#* DCDC Model K gr® riesiz By i@

Detecting Artifact Usage Anomalies

in High-level Software Incrementally with DCDC Model

TERB ht+t FNAA



i# % DCDC Model kif3g 473 rifestz B ¥ @& »

Detecting Artifact Usage Anomalies
in High-level Software Incrementally with DCDC Model

ForoA L RER Student : Chien-Chih Lin
hrg:2¥y Advisor : Feng-Jian Wang
Bz~ F
AN S S G- R A S
L e
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science

August 2008

Hsinchu, Taiwan, Republic of China



PR R4 L E AN
#* DCDC Model
KM P LT RN B YR

Frd fhEs R 28T 4

Bz« F
TRAHE e YT
ML owm o2

2

1A d - kit e AT (T SRR A R T g A TR

PRSI A e B FRIF TR 71T r 7 Adand o Ra 1 I8/5487 i ¢
3R F TS AW bR bldeo BARFAT TR AR F R

oA d rREE T AR > TALA 3755 & AT 4% BAp M el et o
Thwme &N - BonARE e f ik - B Well-formed 1 iF/5 480 15— % +¢7 DCDC Model
AT M FenT AL F By o FP AP N T - bnE N g B2 3 W e

TR R Foooupes i w —%" I TSR ARZ iR o

BE&EF @ 1 T4 - ﬁ?#‘m A~ #’Q‘rﬂ/m‘ ?7}«'-‘ ?7}«'—,” \Lu_,i‘g/é’]t‘r B



Detecting Artifact Usage Anomalies
In High-level Software Incrementally with DCDC
Model

Student: Chien-Chih Lin Advisor: Dr. Feng-Jian Wang
Institute of Computer Science and Engineering
National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu, Taiwan, ROC

Abstract

Workflow is a set of tasks which are systematized to achieve certain business goal(s),
complete where each task is executed in a particular order under automatic control. Artifacts,
collections of data items, are necessary for.workflow implementation and support process
execution. However, a workflow may yield unexpected results in execution due to improper
artifact manipulation; e.g. activities miss artifact, or artifact conflict occurs at an activity in
run time. Therefore, the analyses on artifact usage in design phase are very important. This
thesis presents a process model, named DCDC model, to describe a well-formed workflow.
There are four types of artifact usage anomalies in DCDC identified. To help the edit of a
process, the corresponding incremental algorithms are presented to detect these anomalies.

Their time complexities are also studied.

Keywords: work flow, business process, control flow, artifact, artifact flow, incremental

analysis, anomalies.



A

Ak A F AR R EE G B2 $ R LG & R g endy BB
BN ARG ATE 3 AR @RI WG ek @ AT L A BRI FALR Y B
FIBIRE T4 AF R AR Er 2 F AR A TH L2 D B L

REFSFHOLL 0 A EAH 2 @A LA o

A ARR MR OEEY P AT 2R B R £ LY B L

;E&ffﬁf\,,li?ﬁ:}e ’ ?gi\.gxﬂf % l;&pjb o ] /z‘frﬁj"j , Iﬂ'/"@"’f mfﬂ?‘jypm R
Bofs o AR RHMANFA D NAE PO Ee AR F L IR L

’3‘1’3‘1‘P\?'ﬂ}9/€ﬁ—1 IT'!H-AIFQYTJ;}T ) N8 P IRITPE R T #Eﬁ?&T‘ E‘.@iﬂifﬁ? o o ?\/ TIT

i R B Tj\fp 1\.K@{,1g,‘,p 4;&8 5



Table of Contents

BB e [
ADSIFACT ... h bbbttt e e ereas i
L TSRS iii
TaDIE OF CONTENES ...t eb ettt \Y
LISE OF TADIES ... bbb vi
LSE OF FIQUIES ..ottt ettt etttk eb bbbt ettt ne e viii
Chapter 1. INTrOTUCTION .......ooviiiiieiieieie et 1
Chapter 2. Related WOTK ..o et 3
2.1. Artifact TransmisSioN MOGEIS .........ccviiiiiiiiieiee s 3

2.2. Previous WOTK ..o it lafine oot .5
Chapter 3. A Process Model Based on Well=formed WOrkflow ..............cccccevevviiiiieiicciennnn, 7
3.1. Control FIOW SPeCifiCatiON &uueie e cstaiein et skt e eie e stee e e este e sraesee e eees 7

3.2. Relations between Activities and CoNtrol BIOCKS ..............cccccoviiiiniiiiiiice 15

3.3. Artifact Flow Diagram SpeCifiCatION e vt e ieeiie e 17
3.3.1. Artifact Operations and USAQES ........ccceveerieeirieerieiieeseeieseesee e e erae s e 18

3.3.2. Artifact FIOW DIagrams ........cccooveieeieiie it 21

3.3.3. An Example of an Artifact Flow Diagram ...........ccccceevevinveiiicn v 28

Chapter 4. Artifact Usage ANOMANIES .........cccveiiiiiiiece e 31
4.1. Missing Artifact ANOMALIES .......cccoovviiiiie e e 31

4.2. Artifact Conflict ANOMANIES ........ooiviiiiieie s 33

4.3. Cross Passing Artifact ANOMAlies ..........cccoeiviiiiiieiiec e 36

4.4. Redundant ANOMALIES ........cviiiiiie e 38
Chapter 5. Incremental Algorithms for Anomalies Detection ...........cccccovvveveiie e, 41
5.1. Edit Operations fOr @ PIOCESS ........ccciiiiiiiiie ettt 41



5.2. Incremental Algorithms to Detect Artifact Usage Anomalies ..........ccccooveovivinnnnenn. 45

5.3. Algorithms to Update an Artifact FIow Diagram .........ccccooeeeniiininenine s 49
5.3.1. Construction Of XBNOUES .........ccccereririiirinie e 49

5.3.2. Update of the Properties Of FIOWS ..........c.ccoooiiiiiininiiciccce e 55

5.3.3. An Example for Illustration of Updating an Artifact Flow Diagram ............ 60

5.4. Algorithms to Detect Artifact Usage AnOMAlIEs ..........ccoceveiiiiieie i 64
Chapter 6. Examples for Illustrating Incremental Algorithms ..., 68
6.1. ACHIVILY MOGITICATION ...o.viiiiiiieceiit e 70

6.2, PASS TNSEITION .....ouiitiiictiit ettt b et 74

6.3. PSS DEIBLION ... 78
Chapter 7. COMPAIISONS ......ccuviieeie ittt gttt es et esee s esbe s es e ss et sb et sb e b et e e e ane e e enes 83
7.1. Comparison of Artifact Transmission MOdelS tuu......cooveieeieiie e 83

7.2. Comparison of Artifact Analysis APPrOaChEs ...ii..ccveveeeeriiiecieee s ese e 85
Chapter 8. CONCIUSION ....cveiueiie et ieathe e sdeassnnsassnssnss e es s dakse seesseesseessnssesssessenssessesssesssessennsensen 89
REfErence .......coovvvvcnineccncrneee S B e 90



List of Tables

Table 3.1: The States of Each ACtiVity IN FIQUIE 3.7 ..o 29
Table 3.2: The States of Each XBNode in FIgure 3.8 ........cccooeiiiiienienee e 30
Table 5.1: Edit Operations fOr @ PrOCESS ........ccooiiiiiriiiii et 41
Table 5.2: Construction of XBNodes in BuildXBNodes(POUT,2, vy, XOUTZ) .................. 62
Table 5.3: The States of Each XBNode in XOUTZ ..o, 62
Table 6.1: The States of Each ACtivity in FIQUIe 6.1 ........cccocoveriiiiiiiieie e 69
Table 6.2: The States of Each ACtiVity in FIQUIE 6.2 .........cooeiiiiiniierce e 70
Table 6.3: The Anomalies OCCUN IN FIQUIE 6.2 ......c.coeiiiiiiiieis e 70
Table 6.4: The Anomalies OCCUr IN FIQUIE 6.3 ......ccoiiiiiiiiiiie e 71
Table 6.5: The Anomalies OCCUr IN FIQUIE B:4 1iiilia . ivoie it s 72
Table 6.6: The Anomalies Occur INFIGUIE 6.5 .. i i it 73
Table 6.7: The States of Activities- vo and v1o ANFIQUIE 6.6 ..........ccceevvvviviiececieeee e, 75
Table 6.8: The Anomalies Occur INFRIGUIE 6.6 L. .o .ot 75
Table 6.9: The States of Activities v3; anth wg INFIQUIE 6.7 ......ccoovvvivieciececcece e, 76
Table 6.10: The Anomalies OCCUr iN FIGUIE 6.7 .....c.coveieiiice et 77
Table 6.11: The States of Activities vy and vg INFigure 6.8 ........ccoovevveeviivcccecce e, 78
Table 6.12: The Anomalies Occur in FIQUIE 6.8 ........ccovevviiiiiiecie e, 78
Table 6.13: The States of Activities v; and vg INFigure 6.9 ........ccooveieiiiveceeceecece e, 79
Table 6.14: The Anomalies OCCUr iN FIGUIE 6.9 .......c.coeeiiiiieiiicce e 79
Table 6.15: The States of Activities v, and v, INFigure 6.10 .......ccccooeveeieiiice e, 80
Table 6.16: The Anomalies Occur in FIgUre 6.10 .........c.coiiieiiiicie e 81
Table 6.17: The States of Activities v; and v3 in Figure 6.11 .......c.ccooovivviiece e, 82
Table 6.18: The Anomalies Occur in FIQUIe 6.11 ........cccoovviiieiie e 82
Table 7.1: Comparison of Artifact Transmission MOEIS .........ccccovviiiiie e 85

vi



Table 7.2: Comparison of the Artifact Usage Anomalies Addressed ..........cccevvvvrieninieniinnne

Table 7.3: Comparison With Previous WOTK ........ccccueieiieiiiiiniee e

vii



List of Figures

Figure 2.1: Three Major Artifact Transmission MOEIS ...........ccoeviiiiiiininiec e 3
Figure 3.1: Notations of Control FIOW Graph ..o 12
Figure 3.2: An Example of Control FIOW Graph ... 12
Figure 3.3: Using a Loop Sub-Process Activity to Replace a Loop Structure .............ccceeee. 17
Figure 3.4: An Artifact Flow Diagram without XBNOGES ...........cccceririiineiiniecincecie s 23
Figure 3.5: An Example of Receiving and Sending Sets ..........ccccovviiiiiniininiecece e 25
Figure 3.6: An Artifact Flow Diagram with XBNOGE ..........cccoceiiiiiiiiiiiieeee e 26
Figure 3.7: An Example of a Control FIow Graph ...........ccocoiiiiiiieiii e 28
Figure 3.8: The Corresponding Artifact Flow Diagram for d ...........cccoieiinieinicinicnnn 29
Figure 4.1: An Example of an Explicit Missing Artifact Anomaly ...........cccooveiiinin i 32
Figure 4.2: An Example of an Implicit Missing Artifact Anomaly ...........cccoooveeevevniicieennns 32
Figure 4.3: An Example of a Destroyed Artifact ANOMalY ............cccovereeierievniiecsie e 33
Figure 4.4: An Example of an Explicit Artifact Conflict Anomaly ...........ccccooevvivviiciecnee, 34
Figure 4.5: An Example of an Implicit ‘Artifact Conflict Anomaly ...........ccccoovviiiviiiiiiinn 35
Figure 4.6: An Example of a Production Conflict Anomaly ..........cccccoeieviiieviiecce e, 36
Figure 4.7: An Example of a Passing between Parallel Activities Anomaly ...........c...ccccoene. 37
Figure 4.8: An Example of a Passing between Exclusive Activities Anomaly ....................... 38
Figure 4.9: An Example of a Redundant Update/Initialization Anomaly ............cccccoceveennnnee. 39
Figure 4.10: An Example of a Redundant Pass Anomaly ...........ccccooeveiieviiieese e 40
Figure 5.1: An Example of Building XBNOUES .........ccccoueiiiiiiieciecie e 60
Figure 5.2: The Corresponding Artifact Flow Diagram for d ..........c.ccccoeiviiieie i 61
Figure 6.1: An Example of a Control FIow Graph ...........cccoooveiiiei i, 68
Figure 6.2: The Artifact Flow Diagram for d .........cccocveieiiiiiiii e 69
Figure 6.3: The Artifact Flow Diagram After Modifying vg .....ccceveiiiciiiiiiice e, 71

viii



Figure 6.4: The Artifact Flow Diagram After Modifying vg ....cccovviiiiniiiinin e 72

Figure 6.5: The Artifact Flow Diagram After Modifying v, ..o 73
Figure 6.6: The Artifact Flow Diagram After Adding Pass(d, vyo) into PassList,, .......... 75
Figure 6.7: The Artifact Flow Diagram After Adding Pass(d, vg) into PassList,, .......... 76
Figure 6.8: The Artifact Flow Diagram After Adding Pass(d, vg) into PassList,, ........... 77

Figure 6.9: The Artifact Flow Diagram After Removing Pass(d, vg) from PassList,, ...... 79
Figure 6.10: The Artifact Flow Diagram After Removing Pass(d, v;) from PassList,, .... 80
Figure 6.11: The Artifact Flow Diagram After Removing Pass(d, v;) from PassList,, ... 81
Figure 7.1: A Control FIOW N GDS ......cooiiiiiiie e 83

Figure 7.2: The Artifact Diagrams for Two Execution Orders ............coceovrereineneineneennns 84



Chapter 1. Introduction

Workflow is a set of tasks which are systematized to achieve certain business goals by
completing each task in a particular order under automatic control [1]. On the other hand,
resources are necessary for workflow implementation and support process execution.
Resource allocation and resource constraint analysis [2 - 6] are popular topics of workflow

research. However, data flow within workflow is seldom addressed [7, 8].

Artifacts are collections of data items involved in a process. Introducing analysis of
artifact usage into workflow designs might help maintain data consistency, as well as prevent
the exceptions. In contrast to structural correctness,.accuracy in artifact manipulation can help

determine whether the execution result of amworkflow is meaningful and desirable.

Sadiq et al. [7] presented data flow validation issues in workflow modeling, including
identifying requirements of data modeling. .and seven basic data validation problems:
redundant data, lost data, missing data, mismatched data, inconsistent data, misdirected data,
and insufficient data. However, there is no discussion about any implementation or formal
method to demonstrate how to apply their researches and which types of workflow model are

compatible with their activity-based data model.

Sun et al. [8] presented a data flow analysis framework for detecting data flow anomalies
such as missing data, redundant data, and potential conflicts of data. In addition, several
algorithms were provided to detect anomalies, however, the work is done only based on read

and first initial write operations of an artifact.



Jin Hyun Son [14] defined a well-formed workflow based on the concepts of closure and
control block. He claimed that a well-formed workflow is free from structure errors, and that

complex control flows can be made with nested control blocks.

Aalst [9] identifies three major artifact transmission models in a workflow: (1) Global
Data Store (GDS), (2) Integrated Control and Data Channels (ICDC), and (3) Distinct Control
and Data Channels (DCDC). DCDC is more flexible for representing artifact transmission
than GDS and ICDC. Therefore, this thesis proposes a process model for describing a
well-formed workflow. The artifact transmissions in this model are based on DCDC model

and four types of artifact usage anomalies are addressed.

Further, each artifact in this . model has.a corresponding artifact flow diagram for
representing its transmissions and-usages. This thesis presents a set of incremental algorithms
to update the artifact flow diagrams when designer edits a workflow. By analyzing the
updated artifact flow diagram, the artifact usage anemalies can be detected meanwhile. The

warning messages are provided to the designers if artifact usage anomalies occur.

The remainder of this thesis is organized as follows. Chapter 2 presents the related work.
Chapter 3 presents our process modeling based on well-formed workflow and the artifact flow
diagram. Chapter 4 identifies four types of artifact usage anomalies. Chapter 5 proposes
several incremental algorithms to update artifact flow diagram and detect artifact usage
anomalies. Chapter 6 demonstrates our incremental algorithms with several scenarios.
Chapter 7 compares this thesis with related work. Conclusions and future works are finally

drawn in chapter 8.



