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by neuron tracing can be incorporate with our visualization system perfectly.
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Chapter 1

Introduction

In this thesis, we present a volume data visualization system for confocal
microscopic of Drosophila’s brain build based on using the texture-based volume
rendering algorithm. A convenient visualization system which provides sophisticated
lighting and shadowing models and convenient ebservation with multi-volume data
can help the process of the bio-medical science. Our visualization system provides
these powerful functions with intuitively graphic-user interface. These features help
biologist to gain detailed and useful insights into the volume data of Drosophila’s
brain.

Texture-based volume rendering, [1][2][3][4] is an efficient visualization
technique that takes advantages.of the texture mapping hardware in the computer
video card. In this approach, we process: the volume data asia stack of parallel
textured slices from back to-front. To render the data, the'integration of luminance and
opacity are left to an image composition step. These steps can be efficiently
performed by extensively using of image composition and texturing hardware.

Although the texture-based volume rendering is a commonly used technique in
visualization applications, there is a serious drawback caused by non-linear transfer
functions. To visualize the region of interesting in the volume data, a non-linear
complex transfer function is needed. In this case, we need additional slices for
integrating non-linear transfer functions to approximate the volume rendering integral.
That implies the lower frame rates would be gained on modern consumer graphics

hardware. Klaus Engel [5] introduce a volume rendering integral approach that
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improves the image quality by pre-integrated volume rendering which allows us to
avoid additional slices caused by non-linear transfer functions in a pre-processing
step.

Lighting effect gives impressive result in terms of additional realism, and
improved spatial comprehension can be achieved. Many applications provide lighting
efficiently by an approximation to the Phong local surface shading model [6].
Furthermore, the surface normal information is required when implement Phong
model. But no gradient estimation is supported in current consumer hardware when
using texture mapping for reridering volumetric data. ,Allen Van Gelder describes a
gradient-based shading ‘criterion [7], in which the gradient magnitude is interpreted
directly from volimetric data, and stored in another 3-D textufe. In the rendering
phase, the gradient 3-D texture could efficiently be combined with texture-based
volume rendering and the gradient is used as normal information of lighting model.

Although“gradient-based shading critérion provides the normal information of
volumetric data, one should ,storewthempre=calculated gradient together with the
volumetric data, and then four times memory as the dataset is stored in the graphics
hardware. The storage of normal information makes-the problem of limitation of the
texture memory more badly. Unfortunately, since the surface normal is approximated
by the normalized gradient of a scalar field, these methods are unsuitable for shading
homogeneous regions. Joe Kniss provide a shadowing mechanism [8][9] for shading
homogeneous regions without additional memory space. This technique also
significantly improves the visual perception and spatial understanding of volume data.

In order to compare the fly brain structures between two individuals,
simultaneously visualization between multi-volume data is needed. We expand
texture-based volume rendering technique to provide multi-volume rendering.

In this thesis we present a volume data visualization system for confocal
2



microscopic image of Drosophila’s brain implemented by texture-based volume
rendering. Our system provides basic texture-based volume rendering, high quality
pre-integrated volume rendering, and volume rendering with lighting and shadowing.
Furthermore, our system can render multi-volume data at the same time. In order to
understand the three-dimensional knowledge of how neuronal circuits to connection,
geometric information deprived by neuron tracing [10] can be incorporate with our
visualization system perfectly.

The structure of this thesis is described as follow. The first chapter gives the
motivation and an introduction of our system. In,chapter 2, we describe the
background material used in our visualization system, including the optical model for
direct volume rendering; volume rendering integral, pre-integrated volume rendering,
and shading models. In chapter 3; the detail of visualization flowchart and the process
of multi-volumeé rendering are reported. Thesresults of our visualization system are

demonstrated in chapter 4. Congclusion and future work are listed in chapter 5.



Chapter 2
Background Materials

In this chapter, we take a brief introduction of the relative research of our
visualization system. Section 2.1 reports the optical model for the direct volume
rendering algorithm. We assume that any object in space is formed by many small
particles like individual molecules.” By 'simulating the state transition when light
passing through the volume, we can integrate the change oflight intensity to compute
the 2-D projective image from 3-D volumetric data. “ Volume rendering integral” is a
formula derived from above optical model to implement:the direct volume rendering
algorithm. We_then  describe the pre-integrated volume rendering algorithm, which
improves the artifact of 2-D projective image caused by insufficient sampling rate of
the direct volume rendering [algorithm:

In section 2.2; we report some shading method; include the:lighting model and
the shadowing mechanism.. Volume rendering with lighting effect gives impressive
result in terms of additional realism, but there still some disadvantage with it. The
lighting model with gradient as surface normal information is not suitable for
homogeneous volumetric data. The shadowing mechanism is a good substitute for the
lighting model to improve this problem. We also implement the shadowing

mechanism in our visualization system.

