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基於 H.264 視訊編碼 

在畫面略過轉換下之區塊模式決定與移

動向量預測 

 
學生 : 李威邦    指導教授 : 蔡文錦 教授 

國立交通大學 

資訊科學與工程研究所 

 

摘    要 

近年來，許多應用如即時線上播放系統、視訊會議、手持式多媒體、網路媒

體快速瀏覽等需求大量提升。使用者期望在有限的網路傳輸速率以及既有的硬體

設備下，能夠接收高品質的視訊畫面；而系統開發者除了追求能將高畫質的視訊

影片，能以較低的位元壓縮率傳輸外，尚能提供流暢地視訊快速播放閱覽的功能。 

在這篇論文當中，我們提出了一個適用於 H.264/AVC 視訊壓縮編碼標準下，

利用畫面省略的轉換編碼方式來降低傳輸位元大小以及所需的視訊壓縮時間。其

中的議題包含在省略畫面的情形下如何解決區塊分割大小模式的決定、區塊移動

向量計算方法。 

由實驗的結果可知，我們所提出的方法相較於 H.264/AVC 畫面略過的壓縮以

及其他方法，在維持一定的視訊品質之下，大量的縮減壓縮的時間，並亦能傳輸

於在低位元傳輸率中。 

 

 

關鍵字：畫面略過轉換、區塊模式決定、移動向量計算 
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Block Mode Decision and Motion Vector Composition  

in H.264 Video Frame Skipping Transcoding 

Student: Wei Pang Lee   Advisor: Dr. Wen-Jin Tsai 

College of Computer Science 

National Chiao Tung University 

 

Abstract 

 

In recent years, many multimedia applications such as real-time video streaming 

systems, videoconference, handheld media systems, and high-speed video browsing 

through networks are required. Users expect to receive high quality of video under 

limited network bandwidth and established hardware equipments. Oppositely, system 

providers pursue services of high video quality through low bit-rate transmission in 

order to reduce the cost and provide more services. 

In this thesis, we focus on a frame-skipping transcoding methods to reduce the 

bit-rate for H.264/AVC video coding. We have proposed block mode decision 

methods, motion vector composition methods for frame-skipping transcoding.  

Experimental results show that, compared with H.264/AVC and other algorithms, 

the proposed methods can save a lot of computational cost. The performance can be 

improved by maintaining visual quality at low bit-rate.  
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Chapter 1  Introduction 

 

The video coding standard MPEG-4 Part10 AVC/H.264 [1] was developed by the 

joint video team (JVT) of ISO/IEC (MPEG) and ITU-T (VCEG). The video coding 

standard is based on traditional hybrid coding scheme but with several additional 

methods to attain high coding efficiency such as adaptive motion compensation with 

variable block sizes, multiple reference frames, intra coding with various spatial 

prediction directions, and so on. The new technologies mentioned above are quite 

important to many networked multimedia services such as multipoint video 

conferencing, distance learning, video on demand, and digital TV. Transmission of 

compressed video over heterogeneous networks with different transmission 

bandwidths may require a reduction in bit rate. 

The compressed video bit stream is often converted to the reduced frame rate 

video bit stream in order to reduce the bit rate. Video transcoding provides not only 

the format conversion but also resolution scaling (spatial transcoding), bit-rate 

conversion (quality transcoding), and frame rate conversion (temporal transcoding). 

Because different networks may have different bandwidths, if a gateway or receiver 

end can include a transcoder to adapt the video bit rates, video services can be 

provided on different networks. When the bandwidth in a wireless network is very 

limited, the quality transcoding can cause high degradation of the transcoded video 

quality, if the frame rate is held constant. 

The most straightforward way of implementation a transcoder is to cascade a 

decoder and an encoder. The basic transcoding architecture is shown in Fig. 1.1. In 

pixel-domain transcoding [2][3], the incoming video bitstream is decoded fully in the 
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pixel domain, and the decoded video frames are then re-encoded at the desired output 

bit rate. This technique, however, is computationally expensive. DCT-domain 

transcoding [4] overcomes to some degree this computational complexity by decoding 

the incoming bitstream into the intermediate discrete cosine transform (DCT) domain 

and then re-encoding new bitstream from this DCT domain information. 

 

Front Encoder
(Original Encoder at 
the transmitter end)

End Decoder
(Decoder at the 
receiving end)

Decoder
(Incoming bitstream
is decoded to either 
pixel or DCT domain)

Encoder
(Decoded bitstream is 
re-encoded to from the 
outgoing bitstream)

TranscoderIncoming 
Bitstream

Outgoing 
Bitstream  

Fig. 1-1 Basic Transcoding Architecture 

 

In both of above mentioned transcoding methods, bit rate reduction is primarily 

achieved by re-encoding DCT coefficients using coarser quantization. This approach 

suffers the following two problems. First, the quantization error would accumulate 

due to different quantization levels used in the front encoder. This causes poor video 

quality, especially for DCT-domain transcoding. Second, employing re-quantization 

does not reduce the output bit rate significantly. 

Frame skipping trasncoding [5][6] is often used to reduce the output bit rate by 

skipping some of the incoming frames at regular or dynamic intervals while 

maintaining sustainable image quality. When some incoming frames are dropped for 

frame-rate conversions, the incoming motion vectors pointed to the dropped frames 

become invalid in the transcoded bitstream. One of the most straightforward solutions 

to overcome this problem is to re-estimate all the invalid motion vectors through 

full-scale full search algorithm using the non-skipped frames as reference frames. 

However, motion estimation is the most computationally expensive stage in the 

encoding process. To speed up the operation, a video transcoder usually reuses the 
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decoded motion vectors from the incoming bitstream. Reuse of incoming motion 

vector can be achieved by bilinear interpolation, forward dominant vector selection 

(FDVS) [7], activity dominant vector selection (ADVS) [6], parametric activity 

dominant vector selection (PADVS) [8] techniques, etc.  

In this thesis, except the original FDVS, ADVS, and PADVS(n) are used on all 

16x16 modes in H.264/AVC, the enhanced FDVS and ADVS methods we proposed 

are also applied to all variable block sizes in H.264/AVC video coding standard.  

The remaining of the paper is organized as follows. In section 2, we first 

introduce the background of H.264/AVC video coding techniques, including some 

H.264/ AVC important features and video transcoding technologies, and then some 

related works about block mode decision and motion vector composition are 

discussed. In section 3, the system architecture flow chart and the proposed method 

are presented. The experimental results of the proposed methods are shown in section 

4. Finally, conclusion of this thesis will be presented in section 5. 
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Motivation 

 

Due to requirement of many multimedia applications and expectation of good 

quality of video under limited network transmission, the thesis is based on 

H.264/AVC video coding standard and frame-rate conversion of video transcoding 

technology. Macroblock mode decision methods and motion vector in position 

methods are proposed. In the proposed methods, we make a choice about what 

information we need to obtain from the compressed video stream in H.264/AVC 

format and then re-use the information to decide the block mode types and the motion 

vectors in the retained frame so that we can reduce transcoding time and gain the 

acceptable video quality.  

Besides, there are few topics discussing about how to decide block mode and 

motion vector in H.264/AVC frame skipping. Most of existing methods are used to 

resolve in MPEG-2 or H.263. Moreover, the distance between remaining frames 

become estranged so that the motion vector referred to previous frame may become 

invalid or imprecision and original macroblock modes may not suitable after frame 

skipping. H.264/AVC provides variable block size and quarter pixel precision in 

motion vector. The issues we are interested in are how to change block modes and 

motion vector in order to reduce encoding time and enhance the compressed ratio. 
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Chapter 2  Background and Related 
Work 

In this section, we will introduce the following video techniques sequentially 

which we adopted. First, we will describe the H.264/AVC which is a video coding 

standard. Then we will present some concepts in the video transcoding methods, 

especially in frame skipping transcoding. Finally, some motion vector composition 

methods will be described. 

 

2.1 H.264/AVC 

H.264/AVC is a standard for video compression. It is also known as MPEG-4 

Part 10, or MPEG-4 AVC (for Advance Video Coding). It is one of the latest 

block-oriented motion-estimation-based codecs developed by the ITU-T Video 

Coding Experts Group (VCEG) and ISO/IEC Motion Picture Expert Group (MPEG), 

partnership known as the Joint Video Team (JVT). Fig. 2.1 shows the encoder of 

H.264/AVC codec. 
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0

+

-

+

 
Fig. 2-1 H.264/AVC Encoder 

H.264/AVC contains a number of new features that allow it to compress video 

much more effectively than older standards and to provide more flexibility for 

application to wide variety network environments. There are several key features 

including multiple reference frames, variable block size motion compensation to find 

out accurate motion vectors, quarter pixel precision motion vectors, new transform 

design features like integer 4x4 spatial block transform, in-loop deblocking filter 

which helps prevent the block artifacts, entropy coding design such as context 

adaptive binary arithmetic coding (CABAC) and context-adaptive variable length 

coding (CAVLC) and so forth used for high compression performance compared to 

previous video coding standards. 

Among them, the inter mode decision process with variable block size motion 

estimation part is the most complex and time consuming. The block sizes are 16x16, 

16x8, 8x16, 8x8, 8x4, 4x8, and 4x4. Fig. 2.1 shows the possible macroblock modes. 

Except the above seven kinds of mode, there are three more possible modes SKIP, 

I4MB, and I16MB in inter frame coding. The SKIP mode is a direct copy from the 

previous frames; I4MB and I16MB are the intra modes predicted from encoded 
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adjacent block size. In general, SKIP, 16x16, 16x8, and 8x16 are called large block 

size modes, 8x8, 8x4, 4x8, and 4x4 are called small size block or sub block modes 

(P8x8).  

