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中華民國九十七年八月 

運用 DCDC Model 

來遞增性分析高階程式之異常使用 

 

研究生: 林建志   指導教授: 王豐堅 博士 

國 立 交 通 大 學 

資訊科學與工程研究所 

碩 士 論 文 

 

 

摘要 

 

 工作流程是由一組系統化組成的工作，經過特定的順序執行之後，能夠達成所要的

目標或是產品。其中資料是實作和執行工作流程不可或缺的元素。然而工作流程可能會

因為不適當的資料操作而產生預期外的結果，例如，遺失執行所需的資料或是收到多份

同名資料產生衝突等等。因此在設計流程的過程中，資料分析結果便能提供相關的幫助。

這篇論文提出了一個流程模組去描述一個 Well-formed工作流程，這一名叫DCDC Model

的模組顯示出四類的資料使用異常。因此我們提出了一些漸進式的演算法去偵測出這些

資料使用異常，以輔助使用者在工作流程之編輯。 

 

 

 

關鍵字：工作流程、商業流程、控制流、資料、資料流、遞增分析、異常 

 



 

ii 

Detecting Artifact Usage Anomalies 

 in High-level Software Incrementally with DCDC 

Model 

 

Student: Chien-Chih Lin   Advisor: Dr. Feng-Jian Wang 

Institute of Computer Science and Engineering 

National Chiao Tung University 

1001 Ta Hsueh Road, Hsinchu, Taiwan, ROC 

 

Abstract 

 

 Workflow is a set of tasks which are systematized to achieve certain business goal(s), 

complete where each task is executed in a particular order under automatic control. Artifacts, 

collections of data items, are necessary for workflow implementation and support process 

execution. However, a workflow may yield unexpected results in execution due to improper 

artifact manipulation; e.g. activities miss artifact, or artifact conflict occurs at an activity in 

run time. Therefore, the analyses on artifact usage in design phase are very important. This 

thesis presents a process model, named DCDC model, to describe a well-formed workflow. 

There are four types of artifact usage anomalies in DCDC identified. To help the edit of a 

process, the corresponding incremental algorithms are presented to detect these anomalies. 

Their time complexities are also studied. 

 

Keywords: work flow, business process, control flow, artifact, artifact flow, incremental 

analysis, anomalies. 
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Chapter 1.  Introduction 

 

 Workflow is a set of tasks which are systematized to achieve certain business goals by 

completing each task in a particular order under automatic control [1]. On the other hand, 

resources are necessary for workflow implementation and support process execution. 

Resource allocation and resource constraint analysis [2 - 6] are popular topics of workflow 

research. However, data flow within workflow is seldom addressed [7, 8]. 

 

 Artifacts are collections of data items involved in a process. Introducing analysis of 

artifact usage into workflow designs might help maintain data consistency, as well as prevent 

the exceptions. In contrast to structural correctness, accuracy in artifact manipulation can help 

determine whether the execution result of a workflow is meaningful and desirable. 

 

Sadiq et al. [7] presented data flow validation issues in workflow modeling, including 

identifying requirements of data modeling and seven basic data validation problems: 

redundant data, lost data, missing data, mismatched data, inconsistent data, misdirected data, 

and insufficient data. However, there is no discussion about any implementation or formal 

method to demonstrate how to apply their researches and which types of workflow model are 

compatible with their activity-based data model.  

 

Sun et al. [8] presented a data flow analysis framework for detecting data flow anomalies 

such as missing data, redundant data, and potential conflicts of data. In addition, several 

algorithms were provided to detect anomalies, however, the work is done only based on read 

and first initial write operations of an artifact. 
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 Jin Hyun Son [14] defined a well-formed workflow based on the concepts of closure and 

control block. He claimed that a well-formed workflow is free from structure errors, and that 

complex control flows can be made with nested control blocks. 

 

Aalst [9] identifies three major artifact transmission models in a workflow: (1) Global 

Data Store (GDS), (2) Integrated Control and Data Channels (ICDC), and (3) Distinct Control 

and Data Channels (DCDC). DCDC is more flexible for representing artifact transmission 

than GDS and ICDC. Therefore, this thesis proposes a process model for describing a 

well-formed workflow. The artifact transmissions in this model are based on DCDC model 

and four types of artifact usage anomalies are addressed.  

 

Further, each artifact in this model has a corresponding artifact flow diagram for 

representing its transmissions and usages. This thesis presents a set of incremental algorithms 

to update the artifact flow diagrams when designer edits a workflow. By analyzing the 

updated artifact flow diagram, the artifact usage anomalies can be detected meanwhile. The 

warning messages are provided to the designers if artifact usage anomalies occur.  

 

 The remainder of this thesis is organized as follows. Chapter 2 presents the related work. 

Chapter 3 presents our process modeling based on well-formed workflow and the artifact flow 

diagram. Chapter 4 identifies four types of artifact usage anomalies. Chapter 5 proposes 

several incremental algorithms to update artifact flow diagram and detect artifact usage 

anomalies. Chapter 6 demonstrates our incremental algorithms with several scenarios. 

Chapter 7 compares this thesis with related work. Conclusions and future works are finally 

drawn in chapter 8. 
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Chapter 2.  Related Work 

 

 To develop an effective and reliable workflow application, a well-defined workflow 

model is necessary. The correctness issues in a workflow might be classified into three 

dimensions: control flow, resource, and data flow. The analysis of control flow aspect includes 

structural correctness focuses on soundless of control logic [10], process model analysis, 

workflow patterns [11, 12], and automatic control of workflow process [13], etc. The analysis 

of resource aspect includes resource allocation constraints [2], resource availability [3], 

resource management [5], and resource modeling [6], etc. The analysis of data flow aspect 

includes data flow validation [7], data flow formulation [8], and artifact usage anomalies 

detection [8][15], etc, 

 

2.1 Artifact Transmission Models 

 

 Aalst [11] identifies three major artifact transmission models in a workflow: (1) Global 

Data Store, (2) Integrated Control and Data Channels, and (3) Distinct Control and Data 

Channels. These transmission models are illustrated in Figure 2.1. 

 

 

Figure 2.1: Three Major Artifact Transmission Models. 

𝑣1 𝑣2 𝑣3 

 Global Shared Data 

Data Data 

(1) Global Data Store 

𝑣1 𝑣2 𝑣3 
Data Data 

(2) Integrated Control and Data Channels 

𝑣1 𝑣2 𝑣3 

Data 

(3) Distinct Control and Data Channels 
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(1) Global Data Store (GDS):  

Each artifact is only allowed to have one instance in a workflow and the instance is 

typically stored in a global shared data store. All activities share the same artifact 

instances in the global data store. 

(2) Integrated Control and Data Channels (ICDC):  

In this model, all artifacts are passed with control flows regardless of whether the 

next activity will use them or not.  

(3) Distinct Control and Data Channels (DCDC):  

Artifacts are passed between activities via explicit channels [16] which are distinct 

from control flows. Hence, each activity can decide where artifacts are passed. 

 

Based on the introductions above, we discover that some behaviors or properties in 

DCDC are hard to represent in GDS and ICDC. For example in the aspect of artifacts security, 

let an artifact d in Figure 2.1 be updated by 𝑣1 and only allowed to be read by 𝑣3. In GDS, 

each activity can access the artifact d because it is store in the global data store. Therefore, it 

is hard to limit other activities to read or update d before 𝑣3 reads it.  

 

In ICDC, if 𝑣3 is required to read the artifact d updated by 𝑣1, d has to be transferred 

through the activities between 𝑣1 and 𝑣3 in the control flow. In Figure 2.1 (2), 𝑣2 will 

receive d from 𝑣1 and pass it to 𝑣3 regardless of whether 𝑣2 requires d or not. Hence, it is 

also hard to limit 𝑣2 to read or update d before 𝑣3 receives it.  

 

However, each activity in DCDC can decide where artifacts are passed. Activity 𝑣1 in 

Figure 2.1 (3) can simply decide to pass d to 𝑣3 and only 𝑣3 will receive it. The other 

activities without receiving d can not access it. Therefore, DCDC is more flexible and is 

adapted to represent artifact transmission in this thesis.  
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2.2 Previous Work 

 

 Previous work presents a process model to describe workflow schemas. The definitions 

of a process, an activity, and a control block are proposed. The relations among activities and 

control blocks, e.g. paths, reachablility, predecessors, successors, parallel activities, and 

exclusive activities, are also defined.  

 

 In order to simplify analysis the artifact usages in GDS, every artifact operation can be 

regarded as one of the following operations: Initialize, Read, Updated, and Destroy, 

regardless of its semantic meaning. Further, the usage relation between an activity and an 

artifact can be identified as: Producer, Reader, Updater, Destroyer.  

 

 Based on the definitions above, previous work identifies the following artifact usage 

anomalies: (1) No Production, (2) Delayed Production, (3) Early Destruction, (4) Exclusive 

Production, (5) Uncertain Production, (6) Conditional Production, (7) Conditional 

Destruction, (8) Uncertain Destruction, (9) Explicit Redundant Update, (10) Potential 

Redundant Update, (11) Multiple Parallel Productions, (12) Multiple Parallel Updates, and 

(13) Parallel Read and Update. After identifying the causing conditions of each anomaly, 

previous work proposes a batch algorithm to traversal a control flow and detect whether 

anomalies occur or not.  

 

 Since previous work only discusses artifact transmission in GDS, the activities share the 

same artifact instances stored in global data store and an artifact is only allowed to have one 

instance in a process. However, the activity in DCDC can decide where artifacts are passed 

and an artifact is allowed to have multiple instances in a process.  
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Therefore, we extend the process model of previous work and present an artifact flow 

diagram for each artifact to represent the artifact usages and transmissions in this thesis. 

Based on the information in artifact flow diagram, the artifact usage anomalies in DCDC can 

be identified. The differences of anomalies between GDS and DCDC are discussed in Section 

7.1. The comparison of the anomalies addressed in previous work and our work is discussed 

in Section 7.2.  

 

Furthermore, our model proposes several edit operations for editing a process. In order to 

update the artifact flow diagram after each edit operation incrementally, the incremental 

algorithms are introduced for each edit operation. The detailed algorithms about how to 

construct artifact flow diagram are also described in this thesis.  
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Chapter 3.  A Process Model Based on Well-formed Workflow 

 

3.1 Control Flow Specification 

 

 As discussed in Section 2.2, [15] does not concern the activities can decide where 

artifacts are passed and the artifacts can have multiple instances in a workflow. To solve these 

problems, there are several features introduced in addition in this thesis. The new features are 

described in the following paragraphs. First, Definition 3.1 formally defines a process 

specification and Definition 3.2 describes the fundamental properties contained in each 

activity. 

 

Definition 3.1  (Process Specification)[15] 

 A process specification p = (𝑉𝑝 , 𝐹𝑝 , 𝑅𝑝 , 𝐶𝑝 , 𝑆𝑝 , 𝐸𝑝 ), where  

 𝑉𝑝 : The set of activities in p. The id of each activity is unique. 

 𝐹𝑝 : The set of flows in p. 

 𝑅𝑝 : The set of resources (artifacts) used in p. 

 𝐶𝑝 : The set of control blocks in p. The id of each control block is unique. 

 𝑆𝑝 : The start activity of p. 

 𝐸𝑝 : The end activity of p. 

 𝑆𝑝 , 𝐸𝑝  ∈ 𝑉𝑝 . 

 𝐶ℎ𝑖𝑙𝑑𝑝  = {sp | ∀compound activity v∈ 𝑉𝑝 , v.subp = sp}. 
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Definition 3.2  (Activity Fundamental Properties) 

 ∀v ∈ 𝑉𝑝 , there are two fundamental properties in v: 

 v.type ∈ {Task, ProcessStart, ProcessEnd, XorSplit, XorJoin, AndSplit, AndJoin, 

LoopSubProcess, SubProcess}. 

 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣: A stack stores all the control blocks and branches where v resides. (The 

control block and branch are defined further in Definition 3.4 and 3.6.) 

 

 For each activity v ∈ 𝑉𝑝 , the property 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣 is a new feature and its usage is 

illustrated in Definition 3.9. The property v.type represents v‟s type. If v.type is SubProcess or 

LoopSubProcess, v is a compound activity. Definition 3.3 below introduces a new feature: 

subp to a compound activity.  

 

Definition 3.3  (Compound Activity) 

 ∀ v ∈ 𝑉𝑝 , v is a compound activity when v.type ∈ {SubProcess, LoopSubProcess}. 

 v.type ∈ {SubProcess, LoopSubProcess} 

 v.subp : The sub-process included within v. 

 

 In our model, there are three types control blocks, ”ROOT Control Block”, “AND 

Control Block”, and “XOR Control Block”, and the properties to record the execution order 

of these blocks are defined in Definition 3.4. Further, for an activity v, v is contained in c 

when v is reachable from c.start and c.end is reachable from v. For a flow f = (u, v) ∈ 𝐹𝑝 , f is 

contained in control block c when u and v are both contained in c. 
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Definition 3.4  (Control Block) 

 A control block c = (start, end, type)∈𝐶𝑝 , where 

 c.start = 𝑣𝑠 , 𝑣𝑠 ∈ 𝑉𝑝  and 𝑣𝑠 .type ∈ {ProcessStart, XorSplit, AndSplit} 

 c.end = 𝑣𝑒 , 𝑣𝑒 ∈ 𝑉𝑝  and 𝑣𝑒 .type =  

ProcessEnd if 𝑣𝑠 . 𝑡𝑦𝑝𝑒 = ProcessStart
XorJoin if 𝑣𝑠 . 𝑡𝑦𝑝𝑒 = XorSplit

AndJoin if 𝑣𝑠 . 𝑡𝑦𝑝𝑒 = AndSplit

  

 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣𝑠
 = 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣𝑒

 

 ∄ v ∈ 𝑉𝑝 , v.type ∈{ProcessStart, ProcessEnd, XorSplit, XorJoin, AndSplit, 

AndJoin}, IsReachable(c.start, v) = ture, IsReachable(v, c.end) = ture, and 

𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣 = 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣𝑠
. 

 c.type ∈ {ROOT, AND, XOR} 

 c.type =  

ROOT if 𝑣𝑠 . 𝑡𝑦𝑝𝑒 = ProcessStart
XOR if 𝑣𝑠 . 𝑡𝑦𝑝𝑒 = XorSplit      
AND if 𝑣𝑠 . 𝑡𝑦𝑝𝑒 = AndSplit     

  

 c.bcounter is a counter of branch id. The value of bcounter for c is set to 0 at the 

beginning of c‟s construction. 

 c.totalbranches =  outflows of 𝑐. 𝑠𝑡𝑎𝑟𝑡 . (The outflow is defined in Definition 3.7.) 

 

 For each control block c ∈ 𝐶𝑝 , the properties c.start and c.end represent the start activity 

and end activity of c separately. If activity 𝑣𝑠  is the start activity and 𝑣𝑒  is the end activity, 

the following properties hold:  

(a) 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣𝑠
 = 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣𝑒

. 

(b) There is no such an activity v ∈ 𝑉𝑝 , v.type∈{ProcessStart, ProcessEnd, XorSplit, 

XorJoin, AndSplit, AndJoin}, v is reachable from 𝑣𝑠 , 𝑣𝑒  is reachable from v, and 

𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣 = 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣𝑠
.  

 

The function IsReachable(c.start, v) in Definition 3.4 represents whether v is reachable 

from c.start. If v is reachable from c.start, the function returns true. Otherwise, the function 
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returns false. The function is defined in Definition 3.11. 

 

Based on the type of c.start, the property c.type is one of the following types: “ROOT”, 

“AND”, and “XOR”. The property c.bcounter is a new feature and is used to count branch ids. 

The value of c.bcounter is increased by one when a new branch is added into c. The property 

c.totalbranches represents the number of branches in c.  

 

Each process is only allowed to contain one root control block R. For a process p, p.start 

= ps, p.end = pe, the root control block R = (ps, pe, ROOT) and R.totalbranches is always 1. 

 

 Based on the Definition 3.4, a control activity is defined in Definition 3.5. 

 

Definition 3.5  (Control Activity) 

 ∀ v ∈ 𝑉𝑝 , v is a control activity.  

 v.type ∈ {ProcessStart, ProcessEnd, AndSplit, AndJoin, XorSplit, XorJoin}. 

 v is the start activity of a control block if v.type ∈ {ProcessStart, AndSplit, 

XorSplit}. 

 v is the end activity of a control block if v.type ∈ {ProcessEnd, AndJoin, XorJoin}. 

 v.cb represents the id of the block beginning from or ending at v. 

 v.cb = R if v.type ∈ {ProcessStart, ProcessEnd}. 

 

In addition, if an activity v ∈ 𝑉𝑝  is neither a control activity nor a compound activity, v 

is a task activity and v.type = Task. 

 

Based on Definition 3.5, a branch in a control block is basically a path. Also the path 

begins at the start activity of the control block, and ends at the end activity of the control 
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block. In order to identify different branches in a control block, each branch contains a 

property id. When a new branch b is added into a control block c, c.bcounter is added by one 

and is set value of b.id. A branch is defined in Definition 3.6. 

 

Definition 3.6  (Branch) 

In a control block c which is not sequence, a branch b = (𝑣1, …, 𝑣𝑘), k≥2, where 

 ∃flow (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐹𝑝 , i = 1, 2, …, k-1 

 𝑣1 = c.start 

 𝑣𝑘  = c.end 

 b.id represents the id of b. 

 

A flow in workflow specification represents the execution order of activities and is 

defined in Definition 3.7. 

 

Definition 3.7  (Flow) 

 ∀ f = (u, v) ∈ 𝐹𝑝 , where u, v ∈ 𝑉𝑝 . 

 u is the source activity of f, and v is the sink activity of f. 

 f is an inflow of v and an outflow of u. 

 

 Figure 3.1 shows the corresponding notations of control activities, task activity, 

sub-process activity, loop sup-process activity, and flow. 
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Figure 3.1: Notations of Control Flow Graph. 

 

 

Figure 3.2: An Example of Control Flow Graph. 

 

Figure 3.2 shows an example of a well-formed control flow. In Figure 3.2, each activity 

is associated with an Ancestor Block Stack, ABStack, showing the control blocks where the 

activity resides. The properties about the relations between elements in an ABStack are 

described after illustrating the elements in Definition 3.8. Since all activities are contained in 

root control block R and R.totalbranches is always 1, an element (R, 1) is in the bottom of 
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each ABStack. For an activity v, each element in 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣 marks a control block containing 

v. An element inside an ABStack is formally defined in Definition 3.8. 

 

Definition 3.8  (The element inside an ABStack) 

An element e inside 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣 contains two tuples (blockID, branchID),  

 blockID represents a control block containing v. 

 branchID represents the id of the branch after the initial control activity of blockID. 

 

An ABStack has the following properties: 

 

1. Assume two elements, e1 and e2, exist in an ABStack. Element e1 is above e2 if and only 

if the block represented by the first tuple of e1 is contained in that represented by e2. For 

example, 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣2
 in Figure 3.2 has two elements e1=(x1, 1) and e2=(a1, 1). Because 

x1 is contained in a1, e1 is above e2. By reading the elements top-down in 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣2
, it 

is found that 𝑣2 is located on branch 1 of x1, x1 is located on branch 1 of a1, and a1 is 

located in R. Thus, the 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣2
 can be used to represent the location of activity 𝑣2. In 

this case, because x1 is contained in a1, x1 is deeper than a1 in this nested control blocks 

structure. In the same reason, because a1 is contained in R, a1 is deeper than R. Therefore, 

x1 is the deepest control block which contains 𝑣2 because x1 does not contain any 

control block.  

 

2. Consider 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢  and 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣, if there are some elements contained in 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢  

but not in 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣, u is contained in the blocks represented by the elements but v is not. 

For example, element (x1, 1) is contained in 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝐵  but not contained in 

𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑥𝑗1 in Figure 3.2. Therefore, control block x1 contains activity 𝑣2  but not 

activity xj1. 
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The operations associated with ABStack are defined in Definition 3.9. The construction 

of an ABStack is described in Algorithm 3.1. 

 

Definition 3.9  (The operations associated with an ABStack) 

The operations associated with an ABStack include: 

1. push(E: element): Pushing an element into the top of ABStack. 

2. pop(): Popping an element out from the top of ABStack. 

3. isEmpty(): If the ABStack = ∅, return true. Otherwise return false. 

4. getTopXOR(): Getting the first element from the top of ABStack and the type of the 

block associated with the element is XOR. For example, let 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣 =       , x1 

and x2 be XOR control blocks, a2 be an AND control block, then 

𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣.getTopXOR() = (x2, 2). 

5. removeIdenticalElements(A: ABStack): Removing the same elements in both A and the 

target ABStack. For example, 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣  =       and 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢  =        , 

𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣.removeIdenticalElements(𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢) =       .  

 

Algorithm 3.1  (Construction of an ABStack) 

∀ v ∈ 𝑉𝑝 , 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣 is constructed by the following steps: 

Algorithm ConstructABStack(v){ 

1. if(v.type == ProcessStart){ 

2.  𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣=       ; 

3. }else if(v.type ≠ ProcessStart and ∃inflow f=(u, v) ∈ 𝐹𝑝  and f is located in branch b){ 

4.  if(u.type ∉ {XorSplit, AndSplit}){ 

5.   𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣 = 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 ; 

6.  }else{ 

7.   Create an element e1 = (u.cb, b.id); 

8.   𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣 = 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 .push(e1); 

9.  } 

(a2, 1) 
(x2, 2) 
(x1, 1) 

 

(a2, 1) 
(x2, 2) 
(R, 1) 

 

(x2, 2) 
(R, 1) 
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10.  if(v.type ∈ {XorJoin, AndJoin}) 

11.   𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣.pop(); 

12.  } 

13. } 

} 

 

 At line 1 to 2, if the type of v is ProcessStart, 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣 only contains one element(R, 

1). If the type of v is not ProcessStart, v has inflow(s). Let f be the inflow (u, v) and f be 

located in branch b. If v has multiple inflows, random one of them is assigned to f. At line 4 to 

9, if the type of u is not XorSplit and AndSplit, 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣 = 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 . Otherwise, u is the 

start activity of a control block. Hence, 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣 is equal to 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢  which is added an 

element (u.cb, b.id). At line 10 to 12, if the type of v is XorJoin or AndJoin, v is the end 

activity of a control block. Thus, 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣 pops an element. 

 

 

3.2 Relations between Activities and Control Blocks 

 In a process, there are relations between activities and control blocks; e.g. path, 

reachability, etc. These relations are defined in the following definitions. 

 

Definition 3.10  (Path)[17] 

A path q = (𝑣1, … ,𝑣𝑘 ) in which 𝑘 ≥ 2 and the flow f = (𝑣𝑖 ,𝑣𝑖+1) for i=1,2,...,k-1 ∈ 𝐹𝑝 . 

The path from 𝑣1 to 𝑣𝑘  is denoted by 𝑃𝑎𝑡ℎ(𝑣1,𝑣𝑘). 

 

Definition 3.11  (Reachability)[17] 

 Given two activities u and v, 𝐼𝑠𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒(𝑢,𝑣) is a Boolean function that indicates 

whether there is a path from u to v. I.e., 

∀𝑢, 𝑣 ∈ 𝑉𝑝 , 𝐼𝑠𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑢,𝑣 = 𝑡𝑟𝑢𝑒 ⟷  ∃𝑃𝑎𝑡ℎ 𝑢, 𝑣  ∨  𝑢 = 𝑣. 
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Definition 3.12  (Predecessors and Successors) 

𝑉𝑣
𝑖𝑠𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 = {𝑢 ∈ 𝑉𝑝  | 𝐼𝑠𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑢,𝑣 = 𝑡𝑟𝑢𝑒} 

𝑉𝑣
𝑖𝑠𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 =  𝑢 ∈ 𝑉𝑝    𝐼𝑠𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑣, 𝑢 = 𝑡𝑟𝑢𝑒} 

 𝑉𝑣
𝑖𝑠𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟  is a set of activities and v is reachable from each activity in  

𝑉𝑣
𝑖𝑠𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 . Each activity u in 𝑉𝑣

𝑖𝑠𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟  is called a predecessor of v. 𝑉𝑣
𝑖𝑠𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟  

denotes the transitive closure of 𝑉𝑣
𝑖𝑠𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 . 

 

Definition 3.13  (Parallel Activities) 

 Given two activities u and v, IsParallel(u, v) is a Boolean function to represent if u and 

v might be executed in parallel. 

𝐼𝑠𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑢,𝑣 = 𝑡𝑟𝑢𝑒 ↔  

∃𝑒1 ∈ 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 , 𝑒2 ∈ 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣  ∧  
𝑒1.𝑏𝑙𝑜𝑐𝑘𝐼𝐷 = 𝑒2.𝑏𝑙𝑜𝑐𝑘𝐼𝐷       
𝑒1.𝑏𝑟𝑎𝑛𝑐ℎ𝐼𝐷 ≠ 𝑒2.𝑏𝑟𝑎𝑛𝑐ℎ𝐼𝐷
𝑒1.𝑏𝑙𝑜𝑐𝑘𝐼𝐷. 𝑡𝑦𝑝𝑒 = AND         

   

 

Definition 3.14  (Exclusive Activities) 

 Given two activities u and v, IsExclusive (u, v) is a Boolean function to represent if u is 

selected for execution then v won‟t be selected for execution and vice versa. 

𝐼𝑠𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 𝑢, 𝑣 = 𝑡𝑟𝑢𝑒 ↔  

∃𝑒1 ∈ 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 , 𝑒2 ∈ 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣  ∧  
𝑒1.𝑏𝑙𝑜𝑐𝑘𝐼𝐷 = 𝑒2.𝑏𝑙𝑜𝑐𝑘𝐼𝐷       
𝑒1.𝑏𝑟𝑎𝑛𝑐ℎ𝐼𝐷 ≠ 𝑒2.𝑏𝑟𝑎𝑛𝑐ℎ𝐼𝐷
𝑒1.𝑏𝑙𝑜𝑐𝑘𝐼𝐷. 𝑡𝑦𝑝𝑒 = XOR          

   

 

 To simplify our analysis, the workflow specifications discussed in this thesis are 

well-formed. A well-formed workflow has four basic control structures: sequential, exclusive 

split, parallel split, and loop. The control blocks defined in Definition 3.4 can be used to 

represent exclusive split, and parallel split structures. As in BPMN [18], a loop structure can 

be replaced by a loop sub-process activity in our model.  
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Figure 3.3: Using a Loop Sub-Process Activity to Replace a Loop Structure. 

 

 Figure 3.3 (a) shows an example of a well-formed control flow and activities 𝑣2, 𝑣3, 

and 𝑣4 are located in a loop structure. In Figure 3.3 (b), a loop sub-process activity 𝑣6 is 

used to replace the loop structure and 𝑣6 contains a sub-process including 𝑣2, 𝑣3, and 𝑣4 

in Figure 3.3 (c). Therefore, there is no cycle in a control flow graph in our model; i.e. a 

control flow graph in our model is a directed acyclic graph (DAG).  

 

 

3.3 Artifact Flow Diagram Specification 

  

 As identified in [11], there are three models used to define artifact flow transmission in a 

workflow: (1) Global Data Store (GDS), (2) Integrated Control and Data Channels (ICDC), 

and (3) Distinct Control and Data Channels (DCDC). Since DCDC is more flexible for 

representing artifact flow, DCDC is adapted to express artifact flow in this thesis.  

 

𝑣1 
ps pe 

𝑣2 𝑣3 𝑣4 𝑣5 

(a) 

(b) 

(c) 

𝑣1 
ps pe 

𝑣5 

Loop Sub-Process 

𝑣6 

𝑣2 
ps2 pe2 

𝑣4 𝑣3 

Sub-Process within 𝑣6 



 

18 

 In this thesis, a verb “pass” is used to represent the action about sending an artifact to 

another activity [11]. For example, if an artifact d is sent from an activity v to u, it is described 

as that activity v passes artifact d to u. In other words, activity u receives artifact d from v. 

 

In DCDC, artifacts are passed between activities via explicit channels [16] which are 

distinct from control flows. Hence, each artifact has a corresponding artifact flow diagram 

representing the artifact usages and transmissions in a workflow. In addition, artifacts 

transfers are passed by value in our model and an activity starts execution when it receives all 

necessary artifacts. 

 

3.3.1 Artifact Operations and Usages  

 

 Artifacts are collections of data items involved in a process. Intuitively, all artifacts 

participating in a workflow execution are pre-defined in the process specification. Each 

artifact contains a set of legal operations for its internal data, and is applied in an activity to 

perform them. In the aspect of data usage, artifact operations can be conceptually classified as 

initialize, read, update, and delete [15].  

 

Because artifacts are passed between activities via explicit channels distinct from control 

flows, activities can decide where the artifacts are passed. Here, an operation Pass(), passing 

an artifact to another activity, is defined. Let 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣  denote a linked list to record the 

pass operations in an activity v. Thus, Pass(d, u)∈ 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣  if and only if v passes artifact d 

to activity u. In this case, v is a sender of d and u is a receiver of d.  

 

Besides, the receiver can not receive the artifact if the receiver is executed before the 

sender. Hence, an activity can not pass artifacts to its predecessors.  
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For an activity v, the operations Pass() in 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣  are performed only when all the 

other operations, such as initialize, read, update, and delete, are completed. 

 

In our model, artifact transfers are passed by value, more than one copy of an artifact 

may exist in a workflow. For example, given an artifact d and activities v, u, w, if Pass(d, u) 

and Pass(d, w) are contained in 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣 , activities u and w will receive d separately. This 

case is called artifact split and there are two copies of d sent out after v. 

 

In order to identify the artifact usages in an activity, each activity contains the following 

input and output artifacts sets: 𝐼, 𝑂, 𝑈+, and 𝑈−. These sets are defined in Definition 3.15.  

 

Definition 3.15  (Input and Output Artifacts Sets) 

 For an activity v, v contains the following sets: 

 𝐼𝑣  is a set of artifacts, of which each is read, updated, or deleted in v. 

 𝑂𝑣 is a set of artifacts, of which each is passed from v after v‟s executing. 

 𝑈𝑣
+ is a set of artifacts, of which each is initialized or updated in v. 

 𝑈𝑣
− is a set of artifacts, of which each is deleted in v. 

 

To simplify our discussion, an activity v can be classified into the following roles of d: 

Producer, Reader, Updater, Destroyer, Irrelevantor, and Relevantor, based on the memberships 

between an artifact d and 𝐼𝑣 , 𝑂𝑣, 𝑈𝑣
+, and 𝑈𝑣

−. Definition 3.16 shows how to identify these 

roles. 
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Definition 3.16  (Roles of an Activity in an Artifact Flow Diagram) 

 For an activity v, 𝑅𝑜𝑙𝑒𝑣
𝑑  denotes v‟s role of d. Roles(v, d) is a function to identify v‟s 

role of d. All the possible usages are categorized as follows: 

if(v.type ∉ {PrcoessStart, ProcessEnd}){ 

 𝑅𝑜𝑙𝑒𝑣
𝑑  = Roles(v, d) = Producer when d ∉ 𝐼𝑣  and d ∈ 𝑈𝑣

+. 

 𝑅𝑜𝑙𝑒𝑣
𝑑  = Roles(v, d) = Destroyer when d ∈ 𝐼𝑣  and d ∈ 𝑈𝑣

−. 

 𝑅𝑜𝑙𝑒𝑣
𝑑  = Roles(v, d) = Reader when 𝑑 ∈ 𝐼𝑣  and  

𝑑 ∉ 𝑈𝑣
+

𝑑 ∉ 𝑈𝑣
−
 . 

 𝑅𝑜𝑙𝑒𝑣
𝑑  = Roles(v, d) = Updater when d ∈ 𝐼𝑣  and d ∈ 𝑈𝑣

+. 

 When 𝑑 ∉ 𝐼𝑣 and  
𝑑 ∉ 𝑈𝑣

+

𝑑 ∉ 𝑈𝑣
−
 .  

 𝑅𝑜𝑙𝑒𝑣
𝑑  = Roles(v, d) = Relevantor, if 𝑑 ∈ 𝑂𝑣  or ∃u∈𝑉𝑝  and  

Pass(d, v)∈𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑢 ,. 

 𝑅𝑜𝑙𝑒𝑣
𝑑  = Roles(v, d) = Irrelevantor, if 𝑑 ∉ 𝑂𝑣  or ∄u∈𝑉𝑝  and  

Pass(d, v)∈𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑢 ,. 

} 

if(v.type ∈ {PrcoessStart, ProcessEnd}){ 

 For a ProcessStart Activity ps : 

 𝑅𝑜𝑙𝑒𝑝𝑠
𝑑  = Roles(ps, d) = Producer when 𝑑 ∈ 𝑂𝑝𝑠 . 

 𝑅𝑜𝑙𝑒𝑝𝑠
𝑑  = Roles(ps, d) = Irrelevantor when 𝑑 ∉ 𝑂𝑝𝑠 . 

 For a ProcessEnd Activity pe : 

 𝑅𝑜𝑙𝑒𝑝𝑒
𝑑  = Roles(pe, d) = Destroyer when ∃u∈𝑉𝑝  and Pass(d, pe)∈𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑢 . 

 𝑅𝑜𝑙𝑒𝑝𝑒
𝑑  = Roles(pe, d) = Irrelevantor when ∄u∈𝑉𝑝  and Pass(d, pe)∈𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑢 . 

} 
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3.3.2 Artifact Flow Diagrams 

 

 Each artifact in a workflow has a corresponding artifact flow diagram to represent the 

usages and transmissions of it. For artifact d, an activity v is in the artifact flow diagram for d 

if d is used by v; i.e. 𝑅𝑜𝑙𝑒𝑣
𝑑  ≠ Irrelevantor. The flows between activities in the artifact flow 

diagram for d represent the transmissions of d. Definition 3.17 defines an artifact flow 

diagram for an artifact.  

 

Definition 3.17  (An Artifact Flow Diagram) 

 For an artifact d, artifact flow diagram for d in process p is denoted by 𝐴𝐹𝑝
𝑑  which 

contains two tuples (𝐴𝐹𝑉𝑝
𝑑 , 𝐴𝐹𝐹𝑝

𝑑 , 𝐴𝐹𝑁𝑝
𝑑), where  

 𝐴𝐹𝑉𝑝
𝑑  is a set of activities. For an activity v∈𝐴𝐹𝑉𝑝

𝑑 , 𝑅𝑜𝑙𝑒𝑣
𝑑  ≠ Irrelevantor.  

 𝐴𝐹𝐹𝑝
𝑑  is a set of flows. For a flow (u, v)∈𝐴𝐹𝐹𝑝

𝑑  and u, v ∈𝐴𝐹𝑉𝑝
𝑑 , a Pass(d, v) ∈ 

𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑢 . 

 𝐴𝐹𝑁𝑝
𝑑 is a set of XBNodes existing in the artifact flow diagram. An XBNode is 

introduced in the following paragraphs and is defined in Definition 3.19.  

 

 In Definition 3.17, a flow (u, v) is added into 𝐴𝐹𝐹𝑝
𝑑  when a Pass(d, v) is added into 

𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑢 . If there is a Path (v, u) ∈ 𝐴𝐹𝑝
𝑑 , a loop structure is formed in the artifact flow 

diagram after adding flow (u, v) into 𝐴𝐹𝐹𝑝
𝑑 . The activities in the loop wait for the artifact 

cyclically and a deadlock occurs. In order to avoid the deadlock, the loop structure is not 

allowed to exist in an artifact flow diagram. Therefore, Pass(d, v) can not be added into 

𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣  when a Path(v, u) exists in 𝐴𝐹𝑝
𝑑 . 

 

 In order to detect some artifact usage anomalies, the number of an artifact 

passed/received from/in an activity is required to be identified. For an activity v, let 
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𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  be a set of activities, of which each passes d to v. Let 𝑆𝑒𝑛𝑑𝑣

𝑑  be a set of activities, 

of which each receives d from v. Therefore,  𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  represents the number of inflows of 

v in the artifact flow diagram for d. On the contrary,  𝑆𝑒𝑛𝑑𝑣
𝑑  represents the number of 

outflows of v in the artifact flow diagram for d.  

 

 However, some activities in 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  might not pass d to v in run time. Therefore, 

 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  is not always equal to the number of d received in v. Similarly,  𝑆𝑒𝑛𝑑𝑣

𝑑   is not 

always equal to the number of d passed from v. In Figure 3.4 (a), (b), and (c), activity 𝑣1 

passes artifact d to 𝑣2 and 𝑣3 respectively. Hence, their artifact flow diagrams for d in 

Figure 3.4 (d) contain activities: 𝑣1, 𝑣2, and 𝑣3, and flows: (𝑣1, 𝑣2) and (𝑣1, 𝑣3). 𝑆𝑒𝑛𝑑𝑣1
𝑑  

= {𝑣2, 𝑣3} and  𝑆𝑒𝑛𝑑𝑣1
𝑑   = 2 in Figure 3.4 (a), (b), and (c).  

 

In Figure 3.4 (a), because 𝑣2 and 𝑣3 are parallel activities, the number of d passed 

from 𝑣1 is 2. In Figure 3.4 (b), because 𝑣2 and 𝑣3 are exclusive activities, the number of d 

passed from 𝑣1 is 1. In Figure 3.4 (c), 𝑣2, 𝑣3, and 𝑣5 are exclusive activities and 𝑣1 does 

not pass d to 𝑣5. Therefore, the number of d passed from 𝑣1 is 0 if 𝑣5 is selected to execute. 

Otherwise, the number of d passed from 𝑣1 is 1. Obviously, the number of d passed from 𝑣1 

is not always equal to  𝑆𝑒𝑛𝑑𝑣1
𝑑  . The artifact flow diagram in Figure 3.4 (d) is ambiguous to 

represent the number of an artifact passed/received from/in an activity. 
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Figure 3.4: An Artifact Flow Diagram without XBNodes. 

 

 In order to solve this problem, the activities in 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  are categorized into two sets: 

𝐸𝐼𝑁𝑣
𝑑  and 𝑃𝐼𝑁𝑣

𝑑 . 𝑃𝐼𝑁𝑣
𝑑  contains the activities passing d to v potentially. 𝐸𝐼𝑁𝑣

𝑑  contains 

the activities passing d to v explicitly. Similarly, the activities in 𝑆𝑒𝑛𝑑𝑣
𝑑  are categorized into 

two sets, 𝑃𝑂𝑈𝑇𝑣
𝑑  and 𝐸𝑂𝑈𝑇𝑣

𝑑 . 𝑃𝑂𝑈𝑇𝑣
𝑑  contains the activities receiving d from v 

potentially. 𝐸𝑂𝑈𝑇𝑣
𝑑  contains the activities receiving d from v explicitly. 

 

 For example in Figure 3.4 (a), because 𝑣1 always passes d to 𝑣2 and 𝑣3, 𝐸𝑂𝑈𝑇𝑣1
𝑑  = 

{𝑣2, 𝑣3} and 𝑃𝑂𝑈𝑇𝑣1
𝑑  = ∅. In Figure 3.4 (b), activity 𝑣1 does not pass d to 𝑣2 when 𝑣2 is 

not selected to execute in x1. Hence, 𝑣1 passes d to 𝑣2 potentially. For the same reason, 𝑣1 

also passes d to 𝑣3 potentially. Therefore, 𝐸𝑂𝑈𝑇𝑣1
𝑑  = ∅ and 𝑃𝑂𝑈𝑇𝑣1

𝑑  = {𝑣2, 𝑣3}. The 

formal definitions of these sets are defined in Definition 3.18. 

 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣1
= Pass(d, 𝑣2) → Pass(d, 𝑣3)  

(a) Control Block a1 = (as1, aj1, AND)    as1.cb = aj1.cb = a1 

(b),(c) Control Block x1 = (xs1, xj1, XOR)   xs1.cb = xj1.cb = x1 

𝑣1 

𝑣2 

𝑣3 

(a) 

(b) 

(c) 

(d) 𝑣1 

𝑣2 

𝑣3 

𝑣4 
as1 aj1 

𝑣1 

𝑣2 

𝑣3 

𝑣4 
xs1 xj1 

𝑣1 

𝑣2 

𝑣3 

𝑣4 𝑣5 
xs1 xj1 

 𝑆𝑒𝑛𝑑𝑣1
𝑑  = {𝑣2, 𝑣3} 
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Definition 3.18  (Receiving/Sending Sets) 

For activity v ∈ 𝐴𝐹𝑉𝑝
𝑑 , v contains the following sets: 

 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  = {u∈𝐴𝐹𝑉𝑝

𝑑 | ∃flow (u, v) ∈𝐴𝐹𝐹𝑝
𝑑} 

 𝑃𝐼𝑁𝑣
𝑑  =  

{u∈𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑 | (∃e∈𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 .removeIdenticalElements(𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣)) and 

e.blockID.type = XOR and IsExclusive(u, v) ≠ true} 

 𝐸𝐼𝑁𝑣
𝑑  = {u∈(𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣

𝑑 \𝑃𝐼𝑁𝑣
𝑑
) | IsExclusive(u, v) ≠ true} 

 𝑆𝑒𝑛𝑑𝑣
𝑑  = {u∈𝐴𝐹𝑉𝑝

𝑑 | ∃flow (v, u) ∈𝐴𝐹𝐹𝑝
𝑑} 

 𝑃𝑂𝑈𝑇𝑣
𝑑  =  

{u∈𝑆𝑒𝑛𝑑𝑣
𝑑 | (∃e ∈𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 .removeIdenticalElements(𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣)) and 

e.blockID.type = XOR and IsExclusive(v, u) ≠ true} 

 𝐸𝑂𝑈𝑇𝑣
𝑑  = {u∈(𝑆𝑒𝑛𝑑𝑣

𝑑 \𝑃𝑂𝑈𝑇𝑣
𝑑 ) | IsExclusive(v, u) ≠ true} 

 

For a flow (u, v) ∈ 𝐴𝐹𝐹𝑝
𝑑 , if u and v are exclusive activities, u and v can not both be 

executed. Therefore, v can not receive d from u. For this reason, u is not added into 𝑃𝐼𝑁𝑣
𝑑  

and 𝐸𝐼𝑁𝑣
𝑑  when IsExclusive(u, v) = true. Similarly, u is not added into 𝑃𝑂𝑈𝑇𝑣

𝑑  and 

𝐸𝑂𝑈𝑇𝑣
𝑑  when IsExclusive(v, u) = true. Based on Definition 3.18, Figure 3.5 shows the 

elements in 𝑆𝑒𝑛𝑑𝑣1
𝑑 , 𝐸𝑂𝑈𝑇𝑣1

𝑑 , and 𝑃𝑂𝑈𝑇𝑣1
𝑑 .  
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Figure 3.5: An Example of Receiving and Sending Sets. 