2.1. Texture-based Volume Rendering

The using of three-dimensional texture mapping hardware to perform direct volume

rendering, so-called “Texture-based Volume Rendering,” was described by Cabral. An
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optical model is build to map the intensity of volumetric data to optical properties,
such as color and opacity. During rendering time, optical properties are accumulated
along each viewing ray to form a 2-D projective image from the 3-D volumetric data.
This algorithm generates images of three-dimensional volumetric data set directly
without explicitly extracting geometric surfaces from the original volume data.

In this section, we describe the optical model of direct volume rendering and
introduce “Volume rendering integral” [11] which is the formula to compute the
accumulated optical properties along viewing ray. We then introduce the
implementation of the texture-based volume. rendering algorithm on consumer
graphics hardware and' describe the artifact caused. by insufficient sampling rate.
Engel presents thé pre-integrated volume rendering algorithm to solve this artifact
without the performance overhead caused by rendering additional interpolated slices.
This algorithm™is suited to achieve the goal of high-quality volume rendering at

interactive frame-rates on standard PC:hardware.

2.1.1 Optical Model and Volume Rendering Integral

Nelson Max proposes anioptical model of volumevisualization. He assumes that the
objects in space are formed by many small particles like individual molecules. Each
particle occludes incoming light and adds its own glow defined by its opacity and
luminance property. The image of objects to the user’s eyes is the result of light ray
passing through objects. So the optical properties of particles in the objects influence
the light passing through volumetric data. The final projective image is due to the

absorption and emission of light from such particles in the data.
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Fig. 2-1: Light ray passes through a volume.

By considering the optical model described above, we can simplify our analysis
process of volume lighting computations by taking into account only a single long
cylinder centered on the light ray that passes through the volume. As shown in Fig.
2-1. The cylinder is thin enough to ‘assume thdt the volume properties do not change
on its breadth, but they-will change on its length. At the back end of this cylinder,
background light comes in, and at the front end of'this cylinder, light exits and travels
to the user’s eyes. We can compute such light ray pixel by pixel to generate a 2-D
projection image from volumetric data, as shown in Fig. 2-2. The orthogonal
projection and_perspective projection is‘suited projection algorithm for this optical

model.
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Fig. 2-2: Viewing rays passes through a volume



For each viewing ray, the quantity I, which is the amount of light received at

one point on the image plane, is:

A
T

1(D) = fOD c (s(x(l))) T (s(x(A))) e do (S(x(’v)))dlldl
Here the viewing ray x(A4) is parameterized by the distance A to the eyes. For the
visualization of scalar field s(x(/l)), the transfer function is used to defined the color
density c(s) and the extinction density 7(s), which map the scalar value s(x) to
color and extinction coefficients. D is the maximum distance, i.e., there is no color
density c(x(1)) for A greater than_D.

We call this formula.the.volume rendering integral, which is the fundamental
element in the direct volume rendering algorithm. For implementation of the volume
rendering integral, a numerical integration is.required. The most common way to get
the approximation of the volume rendering integral is the computation of a Riemann
sum for n equaliray segments of length d = D I n - The approximate evaluation of the

volume rendering integral can be stated as:
=T
I =Xi—0QiC; ;'=0(1 T “j)

In the approximate evaluation of the volume rendering.integral, opacity «;
approximates the absotption, and. color c¢; approximates the emission at sample i.
The product in the sum represents the amount of light attenuated at sample i before
reaching the user’s eyes and the sum of the volume rendering integral accumulate the

light effect when light passing through the volume.

2.1.2 Pre-integrated volume rendering

Volume visualization is implemented by integrating the color and opacity values
across the 3D volume data. This integration in the texture-based volume rendering

algorithm is performed by sampling the volume with parallel textured polygons,



called proxy geometry, at regular intervals.