16x16 16x8 8x16 8x8

8x8 8x4 4x8 4x4

0
0

1
0 1

0 1

2 3

0
1
0

0 1
10

2 3

16x16: Macroblock

8x8: Subblock

4x4: Block
 

Fig. 2-2 Variable Block Size in H.264/AVC 

 

To achieve the highest coding efficiency, the H.264/AVC reference software 

encoder, JM [9], uses a non-normative technique called Lagrangian rate-distortion 

optimization (RDO) technique to decide the block coding mode. Fig. 2.3 shows the 

RDO process. In order to choose the best coding mode for a macroblock, H.264/AVC 

encoder calculates the rate-distortion (RD) cost (RDcost) of every possible mode and 

chooses the mode having the minimum value, and this process is repeatedly carried 

out for all the possible modes for a given macroblock. 

 

Encoding Transform / 
Quantization

Variable 
Length 
Coding

Inverse 
Transform / 

Inverse 
Quantization

Compute 
RD cost

Mode 
Selection

Input 
video

Residual 
data

Distortion

Rate

 
Fig. 2-3 Computation of RDcost 

The best mode selected and used for coding must have the minimum cost. The 

cost function is given as follows: 
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)())(,(),( pmRmcsSADmJ motionmotion −⋅+= λλ  

where  is the current motion vector (MV),  is the 

predicted MV.  represents the bits used to encode the MV information. 

 stands for the sum of absolute difference between current MB and 

reference MB, where 

T
yx mmm ),(=

( pmR −

))(, mcs

T
yx ppp ),(=

)

(SAD

s  represents reference macroblock and  stands for a 

function of current macroblock with a parameter motion. 

)(mc

motionλ  is the Lagrange 

multiplier, which is a function of QP,  

3/)12(285.0)( −×= QP
motion QPλ  

From equation (1), we know that choosing a larger partition size means that 

fewer bits are used to signal the MVs and other information, but the residue may 

contain much higher energy, especially with more details. On the other hand, choosing 

a smaller partition size may give a low residue after motion estimation but it needs to 

use more bits to signal the MVs and other information. Therefore, the multiplier, 

motionλ ,  can be considered as a trade-off parameter between the rate and distortion. 

In this case, if encoder pays one bit to reduce more than motionλ  distortion in SAD, 

then less Lagrange cost, ),( motionmJ λ , is obtained. The optimal coding efficiency 

can be achieved by checking all available modes and selecting the minimum cost. To 

sum up, how to select the best mode is very important to get the best performance of 

the H.264 codec. 

2.2 Video Transcoding 

Multimedia communication has become one of the faster growing parts of the 
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information industry. Multimedia services and applications for a network environment, 

such as videoconferencing, video streaming on web application, distance e-learning, 

and video on demand, are widely used recently. With video being an important part of 

multimedia communications, new video compression techniques like MPEG-2, 

MPEG-4 and H.26x are proposed to satisfy new applications.  

Transcoding is a process of converting a previously compressed video bitstream 

into a lower bit-rate video bitstream. The main function of video transcoding is that it 

can provide different format conversion, resolution scaling, bit-rate conversion, and 

frame rate conversion. Format conversion, for example, from MPEG-2 as input video 

stream converting to H.264/AVC as output video bitstream or from MPEG-4 to 

H.264/AVC, transform from original high bit-rate or low video quality format to 

superior video standard, low bit-rate or high video quality video format. Bit-rate 

conversion uses different quantization parameter (QP) to control the video quality and 

then obtain different bit-rate. Resolution scaling makes use of the video frame 

up-sizing or down-sizing to attain higher or lower bit rate. Frame rate conversion by 

means of skipping some frames regularly or dynamically to reduce the frame rate but 

guarantee an acceptable video quality. 

In general, there are two approaches for implementing transcoding, commonly 

known as pixel-domain transcoding and discrete cosine transform (DCT) domain 

transcoding. The basic component of transcoding has mentioned above in Fig. 1.1. In 

pixel-domain transcoding, both of the incoming video bitstream and output of the 

transcoded video bitstream are decoded/re-encoded in the pixel domain. This involves 

high complexity, memory, and time consuming. Discrete cosine transform (DCT) 

domain transcoding which the incoming video bitstream is partially decoded to form 

the DCT coefficients and downscaled by the requantization of the DCT coefficients. 

The processing complexity is reduced since DCT-domain transcoding is carried out in 
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tf

the coded domain where complete decoding and re-encoding are not required. The 

problem with this approach is that the quantization errors will accumulate, and a 

prediction memory mismatch at the decoder will cause poor video quality called 

“drift” degradation.  

In this thesis, we focus on frame skipping approach in the pixel domain because 

it is a good strategy for controlling the bit-rate and maintaining the picture quality 

within the acceptable level. The reason is that it is difficult to perform frame skipping 

in the DCT-domain since the prediction errors of each frame are computed from its 

immediate past frames. This means the incoming quantized DCT coefficients of the 

residual signal are no longer valid because they refer to the frames which have been 

dropped.  

Frame skipping transcoding for bit-rate reduction of compressed video have been 

researched in many literatures [10][11]. Fig. 2.4 shows the architecture of frame 

skipping transcoder. In the front encoder, the motion vector, , for a macroblock 

with  pixels in frame , the current frame, is computed by searching for the 

best matched macroblock within a search window  in the previous reconstructed 

frame, , and is obtained as follows: 

tmv

NN ×

1−tR

S

DCT Q1

IQ1

IDCT

MC FB

IQ1 IDCT

FB

MC

DCT Q2

IQ2

IDCT

MC FB

(u,v)

(u’,v’)

IQ2

IDCT

f

FB

MC

(u’,v’)

+

++

+

+

+
+

++

Front Encoder End Decoder
Receiver

Transcoder

 
Fig. 2-4 Frame Skipping Transcoder in Pixel Domain 
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where m and n are the horizontal and vertical components of the displacement of a 

matching macroblock,  and  represents a pixel in  and , 

respectively. 

),( jift ),(1 jiRt− tf 1−tR

 

2.3 Motion Vector Composition 

In the transcoder, the optimized motion vectors (MVs) for the outgoing video 

stream can be obtained by applying the full-scale full-search motion estimation. 

However, the full-scale motion estimation for the Transcoder requires a high 

computational complexity. Besides, in frame skipping transcoding, some incoming 

frames are dropped, and the incoming motion vectors (MVs) are not valid because 

they point to the dropped frames that do not exist. Generally, motion estimation has 

not been computed again because of this high computational complexity. Furthermore, 

using the extracted MVs from the incoming video stream for the outgoing video 

stream would be almost as good as re-calculating the new motion estimation. The 

re-use of MVs extracted from an incoming video bitstream during transcoding has 

been widely adopted.  

To find the MV for a macroblock in the current frame, a best matching 

macroblock is searched within a predefined search window in the previous 

reconstructed reference frame, as shown in Fig. 2.5. The MV is defined as the 

displacement of the best matching block from the position of current macroblock. The 
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motion estimation is performed on the luminance macroblocks and is usually based on 

the sum of absolute differences (SAD) of the pixels in current video coding standards. 

Previous reference frame Current frame

Search window

Motion vector

Best match block

R (x, y) P (x, y)

 

Fig. 2-5 Block Matching Motion Estimation Algorithm 

Re-use of incoming motion vector can be achieved by bilinear interpolation and 

forward dominant vector selection (FDVS) [7]. In [12], bilinear interpolation is 

defined as:  

21 )1()1)(1( MVMVMVBI = −α − β +α − β  

43)1( MVMV αβαβ +−+  

where , , , and  are the motion vectors of the four 

macroblocks overlapping the reference area in the skipped frame pointed by the 

incoming motion vector. 

1MV 2MV 3MV 4MV

α  and β  are determined by the horizontal and vertical 

pixel distance of this reference area from . Fig. 2.6 illustrates the interpolation 

of the motion vector.  

1MV

α

MV1

MV3

MV2

MV4

β

Motion estimated MB

 
Fig. 2-6 Interpolation of Motion Vectors 

The typical strategy adopted for motion vectors computation when a frame is 
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skipped, is Motion Vector Composition (MVC) shown in Fig. 2.7. The goal of motion 

vector composition scheme is to find a motion vector in the last skipped frame, to be 

composed with the motion vector of the current frame, in order to obtain a motion 

vector for the current frame that points to the last skipped frame. The advantage of 

MVC is that, it is very easy to compute a motion vector for such macroblocks, given 

that their reference area exactly overlaps a macroblock in the skipped frame. 

 

F(n-2) F(n-1) F(n)

skippedMVC
 

Fig. 2-7 Motion Vector Composition 

Forward dominant vector selection (FDVS) [7] is used for composing the target 

MV from the four MVs of the four neighboring macroblocks. Combine with the 

concept of MVC mentioned above, as Fig. 2.8 shows, we assume that MV2 and MV3 

represent the MV for the block in frame (n-1) and frame (n-2), respectively. Since 

frame (n-1) is dropped, we need to find a MB pointing to a block in frame (n-2). A 

feasible solution to generate a MV without performing motion estimation is to use the 

vector sum of MV. However, there is no block on macroblock boundary actually. 

Hence, MV2 is not available from the incoming video bitstream. The approach of 

FDVS selects one dominant MV from the four neighboring macroblocks. A dominant 

MV is defined as the MV carried by a dominant macroblock and the dominant 

macroblock is a macroblock that has the largest overlapping area with the block 

pointed by the incoming MV. Fig. 2.9 illustrates the FDVS composition scheme. 
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I1
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n-3
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n-1 I2

n-1
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n-1 I4

n-1

I1
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I3
n I4

n

MV1
MV2

MV3

MVC16

16

dropped dropped

Frame (n-3) Frame (n-2) Frame (n-1) Frame (n)  
Fig. 2-8 Backward MV Composition: MVC = MV1+MV2+MV3 
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Fig. 2-9 FDVS Composition Scheme 

 

The FDVS gets much better performance than the bilinear interpolation scheme, 

and the bilinear interpolation for composition for MVs is with high computation. 

