

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

考慮虛擬機器間傳輸量的虛擬機器搬移機制

Virtual Machine Migration with Consideration of

Inter-Virtual-Machine Communication

 研 究 生：梁昱雄

 指導教授：張瑞川 教授

中 華 民 國 九 十 八 年 六 月

考慮虛擬機器間傳輸量的虛擬機器搬移機制

Virtual Machine Migration with Consideration of Inter-Virtual Machine
Communication

 研 究 生：梁昱雄 Student：Yu-Hsiung Liang

 指導教授：張瑞川 Advisor：Ruei-Chuan Chang

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis
Submitted to Institute of Computer Science and Engineering

College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer Science

June 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年六月

 ii

考慮虛擬機器間傳輸量的虛擬機器搬移機制

研究生 : 梁昱雄 指導教授 : 張瑞川 教授

國立交通大學資訊科學與工程研究所

論文摘要

 在叢集式伺服器上提供穩定的服務及有效利用資源是很重要的一個課題。以

往在伺服器上發生資源負荷過載的處理方法為行程中斷或是行程搬移，這兩個方

法皆不夠有彈性及透明化。前者直接中斷行程，讓使用者感受到不便；後者雖可

有效解決資源負荷過載的問題，但是必須先克服一些技術上的問題。

隨著虛擬機器的普及化，有人研究利用虛擬機器的搬移機制來解決資源負荷

過載且擺脫以往不透明及沒有彈性的問題。但是之前的研究全都是把負載最重的

虛擬機器搬移到負載最輕的機器上。

在此論文中，我們觀察出虛擬機器間內部傳輸較佳的特性，並根據此特性設

計出一套可以增進叢集式伺服器內虛擬機器整體效能的搬移機制。在資源負荷過

載時，此搬移機制可以把傳輸量大的虛擬機器聚在一起，籍以求得較佳的效能。

 i

Virtual Machine Migration with Consideration of

Inter-Virtual-Machine Communication

Student : Yu-Hsiung Liang Adviser : Prof. Ruei-Chuan Chang

Department of Computer and Information Science

National Chiao Tung University

Abstract

Using resource effectively and providing reliable services are both significant in

the cluster. The previous researches to solve system overload are process suspend and

process migration, but they are all not flexible and transparent. The former make user

be aware of termination of service. And the latter can solve system overload

successfully but it need some technique supports.

 Some researches solve system overload by VM migration, it can successfully

solve system overload and get more transparent and flexible. But the main idea of

previous researches focus on that migrate the VM with highest load to lowest load

destination.

 In this thesis, we know that the performance of network traffic via

Inter-Virtual-Machine Communication is better than via network. According to this

feature, we present a Inter-Virtual-Machine Communication aware migration policy.

When system overload occurs, the policy will union the VMs that have high traffic to

each other in the same physical machine to get better performance.

 ii

致謝

 首先要感謝我敬愛的指導老師 張瑞川教授、學長 張大緯教授和 張軒彬

教授，感謝各位口委給予我最中肯的建議以讓我的碩士論文趨於完善。這兩年在

張瑞川教授及 張大緯教授費心的指導下，學生方能順利完成此論文。在碩士班

修業期間，老師們耐心地教導我正確的研究態度及指導我不同的研究方法，不時

的導正學生的研究方向，是學生迷失研究方向時的兩盞明燈。在撰寫論文上，感

謝張大緯學長不辭辛勞地給予我衷心的建議，教導我如何寫出一篇好的論文。

 感謝作業系統實驗室碩士班學長們，宗恆、旻儒、函昱、子榮及彥百，同學

智文及守為，有你們的陪伴讓我的實驗室生活更多采多姿。感謝博士班學長國政

在實作上面給我的建議與指導。感謝明絜學長給予我許多 Xen 上面的知識，在我

遇到 Xen 方面的問題時有人可以請教。感謝夢麟學長，在碩士求學後期一直給我

正面的鼓勵。感謝亭彰學長，不論是在研究上還是生活上，一直以來都有你的幫

忙和支持。

 感謝阿弟、小民、神龍、機機、威爺、英奎、阿胖、賽門、凱嶸、老搞等好

友們一路以來的相伴與支持，你們總是在我需要你們的時候出現，謝謝你們。感

謝游池教練團們，強哥，家吭，阿忠，阿翔及吳明忠，感謝阿胖公司的同事，哲

民、辣妹等，你們豐富了我的休閒生活，讓我在苦悶的研究生活注入了一股活水。

 感謝一直以來支持我的家人，爸爸、媽媽、三位哥哥、大嫂及可愛的侄子姪

女，你們無私的奉獻及純真的笑容是這篇論文完成最大的主因。最後感謝我的女

朋友曉怡，感謝你在我研究生活最後的半年能體諒我的壓力，關心著我，陪伴著

我度過這些日子，讓我可以專心完成我的碩士論文。最後僅以這篇論文，獻給我

最摯愛的你們。

 iii

TABLE OF CONTENTS
論文摘要 ..i
Abstract...ii
致謝.. iii
TABLE OF CONTENTS ..iv
LIST OF FIGURES ...v
LIST OF TABLES...vi
Chapter 1 Introduction..1

1.1 Motivation...1
1.2 Structure of the Thesis ...4

Chapter 2 Related Work..5
2.1 Process Migration ..5
2.2 Migration in Virtual Machine...6
2.3 Inter-Domain Communication..8

Chapter 3 Design and Implementation ..9
3.1 Design Goal...9
3.2 System Overview ..9

3.2.1 Background ...10
3.2.2 System Architecture ..10

3.3 IDC Aware Migration Policy...12
3.4 Implementation ..19

3.4.1 Information Collection ...19
Chapter 4 Performance Evaluation ...26

4.1 Experimental Environment...26
4.2 Performance Evaluation..28

4.2.1 CPU overload ..28
4.2.2 Memory Overload ...33
4.2.3 Network overload..35
4.2.4 Solving multiple types of overloads ...38

4.3 Overhead Evaluation ...40
Chapter 5 Conclusions and Future Works ..43

5.1 Conclusions ...43
5.2 Future Works..43

References ...44

 iv

LIST OF FIGURES
Figure 3.1 : The System Architecture. ...10
Figure 3.2 : The Message Flow of VM Migration Control..12
Figure 3.3 : The Network Communication before Migration......................................14
Figure 3.4 : The Network Communication after Migration...14
Figure 3.5 : The Main Data Structures for Information Collection21
Figure 3.6 : The Lifetime of Migrating Victim Domain. ...24
Figure 4.1 : The Experimental Environment ...27
Figure 4.2 : The Response Time in Experiment of Migrating Isolated Domain..........30
Figure 4.3 : CPU Utilization of Each Physical Machine ...30
Figure 4.4 : Network Utilization of Each Physical Machine31
Figure 4.5 : The Response Time in The Experiment of Group Reunion.32
Figure 4.6 : CPU Utilization of Each Physical Machine in The Experiment of Group