Chapter 2. Related Work

To develop an effective and reliable workflow application, a well-defined workflow
model is necessary. The correctness issues in a workflow might be classified into three
dimensions: control flow, resource, and data flow. The analysis of control flow aspect includes
structural correctness focuses on soundless of control logic [10], process model analysis,
workflow patterns [11, 12], and automatic control of workflow process [13], etc. The analysis
of resource aspect includes resource allocation constraints [2], resource availability [3],
resource management [5], and resource modeling [6], etc. The analysis of data flow aspect
includes data flow validation [7], data flow formulation [8], and artifact usage anomalies

detection [8][15], etc,
2.1 Artifact Transmission Models
Aalst [11] identifies three major artifact transmission models in a workflow: (1) Global

Data Store, (2) Integrated Control and Data Channels, and (3) Distinct Control and Data

Channels. These transmission models are illustrated in Figure 2.1.

Dat Data
o~{o 24 P50 1o

(2) Integrated Control and Data Channels

Global Shared Data

A d

e Qa_ta
Data / \Data LT
N e e PR o N s Ve
(1) Global Data Store (3) Distinct Control and Data Channels

Figure 2.1: Three Major Artifact Transmission Models.



(1) Global Data Store (GDS):
Each artifact is only allowed to have one instance in a workflow and the instance is
typically stored in a global shared data store. All activities share the same artifact
instances in the global data store.

(2) Integrated Control and Data Channels (ICDC):
In this model, all artifacts are passed with control flows regardless of whether the
next activity will use them or not.

(3) Distinct Control and Data Channels (DCDC):
Artifacts are passed between activities via explicit channels [16] which are distinct

from control flows. Hence, each activity can decide where artifacts are passed.

Based on the introductions above, we. discover that some behaviors or properties in
DCDC are hard to represent in GDS and ICDC. For example in the aspect of artifacts security;,
let an artifact d in Figure 2.1 be updated by v, and only allowed to be read by vs. In GDS,
each activity can access the artifact d because it is store in the global data store. Therefore, it

is hard to limit other activities to read or update d before v5 reads it.

In ICDC, if v3 is required to read the artifact d updated by v, d has to be transferred
through the activities between v; and v in the control flow. In Figure 2.1 (2), v, will
receive d from v; and pass it to v; regardless of whether v, requires d or not. Hence, it is

also hard to limit v, to read or update d before v; receives it.

However, each activity in DCDC can decide where artifacts are passed. Activity v; in
Figure 2.1 (3) can simply decide to pass d to v; and only v; will receive it. The other
activities without receiving d can not access it. Therefore, DCDC is more flexible and is
adapted to represent artifact transmission in this thesis.

4



2.2 Previous Work

Previous work presents a process model to describe workflow schemas. The definitions
of a process, an activity, and a control block are proposed. The relations among activities and
control blocks, e.g. paths, reachablility, predecessors, successors, parallel activities, and

exclusive activities, are also defined.

In order to simplify analysis the artifact usages in GDS, every artifact operation can be
regarded as one of the following operations: Initialize, Read, Updated, and Destroy,
regardless of its semantic meaning. Further, the usage relation between an activity and an

artifact can be identified as: Producer, Reader, Updater, Destroyer.

Based on the definitions above, previous work identifies the following artifact usage
anomalies: (1) No Production, (2) Delayed Production, (3) Early Destruction, (4) Exclusive
Production, (5) Uncertain Production, (6) Conditional Production, (7) Conditional
Destruction, (8) Uncertain Destruction, (9) Explicit Redundant Update, (10) Potential
Redundant Update, (11) Multiple Parallel Productions, (12) Multiple Parallel Updates, and
(13) Parallel Read and Update. After identifying the causing conditions of each anomaly,
previous work proposes a batch algorithm to traversal a control flow and detect whether

anomalies occur or not.

Since previous work only discusses artifact transmission in GDS, the activities share the
same artifact instances stored in global data store and an artifact is only allowed to have one
instance in a process. However, the activity in DCDC can decide where artifacts are passed

and an artifact is allowed to have multiple instances in a process.



Therefore, we extend the process model of previous work and present an artifact flow
diagram for each artifact to represent the artifact usages and transmissions in this thesis.
Based on the information in artifact flow diagram, the artifact usage anomalies in DCDC can
be identified. The differences of anomalies between GDS and DCDC are discussed in Section
7.1. The comparison of the anomalies addressed in previous work and our work is discussed

in Section 7.2.

Furthermore, our model proposes several edit operations for editing a process. In order to
update the artifact flow diagram after each edit operation incrementally, the incremental
algorithms are introduced for each edit operation. The detailed algorithms about how to

construct artifact flow diagram are also described in this thesis.



Chapter 3. A Process Model Based on Well-formed Workflow

3.1 Control Flow Specification

As discussed in Section 2.2, [15] does not concern the activities can decide where
artifacts are passed and the artifacts can have multiple instances in a workflow. To solve these
problems, there are several features introduced in addition in this thesis. The new features are
described in the following paragraphs. First, Definition 3.1 formally defines a process
specification and Definition 3.2 describes the fundamental properties contained in each

activity.

Definition 3.1 (Process Specification)[15]
A process specification p = (1, E,, Ry, C5,'S,, E,), where
® V/: The set of activities in p. The id.of €ach activity.is-unique.
® F,: The set of flows in p.
® R, The set of resources (artifacts) used in p.
® (,: The set of control blocks in p. The id of each control block is unique.
® S, The start activity of p.
® [E,:The end activity of p.

S

p’E

, €V,

® (Child, ={sp|Ycompound activity v€ 1, v.subp = sp}.




Definition 3.2  (Activity Fundamental Properties)
vv € V,, there are two fundamental properties in v:

® vitype € {Task, ProcessStart, ProcessEnd, XorSplit, XorJoin, AndSplit, AndJoin,
LoopSubProcess, SubProcess}.

® ABStack,: A stack stores all the control blocks and branches where v resides. (The

control block and branch are defined further in Definition 3.4 and 3.6.)

For each activity v € 1, the property ABStack, is a new feature and its usage is
illustrated in Definition 3.9. The property v.type represents v’s type. If v.type is SubProcess or
LoopSubProcess, v is a compound activity. Definition 3.3 below introduces a new feature:

subp to a compound activity.

Definition 3.3 (Compound Actiyity)
Vv E€ V,, visacompound activity whenv.type_ € {SubProcess, LoopSubProcess}.
® v.type € {SubProcess, LoopSubProcess}

® v.subp : The sub-process included within v.

In our model, there are three types control blocks, ’ROOT Control Block”, “AND
Control Block”, and “XOR Control Block”, and the properties to record the execution order
of these blocks are defined in Definition 3.4. Further, for an activity v, v is contained in ¢
when v is reachable from c.start and c.end is reachable from v. For a flow f = (u, v) € E,, fis

contained in control block ¢ when u and v are both contained in c.



Definition 3.4 (Control Block)
A control block ¢ = (start, end, type)€C,, where
® cstart= v, v €V, and v,.type € {ProcessStart, XorSplit, AndSplit}
ProcessEnd if v;.type = ProcessStart
® cend=v, v, €V, and v,.type = XorJoin if vg. type = XorSplit
AndJoin if v,. type = AndSplit
W ABStack, = ABStack,,

B Av el

%, V.type €{ProcessStart, ProcessEnd, XorSplit, XorJoin, AndSplit,

AndJoin}, IsReachable(c.start, v) = ture, IsReachable(v, c.end) = ture, and
ABStack, = ABStack,_.

® c.type € {ROOT, AND, XOR}

ROOT if v;. type = ProcessStart
B c.type =] XORifv,.type = XorSplit
AND if v,. type = AndSplit
® c.bcounter is a counter of branch id. The value.of-bcounter for c is set to O at the

beginning of c’s construction.

® c.totalbranches = |outflows of ¢. start|. (The outflow is defined in Definition 3.7.)

For each control block ¢ € C,, the properties c.start and c.end represent the start activity
and end activity of ¢ separately. If activity v, is the start activity and v, is the end activity,
the following properties hold:

(a) ABStack, = ABStack,,.

(b) There is no such an activity v € V,, v.typee{ProcessStart, ProcessEnd, XorSplit,

XorJoin, AndSplit, AndJoin}, v is reachable from v,, v, is reachable from v, and

ABStack, = ABStack,,.

The function IsReachable(c.start, v) in Definition 3.4 represents whether v is reachable

from c.start. If v is reachable from c.start, the function returns true. Otherwise, the function

9



returns false. The function is defined in Definition 3.11.

Based on the type of c.start, the property c.type is one of the following types: “ROOT”,
“AND”, and “XOR”. The property c.bcounter is a new feature and is used to count branch ids.
The value of c.bcounter is increased by one when a new branch is added into c. The property

c.totalbranches represents the number of branches in c.

Each process is only allowed to contain one root control block R. For a process p, p.start

= ps, p.end = pe, the root control block R = (ps, pe, ROOT) and R.totalbranches is always 1.

Based on the Definition 3.4, a control activity is defined in Definition 3.5.

Definition 3.5 (Control Activity)
Vv e V,, visacontrol activity.
® v.type € {ProcessStart, ProcessEnd; AndSplit, AndJoin, XorSplit, XorJoin}.
B v is the start activity of a control block if v.type € {ProcessStart, AndSplit,
XorSplit}.
B v isthe end activity of a control block if v.type € {ProcessEnd, AndJoin, XorJoin}.

® v.cb represents the id of the block beginning from or ending at v.

B v.cb=Rifv.type € {ProcessStart, ProcessEnd}.

In addition, if an activity v € V]

7, is neither a control activity nor a compound activity, v

is a task activity and v.type = Task.

Based on Definition 3.5, a branch in a control block is basically a path. Also the path

begins at the start activity of the control block, and ends at the end activity of the control

10



block. In order to identify different branches in a control block, each branch contains a
property id. When a new branch b is added into a control block c, c.bcounter is added by one

and is set value of b.id. A branch is defined in Definition 3.6.

Definition 3.6 (Branch)
In a control block ¢ which is not sequence, a branch b = (v4, ..., vy), k=2, where
® Iflow (v;, vi.1) € E,,i=1,2, ..., k1
® vy, =c.ustart
® vy, =c.end

® b.id represents the id of b.

A flow in workflow specification represents. the execution order of activities and is

defined in Definition 3.7.

Definition 3.7  (Flow)
vf=(u,v) € E,, whereu,v € 1},.

® u is the source activity of f, and v is the sink activity of f.

® fisaninflow of v and an outflow of u.

Figure 3.1 shows the corresponding notations of control activities, task activity,

sub-process activity, loop sup-process activity, and flow.

11




o ® ® [ ] —

ProcessStart AndSplit XorSplit Task Flow
o & B
ProcessEnd AndJoin XorJoin Sub-Process Loop Sub-Process

Figure 3.1: Notations of Control Flow Graph.

ABStack ——> [(@l, 1)

y

(a1, 1)
(R, 1)

xsl
—»1 X

R R Y[R D)

ps asl

1 V1T '|>

2 2 2 Branch’id
:

Control Block al = (asl, aj1, AND) asl.cb=ajl.cb=al
Control Block x1 = (xs1, xj1, XOR) xsl.cb = xjl.cb =x1
Control Block R = (ps, pe, ROOT) ps.cb = pe.cb =R

Figure 3.2: An Example of Control Flow Graph.

Figure 3.2 shows an example of a well-formed control flow. In Figure 3.2, each activity
is associated with an Ancestor Block Stack, ABStack, showing the control blocks where the
activity resides. The properties about the relations between elements in an ABStack are
described after illustrating the elements in Definition 3.8. Since all activities are contained in

root control block R and R.totalbranches is always 1, an element (R, 1) is in the bottom of

12



each ABStack. For an activity v, each element in ABStack, marks a control block containing

v. An element inside an ABStack is formally defined in Definition 3.8.

Definition 3.8 (The element inside an ABStack)

An element e inside ABStack, contains two tuples (blocklD, branchlID),

® DblockID represents a control block containing v.
® DbranchID represents the id of the branch after the initial control activity of blockID.
An ABStack has the following properties:
1. Assume two elements, el and e2, exist in.an ABStack. Element el is above e2 if and only

if the block represented by the first tuple.of.el.is contained in that represented by e2. For
example, ABStack,, in Figure 3.2 has two elements e1=(x1, 1) and e2=(al, 1). Because
x1 is contained in al, el is abave e2, By reading the elements top-down in ABStack,,,, it
is found that v, is located on branech 1 of x1, x1 is located on branch 1 of al, and al is
located in R. Thus, the ABStack,, can be used to represent the location of activity v,. In
this case, because x1 is contained in al, x1 is deeper than al in this nested control blocks
structure. In the same reason, because al is contained in R, al is deeper than R. Therefore,
x1 is the deepest control block which contains v, because x1 does not contain any

control block.

Consider ABStack, and ABStack,, if there are some elements contained in ABStack,,
but not in ABStack,,, u is contained in the blocks represented by the elements but v is not.
For example, element (x1, 1) is contained in ABStackp but not contained in
ABStack,;, in Figure 3.2. Therefore, control block x1 contains activity v, but not
activity xj1.

13



The operations associated with ABStack are defined in Definition 3.9. The construction

of an ABStack is described in Algorithm 3.1.

Definition 3.9 (The operations associated with an ABStack)

The operations associated with an ABStack include:

=

push(E: element): Pushing an element into the top of ABStack.
2. pop(): Popping an element out from the top of ABStack.
3. isEmpty(): If the ABStack = @, return true. Otherwise return false.

4. getTopXOR(): Getting the first element from the top of ABStack and the type of the
(@2, 1)
block associated with the element is XOR. For example, let ABStack, = |(x2,2)|, x1
(x1, 1)
and x2 be XOR control ,blocks,..a2 .be ".an AND control block, then

ABStack,,.getTopXOR() = (x2; 2)-

5. removeldenticalElements(A: ABStack):"Removing the same elements in both A and the

(a2, 1) 5 2
target ABStack. For example, 4ABStack, = |X2,2)| and ABStack, = (XR,].) ,
R.1) R.1)

ABStack,.removeldenticalElements(ABStack,) = |(a2, 1)| .

Algorithm 3.1 (Construction of an ABStack)

Vv e V,, ABStack, isconstructed by the following steps:

Algorithm ConstructABStack(v){

1. if(v.type == ProcessStart){

2 ABStack,= |(R,1)];

3. }else if(v.type # ProcessStart and Jinflow f=(u, v) € F, and fis located in branch b){
4 if(u.type ¢ {XorSplit, AndSplit}){

5. ABStack, = ABStack,;

6 Yelse{

7 Create an element el = (u.cb, b.id);
8 ABStack, = ABStack,.push(el);
9

14




10. if(v.type € {XorJoin, AndJoin})
11. ABStack.,.pop();

12. }

13. }

At line 1 to 2, if the type of v is ProcessStart, ABStack, only contains one element(R,
1). If the type of v is not ProcessStart, v has inflow(s). Let f be the inflow (u, v) and f be
located in branch b. If v has multiple inflows, random one of them is assigned to f. At line 4 to
9, if the type of u is not XorSplit and AndSplit, ABStack,, = ABStack, . Otherwise, u is the
start activity of a control block. Hence, ABStack, is equalto ABStack, which is added an
element (u.ch, b.id). At line 10 to 12, if the type of v is XorJoin or AndJoin, v is the end

activity of a control block. Thus, ABStack, popsan element.

3.2 Relations between Activities and Control Blocks
In a process, there are relations between activities and control blocks; e.g. path,

reachability, etc. These relations are defined in the following definitions.

Definition 3.10 (Path)[17]
A path g = (v, ..., V) inwhich k > 2 and the flow f = (v;, v;,) for i=1,2,...k-1 € E,.

The path from v; to v, isdenoted by Path(vy,vy).

Definition 3.11 (Reachability)[17]
Given two activities u and v, IsReachable(u,v) is a Boolean function that indicates
whether there is a path fromuto v. l.e.,

Vu,v € V,,IsReachable(u,v) = true <> 3Path(u,v) V u=v.