Next, we introduce another algorithm that it also decides the dominant MV from 

four neighboring macroblocks called activity dominant vector selection (ADVS) [6]. 

The conception of ADVS is the decided MV should be toward the MV with the larger 

prediction error. To gain a measure of the prediction error directly from the existing 

compressed bitstream, the DCT energy in the residual blocks is measured. ADVS 

algorithm utilizes the activity of the macroblock to decide the choice of the MV. Here, 

the activity information of a macroblock is represented by counting the number of 

nonzero quantized DCT coefficients of covered 88×  residual blocks. These 
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quantities are proportional to the spatial-activity measurement. As shown in Fig. 2-10, 

the MV of the macroblock with the maximum NZ (number of nonzero quantized DCT 

coefficients) is selected by the ADVS scheme as the dominant MV.  
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Fig. 2-10 Illustration of the ADVS Algorithm 
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:(.)NZ  number of nonzero quantized DCT coefficients 

The bigger the activity (NZ) of the macroblock, the more significant the motion of the 

macroblock. Sine the quantized DCT coefficients of prediction errors are available in 

the incoming stream of transcoder, the computation for counting the nonzero 

coefficients is very low. 
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Chapter 3 The Propose Method 

In this chapter, we describe the proposed frame skipping transcoding algorithm 

in detail. Section 3.1 includes the overall system architecture and the flowchart of the 

proposed method. Section 3.2 focuses on how to select block mode type. Section 3.3 

contains not only applying the original approaches like FDVS, ADVS, and PADVS(n) 

to several macroblock types in H.264/AVC video frame skipping transcoding, but also 

introducing our proposed algorithm suitable for all block mode types in H.264/AVC. 

 

3.1 System Architecture 

Figure 3.1 shows our H.264/AVC video frame skipping transcoding architecture. 

The transcoding architecture includes a full H.264/AVC decoder and a H.264/AVC 

transcoding encoder. Comparing Figure 2.4 to Figure 3.1, both the segments of the red 

dotted line show the most important part in our transcoding architecture.  

H.264 
Decoder

MV info.

MB mode

Coeff.

H.264 
video 
stream

incoming 
stream

Proposed
MV Decision

Proposed
Mode Decision

MB 
mode M.E. Transform

Quan.

Entropy
Coding

outgoing 
stream

H.264 
video 
stream

Transcoding

 
Fig. 3-1 Proposed H.264/AVC video frame Skipping Transcoding Architecture 

Both of input and output streams are H.264/AVC standard format, the main 

operating units of transcoding architecture according to the chapter 1. We divide them 

into four parts. They are front-end encoder, front-end decoder, back-end encoder, and 
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back-end decoder which have been shown in figure 1.1. Among them, front-end 

decoder and back-end encoder are the focus of this thesis so they are depicted in 

figure 3.1, where both the incoming stream and outgoing stream are in H.264/AVC 

format.  

In this architecture, when the H.264/AVC video stream has been decoded, we 

would save some information including motion vectors, macroblock types, and 

residual coefficients from the compressed video stream. And then in the H.264/AVC 

transcoding part, we concentrate on mode decision and motion vector decision parts. 

Other parts follow the standard H.264/AVC encoding procedures to produce the 

stream. The propose mode decision uses the macroblock types and residual 

coefficients obtained from incoming H.264/AVC compressed video stream while the 

propose motion vector decision uses the motion vectors and macroblock types. Both 

of the propose methods reuse the information from incoming video stream, so that we 

can save a lot of time cost and computational complexity in doing motion estimation 

and rate-distortion optimization, both of which take a great majority of time 

consuming in the transcoding process. 

Figure 3.2 shows the flowchart of the proposed block mode decision and motion 

vector decision methods. The first stage performs block mode decision which makes 

the decision of the block mode. The second stage of the flowchart is to do the motion 

re-estimation which determines new motion vector for each macroblock.  
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Motion Re-estimationBlock Mode Decision  
Fig. 3-2 Flowchart of Proposed Block Mode and MV Decision Methods 

3.2 Proposed Block Mode Decision Method 

In H.264/AVC video coding standard, it employs several different macroblock 

mode types in intra and inter blocks. They are I16MB and I4MB in intra macroblocks, 

and PSKIP, P16x16, P16x8, P8x16, SMB8x8, SMB8x4, SMB4x8 and SMB4x4 in 

inter macroblocks, respectively. H.264/AVC standard software, JM, uses Lagrangian 

rate-distortion optimization (RDO) technique to decide the block coding mode and 

motion vector. However, the computation complexity of calculating Lagrangian 

function for every block is quite high. Therefore, a fast block mode decision to 

determine block mode is important.  

Figure 3.3 shows the flowchart of the proposed block mode decision method, 

where the input is a video stream including skipped frames and non-skipped frames. 

The next paragraph would show how to do the block mode decision. 

Let  denote the current frame, and  denote the corresponding 

reference frame which will be dropped. The following steps are performed to 

determine the mode for each macroblock in .  

curf skipf

curf

First, Read in the i-th macroblock from  and  frames. We refer to skipf curf
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i
curMB

the macroblocks as  and , respectively. If anyone of  and 

 is intra mode then intra mode is selected and rate-distortion optimization is 

applied on  to decide whether intra4x4 or intra16x16 to be used. However, if 

none of  and  is intra mode, the mode-change rules in Table 3.1 are 

applied to obtain a candidate block mode for . All these mode-change rules 

follow the principle that the smaller block mode between  and  is 

selected as the candidate mode. It is due to the fact that, after  has beed 

dropped, the sidtance between  and its new reference frame increases, and 

therefore, smaller block mode should be more suitable.  

i
skipMB

curMB

i
curMB

cur

i
skipMB

curMB

skip

i
curMB

i
curMB

i
skipMB i

i
skipMB i

f

f

In final step of the flowchart, we sub-divided the inter block with candidate 

block mode into more blocks with smaller block modes in order to gain better visual 

quality and lower rate-distortion cost. Figure 3.3 presentd four macroblocks as 

examples. For the left-top macroblock, the candidate block mode resulting from mode 

change step is P8x16 and will be sub-divided into SMB8x8 for rate-distortion cost 

(RDcost) evaluation. If the resulting four 8x8 blocks get a better RDcost than the two 

P8x16 blocks, the sub-division process repeat; otherwise, the block mode of P8x16 is 

selected. For the left-down macroblock, the block P16x16 could be sub-divided into 

two P8x16 blocks, or two P16x8 blocks as shown in the right side of the two arrows. 

For each sub-division case, the RDcost is calculated, if it is smaller than the one 

RDcost of the one without division, then we should adopt the divided one and the 

dividing process repeat again. Otherwise, we stop dividing the inter block. 

Theoretically, the visual quality would be improved through this stage.  
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Divide 
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Fig. 3-3 Divide Inter Block 

 

Rule 1 Select intra mode if it exists among co-located macroblock in the either 
current frame or previous frame 

Rule 2 Select the smaller mode type between skipped and non-skipped frames 
 Rule 2.1 Choose P16x16 if one of them is P16x16 or PSKIP and the 

other is P16x16 
 Rule 2.2 Choose P16x8 if one of them is P16x16, P16x8, or PSKIP 

and the other is P16x8 
 Rule 2.3 Choose P8x16 if one of them is P16x16, P8x16, or PSKIP 

and the other is P8x16 
 Rule 2.4 Choose SMB8x8 if one of them is P16x16, P16x8, P8x16, 

PSKIP, or SMB8x8 and the other is SMB8x8 
 Rule 2.5 Choose SMB8x4 if one of them is P16x16, P16x8, P8x16, 

SMB8x8, or SMB8x4 and the other is SMB8x4 
 Rule 2.6 Choose SMB4x8 if one of them is P16x16, P16x8, P8x16, 

SMB8x8, or SMB4x8 and the other is SMB4x8 
 Rule 2.7 Choose SMB4x4 if one of them is P16x16, P16x8, P8x16, 

SMB8x8, SMB8x4, SMB4x8, or SMB4x4 and the other is 
SMB4x4 

Rule 3 
Special 
Case 

Select SMB8x8 if one of them is P16x8 and the other is P8x16 
Select SMB4x4 if one of them is SMB8x4 and the other is SMB4x8 

Rule 4 Select SKIP mode only if both of skipped and non-skipped are SKIP 
modes 

Table 3-1 Rules of Mode Change 
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Fig. 3-4 Flowchart of Mode Decision 

 

We take an example in figure 3.6 to explain the mode change rules. All of the 

variable block type drawings are shown in figure 3.5.  