Reunion. ...32
Figure 4.7 : Network Utilization of Each Physical Machine in The Experiment of

Group Reunion. ..33
Figure 4.8 : The Response Time (Memory Overload) ...34
Figure 4.9 : CPU Utilization of Each Physical Machine (Memory Overload)............35
Figure 4.10 : Network Utilization of Each Physical Machine (Memory Overload)....35
Figure 4.11 : The Performance Results (Network Overload)37
Figure 4.12 : CPU Utilization of Each Physical Machine (Network Overload)..........37
Figure 4.13 : Network Utilization of Each Physical Machine (Network Overload) ...38
Figure 4.14 : A Series of Migrations for Solving Multiple Overloads.........................39
Figure 4.15 : Amount of Swap-Write Pages Per 10 Seconds in Each PM...................40
Figure 4.16 : CPU Utilizations with Different Throughputs41
Figure 4.17 : CPU Utilizations with Different Numbers of VMs................................41

 v

LIST OF TABLES
Table 1.1: Performance Results of Netperf via NIC and IDC2
Table 1.2 : Response time of each request type in SPECweb via NIC and IDC3
Table 1.3 : CPU Utilizations of SPECweb via NIC and IDC ..3
Table 3.1 : Symbol Definitions ..15
Table 4.1: The Specification of Each Machine ..27
Table 4.2: The Configurations of Each Domain in Case of Migrating Isolated Domain

..28
Table 4.3 : The Configurations of Each Domain in Case of Group Reunion31
Table 4.4 : The Configurations of Each Domain (Memory Overload)........................33
Table 4.5 : The Configurations of Each Domain (Network Overload)........................35
Table 4.6 : The Configurations of Each Domain (Multiple Overloads)38

 vi

Chapter 1 Introduction

1.1 Motivation

Using resource efficiently and providing reliable services are both critical issues

for server clusters. However, excessive utilizations of resources such as CPU, memory,

network and disk bandwidths would lead to system overload, which decreases the

service reliability and performance. A sudden load surge could cause a significant

deterioration of service quality, even leads to service denial.

A number of load management mechanisms have been proposed for balancing the

loads of the servers in a network service. In those mechanisms, the load controller

dispatches the requests to the servers according to the server load. If an overload

occurs, the controller can dispatch requests to the other servers or move some requests

from the overloaded server (i.e., the hotspot) to the other servers.

Another way to solve the problem of system overload is through process

migration, which can eliminate system overload effectively by moving process from

the overloaded machine to another one with a lighter load. Process migration is not

limited to load management within a network service. However, there are some

challenges for process migration, such as full transparency, dependence of other

processes, fast transferring for process state, proper migration algorithm and etc

[1][5][9][10][11][12]. High implementation cost is needed if the operating systems

themselves do not support process migration.

In virtualization environments, which rapidly gain in popularity in recent years,

system overloads can easily be solved by using virtual machine (VM) migration [VM

migration, sandpiper], which is user-transparent and hence avoids the above

implementation costs. However, existing migration policies[22][23][24][25], which

 1

determines the VM to be migrated and the destination host, focus mainly on the load

balancing and hotspot elimination, but ignore the fact that different VMs in the same

physical machine may communicate with each other.

In this thesis, we assume the communication performance in a physical machine

is superior to that among physical machines. This assumption holds for low-cost

clusters, which do not use specialized high speed links (such as Myrinet) for

intra-cluster communication. Moreover, several techniques such as XenLoop and

XenSocket have been proposed to improve the communication performance in a

physical machine. As a result, it is common that the performance of optimized

shared-memory based communication would outperform the NIC based

communication.

We refer the communication between different guest VMs in the same physical

machine as Inter-Domain Communication (IDC). Instead of passing the network

interface card (NIC), IDC is usually implemented in shared memory in modern

virtualization environments so that its bandwidth is not limited by the NIC. It is

limited by the spend of CPU and Memory. Moreover, traffic via IDC can get better

performance than original network because the speed of CPU is often faster than

network interface card, especially in the workload of higher network I/O, such ftp,

data center and web cluster.

According to our experimental results, grouping the virtual machines that

communicate with one another, which are referred to as a logical group in this thesis,

on the same machine helps to achieve a better performance. However, existing

migration policies focus mainly on eliminating the hotspots and may separate the

members (i.e., the VMs) of a logical group on different physical machines, leading to

a performance degradation.

Table 1.1: Performance Results of Netperf via NIC and IDC

 2

 Throughput (Mb/sec) CPU Utilizations (%)
NIC 283.17 61.708725
IDC 1113.755 82.61254

As an example, Table 1.1 compares the performance results of netperf[30], a

network benchmark, via NIC and IDC under a four-domain environment. Two netperf

instances, with each of which contains a pair of netperf client and server programs,

run in the environment, and each domain executes one of the programs. The IDC

values show the results when all the netperf client programs communicate with their

servers via IDC while the NIC show the results when all the netperf client programs

communicate with their servers via NIC. As shown in the table, the throughput of IDC

outperforms that of NIC by four times with the cost of about 21% CPU utilization. As

another example, we run the Support test of SPECweb2005[31] with 90 sessions in

the same four-domain environment. As shown in Table 1.2 and 1.3, communication

via IDC can achieve a shorter response time without the extra cost of CPU resources.

Specifically, 24.6% of the response time can be reduced in average.

Table 1.2 : Response time of each request type in SPECweb via NIC and IDC
Request Types

 home search catalog product fileCatalog file download Average
NIC

results(ms) 223 229.5 227 413.75 331.5 330.75 1757.75 415.25
IDC

results(ms) 156 158.5 156 296.5 230.75 233 1547.75 313

Table 1.3 : CPU Utilizations of SPECweb via NIC and IDC
 CPU Utilizations (%)

NIC 70.2125
IDC 68.9375

 3

To take advantage of the superior performance of IDC, we propose a new VM

migration policy that considers IDC when making migration decisions. The policy

solve system overload while trying to keep a logical group in the same physical

machine (i.e., group union). Moreover, we also design and implement an automatic

load management system and integrate the proposed policy into the system.

According to the performance results, we demonstrate that the system is capable of

solving multiple system overloads, and the IDC aware migration policy can achieve a

superior performance by group union, when compared to the migration policy

proposed by Sandpiper[24], an existing VM migration system. Specifically, the

proposed policy can reduce the response time by up to 24% under the support test of

the SPECweb2005 benchmark and improve the network communication performance

by up to 102% under the netperf benchmark.

1.2 Structure of the Thesis

The rest of this thesis in structured as follows. Section 2 presents the related work.

Section 3 presents the design and implementation of the load management system and

the IDC aware migration policy. The performance evaluation is presented in Section 4.

Finally, Section 5 gives the conclusions and the future work.