According to the sampling theorem, a correct reconstruction is only possible with
the sampling rates larger than the Nyquist frequency. In the volume visualization
algorithm, it is sufficient to sample at the resolution of the scalar field to avoid
aliasing with respect to scalar value. However, the scalar field is sampled before being
transformed by a transfer function. Non-linear transfer functions may add arbitrary
frequencies to the data and increase the sampling rate required for the volume

rendering integral. The higher sampling rates of the volume visualization algorithm

Consider a thingsp ' is spike results a very thin
surface by the voliin e renderi orith ] d'by transfer function
is smaller than"the mpli vhi ¢ ed when drawing an
iso-surface, so S 2 is completely. The

result of volu izati S a serie: an a continuous

(a) (b)

Fig. 2-3: Sampling rate is smaller than the Nyquist frequency



Such artifacts can be reduced in traditional volume renderings by sampling at
high rates or using smooth, low-frequency transfer functions such as Gaussian curve
to blur the feature. Unfortunately, high sampling rates induces the computation
overhead and limit the performance of hardware and software. And smooth transfer
functions limit the types of renderings result. Both of such improvements still not
guarantee a sufficient sampling.

The pre-integrated transfer functions algorithm solve this problem by
pre-computing a 2-D table that stores the integral result of all possible sampling pairs
of volume rendering. This, table .is then indexed during rendering by each ray
sampling pair received' from -neighbor sampling slice, as shown in Fig. 2-4. The
pre-integration vélume . renderingy algorithm assumes that the transfer function
between any two discrete sampling pairs 1S linear. Looking up the pre-integrated
lookup table for'any two sampling pairs guarantees that no transfer function detail is

ignored.

Sf

back slice
frontslice

Fig. 2-4: Front and back slice of the pre-integrated volume rendering



2.2. Volume rendering with Shading

In this section we introduce some shading technique, include lighting and shadowing.
Lighting is a basic shading method and is easy to implement, but the additional
memory space is needed to store the normal information. Further, the normal gained
by gradient is undefined in homogeneous regions. Shadowing provides high quality
rendering result without extra memory space. It also provides currently feasible

solution for homogeneous volume data.

2.2.1 Lighting

For improving the" quality of volume fendering, sophisticated shading model is
required to capture characteristics of volume data and provide subtle lighting effects.
A local illumination, models can approximate the-light intensity on.the surface of an
object by considering the lightings effects in three different ways, emission,
transmission, and reflection.: This model is evaluated as a function. of the normal of
the surface with respect to the position: of a peint: light sourcé-and some material
properties. Indirect light and shadows are not taken into account. The most popular

lighting model is Phong model:

I = kaly + kalg(T-7) + koly(R-7)"
Which computes the reflected intensity as a function of local surface normal 7, the
lighting direction f, ambient, diffuse, and specular intensity [,, [, [; of the light
source, ambient, diffuse, specular, and shininess coefficients kg, kg, kg,n of the

object, and the half-vector h of lighting and viewing direction.
The gradient information is usually used as normal during rendering. The central
differences at each voxel are used to gain the normal vector. The method of central

differences approximates the gradient as the difference of data values of two voxel
10



neighbors along a coordinate axis, divided by the physical distance h. The following
formula computes the x, y, and z component of the gradient vector at voxel location

13(1-, j k)» individually. v(ﬁ) is the function to get the value of volume data.

v(ﬁ (i+1,j.k)) - ”(13 (i—l,j.k))

9x(Piiji) = -

— v ﬁ .. — ﬁ o
gy(P(i,j,k)) — ( (l,]+1,k))2h ( (l,] 1.k))
B} B Y o(B
gZ(P(i’].’k)) _ ( (L,J,k+1))2h ( ik 1))

The normal information computed from volume data is stored in a 3-D array. It is
efficient to combine the normalized.gradient and. original volumetric data into a single

RGBA texture to reduce the cost of texture lookup and ‘interpolation.

2.2.2 Shadowing

Furthermore, the normal required for the Phongmodel is derived from the normalized
gradient of thesscalar field. For man¥y vélumes, homogeneous regions pose problems
for typical gradrent based surface shading. While this normal is well defined for the
regions in the volume that have high gradient magnitudes; this.normal is undefined in
the homogeneous regions, wheré the gradient may'be the'zero vector. The use of the
normalized gradient is also troublesome in the regions with low gradient magnitudes,
where noise can significantly degrade the gradient computation.

Kniss provides a shadowing technique with two important characteristics. First,
the slice axis of proxy geometry is modified from the viewing direction to the
direction halfway between the lighting and viewing directions. This allows the same
slice to be rendered from both the eye and light points of view. Second, an off screen
rendering buffer, called light-buffer, is needed to accumulate the amount of light

attenuated from the light’s point of view.
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Chapter 3

Overview of Our Visualization System

In this chapter, we introduce each part of our visualization system. Our system
can be used to interactively visualize multi-volume data with pre-integrated transfer
function, lighting effect, and shadowing effect. The geometry data produced by

neuron tracing can also be combined with our volume visualization system perfectly.