 

P16x16 P16x8 P8x16 SMB8x8

SMB8x4 SMB4x8 SMB4x4

I16MB I4MB

PSKIP

 
Fig. 3-5 Variable Block Mode 

 

In figure 3.6,  is the current frame for mode decision and  is the 

corresponding reference frame that will be skipped after transcoding. To simplify the 

illustration, each frame consists of four macroblocks.  

curf skipf
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The block mode of upper-left macroblock is P16x16 in  and P8x16 in 

. Therefore, after applying mode change rule 2.2, the resulting block mode for 

 should be P8x16. As for block mode decision of upper-right and lower-left 

macroblocks, the resulting modes should be intra16x16 and P16x16, respectively, due 

to rule 1 and rule 2.1. The final part of the example is more complicated and it 

contains four sub-macroblocks. The upper-left sub-macroblock is SMB4x8 in  

and SMB8x4 in , so after applying rule 3, the resulting block mode should be 

SMB4x4. Similar processes are performed for all the other three sub-macroblocks, 

and the resulting sub-block modes are shown in the right hand side of figure 3.6.  

skipf

curf

skipf

skipf

curf
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16

MB in fskip MB in fcur

frame 
skipping

mode 
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Mode change 
result for fcurskipped  

Fig. 3-6 Mode Change Result 

3.3 Proposed Motion Vector Composition Method 

Motion estimation is also an important segment in video frame skipping 

transcoding. In this section, we discuss about how to employ the motion re-estimation 

by using the motion vectors obtained from front-end transcoder. An enhanced FDVS 

method is presented in section 3.3.1 and an enhanced ADVS method in section 3.3.2. 
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3.3.1 Enhanced FDVS Method for H.264/AVC 

The enhanced FDVS method mentioned in this section is suitable for all kinds of 

mode including variable block size of inter, intra, and SKIP mode. Owing to the 

fundamental conception of implementing FDVS method is to find out macroblcok 

that has the largest area overlapped with the area pointed by the motion vector of 

current macroblock as dominant macroblock, and then use the motion vector of the 

dominant macroblock as dominant motion vector. However, there exist two problems 

if we directly apply the FDVS idea to H.264/AVC video coding. Firstly, finding the 

largest overlapping area in the variable block size in H.264/AVC is much complicated 

due to the quarter-pixel precision and complex combinations of various block modes. 

Secondly, the dominant macroblock may be the smallest block size such as SMB4x4. 

Therefore, in some cases, the results of motion vector selected by original FDVS and  

by enhanced FDVS method may be different. The reasons will be explained in this 

section by examples. 

For above reasons, we suggest another flexible manner to prevent from the 

foregoing conditions. We divide all inter block modes into different numbers of inter 

4x4 FDVS unit, as shown in figure 3.7. For instances, a P16x16, P16x8, SMB8x8, 

and SMB4x4 blocks would be divided into sixteen, eight, four, and one 4x4 FDVS 

units, respectively. 

4

4

current 
mv

 
Fig. 3-7 An Inter 4x4 FDVS Unit 

The center of each FDVS unit can be found out. The center position is marked as 

a blue circle as illustrated in figure 3.7. After obtaining the current motion vector of 
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each 4x4 FDVS unit, we add up center location and current motion vector. The 

motion vector of macroblock which is pointed to is one of the candidate motion 

vectors. The program takes down all candidate motion vectors, and looks for the 

motion vector appearing most frequently as the dominant motion vector. Take an 

example, suppose four candidate motion vector of a SMB8x8 macroblock are (1, 0), 

(0, 1), (2, 0), and (1, 0). The candidate motion vector of (1, 0) appears twice so that it 

becomes the most frequent candidate motion vector. And then (1, 0) would be the 

dominant motion vector of the SMB8x8 macroblock. The results of using center point 

methods can save a lot of time without calculating the overlapped area.  

Take an example in figure 3.8 to explain the difference between original FDVS 

method and enhanced FDVS method. We focus on the upper-right part of P16x16 

macroblock in frame (n). Figure 3.8 describes that after adding the current motion 

vector, P16x16 refers to the red dotted line in the frame (n-1). The macroblock type 

under the red dotted line contains a P8x16, a P16x16, two SMB8x8, two SMB8x4, 

and four SMB4x8. If we choose the original FDVS method, we have to pick up the 

largest overlapped area referenced in the frame (n-1). For an instance, suppose the 

largest overlapped area is SMB8x8 located at the lower-right partition, as figure 3.8 (b) 

shows. The blue area of SMB8x8 block is selected by original FDVS method which it 

contains the largest partition. In our propose method, enhanced FDVS method, we not 

only check all the center points that current macroblock refers to, but also accumulate 

the same length of motion vectors. As figure 3.8 (c) shows, assume that the length of 

three motion vectors , , and  are (2, 1), (2,1), and (1,1). If the 

macroblocks of  and  contain two 4x4 FDVS units while the macroblock 

of  contains three 4x4 FDVS units. However, the length of  and  is 

the same so that we accumulate the same length of motion vector even if they belong 

1mv 2mv

2mv

3mv

1mv

3mv 1mv 2mv
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to different macroblocks.  

Hence, we select  as dominant motion vector if we use original FDVS 

method, while we will choose  or  as dominant motion vector if we use 

our propose enhanced FDVS method. The main difference between original FDVS 

and enhanced FDVS is that our propose method selects the motion vector which 

appears most frequently.  

3mv

1mv 2mv

mv

frame (n-1) frame (n)
skipped  

(a) FDVS example 

mv

frame (n-1)

mv

frame (n)
skipped  

(b) Original FDVS method 

frame (n-1)
skipped

frame (n)

mv
mv1 mv2

mv3

 

(c) Enhanced FDVS method 

Fig. 3-8 (a) FDVS example (b) Original FDVS method (c) Enhanced FDVS method 

The above example shows that even if there is no mode change on the current 
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macroblock, the dominant motion vector selected by the proposed enhanced FDVS is 

different from that selected by original FDVS. Now assume the mode change step 

determines to use 8x8 block mode (instead of 16x16) for current macroblock.  

As the figure 3.9 shows, P16x16 macroblock should be divided according to the 

block mode decision. Each 8x8 block then is sub-divided into 4x4 FDVS units which 

are mapping to the reference frame (n-1). On frame (n-1) it shows that the upper-left 

SMB8x8 is overlapped with a 8x16 bocks with , a 8x8 block with , and a 

8x4 block with , respectively. Since there are two central points of FDVS units 

located in the block with , and only one in  and , the dominant 

motion vector is set to .  
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3mv

1mv

1

2mv 3mv

mv
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Mode 
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P16x16
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16
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Fig. 3-9 Enhanced FDVS Example Result 

 

3.3.2 Enhanced ADVS Method for H.264/AVC 

Another proposed method, enhanced ADVS, is derived from the conception of 

ADVS method. It is also suitable for all kinds of block modes. The basic idea of 
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ADVS is to accumulate each non-zero quantized coefficients of block covered in. 

Unlike the way applying ADVS to all 16x16 modes, applying ADVS to all kinds of 

block modes produce some different issues. As figure 3.10 shows an 4x4 inter ADVS 

unit. Other kinds of macroblock types are based on the 4x4 inter ADVS unit and 

divided into several ADVS units. As we can see in figure 3.11 illustrates SMB8x4, 

SMB4x8, and SMB8x8 block type divided into ADVS units. 

4

4

current 
mv

 
Fig. 3-10 An 4x4 Inter ADVS Unit 

We propose to check the endpoints of ADVS unit point to the location after 

adding the current motion vector. The endpoints are labeled as small blue circles as in 

the figure 3.10 and 3.11. Each 4x4 inter ADVS unit would have four endpoints. 

Similarly, there are six endpoints in a SMBx4 or SMB4x8 block, nine endpoints in a 

SMB8x8 block, fifteen endpoints in a P16x8 or P8x16 block, and twenty-five 

endpoints in a P16x16 block.  
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Fig. 3-11 SMB8x4, SMB4x8, SMB8x8 Check Endpoint 

 

As figure 3.12 shows, we explain the overall process by an example. Suppose 

current macroblock is a P16x16 block mode. After applying mode decision as before, 

assume the new block mode is SMB8x8, we find out nine endpoints of each 8x8 block 
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and map them to the previous frame (n-1). For the left-top SMB8x8 block, there are 

three endpoints locating at the P8x16 with  in the previous frame (n-1) we have 

to calculate its non-zero quantized coefficients. Four endpoints are located at the 

SMB8x8 with  in the previous frame and we have to count its non-zero 

quantized coefficients. The remaining two endpoints are located at the SMB8x4 we 

also calculate its nonzero quantized coefficients. By comparing the NZ(.) results of 

three different groups, presume that the one with maximum of non-zero quantized 

coefficients is the block SMB8x8 with , then we would consider the motion 

vector  as our dominant motion vector. 

1mv

2mv

2mv

2mv
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mv3
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Fig. 3-12 Apply ADVS Example  

 

3.4 MV Selections for Mode Change and No Mode Change 

In this section, we probe the effectiveness of the mode change. For comparison, 

figure 3.13 (a) illustrates the case with mode change, while figure 3.13 (b) shows the 

one without mode change. Assume the current macroblock in frame (n) is a P16x16 
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and the co-located macroblock in the reference frame (n-1) is composed of four 

SMB8x8. After doing the proposed mode change method as well as enhanced FDVS 

or enhanced ADVS, the outcome would be four SMB8x8 block modes with different 

motion vectors. Oppositely, if we have the same block mode without using mode 

change, we would retain the block mode of non-skipped frame with a determined 

motion vector as illustrated in the figure 3.13 (b).  

frame (n-1) frame (n)
skipped

mv

mode 
change

frame (n/2)

frame 
skipping

mv1 mv2

mv3 mv4

 
(a) mode change 

frame (n-1)

’

skipped
frame (n)

mv mv

frame 
skipping

frame (n/2)

 
(b) no mode change 

Fig. 3-13 MV selections for (a) mode change and (b) no mode change 

The experimental results of the mode change and no mode change will exhibit in 

the chapter 4. 