 4

Chapter 2 Related Work

 In this chapter, first, we introduce some researches about process migration task

because it is the foundation of migration. Then, we introduce some researches about

migration of virtual machine. Finally, we introduce some researches about

Inter-Virtual-Machine that can improve the performance of our mechanism.

2.1 Process Migration

Process migration is an act of transferring an executing process between two

machines. This idea was first presented by Finkel et al.[6], and also, Rashid and

Robertson[7] in the 80’s. Powell and Miller[5] firstly added feature of process

migration on DEMOS/MP operating system. There are some challenges for process

migration, such as full transparency, dependence of other processes, fast transferring

for process state, proper migration algorithm and etc. The past

researches[1][5][9][10][11][12] have provided several mechanisms to overcome those

challenges in different operating systems, but it spent the expensive implementation

cost if the operating systems do not support process migration.

 Generally speaking, process migration for reaching load-balance in distributed

systems has three major tasks: migration algorithm, load information management

and distributed scheduling [13]. The algorithms of process migration are quite similar,

and they can be summarized as following. Firstly, a migration request is issued to a

remote node, and then the process is detached from source node. Secondly, we need to

do some preparations before state transferring, such as redirecting the communication,

extracting the process state and creating the destination process instance. Then,

process state is transferred and imported into a new instance. Finally, resume the new

 5

instance from destination node. Load information management is also an important

component of process migration because we need to get the information that we want

and normalize it. In addition, transferring the information as small as possible to

improve the performance is also important. Distributed scheduling plays the major

role of load balancing or overloads eliminating. The main goal is to determine when

to migrate which process to where. Distributed scheduling can not only achieve

load-balance but also eliminate overload; moreover, improve overall performance if

we migrate right process to right destination.

Milojicic et al. [14] first suggested that move the client to destination where the

server is located to improve performance because the client/server communication

takes place in parallel. To get the better performance, the operating system needs to

provide parallel programming environment and parallel run-time support system, such

as PVM system [16].

2.2 Migration in Virtual Machine

 Different from process migration, virtual machine migration can avoid many

difficulties faced by process migration, such as process state saved and transferred,

name space of process, and transparency of process migration. Moreover, the virtual

machine environment provides a clean platform between operating system and

hardware to solve the dependence issue.

Self-migration [19] used the mechanism, resend-on-write and transferred the

remained dirty pages after checkpoint has been suspended to reduce the overall

migration time, but it can not keep the service alive. Clark et al. [3] presented a

transparent and fast virtual machine migration, named live-migration on Xen [4]. To

achieve live-migration, there are three phases of transferring memory, pre-copy,

stop-and-copy and demand-copy. When migration starting, all pages are transferred in

 6

pre-copy phase. If the rate of dirty pages is lower than limited, it enters the

stop-and-copy phase to transfer the remained dirty pages. After being finished of

transferring dirty pages, the destination virtual machine starts and provides the service

as before. If the page fault occurs, it will copy the page from source machine. They

successfully minimized both downtime and total migration time and keep the service

alive.

There are two types of storage in the common virtual machine environment, one

is local disk and the other is using Network Attached Storage (NAS). NAS is a better

choice for modern clusters because it can provide strong availability of data by

building in RAID and the front-end can reduce the expensive disk I/O. Doing

migration is unreasonable in the previous researches if only using local disk because

the migrated domain on the destination machine will still access the local disk on the

source machine. Nevertheless, Bradford et al. [20] has mentioned that transferring

memory state as well as local persistent state in WAN, it will make the virtual

machine environment friendlier. Therefore, doing migration is suitable for academy,

industry, as well as common user.

With the maturity of virtual machine migration, some people try to solve system

overload or making load-balance of clusters by using domain migration. Menasce and

Bennani presented an autonomic virtualized environment [22], they consider

dynamically CPU priority allocation and allocation of CPU shares in virtual machine

to achieve load-balance. However, it just considers the factors of CPU and do not use

the technique of virtual machine migration. Ruth et al.[23] builds autonomic virtual

machine with consideration of CPU resource and memory resource, and it keeps each

virtual machine’s resource utilization within a specific range.

The above researches make the idea of load-balance and autonomic in the virtual

machine become more practical, but they still lack consideration. T. Wood et al.[24]

 7

show black-box and gray-box strategies to observe the utilization of resources and

eliminate hotspots. They present Sandpiper, as a complete solution to support

load-balance and autonomic virtualized environment with consideration of CPU,

memory resource and network bandwidth in the virtual machine environment, and it

consists of profiling engine, hotspot detector and migration manager. They integrate

those resources into a formula to reduce the time of decision and use the swap

mechanism to make migration more practical. Hyser et al.[25] presented overview of

a virtual machine placement system and used a mean-value migration policy.

2.3 Inter-Domain Communication

 Although the virtual machine environment can provide several advantages, the

performance of virtual machine is still lower than the native machine. Some

researches [26][27][28] introduced that I/O virtualization is the significant

performance overhead of virtual machine environment because all of the I/O

operations will go through domain-0 and VMM, and it caused the expensive domain

switch and longer path of I/O operation. The main idea of solving the problem is

bypassing domain-0 and VMM to reduce the overhead of communication between

two domains on the same machine.

XenSocket [28] is a socket-based solution for increasing inter-domain

throughput in xen. XenSocket avoid the TCP/IP overhead and bypass the domain-0 by

providing a socket-based interface to shared memory buffers for inter-domain

communication, but it can not support the general socket interface. Kim et al.[26]

presented XWAY channel to deal with the socket between two guest domains. XWAY

achieves high performance by bypassing TCP/IP stacks, avoiding page exchanging

overhead, and create a directed and shorter communication path between two different

guest domains. It also supports the general socket interface and live migration easily.

 8

Chapter 3 Design and Implementation

In this chapter, we describe the design and implementation of the load

management system and the IDC aware migration policy. Section 3.1 describes the

design goal. Section 3.2 introduces the system design, which is followed by the

description of the proposed IDC aware migration policy in Section 3.3. Finally, the

implementation details are described in Section 3.4.

3.1 Design Goal

 The design goals of the load management system are as follows.

 Maximize Resources Utilizations

In the proposed load management system, the available resources of a

physical machine should be used as a first step to eliminate the overload

condition. VM migration is used when the available resources of a hotspot

machine is not enough to solve the overload problem.

 Little Overhead

The load management system requires gathering domain load

information. For performance consideration, the load gathering job should

not incur noticeable overhead to the system.

 Performance Improvement

The migration policy should consider IDC so as to obtain a larger

performance gain after VM migration.

3.2 System Overview

 In this section, we give a basic description of the proposed load management

 9

system.

3.2.1 Background

Xen is an open source virtual machine monitor (VMM) developed by University

of Cambridge[4], and it has high performance due to the use of para-virtualization.