 

 Further, the XOR Control Block Nodes, XBNodes, are used to replace the activities 

located in the same XOR control block in 𝑃𝐼𝑁𝑣
𝑑 /𝑃𝑂𝑈𝑇𝑣

𝑑 . For example in Figure 3.5 (b), 𝑣2 

and 𝑣3 in 𝑃𝑂𝑈𝑇𝑣1
𝑑  are contained by XOR control block x1. Whether 𝑣2 or 𝑣3 is selected 

to execute in x1, 𝑣1 always passes d to x1. Therefore, an unconditional XBNode n1 is used 

to replace 𝑣2 and 𝑣3 in 𝑃𝑂𝑈𝑇𝑣1
𝑑 . Because 𝑣1 passes d to x1 explicitly, n1 is moved to 

𝐸𝑂𝑈𝑇𝑣1
𝑑  from 𝑃𝑂𝑈𝑇𝑣1

𝑑 . In Figure 3.5 (c), 𝑣2 and 𝑣3 in 𝑃𝑂𝑈𝑇𝑣1
𝑑  are contained by XOR 

control block x1. However, 𝑣1 does not pass d to x1 when 𝑣5 is selected to execute in x1. 

Hence, a conditional XBNode n2 is used to replace 𝑣2 and 𝑣3 in 𝑃𝑂𝑈𝑇𝑣1
𝑑 . The detailed 

algorithms of construction of XBNodes are illustrated in Section 5.3.  

 

𝑃𝐼𝑁 ′
𝑣
𝑑

 and 𝐸𝐼𝑁 ′
𝑣
𝑑

 are used to represent 𝑃𝐼𝑁𝑣
𝑑  and 𝐸𝐼𝑁𝑣

𝑑  whose activities are all 

replaced with XBNodes and all unconditional XBNodes are moved from 𝑃𝐼𝑁𝑣
𝑑  to 𝐸𝐼𝑁𝑣

𝑑 . 

(a) 

(b) 

(c) 

𝑣1 

𝑣2 

𝑣3 

𝑣4 
as1 aj1 

𝑣1 

𝑣2 

𝑣3 

𝑣4 
xs1 xj1 

𝑣1 

𝑣2 

𝑣3 

𝑣4 𝑣5 
xs1 xj1 

 𝑆𝑒𝑛𝑑𝑣1
𝑑  = {𝑣2, 𝑣3} 

 𝐸𝑂𝑈𝑇𝑣1
𝑑  = {𝑣2, 𝑣3} 

 𝑃𝑂𝑈𝑇𝑣1
𝑑  = ∅ 

 𝑆𝑒𝑛𝑑𝑣1
𝑑  = {𝑣2, 𝑣3} 

 𝐸𝑂𝑈𝑇𝑣1
𝑑  = ∅ 

 𝑃𝑂𝑈𝑇𝑣1
𝑑  = {𝑣2, 𝑣3} 

 𝑆𝑒𝑛𝑑𝑣1
𝑑  = {𝑣2, 𝑣3} 

 𝐸𝑂𝑈𝑇𝑣1
𝑑  = ∅ 

 𝑃𝑂𝑈𝑇𝑣1
𝑑  = {𝑣2, 𝑣3} 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣1
= Pass(𝑣2, d) → Pass(𝑣3, d)  

(a) Control Block a1 = (as1, aj1, AND)    as1.cb = aj1.cb = a1 

(b),(c) Control Block x1 = (xs1, xj1, XOR)   xs1.cb = xj1.cb = x1 
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Therefore, the number of d passed/received from/in v can be identified. Let 𝑁𝐼𝑁𝑣
𝑑  be the 

number of d received in v, then 𝐸𝐼𝑁 ′
𝑣
𝑑

 ≤ 𝑁𝐼𝑁𝑣
𝑑  ≤ 𝐸𝐼𝑁 ′

𝑣
𝑑  + 𝑃𝐼𝑁 ′

𝑣
𝑑

. Similarly, let 

𝑁𝑂𝑈𝑇𝑣
𝑑  be the number of d passed from v, then  𝐸𝑂𝑈𝑇 ′

𝑣
𝑑   ≤ 𝑁𝑂𝑈𝑇𝑣

𝑑  ≤  𝐸𝑂𝑈𝑇 ′
𝑣
𝑑   + 

 𝑃𝑂𝑈𝑇 ′
𝑣
𝑑  . Figure 3.6 shows the artifact flow diagrams with XBNodes. 

 

 

Figure 3.6: An Artifact Flow Diagram with XBNode. 

 

In Figure 3.6 (d), because  𝐸𝑂𝑈𝑇 ′
𝑣1

𝑑   = 2 and  𝑃𝑂𝑈𝑇 ′
𝑣1

𝑑   = 0, the number of d passed 

from 𝑣1 is 2. In Figure 3.6 (e), because  𝐸𝑂𝑈𝑇 ′
𝑣1

𝑑   = 1 and  𝑃𝑂𝑈𝑇 ′
𝑣1

𝑑   = 0, the number of 

d passed from 𝑣1 is 1. In Figure 3.6 (f), because  𝐸𝑂𝑈𝑇 ′
𝑣1

𝑑   = 0 and  𝑃𝑂𝑈𝑇 ′
𝑣1

𝑑   = 1, the 

number of d passed from 𝑣1 is 0 or 1. Definition 3.19 defines an XBNode and its properties. 

𝑣1 

𝑣2 

𝑣3 

   : Unconditional XBNode 

   : Conditional XBNode 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

𝑣1 

𝑣2 

𝑣3 

𝑣4 
as1 aj1 

𝑣1 

𝑣2 

𝑣3 

𝑣4 
xs1 xj1 

𝑣1 

𝑣2 

𝑣3 

𝑣4 𝑣5 
xs1 xj1 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣1
= Pass(𝑣2, d) → Pass(𝑣3, d)  

(a) Control Block a1 = (as1, aj1, AND)    as1.cb = aj1.cb = a1 

(b),(c) Control Block x1 = (xs1, xj1, XOR)   xs1.cb = xj1.cb = x1 

𝑣1 

𝑣2 

𝑣3 

n1 

𝑣1 

𝑣2 

𝑣3 

n2 

 𝐸𝑂𝑈𝑇 ′
𝑣1

𝑑
 = {𝑣2, 𝑣3} 

 𝑃𝑂𝑈𝑇 ′
𝑣1

𝑑
 = ∅ 

 𝐸𝑂𝑈𝑇 ′
𝑣1

𝑑
 = {n1} 

 𝑃𝑂𝑈𝑇 ′
𝑣1

𝑑
 = ∅ 

 𝐸𝑂𝑈𝑇 ′
𝑣1

𝑑
 = ∅ 

 𝑃𝑂𝑈𝑇 ′
𝑣1

𝑑
 = {n2} 
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Definition 3.19  (An XOR Block Node) 

 Let an XBNode n be used to represent an XOR control block x. XBNode n contains 

four tuples (blockID, cv_set, 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑛 , isUncond),  

 blockID represents the id of an XOR control block which n expressed; thus, blockID = 

x. 

 cv_set is a set of activities ∈ PIN/POUT and the activities in cv_set are all located in 

different branches of x.  

 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑛  represents the location of x; hence, 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑛  = 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑥 .𝑠𝑡𝑎𝑟𝑡 . 

 isUncond is a Boolean value. The value is true when n is unconditional. Otherwise, the 

value is false. 

 n.Parent = Null or the id of an XBNode containing n.  

 n.Attached = Null or the id of an activity where n is attached. 

 

 Based on above definitions, a flow in an artifact flow diagram contains the following 

properties: outBlock and inBlock. The property outBlock/inBlock is the id of an XBNode 

which contains sink/source activity. For example, let f be the flow (𝑣1, 𝑣2) in Figure 3.6 (e). 

The f.outBlock = n1 because 𝑣3∈ n1.cv_set. Definition 3.20 defines a flow in an artifact flow 

diagram. 

 

Definition 3.20  (A Flow in an Artifact Flow Diagram) 

 For a flow f = (u, v) ∈ 𝐴𝐹𝐹𝑝
𝑑  and activities u, v ∈ 𝐴𝐹𝑉𝑝

𝑑 , flow f has the following 

properties: 

 f.outBlock = Null or n if v ∈ n.cv_set. 

 f.inBlock = Null or n if u ∈ n.cv_set. 

n is an XBNode. 
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3.3.3 An Example of an Artifact Flow Diagram 

 

Figure 3.7 shows an example of a control flow graph including PassList, 𝐼, 𝑂, 𝑈+, and 

𝑈− for each activity.  

 

 

Figure 3.7: An Example of a Control Flow Graph. 

 

 Figure 3.8 shows the artifact flow diagram for d extracted from Figure 3.7. Because 

𝑅𝑜𝑙𝑒𝑥𝑠1
𝑑  = Irrelevantor and 𝑅𝑜𝑙𝑒𝑥𝑗1

𝑑  = Irrelevantor, control activities xs1 and xj1 are not 

added into the artifact flow diagram. 

 

  There are three types of flows in an artifact flow diagram:  

(1) Normal Flow: ∀flow (u, v)∈𝐴𝐹𝐹𝑝
𝑑 , IsParallel(u, v) = false and IsExclusive(u, v) = false. 

(2) AND Flow: ∀flow (u, v)∈𝐴𝐹𝐹𝑝
𝑑 , IsParallel(u, v) = true. 

(3) XOR Flow: ∀flow (u, v)∈𝐴𝐹𝐹𝑝
𝑑 , IsExclusive(u, v) = true. 
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(x1, 1) 
(R, 1) 
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xs1.cb = xj1.cb = x1 

𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣1
= Pass(𝑣2, d)          d ∉𝐼𝑣1

  d ∈𝑈𝑣1
+   d ∉𝑈𝑣1

−   d ∈𝑂𝑣1
 

𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣2
= Pass(𝑣3, d)→Pass(𝑣4, d)  d ∈𝐼𝑣2

  d ∉𝑈𝑣2
+   d ∉𝑈𝑣2

−   d ∈𝑂𝑣2
 

𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣3
= Pass(𝑣5, d)→Pass(𝑣4, d)  d ∈𝐼𝑣3

  d ∉𝑈𝑣3
+   d ∉𝑈𝑣3

−   d ∈𝑂𝑣3
 

𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣4
= Pass(𝑣5, d)→Pass(𝑣6, d)  d ∈𝐼𝑣4

  d ∈𝑈𝑣4
+   d ∉𝑈𝑣4

−   d ∈𝑂𝑣4
 

𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣5
= Pass(𝑣6, d)            d ∈𝐼𝑣5

  d ∉𝑈𝑣5
+   d ∈𝑈𝑣5

−   d ∈𝑂𝑣5
 

𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣6
= ∅             d ∉𝐼𝑣6

  d ∉𝑈𝑣6
+   d ∉𝑈𝑣6

−   d ∉𝑂𝑣6
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Figure 3.8: The Corresponding Artifact Flow Diagram for d. 

 

 Table 3.1 shows all states of each activity in Figure 3.7.  

 

Activities 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  𝐸𝐼𝑁 ′

𝑣
𝑑

 𝑃𝐼𝑁 ′
𝑣
𝑑

 𝑆𝑒𝑛𝑑𝑣
𝑑  𝐸𝑂𝑈𝑇 ′

𝑣
𝑑

 𝑃𝑂𝑈𝑇 ′
𝑣
𝑑

 

𝑣1 ∅ ∅ ∅ {𝑣2} {𝑣2} ∅ 

𝑣2 {𝑣1} {𝑣1} ∅ {𝑣3, 𝑣4} {n1} ∅ 

𝑣3 {𝑣2} {𝑣2} ∅ {𝑣4, 𝑣5} {𝑣5} ∅ 

𝑣4 {𝑣2, 𝑣3} {𝑣2} ∅ {𝑣5, 𝑣6} {𝑣5, 𝑣6} ∅ 

𝑣5 {𝑣3, 𝑣4} {n2} ∅ {𝑣6} {𝑣6} ∅ 

𝑣6 {𝑣4, 𝑣5} {𝑣5} {n3} ∅ ∅ ∅ 

Table 3.1: The States of Each Activity in Figure 3.7. 

 

 In Table 3.1, 𝑣3 passes d to 𝑣4 and 𝑣5; thus, 𝑆𝑒𝑛𝑑𝑣3
𝑑  = {𝑣4, 𝑣5}. However, 𝑣3 and 

𝑣4 are exclusive activities. Activity 𝑣4 is not added into 𝐸𝑂𝑈𝑇𝑣3
𝑑  or 𝑃𝑂𝑈𝑇𝑣3

𝑑 . Therefore, 

𝐸𝑂𝑈𝑇 ′
𝑣3

𝑑
 = {𝑣5} and 𝑃𝑂𝑈𝑇 ′

𝑣3

𝑑
 = ∅. On the other hand, 𝑣6 receives d from 𝑣4 and 𝑣5; 

thus, 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣6
𝑑  = {𝑣4 , 𝑣5 }. Activity 𝑣6  can not receive d from 𝑣4  when 𝑣4  is not 

      : Normal Flow   : Activity 

      : AND Flow    : Unconditional XBNode 

      : XOR Flow    : Conditional XBNode 

𝑣3 
Reader 

𝑣2 
Reader 

𝑣4 
Updater 

𝑣5 
Destroyer 

𝑣6 
Relevantor 

n1 n2 

n3 

𝑣1 
Producer 
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selected to execute. Activity 𝑣6 receives d from 𝑣4 potentially. Hence, 𝑣4 is added into 

𝑃𝐼𝑁𝑣6
𝑑 . Since 𝑣6 can not receive d from x1 when 𝑣3 is selected to execute, a conditional n3 

is used to replace 𝑣4 in 𝑃𝐼𝑁𝑣6
𝑑 . Finally, 𝐸𝐼𝑁 ′

𝑣6

𝑑
 = {𝑣5} and 𝑃𝐼𝑁 ′

𝑣6

𝑑
 = {n3}. Table 3.2 

shows the states of each XBNode in Figure 3.7. 

 

XBNodes blockID cv_set ABStack isUncond Parent Attached 

n1 x1 {𝑣3, 𝑣4}  true Null 𝑣2 

n2 x1 {𝑣3, 𝑣4}  true Null 𝑣5 

n3 x1 {𝑣4}  false Null 𝑣6 

Table 3.2: The States of Each XBNode in Figure 3.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(R, 1) 

 
(R, 1) 

 
(R, 1) 
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Chapter 4.  Artifact Usage Anomalies 

 

 In a process specification, there might be four classes of anomalies: (1) Missing Artifact 

Anomalies, (2) Artifact Conflict Anomalies, (3) Cross Passing Artifact Anomalies, and (4) 

Redundant Anomalies. These anomalies are defined in the following subsections. Besides, 

every class indicates several types of anomalies of which each is illustrated with an example 

to show the scenario. 

 

4.1 Missing Artifact Anomalies 

 

 While an artifact d is used, including read, updated, deleted, or passed, in an activity v, a 

missing artifact anomaly occurs if v can not receive d in execution time. For a receiver activity, 

missing of an artifact can be divided into the two cases below: 

 

(1) Explicit Missing Artifacts: 

 Description: Activity v requires artifact d but can not receive d. 

 Conditions: 𝑣 ∈ 𝐴𝐹𝑉𝑝
𝑑  ∧   𝐸𝐼𝑁 ′

𝑣
𝑑  = 0 ∧   𝑃𝐼𝑁 ′

𝑣
𝑑  = 0  

   ∧ 𝑅𝑜𝑙𝑒𝑣
𝑑 ∈ {Reader, Updater, Destroyer, Relevantor}  

 Example: In the artifact flow of d in Figure 4.1, activity 𝑣2 is a reader of d. 

Because no activity passes d to 𝑣2, 𝑣2 can not receive d. Therefore,  𝐸𝐼𝑁 ′
𝑣2

𝑑   and 

 𝑃𝐼𝑁 ′
𝑣2

𝑑   are both 0. An explicit missing artifact anomaly occurs at 𝑣2. 
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Figure 4.1: An Example of an Explicit Missing Artifact Anomaly. 

 

(2) Implicit Missing Artifact: 

 Description: Activity v requires artifact d but receives d implicitly; i.e. v might not 

receive d for beginning execution. 

 Conditions: 𝑣 ∈ 𝐴𝐹𝑉𝑝
𝑑  ∧   𝐸𝐼𝑁 ′

𝑣
𝑑  = 0 ∧   𝑃𝐼𝑁 ′

𝑣
𝑑  > 0 

   ∧ 𝑅𝑜𝑙𝑒𝑣
𝑑 ∈ {Reader, Updater, Destroyer, Relevantor}  

 Example: In Figure 4.2, 𝑣2 is located in an XOR control block x1 and 𝑣2 passes 

d to 𝑣4. If 𝑣2 is selected to execute in x1, 𝑣4 receives d. Otherwise, 𝑣4 can not 

receive d. Therefore, an implicit missing artifact anomaly occurs at 𝑣4. 

 

Figure 4.2: An Example of an Implicit Missing Artifact Anomaly. 

Artifact Flow Diagram for d: 

Control Flow Graph: 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣2
 = Pass(d, 𝑣4)  d ∉𝐼𝑣2

  d ∈𝑈𝑣2
+   d ∉𝑈𝑣2

−   d ∈𝑂𝑣2
 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣4
 = ∅     d ∈𝐼𝑣4

  d ∉𝑈𝑣4
+   d ∉𝑈𝑣4

−   d ∉𝑂𝑣4
   xs1.cb = xj1.cb = x1 

𝑣2 
Producer 

𝑣4 
Reader 

n1 

𝑣1 

𝑣2 
 

𝑣4 
 

𝑣3 

xs1 xj1 

(x1, 1) 
(R, 1) 

 
(R, 1) 

 

Control Flow Graph: 

Artifact Flow Diagram for d: 

𝑣2 
Reader 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣2
= ∅  d ∈𝐼𝑣2

  d ∉𝑈𝑣2
+   d ∉𝑈𝑣2

−   d ∉𝑂𝑣2
 

𝑣1 

 

𝑣2 

 

 

𝑣3 

 

(R, 1) 
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The third case is observed from the sender and is named as destroyed artifact anomaly. 

For an artifact d, once a destroyer of d passes it to some other activities, d never reaches to its 

receivers since it has been destroyed. Thus, the receiver misses d. Because this missing is 

caused by the destroyer, a destroyed artifact anomaly occurs at the destroyer. 

 

(3) Destroyed Artifact:  

 Description: Activity v is a destroyer of artifact d and passes d to other activities. 

 Conditions: 𝑣 ∈ 𝐴𝐹𝑉𝑝
𝑑 ∧ 𝑅𝑜𝑙𝑒𝑣

𝑑 = Destroyer ∧ ( 𝐸𝑂𝑈𝑇 ′
𝑣
𝑑  > 0 ∨  𝑃𝑂𝑈𝑇 ′

𝑣
𝑑  > 0) 

 Example: In the artifact flow of d in Figure 4.3, activity 𝑣2 is a destroyer of d and 

𝑣2 passes d to 𝑣3. Thus,  𝐸𝑂𝑈𝑇 ′
𝑣2

𝑑   is 1 and a destroyed anomaly occurs at 𝑣2. 

 

Figure 4.3: An Example of a Destroyed Artifact Anomaly. 

 

 

4.2 Artifact Conflict Anomalies 

 

 As describing in Section 3.3.1, because an activity can decide where artifacts are passed 

and the artifact transfers are passed by value, an artifact can have multiple copies in a 

Control Flow Graph: 

Artifact Flow Diagram for d: 

𝑣2 
Destroyer 

𝑣3 
Reader 

𝑣1 
Producer 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣1
 = Pass(d, 𝑣2)  d ∉𝐼𝑣1

  d ∈𝑈𝑣1
+   d ∉𝑈𝑣1

−   d ∈𝑂𝑣1
 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣2
 = Pass(d, 𝑣3)  d ∈𝐼𝑣2

  d ∉𝑈𝑣2
+   d ∈𝑈𝑣2

−   d ∈𝑂𝑣2
 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣3
 = ∅     d ∈𝐼𝑣3

  d ∉𝑈𝑣3
+   d ∉𝑈𝑣3

−   d ∉𝑂𝑣3
 

𝑣1 
 

 

𝑣2 
 

𝑣3 
 

(R, 1) 

 

(R, 1) 

 

(R, 1) 
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workflow. Hence, an activity may receive multiple copies of an artifact. For an artifact d, 

when an activity receives multiple copies of d concurrently, an artifact conflict occurs. In the 

case, the activity is not able to select the right copy [11]. Thus, an artifact conflict is 

concerned as an anomaly. Artifact conflict anomalies can be divided into the cases below: 

 

(1) Explicit Artifact Conflict: 

 Description: Activity v receives multiple copies of artifact d explicitly. 