15




Definition 3.12 (Predecessors and Successors)
Y jsbredecessor - = fy € V, | IsReachable(u,v) = true}
VyisSuccessor - = fy € V, | IsReachable(v,u) = true}
Y jsPredecessor s g set of activities and v is reachable from each activity in
Y isPredecessor Each activity u in 1jsPredecessor g called a predecessor of v. IjsSuccessor

denotes the transitive closure of 1 isPredecessor

Definition 3.13  (Parallel Activities)
Given two activities u and v, IsParallel(u, v) is a Boolean function to represent if u and
v might be executed in parallel.

IsParallel(w,v),= true <

el.blockID = e2.blockID
Jel € ABStack,,e2 €*ABStack, A{el.branchID # e2.branchID
el.blockID.type = AND

Definition 3.14 (Exclusive Activities)
Given two activities u and v, IsExclusive (u, v) is a Boolean function to represent if u is
selected for execution then v won’t be selected for execution and vice versa.

IsExclusive(u,v) = true <

el.blockID = e2.blockID
Jdel € ABStack,,e2 € ABStack, A{el.branchlID # e2.branchID
el.blockID.type = XOR

To simplify our analysis, the workflow specifications discussed in this thesis are
well-formed. A well-formed workflow has four basic control structures: sequential, exclusive
split, parallel split, and loop. The control blocks defined in Definition 3.4 can be used to
represent exclusive split, and parallel split structures. As in BPMN [18], a loop structure can

be replaced by a loop sub-process activity in our model.

16




(a)

ps , pe
o3 g S g By B oy B g L
A g
(b) Loop Sub-Process
ps Y pe
(c) -~ Sub-Process within v T

Figure 3.3: Using a Loop Sub-Process Activity to Replace a Loop Structure.

Figure 3.3 (a) shows an example of a well-fermed control flow and activities v,, vs,

and v, are located in a loop structure. In Figure 3.3 (b),"a loop sub-process activity vg is

used to replace the loop structure and vg' contains a.sub-process including v,, vs, and v,

in Figure 3.3 (c). Therefore, there is no cyele“in"a control flow graph in our model; i.e. a

control flow graph in our model is a directed acyclic graph (DAG).

3.3 Artifact Flow Diagram Specification

As identified in [11], there are three models used to define artifact flow transmission in a

workflow: (1) Global Data Store (GDS), (2) Integrated Control and Data Channels (ICDC),

and (3) Distinct Control and Data Channels (DCDC). Since DCDC is more flexible for

representing artifact flow, DCDC is adapted to express artifact flow in this thesis.

17



In this thesis, a verb “pass” is used to represent the action about sending an artifact to
another activity [11]. For example, if an artifact d is sent from an activity v to u, it is described

as that activity v passes artifact d to u. In other words, activity u receives artifact d from v.

In DCDC, artifacts are passed between activities via explicit channels [16] which are
distinct from control flows. Hence, each artifact has a corresponding artifact flow diagram
representing the artifact usages and transmissions in a workflow. In addition, artifacts
transfers are passed by value in our model and an activity starts execution when it receives all

necessary artifacts.

3.3.1 Artifact Operations and Usages

Artifacts are collections of data.items involved.in a process. Intuitively, all artifacts
participating in a workflow execution, are ‘pre-defined in the process specification. Each
artifact contains a set of legal operations for its internal data, and is applied in an activity to
perform them. In the aspect of data usage, artifact operations can be conceptually classified as

initialize, read, update, and delete [15].

Because artifacts are passed between activities via explicit channels distinct from control
flows, activities can decide where the artifacts are passed. Here, an operation Pass(), passing
an artifact to another activity, is defined. Let PassList, denote a linked list to record the
pass operations in an activity v. Thus, Pass(d, u)€ PassList, if and only if v passes artifact d

to activity u. In this case, v is a sender of d and u is a receiver of d.

Besides, the receiver can not receive the artifact if the receiver is executed before the
sender. Hence, an activity can not pass artifacts to its predecessors.

18



For an activity v, the operations Pass() in PassList, are performed only when all the

other operations, such as initialize, read, update, and delete, are completed.

In our model, artifact transfers are passed by value, more than one copy of an artifact
may exist in a workflow. For example, given an artifact d and activities v, u, w, if Pass(d, u)
and Pass(d, w) are contained in PassList,, activities u and w will receive d separately. This

case is called artifact split and there are two copies of d sent out after v.

In order to identify the artifact usages in an activity, each activity contains the following

input and output artifacts sets: I, 0, U*, and .U~. These sets are defined in Definition 3.15.

Definition 3.15 (Input and Output Artifacts Sets)
For an activity v, v contains the following sets:
® [, isaset of artifacts, of which each is read, updated, or deleted in v.
® (O, isaset of artifacts, of which each is passed from v after v’s executing.

® [ isaset of artifacts, of which each is initialized or updated in v.

® [, isaset of artifacts, of which each is deleted in v.

To simplify our discussion, an activity v can be classified into the following roles of d:
Producer, Reader, Updater, Destroyer, Irrelevantor, and Relevantor, based on the memberships
between an artifact d and 1,,, 0,, U/, and U, . Definition 3.16 shows how to identify these

roles.

19



Definition 3.16 (Roles of an Activity in an Artifact Flow Diagram)
For an activity v, Roled denotes v’s role of d. Roles(v, d) is a function to identify v’s
role of d. All the possible usages are categorized as follows:
if(v.type & {PrcoessStart, ProcessEnd}){
® Roled =Roles(v, d) = Producer whend ¢ I, andd € U .

® Roled =Roles(v, d) = Destroyer whend € I, andd € U,.

de¢upt

° d = = { :
Rolei = Roles(v, d) = Reader when d € I, and déU-

® Roled =Roles(v, d) = Updaterwhend € I, andd € U, .

de¢ U}

[
When d ¢ I, and {der_.

B Rolel =Roles(v, d) = Relevantor, if d € 0, or3uey, and
Pass(d, v)€EPassList,,,.
B Rolel =Roles(v, d) = Ifrelevantor; if d & 0, or 2uel, and
Pass(d, v)€EPassList,,,.
}
if(v.type € {PrcoessStart, ProcessEnd}){
® For a ProcessStart Activity ps :
[ Roleﬁs = Roles(ps, d) = Producer when d € 0,;.
[ Role;}s = Roles(ps, d) = Irrelevantor when d & O,.
® [or a ProcessEnd Activity pe :
[ | Role;}e = Roles(pe, d) = Destroyer when 3u€V,, and Pass(d, pe)EPassList,,.

| Role;}e = Roles(pe, d) = Irrelevantor when Au€V, and Pass(d, pe)EPassList,,.

20




3.3.2 Artifact Flow Diagrams

Each artifact in a workflow has a corresponding artifact flow diagram to represent the
usages and transmissions of it. For artifact d, an activity v is in the artifact flow diagram for d
if d is used by v; i.e. Roled =+ Irrelevantor. The flows between activities in the artifact flow
diagram for d represent the transmissions of d. Definition 3.17 defines an artifact flow

diagram for an artifact.

Definition 3.17 (An Artifact Flow Diagram)
For an artifact d, artifact flow diagram for d in process p is denoted by AF? which
contains two tuples (AFV,?, AFE?, AFNS), where
® AFV? isaset of activities. For.an activity ve AFVd, Roleg =+ Irrelevantor.
® AFFE! is a set of flows. For a.flow (u, VJeAFES and u, v €AFV,?, a Pass(d, v) €
PasslList,,.
[ AFN,? is a set of XBNodes existing in the artifact flow diagram. An XBNode is

introduced in the following paragraphs and is defined in Definition 3.19.

In Definition 3.17, a flow (u, v) is added into AFde when a Pass(d, v) is added into
PasslList,,. If there is a Path (v, u) € Ade, a loop structure is formed in the artifact flow
diagram after adding flow (u, v) into AFde. The activities in the loop wait for the artifact
cyclically and a deadlock occurs. In order to avoid the deadlock, the loop structure is not
allowed to exist in an artifact flow diagram. Therefore, Pass(d, v) can not be added into

PassList, when a Path(v, u) exists in AF;.

In order to detect some artifact usage anomalies, the number of an artifact

passed/received from/in an activity is required to be identified. For an activity v, let

21



Received be a set of activities, of which each passes d to v. Let Send? be a set of activities,
of which each receives d from v. Therefore, |Receive?| represents the number of inflows of
v in the artifact flow diagram for d. On the contrary, |Send?| represents the number of

outflows of v in the artifact flow diagram for d.

However, some activities in Received might not pass d to v in run time. Therefore,
|Receivel| is not always equal to the number of d received in v. Similarly, |Send?| is not
always equal to the number of d passed from v. In Figure 3.4 (a), (b), and (c), activity v,
passes artifact d to v, and v respectively. Hence, their artifact flow diagrams for d in
Figure 3.4 (d) contain activities: v, v,, and v3, and flows: (v;, v,) and (v4, v3). Sendf}1

={v,, vs}and |Send? | =2 inFigure 3.4 (a), (b), and (c).

In Figure 3.4 (a), because v, and w5 are parallel activities, the number of d passed
from v; is 2. In Figure 3.4 (b), because, v -and v; are exclusive activities, the number of d
passed from v, is 1. In Figure 3.4 (€), . v,, vs, and wvs" are exclusive activities and v; does
not pass d to vs. Therefore, the number of d passed from v, is 0 if vs is selected to execute.
Otherwise, the number of d passed from v; is 1. Obviously, the number of d passed from v,
is not always equal to |Send§1 | The artifact flow diagram in Figure 3.4 (d) is ambiguous to

represent the number of an artifact passed/received from/in an activity.

22



Send?, ={v,, v3}

PassList, = Pass(d, v,) — Pass(d, vs)
(a) Control Block al = (as1, aj1, AND) asl.cb=ajl.cbh=al
(b),(c) Control Block x1 = (xs1, xj1, XOR) xsl.cb = xjl.cb =x1

Figure 3.4: An Artifact Flow Diagram without XBNodes.

In order to solve this problem, the activities in"Receivel are categorized into two sets:
EINg and PINZ. PINZ contains the'activities-passing d to v potentially. EINZ contains
the activities passing d to v explicitly. Similarly, the activities in Send? are categorized into
two sets, POUTZ and EOUTZ. POUTS contains the activities receiving d from v

potentially. EOUTZ contains the activities receiving d from v explicitly.

For example in Figure 3.4 (a), because v; always passes d to v, and vs, EOUTU"Z1 =
{v,, v3}and POUTU"I1 = @. In Figure 3.4 (b), activity v; does not passdto v, when v, is
not selected to execute in x1. Hence, v; passes d to v, potentially. For the same reason, v,
also passes d to v; potentially. Therefore, EOUT;i1 = @ and POUTV"l = {v,, v3}. The

formal definitions of these sets are defined in Definition 3.18.

23



Definition 3.18 (Receiving/Sending Sets)
For activity v € AFI/;,d, v contains the following sets:
® Receivel ={u€AFV,| 3flow (u, v) EAFF/}
B PIN? =
{u€Receivel| (Ae€ABStack, .removeldenticalElements(ABStack,)) and
e.blockID.type = XOR and IsExclusive(u, v) # true}
B EIN? ={ue(Receive?\PIN) | IsExclusive(u, v) # true}
® Send? ={ueAFVy| 3flow (v, u) EAFF}
B POUTE =
{ueSend?| (3e €ABStack, .removeldenticalElements(ABStack,,)) and

e.blockID.type = XOR and IsExclusive(v, u) # true}

B EOUTE ={ue(Send\PQUTY) | IsExclusive(v, u) # true}

For a flow (u, v) € AFF;,d, if u and v _are exclusive activities, u and v can not both be
executed. Therefore, v can not receive d from u. For this reason, u is not added into PINZ
and EINZ when IsExclusive(u, v) = true. Similarly, u is not added into POUTZ and
EOUTZ when IsExclusive(v, u) = true. Based on Definition 3.18, Figure 3.5 shows the

elements in Send?, EOUTZ, and POUT.

24



() Sendy, ={v,, v3}
EOUTE ={v,, v3}
POUTE =¢

(b) Send?, ={v,, v3}
EOUTE =¢
POUTE ={v,, v3}

(c)
Sendd, ={v,, v3}
EOUTE =¢
POUTE ={v,, v3}

PassList, = Pass(v,, d) — Pass(vs, d)
(a) Control Block al = (as1, aj1, AND) asl.cb=ajl.cbh=al
(b),(c) Control Block x1 = (xs1, xj1, XOR) xsl.cb = xjl.cb =x1

Figure 3.5: An Example of Receiving and Sending Sets.

Further, the XOR Control Block Nodes, XBNodes, are used to replace the activities
located in the same XOR control block ins PINGPOUTS . For example in Figure 3.5 (b), v,
and vs in POUT,?1 are contained by XOR control block x1. Whether v, or v; is selected
to execute in x1, v; always passes d to x1. Therefore, an unconditional XBNode n1 is used
to replace v, and vs in POUT,jil. Because v; passes d to x1 explicitly, nl is moved to
EOUTZ from POUTZ. In Figure 3.5 (c), v, and vz in POUTZ are contained by XOR
control block x1. However, v; does not pass d to x1 when vg is selected to execute in x1.
Hence, a conditional XBNode n2 is used to replace v, and v; in POUT,,dl. The detailed

algorithms of construction of XBNodes are illustrated in Section 5.3.

PIN'ﬁf and EIN'ff are used to represent PIN? and EINZ whose activities are all

replaced with XBNodes and all unconditional XBNodes are moved from PINZ to EINZ.

25



Therefore, the number of d passed/received from/in v can be identified. Let NIN¢ be the
number of d received in v, then EIN'? < NIN? < EIN'Y + PIN'?. Similarly, let
NOUTZ be the number of d passed from v, then |[EOUT'%| < NOUTE < |EOUT (| +

|POUT'?]. Figure 3.6 shows the artifact flow diagrams with XBNodes.

(d)

E'OIJTIICf1 :{772, vg}
POUT' =¢
(e)

] ) @F
- ©

EQUT'S ={n1}

POUT'S =0
(c) ("
xsl n2
: o
EOUT'] =0
rd _
@ : Unconditional XBNode pouT ,, ={n2}

o : Conditional XBNode
PassList,, = Pass(v,, d) — Pass(vs, d)

(a) Control Block al = (as1, aj1, AND) asl.cbh=ajl.cb=al
(b),(c) Control Block x1 = (xs1, xj1, XOR) xsl.cb = xjl.cb = x1

Figure 3.6: An Artifact Flow Diagram with XBNode.

In Figure 3.6 (d), because |[EOUT'¢ | =2 and |POUT'S,| = 0, the number of d passed
from v, is 2. In Figure 3.6 (€), because |EOUT' | =1and |POUT'L| =0, the number of
d passed from v; is 1. In Figure 3.6 (f), because |[EOUT'? | = 0 and |POUT'Y | = 1, the

number of d passed from v; is 0 or 1. Definition 3.19 defines an XBNode and its properties.

26



Definition 3.19 (An XOR Block Node)
Let an XBNode n be used to represent an XOR control block x. XBNode n contains

four tuples (blockID, cv_set, ABStack,,, isUncond),

® DblockID represents the id of an XOR control block which n expressed; thus, blockiD =
X.

® cv_setis aset of activities € PIN/POUT and the activities in cv_set are all located in
different branches of x.

® ABStack, represents the location of x; hence, ABStack, = ABStack, giqrt -

® isUncond is a Boolean value. The value is true when n is unconditional. Otherwise, the
value is false.

® n.Parent = Null or the id of an XBNode containing n.

® n.Attached = Null or the id of anactivity.where nis attached.

Based on above definitions, a flow in_an artifact flow diagram contains the following
properties: outBlock and inBlock. The property outBlock/inBlock is the id of an XBNode
which contains sink/source activity. For example, let f be the flow (v;, v,) in Figure 3.6 (e).
The f.outBlock = nl because v;€ nl.cv_set. Definition 3.20 defines a flow in an artifact flow

diagram.