Xen provides a split device driver model [8], in which a dedicated domain (i.e.,

domain 0) acts as the driver domain that serves all the device access requests from the

guest domains. When an access request is generated from the guest operating system,

the front-end driver of the guest domain passes the request to back-end driver of

domain 0 through the shared-memory based I/O channel. Moreover, Xen supports live

migration [3] and provides a grant table mechanism, called the grant table

mechanism[8], to share memory pages between domains for improving the IDC

performance.

3.2.2 System Architecture

Figure 3.1 : The System Architecture.

 10

The proposed load management system is based on Xen. Figure 3.1 shows the

architecture of the load management system, which consists of the load collector,

hotspot detector, migration manager, migration monitor and profiling engine. The

former three components reside in a dedicated machine called Resources Management

Node (RMN) while the latter two run in the domain 0 of each cluster node. The

profiling engine collects the resource usage information of each domain on a cluster

node and sends the information to the load collector periodically. The per-domain

resource usage information consists of the CPU utilization, the size of the allocated

memory, the frequency of swap writes and utilized network bandwidth. After

receiving the resource usage information, RMN records the information into a history

table. Then, the hotspot detector analyzes the information and detects if is there is a

hotspot. If a hotspot machine is detected, the migration manager selects a victim

domain on the hotspot machine and a destination physical machine with enough

resources according to the migration policy. Finally, the migration manager sends the

migration request to the hotspot machine to trigger domain migration. One exception

is that, under memory overload, the VMM would try to allocate more memory

resources to the overloaded domain first before performing the domain migration.

Figure 3.2 shows the message flow of VM migration control in our system. In the

figure, the upper part shows the flow corresponding to a memory overload that can be

solved by allocating more memory for the overloaded domain, while the bottom part

shows the flow that solving the overload problem by domain migration. After the

finish of the VM migration, the resource usage information on the source machine of

the migration is reclaimed.

 11

Get resource usage

VMM

Return resources usage
Send resources usage

Send signal to allocate memory

if memory overload

Send hypercall to allocate physical memory for victim

Return response signal of allocating memory
Send response signal

Get resources usage

Return resources usage
Send resources usage

Send signal to do migration

if system overload

Send domctl hypercall to migrate

victim domain to destination

Return response signal of doing migration

Send signal to reclaim

resources usage table

Send response signal

Allocate physical
memory to target

domain

Do migration

Collect the resources
usage information

Collect the resources
usage information

Start the service of
migration monitor Start RMN service

Load collecting
and hotspot
detecting

Memory overload
and hotspot is

detected

Receive the
response of the

memory allocation
command

Load collecting
and hotspot
detecting

System overload,
RMN selects

migrated victim
and destination

Receive the
response of the

migration
command

Reclaim the resources
usage table of

migrated domain

Domain0
Kernel

Migration
Monitor RMN

Figure 3.2 : The Message Flow of VM Migration Control

3.3 IDC Aware Migration Policy

IDC Aware Migration Policy

Thee basic idea of the policy is to group together domains that have moderate or

heavy communication traffic among them and run the group on the same physical

machine so as to utilizing the high performance of IDC. To simply the description, we

assume that each group has an unique group ID (GID) are located at the same

physical machine.

 12

The basic abstraction of purposed IDC aware migration policy is migrate the

highest load domain from source to light load destination. In addition, the chosen

victim (i.e., the domain to be migrated) is with high throughput to corresponding

destination. To choose the victim from hotspot machine easily and reasonably for all

case of system overload, we defined the volume function Vijk for domain with index j

in the physical machine i and the destination machine is with index k as following:

Vijk = CPUij*Ci + Memij*Mi + NBijk*Ni (3)

Where CPUij represented as CPU utilization, Memij represented as memory utilization,

NBijk is Network benefit for domain j in physical machine i and the destination is

machine k. Ci, Mi and Ni are the overload flags for CPU, Memory and Network

separately. Network benefit is meant that real reclaimed network traffic from physical

NIC on the hotspot machine. Different from Sandpiper, they calculate network traffic

including IDC and we exclude IDC. Sandpiper does not make sense because IDC

does not pass through physical NIC.

If the physical machine got overload of CPU, the Ci would be set to 1, otherwise

it would be 0. Mi and Ni are the same as Ci, but to consider the feature of IDC totally,

we always set Ni to be 1. We can easily understand that the proper victim is with

highest Vijk, because it can release more resources to address the correct type of

overloads. It is also a difference from Sandpiper. With this volume function, we can

find the proper victim and destination easily as soon as possible.

Network Benefit

The real reclaimed network traffic, network benefit, is quite significant to avoid

the erroneous decision of hotspot detection and choosing victim domain. Figure 3.3

and 3.4 illustrate the situations before and after migration, respectively. The

definitions of the symbols are shown in Table 3.1. Suppose the victim VMi1 has to be

migrated from source machine PMi to PMj. VMi1 has three types of communication:

 13

Is, denoting the volume of IDC, Nsd, denoting the volume of traffic from VMi1 to the

destination machine, and Nso, denoting the volume of traffic from VMi1 to the other

physical machines. After the migration, the Is would become Nds, the connection

from destination to source via NIC, the Nsd would become Id, the IDC on the

destination, and the Nso would become Ndo, the connection from VMi1 (on the

destination) to the other physical machines, still remains. Without losing the

generality, we assume that Ndo is equal to Nso.

Figure 3.3 : The Network Communication before Migration

PMj (Desination)

VMi1

GID 1
VMj1

GID 1
Dom0VMi2

GID 1
Dom0

PMi (Source)

Nds

Id

Ndo

Figure 3.4 : The Network Communication after Migration

 14

Table 3.1 : Symbol Definitions

Symbol Definition

Is Inter-Domain Communication on Source.

Id Inter-Domain Communication on Destination.

Nso Volume of traffic from Source to Other machine.

Nsd Volume of traffic from Source to Destination.

Ndo Volume of traffic from Destination to Other machine.

Nds Volume of traffic from Destination to Source.

AB Available Bandwidth after migration.

NB Network Bound for one domain in virtual machine.

According to above description, we define network benefit that given as

following:

 Network benefit = Nso + Nsd – Nds (1)

The Network benefit is like the utilization of network, but it is more accurate in

releasing network resource in the virtual machine. The main ideas of the design of

network benefit is the source can reclaim accurate network bandwidth and get better

performance with consideration of IDC and destination. Generally, we consider the

available resources that after migration are equal to the released resources form victim

domain, but available resources are less than released resources. The reason is that

there are IDC between another domains and victim domain at source machine. After

migration, the IDC becomes the original network traffic between source and

destination machine, so that the accurate available resources in network is Nso +

Nsd – Nds, named Network benefit to distinguish form the original network

utilization.