 Conditions: 𝑣 ∈ 𝐴𝐹𝑉𝑝
𝑑  ∧   𝐸𝐼𝑁 ′

𝑣
𝑑  > 1 

 Example: In artifact flow of d in Figure 4.4, 𝑣1 and 𝑣2 both pass d to 𝑣3; thus, 

𝑣3 receives two copies of d. Because 𝑣1 and 𝑣2 are predecessors of 𝑣3 and are 

not located in any XOR control block, 𝑣3 receives two copies of d explicitly. 

Therefore,  𝐸𝐼𝑁 ′
𝑣3

𝑑   is 2 and an explicit artifact conflict anomaly occurs at 𝑣3. 

 

 

Figure 4.4: An Example of an Explicit Artifact Conflict Anomaly. 

 

 

Control Flow Graph: 

Artifact Flow Diagram for d: 

𝑣2 
Updater 

𝑣3 
Reader 

𝑣1 
Producer 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣1
 = Pass(d, 𝑣2)→Pass(d, 𝑣3) d ∉𝐼𝑣1

  d ∈𝑈𝑣1
+   d ∉𝑈𝑣1

−   d ∈𝑂𝑣1
 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣2
 = Pass(d, 𝑣3)     d ∈𝐼𝑣2

  d ∈𝑈𝑣2
+   d ∉𝑈𝑣2

−   d ∈𝑂𝑣2
 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣3
 = ∅       d ∈𝐼𝑣3

  d ∉𝑈𝑣3
+   d ∉𝑈𝑣3

−   d ∉𝑂𝑣3
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(2) Implicit Artifact Conflict:  

 Description: Activity v receives multiple copies of artifact d implicitly. 

 Conditions: 𝑣 ∈ 𝐴𝐹𝑉𝑝
𝑑  ∧ (  𝐸𝐼𝑁 ′

𝑣
𝑑  = 1 ∧   𝑃𝐼𝑁 ′

𝑣
𝑑  > 0 ∨   𝐸𝐼𝑁 ′

𝑣
𝑑  = 0 ∧

 𝑃𝐼𝑁 ′
𝑣
𝑑  > 1 ) 

 Example: In Figure 4.5, activity 𝑣4 receives d from 𝑣1 explicitly; thus,  𝐸𝐼𝑁 ′
𝑣4

𝑑   

is 1. In addition, 𝑣4 receives another d if 𝑣2 is executed in XOR control block x1. 

Thus, 𝑣4 receives d from 𝑣2 implicitly and  𝑃𝐼𝑁 ′
𝑣4

𝑑   is 1. Because  𝐸𝐼𝑁 ′
𝑣4

𝑑   and 

 𝑃𝐼𝑁 ′
𝑣4

𝑑   are both 1, an implicit artifact conflict anomaly occurs at 𝑣4. 

 

Figure 4.5: An Example of an Implicit Artifact Conflict Anomaly. 

 

 The third case is different from above cases because an artifact conflict may occur at an 

activity which does not receive multiple copies of an artifact. For an artifact d, if an activity 

receives one artifact d and produces another d, there are two copies of d in the same activity. 

Therefore, an anomaly called production conflict anomaly occurs. 

Artifact Flow Diagram for d: 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣1
 = Pass(d, 𝑣2)→Pass(d, 𝑣4)  d ∉𝐼𝑣1

  d ∈𝑈𝑣1
+   d ∉𝑈𝑣1

−   d ∈𝑂𝑣1
 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣2
 = Pass(d, 𝑣4)     d ∈𝐼𝑣2

  d ∈𝑈𝑣2
+   d ∉𝑈𝑣2

−   d ∈𝑂𝑣2
 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣3
 = ∅         d ∈𝐼𝑣3

  d ∉𝑈𝑣3
+   d ∉𝑈𝑣3

−   d ∉𝑂𝑣3
 

xs1.cb = xj1.cb = x1 
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Control Flow Graph: 
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(3) Production Conflict:  

 Description: Activity v is a producer of artifact d and receives another d from other 

activity. 

 Conditions: 𝑣 ∈ 𝐴𝐹𝑉𝑝
𝑑  ∧  𝑅𝑜𝑙𝑒𝑣

𝑑 = Producer ∧ ( 𝐸𝐼𝑁 ′
𝑣
𝑑 > 0 ∨   𝑃𝐼𝑁 ′

𝑣
𝑑 > 0) 

 Example: In Figure 4.6, activity 𝑣3 receives artifact d from 𝑣2 explicitly; thus, 

 𝐸𝐼𝑁 ′
𝑣3

𝑑   is 1. Because 𝑣3 is a producer of d, a production conflict anomaly occurs 

at 𝑣3. 

 

Figure 4.6: An Example of a Production Conflict Anomaly. 

 

 

4.3 Cross Passing Artifact Anomalies 

 

 A cross passing artifact anomaly occurs when an artifact is passed between branches of 

an XOR/AND control block. Given two parallel activities u and v, let u pass an artifact d to v. 

Due to the race hazard of parallel activities, v might be asked to execute before u in running 

time. Obviously, v can not start until d is received. This issue can be simply solved by 

ensuring that v waits for d until u completes its execution [11]. However, the designer may not 

allow v to wait. Hence, an artifact passed between parallel activities is concerned as an 

Control Flow: 

Artifact Flow Diagram for d: 

𝑣2 
Updater 

𝑣3 
Producer 

𝑣1 
Producer 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣1
 = Pass(d, 𝑣2)   d ∉𝐼𝑣1

  d ∈𝑈𝑣1
+   d ∉𝑈𝑣1

−   d ∈𝑂𝑣1
 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣2
 = Pass(d, 𝑣3)  d ∈𝐼𝑣2

  d ∈𝑈𝑣2
+   d ∉𝑈𝑣2

−   d ∈𝑂𝑣2
 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣3
 = ∅     d ∉𝐼𝑣3

  d ∈𝑈𝑣3
+   d ∉𝑈𝑣3

−   d ∉𝑂𝑣3
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anomaly. 

 

 On the other hand, given two exclusive activities u and v, let u be designed to pass an 

artifact d to v. Since only one of u and v is executed, v may never receive d or u may pass d 

for nothing. Thus, an anomaly occurs in this case. 

 

 

(1) Passing between Parallel Activities: 

 Description: There are two parallel activities u and v, and u passes an artifact d to v. 

 Conditions: flow  𝑢,𝑣 ∈ 𝐴𝐹𝐹𝑝
𝑑  ∧  IsParallel 𝑢,𝑣 = 𝑡𝑟𝑢𝑒 

 Example: In the artifact flow of d in Figure 4.7, activity 𝑣2 passes artifact d to 𝑣3; 

thus, there is a flow (𝑣2, 𝑣3) in the diagram. Because 𝑣2 and 𝑣3  are parallel 

activities, IsParallel(𝑣2, 𝑣3) = true. Hence, a passing between parallel activities 

anomaly occurs at 𝑣2. 

 

Figure 4.7: An Example of a Passing between Parallel Activities Anomaly. 

Artifact Flow Diagram for d: 

𝑣2 
Producer 

𝑣3 
Reader 

Control Flow Graph: 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣2
 = Pass(d, 𝑣3)      d ∉𝐼𝑣2

  d ∈𝑈𝑣2
+   d ∉𝑈𝑣2

−   d ∈𝑂𝑣2
 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣3
 = ∅       d ∈𝐼𝑣3

  d ∉𝑈𝑣3
+   d ∉𝑈𝑣3

−   d ∉𝑂𝑣3
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(2) Passing between Exclusive Activities:  

 Description: There are two exclusive activities u and v, and u passes an artifact d to 

v.  

 Conditions: flow  𝑢,𝑣 ∈ 𝐴𝐹𝐹𝑝
𝑑  ∧  IsExclusive 𝑢, 𝑣 = 𝑡𝑟𝑢𝑒 

 Example: In the artifact flow of d in Figure 4.8, activity 𝑣2 passes artifact d to 𝑣3; 

thus, there is a flow (𝑣2, 𝑣3) in the diagram. IsExclusive(𝑣2, 𝑣3) = true because 𝑣2 

and 𝑣3 are exclusive activities. Therefore, a passing between exclusive activities 

anomaly occurs at 𝑣2. 

 

Figure 4.8: An Example of a Passing between Exclusive Activities Anomaly. 

 

 

4.4 Redundant Anomalies 

 

 In a program, redundancy is not an error but makes inefficiency. For an activity v and an 

artifact d, a redundant update/initialization anomaly occurs when v updates or initializes d, 

Control Flow Graph: 

Artifact Flow Diagram for d: 

𝑣2 
Producer 

𝑣3 
Reader 

𝑣1 

𝑣2 
 

𝑣4 

𝑣3 
 

(x1, 1) 
(R, 1) 

 

(x1, 2) 
(R, 1) 

 

xs1 xj1 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣2
 = Pass(d, 𝑣3)      d ∉𝐼𝑣2

  d ∈𝑈𝑣2
+   d ∉𝑈𝑣2

−   d ∈𝑂𝑣2
 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣3
 = ∅       d ∈𝐼𝑣3

  d ∉𝑈𝑣3
+   d ∉𝑈𝑣3

−   d ∉𝑂𝑣3
 

 xs1.cb = xj1.cb = x1 
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but does not pass d to other activities. A redundant pass anomaly occurs when v receives d but 

does not use d.  

 

(1) Redundant Update/Initialization: 

 Description: Activity v initializes or updates d but does not pass d to other activities.  

 Conditions: 𝑣 ∈ 𝐴𝐹𝑉𝑝
𝑑  ∧  𝐸𝑂𝑈𝑇 ′

𝑣
𝑑  = 0 ∧   𝑃𝑂𝑈𝑇 ′

𝑣
𝑑 = 0 

    ∧  𝑅𝑜𝑙𝑒𝑣
𝑑 ∈ {Producer, Updater}  

 Example: In Figure 4.9, activity 𝑣2 is an updater of d in the artifact flow diagram 

and 𝑣2 does not pass d to other activities. Hence, a redundant update anomaly 

occurs at 𝑣2. 

 

Figure 4.9: An Example of a Redundant Update/Initialization Anomaly. 

 

 

(2) Redundant Pass: 

 Description: Activity v receives an artifact d but does not use it.  

 Conditions: 𝑣 ∈ 𝐴𝐹𝑉𝑝
𝑑  ∧   𝐸𝐼𝑁 ′

𝑣
𝑑  > 0 ∨   𝑃𝐼𝑁 ′

𝑣
𝑑 > 0  

      ∧  𝑅𝑜𝑙𝑒𝑣
𝑑 = Relevantor 

 Example: In Figure 4.10, activity 𝑣2 receives artifact d from 𝑣1. Because 𝑣2 does 

Control Flow Graph: 

Artifact Flow Diagram for d: 

𝑣2 
Updater 

𝑣1 
Producer 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣1
 = Pass(d, 𝑣2)   d ∉𝐼𝑣1

  d ∈𝑈𝑣1
+   d ∉𝑈𝑣1

−   d ∈𝑂𝑣1
 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣2
 = ∅     d ∈𝐼𝑣2

  d ∈𝑈𝑣2
+   d ∉𝑈𝑣2

−   d ∉𝑂𝑣2
 

𝑣1 
 

 

𝑣2 
 

𝑣3 
 

(R, 1) 

 

(R, 1) 

 

(R, 1) 
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not use d, a redundant pass anomaly occurs at 𝑣2. 

 

 

Figure 4.10: An Example of a Redundant Pass Anomaly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control Flow Graph: 

Artifact Flow Diagram for d: 

𝑣2 
Relevantor 

𝑣1 
Producer 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣1
 = Pass(d, 𝑣2)   d ∉𝐼𝑣1

  d ∈𝑈𝑣1
+   d ∉𝑈𝑣1

−   d ∈𝑂𝑣1
 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣2
 = ∅     d ∉𝐼𝑣2

  d ∉𝑈𝑣2
+   d ∉𝑈𝑣2

−   d ∉𝑂𝑣2
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Chapter 5.  Incremental Algorithms for Anomalies Detection 

 

5.1 Edit Operations for a Process 

 

For introducing the incremental algorithms to detect artifact usage anomalies, we define 

the following edit operations for designer to edit a process: (1) Activity Insertion, (2) Activity 

Deletion, (3) Control Block Insertion, (4) Control Block Deletion, (5) Branch Insertion, (6) 

Branch Deletion, (7) Pass Insertion, (8) Pass Deletion, and (9) Activity Modification. Table 

5.1 shows the edit operations discussed in this thesis. 

 

 Activity Control Block Branch Pass 

Insertion 1 3 5 7 

Deletion 2 4 6 8 

Modification 9 - - - 

Table 5.1: Edit Operations for a Process. 

 

A process defined in Definition 3.1 can be described in more details below when being 

initialized. 

 

 An initial process p = (𝑉𝑝 , 𝐹𝑝 , 𝑅𝑝 , 𝐶𝑝 , ps, pe), where  

 𝑉𝑝  = {ps, pe}, ps.type = ProcessStart, and pe.type = ProcessEnd. 

 𝐹𝑝  = {(ps, pe)}. 

 𝑅𝑝  = ∅. 

 𝐶𝑝  = {(ps, pe, ROOT)}. 
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The contents below indicate the definition of above edit operations. To simplify the 

incremental analysis, most operations are defined one or more constraints respectively. These 

constraints are simple and their effect for edit behavior is little.  

 

1. Inserting a task/compound activity v:  

 Constraints: v ∉ 𝑉𝑝 . 

 Actions: Let v be inserted into flow (u, w). Activity v is added into 𝑉𝑝  and the 

flow (u, w) in 𝐹𝑝  is replaced with flows, (u, v) and (v, w).  

 

2. Removing a task/compound activity v:  

 Constraints: v ∈ 𝑉𝑝 . 

 Actions: Let 𝐼𝑣 , 𝑈𝑣
+ , and 𝑈𝑣

− be empty by modifying v with Operation 9 

automatically. ∀u∈ 𝑉𝑝 , all passes in 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑢  and 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣  are also 

removed with Operation 8. Let flow (u, v) be v‟s inflow, flow (v, w) be v‟s 

outflow, and flow (u, w) ∉ 𝐹𝑝 . Activity v is removed from 𝑉𝑝 . The inflow (u, v) 

and outflow (v, w) in 𝐹𝑝  are replaced with flow (u, w).  

 

3. Inserting a control block c:  

 Constraints: c ∉ 𝐶𝑝 . 

 Actions: Let c be inserted into flow (u, w). Property c.start is initialized as a 

new control activity cs and property c.end is initialized as a new control activity 

ce. The flow (u, w) in 𝐹𝑝  is replaced with flows, (u, cs), (cs, ce), and (ce, w). 

Property c.bcounter is initialized as 1. Activities cs and ce are added into 𝑉𝑝 . 

Control block c is added into 𝐶𝑝 . 
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4. Removing a control block c:  

 Constraints: c ∈ 𝐶𝑝 . 

 Actions: ∀v∈𝑉𝑝 , and IsReachable(c.start, v) = IsReachable(v, c.end) = true, v is 

removed with Operation 2. By modifying c.start and c.end with Operation 9, let 

𝐼𝑐 .𝑠𝑡𝑎𝑟𝑡 , 𝑈𝑐 .𝑠𝑡𝑎𝑟𝑡
+ , 𝑈𝑐 .𝑠𝑡𝑎𝑟𝑡

− , 𝐼𝑐 .𝑒𝑛𝑑 , 𝑈𝑐 .𝑒𝑛𝑑
+ , and 𝑈𝑐 .𝑒𝑛𝑑

−  be empty. ∀u∈𝑉𝑝 , all 

passes in 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑢 , 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑐.𝑠𝑡𝑎𝑟𝑡 , and 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑐 .𝑒𝑛𝑑  are removed with 

Operation 8. Let flow (u, c.start) be c‟s inflow, flow (c.end, w) be c‟s outflow, 

and flow (u, w) ∉ 𝐹𝑝 . The flow (c.start, c.end), inflow (u, c.start), and outflow 

(c.end, w) in 𝐹𝑝  are replaced with flow (u, w). Control activities c.start and 

c.end are removed from 𝑉𝑝 . Control block c is removed from 𝐶𝑝 . 

 

5. Adding a branch into a control block c and:  

 Constraints: flow (c.start, c.end)∉ 𝐹𝑝  and c.type ≠ ROOT. 

 Actions: The flow (c.start, c.end) is added into 𝐹𝑝  and c.bcounter increases by 

1. 

 

6. Removing a branch from a control block c:  

 Constraints: flow (c.start, c.end) ∈ 𝐹𝑝  and c.totalbranches > 1. 

 Actions: The flow (c.start, c.end) is removed from 𝐹𝑝 . 

 

7. Adding Pass(d, u) into an activity v:  

 Constraints:  

Pass(d, u)∉𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣  and IsReachable(u, v)=false.  

∄Path(u, v)∈𝐴𝐹𝑝
𝑑 . 

 Actions: Pass(d, u) is added into 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣 .  
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8. Removing Pass(d, u) from an activity v:  

 Constraints: Pass(d, u)∈𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣 . 

 Actions: Pass(d, u) is removed from 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣 . 

 

9. Modifying an activity v: 

 For an atomic activity v: 

 Actions: Modifying v‟s specification. For example, let v initialize, read, 

update, or delete an artifact. 

 For a compound activity v: Assigning a sub-process sp to v.subp. 

 Constraints: IsInstantiateRecursively(p, sp) = false. 

 Actions: 𝐶ℎ𝑖𝑙𝑑𝑝  = 𝐶ℎ𝑖𝑙𝑑𝑝  ∪ {sp}. 𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑠𝑝  = 𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝑠𝑝  ∪ {p}. 

v.subp = sp. 

 

Operation 9 updates the associated compound activity v by assigning v.subp to be 

another sub-process. For example, if ∃𝑣1 ∈ 𝑉𝑝1 and 𝑣1.supb = p2, p2 is instantiated when 

𝑣1 is activated. On the other hand, if ∃𝑣2 ∈ 𝑉𝑝2 and 𝑣2.supb = p1 exist at the same time, p1 

and p2 might be instantiated recursively. In order to avoid this situation, function 

IsInstantiateRecursively() is executed right after modifying a compound activity. If 

IsRecursiveCall() = false, recursive instantiating will not occur in this modification. 

Algorithm 5.1 shows how to identify whether a recursive instantiating occurs. 

 

Algorithm 5.1  (Identifying Whether Recursive Instantiating Occurs) 

Algorithm IsInstantiateRecursively(p, sp){ 

//Input: Identifying whether p is instantiated by sp or the processes in 𝐶ℎ𝑖𝑙𝑑𝑠𝑝  recursively. 

//Output: true is returned if a recursive instantiating occurs. Otherwise, false is returned. 

1. Boolean flag = false; 

2. if(𝐶ℎ𝑖𝑙𝑑𝑠𝑝≠∅){ 
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3.  if(p∈𝐶ℎ𝑖𝑙𝑑𝑠𝑝 ){ 

4.   flag = true; 

5.  }else{ 

6.   for each process ssp∈𝐶ℎ𝑖𝑙𝑑𝑠𝑝{ 

7.    flag = flag ∨ IsInstantiateRecursively(p, ssp); 

8.   } 

9.  } 

10. } 

11. return flag; 

} 

 

 Since Operation 1 inserts an activity without using an artifact, the artifact flow diagram 

is not necessary to update. It is similar for Operation 3. Operation 2 and 4 can be treated as a 

series of Operations 6, 8, and 9 correspondingly. Thus, the analysis based on Operation 2 or 4 

can be done by applying a series of analysis techniques of which each is done after Operation 

6, 8, or 9. The updates of an artifact flow diagram caused by Operations 5, 6, 7, 8, and 9 are 

described in Section 5.2. 

 

 

5.2 Incremental Algorithms to Detect Artifact Usage Anomalies 

  

In order to detect artifact usage anomalies incrementally, the artifact flow diagram has to 

be updated after each edit operation. The incremental algorithms for each edit operation are 

introduced in this section. For edit operations 7 to 9, Algorithms 5.2 to 5.4 show how to 

update the artifact flow diagram and detect anomalies. Algorithm 5.5 shows the updates and 

detections after operation 5 or 6. 
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Algorithm 5.2  (Updates and Detections After Inserting a Pass) 

Algorithm AfterAddingPass(u, d, v){ 

//Input: After Pass(d, v) is added into 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑢 . 

//Output: 

1. 𝐴𝐹𝑉𝑝
𝑑  = 𝐴𝐹𝑉𝑝

𝑑  ∪ {u, v}; 

2. 𝐴𝐹𝐹𝑝
𝑑  = 𝐴𝐹𝐹𝑝

𝑑  ∪ {flow (u, v)}; 

3. UpdateOutflows(u, d, v); 

4. UpdateInflows(v, d, u); 

5. DetectAnomalies(u, v, d); 

} 

 

Algorithm 5.2 is executed after Pass(d, v) is added into 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑢 . At line 2, flow (u, v) 

is created and added into 𝐴𝐹𝐹𝑝
𝑑 . The properties of outflows of u and inflows of v are updated 

from lines 3 to 4. Finally, function DetectAnomalies(u, v, d) presented in Section 5.4 is 

executed to detect whether anomalies occur in u and v respectively at line 5. 