3.5 Apply Motion Vector Composition 

No matter enhanced FDVS or enhanced ADVS is adopt to obtain the dominant 

motion vectors, we have to add current motion vector and dominant motion vector up. 
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The typical strategy we use for motion vectors computation when a frame is skipped, 

is called motion vector composition (MVC) shown in figure 3.14. The goal of motion 

vector composition scheme is to compose the dominant motion vector in the  

skipped frame with the motion vector of the current frame in order to obtain a motion 

vector for the current frame that points to the previous non-skipped frame which is 

used as the new reference frame.  

 

MVC

current 
mvby propose 

method

Dominant mv: 

F(n-2) F(n-1) F(n)
skipped  

Fig. 3-14 Apply Motion Vector Composition 

 

 The benefit of MVC is that, to compute a motion vector for such 

macroblock is simpler because it effectively reuses the information from the encoded 

video stream.  
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Chapter 4  Experimental Results 

In this chapter, we compare the proposed methods with the general FDVS [7], 

ADVS [6], and PADVS [8] algorithms, which speed up the motion vector 

composition, respectively. We also compare the proposed transcoder with the optimal 

frame skipping method proposed in H.264/AVC JM13.2 reference software. Various 

types of standard test sequences with CIF (352x288) format are tested.  

The proposed transcoder is implemented by using the H.264/AVC JM13.2 

reference software. The parameters of our experimental environments are set as 

following: 

Hardware Parameters: 

CPU: Intel Pentium Core 2 Due 1.83GHz, 1.83GHz 

RAM: 2.00 GB 

Software Parameters: 

Test sequences: Foreman, Football, Tennis, Stefan, bus, Container, Hall 

Frame Format: CIF (352x288 pixels) 

Group of Picture (GOP): I P P P P …, and the period of I-frame is 30. 

Frame Rate: 30 fps 

Number of reference frame: 1 

Motion Estimation: Search window size = 32, fast full search 

R-D Optimization: High complexity mode 

Inter Mode: All mode are enabled 

Intra Mode: I16MB and I4MB enabled 

 

We conducted experiments of different methods in this section. First, we applied 

FDVS, ADVS, and PADVS(n) to H.264/AVC video frame skipping transcoding 
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which only use P16x16, PSKIP, and I16MB macroblock type. The reason is that all of 

three methods are used in MPEG-2 video coding standard originally. 

Second, we separate our proposed method, mode decision and motion vector 

composition, into two cases. One is with motion vector composition with mode 

decision and the other is without mode decision. The destination is to observe the 

influence on mode decision. 

Finally, we would compare our proposed method with JM 13.2 reference 

software, FDVS, ADVS, and PADVS(n). 

4.1 FDVS, ADVS, and PADVS(n) Methods on Large Block Sizes 

Several sequences tested in this section would show that the methods of FDVS, 

ADVS, and PADVS(n) save a lot of time of transcoding and motion estimation with 

acceptable degradation of video quality and slightly increase in bit-rate. The definition 

of large block size is block type of P16x16, PSKIP, and intra16x16MB. The test 

sequences are foreman, news, hall, football, and flower, where news and hall are 

classified as slow or smooth motion sequences, foreman and flower are median 

motion, and football is high motion. The parameter n in the PADVS(n) method is 

established as n=1, 3, 10, 36, and 49 that covered, where the non-zero quantized 

coefficients are selected in a zig-zag scan order from low frequency to high frequency. 

The numbers of frame sequences before and after frame skipping transcoding are 120 

and 60, respectively. For the sequence, one frame is skipped for every two frames. 

Table 4.1 describes the results of JM, FDVS, ADVS, and PADVS(n) methods 

applying to “foreman” on large block size. The experimental results show that 

comparing to reference software JM, the methods of FDVS, ADVS, and PADVS(n) 

decrease 0.35dB to 0.41dB in PSNR measurement while saving about 65% to 70% in 

total time and 81% to 87% in motion estimation time.  
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n=1 n=3 n=10 n=36 n=49

PSNR 37.24 36.89 36.83 36.84 36.84 36.84 36.84 36.83
△PSNR 0 -0.35 -0.41 -0.4 -0.4 -0.4 -0.4 -0.

Decoding tim 41.886 61.781 44.143 42.274 41.553 42.789 45.881 46.535

Encoding tim 407.524 90.184 90.966 93.427 91.059 91.493 101.545 106.535

M.E. time 356.201 4.347 4.545 4.598 4.549 4.61 5.158 5.409
Transcoding
time

449.41 151.965 135.109 135.701 132.612 134.282 147.426 153.07

△T. time(%) 0 -66.19% -69.94% -69.80% -70.49% -70.12% -67.20% -65.94%
△M.E.time(

41

% 0 -81.44% -86.33% -86.84% -87.06% -86.69% -85.67% -85.42%

Total bits 1387056 2019680 2033344 2057504 2064304 2064304 2055560 2061000

Bit-rate 346.76 504.92 508.34 514.38 516.08 516.08 513.89 515.25

PADVS(n)
FDVS ADVSItem\Methods JM

 
Table 4-1  Experimental results of FDVS, ADVS and PADVS(n) on foreman.cif 

 

Here we define some terms such as PSNRΔ , timeT .Δ , and  as 

followings: 

timeEM ..Δ

JMPSNRmethodPSNRPSNR __ Δ−Δ=Δ  

△PSNR means the degradation of PSNR compared with the full H.264/AVC 

re-encoder.  

timeT .Δ : stands for the percentage of reduced processing time comparing with the 

H.264/AVC re-encoder. The formula is listed as below:  

JMTimeJMTimemethodTimetimeTotal _/)__(_ =Δ −  

timeEM ..Δ : stands for the percentage of reduced motion estimation time 

comparing with the H.264/AVC re-encoder. M.E. is the abbreviation of motion 

estimation. 

JMEMJMEMmethodEMtimeEM _../)_.._.(.. −=Δ  

where the “method” in above formula could be FDVS, ADVS, or PADVS (n). Notice 

that the definition of transcoding time is the summation of decoding time and 

encoding time. From Table 4.1, the experimental results show that the visual quality 

of FDVS, ADVS, and PADVS(n) are close to JM in PSNR measurement. However, 

due to only using large block size, some proportions of macroblocks are encoded as 

intra macroblocks since its RDcost increase if they encoded as P16x16 or PSKIP. 
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Therefore, the bit-rates increase when using FDVS, ADVS, and PADVS(n) methods. 

The phenomenon can be solved if we use all block modes to encode the macroblocks.  

Figure 4.1 shows the PSNR measurement frame by frame in foreman sequence. 

The yellow curve is the result of conducting by JM while the blue and pink curves are 

representation of FDVS and ADVS. 
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Fig. 4-1 Different Methods in PSNR Frame by Frame in Foreman 

Figure 4.2 illustrates the comparison in encoding time and transcoding time in 

the same test sequence frame by frame. The definition of transcoding here means the 

summation of decode time and re-encoding time.  
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Fig. 4-2 Comparison Encoding Time with Transcoding Time Frame by Frame in Foreman 

In figure 4.2, the intra periodic is set up as 30. Therefore, JM does not have to 

decide the macroblock is intra or inter when encoding each I-frame. The encoding 

time displays a period of declination every thirty frames. In our frame skipping 

transcoding methods, we do not consider about I-frame or P-frame from the video 

source but performing the mode change and motion re-estimation every two frames. 

Hence, the transcoding time rises every fifteen frames.  

 The sequence, foreman, represents the case of median to high motion one. In 

Appendix C, we will take other experimental sequences such as “news”, “hall”, 

“football”, and “flower” to show our experimental results. 

4.2 Propose Methods on All Block Sizes 

In this section, we use the same video test sequences as input mentioned in the 

section 4.3.1. Here, we focus on the experimental results of enhanced FDVS and 

apply ADVS on all block size that the methods including block mode decision and 

motion vector decision we proposed in the chapter 3. The term, all block sizes, means 

the block mode of PSKIP, P16x16, P16x8, P8x16, SMB8x8, SMB8x4, SMB4x8, 
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SMB4x4, Intra16MB, and Intra4x4MB.  

Table 4.2 to Table 4.4 illustrates the propose methods comparing to the reference 

software JM. The term, transcoding time stands for the summation of the decoding 

time and encoding time. The formulas of other terms are listed above in the section 

4.3.1.  

PSNR 37.37 37.28 37.24
△PSNR 0 -0.09 -0.13

Decoding tim 40.612 46.593 56.251
Encoding tim 667.942 287.41 287.41

M.E. time 466.319 167.27 171.3
Transcoding
time

708.554 334.003 343.661

△T. time(%) 0 -52.86% -51.50%
△M.E.time(% 0 -64.13% -63.27%
Total bits 1110216 1122888 1145720

Bit-rate 277.55 280.72 286.43

E-FDVS E-ADVSJMItem\Methods

 
Table 4-2 Propose Methods Comparing to H.264 (foreman) 

PSNR 38.77 38.49 38.44
△PSNR 0 -0.28 -0.33

Decoding tim 35.88 39.36 42.28
Encoding tim 638.815 257.471 262.821

M.E. time 450.187 131.57 134.301
Transcoding
time

674.695 296.831 305.101

△T. time(%) 0 -56.01% -54.78%
△M.E.time(% 0 -62.03% -60.78%
Total bits 715416 912328 925120

Bit-rate 178.25 228.08 231.28

E-FDVS E-ADVSItem\Methods JM

 
Table 4-3 Propose Methods Comparing to H.264 (news) 

PSNR 38.15 38 37.96
△PSNR 0 -0.15 -0.19

Decoding tim 35.409 39.532 41.88
Encoding tim 637.313 250.448 258.724

M.E. time 448.267 133.23 137.745
Transcoding
time

672.722 289.98 300.604

△T. time(%) 0 -35.31% -32.94%
△M.E.time(% 0 -61.46% -59.93%

Total bits 741552 771536 787520

Bit-rate 185.39 192.88 196.88

Item\Methods JM E-FDVS E-ADVS

 
Table 4-4 Propose Methods Comparing to H.264 (hall) 