 For example, with the concept of group that we mention as above, there were

 15

several groups in the source machine and we supposed that we have two candidate

domains with equal resources, named A and B. A was with higher IDC in one of

groups. B was a single domain in source machine and connected to domains which

are located in other machines. B had higher network traffic than its IDC, and A was

opposite. That is to say, B had higher Nso + Nsd and lower Is, and A had lower Nso +

Nsd and higher Is. According to our model, Nds were higher related to Is because Is

will change to Nds after migration. If one domain’s IDC is higher than another, its

Nds traffic would has the same situation. It we choose A to be the proper victim, we

could not release more network resource and would get lower performance because

we decrease the IDC of A. With the Network benefit function, B gets the bigger value,

so that we choose it to be the proper victim. As our expectation, Network benefit can

help us to choose the proper victim with lower IDC to be migrated and release more

network resource. We can summarize above, it is a good choice if the domain has

higher network benefit, because the victim has higher network traffic and lower IDC.

We should make the domain stayed on the source machine if the domain has lower

network benefit.

 But we have a significant challenge in calculating Network benefit; it is how to

get the correct value of Nds. We can get Nso, Nsd and Is by tracking the network

traffic on source machine, but we have no idea about the real values of Nds and Id

after migration. To let Network benefit be more reasonable and accurate, we need to

predict the value of Nds. It is a hard work because our system is based on the virtual

machine environment, it caused that we did not have a well prediction of Nds by

using previous researches[29]. The previous researches about predicting the future

network traffic all focus on the more stable environment than virtual machine. That

is to say, they did their researches on single machine and there are no other effective

factors except the running applications. On the virtual machine environment, we

 16

should consider the running applications on the domain as well as the effects of other

domains on the source machine. So, we present a simple algorithm to predict Nds

without consider the all effective factors; it can reduce the dimensions of prediction

algorithm and has reliability of a certain degree in normal case. Our simple prediction

algorithm is as following:

Nds = min (Is, AB, NB) (2)

In our model, we introduce AB and NB, AB is available bandwidth after

migration and NB is the network bound in virtual machine. Virtual machine has lower

network performance than native physical machine because the domains can not

direct access the physical network devices. It restricts the real network bandwidth of

virtual machine, and to make our prediction more accurate, we must define the value

of network bound of virtual machine, NB. In the case of network overload, Nds is

related with Is, AB and NB, and we consider these conditions as following:

1. Nds was higher related to Is because it was exchanged from Is, Generally, the

value of Nds was lower than Is in the high network performance environment.

2. Nds is defined as the original network traffic after migration, so it can not

exceed the available bandwidth of the source machine.

3. As the mention as above, the network throughput can not reach the limit of

gigabit network interface card in the virtual machine environment. The Nds

was bounded in network bound of virtual machine, NB.

According to above, we predict the value of Nds to be the minimum of Is, AB and NB

 In the normal case of choosing destination machine, we also want to consider the

effect of IDC, but predict the Id that was changed from Nsd is harder than predict Nds.

So we only consider if there is enough resources in the destination, but not the effect

of the IDC in the destination.

 17

In following discussion, we suppose the destination machine have enough

resources to solve system overload by using migration. In the case of having CPU or

network overload, as the mention as above, we find the victim with maximal volume

value and destination that have enough resources. If the destination does not have

enough resources to contain the victim domain with maximal volume value, we would

choose the next bigger one from volume list until the destination machine can contain

it. Moreover, if there are two domains which have the same volume value and

destination machine also has enough resources, we would choose the domain with

higher network traffic to be the victim.

In the case of having memory overload, it is the same as having CPU or network

overload partially. The difference of solving overload is that we provide the dynamic

provisioning technique to allocate physical memory to the target guest domain before

doing migration. When the memory overload happened, we will find the victim with

bigger volume value and allocate extra physical memory to victim domain to

eliminate the frequent swap. If it still has memory overload, we will repeat this

process until the physical memory of this machine is empty. The rules of dynamic

provisioning were described as following:

1. The extra additional physical memory is a fixed amount of quantity for

victim guest domain at every allocation.

2. Any guest domain can not add the extra physical memory unlimitedly. If the

allocated physical memory of target domain has already achieved the

maximal amount, the memory reallocation of target domain would not be

allowed.

3. The memory reallocation should be stopped if there is no any free physical

memory on the physical machine.

Moreover, if there are CPU and memory overloads in the same time, we would solve

 18

memory overload first because eliminating the memory overload sometimes can solve

CPU overload.

3.4 Implementation

 We present the implementation details in this section.

3.4.1 Information Collection

Information Collection Setup

The information collection can be broken down into three parts: CPU, memory

and network. To make our implementation more simple and flexible, the code

modifications are only done in the privilege domain (i.e., domain 0). We build two

data structures domain_info and net_info for information collection, as shown in

Figure 3.5. The domain_info records the necessary information of each domain, such

as domain ID, CPU usage, the amount of allocated memory, amount of swap

operations and network information. The net_info structure records the volume of a

specific kind of traffic (e.g., IDC from domain 1 to domain 10). Each domain_info

consists of four lists of net_info structures for recording Tx and Rx volumes of the

NIC and IDC traffic. Each net_info consists of the IP address, MAC address and total

traffic bytes of the remote domain. For IDC, remote domain id is also included in the

net_info structure.

typedef struct net_info *netinfo_ptr;
typedef struct net_info{

domid_t domid; // domain id (only for IVM)
__be32 ip; // ip address
u8 mac[6]; // mac address

 19

unsigned long total_bytes; // total bytes of traffic
netinfo_ptr prev; // point to previous net_info
netinfo_ptr next; // point to next net_info

}net_info_t;

struct net_info_header{

int count; // total count of list
netinfo_ptr front; // the first net_info item
netinfo_ptr tail; // the last net_info item
spinlock_t lock; // for list protected.

};

typedef struct domain_info *dominfo_ptr;
typedef struct domain_info {

domid_t domid; // domain id
__be32 ip; // ip address of domain

u8 mac[6]; // mac address of domain

unsigned int swap_blkif; // id for swap partation

unsigned int root_blkif; // id for root disk partation

struct timespec time_stamp; // time stamp

struct timespec time_period; // time period

unsigned long cpu; // cpu execution time

unsigned long mem; // current allocated memory

unsigned long max_mem; // the maximun of memory

unsigned long swap_r ; // amount of swapping read page

unsigned long swap_w ; // amount of swapping write page

struct net_info_header itx; // TX net_info_header for IDC

struct net_info_header otx; // TX net_info_header for network

 struct net_info_header irx; // RX net_info_header for IDC

 struct net_info_header orx; // RX net_info_header for network

dominfo_ptr prev; // point to previous domain_info

 20

dominfo_ptr next; // point to next domain_info

}domain_info_t;

Figure 3.5 : The Main Data Structures for Information Collection

To create a domain, the function do_domctl() is invoked, which in turn invokes

the do_xen_hypercall(). In the hypercall, the privilege domain execute privcmd_ioctl()

to ask the VMM to create a domain. VMM then chooses a proper domain id for the

new domain and create a new guest domain. Next, VMM sets up the event channel,

creates the grant table, performs other domain initialization jobs, and adds the domain

to the run queue for domain scheduling. Finally, VMM sends an event to the privilege

domain to initialize the back-end drivers of the newly-created guest domain such as

xenbus, balloon driver, virtual block device interface, virtual network interface and

etc..