 

Algorithm 5.3  (Updates and Detections After Removing a Pass) 

Algorithm AfterRemovingPass(u, d, v){ 

//Input: After Pass(d, v) is removed from 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑢 . 

//Output: 

1. 𝐴𝐹𝐹𝑝
𝑑  = 𝐴𝐹𝐹𝑝

𝑑  \ {flow (u, v)}; 

2. 𝑅𝑜𝑙𝑒𝑢
𝑑  = Roles(u, d); 

3.  𝑅𝑜𝑙𝑒𝑣
𝑑  = Roles(v, d); 

4. if(𝑅𝑜𝑙𝑒𝑢
𝑑  == Irrelevantor){ 

5.  𝐴𝐹𝑉𝑝
𝑑  = 𝐴𝐹𝑉𝑝

𝑑  \ {u}; 

6. }else{ 

7.  UpdateOutflows(u, d, v); 

8.  DetectAnomalies(u, u, d); 

9. } 

10. if(𝑅𝑜𝑙𝑒𝑣
𝑑  == Irrelevantor){ 

11.  𝐴𝐹𝑉𝑝
𝑑  = 𝐴𝐹𝑉𝑝

𝑑  \ {v}; 

12. }else{ 

13.  UpdateInflows(v, d, u); 

14.  DetectAnomalies(v, v, d); 



 

47 

15. } 

} 

 

Algorithm 5.3 is executed after removing Pass(d, v) from 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑢 . At lines 2 to 3, 

function Roles(u, d) and Roles(v, d) are used to update the roles of u and v for d. The 

condition at line 4 is used to check whether u becomes an irrelevantor of d or not. Otherwise, 

function UpdateOutflows(u, d, v) presented in Section 5.3 is called to adjust the flows and 

update properties and function DetectAnomalies(u, u, d) is executed to detect anomalies. It is 

similar for v at line 10. 

 

Algorithm 5.4  (Updates and Detections After Modifying an Activity) 

Algorithm RoleIsChanged(v, d){ 

//Input: 𝑅𝑜𝑙𝑒𝑣
𝑑  is changed due to modify activity v. 

//Output: 

1. 𝑅𝑜𝑙𝑒𝑣
𝑑  = Roles(v, d); 

2. if(𝑅𝑜𝑙𝑒𝑣
𝑑  ≠ Irrelevantor){ 

3.  if(v ∉ 𝐴𝐹𝑉𝑝
𝑑){ 

4.   𝐴𝐹𝑉𝑝
𝑑  = 𝐴𝐹𝑉𝑝

𝑑  ∪ {v}; 

5.  } 

6.  DetectAnomalies(v, v, d); 

7. }else{ 

8.  𝐴𝐹𝑉𝑝
𝑑  = 𝐴𝐹𝑉𝑝

𝑑  \ {v}; 

9. } 

} 

 

Algorithm 5.4 is executed when activity v is changed its role for d. At line 1, function 

Roles(v, d) is used to update v‟s role of d. At line 2, if v is not an irrelevantor of d, v is added 

into 𝐴𝐹𝑉𝑝
𝑑  and DetectAnomalies(v, v, d) is used to check whether anomalies occur at v. 

Otherwise, v is removed from 𝐴𝐹𝑉𝑝
𝑑 . 
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Algorithm 5.5  (Updates and Detections After Adding or Removing a Branch) 

Algorithm AfterAddingorRemovingBranch(c){ 

//Input: After adding/removing a branch into/from c. 

//Output: 

1. if(c.type == XOR){ 

2.  for each n ∈ 𝐴𝐹𝑁𝑝
𝑑  and n.blockID = c{ 

3.   UpdatePXBNode(n); 

4.  } 

5. } 

} 

 

 Algorithm 5.5 is performed when a branch is added/removed into/from a control block. 

In our model, only the insertion or deletion of a branch in an XOR control block affects the 

artifact flow diagram. Let XBNode n represent an XOR control block x in an artifact flow 

diagram. After adding/removing a branch of x, n.isUncond may be changed. Therefore, in the 

for loop at lines 2 to 4, function UpdatePXBNode(n) is executed to update each XBNode 

which may be affect by this operation. Function UpdatePXBNode() is described in Algorithm 

5.6. 

 

Algorithm 5.6  (Updating the Parent XBNode) 

Algorithm UpdatePXBNode(n){ 

//Input: Update XBNode n and its parent XBNode. 

//Output: 

1. if(n.isUncond ≠ IsUnconditional(n.cv_set, n.blockID)){ 

2.  n.isUncond = IsUnconditional(n.cv_set, n.blockID); 

4.  if(n.Parent ≠ Null){ 

5.   UpdatePXBNode(n.Parent); 

6.  }else{ 

7.   DetectAnomalies(n.Attached, n.Attached, d); 

8.  } 

9. } 

} 
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 Since an XBNode may be contained in another XBNode, Algorithm 5.6 updates the 

XBNode n and its parent XBNode. The modification process starts up from n, level by level, 

until it has no parent XBNode or n.isUncond is not changed. The condition at line 1 identifies 

whether n.isUncond is changed or not. If n.isUncond is changed, n.isUncond is updated to the 

result of function IsUnconditional(n.cv_set, n.blockID) at line 2. At lint 4 to 5, if n has parent 

XBNode, its parent XBNode is updated recursively. Otherwise, function 

DetectAnomalies(n.Attached, n.Attached, d) is executed to detect whether anomalies occur at 

activity n.Attached. 

 

 

5.3 Algorithms to Update an Artifact Flow Diagram 

 

For an activity v ∈ 𝐴𝐹𝑉𝑝
𝑑 , the properties inBlock of v‟s inflows depend on the XBNodes 

in 𝐸𝐼𝑁 ′
𝑣
𝑑

/𝑃𝐼𝑁 ′
𝑣
𝑑

; on the contrary, the properties outBlock of v‟s outflows depend on 

XBNodes in 𝐸𝑂𝑈𝑇 ′
𝑣
𝑑

/𝑃𝑂𝑈𝑇 ′
𝑣
𝑑

. Our approach updates the XBNodes affected before 

modifying the flows. The constructing methods are illustrated in Section 5.3.1 and the 

updating methods are introduced in Section 5.3.2. Section 5.3.3 presents an example for 

illustrating how to build XBNodes and update flows. 

 

5.3.1 Construction of XBNodes 

 

In this section, an algorithm for the construction of XBNodes is proposed. The 

construction is done according to the activities in input set S. Since the algorithm for the 

construction is complex, three sub-functions are introduced before illustrating the algorithm. 

 

Let an XBNode n represent an XOR control block x. According to Definition 3.19, the 
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activities in n.cv_set are not located in the same branch of x. Hence, the activities/XBNodes in 

S located in the same deepest XOR control blocks and branches are identified. In these 

identified activities/XBNodes, only one is selected to stay in S. The remainders are moved to 

another set for constructing another XBNode. Algorithm 5.7 shows how to identify whether 

the activities are located in the same deepest XOR control blocks and branches. 

 

Algorithm 5.7  (Searching the Activities Located in the Same Deepest XOR Control 

Blocks and Branches) 

Algorithm SearchIdenticalBranch(S){ 

//Input: S is a set of activities to build XBNodes. 

//Output: 𝑆𝑠𝑎𝑚𝑒 : The set of activities/XBNodes located in the same deepest XOR control  

//              blocks and branches. 

1. 𝑆𝑠𝑎𝑚𝑒  = ∅; 

2. for each u∈S{ 

3.  for each w∈S and w≠u{ 

4.   if(𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 .getTopXOR() == 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑤 .getTopXOR()){ 

5.    if(w is an XBNode and w.isUncond==false){ 

6.     𝑆𝑠𝑎𝑚𝑒  = 𝑆𝑠𝑎𝑚𝑒  ∪ {w}; 

7.     S = S \ {w}; 

8.    }else if(u is an XBNode and u.isUncond==false){ 

9.     𝑆𝑠𝑎𝑚𝑒  = 𝑆𝑠𝑎𝑚𝑒  ∪ {u}; 

10.     S = S \ {u}; 

11.    }else{ 

12.     𝑆𝑠𝑎𝑚𝑒  = 𝑆𝑠𝑎𝑚𝑒  ∪ {w}; 

13.     S = S \ {w}; 

14.    } 

15.   } 

16.  } 

17. } 

18. return 𝑆𝑠𝑎𝑚𝑒 ; 

} 
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 For an activity v, if a control block x is the deepest control block containing v, x is 

associated with the top element in 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣. The function getTopXOR() gets the first 

element from the top of an ABStack and the type of the block associated with the element is 

XOR. Hence, if the results of getTopXOR() of the activities are the same, they are located in 

the same deepest XOR control blocks and branches. In Algorithm 5.7, the condition at line 4 

identifies whether the activities/XBNodes are located in the same deepest XOR control blocks 

and branches. The conditions at lines 5 to 14 decide who is added into 𝑆𝑠𝑎𝑚𝑒 . If u is a 

conditional XBNode, u is moved to 𝑆𝑠𝑎𝑚𝑒  from S. It is similar for w. 

 

 During construction of XBNodes, the activity contained in the deepest XOR control 

blocks is first selected to construct an XBNode. For an activity v, let xlevel denote the number 

of XOR control blocks containing v; hence, the activity with the maximal xlevel is selected 

first. The computation of xlevel of an activity/XBNode is illustrated in Algorithm 5.8. 

 

Algorithm 5.8  (Computing xlevel for an Activity/XBNode) 

Algorithm XLevel(u, v){ 

//Input: u is an activity/XBNode in S.  

//    v is the activity where XBNodes are attached. 

//Output:  𝑥𝑠𝑒𝑡  is the number of XOR control blocks which contain u but not v. 

1. 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 ′  = 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 .removeIdenticalElements(𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣); 

2. xset = {e ∈ 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 ′ | e.blockID.type = XOR}; 

3. return  𝑥𝑠𝑒𝑡 ; 

} 

 

 In Algorithm 5.8, u is an activities/XBNodes in S. At line 1, the same elements in 

𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢  and 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣 are removed because the XOR control blocks containing both u 

and v are not needed to build XBNodes. The rest elements are stored in 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 ′ . The 

number of XOR control blocks containing u but not v is equal to the number of elements 
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whose branchID.type is XOR in 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 ′ . At lines 2 to 3,  𝑥𝑠𝑒𝑡  is equal to the number 

of elements whose branchID.type is XOR in 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 ′ . Therefore,  𝑥𝑠𝑒𝑡  represents the 

number of XOR control blocks containing u but not v. 

 

The XBNodes are categorized into two types: unconditional and conditional. Let an 

XBNode n is constructed in 𝑃𝐼𝑁𝑣
𝑑 /𝑃𝑂𝑈𝑇𝑣

𝑑  for expressing an XOR control block x. XBNode 

n is unconditional if each branch of x contains an activity receiving/passing d from/to v. 

Otherwise, n is conditional. Algorithm 5.9 shows how to identify whether an XBNode is 

conditional or not. 

 

Algorithm 5.9  (Identifying an Unconditional/Conditional XBNode) 

Algorithm IsUnconditional(cv_set, blockID){ 

//Input: cv_set is a set of activities/XBNodes which are contained in an XBNode. 

//      blockID is the id of an XOR control block represented by an XBNode. 

//Output: true is returned if the XBNode is unconditional. Otherwise, false is returned. 

1. Boolean flag = true; 

2. for each u∈ cv_set { 

3.  if(u is an XBNode and u.isUncond == false){ 

4.   flag = false; 

5.  } 

6. } 

7. if(blockID.totalbranches ==  𝑐𝑣_𝑠𝑒𝑡  and flag == true){ 

8.  return true; 

9. }else{ 

10.  return false; 

11. } 

} 

 

 In Algorithm 5.9, if an XBNode contains another conditional XBNode, it is also viewed 

as a conditional XBNode. The for loop at lines 2 to 6 decides the Boolean value of flag by 

checking each element in S. The flag is false if there is a conditional XBNode in cv_set. 



 

53 

Otherwise, the flag is true. At lines 7 to 11, when flag is true and the number of elements in 

cv_set is equal to the number of branches in blockID, this function returns true; otherwise, 

false is returned. 

 

 Based on the sub-functions above, a complete algorithm of building XBNodes is 

proposed. Algorithm 5.10 shows how to build XBNodes. 

 

Algorithm 5.10  (Building XBNodes) 

Algorithm BuildXBNodes(S, v, 𝑋𝐵𝑁𝑣
𝑑){ 

//Input: S is a set of activities to build XBNodes which are attached to v. 

//    𝑋𝐵𝑁𝑣
𝑑  = 𝑋𝑂𝑈𝑇𝑣

𝑑  or 𝑋𝐼𝑁𝑣
𝑑

. Each constructed XBNode is added into 𝑋𝐵𝑁𝑣
𝑑 . 

//Output: A set of XBNodes which are built completely. 

1. 𝑆𝑠𝑎𝑚𝑒  = ∅; 

2.  XLevelList = XLevelList ∪ S; 

3. m = XLevelList.getFirst();  

4. while(XLevel(m, v)≠0){ 

5.  𝑆𝑠𝑎𝑚𝑒  = SearchIdenticalBranch(S); 

6.  XLevelList = XLevelList \ 𝑆𝑠𝑎𝑚𝑒 ; 

7.  XOR control block x = 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑚 .getTopXOR().blockID; 

8.  Create an XBNode n; 

9.  n.blockID = x; 

10.  n.cv_set = {u | u∈S and 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 .getTopXOR().blockID == x}; 

11.  for each u ∈ n.cv_set{ 

12.   if(u is an XBNode){ 

13.    u.Parent = n; 

14.   } 

15.  } 

16.  n.isUncond = IsUnconditional(n.cv_set, x); 

17.  𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑛  = 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑥 .𝑠𝑡𝑎𝑟𝑡 ; 

18.  XLevelList = XLevelList \ n.cv_set; 

19.  XLevelList = XLevelList ∪ {n}; 

20.  𝐴𝐹𝑁𝑝
𝑑 = 𝐴𝐹𝑁𝑝

𝑑  ∪ {n}; 

21.  𝑋𝐵𝑁𝑣
𝑑  = 𝑋𝐵𝑁𝑣

𝑑  ∪ {n}; 

22.  m = XLevelList.getFirst(); 
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23. } 

24. if(𝑆𝑠𝑎𝑚𝑒 ≠∅) 

25.  XLevelList = XLevelList ∪ BuildXBNodes(𝑆𝑠𝑎𝑚𝑒 , v); 

26.  S = XLevelList; 

27. return S; 

} 

 

In Algorithm 5.10, 𝑋𝐵𝑁𝑣
𝑑  is equal to 𝑋𝐼𝑁𝑣

𝑑  or 𝑋𝑂𝑈𝑇𝑣
𝑑 . 𝑋𝐼𝑁𝑣

𝑑  is a set of XBNodes, 

of which each is contained in 𝐸𝐼𝑁 ′
𝑣
𝑑

/𝑃𝐼𝑁 ′
𝑣
𝑑

 or contained in the XBNode in 𝐸𝐼𝑁 ′
𝑣
𝑑

/𝑃𝐼𝑁 ′
𝑣
𝑑

. 

On the other hand, 𝑋𝑂𝑈𝑇𝑣
𝑑  is a set of XBNodes, of which each is contained in 

𝐸𝑂𝑈𝑇 ′
𝑣
𝑑
/𝑃𝑂𝑈𝑇 ′

𝑣
𝑑
 or contained in the XBNode in 𝐸𝑂𝑈𝑇 ′

𝑣
𝑑

/𝑃𝑂𝑈𝑇 ′
𝑣
𝑑
. 

 

XLevelList is a linked list and all elements in this list are sorted according to their xlevel. 

The element with large xlevel, it is closer to the front side in the list. Therefore, the element 

obtained by XLevelList.getFirst() has the maximal xlevel in the list. At line 2, all elements in S 

are added into XLevelList. At line 3, m is the element which has the maximal xlevel. The while 

loop at lines 4 to 23 repeats until the xlevel of m becomes 0, which means all XBNodes in S 

are completely built. At lines 5 to 6, the activities/XBNodes identified by function 

SearchIdenticalBranch() are moved to 𝑆𝑠𝑎𝑚𝑒  from XLevelList. If the 𝑆𝑠𝑎𝑚𝑒  is not empty, the 

activities/XBNodes in 𝑆𝑠𝑎𝑚𝑒  are used to construct another XBNode recursively at lines 24 to 

25.  

 

At line 7, XOR control block x is the deepest XOR control block containing m. An 

XBNode n is created to represent x at lines 8 to 9. All activities/XBNodes located in x are 

added into n.cv_set at line 10. The for loop at lines 11 to 15 updates the properties Parent of 

XBNodes in n.cv_set. The function IsUncondtional() is executed to identify whether n is 

conditional or not at line 16. 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑛  represents the location of x; thus, 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑛  is 

equal to 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑥 .𝑠𝑡𝑎𝑟𝑡  at line 17. Finally, the activities/XBNodes in cv_set are removed 
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from S at line 18. At lines 19 to 21, n is added into XLevelList, 𝐴𝐹𝑁𝑝
𝑑

, and 𝑋𝐵𝑁𝑣
𝑑  

respectively. While all XBNodes are constructed completely, S is returned. 

 

 

5.3.2 Update of the Properties of Flows 

 

 After the XBNodes are built completely and put into 𝐸𝐼𝑁 ′
𝑣
𝑑

 and 𝑃𝐼𝑁 ′
𝑣
𝑑

, v‟s inflows can 

be updated according to the XBNodes in 𝐸𝐼𝑁 ′
𝑣
𝑑

 and 𝑃𝐼𝑁 ′
𝑣
𝑑

. Algorithm 5.12 shows how to 

update inBlock of v‟s inflows. On the other hand, Algorithm 5.13 shows how to update 

outBlock of v‟s outflows. Before illustrating Algorithms 5.12 and 5.13, the sub-function, 

Algorithms 5.11, is introduced first. 

 

Algorithm 5.11  (Getting All Activities in an XBNode) 

Algorithm getAllActivities(n){ 

//Input: Getting all activities contained in n and n‟s child XBNodes. 

//Output: AllA is a set of activities, of which each is contained in n or n‟s child XBNodes. 

1. AllA = ∅; 

2. for each v ∈ n.cv_set{ 

3.  if(v is an activity){ 

4.   AllA = AllA ∪ {v}; 

5.  }else{ 

6.   AllA = AllA ∪ getAllActivities(v); 

7.  } 

8. } 

9. return AllA; 

} 

 

 Since an XBNode may contain other XBNodes in cv_set, Algorithm 5.11 is used to get 

all activities in cv_set and in child XBNodes recursively. At lines 2 to 7, if v is an activity, v is 

added into AllA. Otherwise, function getAllActivities(v) is used to get all activities in v. When 
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all activities are added into AllA, AllA is returned at line 9. 

 

Algorithm 5.12  (Updating Properties inBlock of Inflows) 

Algorithm UpdateInflows(v, d, u){ 

//Input: After an inflow (u, v) is added/removed into/from 𝐴𝐹𝐹𝑝
𝑑 . 