3.1. Volume visualization

3.1.1 Texture-based volume rendering

The texture-based volume rendering algorithm'is a favorite technique to implement
the volume rendering integral. It is thé technique we used to efficiently visualize
volumetric data by, using" texture mapping= hardware. . The flowchart of the

texture-based volume rendering algorithm is shown in Figs3-1:

12
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Load and process data
Download textures
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Input
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Viewing parameters
Transfer function
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Update
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Update textures
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Draw
Set up rendering state

Draw proxy geometry
Restore rendering state

|

— Done
No

Yes

Fig. 3-1: Flowchart of the texture-based volume rendering algorithm

At the beginning of our system, volume data are loaded and stored in the CPU
memory as a single 3-D array. Then they are padding to power-of-two-size texture to
maximize rendering performance and downloaded to graphics memory [12]. Transfer
function texture and fragment shaders [13] are also created in the initialize stage.
Notice that this stage is usually performed only once in our system.

13



Bounding Box of Volume Data

Fig. 3-2: Proxy geometry of texture-based volume rendering

After our system receives user -inputs, the proxy geometry is computed and
stored in a proxy pookin the update stage. Corresponding to the texture-based volume
rendering algorithm, the umage of the volume data, are¢ creatéd by drawing and
compositing the proxy geomefry in sorted ‘order. The proxy’ geometry is parallel
textured polygons and they are gained by firstly calculating the intersections between
each parallel plane which is vertical to the viewing direction and the edges of the
volume bounding box. Then the intersectedwverticesvof eachiplane are sorted in a
counterclockwise direction around their center. The resulting is-a set of polygons for
sampling the volume data. Fig. 3-2 illustrates the-calculating process with two slice
polygons. The first polygon contains three vertices and the second is composed of six
vertices. For each vertex, the corresponding 3D texture coordinate is also calculated.
The calculations of proxy geometry are all done by the CPU.

During the update stage, the textures of transfer function lookup table are
refreshed if the transfer function is changed. The transfer functions are used to
emphasize the futures of the data by mapping the value of data to optical properties.
Typically, these transfer functions are implemented with 1-D texture lookup tables.
When the lookup table is built, color and opacity are usually assigned separately by

the transfer function.
14



Before the drawing stage, the alpha blending operator needs to be set up to
accumulated color and opacity. If the slice polygons are rendered in back-to-front
order, a single step of the compositing process in back-to-front order is known as the
“Over” operator [14]:

Crinal = Csource T (1 = Qsource) * Caestination

Afinal = Asource T (1 = Asource) * Adestination
Where Cyestination and Xgestination are the color and opacity in the frame-buffer.
Csource aNd Qgource are the color and opacity obtained from the fragment shading
stage. Crinar and Qping are the accumulated colortand opacity. The final image is
computed along the viewing ray from the back of the volume,

If slice polygons are sorted in front-to-back order, the “Undef’” operator is used:

Crinar = (1= Qaestinatign) * Csource t Caestination

0L, = e o) I T Be RN ., Lo
Where Ciestination. @d X gestination ~ar€the color and opacity in the frame-buffer.
Csource and gpyree are the color-andropacity=obtained from the fragment shading
stage. Crinai and Qgingy. arc the accumulated color and opacity,from the front of the

volume.

uniform sampler3D uTexVoxel;
uniform samplerlD uTexTfld;

void main(){
float Voxel = texture3D(uTexVoxel, gl TexCoord[0].xyz).r;
gl_FragColor = texturelD(uTexTfld, Voxel).rgba;

}

Fig. 3-3: The shader code of the texture-based volume rendering algorithm

15



for looking up the texture

volume rendering algorithm is shown in Fig. 3-3. After each slice polygon is rendered,
it is sent to the compositing stage of the rendering pipeline. Each slice polygon is
rendered once in back-to-front or front-to-back order with corresponding blending
function in the frame-buffer. Then the projective image of volume data is gained, as

shown in Fig. 3-4.