The domain_info should be registered at the boot time of each guest domain

without the modifications of guest domain. Modifying the guest operating system for

such registration would raise the portability problem since it is hard to support

different operating systems on the guest domains. Moreover, we also want to reduce

the frequencies of expensive system calls or hypercalls so as to decrease the overhead

of collecting resource usage information. According to the design goals above, we

choose to register the data structure of domain_info upon the initialization of the

Xenbus driver. Such an approach results in a lower implementation cost since no

modifications to the VMM and guest domains are needed. Then, we create a mapping

between swap partition and virtual block device to records swap information into the

domain_info at the starting time of virtual block device[21]. The mapping helps us to

separate swap read/write operations from other disk IO operations. Finally, we record

the MAC and IP addresses into domain_info of guest domain at receiving/transmitting

 21

the first packet for that domain. After the description about the setup of the

domain_info and net_info, we next describe the information collection approach. All

the collected information is sent by the Profiling Engine to the RMN periodically,

which is done via TCP/IP.

CPU and Memory Information

 The CPU execution time can be obtained easily by using Xenstat, the tool

provided by Xen. Xenstat utlizes hypercalls to obtain the detailed resource usage

information from the VMM, such CPU execution time, total network traffic, current

memory size and maximal size of memory. To obtain the frequency of swap writes,

we have to track the swapping disk I/O in the backend block device interface. Upon a

block request, if the target device id is equal to a swap partition id of a guest domain,

we regard the request is a swap operation.

Network Information

 The collection of network information has the largest overhead in our system

because we need to parse packets to classifiy them into IDC and NIC traffic.

Upon receiving a packet, either from a guest domain or from the NIC card, we

check the packet’s IP addresses to see if the packet belongs to intra-cluster

communication (i.e., both source and destination are in the cluster) and MAC address

of each packet if the same as MAC address of remote guest domain. Only intra-cluster

communication is recorded for saving the recording cost. If the condition holds, we

count this packet into the corresponding field of the net_info structure of the guest

domain. To reduce the time of searching a net_info structure, the most recently

accessed net_info is cached.

 22

3.4.2 Migration Monitor and RMN

 In this section, we describe the detailed implementation of the migration monitor

and the components in the RMN.

Migration Monitor

 The migration monitor handles two kinds of requests sent from the RMN if the

latter detects a hotspot. One is memory allocation request and the other is domain

migration request. Upon receiving a memory allocation request that is accompanied

with the ID of the target domain and the request memory size, the migration monitor

issues a memory allocation hypercall for allocating that size of memory for the given

domain. Upon receiving a domain migration request, which is accompanied with the

victim domain and the destination machine, the migration monitor issues a migration

command to migrate the victim domain to the destination.

Load Collector

 As the per-domain resource usage information is sent to the load collector, it

arranges the information into a history table It also establishes another table for

recording the traffic among all domains and sort the information according to the

traffic volumes for efficient search.

 As the migration command is sent to hotspot machine, the dom_info of victim

guest domain was registered on the destination machine, which leads to the existence

of two dom_infos for the same guest domain on the source and destination. To

synchronize the statistics from different machine after migration, we should check the

lifetime of the victim from source and destination machine separately. Otherwise,

there will exist that history table of a domain belong to different machines Figure 3.6

shows the process of load collector and lifetime of victim during the time of migration.

 23

The Profile engine sends the resource usage information for victim to load collector,

which will collect the resource usage information if the state of victim is not paused

(paused means the domain is unavailable) to avoid non-synchronized statistic. More

accurately, load collector record the information of migrated domain only when its

state is running. After the time of migration finished, the profile engine on the source

will be weak up to send statistic information.

Figure 3.6 : The Lifetime of Migrating Victim Domain.

Hotspot Detector

An instantaneous system overload would not be regarded as a hotspot. If the

current resource usage information shows a system overload, the hotspot detector

predicts the load of such potential hotspot. VM migration is triggered only when the

result of the prediction also shows a system overload. This avoids VM migration due

to sudden utilization peaks. According to the history table, the hotspot detector

predicts the utilization of the next round by using the autoregression of order 1. Given

the sequence of history volumes: u1, u2 , …, uk, where uk is the utilization of the k-th

round, we predict uk+1 by using the following AR(1) predictor,

 24

uk+1 = μ + φ(uk – μ) (4)

where μ is the mean value of sequence and φ is the parameter of time series.

If both the current and the predicted utilizations exceed a threshold, the source

machine is regarded as a hotspot. Note that, the hotspot detector would not detect the

loads of the machines that are involving VM migration, since the loads are not stable

during that period.

Migration Manager

 When the hotspot is detected, the migration manager will try to send memory

allocation requests to the overloaded machine if memory overload. If the overload

cannot be solved by the memory allocation requests, the migration manager would

choose the victim and the destination machine according to the IDC aware migration

policy. Next, it sends the migration request and the required information, such as the

domain id of the victim and the IP address of the privilege domain in the destination

machine, to the migration monitor corresponding to the victim domain.

 25

Chapter 4 Performance Evaluation

 In the chapter, we present the performance evaluation of the proposed

IDC-aware migration policy. Section 4.1 describes the experimental environment. In

Section 4.2, we demonstrate that the policy can solve resource overload problems and

compare the performance the proposed policy with Sandpiper[24]. In Section 4.3, we

show the overhead of our system.

4.1 Experimental Environment

The experimental environment consists of a server cluster of four nodes, a client

node, and a RMN node. Figure 4.1 illustrates the experimental environment and Table

4.1 shows the specifications of each node. Each cluster node is equipped with an Intel

Pentium 4 2.8 GHz processor, 2GB DDR RAM, an Intel Pro 100/1000 Ethernet

adapter and an 80 GB hard drive. We run Xen 3.1.0 with Linux kernel 2.6.18 on each

node. The client machine is equipped with an Inter Pentium 4 3.2 GHz processor,

3GB DDR2 RAM, an Intel Pro 100/1000 Ethernet adapter and an 80 GB hard drive.

Xen 3.1.0 with Linux kernel 2.6.18 is run on the client machine.

The RMN node is equipped with an Intel Pentium 3.2 GHz processor, 3GB

DDR2 RAM, an Intel Pro 100/1000 Ethernet adapter and a 500GB hard drive. Note

that, the RMN node also acts as the NFS storage server for the guest domains in the

cluster. All the nodes are connected via the D-Link DGS-1024D gigabit switch, and

we use SEPCweb2005 and netperf-2.4.2 as the benchmark software for performance

evaluation.