//Output:  

1. 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 ′  = 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 .removeIdentialElements(𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣); 

2. XOR Control Block x = 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 ′ .getTopXOR().blockID; 

3. if(x == Null){ 

4.  if(u ∈ 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑){ 

5.   𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  = 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣

𝑑  \ {u}; 

6.   𝐸𝐼𝑁 ′
𝑣
𝑑

 = 𝐸𝐼𝑁 ′
𝑣
𝑑

 \ {u}; 

7.  }else{ 

8.   𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  = 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣

𝑑  ∪ {u}; 

9.   if(IsExclusive(u, v)==false) 

10.    𝐸𝐼𝑁 ′
𝑣
𝑑

 = 𝐸𝐼𝑁 ′
𝑣
𝑑

 ∪ {u}; 

11.  } 

12. }else{ 

13.  𝐼𝑁𝑣
𝑑  = ∅; 

14.  for each n ∈ 𝑋𝐼𝑁𝑣
𝑑  and n.blockID == x{ 

15.   if(n.isUncond == false or u ∈ n.cv_set){ 

16.    𝐼𝑁𝑣
𝑑  = 𝐼𝑁𝑣

𝑑  ∪ n.cv_set; 

17.    𝐴𝐹𝑁𝑝
𝑑 = 𝐴𝐹𝑁𝑝

𝑑  \ {n}; 

18.    𝐸𝐼𝑁 ′
𝑣
𝑑

 = 𝐸𝐼𝑁 ′
𝑣
𝑑

 \ {n}; 

19.    𝑃𝐼𝑁 ′
𝑣
𝑑

 = 𝑃𝐼𝑁 ′
𝑣
𝑑

 \ {n}; 

20.    𝑋𝐼𝑁𝑣
𝑑  = 𝑋𝐼𝑁𝑣

𝑑  \ {n}; 

21.    while(n.Parent ≠ Null){ 

22.     m = n.Parent; 

23.     𝐼𝑁𝑣
𝑑  = 𝐼𝑁𝑣

𝑑  ∪ (m.cv_set \ {n}); 

24.     𝐴𝐹𝑁𝑝
𝑑 = 𝐴𝐹𝑁𝑝

𝑑  \ {m}; 

25.     𝐸𝐼𝑁 ′
𝑣
𝑑

 = 𝐸𝐼𝑁 ′
𝑣
𝑑

 \ {m}; 

26.     𝑃𝐼𝑁 ′
𝑣
𝑑

 = 𝑃𝐼𝑁 ′
𝑣
𝑑

 \ {m}; 

27.     𝑋𝐼𝑁𝑣
𝑑  = 𝑋𝐼𝑁𝑣

𝑑  \ {m}; 

28.     n = m; 

29.    } 

30.   } 

31.  } 



 

57 

32.  if(u ∈ 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑){ 

33.   𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  = 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣

𝑑  \ {u}; 

34.   𝐼𝑁𝑣
𝑑  = 𝐼𝑁𝑣

𝑑  \ {u}; 

35.  }else{ 

36.   𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  = 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣

𝑑  ∪ {u}; 

37.   𝐼𝑁𝑣
𝑑  = 𝐼𝑁𝑣

𝑑  ∪ {u}; 

38.  } 

39.  𝑁𝑒𝑤𝑋𝐵𝑁𝑣
𝑑  = BuildXBNodes(𝐼𝑁𝑣

𝑑 , v, 𝑋𝐼𝑁𝑣
𝑑); 

40.  for each n ∈𝑁𝑒𝑤𝑋𝐵𝑁𝑣
𝑑{ 

41.   n.Attached = v; 

42.   if(n.isUncond == true){ 

43.    𝐸𝐼𝑁 ′
𝑣
𝑑

 = 𝐸𝐼𝑁 ′
𝑣
𝑑

 ∪ {n}; 

44.    𝑁𝑒𝑤𝑋𝐵𝑁𝑣
𝑑  = 𝑁𝑒𝑤𝑋𝐵𝑁𝑣

𝑑  \ {n}; 

45.   } 

46.   for each u∈getAllActivities(n){ 

47.    Let flow f be (u, v) in 𝐴𝐹𝐹𝑝
𝑑 ; 

48.    f.inBlock = n; 

49.   } 

50.  } 

51.  𝑃𝐼𝑁 ′
𝑣
𝑑

 = 𝑃𝐼𝑁 ′
𝑣
𝑑

 ∪ 𝑁𝑒𝑤𝑋𝐵𝑁𝑣
𝑑 ; 

52. } 

} 

 

 At lines 1 to 2, x is the deepest XOR control block containing u but not v. At line 3, if x 

is Null, the XBNodes in 𝐸𝐼𝑁 ′
𝑣
𝑑

 and 𝑃𝐼𝑁 ′
𝑣
𝑑

 are not affected after an inflow (u, v) is 

added/removed into/from 𝐴𝐹𝐹𝑝
𝑑 . At lines 4 to 11, u is added/removed into/from 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣

𝑑  

and 𝐸𝐼𝑁 ′
𝑣
𝑑

 according to whether u is in 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  or not. If u is in 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣

𝑑 , u is removed 

from 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  and 𝐸𝐼𝑁 ′

𝑣
𝑑

. If u is not in 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  and IsExclusive(u, v) = false, u is 

added into 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  and 𝐸𝐼𝑁 ′

𝑣
𝑑

. 

 

 If x is not Null, the XBNodes whose blockID is x in 𝑋𝐼𝑁𝑣
𝑑  may be affected. At line 13, 

𝐼𝑁𝑣
𝑑  is used to store all the affected activities/XBNodes. At lines 14 to 20, for each XBNode 

n whose blockID = x in 𝑋𝐼𝑁𝑣
𝑑 , if n is a conditional XBNode or u is contained in n.cv_set, n is 
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removed from 𝐴𝐹𝑁𝑝
𝑑 , 𝐸𝐼𝑁 ′

𝑣
𝑑

, 𝑃𝐼𝑁 ′
𝑣
𝑑

, and 𝑋𝐼𝑁𝑣
𝑑 . All elements in n.cv_set are added into 

𝐼𝑁𝑣
𝑑  because these elements are used to rebuild XBNodes. At lines 21 to 29, if n has parent 

XBNode, the elements in parent XBNode are also added into 𝐼𝑁𝑣
𝑑  and the parent XBNode is 

removed from 𝐴𝐹𝑁𝑝
𝑑 , 𝐸𝐼𝑁 ′

𝑣
𝑑

, 𝑃𝐼𝑁 ′
𝑣
𝑑

, and 𝑋𝐼𝑁𝑣
𝑑 .  

 

As in lines 4 to 11, u is added/removed into/from 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  and 𝐼𝑁𝑣

𝑑  according to 

whether u is in 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  or not at lines 32 to 38. At line 39, BuildXBNodes(𝐼𝑁𝑣

𝑑 , v, 𝑋𝐼𝑁𝑣
𝑑) 

is used to rebuild XBNodes from the affected elements and the results are put into 

𝑁𝑒𝑤𝑋𝐵𝑁𝑣
𝑑 . At lines 40 to 45, for each new XBNode n, n.Attached = v. If n is unconditional, 

n is moved to 𝐸𝐼𝑁 ′
𝑣
𝑑

 from 𝑁𝑒𝑤𝑋𝐵𝑁𝑣
𝑑 . The properties inBlock of inflows of v are updated to 

n at lines 46 to 49. Finally, the conditional XBNodes in 𝑁𝑒𝑤𝑋𝐵𝑁𝑣
𝑑  are added into 𝑃𝐼𝑁 ′

𝑣
𝑑

. 

 

 Since the method of updating outflows in Algorithm 5.13 is similar to Algorithm 5.12, 

Algorithm 5.13 is described simply as follows without detailed explanation. 

 

Algorithm 5.13  (Updating Properties outBlock of Outflows) 

Algorithm UpdateOutflows(v, d, u){ 

//Input: After an outflow (v, u) is added/removed into/from 𝐴𝐹𝐹𝑝
𝑑 . 

//Output:  

1. 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 ′  = 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 .removeIdentialElements(𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑣); 

2. XOR Control Block x = 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑢 ′ .getTopXOR().blockID; 

3. if(x == Null){ 

4.  if(u ∈ 𝑆𝑒𝑛𝑑𝑣
𝑑){ 

5.   𝑆𝑒𝑛𝑑𝑣
𝑑  = 𝑆𝑒𝑛𝑑𝑣

𝑑  \ {u}; 

6.   𝐸𝑂𝑈𝑇 ′
𝑣
𝑑
 = 𝐸𝑂𝑈𝑇 ′

𝑣
𝑑

 \ {u}; 

7.  }else{ 

8.   𝑆𝑒𝑛𝑑𝑣
𝑑  = 𝑆𝑒𝑛𝑑𝑣

𝑑  ∪ {u}; 

9.   if(IsExclusive(v, u)==false) 

10.    𝐸𝑂𝑈𝑇 ′
𝑣
𝑑
 = 𝐸𝑂𝑈𝑇 ′

𝑣
𝑑

 ∪ {u}; 

11.  } 
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12. }else{ 

13.  𝑂𝑈𝑇𝑣
𝑑  = ∅; 

14.  for each n ∈ 𝑋𝑂𝑈𝑇𝑣
𝑑  and n.blockID == x{ 

15.   if(n.isUncond == false or u ∈ n.cv_set){ 

16.    𝑂𝑈𝑇𝑣
𝑑  = 𝑂𝑈𝑇𝑣

𝑑  ∪ n.cv_set; 

17.    𝐴𝐹𝑁𝑝
𝑑 = 𝐴𝐹𝑁𝑝

𝑑  \ {n}; 

18.    𝐸𝑂𝑈𝑇 ′
𝑣
𝑑
 = 𝐸𝑂𝑈𝑇 ′

𝑣
𝑑

 \ {n}; 

19.    𝑃𝑂𝑈𝑇 ′
𝑣
𝑑

 = 𝑃𝑂𝑈𝑇 ′
𝑣
𝑑
 \ {n}; 

20.    𝑋𝑂𝑈𝑇𝑣
𝑑  = 𝑋𝑂𝑈𝑇𝑣

𝑑  \ {n}; 

21.    while(n.Parent ≠ Null){ 

22.     m = n.Parent; 

23.     𝑂𝑈𝑇𝑣
𝑑  = 𝑂𝑈𝑇𝑣

𝑑  ∪ (m.cv_set \ {n}); 

24.     𝐴𝐹𝑁𝑝
𝑑 = 𝐴𝐹𝑁𝑝

𝑑  \ {m}; 

25.     𝐸𝑂𝑈𝑇 ′
𝑣
𝑑
 = 𝐸𝑂𝑈𝑇 ′

𝑣
𝑑

 \ {m}; 

26.     𝑃𝑂𝑈𝑇 ′
𝑣
𝑑

 = 𝑃𝑂𝑈𝑇 ′
𝑣
𝑑
 \ {m}; 

27.     𝑋𝑂𝑈𝑇𝑣
𝑑  = 𝑋𝑂𝑈𝑇𝑣

𝑑  \ {m}; 

28.     n = m; 

29.    } 

30.   } 

31.  } 

32.  if(u ∈ 𝑆𝑒𝑛𝑑𝑣
𝑑){ 

33.   𝑆𝑒𝑛𝑑𝑣
𝑑  = 𝑆𝑒𝑛𝑑𝑣

𝑑  \ {u}; 

34.   𝑂𝑈𝑇𝑣
𝑑  = 𝑂𝑈𝑇𝑣

𝑑  \ {u}; 

35.  }else{ 

36.   𝑆𝑒𝑛𝑑𝑣
𝑑  = 𝑆𝑒𝑛𝑑𝑣

𝑑  ∪ {u}; 

37.   𝑂𝑈𝑇𝑣
𝑑  = 𝑂𝑈𝑇𝑣

𝑑  ∪ {u}; 

38.  } 

39.  𝑁𝑒𝑤𝑋𝐵𝑁𝑣
𝑑  = BuildXBNodes(𝑂𝑈𝑇𝑣

𝑑 , v, 𝑋𝑂𝑈𝑇𝑣
𝑑 ); 

40.  for each n ∈𝑁𝑒𝑤𝑋𝐵𝑁𝑣
𝑑{ 

41.   n.Attached = v; 

42.   if(n.isUncond == true){ 

43.    𝐸𝑂𝑈𝑇 ′
𝑣
𝑑
 = 𝐸𝑂𝑈𝑇 ′

𝑣
𝑑

 ∪ {n}; 

44.    𝑁𝑒𝑤𝑋𝐵𝑁𝑣
𝑑  = 𝑁𝑒𝑤𝑋𝐵𝑁𝑣

𝑑  \ {n}; 

45.   } 

46.   for each u∈getAllActivities(n){ 

47.    Let flow f be (v, u) in 𝐴𝐹𝐹𝑝
𝑑 ; 

48.    f.outBlock = n; 

49.   } 
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50.  } 

51.  𝑃𝑂𝑈𝑇 ′
𝑣
𝑑

 = 𝑃𝑂𝑈𝑇 ′
𝑣
𝑑
 ∪ 𝑁𝑒𝑤𝑋𝐵𝑁𝑣

𝑑 ; 

52. } 

} 

 

 

5.3.3 An Example for Illustration of Updating an Artifact Flow Diagram  

 

Figure 5.1 shows a control flow and Figure 5.2 is the corresponding artifact flow 

diagrams for artifact d extracted from it.  

 

 

Figure 5.1: An Example of Building XBNodes. 

 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣1
= Pass(d,𝑣2)→Pass(d,𝑣3)→Pass(d, 𝑣4)→Pass(d, 𝑣6)→Pass(d, 𝑣7) 

 xs1.cb = xj1.cb = x1,  xs2.cb = xj2.cb = x2,  xs3.cb = xj3.cb = x3 

𝑣1 

𝑣2 

𝑣7 

(R, 1) 

 

(x2, 1) 
(x1, 1) 
(R, 1) 

 𝑣4 

𝑣6 

(x1, 2) 

(R, 1) 

 

𝑣3 

𝑣5 

(x2, 2) 
(x1, 1) 
(R, 1) 

 

(x3, 1) 
(x1, 1) 
(R, 1) 

 

(x3, 3) 
(x1, 1) 
(R, 1) 

 

xs1 xj1 

xs2 xj2 
xs3 xj3 

𝑣8 

𝑣9 

(x1, 1) 
(R, 1) 

 

(R, 1) 
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Figure 5.2: The Corresponding Artifact Flow Diagram for d. 

 

 In Figure 5.1, 𝑣1 passes artifact d to 𝑣2, 𝑣3, 𝑣4, 𝑣6, and 𝑣7. These activities are added 

into 𝑃𝑂𝑈𝑇𝑣1
𝑑  according to Definition 3.18. In order to update the properties of outflows, (𝑣1, 

𝑣2 ), ( 𝑣1 , 𝑣3 ), ( 𝑣1 , 𝑣4 ), ( 𝑣1 , 𝑣6 ), and ( 𝑣1 , 𝑣7 ), the XBNodes are built by 

BuildXBNodes(𝑃𝑂𝑈𝑇𝑣1
𝑑 , 𝑣1, 𝑋𝑂𝑈𝑇𝑣1

𝑑 ).  

 

 The Table 5.2 shows the construction of XBNodes in BuildXBNodes(𝑃𝑂𝑈𝑇𝑣1

𝑑
, 𝑣1, 

𝑋𝑂𝑈𝑇𝑣1
𝑑 ) step by step. The element (R, 1) in the bottom of each ABStack is ignored in Table 

5.2. Table 5.3 shows the states of each XBNode in 𝑋𝑂𝑈𝑇𝑣1
𝑑 . 

 

Figure 5.1 S=𝑃𝑂𝑈𝑇𝑣1
𝑑  

Step 1 S={𝒗𝟐(      ), 𝒗𝟑(      ), 𝒗𝟒(      ), 𝒗𝟔(      ), 𝒗𝟕(      )} 

Step 2 S={n1(x2, {𝑣2, 𝑣3},      , true), 𝒗𝟒(      ), 𝒗𝟔(      ), 𝒗𝟕(      )} 

Step 3 S={n1(x2,{𝑣2, 𝑣3},      ,true), n2(x3,{𝑣4, 𝑣6},      , false), 𝒗𝟕(      )} 

Step 4 
S={n1(x2, {𝑣2, 𝑣3},      , true), 𝒗𝟕(      )} 

𝑆𝑠𝑎𝑚𝑒 ={n2(x3, {𝑣4, 𝑣6},      , false)} 

Step 5 S={n3(x1, {n1, 𝑣7},      , true)} 

𝑣1 

𝑣2 

𝑣3 

𝑣7 

n3 

 

n4 

 𝑣4 

𝑣6 

 

  

 

 𝑆𝑒𝑛𝑑𝑣1
𝑑  = {𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣7} 

 𝐸𝑂𝑈𝑇 ′
𝑣1

𝑑
 = {n3} 

 𝑃𝑂𝑈𝑇 ′
𝑣1

𝑑
 = {n4} 

 𝑋𝑂𝑈𝑇𝑣1
𝑑  = {n1, n2, n3, n4} 

 n1 = (x2, {𝑣2, 𝑣3},       , true) 

 n2 = (x3, {𝑣4, 𝑣6},       , false) 

 n3 = (x1, {n1, 𝑣7},      , true) 

 n4 = (x1, {n2},      , false) 

(x1, 1) 

 (x1, 1) 

 

(x1, 2) 
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S={n4(x1, {n2},      , false)} 

Result 
𝑃𝑂𝑈𝑇 ′

𝑣1

𝑑
={n4(x1, {n2},      , false)} 

𝐸𝑂𝑈𝑇 ′
𝑣1

𝑑
={n3(x1, {n1, 𝑣7},      , true)} 

Table 5.2: Construction of XBNodes in BuildXBNodes(𝑃𝑂𝑈𝑇𝑣1
𝑑 , 𝑣1, 𝑋𝑂𝑈𝑇𝑣1

𝑑 ). 

 

XBNodes blockID cv_set ABStack isUncond Parent Attached 

n1 x2 {𝑣2, 𝑣3}  true n3 Null 

n2 x3 {𝑣4, 𝑣6}  false n4 Null 

n3 x1 {n1, 𝑣7}  true Null 𝑣1 

n4 x1 {n2}  false Null 𝑣1 

Table 5.3: The States of Each XBNode in 𝑋𝑂𝑈𝑇𝑣1
𝑑 . 

 

 In Step 1 of Table 5.2, S = {𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣7}. These activities located in the same 

deepest XOR control blocks and branches are identified. In these activities/XBNodes, only 

one is selected to stay in S and the remainders are moved to 𝑆𝑠𝑎𝑚𝑒  from S. In Step 1, there is 

no activity moved to 𝑆𝑠𝑎𝑚𝑒 .  

 

Next, the activity with maximal xlevel is selected to construct an XBNode. In Step 1, the 

xlevel of 𝑣2, 𝑣3, 𝑣4, and 𝑣6 are all 2; thus, 𝑣2 is selected randomly to build an XBNode. 

Because x2 is the deepest XOR control block which contains 𝑣2, an XBNode n1 is created to 

represent x2. All the activities located in x2 are added into n1; thus, n1.cv_set = {𝑣2, 𝑣3}. 

Because 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑛1 is used to express the location of x2, 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑛1 = 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑥2.𝑠𝑡𝑎𝑟𝑡 . 

In addition, n1 is unconditional because x2 always receives artifact d from 𝑣1 whether 𝑣2 or 

𝑣3 is executed or not. Therefore, n1.isUncond is true. The result of building n1 is showed in 

Step 2. 

 

 

 

 

 

 

 

(x1,1) 
(R, 1) 

 

(R, 1) 

 

(R, 1) 

 

(x1,1) 
(R, 1) 
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 In Step 2, S = {n1, 𝑣4 , 𝑣6 , 𝑣7 } and next XBNode is built based on these 

activities/XBNodes. The method of building an XBNode in Step 2 is the same with Step 1. In 

Step 2, there is no activity/XBNode moved to 𝑆𝑠𝑎𝑚𝑒 . Because the xlevel of 𝑣4 and 𝑣6 are 2, 

𝑣4 is selected to build an XBNode. Because x3 is the deepest XOR control block containing 

𝑣4 , XBNode n2 is created to represent x3. n2.cv_set = {𝑣4 , 𝑣6 } and 𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑛2  = 

𝐴𝐵𝑆𝑡𝑎𝑐𝑘𝑥3.𝑠𝑡𝑎𝑟𝑡 . If 𝑣5 is executed, x3 can not receive d from 𝑣1; thus, n2.isUncond = false. 

After n2 is built, the result is showed in Step 3.  

 

 In Step 3, S = {n1, n2, 𝑣7}. XBNodes n1 and n2 are both located in branch 1 of XOR 

control block x1; thus, n1 or n2 is moved to 𝑆𝑠𝑎𝑚𝑒 . Since n1.isUncond = true and 

n2.isUncond = false, n2 is moved to 𝑆𝑠𝑎𝑚𝑒 . 

 

 In Step 4, S = {n1, 𝑣7}. Because the xlevel of n1 and 𝑣7 are 1, n1 is selected to build an 

XBNode. Because x1 is the deepest XOR control block containing n1, an XBNode n3 is 

created to represent x1. Activity 𝑣7 is also located in x1; thus, n3.cv_set = {n1, 𝑣7}. Since n1 

is in n3.cv_set, n3.Parent = n1. The result of building n3 is showed in Step 5. 

 

 In Step 5, there are two S; one contains n3 and another contains n4 which is built from 

𝑆𝑠𝑎𝑚𝑒  in Step 4. Because the xlevel of n3 and n4 are both 0, they are not used to build another 

XBNode.  

 

 Finally, all the XBNodes are added into 𝑃𝑂𝑈𝑇 ′
𝑣1

𝑑
 if their xlevel are all 0. Therefore, 

𝑃𝑂𝑈𝑇 ′
𝑣1

𝑑
 = {n3, n4} and n3.Attached = n4.Attached = 𝑣1. Since n3 is unconditional, n3 is 

moved to 𝐸𝑂𝑈𝑇 ′
𝑣1

𝑑
 from 𝑃𝑂𝑈𝑇 ′

𝑣1

𝑑
. All XBNodes are built completely. 
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In 𝐸𝑂𝑈𝑇 ′
𝑣1

𝑑
, since getAllActivities(n3) = {𝑣2 , 𝑣3 , 𝑣7}, the properties outBlock of 

outflows, (𝑣1 , 𝑣2 ), (𝑣1 , 𝑣3 ), and (𝑣1 , 𝑣7 ), are updated to n3. In 𝑃𝑂𝑈𝑇 ′
𝑣1

𝑑
, because 

getAllActivities(n4) = {𝑣4, 𝑣6}, the properties outBlock of outflows, (𝑣1, 𝑣4) and (𝑣1, 𝑣6), 

are updated to n4. Therefore, the source of flows, (𝑣1, 𝑣2), (𝑣1, 𝑣3), and (𝑣1, 𝑣7), are n3 and 

the source of flows, (𝑣1, 𝑣4) and (𝑣1, 𝑣6), are n4 in Figure 5.2. 