Definition 3.20 (A Flow in an Artifact Flow Diagram)
For a flow f = (u, v) € AFde and activities u, v € AFVpd, flow f has the following
properties:
® f.outBlock = Null or nif v € n.cv_set.
® f.inBlock =Null ornifu € n.cv_set.

n is an XBNode.

27



3.3.3 An Example of an Artifact Flow Diagram

Figure 3.7 shows an example of a control flow graph including PassList, I, 0, U*, and

U~ for each activity.

(x1,1)
(R, 1)

.

xsl.ch = xjl.cb =x1

(x1, 2)

R, 1)
PassList,, = Pass(v,, d) der, deU; de¢u, deo,,
PassList,,= Pass(v3, d)—Pass(vy, d) |-d.€L,. de¢U;, deU, deo,,
PassList,,= Pass(vs, d)—Pass(vy, d) de€L, degu;, de¢u, deo,
PassList,,= Pass(vs, d)—Pass(ve, d)-““d €L, deU,; de¢U, deo,,
PassList, = Pass(vg, d) der,, deU, deU, deo,
PassList, = @ dél, ~deU, deU, d&eo,

Figure 3.7: An Example of a Control Flow Graph.

Figure 3.8 shows the artifact flow diagram for d extracted from Figure 3.7. Because

Roled, = Irrelevantor and Rolel, = Irrelevantor, control activities

xj1

added into the artifact flow diagram.

There are three types of flows in an artifact flow diagram:

xsl and xj1 are not

(1) Normal Flow: vflow (u, v)EAFF;,d, IsParallel(u, v) = false and IsExclusive(u, v) = false.

(2) AND Flow: vflow (u, v)eAFde, IsParallel(u, v) = true.

(3) XOR Flow: vflow (u, v)eAFde, IsExclusive(u, v) = true.

28



V3
Reader

— : Normal Flow
.......... » - AND Flow
---»: XOR Flow

O : Activity
® : Unconditional XBNode
O : Conditional XBNode

Figure 3.8: The Corresponding Artifact Flow Diagram for d.

Table 3.1 shows all states of each activity in Figure 3.7.

Activities | Receiveld | EIN‘ PIN'Y Send? | Eour'd | PoUT':
12} ) ) 1) {v,} {v.} 1)
v, {v,} {v,} ? {vs, v} {n1} o)
U3 {v,} {v,} ? {vs, vs} {vs} 0)
V4 {v,, v3} {v,} ) {vs, v} | {vs, ve} 0)
vs {vs, va} {n2} 0 {ve} {ve} 0
123 {va, vs} {vs} {n3} 0] 0] 0)

Table 3.1: The States of Each Activity in Figure 3.7.

In Table 3.1, v; passes d to v, and vs; thus, Sendﬁ3 = {v,, vs}. However, v; and
v, are exclusive activities. Activity v, is not added into EOUTVd3 or P0UT,,‘13. Therefore,

EOUT'ff3 = {vs} and POUT'ff3 = @. On the other hand, vy receives d from v, and vs;

thus, Receivef}6 = {v,, vs}. Activity vy can not receive d from v, when v, is not

29




selected to execute. Activity vy receives d from v, potentially. Hence, v, is added into
P1N36. Since vg can not receive d from x1 when v; is selected to execute, a conditional n3

is used to replace v, in PINZ. Finally, EIN'S. = {vs} and PIN'S, = {n3}. Table 3.2

shows the states of each XBNode in Figure 3.7.

XBNodes | blockID cv_set ABStack isUncond Parent Attached
nl x1 {v3, 14} R, 1 true Null v,
n2 x1 {v3, v} R, 1 true Null Vs
n3 x1 {vs} R, 1 false Null Vg

Table 3.2: The States of Each XBNode in Figure 3.8.

30




Chapter 4. Artifact Usage Anomalies

In a process specification, there might be four classes of anomalies: (1) Missing Artifact
Anomalies, (2) Artifact Conflict Anomalies, (3) Cross Passing Artifact Anomalies, and (4)
Redundant Anomalies. These anomalies are defined in the following subsections. Besides,
every class indicates several types of anomalies of which each is illustrated with an example

to show the scenario.

4.1 Missing Artifact Anomalies

While an artifact d is used, including read, updated, deleted, or passed, in an activity v, a
missing artifact anomaly occurs if y«can;notreceive d in execution time. For a receiver activity,

missing of an artifact can be divided into the two cases below:

(1) Explicit Missing Artifacts:
® Description: Activity v requires artifact d but can not receive d.
® Conditions: v € AFVZ A |[EIN'S| =0 A |PIN'{| =0
A Role{f € {Reader, Updater, Destroyer, Relevantor}
® Example: In the artifact flow of d in Figure 4.1, activity v, is a reader of d.
Because no activity passes d to v,, v, can not receive d. Therefore, |E1N '{‘f2| and

|PIN '1‘f2| are both 0. An explicit missing artifact anomaly occurs at v,.

31



Control Flow Graph: (R, 1)

o U e U e U

PassList,,=¢ de€l, de¢U; deU, d&o,

Artifact Flow Diagram for d:

V)
Reader

Figure 4.1: An Example of an Explicit Missing Artifact Anomaly.

(2) Implicit Missing Artifact:
® Description: Activity v requires artifact d but receives d implicitly; i.e. v might not
receive d for beginning execution.
® Conditions: v € AFVZ AYEIN' $|.=.0.A |PIN'(| > 0
A Role,‘f € {Reader, Updater, Destroyer, Relevantor}
® Example: In Figure 4.2, v, is'located in-an XOR control block x1 and v, passes
d to v,. If v, is selected to execute in x1, v, receives d. Otherwise, v, can not

receive d. Therefore, an implicit missing artifact anomaly occurs at v,.

(x1,1)
Control Flow Graph: (R, 1)

PassList,, =Pass(d, vy) de&l,, deU; de¢U, deo,
PassList,, =@ del, deU,; deU, de¢0, xslcb=xlch=xl

Artifact Flow Diagram for d:

)
Producer,

Figure 4.2: An Example of an Implicit Missing Artifact Anomaly.

32



The third case is observed from the sender and is named as destroyed artifact anomaly.
For an artifact d, once a destroyer of d passes it to some other activities, d never reaches to its
receivers since it has been destroyed. Thus, the receiver misses d. Because this missing is

caused by the destroyer, a destroyed artifact anomaly occurs at the destroyer.

(3) Destroyed Artifact:

® Description: Activity v is a destroyer of artifact d and passes d to other activities.
® Conditions: v € AFV,? A Roled = Destroyer A (|EOUT'§| > 0V |POUT | > 0)
® Example: In the artifact flow of d in Figure 4.3, activity v, is a destroyer of d and

v, passesdto vs. Thus, |[EOUT'Y, | is 1 and a destroyed anomaly occurs at v,.

Control Flow Graph:
(R, 1) (R, 1)

PassList,, =Pass(d, )" d¢l, deU,, de¢U, deo,,
PassList,, =Pass(d, vs) ‘d€ly deU; deU, deo,
PassList,, =@ del,, deU; de¢U, d¢eo,,

Artifact Flow Diagram for d:

U3

Reader

Figure 4.3: An Example of a Destroyed Artifact Anomaly.

4.2 Artifact Conflict Anomalies

As describing in Section 3.3.1, because an activity can decide where artifacts are passed
and the artifact transfers are passed by value, an artifact can have multiple copies in a

33



workflow. Hence, an activity may receive multiple copies of an artifact. For an artifact d,
when an activity receives multiple copies of d concurrently, an artifact conflict occurs. In the
case, the activity is not able to select the right copy [11]. Thus, an artifact conflict is

concerned as an anomaly. Artifact conflict anomalies can be divided into the cases below:

(1) Explicit Artifact Conflict:
® Description: Activity v receives multiple copies of artifact d explicitly.
® Conditions: v € AFVZ A |EIN'S| > 1
® Example: In artifact flow of d in Figure 4.4, v; and v, both pass d to vs; thus,
vz receives two copies of d. Because v; and v, are predecessors of v; and are
not located in any XOR control block, v; receives two copies of d explicitly.

Therefore, |EIN 'ff3| is 2 and an explicit artifact conflict anomaly occurs at vs.

Control Flow Graph:

(R, 1) (R, 1) (R, 1)
c o

PassList, =Pass(d, v,)—Pass(d, v;) d¢el, deU,) deU, deo,,
PassList,, =Pass(d, vs) del,, deu;, de¢U, de€o,,
PassList,, =@ del,, deU;, deU, d¢eo,,

Artifact Flow Diagram for d:

U3
Reader

Figure 4.4: An Example of an Explicit Artifact Conflict Anomaly.

34



(2) Implicit Artifact Conflict:
® Description: Activity v receives multiple copies of artifact d implicitly.
® Conditions: v € AFVZ A ((JEIN'S| =1 A |PIN'| > 0) v (|EIN'S| =0 A
[PIN';| > 1))
® Example: In Figure 4.5, activity v, receives d from v; explicitly; thus, |EIN'Z,
is 1. In addition, v, receives another d if v, isexecuted in XOR control block x1.
Thus, v, receives d from v, implicitly and |PIN'S, | is 1. Because |EIN'(,| and

|PIN'S,| are both 1, an implicit artifact conflict anomaly occurs at v,.

Control Flow Graph: (x1,1)
R. 1)
)
U
\_apes. /
G
U3
\__S Rl Bl )\
PassList,, =Pass(d, v,)=Pass(d, v,)  d'¢l, deu; deU, deo,
PassList,, =Pass(d, vy) de€l,, ~deU) deU, deo,
PassList,, =@ del,; deU,) de¢U, d¢eo,
xsl.cb = xjl.cb =x1

Artifact Flow Diagram for d:

Figure 4.5: An Example of an Implicit Artifact Conflict Anomaly.

The third case is different from above cases because an artifact conflict may occur at an
activity which does not receive multiple copies of an artifact. For an artifact d, if an activity
receives one artifact d and produces another d, there are two copies of d in the same activity.

Therefore, an anomaly called production conflict anomaly occurs.

35



(3) Production Conflict:
® Description: Activity v is a producer of artifact d and receives another d from other
activity.
® Conditions: v € AFV,X A Roled = Producer A (|EIN'S| >0 v |PIN'{| > 0)
® Example: In Figure 4.6, activity vz receives artifact d from v, explicitly; thus,

|EIN | is 1. Because v is a producer of d, a production conflict anomaly occurs

at vs.

Control Flow: R, 1) R, 1)

PassList, =Pass(d, v;) del, deUS deU, deo,
PassList,, =Pass(d, v;) del, deUf degU, deo,
PassList,, =@ der,, “deU,, de¢U,, d&ego,

Artifact Flow Diagram for d:

Figure 4.6: An Example of a Production Conflict Anomaly.

4.3 Cross Passing Artifact Anomalies

A cross passing artifact anomaly occurs when an artifact is passed between branches of
an XOR/AND control block. Given two parallel activities u and v, let u pass an artifact d to v.
Due to the race hazard of parallel activities, v might be asked to execute before u in running
time. Obviously, v can not start until d is received. This issue can be simply solved by
ensuring that v waits for d until u completes its execution [11]. However, the designer may not

allow v to wait. Hence, an artifact passed between parallel activities is concerned as an

36



anomaly.

On the other hand, given two exclusive activities u and v, let u be designed to pass an
artifact d to v. Since only one of u and v is executed, v may never receive d or u may pass d

for nothing. Thus, an anomaly occurs in this case.

(1) Passing between Parallel Activities:
® Description: There are two parallel activities u and v, and u passes an artifact d to v.
® Conditions: flow (u,v) € AFF;,d A IsParallel(u, v) = true
® Example: In the artifact flow of d in Figure 4.7, activity v, passes artifact d to vs;
thus, there is a flow (v,,'w3) in the diagram. Because v, and v; are parallel
activities, IsParallel(v,, w3).= true. Hence, a passing between parallel activities

anomaly occurs at v,.

) (a1, 1)
Control Flow Graph: ®.1)
U
v — /. vy
oo o o
U3
N—
(al, 2)
(R, 1)
PassList,, =Pass(d, vs) de¢l,, deu;) deu, deo,,
PassList,, =@ del,, deU;) de¢U, d¢eo,,
asl.cb=ajl.cb=al
Artifact Flow Diagram for d:
L2 W— U3
Producer, Reader

Figure 4.7: An Example of a Passing between Parallel Activities Anomaly.

37



(2) Passing between Exclusive Activities:
® Description: There are two exclusive activities u and v, and u passes an artifact d to
V.
® Conditions: flow (u,v) € AFE{ A IsExclusive(u, v) = true
® Example: In the artifact flow of d in Figure 4.8, activity v, passes artifact d to vs;
thus, there is a flow (v,, v3) in the diagram. IsExclusive(v,, v3;) = true because v,
and v; are exclusive activities. Therefore, a passing between exclusive activities

anomaly occurs at vs.

1,1
Control Flow Graph: ((XR ’ 1))
( vz )
2 \ . shass /
oA g
U3
\_NE Sl
(x1, 2)
R, 1)
PassList,, =Pass(d, vs) de¢l,, deu;, de¢U, deo,,
PassList,, =@ der,, deU,; de¢U, d¢eo,
xsl.cb = xjl.cb =x1
Artifact Flow Diagram for d:
U ———— U3
Producer, Reader

Figure 4.8: An Example of a Passing between Exclusive Activities Anomaly.

4.4 Redundant Anomalies

In a program, redundancy is not an error but makes inefficiency. For an activity v and an

artifact d, a redundant update/initialization anomaly occurs when v updates or initializes d,

38



but does not pass d to other activities. A redundant pass anomaly occurs when v receives d but

does not use d.

(1) Redundant Update/Initialization:
® Description: Activity v initializes or updates d but does not pass d to other activities.
® Conditions: v € AFVZ A|EOUT'S| =0 A |POUT'S| =0
A Rolef € {Producer, Updater}
® Example: In Figure 4.9, activity v, is an updater of d in the artifact flow diagram
and v, does not pass d to other activities. Hence, a redundant update anomaly
occurs at v,.

Control Flow Graph:

PassList,, =Pass(d, v,) ~d&l, deU) deU, deo,
PassList,, =@ de€l,, deUu; de¢U, deo,

Artifact Flow Diagram for d:

Figure 4.9: An Example of a Redundant Update/Initialization Anomaly.

(2) Redundant Pass:
® Description: Activity v receives an artifact d but does not use it.
® Conditions: v € AFVZ A (|EIN'(| >0 v |PIN'¢]| > 0)
A Role? = Relevantor

® Example: In Figure 4.10, activity v, receives artifact d from v;. Because v, does

39



not use d, a redundant pass anomaly occurs at v;.

Control Flow Graph:

. '
PassList, =Pass(d, v;) del, deU; deU, deo,

PassList,, =@ de¢r, deU) deU, deo,
Artifact Flow Diagram for d:

Figure 4.10: An Example of a Redundant Pass Anomaly.

40




Chapter 5. Incremental Algorithms for Anomalies Detection

5.1 Edit Operations for a Process

For introducing the incremental algorithms to detect artifact usage anomalies, we define
the following edit operations for designer to edit a process: (1) Activity Insertion, (2) Activity
Deletion, (3) Control Block Insertion, (4) Control Block Deletion, (5) Branch Insertion, (6)
Branch Deletion, (7) Pass Insertion, (8) Pass Deletion, and (9) Activity Modification. Table

5.1 shows the edit operations discussed in this thesis.

Activity Control Block Branch Pass
Insertion 1 3 5 7
Deletion 2 4 6 8
Modification 9 - - -

Table 5.1: Edit Operations for a Process.

A process defined in Definition 3.1 can be described in more details below when being

initialized.

An initial process p = (V,, F,,

R,, C,, ps, pe), where

® U, ={ps, pe}, ps.type = ProcessStart, and pe.type = ProcessEnd.

® £ ={(ps, pe)}.
® R, =0

® (, ={(ps, pe, ROOT)}.

41




The contents below indicate the definition of above edit operations. To simplify the

incremental analysis, most operations are defined one or more constraints respectively. These

constraints are simple and their effect for edit behavior is little.

