with Over

operator to accumulate and calculate the shadow coefficient. This pass can be done

efficiently with the technique called frame-buffer object. After the two-pass rendering

procedure, if the proxy pool is not empty, repeat this procedure.

If the dot product of the lighting and viewing direction is negative, the proxy

geometry in the proxy pool is picked in back to front order. In pass one; each proxy

geometry is firstly rendered in the frame-buffer with Over operator. In pass two, the

same proxy geometry is rendered in the light-buffer with Over operator, two. The

corresponding shader code is shown in Fig. 3-20. The flowchart of this stage is shown

in Fig. 3-21.

 35

Fig. 3-20: Shadow code for volume rendering with shadowing

Fig. 3-21: Draw stage of main process

uniform sampler3D uTexVoxel;

uniform sampler1D uTexTf1d;

uniform sampler2D uTexLightBuffer;

void main(){

// gl_TexCoord[0] is the texture coordinate for 3-D volume data

float Voxel = texture3D(uTexVoxel, gl_TexCoord[0].xyz).r;

vec4 FinalColor;

FinalColor = texture1D(uTexTf1d, Voxel).rgba;

// gl_TexCoord[1] is the texture coordinate for 2-D light-buffer

vec3 ShadowingWeight = texture2D(uTexLightBuffer, gl_TexCoord[1].xy).rgb;

FinalColor.r *= ShadowingWeight.r;

FinalColor.g *= ShadowingWeight.g;

FinalColor.b *= ShadowingWeight.b;

gl_FragColor = FinalColor;

}

No

Yes

Draw

start

Shadow

Cos(θ) > 0

Yes

Draw

end

Take a proxy geometry

in back to front order

Take a proxy geometry

in front to back order

Proxy pool

empty

Proxy pool

empty

YesYes

No

No No

Yes

Take a proxy geometry

in back to front order

Proxy pool

empty

No

Render this proxy

from observer’s view

refer to light buffer

In frame buffer

With “Under” operator

Render this proxy

from light’s view

In light buffer

With “Over” operator

Render this proxy

from light’s view

In light buffer

With “Over” operator

Render this proxy

from observer’s view

refer to light buffer

In frame buffer

With “Over” operator

Render this proxy

from observer’s view

In frame buffer

With “Over” operator

θ
θ

s

 36

Chapter 4

Main Result

In this thesis, we build a volume data visualization system for confocal

microscopic image of Drosophila’s brain. Although there are some software platforms

for visualization and manipulating bio-medical and science data in the market, user

need to pay high price for authorization and these software are hard to accord with

biologist’s particular request. Our system provides high quality volume visualization

to help biologist make profound diagnosis.

The implementation of our volume renderer is based on C++, OpenGL, and

GLSL. The performance measurements were conducted on a Windows XP PC with an

Intel E4400 CPU and an NVidia GeForce 8800GT graphics board with 1024MB

texture memory.

Fig. 4-1 shows a fly brain of size 256*256*67. Fig. 4-1a is rendered by basic

texture-based volume rendering with 60 frames per second (fps). Fig. 4-1b is rendered

by pre-integrated volume rendering with 60 fps. Fig. 4-1c is rendered by

pre-integrated volume rendering with lighting between 53 to 57 fps. Fig. 4-6d is

rendered by pre-integrated volume rendering with shadowing between 13 to 18 fps.

Fig. 4-6e is rendered by pre-integrated volume rendering with lighting and shadowing

between 13 to 18 fps.

 37

Fig. 4-1: Result of fly brain

 38

Fig. 4-2: Result of the multi-volume rendering algorithm

Fig. 4-2 shows the result of the multi-volume rendering algorithm. The left side

of Fig. 4-2 is a human head of size 256*256*256 and the right side of Fig. 4-2 is a fly

brain of size 256*256*67. As shown that the human head causes some shadows in the

fly brain. The fps of Fig. 4-2 is between 7 to 10 fps.

 39

Fig. 4-3: A neuron in Drosophila’s brain, glomerulus

Fig. 4-3 shows the result of texture-based volume rendering with geometry data.