 

 

5.4 Algorithms to Detect Artifact Usage Anomalies 

  

As mention in Section 5.2, the function DetectAnomalies() is executed to detect 

anomalies after the artifact flow diagram is updated. The function DetectAnomalies() is 

described in Algorithm 5.14. 

 

Algorithm 5.14  (Detecting Anomalies) 

Algorithm DetectAnomalies(u, v, d){ 

//Input: Identifying whether anomalies occur in u‟s outputs and v‟s inputs. 

//Output: 

1. Boolean flag_u = false; 

2.  Boolean flag_v = false; 

3. //Detecting Missing Artifact Anomalies. 

4. if( 𝐸𝐼𝑁 ′
𝑣
𝑑  =0 ∧  𝑃𝐼𝑁 ′

𝑣
𝑑  =0 ∧ 𝑅𝑜𝑙𝑒𝑣

𝑑∈{Reader, Updater, Destroyer, Relevantor}) 

5.  flag_v = true; 

6. if( 𝐸𝐼𝑁 ′
𝑣
𝑑  =0 ∧  𝑃𝐼𝑁 ′

𝑣
𝑑  >0 ∧ 𝑅𝑜𝑙𝑒𝑣

𝑑∈{Reader, Updater, Destroyer, Relevantor}) 

7.  flag_v = true; 

8. if(( 𝐸𝑂𝑈𝑇 ′
𝑢
𝑑  >0 ∨  𝑃𝑂𝑈𝑇 ′

𝑢
𝑑  >0) ∧ 𝑅𝑜𝑙𝑒𝑢

𝑑==Destroyer) 

9.  flag_u = true; 

10.  

11. //Detecting Artifact Conflict Anomalies. 

12. if( 𝐸𝐼𝑁 ′
𝑣
𝑑  >1) 

13.  flag_v = true; 

14. if(( 𝐸𝐼𝑁 ′
𝑣
𝑑  =1 ∧  𝑃𝐼𝑁 ′

𝑣
𝑑 >0) ∨ ( 𝐸𝐼𝑁 ′

𝑣
𝑑  =0 ∧  𝑃𝐼𝑁 ′

𝑣
𝑑  >1)) 



 

65 

15.  flag_v = true; 

16. if(( 𝐸𝐼𝑁 ′
𝑣
𝑑  >0 ∨  𝑃𝐼𝑁 ′

𝑣
𝑑 >0) ∧ 𝑅𝑜𝑙𝑒𝑣

𝑑==Producer) 

17.  flag_v = true; 

18.  

19. //Detecting Redundant Anomalies. 

20. if( 𝐸𝑂𝑈𝑇 ′
𝑢
𝑑  =0 ∧  𝑃𝑂𝑈𝑇 ′

𝑢
𝑑  =0 ∧ 𝑅𝑜𝑙𝑒𝑢

𝑑∈{Producer, Updater}) 

21.  flag_u = true; 

22. if(( 𝐸𝐼𝑁 ′
𝑣
𝑑  >0 ∨  𝑃𝐼𝑁 ′

𝑣
𝑑 >0) ∧ 𝑅𝑜𝑙𝑒𝑣

𝑑==Relevantor) 

23.  flag_v = true; 

24.  

25. if(flag_u == true) 

26.  𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑  = 𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑  ∪ {u}; 

27. if(flag_v == true) 

28.  𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑  = 𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑  ∪ {v}; 

29.  

30. //Detecting Cross Passing Artifact Anomalies. 

31. if(u ≠ v){ 

32.  if(IsParallel(u, v) == true) 

33.   𝑃𝑎𝑠𝑠𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑  = 𝑃𝑎𝑠𝑠𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑  ∪ {flow (u, v)}; 

34.  else if(IsExclusive(u, v) == true){ 

35.   𝑃𝑎𝑠𝑠𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑  = 𝑃𝑎𝑠𝑠𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑  ∪ {flow (u, v)}; 

36. } 

} 

 

 In Algorithm 5.14, the conditions at lines 3 to 9 check whether missing artifact anomalies 

occur at u and v. At lines 11 to 17, the conditions check whether artifact conflict anomalies 

occur at v. The redundant anomalies are checked at lines 19 to 23. At lines 25 to 26, if one or 

more anomalies occur at u, u is added into 𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑 . It is similar for v at lines 27 to 28. 

The cross passing artifact anomalies are checked at lines 30 to 36. If an anomaly occurs, flow 

(u, v) is added into 𝑃𝑎𝑠𝑠𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑 . 
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Algorithm 5.15  (Show Current Anomalies) 

Algorithm ShowAnomalies(d){ 

//Input: Show all anomalies about d in the artifact flow diagram. 

//Output: 

1. for each v∈𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑{ 

2.  Boolean flag = false; 

3.  if( 𝐸𝐼𝑁 ′
𝑣
𝑑  =0 ∧  𝑃𝐼𝑁 ′

𝑣
𝑑  =0 ∧ 𝑅𝑜𝑙𝑒𝑣

𝑑∈{Reader, Updater, Destroyer, Relevantor}){ 

4.   print “An Explicit Missing Artifact Anomaly occurs at Activity v!”; 

5.   flag = true; 

6.  } 

7.  if( 𝐸𝐼𝑁 ′
𝑣
𝑑  =0 ∧  𝑃𝐼𝑁 ′

𝑣
𝑑  >0 ∧ 𝑅𝑜𝑙𝑒𝑣

𝑑∈{Reader, Updater, Destroyer, Relevantor}){ 

8.   print “An Implicit Missing Artifact Anomaly occurs at Activity v!”; 

9.   flag = true; 

10.  } 

11.  if( 𝐸𝑂𝑈𝑇 ′
𝑣
𝑑 >0 ∨  𝑃𝑂𝑈𝑇 ′

𝑣
𝑑  >0) ∧ 𝑅𝑜𝑙𝑒𝑣

𝑑==Destroyer){ 

12.   print “A Destroyed Artifact Anomaly occurs at Activity v!”; 

13.   flag = true; 

14.  } 

15.   if( 𝐸𝐼𝑁 ′
𝑣
𝑑  >1){ 

16.   print “An Explicit Artifact Conflict Anomaly occurs at Activity v!”; 

17.   flag = true; 

18.  } 

19.   if(( 𝐸𝐼𝑁 ′
𝑣
𝑑  =1 ∧  𝑃𝐼𝑁 ′

𝑣
𝑑 >0) ∨ ( 𝐸𝐼𝑁𝑣

𝑑 ′
 =0 ∧  𝑃𝐼𝑁 ′

𝑣
𝑑  >1)){ 

20.   print “An Implicit Artifact Conflict Anomaly occurs at Activity v!”; 

21.   flag = true; 

22.  } 

23.  if(( 𝐸𝐼𝑁 ′
𝑣
𝑑  >0 ∨  𝑃𝐼𝑁 ′

𝑣
𝑑 >0) ∧ 𝑅𝑜𝑙𝑒𝑣

𝑑==Producer){ 

24.   print “A Production Conflict Anomaly occurs at Activity v!”; 

25.   flag = true; 

26.  } 

27.  if( 𝐸𝑂𝑈𝑇 ′
𝑣
𝑑 =0 ∧  𝑃𝑂𝑈𝑇 ′

𝑣
𝑑  =0 ∧ 𝑅𝑜𝑙𝑒𝑣

𝑑∈{Producer, Updater}){ 

28.   print “A Redundant Update/Initialize Anomaly occurs at Activity v!”; 

29.   flag = true; 

30.  } 

31.  if(( 𝐸𝐼𝑁 ′
𝑣
𝑑  >0 ∨  𝑃𝐼𝑁 ′

𝑣
𝑑 >0) ∧ 𝑅𝑜𝑙𝑒𝑣

𝑑==Relevantor){ 

32.   print “A Redundant Pass Anomaly occurs at Activity v!”; 

33.   flag = true; 

34.  } 
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35.  if(flag == false){ 

36.   𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑  = 𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑  \ {v}; 

37.  } 

38. } 

39. for each f=(u, v) ∈ 𝑃𝑎𝑠𝑠𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑{ 

40.  if(IsParallel(u, v) == true){ 

41.   print “A Passing between Parallel Activities Anomaly occurs at u!”; 

42.  }else if(IsExclusive(u, v) == true){ 

43.   print “A Passing between Exclusive Activities Anomaly occurs at u!”; 

44.  }else{ 

45.   𝑃𝑎𝑠𝑠𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑  = 𝑃𝑎𝑠𝑠𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑  \ {f}; 

46.  } 

47. } 

} 

 

 Algorithm 5.15 is executed when designer wants to know what anomalies about d occur 

in current process. At lines 1 to 38, each activity in 𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑  is checked whether 

anomalies occur. If an anomaly occurs, the warning message is printed. Otherwise, the 

activity is removed from 𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑 . Similarly, each flow in 𝑃𝑎𝑠𝑠𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑  is 

identified whether cross passing anomalies occur in lines 39 to 47. If no anomaly occurs in a 

flow, the flow is removed from 𝑃𝑎𝑠𝑠𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠𝑑 . 
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Chapter 6.  Examples for Illustrating Incremental Algorithms 

 

 For illustrating and demonstrating our incremental algorithms, an example of a control 

flow graph and its artifact flow diagram for d are presented in this section. Figure 6.1 shows 

an example of a control flow graph, and the states of each activity in it are showed in Table 

6.1. Figure 6.2 shows the artifact flow diagram for d extracted from Figure 6.1, and the states 

of each activity in it are displayed in Table 6.2. 

 

 In Figure 6.2, since 𝑣9  is a producer of d and  𝐸𝑂𝑈𝑇 ′
𝑣9

𝑑   =  𝑃𝑂𝑈𝑇 ′
𝑣9

𝑑   = 0, a 

redundant initialize anomaly occurs at 𝑣9. In addition, because 𝑣3  is a relevantor and 

 𝐸𝐼𝑁 ′
𝑣3

𝑑   = 1, a redundant pass anomaly occurs at 𝑣3. These anomalies are showed in Table 

6.3. 

 

 Based on this example, Section 6.1 presents three scenarios about activity modifications 

to illustrate the updates of the artifact flow diagram and detections of anomalies. Section 6.2 

and Section 6.3 also show three scenarios about pass insertion and deletion respectively. 

 

Figure 6.1: An Example of a Control Flow Graph. 
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 XOR Control Block x2 = (xs2, xj2, XOR) 
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 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣  Input and Output Sets 

𝑣1 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣1
=Pass(d,𝑣2)→Pass(d,𝑣3)→Pass(d,𝑣8) d ∉𝐼𝑣1

 d ∈𝑈𝑣1
+  d ∉𝑈𝑣1

−  d ∈𝑂𝑣1
 

𝑣2 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣2
=Pass(d,𝑣4)→Pass(d,𝑣5)→Pass(d,𝑣6) d ∈𝐼𝑣2

 d ∈𝑈𝑣2
+  d ∉𝑈𝑣2

−  d ∈𝑂𝑣2
 

𝑣3 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣3
= ∅ d ∉𝐼𝑣3

 d ∉𝑈𝑣3
+  d ∉𝑈𝑣3

−  d ∉𝑂𝑣3
 

𝑣4 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣4
= Pass(d, 𝑣7) d ∈𝐼𝑣4

 d ∉𝑈𝑣4
+  d ∉𝑈𝑣4

−  d ∈𝑂𝑣4
 

𝑣5 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣5
= Pass(d, 𝑣7) d ∈𝐼𝑣5

 d ∉𝑈𝑣5
+  d ∉𝑈𝑣5

−  d ∈𝑂𝑣5
 

𝑣6 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣6
= Pass(d, 𝑣7) d ∈𝐼𝑣6

 d ∈𝑈𝑣6
+  d ∉𝑈𝑣6

−  d ∈𝑂𝑣6
 

𝑣7 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣7
= ∅ d ∈𝐼𝑣7

 d ∉𝑈𝑣7
+  d ∈𝑈𝑣7

−  d ∉𝑂𝑣7
 

𝑣8 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣8
= ∅ d ∈𝐼𝑣8

 d ∉𝑈𝑣8
+  d ∉𝑈𝑣8

−  d ∉𝑂𝑣8
 

𝑣9 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣9
= ∅ d ∉𝐼𝑣9

 d ∈𝑈𝑣9
+  d ∉𝑈𝑣9

−  d ∉𝑂𝑣9
 

𝑣10  𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣10
= ∅ d ∉𝐼𝑣10

 d ∉𝑈𝑣10
+  d ∉𝑈𝑣10

−  d ∉𝑂𝑣10
 

Table 6.1: The States of Each Activity in Figure 6.1. 

 

 

Figure 6.2: The Artifact Flow Diagram for d. 
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 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  𝐸𝐼𝑁 ′

𝑣
𝑑

 𝑃𝐼𝑁 ′
𝑣
𝑑

 𝑆𝑒𝑛𝑑𝑣
𝑑  𝐸𝑂𝑈𝑇 ′

𝑣
𝑑
 𝑃𝑂𝑈𝑇 ′

𝑣
𝑑

 

𝑣1 ∅ ∅ ∅ {𝑣2,𝑣3,𝑣8} {n2} {n1} 

𝑣2 {𝑣1} {𝑣1} ∅ {𝑣4,𝑣5,𝑣6} {n3} ∅ 

𝑣3 {𝑣1} {𝑣1} ∅ ∅ ∅ ∅ 

𝑣4 {𝑣2} {𝑣2} ∅ {𝑣7} {𝑣7} ∅ 

𝑣5 {𝑣2} {𝑣2} ∅ {𝑣7} {𝑣7} ∅ 

𝑣6 {𝑣2} {𝑣2} ∅ {𝑣7} {𝑣7} ∅ 

𝑣7 {𝑣4,𝑣5,𝑣6} {n4} ∅ ∅ ∅ ∅ 

𝑣8 {𝑣1} {𝑣1} ∅ ∅ ∅ ∅ 

𝑣9 ∅ ∅ ∅ ∅ ∅ ∅ 

Table 6.2: The States of Each Activity in Figure 6.2. 

 

 

 Conditions Artifact Usage Anomaly 

𝑣3 𝑅𝑜𝑙𝑒𝑣3
𝑑  = Relevantor ∧  𝐸𝐼𝑁 ′

𝑣3

𝑑   = 1 Redundant Pass 

𝑣9 𝑅𝑜𝑙𝑒𝑣9
𝑑  = Producer ∧  𝐸𝑂𝑈𝑇 ′

𝑣9

𝑑   =  𝑃𝑂𝑈𝑇 ′
𝑣9

𝑑   = 0  Redundant Initialization 

Table 6.3: The Anomalies Occur in Figure 6.2. 

 

 

6.1 Activity Modification 

 In this section, the artifact flow diagram in Figure 6.2 is updated due to the following 

edit operations: (1) Modifying 𝑣9, (2) Modifying 𝑣8, and (3) Modifying 𝑣2, in order. After 

each edit operation, the updated artifact flow diagrams are showed in Figure 6.3, 6.4, and 6.5. 
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1. Modifying 𝒗𝟗: 𝑅𝑜𝑙𝑒𝑣9
𝑑  = Producer → Irrelevantor 

After modification, activity 𝑣9 becomes an irrelevantor of d. Therefore, 𝑣9 is removed 

from the artifact flow diagram in Figure 6.3. 

 

 

Figure 6.3: The Artifact Flow Diagram After Modifying 𝑣9. 
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Table 6.4: The Anomalies Occur in Figure 6.3. 
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2. Modifying 𝒗𝟖: 𝑅𝑜𝑙𝑒𝑣8
𝑑  = Reader → Relevantor 

After modifying, 𝑣8 becomes a relevantor of d and a redundant pass anomaly occurs at 

𝑣8. 

 

 

Figure 6.4: The Artifact Flow Diagram After Modifying 𝑣8. 

 

 

 Conditions Artifact Usage Anomaly 

𝑣3 𝑅𝑜𝑙𝑒𝑣3
𝑑  = Relevantor ∧  𝐸𝐼𝑁 ′

𝑣3

𝑑   = 1 Redundant Pass 

𝒗𝟖 𝑹𝒐𝒍𝒆𝒗𝟖
𝒅  = Relevantor ∧  𝑬𝑰𝑵′

𝒗𝟖

𝒅   = 1 Redundant Pass 

Table 6.5: The Anomalies Occur in Figure 6.4. 
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3. Modifying 𝒗𝟐: 𝑅𝑜𝑙𝑒𝑣2
𝑑  = Updater → Destroyer  

After modification, 𝑣2 becomes a destroyer of d and a destroyed artifact anomaly 

occurs at 𝑣2.  

 

 

 

Figure 6.5: The Artifact Flow Diagram After Modifying 𝑣2. 

 

 

 Conditions Artifact Usage Anomaly 

𝑣3 𝑅𝑜𝑙𝑒𝑣3
𝑑  = Relevantor ∧  𝐸𝐼𝑁 ′

𝑣3

𝑑   = 1 Redundant Pass 

𝑣8 𝑅𝑜𝑙𝑒𝑣8
𝑑  = Relevantor ∧  𝐸𝐼𝑁 ′

𝑣8

𝑑   = 1 Redundant Pass 

𝒗𝟐 𝑅𝑜𝑙𝑒𝑣2
𝑑  = Destroyer ∧  𝑬𝑶𝑼𝑻′

𝒗𝟐

𝒅   = 1 Destroyed Artifact 

Table 6.6: The Anomalies Occur in Figure 6.5. 
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6.2 Pass Insertion 

 

In this section, the artifact flow diagram in Figure 6.2 is updated due to the following 

edit operations: (1) Adding Pass(d, 𝑣10 ) into 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣9
, (2) Adding Pass(d, 𝑣6 ) into 

𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣3
, and (3) Adding Pass(d, 𝑣6) into 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣8

, in order. After each edit operation, 

the updated artifact flow diagrams are showed in Figure 6.6, 6.7, and 6.8. 

 

 

1. Adding Pass(d, 𝒗𝟏𝟎) into 𝑷𝒂𝒔𝒔𝑳𝒊𝒔𝒕𝒗𝟗
: 

After adding, flow (𝑣9, 𝑣10) and activity 𝑣10  are added into the artifact flow diagram in 

Figure 6.6. Then UpdateOutflows(𝑣9, d) is executed to construct XBNode in 𝑃𝑂𝑈𝑇𝑣9
𝑑  and 

update (𝑣9, 𝑣10).outBlock. UpdateInflows(𝑣10 , d) is executed to construct XBNode in 𝑃𝐼𝑁𝑣10
𝑑  

and update ( 𝑣9 , 𝑣10 ).inBlock. The methods of updating outBlock and inBlock and 

construction of XBNodes have described in Section 5.3. Hence, the results of outBlock, 

inBlock, and XBNodes are showed in Figure 6.6 without detailed explanation. In Figure 6.6, a 

conditional XBNode n5 is constructed in 𝑃𝐼𝑁 ′
𝑣10

𝑑
, (𝑣9, 𝑣10 ).outBlock = Null, and (𝑣9, 

𝑣10).inBlock = n5. 

 

 Since 𝑣10  is a relevantor and  𝐸𝐼𝑁 ′
𝑣10

𝑑   = 0 and  𝑃𝐼𝑁 ′
𝑣10

𝑑   = 1, an implicit missing 

artifact anomaly occurs at 𝑣10 . In addition, because 𝑣10  is a relevantor and  𝑃𝐼𝑁 ′
𝑣10

𝑑   = 1, a 

redundant pass anomaly also occurs at 𝑣10 . The anomalies occur in Figure 6.6 are shows in 

Table 6.8. 
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Figure 6.6: The Artifact Flow Diagram After Adding Pass(d, 𝑣10) into 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣9
. 
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𝑣9 ∅ ∅ ∅ {𝒗𝟏𝟎} {𝒗𝟏𝟎} ∅ 

𝒗𝟏𝟎 {𝒗𝟗} ∅ {n5} ∅ ∅ ∅ 

Table 6.7: The States of Activities 𝑣9 and 𝑣10  in Figure 6.6. 

 

 

 Conditions Artifact Usage Anomaly 

𝑣3 𝑅𝑜𝑙𝑒𝑣3
𝑑  = Relevantor ∧  𝐸𝐼𝑁 ′

𝑣3

𝑑   = 1 Redundant Pass 

𝒗𝟏𝟎 𝑹𝒐𝒍𝒆𝒗𝟏𝟎
𝒅 = Relevantor ∧  𝑬𝑰𝑵′

𝒗𝟏𝟎

𝒅  = 0 ∧  𝑷𝑰𝑵′
𝒗𝟏𝟎

𝒅  = 1 Implicit Missing Artifact 

𝒗𝟏𝟎 𝑹𝒐𝒍𝒆𝒗𝟏𝟎
𝒅 = Relevantor ∧  𝑷𝑰𝑵′

𝒗𝟏𝟎

𝒅   = 1 Redundant Pass 

Table 6.8: The Anomalies Occur in Figure 6.6. 
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2. Adding Pass(d, 𝒗𝟔) into 𝑷𝒂𝒔𝒔𝑳𝒊𝒔𝒕𝒗𝟑
: 

After insertion, flow (𝑣3, 𝑣6) is added into the artifact flow diagram in Figure 6.7. Since 

 𝐸𝐼𝑁 ′
𝑣6

𝑑   = 2, an explicit artifact conflict anomaly occurs at 𝑣6. 