1. Inserting a task/compound activity v:

Constraints: v & V.

Actions: Let v be inserted into flow (u, w). Activity v is added into V, and the

flow (u, w) in F, is replaced with flows, (u, v) and (v, w).

2. Removing a task/compound activity v:

Constraints: v € V.
Actions: Let I,, U}, and U, be. empty. by modifying v with Operation 9
automatically. Vue#j ,.all passes~in PassList, and PassList, are also
removed with Operation 8. Let flow (u, v) be v’s inflow, flow (v, w) be v’s

outflow, and flow (u, w).& F,. Activityv.is removed from V. The inflow (u, v)

and outflow (v, w) in F, are replaced with flow (u, w).

3. Inserting a control block c:

Constraints: ¢ € C,,.

Actions: Let ¢ be inserted into flow (u, w). Property c.start is initialized as a
new control activity cs and property c.end is initialized as a new control activity
ce. The flow (u, w) in E, is replaced with flows, (u, cs), (cs, ce), and (ce, w).
Property c.bcounter is initialized as 1. Activities cs and ce are added into V,.

Control block c is added into Cy.

42



4. Removing a control block c:

Constraints: c € C,.

Actions: Yvel,, and IsReachable(c.start, v) = IsReachable(v, c.end) = true, v is
removed with Operation 2. By modifying c.start and c.end with Operation 9, let
Iestare » Udstare» Ucstart » Teend s Udena» @nd U,y be empty. Vuey,, all
passes in PassList,, PassList, 4+, and PassList,.,q are removed with
Operation 8. Let flow (u, c.start) be c’s inflow, flow (c.end, w) be c¢’s outflow,
and flow (u, w) € F,. The flow (c.start, c.end), inflow (u, c.start), and outflow
(c.end, w) in FE, are replaced with flow (u, w). Control activities c.start and

c.end are removed from V. Control block ¢ is removed from Cy.

5. Adding a branch into a contrel block.c.and:

Constraints: flow (c.start, c.end)& F,- and.c.type = ROOT.
Actions: The flow (C.start; c.end) is added into F, and c.bcounter increases by

1.

6. Removing a branch from a control block c:

Constraints: flow (c.start, c.end) € F, and c.totalbranches > 1.

Actions: The flow (c.start, c.end) is removed from F,.

7. Adding Pass(d, u) into an activity v:

Constraints:
Pass(d, u)¢PassList, and IsReachable(u, v)=false.
APath(u, V)€AFEL.

Actions: Pass(d, u) is added into PassList,.

43



8. Removing Pass(d, u) from an activity v:
® Constraints: Pass(d, u)ePassList,.

® Actions: Pass(d, u) is removed from PassList,,.

9. Modifying an activity v:
® For an atomic activity v:
B Actions: Modifying v’s specification. For example, let v initialize, read,
update, or delete an artifact.
® [or a compound activity v: Assigning a sub-process sp to v.subp.
B Constraints: IsInstantiateRecursively(p, sp) = false.
W Actions: Child, = Child, U {sp}. Parentsy, = Parentss, U {p}.

v.subp = sp.

Operation 9 updates the associated-compound activity v by assigning v.subp to be
another sub-process. For example, if 3w, € V,; and w,.supb = p2, p2 is instantiated when
vy is activated. On the other hand, if 3v, € V,,, and v,.supb = pl exist at the same time, p1
and p2 might be instantiated recursively. In order to avoid this situation, function
IsInstantiateRecursively() is executed right after modifying a compound activity. If
IsRecursiveCall() = false, recursive instantiating will not occur in this modification.

Algorithm 5.1 shows how to identify whether a recursive instantiating occurs.

Algorithm 5.1  (ldentifying Whether Recursive Instantiating Occurs)

Algorithm IsInstantiateRecursively(p, sp){

/Nnput: Identifying whether p is instantiated by sp or the processes in Child,, recursively.
/[Output: true is returned if a recursive instantiating occurs. Otherwise, false is returned.

1. Boolean flag = false;

2. if(Child,, #0){

44



3. if(pEChild,, ){

4. flag = true;

5. Jelse{

6. for each process sspeChild,, {

7. flag = flag Vv IsInstantiateRecursively(p, ssp);
8. }

9. }

10. }

11. return flag;

}

Since Operation 1 inserts an activity without using an artifact, the artifact flow diagram
IS not necessary to update. It is similar for Operation 3. Operation 2 and 4 can be treated as a
series of Operations 6, 8, and 9 correspondingly. Thus, the analysis based on Operation 2 or 4
can be done by applying a series of analysis techniques of which each is done after Operation
6, 8, or 9. The updates of an artifact flow diagram caused-by Operations 5, 6, 7, 8, and 9 are

described in Section 5.2.

5.2 Incremental Algorithms to Detect Artifact Usage Anomalies

In order to detect artifact usage anomalies incrementally, the artifact flow diagram has to
be updated after each edit operation. The incremental algorithms for each edit operation are
introduced in this section. For edit operations 7 to 9, Algorithms 5.2 to 5.4 show how to
update the artifact flow diagram and detect anomalies. Algorithm 5.5 shows the updates and

detections after operation 5 or 6.

45



Algorithm 5.2 (Updates and Detections After Inserting a Pass)

Algorithm AfterAddingPass(u, d, v){
/lInput: After Pass(d, v) is added into PassList,,.

/[Output:

1. AFV® = AFVE U {u, v}

2. AFE! = AFE? v {flow (u, V)};
3. UpdateOutflows(u, d, v);

4. Updatelnflows(v, d, u);

5. DetectAnomalies(u, v, d);

}

Algorithm 5.2 is executed after Pass(d, v) is added into PassList,. At line 2, flow (u, v)
is created and added into AFF;gd. The properties of outflows of u and inflows of v are updated
from lines 3 to 4. Finally, function DetectAnomalies(u, v, d) presented in Section 5.4 is

executed to detect whether anomalies occur inu.and v respectively at line 5.

Algorithm 5.3  (Updates and Detections After Removing-a Pass)

Algorithm AfterRemovingPass(u, d,¥){
[Nnput: After Pass(d, v) is removed from" PassList,, .
/[Output:

1. AFE? = AFE? \{flow (u, V)};
2.  Roleg =Roles(u, d);

3. Roleg =Roles(v, d);

4, if(Rolel == Irrelevantor){

5. AFVE = AFVE \{u};
6. Jelse{

7. UpdateOutflows(u, d, v);
8. DetectAnomalies(u, u, d);
9. }

10. if(Roled == Irrelevantor){
11. AFVE = AFVE \ {v};
12. }else{

13. Updatelnflows(v, d, u);
14, DetectAnomalies(v, v, d);

46




15. }

Algorithm 5.3 is executed after removing Pass(d, v) from PassList,. At lines 2 to 3,
function Roles(u, d) and Roles(v, d) are used to update the roles of u and v for d. The
condition at line 4 is used to check whether u becomes an irrelevantor of d or not. Otherwise,
function UpdateOutflows(u, d, v) presented in Section 5.3 is called to adjust the flows and
update properties and function DetectAnomalies(u, u, d) is executed to detect anomalies. It is

similar for v at line 10.

Algorithm 5.4  (Updates and Detections After Modifying an Activity)

Algorithm RolelsChanged(v, d){
/lInput: Roleg is changed due to medify activity v.
/[Output:
Role? =Roles(v, d);
if(Roleg # Irrelevantor){

if(ve AFVY){

AFVE = AFVE U {v}
}

DetectAnomalies(v, v, d);

Yelse{
AFVE = AFVE \{v};

o o N o gk b

Algorithm 5.4 is executed when activity v is changed its role for d. At line 1, function
Roles(v, d) is used to update v’s role of d. At line 2, if v is not an irrelevantor of d, v is added
into AFVpd and DetectAnomalies(v, v, d) is used to check whether anomalies occur at v.

Otherwise, v is removed from AFVpd.

47




Algorithm 5.5 (Updates and Detections After Adding or Removing a Branch)

Algorithm AfterAddingorRemovingBranch(c){
/lInput: After adding/removing a branch into/from c.
/[Output:

1. if(c.type == XOR){

2 foreachn € AFNS and n.blockID = c{
3. UpdatePXBNode(n);

4, }

5 }

}

Algorithm 5.5 is performed when a branch is added/removed into/from a control block.
In our model, only the insertion or deletion of a branch in an XOR control block affects the
artifact flow diagram. Let XBNode n represent an XOR control block x in an artifact flow
diagram. After adding/removing a branch of x; n.dsUneond may be changed. Therefore, in the
for loop at lines 2 to 4, function-UpdatePXBNode(n) is executed to update each XBNode
which may be affect by this operation. Function UpdatePXBNode() is described in Algorithm

5.6.

Algorithm 5.6  (Updating the Parent XBNode)

Algorithm UpdatePXBNode(n){

/lInput: Update XBNode n and its parent XBNode.
/[Output:

1. if(n.isUncond # IsUnconditional(n.cv_set, n.blockID)){
2 n.isuncond = IsUnconditional(n.cv_set, n.blockID);
4 if(n.Parent = Null){

5. UpdatePXBNode(n.Parent);

6. Yelse{

7 DetectAnomalies(n.Attached, n.Attached, d);

8

9

}

48



Since an XBNode may be contained in another XBNode, Algorithm 5.6 updates the
XBNode n and its parent XBNode. The modification process starts up from n, level by level,
until it has no parent XBNode or n.isUncond is not changed. The condition at line 1 identifies
whether n.isUncond is changed or not. If n.isUncond is changed, n.isUncond is updated to the
result of function IsUnconditional(n.cv_set, n.blockID) at line 2. At lint 4 to 5, if n has parent
XBNode, its parent XBNode is updated recursively. Otherwise, function
DetectAnomalies(n.Attached, n.Attached, d) is executed to detect whether anomalies occur at

activity n.Attached.

5.3 Algorithms to Update an Artifact Flow Diagram

For an activity v € AFVpd, the properties inBlock of v’s inflows depend on the XBNodes
in EIN'ff/PIN',‘f; on the contrary, the -properties outBlock of v’s outflows depend on
XBNodes in EOUT',‘f/POUT'ﬁ. Our. approach updates the XBNodes affected before
modifying the flows. The constructing methods are illustrated in Section 5.3.1 and the
updating methods are introduced in Section 5.3.2. Section 5.3.3 presents an example for

illustrating how to build XBNodes and update flows.
5.3.1 Construction of XBNodes

In this section, an algorithm for the construction of XBNodes is proposed. The
construction is done according to the activities in input set S. Since the algorithm for the

construction is complex, three sub-functions are introduced before illustrating the algorithm.

Let an XBNode n represent an XOR control block x. According to Definition 3.19, the

49



activities in n.cv_set are not located in the same branch of x. Hence, the activities/XBNodes in
S located in the same deepest XOR control blocks and branches are identified. In these
identified activities/XBNodes, only one is selected to stay in S. The remainders are moved to
another set for constructing another XBNode. Algorithm 5.7 shows how to identify whether

the activities are located in the same deepest XOR control blocks and branches.

Algorithm 5.7 (Searching the Activities Located in the Same Deepest XOR Control
Blocks and Branches)

Algorithm SearchldenticalBranch(S){

[Input: S is a set of activities to build XBNodes.

/[Output: S, : The set of activities/XBNodes located in the same deepest XOR control
I blocks and branches.

1. Seame =9;

2. foreach ueS{

3. for each weS and w=+u{

4. if(ABStack, .getTopXOR() == ABStack,,.getTopXOR()){
5. if(w is an XBNode and w:isdncond==false){

6. Ssame = Ssame. U {W};

7. S=S\{w};

8. }else if(u is an XBNode and u.isUncond==false){

9. Ssame = Ssame Y {U};

10. S=S\{u},

11. Yelse{

12. Ssame = Ssame Y {W}

13. S=S\{w};

14. }

15. }

16. }

17. }

18. return S e

}

50



For an activity v, if a control block x is the deepest control block containing v, x is
associated with the top element in ABStack,. The function getTopXOR() gets the first
element from the top of an ABStack and the type of the block associated with the element is
XOR. Hence, if the results of getTopXOR() of the activities are the same, they are located in
the same deepest XOR control blocks and branches. In Algorithm 5.7, the condition at line 4
identifies whether the activities/XBNodes are located in the same deepest XOR control blocks
and branches. The conditions at lines 5 to 14 decide who is added into Sgu,.. If U is a

conditional XBNode, u is moved t0 Sy, fromS. It is similar for w.

During construction of XBNodes, the activity contained in the deepest XOR control
blocks is first selected to construct an XBNode. For an activity v, let xlevel denote the number
of XOR control blocks containing v; hence,.the activity with the maximal xlevel is selected

first. The computation of xlevel of-an activity/XBNode is tHustrated in Algorithm 5.8.

Algorithm 5.8 (Computing xlevel foran Activity/XBNode)

Algorithm XLevel(u, v){

/lInput: u is an activity/XBNode in S.

1 v is the activity where XBNodes are attached.

/[Output: |xset| is the number of XOR control blocks which contain u but not v.
1. ABStack, = ABStack,.removeldenticalElements(ABStack,);

2. xset={e € ABStack, | e.blockID.type = XOR};

3. return |xset|;
}

In Algorithm 5.8, u is an activities/XBNodes in S. At line 1, the same elements in
ABStack, and ABStack, are removed because the XOR control blocks containing both u
and v are not needed to build XBNodes. The rest elements are stored in ABStack, . The

number of XOR control blocks containing u but not v is equal to the number of elements

51



whose branchID.type is XOR in ABStack, . At lines 2 to 3, |xset| is equal to the number
of elements whose branchID.type is XOR in ABStack, . Therefore, |xset| represents the

number of XOR control blocks containing u but not v.

The XBNodes are categorized into two types: unconditional and conditional. Let an
XBNode n is constructed in PINZ/POUTS for expressing an XOR control block x. XBNode
n is unconditional if each branch of x contains an activity receiving/passing d from/to v.
Otherwise, n is conditional. Algorithm 5.9 shows how to identify whether an XBNode is

conditional or not.

Algorithm 5.9  (Identifying an Unconditional/Conditional XBNode)

Algorithm IsUnconditional(cv_set, blocklD){

/lInput: cv_set is a set of activities/’ XBNodes which are contained in an XBNode.

1 blockID is the id of an XOR ‘control block represented by an XBNode.

/[Output: true is returned if the XBNode is unconditional. Otherwise, false is returned.
Boolean flag = true;
for each ue cv_set {

if(u is an XBNode and u.isUncond == false){

flag = false;

}

if(blocklID.totalbranches == |cv_set| and flag == true){
return true;
Yelse{
10. return false;
1. }

¥

1
2
3
4
5, }
6
7
8
9

In Algorithm 5.9, if an XBNode contains another conditional XBNode, it is also viewed
as a conditional XBNode. The for loop at lines 2 to 6 decides the Boolean value of flag by

checking each element in S. The flag is false if there is a conditional XBNode in cv_set.

52



Otherwise, the flag is true. At lines 7 to 11, when flag is true and the number of elements in
cv_set is equal to the number of branches in blockID, this function returns true; otherwise,

false is returned.

Based on the sub-functions above, a complete algorithm of building XBNodes is

proposed. Algorithm 5.10 shows how to build XBNodes.

Algorithm 5.10 (Building XBNodes)

Algorithm BuildXBNodes(S, v, XBNZ){
/lnput: S is a set of activities to build XBNodes which are attached to v.

I XBNZ = XOUTZ or XINY. Each constructed XBNode is added into XBNZ.
//Output: A set of XBNodes which are built completely.