 26

Figure 4.1 : The Experimental Environment

Table 4.1: The Specification of Each Machine
 Cluster Node Client RMN

Number of
nodes

4 1 1

CPU Intel P4 2.8G Hz Intel P4 3.2G Hz Intel P4 3.2G Hz
Memory 2GB DDR RAM 3GB DDR2 RAM 3GB DDR2 RAM

NIC Intel Pro 100/1000 Intel Pro 100/1000 Intel Pro 100/1000
HD Seagate IDE 80GB Maxtor SATA 80GB Seagate IDE 500GB

VMM/OS
Xen 3.1.0/Gentoo Linux
kernel 2.6.18

Xen 3.1.0/Gentoo
Linux kernel 2.6.18

None/Gentoo Linux
kernel 2.6.22.9

Benchmark
Software

SPECweb2005 Server
Netperf-2.4.2

SPECweb2005 Client None

In the following experiments, the thresholds of CPU, memory and network

overloads are defined as 85% CPU utilization, 150 swap page writes per second, and

 27

80% network utilization, respectively, which differs from Sandpiper in two aspects.

First, Sandpiper counts both read and write operations of swap pages while the

proposed system counts the swap writes only. This is because that a high frequency of

swap reads does not indicate the lack of the physical memory. Second, Sandpiper

includes IDC in the network traffic while the proposed system excludes IDC from the

network utilization. In our system, only the traffic that passes through the physical

NIC is regarded as network traffic. The resource usage information is sent to the

RMN node every 10 seconds.

4.2 Performance Evaluation

 In this section, we compare the performance results of the proposed IDC aware

migration policy with the no-migration policy and the policy used in Sandpiper under

different overload situations. Before the performance comparison, we introduce the

migration policy of Sandpiper, which uses the following equations for choosing the

victim.

Volume =
netmemcpu −

×
−

×
− 1

1
1

1
1

1 , (5)

VSR = Volume/Size, (6)

where cpu, mem, net denote the CPU, memory and network utilizations of the given

domain, respectively, and Size denotes the memory size of the domain. The victim

domain is the one with the largest VSR value, and has to be migrated to the machine

with the lightest load.

4.2.1 CPU overload

Table 4.2: The Configurations of Each Domain in Case of Migrating Isolated Domain

 Workload type
Run-seconds

(seconds)
Sessions

Group
ID

Physical
memory

Initial
location

 28

VM1 Support(server) 1800 55 1 256MB PM1
VM2 Support(database) 1800 55 1 256MB PM1
VM3 Support(server+database) 1800 50 2 256MB PM1
VM4 Support(server+database) 1800 60 3 256MB PM1
VM5 Support(database) 1800 55 5 256MB PM2
VM6 Support(server+database) 1800 100 4 256MB PM2
VM7 Support(server) 1800 55 5 256MB PM3

This experiment demonstrates the use of the domain migration to solve CPU

overload. Table 4.2 shows the configurations of the guest domains. Four guest

domains (VM1-VM4) run on the physical machine 1 (PM1). VM1 and VM2 are in the

same group, meaning that they are the two tiers of the same web service. Therefore,

IDC exists between the two VMs. VM5 and VM6 runs on PM2, and VM5

communicates with it group member VM7 residing on PM3. All the VMs run the

support test of the SPECWeb 2005[31].

Such configuration makes CPU overload on PM1. In this situation, Sandpiper

migrates VM1 to PM3, the physical machine with the lightest load, since VM1 has

higher CPU utilization and network traffic to VM2. Although Sandpiper can solve the

CPU overload, it divides the group 1 on the different machines and thus degrades the

performance of that group. With the consideration of IDC, IDC policy migrates VM4

instead. Thus, we can solve CPU overload without degrading the performance. Figure

4.2 shows the response times of different policies. It reveals that migration helps to

eliminate the resource overload and achieve a better overall system performance.

Compare with Sandpiper, IDC policy reduces the response time by 14.7% in group 1

and 23.3% in group 3, respectively. In group 5, Sandpiper outperforms IDC policy by

6%. This is because the increased performance of VM4 causes heavier network

interference with group 5 (i.e., VM 7) on PM3. Moreover, VM4 processes 60

concurrent sessions while VM1 only processes 50 sessions. This also causes heavier

network interference with group 5.

 29

0

200

400

600

800

1000

1200

Group1
(VM1+VM2)

Group2
(VM3)

Group3
(VM4)

Group4
(VM6)

Group5
(VM5+VM7)

Re
sp

on
se

 T
im

e
(m

s)
No Migration
Sandpiper
IDC Policy

Figure 4.2 : The Response Time in Experiment of Migrating Isolated Domain.

Figure 4.3 and 4.4 show the CPU and network utilizations under different

policies. As shown in the figures, less resources are used by IDC policy, as compared

to the Sandpiper.

0
10
20
30
40
50
60
70
80
90

100

PM1 PM2 PM3 Average

CP
U

 U
til

iz
at

io
n

(%
)

No Migration
Sandpiper
IDC Policy

Figure 4.3 : CPU Utilization of Each Physical Machine

 30

0
10
20
30
40
50
60
70
80
90

100

PM1 PM2 PM3 Average

N
et

w
or

k
U

til
iz

at
io

n
(%

)

No Migration
Sandpiper
IDC Policy

Figure 4.4 : Network Utilization of Each Physical Machine

Table 4.3 : The Configurations of Each Domain in Case of Group Reunion

 Workload type
Run-seconds

(seconds)
Sessions

Group
ID

Physical
memory

Initial
location

VM1 Support(server) 600 85 1 256MB PM1
VM2 Support(database) 600 85 1 256MB PM1
VM3 Support(server) 600 80 2 256MB PM1
VM4 Support(database) 600 80 2 256MB PM2

Next, we demonstrate the capability of group reunion of IDC policy. In this

experiment, four guest domains are run on two physical machines. Table 4.3 shows

the configurations of each domain. VM1, VM2 and VM3 reside on PM1, and the

former two form a group. VM3 communicates with it group member VM4 on PM2.

Such configuration also cause a CPU overload on PM1. Figure 4.5 shows the

response time of each group. As shown in the figure, both IDC policy and Sandpiper

can solve the CPU overload and effectively reduce the response time by more than

80%. Moreover, compared with Sandpiper, IDC policy reduces the response time of

the both groups by 24%. The reason is as follows. Sandpiper selects VM1 as the

victim, which divides the group 1 onto different PMs. Instead, IDC policy migrates

VM3 to PM2 and thus leads to a performance improvement caused by group reunion.

 31

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Group1
(VM1+VM2)

Group2
(VM3+VM4)

Re
sp

on
se

 T
im

e
(m

s)

No Migration
Sandpiper
IDC Policy

Figure 4.5 : The Response Time in The Experiment of Group Reunion.

From Figure 4.6 and 4.7, we can see that IDC policy can achieve a lower

resource consumption since the resources can be used more efficiently.