 

 

 

Figure 6.7: The Artifact Flow Diagram After Adding Pass(d, 𝑣6) into 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣3
. 
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𝑣3 {𝑣1} {𝑣1} ∅ {𝒗𝟔} {𝒗𝟔} ∅ 

𝑣6 {𝑣2, 𝒗𝟑} {𝑣2, 𝒗𝟑} ∅ {𝑣7} {𝑣7} ∅ 

Table 6.9: The States of Activities 𝑣3 and 𝑣6 in Figure 6.7. 
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n1 
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n3 

n4 
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 Conditions Artifact Usage Anomaly 

𝑣3 𝑅𝑜𝑙𝑒𝑣3
𝑑 = Relevantor ∧  𝐸𝐼𝑁 ′

𝑣3

𝑑   = 1 Redundant Pass 

𝑣10  𝑅𝑜𝑙𝑒𝑣10
𝑑 = Relevantor ∧  𝐸𝐼𝑁 ′

𝑣10

𝑑   = 0 ∧  𝑃𝐼𝑁 ′
𝑣10

𝑑   = 1 Implicit Missing Artifact 

𝑣10  𝑅𝑜𝑙𝑒𝑣10
𝑑 = Relevantor ∧  𝑃𝐼𝑁 ′

𝑣10

𝑑   = 1 Redundant Pass 

𝒗𝟔  𝑬𝑰𝑵′
𝒗𝟔

𝒅   = 2 Explicit Artifact Conflict 

Table 6.10: The Anomalies Occur in Figure 6.7. 

 

 

3. Adding Pass(d, 𝒗𝟔) into 𝑷𝒂𝒔𝒔𝑳𝒊𝒔𝒕𝒗𝟖
: 

Since 𝑣6 and 𝑣8 are exclusive activities, an XOR flow (𝑣6, 𝑣8) is added into the 

artifact flow diagram in Figure 6.8 and a passing between exclusive activities anomaly occurs 

at 𝑣8. 

 

 

Figure 6.8: The Artifact Flow Diagram After Adding Pass(d, 𝑣6) into 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣8
. 
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 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  𝐸𝐼𝑁 ′

𝑣
𝑑

 𝑃𝐼𝑁 ′
𝑣
𝑑

 𝑆𝑒𝑛𝑑𝑣
𝑑  𝐸𝑂𝑈𝑇 ′

𝑣
𝑑
 𝑃𝑂𝑈𝑇 ′

𝑣
𝑑
 

𝑣6 {𝑣2, 𝒗𝟖} {𝑣2} ∅ {𝑣7} {𝑣7} ∅ 

𝑣8 {𝑣1} {𝑣1} ∅ {𝒗𝟔} ∅ ∅ 

Table 6.11: The States of Activities 𝑣6 and 𝑣8 in Figure 6.8. 

 

 Conditions Artifact Usage Anomaly 

𝑣3 𝑅𝑜𝑙𝑒𝑣3
𝑑 = Relevantor ∧  𝐸𝐼𝑁 ′

𝑣3

𝑑   = 1 Redundant Pass 

𝑣10  𝑅𝑜𝑙𝑒𝑣10
𝑑 = Relevantor ∧  𝐸𝐼𝑁 ′

𝑣10

𝑑   = 0 ∧  𝑃𝐼𝑁 ′
𝑣10

𝑑   = 1 Implicit Missing Artifact 

𝑣10  𝑅𝑜𝑙𝑒𝑣10
𝑑 = Relevantor ∧  𝑃𝐼𝑁 ′

𝑣10

𝑑   = 1 Redundant Pass 

𝑣6  𝐸𝐼𝑁 ′
𝑣6

𝑑   = 2 Explicit Artifact Conflict 

𝒗𝟖 IsExclusive(𝒗𝟖, 𝒗𝟔) = true Passing between Exclusive 

Activities 

Table 6.12: The Anomalies Occur in Figure 6.8. 

 

 

6.3 Pass Deletion 

 

In this section, the artifact flow diagram in Figure 6.2 is updated due to the following 

edit operations: (1) Removing Pass(d, 𝑣8) from 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣1
, (2) Removing Pass(d, 𝑣7) from 

𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣4
, and (3) Removing Pass(d, 𝑣3) from 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣1

, in order. After each edit 

operation, the updated artifact flow diagrams are showed in Figure 6.9, 6.10, and 6.11. 

 

1. Removing Pass(d, 𝒗𝟖) from 𝑷𝒂𝒔𝒔𝑳𝒊𝒔𝒕𝒗𝟏
: 

After removing, flow (𝑣1, 𝑣8) is removed from the artifact flow diagram in Figure 6.9. 

Then UpdateOutflows(𝑣1, d) is executed to build XBNodes in 𝑃𝑂𝑈𝑇𝑣1
𝑑  and update outBlock 
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of outflows of 𝑣1. UpdateInflows(𝑣8, d) is executed to build XBNode in 𝑃𝐼𝑁𝑣8
𝑑  and update 

inBlock of inflows of 𝑣8. In Figure 3.9, n2 becomes a conditional XBNode and is moved to 

𝐸𝑂𝑈𝑇 ′
𝑣1

𝑑
 from 𝑃𝑂𝑈𝑇 ′

𝑣1

𝑑
. In addition, because 𝑣8  is a reader of d and  𝐸𝐼𝑁 ′

𝑣8

𝑑   = 

 𝑃𝐼𝑁 ′
𝑣8

𝑑  = 0, an explicit missing artifact anomaly occurs at 𝑣8. 

 

 

Figure 6.9: The Artifact Flow Diagram After Removing Pass(d, 𝑣8) from 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣1
. 

 

 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  𝐸𝐼𝑁 ′

𝑣
𝑑

 𝑃𝐼𝑁 ′
𝑣
𝑑

 𝑆𝑒𝑛𝑑𝑣
𝑑  𝐸𝑂𝑈𝑇 ′

𝑣
𝑑
 𝑃𝑂𝑈𝑇 ′

𝑣
𝑑
 

𝑣1 ∅ ∅ ∅ {𝑣2, 𝑣3} ∅ {n1, n2} 

𝑣8 ∅ ∅ ∅ ∅ ∅ ∅ 

Table 6.13: The States of Activities 𝑣1 and 𝑣8 in Figure 6.9. 

 

 Conditions Artifact Usage Anomaly 

𝑣3 𝑅𝑜𝑙𝑒𝑣3
𝑑  = Relevantor ∧  𝐸𝐼𝑁 ′

𝑣3

𝑑   = 1 Redundant Pass 

𝑣9 𝑅𝑜𝑙𝑒𝑣9
𝑑  = Producer ∧  𝐸𝑂𝑈𝑇 ′

𝑣9

𝑑   =  𝑃𝑂𝑈𝑇 ′
𝑣9

𝑑   = 0  Redundant Initialization 

𝒗𝟖 𝑹𝒐𝒍𝒆𝒗𝟖
𝒅  = Reader ∧  𝑬𝑰𝑵′

𝒗𝟖

𝒅   =  𝑷𝑰𝑵′
𝒗𝟖

𝒅   = 0  Explicit Missing Artifact 

Table 6.14: The Anomalies Occur in Figure 6.9. 

𝑣1 
Producer 

𝑣2 
Updater 

𝑣3 
Relevantor 

𝑣8 
Reader 

𝑣4 
Reader 

𝑣5 
Reader 

𝑣6 
Updater 

𝑣7 
Destroyer 

𝑣9 
Producer 

n1 

n2 

n3 

n4 
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2. Removing Pass(d, 𝒗𝟕) from 𝑷𝒂𝒔𝒔𝑳𝒊𝒔𝒕𝒗𝟒
: 

The flow (𝑣4, 𝑣7) is removed from the artifact flow diagram in Figure 6.10. XBNode n4 

becomes a conditional XBNode and is moved to 𝑃𝐼𝑁 ′
𝑣7

𝑑
 from 𝐸𝐼𝑁 ′

𝑣7

𝑑
. Since 𝑣7  is a 

destroyer,  𝐸𝐼𝑁 ′
𝑣7

𝑑   = 0, and  𝑃𝐼𝑁 ′
𝑣7

𝑑   = 1, an implicit missing artifact anomaly occurs at 𝑣7. 

 

 

 

Figure 6.10: The Artifact Flow Diagram After Removing Pass(d, 𝑣7) from 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣4
. 

 

 

 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  𝐸𝐼𝑁 ′

𝑣
𝑑

 𝑃𝐼𝑁 ′
𝑣
𝑑

 𝑆𝑒𝑛𝑑𝑣
𝑑  𝐸𝑂𝑈𝑇 ′

𝑣
𝑑
 𝑃𝑂𝑈𝑇 ′

𝑣
𝑑
 

𝑣4 {𝑣2} {𝑣2} ∅ ∅ ∅ ∅ 

𝑣7 {𝑣5, 𝑣6} ∅ {n4} ∅ ∅ ∅ 

Table 6.15: The States of Activities 𝑣4 and 𝑣7 in Figure 6.10. 
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n1 

n2 

n3 
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 Conditions Artifact Usage Anomaly 

𝑣3 𝑅𝑜𝑙𝑒𝑣3
𝑑  = Relevantor ∧  𝐸𝐼𝑁 ′

𝑣3

𝑑   = 1 Redundant Pass 

𝑣9 𝑅𝑜𝑙𝑒𝑣9
𝑑  = Producer ∧  𝐸𝑂𝑈𝑇 ′

𝑣9

𝑑   =  𝑃𝑂𝑈𝑇 ′
𝑣9

𝑑   = 0 Redundant Initialization 

𝑣8 𝑅𝑜𝑙𝑒𝑣8
𝑑  = Reader ∧  𝐸𝐼𝑁 ′

𝑣8

𝑑   =  𝑃𝐼𝑁 ′
𝑣8

𝑑   = 0  Explicit Missing Artifact 

𝒗𝟕 𝑹𝒐𝒍𝒆𝒗𝟕
𝒅  = Destroyer ∧  𝑬𝑰𝑵′

𝒗𝟕

𝒅   = 0 ∧  𝑷𝑰𝑵′
𝒗𝟕

𝒅   = 1  Implicit Missing Artifact 

Table 6.16: The Anomalies Occur in Figure 6.10. 

 

 

3. Removing Pass(d, 𝒗𝟑) from 𝑷𝒂𝒔𝒔𝑳𝒊𝒔𝒕𝒗𝟏
: 

After removing, flow (𝑣1, 𝑣3) is removed from the artifact flow diagram in Figure 6.11. 

Since 𝑣3 becomes an irrelevantor of d, 𝑣3 is also removed. After construction XBNodes in 

𝑃𝑂𝑈𝑇𝑣1
𝑑 , only n1 exists in 𝑃𝑂𝑈𝑇 ′

𝑣1

𝑑
. There is no anomaly causing by this edit operation. 

 

 

Figure 6.11: The Artifact Flow Diagram After Removing Pass(d, 𝑣3) from 𝑃𝑎𝑠𝑠𝐿𝑖𝑠𝑡𝑣1
. 
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 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑣
𝑑  𝐸𝐼𝑁 ′

𝑣
𝑑

 𝑃𝐼𝑁 ′
𝑣
𝑑

 𝑆𝑒𝑛𝑑𝑣
𝑑  𝐸𝑂𝑈𝑇 ′

𝑣
𝑑
 𝑃𝑂𝑈𝑇 ′

𝑣
𝑑
 

𝑣1 ∅ ∅ ∅ {𝑣2} ∅ {n1} 

𝑣3 ∅ ∅ ∅ ∅ ∅ ∅ 

Table 6.17: The States of Activities 𝑣1 and 𝑣3 in Figure 6.11. 

 

 

 Conditions Artifact Usage Anomaly 

𝑣3 𝑅𝑜𝑙𝑒𝑣3
𝑑  = Relevantor ∧  𝐸𝐼𝑁 ′

𝑣3

𝑑   = 1 Redundant Pass 

𝑣9 𝑅𝑜𝑙𝑒𝑣9
𝑑  = Producer ∧  𝐸𝑂𝑈𝑇 ′

𝑣9

𝑑   =  𝑃𝑂𝑈𝑇 ′
𝑣9

𝑑   = 0 Redundant Initialization 

𝑣8 𝑅𝑜𝑙𝑒𝑣8
𝑑  = Reader ∧  𝐸𝐼𝑁 ′

𝑣8

𝑑   =  𝑃𝐼𝑁 ′
𝑣8

𝑑   = 0  Explicit Missing Artifact 

𝑣7 𝑅𝑜𝑙𝑒𝑣7
𝑑  = Destroyer ∧  𝐸𝐼𝑁 ′

𝑣7

𝑑   = 0 ∧  𝑃𝐼𝑁 ′
𝑣7

𝑑   = 1  Implicit Missing Artifact 

Table 6.18: The Anomalies Occur in Figure 6.11. 
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Chapter 7.  Comparisons 

 

7.1 Comparison of Artifact Transmission Models 

 

 In GDS, there is a common anomaly called race condition anomaly. A race condition 

anomaly occurs when multiple activities try to use the same artifact in parallel. Each artifact is 

only allowed to have one instance in GDS. Therefore, different versions of an artifact exist 

when this anomaly occurs [15]. 

 

In DCDC and ICDC, this anomaly does not occur because the parallel activities use 

different copies of an artifact. Figure 7.1 shows an example of a race condition anomaly in 

GDS. Parallel activities 𝑣2 and 𝑣3 update artifact d which is initialized by 𝑣1. Then 𝑣4 

reads d which is updated by 𝑣2 and 𝑣3. According to different execution orders of 𝑣2 and 

𝑣3, different versions of d exist. Therefore, a race condition anomaly occurs at 𝑣2 and 𝑣3. 

 

 

Figure 7.1: A Control Flow in GDS. 

 

 

 d ∉𝐼𝑣1
  d ∈𝑈𝑣1
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  d ∉𝑈𝑣4
+   d ∉𝑈𝑣4
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 If GDS wants to be transferred into DCDC, the designer has to decide that 𝑣2 or 𝑣3 is 

executed first. Figure 7.2 (a) shows the artifact flow diagram if 𝑣2 is selected to execute 

before 𝑣3. Figure 7.2 (b) shows the artifact flow when 𝑣3 is selected to execute before 𝑣2. 

Since the execution order of 𝑣2  and 𝑣3  is decided in design time, the race condition 

anomaly does not occur in run time. Hence, the race condition anomaly does not occur in 

DCDC. 

 

 

Figure 7.2: The Artifact Diagrams for Two Execution Orders. 

 

 In addition, because each artifact in GDS is allowed to have one instance in a workflow, 

the artifact conflict anomalies do not occur in GDS. Since the activities in ICDC always pass 

artifacts to their direct successors, the cross passing anomalies do not occur in ICDC. Table 

7.1 shows the comparison of anomalies occurred in these artifact transmission models. 
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Artifact Usage Anomalies DCDC  ICDC  GDS  

1.1 Explicit Missing Artifact ○ ○ ○ 

1.2 Implicit Missing Artifact ○ ○ ○ 

1.3 Destroyed Artifact ○ ╳ ○ 

2.1 Explicit Artifact Conflict ○ ○ ╳ 

2.2 Implicit Artifact Conflict ○ ○ ╳ 

2.3 Production Conflict ○ ○ ╳ 

3.1 Passing Between Parallel 

Activities 

○ ╳ ○ 

3.2 Passing Between Exclusive 

Activities 

○ ╳ ○ 

4.1 Redundant Update/Initialization ○ ○ ○ 

4.2 Redundant Pass ○ ╳ ╳ 

Race Condition Anomalies ╳ ╳ ○ 

Table 7.1: Comparison of Artifact Transmission Models. 

 

 

7.2 Comparison of Artifact Analysis Approaches 

 

 Since our previous work only discusses artifact usage anomalies in GDS, the following 

anomalies: (2.1) Explicit Artifact Conflict, (2.2) Implicit Artifact Conflict, (2.3) Production 

Conflict, and (4.2) Redundant Pass, do not occur.  

 

 In previous work, (1) No Production anomaly occurs when an artifact d is used by at 

least one activity; however, no producer of d exists in the process. (2) Delayed Production 
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anomaly occurs when an artifact d is used by an activity which precedes every producer of d. 

In the two cases, these activities are missing artifacts explicitly. Therefore, they belong to (1.1) 

Explicit Missing Artifact in this thesis. 

 

 (6) Conditional Production anomaly occurs when an artifact d is produced conditionally 

before an activity using d. The activity may miss the artifact d. Hence, this anomaly belongs 

to (1.2) Implicit Missing Artifact. 

 

 (3) Early Destruction, (7) Conditional Destruction, and (8) Uncertain Destruction 

anomalies occur when an artifact d is destroyed before an activity using it. Therefore, they 

belong to (1.3) Destroyed Artifact. 

 

 (5) Uncertain Production anomaly occurs when two parallel activities, one is a producer 

of artifact d and another uses d. The artifact d is transferred between these two parallel 

activities. Hence, this anomaly belongs to (3.1) Passing between Parallel Activities. On the 

other hand, (4) Exclusive Production anomaly belongs to (3.2) Passing between Exclusive 

Activities. 

 

 (9) Explicit Redundant Update and (10) Potential Redundant Update anomalies occur 

when an artifact d is updated by an activity and the result is unused for all succeeding 

activities. Hence, they belongs to (4.1) Redundant Update/Initialization. 

 

 Finally, (11) Multiple Parallel Productions, (12) Multiple Parallel Updates, (13) Parallel 

Read and Update anomalies occur due to race condition. Therefore, they do not occur in our 

model. Table 7.2 shows the comparison of the anomalies addressed in [15] and our work.  
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Artifact Anomalies in this thesis Artifact Usage Anomalies in [15] 

1.1 Explicit Missing Artifact (1)No Production, (2)Delayed Production 

1.2 Implicit Missing Artifact (6)Conditional Production 

1.3 Destroyed Artifact (3)Early Destruction, (7)Conditional Destruction,  

(8)Uncertain Destruction 

2.1 Explicit Artifact Conflict - 

2.2 Implicit Artifact Conflict - 

2.3 Production Conflict - 

3.1 Passing between Parallel 

Activities 

(5)Uncertain Production 

3.2 Passing between Exclusive 

Activities 

(4)Exclusive Production 

4.1 Redundant Update/Initialization (9)Explicit Redundant Update, (10)Potential 

Redundant Update 

4.2 Redundant Pass - 

Race Condition Anomalies (11)Multiple Parallel Productions, (12)Multiple 

Parallel Updates, (13)Parallel Read and Update 

Table 7.2: Comparison of the Artifact Usage Anomalies Addressed. 

 

 In previous work, a control flow diagram is proposed to represent a process. The 

concerned artifact operations include: Initialize, Read, Update, and Destroy. The artifact 

transmission is discussed in GDS. Besides, a batch algorithm is introduced to traversal a 

control flow and detects anomalies.  
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In our work, we not only propose a process model but also introduce an artifact flow 

diagram to represent artifact usages and transmissions. Since, the artifact transmissions are 

discussed in DCDC, each activity in DCDC can decide where artifacts are passed. Therefore, 

an additional artifact operation, pass, is concerned in our model.  

 

Finally, this thesis presents several edit operations for editing a process. The effects on an 

artifact flow diagram for each edit operation are also discussed and the incremental algorithms 

are proposed to maintain the artifact flow diagram. Artifact usage anomalies can be identified 

according to the updated artifact flow diagram. Table 7.3 shows the summary of comparisons 

with previous work. 

 

 

 This Work Previous Work [15] 

Fundamental Model Well-formed Process Model + 

Artifact flow Diagram 

Control flow Diagram 

Artifact Transmission 

Model 

Distinct Control and Data 

Channels (DCDC) 

Global Data Store (GDS) 

Artifact Operations Initialize, Read, Update, 

Destroy, Pass 

Initialize, Read, Update, Destroy 

Detecting 

Methodology 

Incremental Batch 

Table 7.3: Comparison with Previous Work. 
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Chapter 8.  Conclusion 

 

 The main contribution of this thesis is to introduce an artifact usage analysis technique 

into workflow design phase. To achieve this goal, this thesis presents a process model for 

describing a well-formed workflow with DCDC and introduces an artifact flow diagram to 

represent artifact usages and transmissions in a workflow. According to the artifact flow 

diagram, the artifact usage anomalies observed are described. Finally, the incremental 

algorithms are proposed to maintain the artifact flow diagram and detect artifact usage 

anomalies to help the editing of such a workflow. Their time complexities are also studied. 

 

 In the future, we plan to design the formal algorithms for transferring the behaviors of 

artifact transmissions in GDS and ICDC to DCDC, so that we can detect artifact usage 

anomalies in GDS and ICDC with our work. In addition, we also plan to implement the 

proposed model and algorithms on current workflow management systems, so that our 

research result can be tested in real-world applications.  
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