16



3.1.2 Pre-integrated volume rendering

For contacting the artifact caused by low sampling frequency, we use the
pre-integrated lookup table to replace 1-D transfer function lookup table. As the
transfer function changed, the corresponding pre-integrated lookup table is calculated
and stored as a 2-D texture. In the fragment shading stage, the interpolated 3-D
texture coordinate of each fragment is used as the sampling point in the front slice.
The sampling point in the back slice is calculated by front slice, viewing direction,
and slice interval. These two scalar values are used as a 2-D texture coordinate for a
third texture fetch operation, which performs the lookup.of pre-integrated colors and
opacities from the 2-D-texture map of the pre-integrated lookup table. The
relationship of these sampling points is. shown in Fig. 3-5. The.scalar value on the
front (back) slige for a particular viewing ray is called s¢ (s3). “uBackSliceDir” is the

vector from front to back slice.

uBackSliceDir —

Sf

frontslice Packslice

Fig. 3-5: A slab of the volume data between two slices.
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The corresponding GLSL code of the pre-integrated volume rendering algorithm
is shown in Figure 3-6. The texture coordinate of each fragment on the front slice is
gained by interpolated 3-D texture coordinate. The texture coordinate of each
fragment on the back slice is gained by front coordinate and uBackSliceDir. The front
and back texture coordinates are used as 2-D coordinate (TexPreltgCoord) to fetch
pre-integrated lookup table (uTexTfPreltg). The result of the pre-integrated volume

rendering is shown in Fig. 3-7.

uniform sampler3D uTexVoxel; // volume data
uniform sampler2D uTexTfPreltg; // pre-integrated lookup table
uniform vec3 uBackSliceDir; // vector from front to back slice

void main(){
vec3 TexVoxelCoordFront = gl_TexCoord[0].xyz; // interpolated 3-D texture coordinate
float VoxelFront = texture3D(uTexVoxel, TexVoxelCoordFront).r;

vec3 TexVoxelCoordBack = TexVoxelCoordF - uBackSliceDir;
float VoxelBack = texture3D(uTexVoxel, TexVoxelCoordBack ).r;

vec2 TexPreltgCoord;
TexPreltgCoord.x = VoxelFront;

TexPreltgCoord.y = VoxelBack

gl_FragColor = texture2D(uTexTfPreltg, TexPreltgCoord).rgba;

i].-l V_- ILI

.
Fig. 3-6: %l h(fl:l.gg Epde.of pre- ntﬁgrdérd'ﬁdla,l{hne rendering

Fig. 3-7: The result of pre-integrated volume rendering algorithm

18



3.1.3 Volume rendering with lighting

After loading volume data into our visualization system, the surface normal vector of
each voxel is gained by computing the central difference at it. Then the surface
normal information is stored in a 3-D array. This 3-D array can be incorporated with
the original volume data to a single 3-D RGBA texture, and downloaded to graphics
memory. Notice that the value of normal vector should be normalized from 0 to 1 to
achieve the goal of maximizing rendering performance. The step of computing and
downloading the normal information to graphics memory is performed in initialize
stage only once in our system.

In the fragment shading stage, the textures of volume,, normal, and transfer
function lookupytable, and coefficients. of lighting model are loaded into shaders.
[Mlumination techniques may-modify the resulting color beforegit is sent to the
compositing stage of the pipeline. We present the most-commons shading model,
Phong model, which computes the reflécted intensity as a function of local surface
normal, lightingidirection, and coefficient of light.. The corresponding GLSL code is
shown in Fig. 3-8. Notice that the value of normal vector is shift from -0.5 to 0.5 in
the shader to restore the'original normal direction. The Tesult of volume rendering

with lighting is shown in Fig. 3-9.
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uniform sampler3D uTexVoxelNormal;
//light coefficients;

//...
void main(){
vec3 TexVoxelNormalCoord = gl TexCoord[0].xyz;
// channel r of uTexVoxelNormal stores the volume data
// channel gba stores the normal information
vecd VoxelNormal = texture3D(uTexVoxelNormal, TexVoxelNormalCoord ).rgba;
vecd4 Fragment;
// compute Fragment by transfer function
//...
vec3 Normal;
// shift the value of normal from O to 1 to -0.5 to 0.5
Normal.x = VoxelNormal.g - 0.5;
Normal.y = VoxelNormal.b - 0.5;
Normal.z = VoxelNormal.a - 0.5;
// perform Phong model
//...
gl _FragColor = Fragment;
}

[ ‘ o -I
1 | | . o ' | =

Fig. 3-8 GLSL code of texturq-tjfas_edi Volmne’féndéring wit_h:lighting

Fig. 3-9: The result of texture-based volume rendering with lighting effect
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3.1.4 Volume rendering with shadowing

For the confocal microscopy image of Drosophila’s brain, homogeneous regions pose
problems on the typical gradient based surface shading. The surface normal vectors
are well defined in the regions with high gradient magnitudes. For homogeneous
regions, the gradient vector may be the zero vectors. The using of the normalized
gradient vectors is also troublesome in regions with low gradient magnitudes, where
noise can significantly degrade the normalization of gradient vectors.