1 Ssame =0;

2. XlevelList = XLevelList U S;

3. m = XLevelList.getFirst();

4.  while(XLevel(m, v)#0){

5. Se.ame = SearchldenticalBranch(S);

6. XLevelList = XLevelList \ "Sqgme ;

7. XOR control block x = ABStack,,.getTopXOR().blockID;
8. Create an XBNode n;

9. n.blockID = x;

10. n.cv_set = {u|ueSand ABStack,.getTopXOR().blockID == x};
11. for each u € n.cv_set{

12. if(u is an XBNode){

13. u.Parent = n;

14, }

15. }

16. n.isuncond = IsUnconditional(n.cv_set, x);

17. ABStack, = ABStack, g4t

18. XLevelList = XLevelList \ n.cv_set;

19. XLevelList = XLevelList U {n};

20. AFNZ = AFN$ u {n};

21. XBNZ = XBNZ u {n};

22. m = XLevelList.getFirst();

53



23. }
24, if(Ssume #9)

25. XLevelList = XLevelList U BuildXBNodes(Ssgme » V);
26. S = XLevelList;

27. returnS;

}

In Algorithm 5.10, XBNZ is equal to XINZ or XOUTZ. XINE is a set of XBNodes,
of which each is contained in EIN'%/PIN'® or contained in the XBNode in EIN ¢/PIN'¢.
On the other hand, XOUTZ is a set of XBNodes, of which each is contained in

EOUT'%/POUT'? or contained in the XBNode in EOUT'%/PoOUT °.

XLevelList is a linked list and all elements.in this list are sorted according to their xlevel.
The element with large xlevel, it is closer to.the.front side in the list. Therefore, the element
obtained by XLevelList.getFirst() hasthe maximal xlevel inthe list. At line 2, all elements in S
are added into XLevelList. At line 3, m is.the element which has the maximal xlevel. The while
loop at lines 4 to 23 repeats until the xlevel of m beecames 0, which means all XBNodes in S
are completely built. At lines 5 to 6, the activitiess/XBNodes identified by function
SearchldenticalBranch() are moved to S, from XLevelList. If the S,,,. is not empty, the
activities/XBNodes in S,,,,. are used to construct another XBNode recursively at lines 24 to

25.

At line 7, XOR control block x is the deepest XOR control block containing m. An
XBNode n is created to represent x at lines 8 to 9. All activities/’XBNodes located in x are
added into n.cv_set at line 10. The for loop at lines 11 to 15 updates the properties Parent of
XBNodes in n.cv_set. The function IsUncondtional() is executed to identify whether n is
conditional or not at line 16. ABStack, represents the location of x; thus, ABStack, is

equal to ABStack, ..+ at line 17. Finally, the activities/XBNodes in cv_set are removed

54



from S at line 18. At lines 19 to 21, n is added into XLevelList, AFNg, and XBNZ

respectively. While all XBNodes are constructed completely, S is returned.

5.3.2 Update of the Properties of Flows

After the XBNodes are built completely and put into EIN'? and PIN'Y, v’s inflows can
be updated according to the XBNodes in EIN',‘f and PIN',‘f. Algorithm 5.12 shows how to
update inBlock of v’s inflows. On the other hand, Algorithm 5.13 shows how to update
outBlock of v’s outflows. Before illustrating Algorithms 5.12 and 5.13, the sub-function,

Algorithms 5.11, is introduced first.

Algorithm 5.11  (Getting All Activities in an XBNode)

Algorithm getAllActivities(n){
/lInput: Getting all activities contained in n'and-n’s-child XBNodes.
/[Output: AllA is a set of activities, of which each is'contained in n or n’s child XBNodes.
AllA = @;
foreach v € n.cv_set{
if(v is an activity){
AllA = AlIA U {v};

1

2

3

4

5. Yelse{

6. AllA = AlIA U getAllActivities(v);
7

8

9

}

}
return AllA;

Since an XBNode may contain other XBNodes in cv_set, Algorithm 5.11 is used to get
all activities in cv_set and in child XBNodes recursively. At lines 2 to 7, if v is an activity, v is

added into AllA. Otherwise, function getAllActivities(v) is used to get all activities in v. When

55



all activities are added into AllA, AllA is returned at line 9.

Algorithm 5.12  (Updating Properties inBlock of Inflows)

Algorithm Updatelnflows(v, d, u){
/Input: After an inflow (u, v) is added/removed into/from AFF;Dd.
/[Output:

1. ABStack, = ABStack,.removeldentialElements(ABStack,);
2.  XOR Control Block x = ABStack,,’.getTopXOR().blockID;
3. if(x == Null){

4 if(u € Receive?){

5. Received = Received \ {u};

6 EIN'® = EIN'® \ {u};

7 Yelse{

8 Received = Receive? U {u};

9 if(IsExclusive(u, v)==false)

10. EIN'® = EIN'“ v {u};

11. }

12. }Yelse{

13. ING =@;

14. foreach n € XINZ andn.blockiD ==x{
15. if(n.isUncond == false ‘or u.€ n.cv_set){
16. INg = INZ U n.cv_set;

17. AFNS = AFNZ \ {n};

18. EIN'® = EIN'® \ {n};

19. PIN'® = PIN'® \ {n};

20. XINZ = XINZ \ {n};

21. while(n.Parent = Null){

22. m = n.Parent;

23. INg = INZ U (m.cv_set\ {n});
24. AFN$ = AFNZ \{m};

25. EIN'® = EIN'® \ {m};

26. PIN'® = PIN'® \ {m};

27. XINZG = XINZ \ {m};

28. n=m;

29. }

30. }

31 }

56




32. if(u € Receive?){

33. Received = Received \ {u};
34. ING = INZ \{u};

35. Yelse{

36. Received = Receive? U {u};
37. IN¢ = IN& u {u};

38. }

39. NewXBN¢ = BuildXBNodes(INZ, v, XINZ);
40. for each n ENewXBNZ{

41. n.Attached = v;

42. if(n.isUncond == true){

43. EIN'® = EIN'® u{n};
44, NewXBNZ = NewXBNZ \{n};
45, }

46. for each uegetAllActivities(n){
47. Let flow f be (u, v) in AFES;
48. f.inBlock = n;

49. }

50. }

51. PIN'® = PIN'® U NéwXBNZ;

52. }

}

At lines 1 to 2, x is the deepest XOR control block containing u but not v. At line 3, if x
is Null, the XBNodes in EIN'jf and PIN'ﬁ are not affected after an inflow (u, v) is
added/removed into/from AFP;,d. At lines 4 to 11, u is added/removed into/from Receive?
and EIN'g according to whether u is in Received or not. If u is in Receive?, u is removed
from Received and EIN'jf. If uis not in Received and ISExclusive(u, v) = false, u is

added into Receive? and EIN'¢.

If x is not Null, the XBNodes whose blockID is x in XINZ may be affected. At line 13,
INZ is used to store all the affected activities/XBNodes. At lines 14 to 20, for each XBNode

n whose blockID = x in XINZ, if n is a conditional XBNode or u is contained in n.cv_set, n is

57



removed from AFNZ, EIN'S, PIN'S, and XINZ. All elements in n.cv_set are added into
INZ because these elements are used to rebuild XBNodes. At lines 21 to 29, if n has parent
XBNode, the elements in parent XBNode are also added into IN¢ and the parent XBNode is

removed from AFNZ, EIN'S, PIN'S, and XINZ.

As in lines 4 to 11, u is added/removed into/from Receive? and INZ according to
whether u is in Receive? or not at lines 32 to 38. At line 39, BuildXBNodes(INZ, v, XINZ)
is used to rebuild XBNodes from the affected elements and the results are put into
NewXBNZ. At lines 40 to 45, for each new XBNode n, n.Attached = v. If n is unconditional,
nis moved to EIN 'ff from NewXBNZ. The properties inBlock of inflows of v are updated to

n at lines 46 to 49. Finally, the conditional XBNodes in NewXBN¢ are added into PIN'%.

Since the method of updating outflows in Algorithm-5.13 is similar to Algorithm 5.12,

Algorithm 5.13 is described simply as follows without detailed explanation.

Algorithm 5.13  (Updating Properties outBlock of Outflows)

Algorithm UpdateOutflows(v, d, u){

/lInput: After an outflow (v, u) is added/removed into/from AFFI;d.
/[Output:

1. ABStack, = ABStack,.removeldentialElements(ABStack,);
2.  XOR Control Block x = ABStack,'.getTopXOR().blockID;

3. if(x == Null){

4, if(lu e Send?){

5. Send? = Send? \{u};

6 EoUuT'¢ = FouT'¢ \ {u};

7 Yelse{

8 Send? = Send? v {u};

9. if(IsExclusive(v, u)==false)

10. EouT'® = EouT'® u {u};

11. }

58



12. }else{

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45,
46.
47.
48.
49.

OUTE =,
foreachn € XOUTZ and n.blockID == x{
if(n.isUncond == false or u € n.cv_set){
OUTE = OUTZ U n.cv_set;
AFNS = AFNS \ {n};
EoUT'¢ = EouT'¢ \ {n};
pPouT'¢ = PouT'® \ {n};
XOoUTg = XoUTZ \{n};
while(n.Parent # Null){
m = n.Parent;
OUTE = oUTZ U (m.cv_set\ {n});
AFN{ = AFN{ \{m};
EoUuT'¢ = EouT'¢ \ {m};
pPoUT'¢ = PoUT'® \ {m};
XOUTE = XOUTZ \ {m};
n=m;

}
if(lu e Send?){
Send? = Send? \ {u};
oUT¢ = oUTZ \{u};
Yelse{
Send? = Send? U {u};
oUTg = oUTZ¢ v {u};
}
NewXBN¢ = BuildXBNodes(OUTZ, v, XOUT2);
for each n eNewXBNZ{
n.Attached =v;
if(n.isUncond == true){
EouT'® = EouT'® u {n};
NewXBN¢ = NewXBNZ \ {n};
}
for each uegetAllActivities(n){
Let flow f be (v, u) in AFF{;
f.outBlock = n;

59




50. }

51. POUT'Y = POUT'® U NewXBNZ;
52. }

5.3.3 An Example for Illustration of Updating an Artifact Flow Diagram

Figure 5.1 shows a control flow and Figure 5.2 is the corresponding artifact flow

diagrams for artifact d extracted from it.

2.9 .
(x1, 1) BT
(R, 1) ‘r \ (Xl, 1)
v, 4 40 [ (R, 1)
e S 1o
(R 1) (R 1)
" xsbo0d DF 1, 9) (ﬁ: 3 19
RL[RD] [RD

>v7

D ———

PassList,, = Pass(d,v,)—~Pass(d,v;)—>Pass(d, v,)—Pass(d, vs)—Pass(d, v;)
xsl.ch = xjl.cb =x1, xs2.cb =xj2.cb =x2, xs3.cb =xj3.cb =x3

Figure 5.1: An Example of Building XBNodes.

60




Sendy, ={v,, v3, vs, Vg, v7}
EOUT'}, ={n3}

POUT'], ={n4}

XOUTE ={n1,n2, n3, n4}
nl=(x2, {vy, vz}, |(x1,1)], true)
n2 = (x3, {vs, v}, [(x1, 1), false)
n3=(x1,{nl, v}, | |, true)
nd=(x1,{n2}, | | false)

n3

n4

Figure 5.2: The Corresponding Artifact Flow Diagram for d.

In Figure 5.1, v; passes artifact dto v,, v3, v, Vg, and v,. These activities are added
into POUTUd1 according to Definition 3.18. In order to update the properties of outflows, (v,
vy), (v1, v3), (vi, vy), (v1,4v), and (wi, v;), the XBNodes are built by

BuildXBNodes(POUT2, vy, XOUTZ).

The Table 5.2 shows the construction of XBNaodes in BuildXBNodes(POUTﬁl, V1,
XOUTUdl) step by step. The element (R, 1) in the'bottom of each ABStack is ignored in Table

5.2. Table 5.3 shows the states of each XBNode in XOUT;’l.

Figure 5.1 | S=POUTZ

step1 | =S5, v ). va( G2 1) ve(02 T, ol 2D}

step2 | S={N1(x2, {vy, v3}, (XL, 1)], true), vy( Eﬁ B ), s( Eﬁ %) v7(|(x2, 2))}

Step3 | S={n1(x2,{v,, vs}, |(x1, 1)|,true), n2(x3,{vy, ve}, |(x1, 1)|, false), v5( |(x1, 2))}

S={n1(x2, {v,, v3},I(x1, 1), true), v,(|(x1, 2)])}
Ssame ={N2(x3, {v4, ve}, |(X1, 1)|, false)}

Step 4

Step5 | S={n3(x1, {n1, v,}, , true)}

61



S={n4(x1, {n2}, , false)}

Result

POUT') ={n4(x1, {n2}, , false)}
EOUT'{ ={n3(x1, {n1, v,}, , true)}

Table 5.2: Construction of XBNodes in BuildXBNodes(POUTZ, v;, XOUTZ).

XBNodes | blockID cv_set ABStack isUncond Parent Attached
nl X2 {v,y, v3} ?SB true n3 Null
n2 X3 (v, v} ?SB false a4 Null
n3 x1 {n1, v,} (R, 1) true Null v
n4 x1 {n2} R, 1 false Null 2]

Table 5.3: The States ofjEach. XBNode in XOUT .

In Step 1 of Table 5.2, S = {w,, vs3, vy, Vg, V7). These activities located in the same

deepest XOR control blocks and ‘branches-are-identified. In these activities/’XBNodes, only

one is selected to stay in S and the remainders are moved to S,,,,,. fromS. In Step 1, there is

no activity moved to Sg;,.c -

Next, the activity with maximal xlevel is selected to construct an XBNode. In Step 1, the

xlevel of v,, v, v, and vg are all 2; thus, v, is selected randomly to build an XBNode.

Because x2 is the deepest XOR control block which contains v,, an XBNode n1 is created to

represent x2. All the activities located in x2 are added into nl; thus, nl.cv_set = {v,, v3}.

Because ABStack,; is used to express the location of x2, ABStack,; = ABStack,, ¢tart -
In addition, nl is unconditional because x2 always receives artifact d from v; whether v, or

v3 Is executed or not. Therefore, nl.isUncond is true. The result of building nl is showed in

Step 2.

62




In Step 2, S = {nl, vy, ve, v, } and next XBNode is built based on these
activities/XBNodes. The method of building an XBNode in Step 2 is the same with Step 1. In
Step 2, there is no activity/XBNode moved to S,,,,,. . Because the xlevel of v, and v, are 2,
v, is selected to build an XBNode. Because x3 is the deepest XOR control block containing
vs, XBNode n2 is created to represent x3. n2.cv_set = {v,, vs} and ABStack,, =
ABStack,3 gqre - IT V5 IS executed, x3 can not receive d from wv;; thus, n2.isUncond = false.

After n2 is built, the result is showed in Step 3.

In Step 3, S = {n1, n2, v;}. XBNodes nl1 and n2 are both located in branch 1 of XOR
control block x1; thus, nl or n2 is moved to S¢,,. . Since nl.isUncond = true and

n2.isUncond = false, n2 is moved t0 S¢ e -

In Step 4, S ={nl, v,}. Because the xlevel of n1 and-v, are 1, nl is selected to build an
XBNode. Because x1 is the deepest XOR control block: containing nl, an XBNode n3 is
created to represent x1. Activity v, isalso located inx1; thus, n3.cv_set = {n1, v,}. Since nl

is in n3.cv_set, n3.Parent = n1. The result of building n3 is showed in Step 5.

In Step 5, there are two S; one contains n3 and another contains n4 which is built from
Se.ame 1N Step 4. Because the xlevel of n3 and n4 are both 0, they are not used to build another

XBNode.
Finally, all the XBNodes are added into POUT'ﬁ1 if their xlevel are all 0. Therefore,

POUT'jf1 = {n3, n4} and n3.Attached = n4.Attached = v;. Since n3 is unconditional, n3 is

moved to EOUT'S, from POUT'% . All XBNodes are built completely.

63



In EOUT'ﬁl, since getAllActivities(n3) = {v,, vz, v;}, the properties outBlock of
outflows, (v{, v;), (v{, v3), and (vy, vy), are updated to n3. In POUT',‘fl, because
getAllActivities(nd) = {v,, vg}, the properties outBlock of outflows, (v;, v,) and (vq, ve),
are updated to n4. Therefore, the source of flows, (v4, v,), (v, v3), and (vy, v5), are n3 and

the source of flows, (v, v;) and (v4, vg), are n4 in Figure 5.2.