From Table 4.2 to Table 4.4, the experimental results of our enhanced FDVS 
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method only decreases 0.09dB to 0.28dB in PSNR measurement while saving around 

35% to 56% in total time and 61% to 64% in motion estimation time. Enhanced 

ADVS method decreases 0.19dB to 0.33dB in PSNR measurement while saving about 

33% to 54% in total time and 60% to 63% in motion estimation time. The results 

improve 0.15dB and 0.2dB comparing to large block size when using FDVS and 

ADVS methods mentioned in the section 4.3.1. Table 4.5 shows the results of 

comparing to the terms in bit-rate.  

method\Item PSNR Total bits Bit-rate

JM 37.37 1110216 277.55

E-FDVS 37.28 1122888 280.72
E-ADVS 37.24 1145720 286.43

JM 38.77 715416 178.25
E-FDVS 38.49 912328 228.08
E-ADVS 38.44 925120 231.28

JM 38.15 741552 185.39
E-FDVS 38.00 771536 192.88
E-ADVS 37.96 787520 196.88

JM 35.32 4910904 1227.73
E-FDVS 35.26 6259720 1564.23
E-ADVS 35.18 6240010 1560.42

foreman

news

hall

football

 
Table 4-5 Bit-rate of Propose Methods Comparing to H.264 

 

Both of our propose methods, enhanced FDVS and enhanced ADVS, save a lot 

of bit-rate. This is because our propose methods do the operating of mode change and 

sub-division inter block to check whether the block need to be divided or not in aspect 

of RDcost. When we select the smaller inter block instead of choosing intra block, we 

have larger chance to save more bit-rate.  

Figure 4.3 to figure 4.5 illustrate the bit-rate of different methods including JM 

on all modes, E-FDVS, E-ADVS, JM on large block size, FDVS, and ADVS in 

“foreman”, “news”, and “hall”. The figure shows that our propose methods are close 

to the reference software JM in terms of bit-rate.  
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Fig. 4-3 Bit-rate of Different Methods in Foreman 
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Fig. 4-4 Bit-rate of Different Methods in News 
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Fig. 4-5 Bit-rate of Different Methods in Hall 
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4.3 MV Selections for Mode Change and No Mode Change 

In this thesis, we also curious about the effectiveness of the mode decision when 

we adopt the mode change in our propose mode decision flowchart or not. The 

quantity result of motion vector would change along with different block mode 

outcome. The procedure of how to do mode change and no mode change has brought 

up in the section 3.4.  

Table 4.6 to Table 4.8 show the experimental results of mode change and no 

mode change.  

 

PSNR 37.37 37.28 37.18

△PSNR 0 -0.09 -0.19

Decod ing time 40.612 46.593 48.874
Encoding time 667.942 287.41 311.485

M.E. time 466.319 167.27 6.805
Transcoding
time

708.554 334.003 360.359

△T. time(%) 0 -52.86% -49.14%
△M.E.time(%) 0 -64.13% -98.54%
Total bits 1110216 1122888 2535128

Bit-rate 277.55 280.72 633.78

Item\Methods JM E-FDVS
no mode
change

 
Table 4-6 Comparing Mode Change with No Mode Change in foreman 

 

PSNR 38.77 38.49 38.37

△PSNR 0 -0.28 -0.4

Decoding time 35.88 39.36 41.504

Encoding time 638.815 257.471 272.035

M.E. time 450.187 131.57 2.108
Transcoding
time

674.695 296.831 313.539

△T. time(%) 0 -56.01% -53.53%
△M.E.time(%) 0 -62.03% -90.31%

Total bits 715416 912328 1256216

Bit-rate 178.25 228.08 314.05

Item\Methods JM E-FDVS
no mode
change

 
Table 4-7 Comparing Mode Change with No Mode Change in news 
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PSNR 38.15 38 37.91

△PSNR 0 -0.15 -0.24

Decoding time 35.409 39.532 42.421

Encoding time 637.313 250.448 265.067

M.E. time 448.267 133.23 4.089

Transcoding time 672.722 289.98 307.488

△T. time(%) 0 -35.31% -31.41%
△M.E.time(%) 0 -61.46% -89.62%

Total bits 741552 771536 985032

Bit-rate 185.39 192.88 246.26

E-FDVSItem\Methods JM
no mode

chage

 
Table 4-8 Comparing Mode Change with No Mode Change in hall 

 

Although the method of no mode change saves more time, it also increases the 

bit-rate. The experimental results show that the effectiveness of mode change 

improves 0.09dB to 0.12dB in PSNR measurement when comparing to no mode 

change. Therefore, it is worthy of operating mode change to reduce bit-rate and 

improve the video quality. 
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Chapter 5  Conclusion 

An efficient frame skipping transcoding from H.264/AVC to H.264/AVC 

including mode decision and motion vector decision methods had been proposed. In 

our propose methods, we obtain some information from the compressed video stream 

in H.264/AVC and then reuse them to decide the block mode types and motion 

vectors in the retained frame.  

Our propose methods save more than 50% transcoding time and visual quality 

only reduced less than 0.2dB in most of the test sequences when comparing with 

H.264/AVC. Simulation results show that when comparing with all 16x16 mode, the 

propose methods improve the 0.2~0.3dB in PSNR measurement and reduce a lot of 

bit-rate. Besides, the experimental results also show that our propose methods 

improve about 0.1dB in average while comparing with no mode change. In future, we 

consider skipping not only one frame to make more decision about the block mode 

types and the length of motion vectors.  
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Appendix A 

Block Mode Type Observation 

In this section, we observed about the block mode type relations between current 

frame and previous frame. Here, we abided by the relative macroblock location set up 

by the JM reference software—X, A, and B, as Fig. A.1 shows: 

XA

B

Previous Frame Current Frame

Encoded MB

Unencoded MB

Current MB

 
Fig. A.1 Macroblock relative location: X, A, and B 

where X, A, and B represent the co-located, left, and up macroblock in the previous 

frame, respectively. Here we conducted different CIF sequences with 100 frame 

numbers per test sequence as inputs. The test sequences are Foreman, Football, Tennis, 

Stefan, Bus, Container, and Hall. Each kind of macroblock type, PSKIP, P16x16, 

P16x8, P8x16, SMB8x8, SMB8x4, SMB4x8, SMB4x4, Intra16x16, and Intra4x4, 

would be checked. Fig. A.2 exhibits each test sequence with 100 frames that contains 

the proportion of different kinds of macroblock type. 
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Fig. A.2 Statistic different MB types of each 100 test sequences in percentage (%) 

Here, we divided different kinds of macroblock types into three parts. The first 

part is large macroblock type which includes PSKIP, P16x16, P16x8, and P8x16. The 

second part is called small macroblock type which contains from SMB8x8, SMB8x4, 

SMB4x8, and SMB4x4. The final part is intra macroblock type that comprises 

Intra4x4 and Intra16x16. The statistical data and the bar chart are shown as following 
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in Table A.1 and figure A.3. 

 

se q ue nc e Large Small intra
fo o tb a ll 25.65% 70.87% 3.47%
ste fan 33.36% 55.24% 0.72%

b u s 37.22% 62.31% 0.47%
te nn is 44.48% 53.30% 2.22%

fo rem an 61.25% 37.38% 1.37%
h a ll 76.83% 21.76% 1.41%

co n ta in e r 83.36% 16.17% 0.47%  
Table A.1 Catalog MB type in percentage 

(Large: PSKIP~P8x16, Small: SMB8x8~SMB4x4) 
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Fig. A.3 Catalog MB type in percentage 

(Large: PSKIP~P8x16, Small: SMB8x8~SMB4x4) 

Since the information mentioned above, we could conclude that higher 

percentage of larger macroblock obtained from test sequence means the test sequence 

is close to slow motion one. On the contrary, if the test sequence has higher 

percentage of small macroblock, it would be classified into high or fast motion 

sequence.  

Table A.2 and Table A.3 illustrate the most and second frequent macroblock type 

appearance would be taken out and the statistical data would be revealed. Table A.1 
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shows the situation when current macroblock type is PSKIP. 

se q ue nce PSKIP P16x16 P16x8 P8x16 SMB8x8
fo re m a n 11777 12935 3773 4880 13132
fo o tb a ll 7640 6919 3062 3849 29573
t e nn is 10899 8629 4535 4987 20691
ste fan 8422 7587 3068 2715 18968

b u s 6609 10796 5200 4787 26828
co n ta in e r 28960 5096 1609 1527 5079

h a ll 24064 8120 2515 1295 6349  

se q ue nce SMB8x4 SMB4x8 SMB4x4 I16MB I4MB
fo re m an 3043 3392 797 350 398
fo o tb a ll 11454 14483 3802 34 2872
t e nn is 6236 6374 1515 1028 422
ste fa n 6963 7265 2884 283 189

b u s 8520 8159 2349 79 269
co n ta in e r 823 969 345 205 3

h a ll 1523 1693 631 559 102  

Table A.2 Statistic different MB types of each 100 test sequences 

 

se q ue nce PSKIP P16x16 P16x8 P8x16 SMB8x8
fo re m a n 21.92% 24.07% 7.02% 9.08% 24.44%
fo o tb a ll 9.46% 8.57% 3.79% 4.76% 36.61%
te nn is 17.07% 13.51% 7.10% 7.81% 32.40%
ste fan 13.19% 11.88% 4.80% 4.25% 29.70%

b u s 9.02% 14.74% 7.10% 6.54% 36.63%
co n ta in e r 65.21% 11.48% 3.62% 3.44% 11.44%

h a ll 52.10% 17.58% 5.44% 2.80% 13.75%  

se q ue nc e SMB8x4 SMB4x8 SMB4x4 I16MB I4MB
fo rem a n 5.66% 6.31% 1.48% 0.65% 0.74%
fo o tb a ll 14.18% 17.93% 4.71% 0.04% 3.56%
t e nn is 9.76% 9.98% 2.37% 1.61% 0.66%
ste fa n 10.90% 11.38% 4.52% 0.44% 0.30%

b u s 11.63% 11.14% 3.21% 0.11% 0.37%
co n ta in e r 1.85% 2.18% 0.78% 0.46% 0.01%

h a ll 3.30% 3.67% 1.37% 1.21% 0.22%  
Table 5.3 Statistic different MB type in percentage 
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Appendix B 