We implement the shadowing algorithm provided by Kniss. This algorithm has
two important characteristics. First, the slice axis of proxy geometry is modified from
viewing direction to.the direction halfway between the viewing and lighting directions,
as shown in Fig,;3-10. When the dot product of the lighting and viewing directions is
positive, we slice volume 'data-along the vectorshalfway betweenythe lighting and
viewing directions, seen in Fig. 3-10a. In this case, the proxy geometry of the volume
data is rendered’in front to back order with respect to the observer. When the dot
product is negative, we slice along the vector halfway between the lighting and the
inverted viewing directions, seen in Fig. 3-10b. In this case,.the proxy geometry is
rendered in back to frontiorder with respect to the'observer. In both cases, the proxy

geometry is rendered in front to back order with respect to the light.

B N

(2) (b)

05

Fig. 3-10: Slice axis dependent on view and light directions
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Second, an off screen render buffer, light-buffer, is utilized to accumulate the
amount of light attenuated from the light’s point of view. This buffer is initialized to
light intensity. It can also be initialized using an arbitrary image to create effects such
as spotlights.

For the implementation of light-buffer with hardware, we introduce a powerful
technique, the frame-buffer object (FBO) [15]. FBO is an extension of OpenGL for
doing flexible off-screen rendering, include rendering to a texture. It allows result of

rendering to a frame-buffer to be directly read as a texture. FBO takes advantage of

good performance because ‘a, frame-buffer to a texture is

avoided.
Our shading i W y : ginnifg of rendering, the
sampling directi@ tder-of : h axis is modified

for the requiret ITOXY g he eye and light
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end

Fig. 3-11: Shadowing process
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Fig. 3-12: Two passes of shadowing algorithm

In the shading stage, each proxy polygon is rendered twice. In the first pass,
proxy polygon is firstly rendered from the observer’s point of view in the frame-buffer.
The light intensity at each fragment of this polygon is acquired by sampling the
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position it is projected in the light-buffer. The light intensity is used to modulate the
brightness of the fragment. In this pass, polygons are blended with over operator if the
dot product of lighting and viewing vector is negative, or with under operator if the
dot product is positive. This pass is illustrated in Fig. 3-12a.

In the second pass, this polygon is rendered from the light’s point of view in the
light-buffer to achieve the goal of accumulating the intensity of the light arriving in
the first pass of the next polygon. Each fragment of this polygon is firstly sampling
the texture of the volume data to get the interpolated data value. Then the data value is
used as texture coordlnate t_gtlghmplé['t .Ite-xill}c?ql:-tj}e transfer function. Only the
opacity of this fragmgnt-{oqlfﬂ'p from the transfer func't.'l'oﬁ-l‘s I;e_qulred The fragment is

o -.__ =
rendered with blad:géoior and the chrrFe-,sp, ndgqg T)pa.glty Wlth-dszej operator to achieve

- h e
the goal of attelfﬁatl-ng the Enfe'tfs'l't}ie- ﬁi l!lghl Th%si pa'ss }s :I.rl}strated in Fig. 3-12b.

.
An example oﬁaolumc pendermg w1th shadow'g can be s,een in ]flgjj 13.

Fig. 3-13: Texture-based volume rendering with shadowing effect
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3.1.5 Volume rendering with geometry information

In the neuron study of Drosophila’s brain, the morphology and geometry of neuron
play important roles. Mostly the neuron is with complicated structure and the image
volume is derived from confocal microscope slice by slice and this makes it hard to
visually observe the neuron. In order to observe the neuron structure we combine the
traced neuron branch curve data and volume data to help the user to observe the
neuron.

In traditional way, the geometry information is stored as vertices and edges. If
we render such geometry,information as segments, the depth and space relation is not
easy to understand. Display the geometry information ‘as pipe is better than segment
because pipe cangprovide normal information and light shading is possible.

For renderning segments as pipes, each segment is shown as cylinder constructed
by polygons, and each end of segment issshown as spheres. We wuse an adjustable
radius to calculate the correspondingecylinders and spheres, as shownin Fig. 3-14.

To achieveithe goal of blending the geometry information into the volume
rendering, the polygons of geometry information needs to.be diawn before the volume
data with “Over” operator. The depth test of rendering pipeline culls the fragments of
volume rendering that are behind ‘geometry data. If the “Under” operator is used,
render the geometry data and the volume data into separate frame-buffers and
composite two frame-buffers at the end. In this case, the depth values from the
geometry data are used for culling fragments in the volume rendering. The result of

volume rendering with geometry information is shown in Fig. 3-15.
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Fig. 3-14: Display segment as pipe

= |
m R »
"

Fig. 3-15: A neuron Zadpole
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3.2. Multi-volume rendering

In order to compare the brain structures between two individuals, it is in general
essential to show all the volume data concurrently. For example, compare the different
neuron locations in a fly brain between different experiments to understand how
neuronal circuits to connection. Multi-volume rendering provide better observation
for bio-medical science.