The fly brain of size 512*512*123 was rendered between 7 to 10 fps.

 40

Chapter 5

Conclusion and Future Work

In this thesis, we build a visualization system for more reality and interactive

volume rendering for confocal microscopic image of Drosophila’s brain. We combine

and reference many important researches to build this system, include improving low

sampling rate by the pre-integrated volume rendering algorithm, providing reality

volume rendering by lighting and shadowing, providing more space information by

the volume rendering with geometry data and comparing between many volume data

by the multi-volume rendering.

Although our system can provide interactive volume rendering with consumer

graphics hardware, the performance is not good enough to provide good result with 30

fps. Our visualization system can be improved by referencing some accelerating

texture-based volume rendering algorithm, like empty space skipping technique.

The data size of confocal microscopic image is usually larger than the texture

memory of consumer graphic card. The volume rendering algorithm for large data is a

important question. Our system can be improved by referencing some large volume

data visualization algorithm, like level of detail or octree technique.

Although lighting and shadowing effect can improve the reality of volume

rendering, the difference between materials cannot be observed. A shading system is

needed to rendering more detail in different materials, like bone, skin, or tissue.

 41

Bibliography

[1] A. V. Gelder, K. Kim, “Direct volume rendering via 3D texture mapping hardware,”

Proc. of Vol. Rend. Symp. ’96, pp. 23-30, 1996.

[2] B. Cabral, N. Cam, J. Foran, “Accelerated volume rendering and tomographic

reconstruction using texture mapping hardware,” Symp. on Volume Visualization ’94,

pp.91-98, 1994.

[3] A. Kaufman, K. Mueller, “Overview of Volume Rendering,” The Visualization

Handbook, 2005.

[4] M. Ikits, J. Kniss, A. Lefohn, C. Hansen, “Volume Rendering Techniques,” GPU

Gems, chapter 39, pp. 667-692, 2004.

[5] K. Engel, M. Kraus, T. Ertl, “High-quality pre-integrated volume rendering using

hardware-accelerated pixel shading,” SIGGRAPH/Eurographics Workshop on

Graphics Hardware 2001, pp. 9-16, 2001.

[6] B. T. Phong, “Illumination for computer generated pictures,” Communications of

the ACM, pp.311-317, 1975.

[7] A. V. Gelder, K. Kwansik, “Direct Volume Rendering with Shading via

Three-Dimensional Textures,” ACM Symposium on Volume Visualization ’96, pp.

23-30, 1996.

 42

[8] J. Kniss, G. Kindlmann, C. Hansen, “Interactive volume rendering using

multidimensional transfer functions and direct manipulation widgets,” IEEE

Visualization ’01, pp. 255-262, 2001.

[9] J. Kniss, S. Premoze, C. Hansen, P. Shirley, A. McPherson, “A model for volume

lighting and modeling,” IEEE Transactions on Visualization and Computer Graphics,

pp. 150-162, 2003.

[10] P.-C. Lee, Y.-T. Ching, H.-M. Chang, A.-S. Chiang, “A semi-automatic method

for neuron centerline extraction in confocal microscopic image stack,” ISBI 2008, 5th

IEEE International Symposium on Biomedical Imaging, pp. 959-962, 2008.

[11] N. Max, “Optical Models for Direct Volume Rendering,” IEEE Transactions on

Visualization and Computer Graphics, Vol. 1, Issue 2, pp. 99-108, 1995.

[12] T. McReynolds, D. Blythe, B. Grantham, S. Nelson, “Advanced Graphics

Programming Techniques Using OpenGL,” SIGGRAPH’98 Course Notes, 1998.

[13] E. Persson, “Framebuffer Objects,” ATI Technologies, Inc, 2005.

[14] T. Porter, T. Duff, “Compositing digital images,” Computer Graphics (Proc.

Siggraph ‘84), pp. 253-259, 1984.

[15] R. J. Rost, “OpenGL Shading Language, 2
nd

 edition,” Addison Wesley, 2006.

	論文封面
	論文完稿