5.4 Algorithms to Detect Artifact Usage Anomalies

As mention in Section 5.2, the function DetectAnomalies() is executed to detect

anomalies after the artifact flow diagram_is. updated. The function DetectAnomalies() is

described in Algorithm 5.14.

Algorithm 5.14  (Detecting Anomalies)

Algorithm DetectAnomalies(u, v, d){

/Nnput: Identifying whether anomalies occur in u’s outputs and v’s inputs.

/[Output:

1. Boolean flag_u = false;

2. Boolean flag_v =false;

3. /IDetecting Missing Artifact Anomalies.

4. if(JEIN'¢]=0 A |PIN'%|=0 A Rolede{Reader, Updater, Destroyer, Relevantor})
5. flag_v = true;

6. if(|EIN'?|=0 A [PIN'|>0 A Roled e{Reader, Updater, Destroyer, Relevantor})
7. flag_v = true;

8. if(|EoUT I|>0v |POUT'¢|>0) A Rolel==Destroyer)

9. flag_u = true;

10.

11. //Detecting Artifact Conflict Anomalies.

12. if(|EIN'?|>1)

13. flag_v = true;

14. if((|EIN'¢|=1 A |PIN'¢|>0) v (|[EIN'¢|=0 A |PIN'|>1))

64



15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

flag_v = true;
if((EIN'S|>0 v |PIN"%|>0) A Roled==Producer)
flag_v = true;

/[Detecting Redundant Anomalies.
if((EOUT 2|=0 A [POUT I|=0 A Roled e{Producer, Updater})

flag_u = true;
if((EIN'¢|>0 v |PIN'%|>0) A Rolef==Relevantor)
flag_v = true;

if(flag_u == true)

Anomalies; = Anomalies; U {u},
if(flag_v == true)

Anomalies; U {v};

Anomalies,

/[Detecting Cross Passing Artifact Anomalies.
if(u = v){
if(IsParallel(u, v) == true)
PassAnomalies; = PassAnomalies; U{flow (u, v)};
else if(IsExclusive(u, v):== true){
PassAnomalies; = PassAnomalies; U {flow (u, v)};

occur at u and v. At lines 11 to 17, the conditions check whether artifact conflict anomalies
occur at v. The redundant anomalies are checked at lines 19 to 23. At lines 25 to 26, if one or
more anomalies occur at u, u is added into Anomalies,. It is similar for v at lines 27 to 28.

The cross passing artifact anomalies are checked at lines 30 to 36. If an anomaly occurs, flow

In Algorithm 5.14, the conditions at lines 3 to 9 check whether missing artifact anomalies

(u, v) is added into PassAnomalies,.

65




Algorithm 5.15 (Show Current Anomalies)

Algorithm ShowAnomalies(d){
/Input: Show all anomalies about d in the artifact flow diagram.
/[Output:

1. foreach veAnomalies,{

2 Boolean flag = false;

3 if(|[EIN'¢|=0 A [PIN'?|=0 A Roled e{Reader, Updater, Destroyer, Relevantor}){
4 print “An Explicit Missing Artifact Anomaly occurs at Activity v!”;
5. flag = true;

6 }

7 if(|EIN'¢|=0 A [PIN'?|>0 A Roled e{Reader, Updater, Destroyer, Relevantor}){
8 print “An Implicit Missing Artifact Anomaly occurs at Activity v!”’;
9. flag = true;

10. }

11. if((EOUT I|>0 v [POUT ?|>0) A Roled==Destroyer){

12. print “A Destroyed Artifact;,Anemaly occurs at Activity v!”;

13. flag = true;

14. }

15. if(|EIN"¢[>1){

16. print “An Explicit Artifact Conflict Anomaly occurs at Activity v!”;
17. flag = true;

18. }

19. if((|EIN'¢|=1 A |PIN'2|>0) v ([EINZ |20 A |PIN'¢|>1))¢

20. print “An Implicit Artifact Conflict Anomaly occurs at Activity v!”;
21. flag = true;

22. }

23. if((EIN'¢|>0 v [PIN"%|>0) A Roled==Producer){

24, print “A Production Conflict Anomaly occurs at Activity v!”;

25. flag = true;

26. }

27. if((EOUT ¢|=0 A |POUT ¢|=0 A Roled e{Producer, Updater}){

28. print “A Redundant Update/Initialize Anomaly occurs at Activity v!”;
29. flag = true;

30. }

31. if((EIN'¢|>0 v [PIN'%|>0) A RoleZ==Relevantor){

32. print “A Redundant Pass Anomaly occurs at Activity v!”;

33. flag = true;

34. }

66




35. if(flag == false){

36. Anomalies; = Anomalies; \ {v},

37. }

38. }

39. foreach f=(u, v) € PassAnomalies;{

40. if(IsParallel(u, v) == true){

41. print “A Passing between Parallel Activities Anomaly occurs at u!”;
42. }else if(IsExclusive(u, v) == true){

43. print “A Passing between Exclusive Activities Anomaly occurs at u!”;
44, Yelse{

45, PassAnomalies; = PassAnomalies; \ {f};

46. }

47. }

}

Algorithm 5.15 is executed when designer wants to know what anomalies about d occur
in current process. At lines 1 to" 38, each activity In. Anomalies; is checked whether
anomalies occur. If an anomaly-occurs, the warning message is printed. Otherwise, the
activity is removed from Anomaliesy. Similarly, each flow in PassAnomalies; is
identified whether cross passing anomalies-eccurin lines 39 to 47. If no anomaly occurs in a

flow, the flow is removed from PassAnomalies,.

67



Chapter 6. Examples for Illustrating Incremental Algorithms

For illustrating and demonstrating our incremental algorithms, an example of a control
flow graph and its artifact flow diagram for d are presented in this section. Figure 6.1 shows
an example of a control flow graph, and the states of each activity in it are showed in Table
6.1. Figure 6.2 shows the artifact flow diagram for d extracted from Figure 6.1, and the states

of each activity in it are displayed in Table 6.2.

In Figure 6.2, since v, is a producer of d and |EOUT'{,| = |POUT'S| = 0, a
redundant initialize anomaly occurs at vge. In addition, because v; is a relevantor and
|E1N '{‘f3| =1, a redundant pass anomaly-occurs at -v;. These anomalies are showed in Table

6.3.

Based on this example, Section 6.1 presents-three scenarios about activity modifications
to illustrate the updates of the artifact flow diagram and detections of anomalies. Section 6.2

and Section 6.3 also show three scenarios about pass insertion and deletion respectively.

(al, 1) &i B
(x1, 1) R, 1)
(R, 1) - ) (Xl, 1)
Uy
«:}0 &
R, 1 -
oS ; (a1, 2)
x L6 DE 6 2) x4, 1)
RO RD] [RD [®D

A 4

Vg > (%)

e N—

XOR Control Block x1 = (xs1, xj1, XOR) AND Control Block al = (asl, aj1, AND)
XOR Control Block x2 = (xs2, xj2, XOR)

Figure 6.1: An Example of a Control Flow Graph.

68



PasslList, Input and Output Sets
v, | PassList, =Pass(d,v,)—Pass(d,vs)—>Pass(d,vg) |d¢&l, deU; deU, deo,
v, | PassList,,=Pass(d,v,)—Pass(d,vs)—Pass(d,ve) del,, deUy, de¢U,, deo,,
vy | PassList,,= @ déel,, deuy, deu,, de¢o,,
v, | PassList,,= Pass(d, v;) del, de¢uf de¢u,, deo,,
vs | PassList, = Pass(d, v;) del, deU; de¢U, deo,
ve | PassList,, = Pass(d, v;) del, deu; deu, deo,
v, | PassList,,= @ del,, deu; deU, dego,,
vg | PassList,,= @ del,, deUy, deU, dego,
vy | PassList,,= @ d¢l,, deuy, deU, dego,
vy | PassList, = @ der,, deu) deu, de€o,,

Table 6.1: The States of Each Activity-in Figure 6.1.

Vg
Reader

Vg
Producer,

Uy
Reader

Figure 6.2: The Artifact Flow Diagram for d.

69




Received EIN'® PIN'® Send? EouT'? pouT'¢
2] 1) 1) ? {v2,v3,v8} {n2} {n1}
V2 {v:} {v:} ? {v4,v5,v6} {n3} ?
V3 {v:} {vi} ) 0) ? 0)
Uy {v.} {v.} ? {v7} {v7} ?
Vs {v.} {v2} ? {v7} {v7} ?
Vs {v.} {v2} ? {v7} {v7} ?
vy | {va,Vs,v6} {n4} ? 0) 0] 0)
Vg {v:} {v:} ) 0) ? 0)
Vg @ @ @ 1) 1) 1)
Table 6.2: The States of Each.Activity in Figure 6.2.
Conditions Artifact Usage Anomaly
v; | Roled, =Relevantor A |EIN'S |52 Redundant Pass
vo | Roled, =Producer A |[EOUT'S,| = |[POUT'S,| =0 Redundant Initialization

6.1 Activity Modification

Table 6.3: The Anomalies Occur in Figure 6.2.

In this section, the artifact flow diagram in Figure 6.2 is updated due to the following

edit operations: (1) Modifying vq, (2) Modifying vg, and (3) Modifying v,, in order. After

each edit operation, the updated artifact flow diagrams are showed in Figure 6.3, 6.4, and 6.5.



1. Modifying ve: Roleg = Producer — Irrelevantor
After modification, activity vy becomes an irrelevantor of d. Therefore, vq is removed

from the artifact flow diagram in Figure 6.3.

Us
Reader

,’ Vg 1
\Progiueer
\\ //

~ <

Figure 6.3: The Artifact Flow Diagram After Modifying v,.

Conditions Artifact Usage Anomaly

v; | Roled, =Relevantor A |[EIN'S | =1 Redundant Pass

Table 6.4: The Anomalies Occur in Figure 6.3.

71




2. Modifying vg: Rolel = Reader — Relevantor
After modifying, vg becomes a relevantor of d and a redundant pass anomaly occurs at

vg.

Uy
Updater

Us
Reader

Vg
Relevantor,

Figure 6.4: The Artifact Flow Diagram After Modifying vg.

Conditions Artifact Usage Anomaly
v; | Roled, =Relevantor A |[EIN'S | =1 Redundant Pass
Vs | Roled =Relevantor A |EIN'S| =1 Redundant Pass

Table 6.5: The Anomalies Occur in Figure 6.4.

72




3. Modifying v,: Role, = Updater — Destroyer
After modification, v, becomes a destroyer of d and a destroyed artifact anomaly

occurs at v,.

Uy
Reader

Us
Reader

Figure 6.5: The Artifact Flow Diagram After Modifying v,.

Conditions Artifact Usage Anomaly
v; | Roled, =Relevantor A |[EIN'S | =1 Redundant Pass
vg | Roled, =Relevantor A |[EIN'S | =1 Redundant Pass
v, | Rolel, =Destroyer A |[EOUT'] | =1 Destroyed Artifact

Table 6.6: The Anomalies Occur in Figure 6.5.

73



6.2 Pass Insertion

In this section, the artifact flow diagram in Figure 6.2 is updated due to the following
edit operations: (1) Adding Pass(d, vyy) into PassList,,, (2) Adding Pass(d, vg) into
PassList,,, and (3) Adding Pass(d, ve) into PassList,,, in order. After each edit operation,

the updated artifact flow diagrams are showed in Figure 6.6, 6.7, and 6.8.

1. Adding Pass(d, v4¢) into PassList,,:

After adding, flow (vg, v4) and activity v;, are added into the artifact flow diagram in
Figure 6.6. Then UpdateOutflows(vq, d) is executed to construct XBNode in POUTvd9 and
update (vq, v4p).0utBlock. Updatelnflows(vyg,.d) is executed to construct XBNode in PINI?10
and update (v9, vyq).inBlock.=The methods -of updating outBlock and inBlock and
construction of XBNodes have described”in_Section 5.3. Hence, the results of outBlock,

inBlock, and XBNodes are showed in Figure 6.6 without detailed explanation. In Figure 6.6, a

conditional XBNode n5 is constructed in PIN %

vior (Vo, Vyp).outBlock = Null, and (v,

v10)-InBlock = nb.

Since vy, is a relevantor and |EIN'Y | = 0 and |PIN'S | = 1, an implicit missing

artifact anomaly occurs at vy,. In addition, because vy, is a relevantor and |PIN',‘f10| =1 a
redundant pass anomaly also occurs at v;,. The anomalies occur in Figure 6.6 are shows in

Table 6.8.

74



Uy
Updater

Vg
Reader

Uy
Reader

Figure 6.6: The Artifact Flow Diagram After Adding Pass(d, vy) into PassList,,.

Received EIN'® PIN'® Sendy EOUT'? POUT'?
Vg 1) ) 1) {v10} {v10} )
V1o {vo} ) {nS5} ? ? ?
Table 6.7: The States of Activities vy and vy, in Figure 6.6.
Conditions Artifact Usage Anomaly
v; | Roled, =Relevantor A |[EIN'S | =1 Redundant Pass
V10| Role? = Relevantor A |[EIN'S, |=0A |PIN'S, |=1 Implicit Missing Artifact
V10| Role?, = Relevantor A [PIN'S, | =1 Redundant Pass

Y10

V10

Table 6.8: The Anomalies Occur in Figure 6.6.

75




2. Adding Pass(d, ve) into PasslList,,:

After insertion, flow (v3, vg) is added into the artifact flow diagram in Figure 6.7. Since

|EIN'S,| =2, an explicit artifact conflict anomaly occurs at v,

2
Reader

Us
Reader

Figure 6.7: The Artifact Flow 'Diagram After Adding Pass(d, v) into PassList,,.

Received EIN'¢ PIN'® Send? EoUT'® POUT'?
VU3 {vi} {v:} ) {ve} {ve} 1)
Vg {vy, v3} {vy, v3} @ {vs} {v;} 1)

Table 6.9: The States of Activities v; and vy in Figure 6.7.

76




Conditions

Artifact Usage Anomaly

v; | Rolel,= Relevantor A |EIN') | =1 Redundant Pass
v1o | Roled =Relevantor A [EIN'S | =0A |[PIN'S | =1 | Implicit Missing Artifact
v1o | Roled, = Relevantor A [PIN'S | =1 Redundant Pass
Vg Explicit Artifact Conflict

|EIN'S | =2

Table 6.10: The Anomalies Occur in Figure 6.7.

3. Adding Pass(d, ve) into PassList,,:

Since vy and vg are exclusive activities, an XOR flow (vg, vg) is added into the

artifact flow diagram in Figure 6.8 and.a passing between exclusive activities anomaly occurs

at Vg.

Yy
Reader

Figure 6.8: The Artifact Flow Diagram After Adding Pass(d, v) into PassList,,.

77




Received EIN'® PIN'® Send? EouT'®? POUT'®
ve | {v2, vg} {v2} o {v7} {v7} v
Ug {v1} {v1} ) {ve} ) )
Table 6.11: The States of Activities v, and vg in Figure 6.8.
Conditions Artifact Usage Anomaly
v; | Rolegd,= Relevantor A |EIN'S | =1 Redundant Pass
v1o | Rolel =Relevantor A |EIN'S, | =0A |[PIN'S | =1 | Implicit Missing Artifact
v1o | Roled =Relevantor A |PIN'S, | =1 Redundant Pass
ve | |[EIN'S| =2 Explicit Artifact Conflict
vg | IsExclusive(vg, vg) = true Passing between Exclusive

Activities

Table 6.12: The Anomalies Occur in Figure 6.8.

6.3 Pass Deletion

In this section, the artifact flow diagram in Figure 6.2 is updated due to the following

edit operations: (1) Removing Pass(d, vg) from PassList,,, (2) Removing Pass(d, v;) from

PassList,,, and (3) Removing Pass(d, v;) from PassList, , in order. After each edit

operation, the updated artifact flow diagrams are showed in Figure 6.9, 6.10, and 6.11.

1. Removing Pass(d, vg) from PassList,, :

After removing, flow (v4, vg) is removed from the artifact flow diagram in Figure 6.9.