Motion Vector Observation 

Observing and understanding the quantity of motion vector between different 

macroblock type and different test sequences is the goal of this experiment. In the 

experiments, we also examined different sequences including Foreman, Football, 

Tennis, Stefan, Bus, Container, and Hall. Table B.1 shows all kinds of inter 

macroblock with the rates of motion vector length of the sequence “Foreman”.  

block\mv len. 0~1 2~4 5~8 9~15 16~30 31~50 51~100 101up

P16x16 22.72% 32.57% 20.64% 13.19% 7.75% 2.52% 0.55% 0.06%

P16x8 20.12% 27.46% 21.20% 14.55% 9.28% 5.17% 1.72% 0.50%

P8x16 23.57% 29.16% 22.42% 13.36% 8.03% 2.77% 0.57% 0.12%

SMB8x8 25.02% 28.65% 21.37% 12.79% 7.66% 3.72% 0.57% 0.22%

SMB8x4 24.88% 28.06% 20.97% 12.42% 8.61% 3.84% 0.95% 0.26%

SMB4x8 27.00% 27.86% 21.55% 12.85% 7.40% 2.62% 0.53% 0.18%

SMB4x4 28.86% 29.99% 23.71% 10.79% 4.14% 2.13% 0.25% 0.13%  
Table B.1 All MB mode and its MV length in percentage (Foreman) 

Notice th arter pixel in 

H.264/A

acroblock with the rates of 

motion vector length of

at since the precision of motion vector can up to one-qu

VC, the unit of the MV has multiplied by four. 

Table B.2 to Table B.7 shows all kinds of inter m

 the sequence Football, Tennis, Stefan, Bus, Container, and 

Hall.  

block\mv len. 0~1 2~4 5~8 9~15 16~30 31~50 51~100 101up

P16x16 44.33% 36.84% 7.72% 3.44% 4.83% 2.02% 0.79% 0.03%

P16x8 34.16% 26.62% 9.76% 8.88% 10.32% 5.78% 3.40% 1.08%

P8x16 35.46% 28.58% 10.73% 7.01% 9.43% 5.07% 2.88% 0.83%

SMB8x8 31.26% 25.78% 12.33% 10.82% 10.65% 5.29% 2.95% 0.92%

SMB8x4 27.81% 24.20% 14.05% 12.79% 11.53% 5.49% 2.97% 1.16%

SMB4x8 27.01% 27.06% 14.46% 12.31% 10.96% 4.86% 2.58% 0.76%

SMB4x4 28.46% 29.17% 15.97% 11.65% 8.44% 3.76% 1.76% 0.79%  
Table B.2 All MB mode and its MV length in percentage (Football) 
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block\mv len. 0~1 2~4 5~8 9~15 16~30 31~50 51~100 101up

P16x16 28.15% 17.52% 16.93% 24.28% 8.61% 3.13% 1.08% 0.30%

P16x8 25.47% 16.67% 17.95% 22.27% 10.32% 4.61% 2.14% 0.57%

P8x16 22.80% 24.38% 19.71% 21.05% 7.98% 2.47% 1.32% 0.28%

SMB8x8 29.33% 21.60% 17.35% 17.97% 8.38% 3.51% 1.47% 0.40%

SMB8x4 31.03% 20.33% 16.31% 16.95% 8.32% 4.39% 2.05% 0.61%

SMB4x8 26.80% 22.11% 18.28% 18.34% 8.53% 4.31% 1.30% 0.33%

SMB4x4 34.65% 20.99% 13.53% 16.57% 8.38% 3.50% 1.91% 0.46%  
Table B.3 All MB mode and its MV length in percentage (Tennis) 

 

block v len\m . 0~1 2~4 5~8 9~15 16~30 31~50 51~100 101up

P16x16 19.20% 12.64% 7.75% 13.52% 26.52% 10.18% 8.61% 1.58%

P16x8 23.04% 10.37% 7.95% 13.43% 24.25% 10.07% 8.60% 2.28%

P8x16 19.56% 10.17% 8.88% 14.73% 25.34% 10.17% 9.54% 1.62%

SMB8x8 19.56% 10.17% 8.88% 14.73% 25.34% 10.17% 9.54% 1.62%

SMB8x4 16.37% 10.21% 7.77% 15.11% 27.03% 11.03% 9.72% 2.76%

SMB4x8 14.87% 9.51% 9.64% 16.30% 29.68% 9.69% 8.51% 1.82%

SMB4x4 17.16% 9.15% 8.04% 15.71% 27.88% 11.10% 9.29% 1.66%  
Table B.4 All MB mode and its MV length in percentage (Stefan) 

 

block\mv len. 0 100 101up

P16x16 2.92% 2.52% 5.05% 12.04% 50.03% 14.17% 10.85% 2.43%

P16x8 4.00% 4.63% 8.12% 13.81% 41.38% 14.15% 11.00% 2.90%

P8x16 3.01% 2.88% 5.49% 11.13% 44.52% 16.61% 14.10% 2.26%

SMB8x8 6.31% 5.36% 8.78% 12.27% 42.08% 12.80% 10.52% 1.87%

SMB8x4 12.17% 5.70% 9.98% 12.66% 37.59% 10.86% 9.32% 1.71%

SMB4x8 6.73% 6.73% 10.27% 12.92% 39.51% 11.31% 10.81% 1.72%

SMB4x4 9.92% 6.60% 11.92% 11.20% 38.78% 10.34% 9.75% 1.49%

~1 2~4 5~8 9~15 16~30 31~50 51~

 
Table B.5 All MB mode and its MV length in percentage (Bus) 

 

block\mv len. 0~1 2~4 5~8 9~15 16~30 31~50 51~100 101up

P16x16 55. 0.22% 0.12%

P16x8 57.18% 38.66% 1.43% 0.56% 0.68% 0.37% 0.75% 0.37%

P8x16 53.57% 41.52% 2.16% 0.52% 1.18% 0.39% 0.39% 0.26%

SMB8x8 67.18% 30.48% 1.40% 0.32% 0.47% 0.00% 0.16% 0.00%

SMB8x4 71.45% 25.76% 1.70% 0.12% 0.97% 0.00% 0.00% 0.00%

SMB4x8 69.25% 29.41% 1.14% 0.00% 0.21% 0.00% 0.00% 0.00%

SMB4x4 64.06% 32.17% 2.32% 0.87% 0.58% 0.00% 0.00% 0.00%

87% 40.70% 1.31% 0.67% 0.96% 0.16%

 
Table B.6 All MB mode and its MV length in percentage (Container) 
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block\mv len. 0~1 2~4 5~8 9~15 16~30 31~50 51~100 101up

P16x16 93.74% 2.54% 1.15% 1.42% 0.85% 0.25% 0.05% 0.01%

P16x8 92.41% 2.82% 1.43% 1.91% 1.11% 0.20% 0.12% 0.00%

P8x16 87.49% 3.86% 3.09% 3.01% 1.93% 0.54% 0.08% 0.00%

SMB8x8 79.79% 7.51% 4.90% 4.55% 2.35% 0.60% 0.25% 0.05%

SMB8x4 71.63% 11.29% 6.83% 6.37% 3.41% 0.07% 0.33% 0.07%

SMB4x8 59.30% 14.83% 10.63% 8.56% 4.61% 0.95% 1.12% 0.00%

SMB4x4 68.30% 13.95% 7.77% 6.50% 2.06% 0.79% 0.63% 0.00%  
Table B.7 All MB mode and its MV length in percentage (Hall) 
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ppendix C 

DVS, ADVS, and PADVS(n) Methods on Large Block Size 

Originally, all of the methods such as FDVS, ADVS, and PADVS(n) are used on 

PEG-2 video standard. Unlike H.264/AVC, the macroblock modes of MPEG-2 are 

2 video standard contains only four modes, SKIP 

otion compensation, and inter mode with zero 

motion. For the sake of applying to our variable block size in H.264/AVC, we 

simulate the operation by closing some mode search in H.264/AVC. Hence, we close 

the following mode search parameters in reference software JM:  

 PSliceSearch16x8 = 0 

 PSliceSearch8x16 = 0 

 PSliceSearch8x8 = 0 

 PSliceSearch8x4 = 0 

 PSliceSearch4x8 = 0 

 PSliceSearch4x4 = 0 

 And then we reserve the mode search of P16x16, PSKIP, and intra16x16 

which are all size of 16x16 block modes.  

The meaning of FDVS method is to find out the dominant macroblock that has 

the largest overlapping area pointed by the current motion vector. However, due to the 

motion vector precision up to quarter-pixel in H.264/AVC, calculating the overlapping 

area is not a nice manner since it is a little redundant. So, we propose a better way to 

find out largest overlapping area instead. Figure C.1 illustrates the FDVS method on 

all 16x16 modes. 