For rendering multi-volume data at the same time, the visualization stages of our
system have a little modification from the process shown before. In the initialize stage,
all volume data are loaded, processed and pushed into asvolume pool. In the update
stage, each volume data in the volume pool is sliced.along the sampling direction, and
all of such slicesgare pushed into.a proxy pool. We sort all slices in.the proxy pool; no
matter what volume data they-are corresponded.

Our visualization system allows user to’selectively set individual rendering
coefficients sueh as transfer functions dand material of lighting fot.different volume
data. The deform matrix of each"volume data can:be set individually for providing
better eyeshot and“observation. User can also decide the msage of pre-integrated
lookup table and lighting'effect. See Fig. 3-16 foran example, where several different
rendering coefficients have been set to visualize multi-volume data of a human head

and a fly brain.

Fig. 3-16: The result of multi-volume rendering
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3.3. Summary

In chapter 3.3, we introduce the flowchart of our visualization system; include

the flowchart of data processing and the shading effects.

3.3.1 Flowchart of Our Visualization System

Fig. 3-17 shows a flowchart diagram illustrating the complete procedure of our
visualization system for the data processing and visualization process. In the initialize
stage, volumetric data and geometric information are loaded. In this stage, the texture
and of each volumetric.data are created and the polygons of .geometry information are
calculated. After userinput the parameters of lighting, viewing, and rendering, and
define the transfer function, we create the proxy geometries by sampling each volume
data along the sampling direction in the update stage. Then we_ render all proxy
geometry with the shading coefficient defined by user in the render, stage. Thus, we

complete one pass of rendering.
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Lighting coefficient
Viewing parameters

Fig. 3-17: Main process of our visualization system
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Initialization
start

Create texture of volume
data base on data size

v

Push volume data to
volume pool

v

Initialize
end

Fig. 3-18: Initialization stage of.main process

3.3.2 Initialization Stage

In the initialization stage, as shown in Fig.3-18, volume data and the corresponding
geometry dataare loaded. If the lighting effect is enabled, the normal information of
volume data is+calculated in this stage. For multi-volume rendering, we build a

volume pool and push all volume data into it.

3.3.3 Update Stage

In this stage, the proxy geometry of each volume data is calculated. First, the
sampling direction is decided. Then every volume data is sampled from the volume
pool along sampling direction. All proxy geometry gained in this stage are pushed into
a proxy pool and rendered in the next stage.

Before deciding the sampling direction, the shading coefficient of the shadowing
effect must be checked firstly. If the shadowing effect is enabled, the sampling

direction is decided by the locations of light and observer. When the angle between
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lighting direction and viewing direction is smaller than 90°, it means that the dot
product of the lighting and viewing directions is positive, the sampling direction is the
vector halfway between the lighting and viewing directions. When the angle between
lighting and viewing direction is larger than 90°, it means that the dot product of the
lighting and viewing direction is negative, the sampling direction is the vector
halfway between the lighting and inverted viewing directions. On the other way;, if the
shadowing effect is disabled, the sampling direction is the viewing direction.

After deciding the sampling direction, pick one volume data from volume pool.
The volume data is deforméd by it’s deform matrix, which is decided by the
translation, rotation, and scale of this volume. After deforming, the proxy geometry of
this volume data i§ gained by sampling along the sampling direction. All volume data
in the volume pool are processed by the procedure as described before.

As all volume data in volume pool haverbeen processed, the proxy geometry in
the proxy pool should be sorted. The rule of sorting is decided ‘by the distance
between proxy geometry and ebservermThesprocedurerof this stage is shown in Fig.

3-19.
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end

Fig. 3-19: Update stage of main process
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3.3.4 Draw Stage

In this stage, the result of the volume visualization is created. First, check if the
shadowing effect is enabled. If not, the proxy geometry in the proxy pool is rendered
in back to front order (by the distance between proxy geometry and observer from
near to far) in the frame-buffer with Over operator.