Then UpdateOutflows(v;, d) is executed to build XBNodes in POUT,,"1 and update outBlock

78




of outflows of v;. Updatelnflows(vg, d) is executed to build XBNode in PIN,?8 and update
inBlock of inflows of vg. In Figure 3.9, n2 becomes a conditional XBNode and is moved to
EOUT'S from POUT' . In addition, because vg is a reader of d and |EIN'(| =

Vg

|PIN'S_|= 0, an explicit missing artifact anomaly occurs at vs.

2
Reader

Us
Reader

Vg
Producer,

Vg
Reader

Figure 6.9: The Artifact Flow Diagram‘AfterRemoving Pass(d, vg) from PassList,, .

Received EIN'® PIN'® Send? EOUT'? POUT'?
51 ? ? ? {v2, vs} @ {n1, n2}
Vg @ @ @ 1) 1) @

Table 6.13: The States of Activities v; and vg in Figure 6.9.

Conditions Artifact Usage Anomaly
V3 Role;jl3 = Relevantor A |EIN ',‘fg =1 Redundant Pass
vy | Roled =Producer A |[EOUT'S| = |[POUT'S| =0 Redundant Initialization
Vg Rolet, = Reader A |EIN',‘f8 - |PIN',",’8| -0 Explicit Missing Artifact

Table 6.14: The Anomalies Occur in Figure 6.9.
79



2. Removing Pass(d, v;) from PasslList,,:
The flow (v,, v7) is removed from the artifact flow diagram in Figure 6.10. XBNode n4
becomes a conditional XBNode and is moved to PIN'{ from EIN'S . Since v, is a

destroyer, |[EIN'S | =0,and |PIN"S | =1, an implicit missing artifact anomaly occurs at v,.

Us
Reader

Vg
Producer,

Vg
Reader

Figure 6.10: The Artifact Flow Diagram After Removing Pass(d, v;) from PassList,,.

Received EIN'¢ PIN'¢ Send® EoUT'® POUT'®
Uy {v.} {v.} ? ? ? ?
vy | {vs, ve} @ {n4} ? ? 0

Table 6.15: The States of Activities v, and v, in Figure 6.10.



Conditions

Artifact Usage Anomaly

vs | Roled, =Relevantor A |EIN'] | =1

Redundant Pass

vy | Roled =Producer A |[EOUT'S| = |POUT'S| =0

Redundant Initialization

vg | Roled, =Reader A |EIN'| = |PIN'S| =0

Explicit Missing Artifact

v, | Roled, =Destroyer A |[EIN'S | =0A |PIN'S | =1

Implicit Missing Artifact

Table 6.16: The Anomalies Occur in Figure 6.10.

3. Removing Pass(d, v;) from PasslList,, :

After removing, flow (v, v3) is removed from the artifact flow diagram in Figure 6.11.

Since v; becomes an irrelevantor of d, v, is also removed. After construction XBNodes in

POUTUdl, only nl exists in POUT'ffl. There issno:anomaly causing by this edit operation.

Uy
Reader

Us
Reader

! vz
\Relevantor!
\ //

N
~

Vg Vg
Reader Producer,

Vg
Updater

Figure 6.11: The Artifact Flow Diagram After Removing Pass(d, vs) from PassList,, .

81



Received EIN'® PIN'® Send? EouT'®? POUT'®
72 )] @ ) {v.} ) {n1}
V3 1) 1) 1) 1) 0) 1)
Table 6.17: The States of Activities v; and v; in Figure 6.11.
Conditions Artifact Usage Anomaly
v; | Roled, =Relevantor A |EIN'S| =1 Redundant Pass
ve | Roled, =Producer A |[EOUT'S,| = |POUT'S,| =0 Redundant Initialization
vg | Roled, =Reader A |EIN'S,| = |PIN'S | =0 Explicit Missing Artifact
v; | Roled = Destroyer A |EIN'S | = Qn|PIN.S | =1 Implicit Missing Artifact

Table 6.18: The Anomalies Occur in Figure 6.11.

82




Chapter 7. Comparisons

7.1 Comparison of Artifact Transmission Models

In GDS, there is a common anomaly called race condition anomaly. A race condition
anomaly occurs when multiple activities try to use the same artifact in parallel. Each artifact is
only allowed to have one instance in GDS. Therefore, different versions of an artifact exist

when this anomaly occurs [15].

In DCDC and ICDC, this anomaly does not occur because the parallel activities use
different copies of an artifact. Figure 7.1 shows an example of a race condition anomaly in
GDS. Parallel activities v, and vs update artifact. d which is initialized by v;. Then v,
reads d which is updated by v, and“w;. According to different execution orders of v, and

v3, different versions of d exist. Therefore, @ race condition anomaly occurs at v, and vs.

(a1, 1)

(al, 2)
(R 1)

del, deU;, de¢U, del, deU; deu,
del,, deu; deu, del, deU; de¢U, aslcb=ajlcb=al

Figure 7.1: A Control Flow in GDS.

83



If GDS wants to be transferred into DCDC, the designer has to decide that v, or v is
executed first. Figure 7.2 (a) shows the artifact flow diagram if v, is selected to execute
before v5. Figure 7.2 (b) shows the artifact flow when v; is selected to execute before v,.
Since the execution order of v, and vz is decided in design time, the race condition

anomaly does not occur in run time. Hence, the race condition anomaly does not occur in

DCDC.
(a)
()
Updater
: Uy
' Reader
U3
Updater
(b)

Uy
Reader

Figure 7.2: The Artifact Diagrams for Two Execution Orders.

In addition, because each artifact in GDS is allowed to have one instance in a workflow,
the artifact conflict anomalies do not occur in GDS. Since the activities in ICDC always pass
artifacts to their direct successors, the cross passing anomalies do not occur in ICDC. Table

7.1 shows the comparison of anomalies occurred in these artifact transmission models.

84



Artifact Usage Anomalies DCDC ICDC GDS

1.1 Explicit Missing Artifact O O O
1.2 Implicit Missing Artifact O O O
1.3 Destroyed Artifact O X O
2.1 Explicit Artifact Conflict O O X
2.2 Implicit Artifact Conflict O O X
2.3 Production Conflict O O X

3.1 Passing Between Parallel

O X O
Activities
3.2 Passing Between Exclusive

O X O
Activities
4.1 Redundant Update/Initialization O O O
4.2 Redundant Pass O X X
Race Condition Anomalies >G4 X O

Table 7.1: Comparisonof Artifact Transmission Models.

7.2 Comparison of Artifact Analysis Approaches

Since our previous work only discusses artifact usage anomalies in GDS, the following
anomalies: (2.1) Explicit Artifact Conflict, (2.2) Implicit Artifact Conflict, (2.3) Production

Conflict, and (4.2) Redundant Pass, do not occur.

In previous work, (1) No Production anomaly occurs when an artifact d is used by at

least one activity; however, no producer of d exists in the process. (2) Delayed Production

85




anomaly occurs when an artifact d is used by an activity which precedes every producer of d.
In the two cases, these activities are missing artifacts explicitly. Therefore, they belong to (1.1)

Explicit Missing Artifact in this thesis.

(6) Conditional Production anomaly occurs when an artifact d is produced conditionally
before an activity using d. The activity may miss the artifact d. Hence, this anomaly belongs

to (1.2) Implicit Missing Artifact.

(3) Early Destruction, (7) Conditional Destruction, and (8) Uncertain Destruction
anomalies occur when an artifact d is destroyed before an activity using it. Therefore, they

belong to (1.3) Destroyed Artifact.

(5) Uncertain Production anemaly occurs when two parallel activities, one is a producer
of artifact d and another uses d. The .artifact d is transferred between these two parallel
activities. Hence, this anomaly belongs.to (3.1) Passing between Parallel Activities. On the
other hand, (4) Exclusive Production anomaly belongs to (3.2) Passing between Exclusive

Activities.

(9) Explicit Redundant Update and (10) Potential Redundant Update anomalies occur
when an artifact d is updated by an activity and the result is unused for all succeeding

activities. Hence, they belongs to (4.1) Redundant Update/Initialization.

Finally, (11) Multiple Parallel Productions, (12) Multiple Parallel Updates, (13) Parallel

Read and Update anomalies occur due to race condition. Therefore, they do not occur in our

model. Table 7.2 shows the comparison of the anomalies addressed in [15] and our work.

86



Artifact Anomalies in this thesis

Artifact Usage Anomalies in [15]

1.1 Explicit Missing Artifact

(1)No Production, (2)Delayed Production

1.2 Implicit Missing Artifact

(6)Conditional Production

1.3 Destroyed Artifact

(3)Early Destruction, (7)Conditional Destruction,

(8)Uncertain Destruction

2.1 Explicit Artifact Conflict

2.2 Implicit Artifact Conflict

2.3 Production Conflict

3.1 Passing between Parallel

Activities

(5)Uncertain Production

3.2 Passing between Exclusive

Activities

(4)Exclusive Production

4.1 Redundant Update/Initialization

(9)Explicit Redundant Update, (10)Potential

Redundant Update

4.2 Redundant Pass

Race Condition Anomalies

(11)Multiple Parallel Productions, (12)Multiple

Parallel Updates, (13)Parallel Read and Update

Table 7.2: Comparison of the Artifact Usage Anomalies Addressed.

In previous work, a control flow diagram is proposed to represent a process. The

concerned artifact operations include: Initialize, Read, Update, and Destroy. The artifact

transmission is discussed in GDS. Besides, a batch algorithm is introduced to traversal a

control flow and detects anomalies.

87



In our work, we not only propose a process model but also introduce an artifact flow
diagram to represent artifact usages and transmissions. Since, the artifact transmissions are
discussed in DCDC, each activity in DCDC can decide where artifacts are passed. Therefore,

an additional artifact operation, pass, is concerned in our model.

Finally, this thesis presents several edit operations for editing a process. The effects on an
artifact flow diagram for each edit operation are also discussed and the incremental algorithms
are proposed to maintain the artifact flow diagram. Artifact usage anomalies can be identified
according to the updated artifact flow diagram. Table 7.3 shows the summary of comparisons

with previous work.

This Work Previous Work [15]

Fundamental Model Well-formed Process Model + Control flow Diagram

Artifact flow Diagram

Artifact Transmission | Distinct Control and Data Global Data Store (GDS)
Model Channels (DCDC)
Artifact Operations Initialize, Read, Update, Initialize, Read, Update, Destroy

Destroy, Pass

Detecting Incremental Batch

Methodology

Table 7.3: Comparison with Previous Work.

88



Chapter 8. Conclusion

The main contribution of this thesis is to introduce an artifact usage analysis technique
into workflow design phase. To achieve this goal, this thesis presents a process model for
describing a well-formed workflow with DCDC and introduces an artifact flow diagram to
represent artifact usages and transmissions in a workflow. According to the artifact flow
diagram, the artifact usage anomalies observed are described. Finally, the incremental
algorithms are proposed to maintain the artifact flow diagram and detect artifact usage

anomalies to help the editing of such a workflow. Their time complexities are also studied.

In the future, we plan to design thesformal algorithms for transferring the behaviors of
artifact transmissions in GDS and- ICDCto DCDC, so that we can detect artifact usage
anomalies in GDS and ICDC with our work. In addition, we also plan to implement the
proposed model and algorithms -on current ‘workflow management systems, so that our

research result can be tested in real-world applications.

89



Reference

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

The Workflow Management Coalition, ‘The workflow reference model’, Document

Number TC00-1003, January 1995.
P. Senkul and I.H. Toroslu, ‘An architecture for workflow scheduling under resource

allocation constraints’, Information Systems, Volume 30, Issue 5, pp. 399-422,

PERGAMON, July 2005.
Li, H., Yang, Y., and Chen, T.Y.: ‘Resource constraints analysis of workflow

specifications’, The Journal of Systems and Software, Volume 73, Number 2, pp.

271-285, Elsevier Science, October 2004.
Liu, C., Lin X., Orlowska, M.E., and Zhou X.: ‘Confirmation: increasing resource

availability for transactional workflows’, Information Sciences, Volume 153, Issue 1, pp.

37-53, Elsevier Science Inc, July:2003.
Du, W, and Shan, M.C.: ‘Enterprise Workflow resource management’, Proceedings of
the Ninth International Workshop en Research Issues on Data Engineering: Information

Technology for Virtual Enterprises, pp. 108-115, IEEE Computer Society, March 1999,

Muehlen, M.Z.: ‘Resource modeling in workflow applications’, Workflow Management

Conference, Miinster, Germany, 1999.
Sadig, S., Orlowska, M.E., Sadigq, W., and Foulger C.:‘Data flow and validation in

workflow modelling’, Proceedings of the fifteenth conference on Australasian database,

\Volume 27, pp. 207-214, Australian Computer Society, 2004.
Sun, S.X., Zhao, J.L., Nunamaker, J.F., Sheng, O.R.L.: ‘Formulating the data flow

perspective for business process management’, Information Systems Research, Vol. 17,

No. 4, December 2006, pp. 374-391.
Russell, N., ter Hofstede, A. H.M., Edmond, D, and van der Aalst, W.M.P. : “Workflow

Data Patterns’, QUT Technical report, FIT-TR-2004-01, Queensland University of

Technology, Brisbane, 2004, http://www.workflowpatterns.com/patterns/data/index.php.

90


http://www.workflowpatterns.com/patterns/data/index.php

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Lei Gong and Gai-yang Wang, ‘A method to verify the soundness of workflow control

logic’, Computer Supported Cooperative Work in Design, Volume 1, pp.284-388, May

2004.
Russell, N., ter Hofstede, A.H.M., Edmond, D., and van der Aalst, W.M.P.: “Workflow

data patterns’, QUT Technical report, FIT-TR-2004-01, Queensland University of

Technology, Brisbane, 2004.
van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., and Barros, A.P..

‘Advanced workflow patterns’, 7th International Conference on Cooperative

Information Systems (CooplS 2000), volume 1901 of Lecture Notes in Computer

Science, pp. 18-29. Springer-Verlag, Berlin, 2000.

Joonsoo Bae, Hyerim Bae, Suk-Ho Kang, and Yeongho Kim, ‘Automatic Control of

Workflow Processes Using ECA Rules’, JEEE Transaction on Knowledge and Data
Engineering, Volume 14, Number 8, pp.1010-1023; IEEE Computer Society, August
2004.

J.H.Son and M.H.Kim,: ‘Extracting the Workflow Critical Path from the Extended

Well-Formed Workflow Schema’, Journal of Computer and System Sciences, Volume

70, Issue 1, pp.86-106, Elsevier Science Publishers, February 2005.
Hsu, C.-L.: ‘Detecting the Artifact Anomalies in Business Process Specifications with a
Formal Model’ D.S. Thesis, National Chiao-Tung University, 2007.

WebSphere MQ, [IBM, http://www.ibm.com/software/integration/wma/, accessed

August 2008.

Hsu, H.-J.: ‘An Incremental Analysis for Resource Conflicts to Workflow Specifications’
D.S. Thesis, National Chiao-Tung University, 2008.

Object Management Group. 2006. Business Process Modeling Notation (BPMN).

http://www.bpmn.org/.

The Workflow Management Coalition: ‘Terminology & glossary’, Document Number

91


http://www.ibm.com/software/integration/wmq/
http://www.bpmn.org/

[20]

[21]

[22]

[23]

WEMC-TC-1011, February 1999.

Wang, F.-J.,, Hsu, C.-L., Hsu, H.-J.: ‘Analyzing Inaccurate Artifact Usages in a
Workflow Schema’, COMPSAC (2) 2006: 109-114.

Hsu, H.-J.: ‘Using State Diagrams to Validate Artifact Specifications on Primitive
Workflow Schema’ M.S. Thesis, National Chiao-Tung University, 2005.

The Workflow Management Coalition: ‘Terminology & glossary’, Document Number

WEMC-TC-1011, February 1999.

Sadiq, W. and Orlowska, M.E.: ‘On correctness issues in conceptual modeling of

workflows’, Proceedings of the 5th European Conference on Information Systems

(ECIS “97), Cork, Ireland, June 19-21, 1997.

92