A

F

M

not as many as H.264/AVC. MPEG-

mode, intra mode, inter mode with m
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frame (n-1)

Current MV1

Current MV2

frame (n)

16

16 64 in quarter

64 in quarter

 
Fig. C.1 Illustrates the FDVS method on all 16x16 modes 

There exist two current motion vectors, MV1 and MV2. The blue macroblock is 

the target one that we want to find its dominant motion vector in frame (n). Suppose 

we have two different quantities of current motion vectors as following, 

 

And then we separate the motion vector by x and y direction. As shown in figure C.2. 

frame (n)

frame (n)

Current MV1
x-dir

y-dir

Current MV2
x-dir

y-dir

 
Fig. C.2 Separate the current MV in x and y direction 

 After separating the motion vector in the coordination of x and y, we use the 

following formula to find out the dominant macroblock.  

32/)__( xmvcurrentQx =  

32/)__( ymvcurrentQy =  

 Qx and Qy are quantities of the shift offset location in x and y direction. In 

out examples, current MV1 would occupy the blue macroblock which is the dominant 

macroblock while current MV2 would occupy the purple macroblock as dominant one. 

We can find out the dominant motion vector from the following array then. 



 

 52

 

Finally, we finish finding out the dominant motion vector by using FDVS 

method on all 16x16 block modes.  

Like FDVS, ADVS method is also used in MPEG-2 video standard. To analyze 

the ADVS method, we nose out that ADVS is much complex than FDVS because we 

have

C.3 and C.4 illustrate situations that the ADVS 

meth

 to calculate the number of non-zero quantized coefficients that the area is 

covered by the macroblock. Figure 

od covered on the 8x8 block. 

frame (n-1) frame (n-1)
8x8 non-zero 
quantized 
coefficients

 
Fig. C.3 The first case of ADVS covering on all 16x16 block modes 

In the first case shown in figure C.3, regardless of the quantities of current 

motion vector, the red dotted line represents the area of final result after adding 

current motion vector. What we care about is the direction of x and y, that is we want 

to know wheth t case, except 

the c

Observe the 

er they are positive or negative. The upper one in the firs

enter macroblock covered four 8x8 sub-blocks, we also need to calculate two 8x8 

sub-blocks above and next to the center macroblock. Finally, still one 8x8 sub-block 

at the corner of the remaining covered macroblock is needed to be counted. So do the 

same operations in figure C.4.  
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frame (n-1) frame (n-1)

Observe the 
8x8 non-zero 
quantized 
coefficients

 
Fig. C.4 The second case of ADVS covering on all 16x16 block modes 

We sum up the rules of ADVS as the followings: 

If the location   of the center macroblock is called (x, y), see in figure C.5. 

(x,y+1)(x-1,y+1) (x+1,y+1)

(x+1,y)

-1)

(x-1,y)

(x+1,y(x-1,y-1) (x,y-1)

(x,y)

 
Fig. C.5 The representation of the ADVS location 

Algorithm: 

If x is positive, then calculate the right part of two 8x8 sub-blocks
then calculate the upper part

 at (x-1, y)
If y is positive, of two 8x8 sub-blocks at (x, y+1)

and upper-right part of one 8x8 sub-block at (x-1, y+1)
 negative, then calculate the lower partIf y is of two 8x8 sub-blocks at (x, y-1)

and lower-right part of one 8x8 sub-block at (x-1, y-1)
If x is negative, then calculate the left part of two 8x8 sub-blocks at (x+1, y)

If y is positive, then calculate the upper part of two 8x8 sub-blocks at (x, y+1)
and upper-left part of one 8x8 sub-block at (x+1, y+1)

If y is negative, then calculate the lower part of two 8x8 sub-blocks at (x, y-1)
and lower-left part of one 8x8 sub-block at (x+1, y-1)  

PADVS(n) method on all 16x16 block is similar with ADVS method. The only 

different between PADVS(n) and ADVS is the parameter n which n represents low

frequ

 

ency DCT coefficients in the estimation of activity. Besides, n is a set of DCT 

coefficients in the zigzag scan order. The set of is defined as follows, 

}64,63,61,58,54,49,43,36,28,21,15,10,6,3,1{=n  
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 the opinion of 

PADVS(n) is that using all of the 64 DCT coefficients to select the dominant 

macr

thus reducing the overall 

comp

ethods on large block size.  

Since a 8x8 DCT quantized coefficients has 64 coefficients,

oblock is a computationally expensive process. Study of the human visual system 

(HVS) reveal that high frequency DCT coefficients usually have little impact on the 

perception except showing finer details. Although activity estimation is seemingly 

unrelated to image perception, the inherent correlation leads to the obvious query 

whether the impact of the high frequency DCT coefficients is minimal compared to 

that by the low frequency components, including the DC.  

An affirmative response to this query would lead to ignore the high frequency 

coefficients in selecting the dominant macroblock and 

utational complexity. This is an added benefit of ignoring the high frequency 

coefficients. 

Table C.1 to Table C.4 are the experimental results of FDVS, ADVS, and 

PADVS(n) m

n=1 n=3 n=10 n=36 n=49

PSNR 38.58 38.26 38.24

△PSNR 0 -0.32 -0.34

Item\Methods JM
PADVS(n)

FDVS ADVS

38.24 38.25 38.24 38.25 38.25

-0.34 -0.33 -0.34 -0.33 -0.33

Decoding tim 0 52.371 35.153 35.026 33.784 33.767 34.064 33.768

Encoding tim 406.118 69.246 68.865 68.114 67.71 68.395 67.686 70.955

M.E. time 357.946 3.805 4.037 4.15 3.899 4.141 4.064 4.243

Total time 406.118
Transcoding
time

121.617 104.018 103.14 101.494 102.162 101.75 104.723

△T. time(%) 0 -70.05% -74.39% -74.60% -75.01% -74.84% -74.95% -74.21%
△M.E.time(% 0 -84.31% -89.05% -89.06% -89.47% -89.41% -89.35% -89.38%

Total bits 871368 988688 987720 994600 995000 994600 994000 994000
Bit-rate 217.84 247.17 246.93 248.65 248.75 248.65 248.5 248.5  

Table C.1 Experimental results of FDVS, ADVS and PADVS(n) on news.cif 
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n=1 n=3 n=10 n=36 n=49

PSNR 37.99 37.85 37.85 37.85 37.85 37.85 37.85 37.85
△PSNR 0 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14

Decoding tim 0 53.521 35.803 35.579 34.881 35.015 35.55 34.941
Encoding tim 407.22 69.246 68.865 68.114 67.71 68.395 67.686 70.955

M.E. time 358.403 3.758 3.908 3.911 3.843 4.048 4.029 4.026

Total time 407.22
Transcoding
time

122.767 104.668 103.693 102.591 103.41 103.236 105.896

△T. time(%) 0 -69.85% -74.30% -74.54% -74.81% -74.61% -74.65% -74.00%
△M.E.time(% 0 -84.02% -88.92% -88.98% -89.20% -89.10% -88.96% -89.13%

Total bits 856472 991664 984448 993432 991904 991792 990880 991472
Bit-rate 214.12 247.92 246.11 248.36 247.98 247.95 247.72 247.87

Item\Methods JM
PADVS(n)

FDVS ADVS

 
Table C.2 Experimental results of FDVS, ADVS and PADVS(n) on hall.cif 

 

n=1 n=3 n=10 n=36 n=49

PSNR 34.9 34.74 34.69 34.69 34.7 34.7 34.7 34.69
△PSNR 0 -0.16 -0.21 -0.21 -0.2 -0.2 -0.2 -0.21

Decod ing tim 0 71.366 50.806 51.029 50.373 50.023 50.042 50.014

Encoding tim 422.698 152.031 149.034 149.586 148.849 149.355 149.147 151.744

M.E. time 361.711 4.187 4.148 4.306 4.247 4.249 4.139 4.247

Total time 422.698
Transcoding
time

223.397 199.84 200.615 199.222 199.378 199.189 201.758

△T. time(%) 0 -47.15% -52.72% -52.54% -52.87% -52.83% -52.88% -52.27%
△M.E.time(% 0 -79.11% -84.81% -84.70% -84.90% -85.00% -85.02% -85.00%

Total bits 5676504 5793464 5793280 5793280 5792768 5794584 5797456 5794504

Bit-rate 1419.13 1448.37 1448.32 1448.32 1448.19 1448.65 1449.36 1448.63

PADVS(n)
FDVS ADVSItem\Methods JM

 
Table C.3 Experimental results of FDVS, ADVS and PADVS(n) on football.cif 

 

n=1 n=3 n=10 n=36 n=49

PSNR 36.42 36.35 36.31 36.31 36.31 36.31 36.31 36.31
△PSNR 0 -0.07 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11

Decoding tim 0 71.191 45.925 44.935 45.158 44.565 44.259 45.15
Encoding tim 416.704 152.325 152.653 151.693 152.327 151.699 151.821 151.352

M.E. time 359.681 4.053 4.253 4.417 4.399 4.395 4.308 4.267

Total time 416.704
Transcoding
time

223.516 198.578 196.628 197.485 196.264 196.08 196.502

△T. time(%) 0 -46.36% -52.35% -52.81% -52.61% -52.90% -52.95% -52.84%
△M.E.time(% 0 -79.08% -86.05% -86.28% -86.22% -86.39% -86.50% -86.26%

Total bits 5257072 5646872 5638584 5600928 5592240 5596264 5596264 5596264
Bit-rate 1313.27 1411.72 1409.65 1400.23 1398.06 1399.07 1399.07 1399.07

Item\Methods JM
PADVS(n)

FDVS ADVS

 
Table C.4 Experimental results of FDVS, ADVS and PADVS(n) on flower.cif 
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