If the shadowing effect is enabled, the locations of light and viewer should be
checked. If the dot product of the lighting and viewing direction is positive, we start
the two-pass rendering procedure as follow. Pick proxy geometry in the proxy pool in
front to back order. Firstprender it in the frame-buffer with Under operator. In this
pass, the corresponding coefficient of shadowing of each fragment is lookup in the
light-buffer. Andsthe final color of €ach fragment is modified bysthis coefficient. In
the second pass, render the-same proxy geometry in the light=buffer with Over
operator to aceumulate and calculate the shadow coefficient. Thispass can be done
efficiently withsthe technique calledframe-buffer object. After the two-pass rendering
procedure, if thesproxy pool is not'empty, repeat-this procedure:

If the dot product of the lighting and viewing direction. 1S negative, the proxy
geometry in the proxy pool is picked in back to-front order. In pass one; each proxy
geometry is firstly rendered in the frame-buffer with Over operator. In pass two, the
same proxy geometry is rendered in the light-buffer with Over operator, two. The
corresponding shader code is shown in Fig. 3-20. The flowchart of this stage is shown

in Fig. 3-21.
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uniform sampler3D uTexVoxel;
uniform samplerlD uTexTfld;
uniform sampler2D uTexLightBuffer;

void main(){
// gl_TexCoord[0] is the texture coordinate for 3-D volume data
float Voxel = texture3D(uTexVoxel, gl_TexCoord[0].xyz).r;
vec4 FinalColor;
FinalColor = texture1D(uTexTf1d, Voxel).rgba;

// gl_TexCoord[1] is the texture coordinate for 2-D light-buffer

vec3 ShadowingWeight = texture2D(uTexLightBuffer, gl_TexCoord[1].xy).rgb;
FinalColor.r *= ShadowingWeight.r;

FinalColor.g *= ShadowingWeight.g;

FinalColor.b *= ShadowingWeight.b;

gl_FragColor = FinalColor;

Fig. 3-20: Shadow code for volume rendering with shadowing
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0 @ \l/ Yes {?} :
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?%\ ‘ \VNO Yesl? 9\/ "
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v v i 7
Render this proxy Render this proxy Render this proxy
from observer’s view from observer’s view from observer’s view
refer to light buffer refer to light buffer In frame buffer
In frame buffer In frame buffer With “Over” operator
With “Over” operator With “Under” operator
v v
Render this proxy Render this proxy
from light’s view from light’s view
In light buffer In light buffer
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\ 4
| No Proxy pool Proxy pool NO_ Proxy pool — N0 ]
empty empty empty
Yes I_\l/ \1/—| Yes Yes
Draw
end

Fig. 3-21: Draw stage of main process
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Chapter 4
Main Result

In this thesis, we build a volume data visualization system for confocal
microscopic image of Drosophila s brain. Although there are some software platforms
for visualization and manipulating bio-medical and science data in the market, user
need to pay high price for authorization and these software are hard to accord with
biologist’s particular request. Our system provides high quality volume visualization
to help biologist makeprofound diagnosis.

The implementation of -our volume renderer is based on C++, OpenGL, and
GLSL. The performance measurements were conducted on a Windows XP PC with an
Intel E4400 CPU and an NVidia GeEorce 8800GT graphics board with 1024MB
texture memory.

Fig. 4-1 shows afly brain of size 256*256*67. Fig. 4-1a is rendered by basic
texture-based volumerendering with 60 frames per second (fps). Fig. 4-1b is rendered
by pre-integrated volume’ rendering with 60 fps.” Fig. 4-1c is rendered by
pre-integrated volume rendering with lighting between 53 to 57 fps. Fig. 4-6d is
rendered by pre-integrated volume rendering with shadowing between 13 to 18 fps.
Fig. 4-6e is rendered by pre-integrated volume rendering with lighting and shadowing

between 13 to 18 fps.
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Chapter 5

Conclusion and Future Work

In this thesis, we build a visualization system for more reality and interactive
volume rendering for confocal microscopic image of Drosophila’s brain. We combine
and reference many important researches to build this system, include improving low
sampling rate by the pre-integrated volume fendering algorithm, providing reality
volume rendering by lighting and shadowing, providing more space information by
the volume rendering-with geometry data'and comparing between many volume data
by the multi-volume rendering.

Although our system can provide interactive wolume rendering with consumer
graphics hardware, the performance is not good enough to provide good result with 30
fps. Our visualization system 'can be improved by referencing some accelerating
texture-based volume tendering algorithm, ke empty space skipping technique.

The data size of confocal microscopic image is usuallylarger than the texture
memory of consumer graphic card. The volume rendering algorithm for large data is a
important question. Our system can be improved by referencing some large volume
data visualization algorithm, like level of detail or octree technique.

Although lighting and shadowing effect can improve the reality of volume
rendering, the difference between materials cannot be observed. A shading system is

needed to rendering more detail in different materials, like bone, skin, or tissue.
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