0
10
20
30
40
50
60
70
80
90

100

PM1 PM2 Average

CP
U

 U
til

iz
at

io
n

(%
)

No Migration
Sandpiper
IDC Policy

Figure 4.6 : CPU Utilization of Each Physical Machine in The Experiment of Group

Reunion.

 32

0
10
20
30
40
50
60
70
80
90

100

PM1 PM2 Average

N
et

w
or

k
U

til
iz

at
io

n
(%

)

No Migration
Sandpiper
IDC Policy

Figure 4.7 : Network Utilization of Each Physical Machine in The Experiment of

Group Reunion.

4.2.2 Memory Overload

Table 4.4 : The Configurations of Each Domain (Memory Overload)

 Workload type
Run-seconds

(seconds)
Sessions

Group
ID

Physical
memory

Initial
location

VM1 Support(server) 600 70 1 64MB PM1
VM2 Support(database) 600 70 1 192 MB PM1
VM3 Support(server) 600 70 2 160MB PM1
VM4 Support(database) 600 70 2 192 MB PM2

In this experiment, we show that IDC policy can deal with memory overload by

memory allocation and domain migration. Table 4.4 shows the configurations of each

domain. The settings are the same as those in the previous experiment except for the

session numbers and the physical memory of each domain. In this experiment, both

PM1 and PM2 have 1GB physical memory, in which 34MB are reserved for the

on-board graphic card and 512MB are reserved for domain 0. We allocate 64MB,

192MB, 160MB and 192MB for VM1 to VM4, respectively. Such configurations lead

to memory overload on VM1 and PM1. Figure 4.8 shows the response time under

different policies. The values of the no-migration policy are not shown due to that

 33

they are significantly large (i.e., 7.075 seconds for group 1 and 0.905 seconds for

group 2). IDC policy outperforms Sandpiper by 22.8% for group 1 and 17.3% for

group 2. The reasons are as follows. First, only allocating extra memory for VM1 is of

little use since there is little memory left on PM1. Second, Sandpiper do the

mechanism of memory allocation until achieve limit of max-memory for each domain

or there is no more free physical memory on the source machine. At first memory

overload, Sandpiper allocates 32MB physical memory to VM1, however it still can

not solve the memory overload. At the next memory overload, Sandpiper moves VM1

to destination, which is PM2 ,and then VM1 can get extra physical memory by

memory allocation on PM2; In IDC policy, we have the same behavior at first

memory overload. The proposed policy migrates VM3 to PM2 according to IDC at

second memory overload and thus VM1 can get the physical memory released by

VM3.

0
50

100
150
200
250
300
350
400

Group1
(VM1+VM2)

Group2
(VM3+VM4)

Re
sp

on
se

 T
im

e
(m

s)

Sandpiper

IDC Policy

Figure 4.8 : The Response Time (Memory Overload)

Figure 4.9 and 4.10 show CPU and network utilizations under the memory overload.

The same as above, IDC policy achieves lower resource utilizations than Sandpiper,

 34

especially in network utilization. The reason is IDC policy transforms network traffic

to IDC by migration.

0
10
20
30
40
50
60
70
80
90

100

PM1 PM2 Average

CP
U

 U
til

iz
at

io
n

(%
)

No Migration
Sandpiper
IDC Policy

Figure 4.9 : CPU Utilization of Each Physical Machine (Memory Overload)

0
10
20
30
40
50
60
70
80
90

100

PM1 PM2 Average

N
et

w
or

k
U

til
iz

at
io

n
(%

)

No Migration
Sandpiper
IDC Policy

Figure 4.10 : Network Utilization of Each Physical Machine (Memory Overload)

4.2.3 Network overload

Table 4.5 : The Configurations of Each Domain (Network Overload)

 Workload type
Run-seconds

(seconds)
Group

ID
Physical
memory

Initial
location

VM1 Netperf client 600 1 256MB PM1
VM2 Netperf client 600 2 256MB PM1
VM3 Netperf client 600 3 256MB PM1

 35

VM4 Netperf server 600 1 256MB PM2
VM5 Netperf server 600 2 256 MB PM2
VM6 Netperf server 600 3 256MB PM3

The network overload situation is caused by the configurations shown in Table

4.5. In this experiment, three two-domain groups are run on four physical machines

and all the domains communicate with their group members on different physical

machines. The domains residing on PM1 (i.e., VM1, VM2 and VM3) run the netperf

client, while the other domains, residing on PM2 and PM3, run the netperf server[31].

In addition to PM1-PM3, an idle machine PM4 is used in this experiment.

 Such configuration causes network overload on PM1, and both Sandpiper and

our IDC policy choose VM3 as the victim. This is because that VM3 has higher

network traffic with its group member VM6, which does not compete with other

domains on PM3 for resources. Sandpiper migrates VM3 to the PM4, the machine

with the lightest load. In IDC policy, however, we migrate VM3 to PM3 due to the

consideration of IDC. Different to Section 4.2.1, we demonstrate that group reunion

can also be achieved by choosing the right destination. Figure 4.11 shows the network

throughput of each group. We can easily see that migration helps to improve the

performance. Comparing with Sandpiper, IDC policy achieves a similar performance

for group 1 and 2. For group 3, however, IDC policy outperforms Sandpiper by 102%

due to the consideration of IDC. Figure 4.12 shows CPU utilization of each physical

machine. Different from previous experiments, IDC policy results in a higher CPU

utilization than Sandpiper on the PM3 due to the fact that we migrate VM3 to PM3

instead of PM4. However, IDC policy still has a lower average CPU utilization than

Sandpiper. Figure 4.13 show that IDC policy can reduce network traffic and achieve

better performance by transforming network traffic into IDC.

 36

0

200

400
600

800

1000

1200

Group1
(VM1+VM4)

Group2
(VM2+VM5)

Group3
(VM3+VM6)

Th
ro

ug
hp

ut
 (M

b/
se

c)

No Migration
Sandpiper
IDC Policy

Figure 4.11 : The Performance Results (Network Overload)

0
10
20
30
40
50
60
70
80
90

100

PM1 PM2 PM3 PM4 Average

CP
U

 U
til

iz
at

io
n

(%
)

No Migration
Sandpiper
IDC Policy

Figure 4.12 : CPU Utilization of Each Physical Machine (Network Overload)

 37

0
10
20
30
40
50
60
70
80
90

100

PM1 PM2 PM3 PM4 Average

N
et

w
or

k
U

til
iz

at
io

n
(%

)

No Migration
Sandpiper
IDC Policy

Figure 4.13 : Network Utilization of Each Physical Machine (Network Overload)

4.2.4 Solving multiple types of overloads

Table 4.6 : The Configurations of Each Domain (Multiple Overloads)

 Workload type
Run-seconds

(seconds)
Sessions

Group
ID

Physical
memory

Initial
location

VM1 Support(database) 600 70 1 192MB PM1
VM2 Support(server) 600 70 2 64MB PM2
VM3 Support(database) 600 70 2 96MB PM2
VM4 Support(server) 600 70 1 128MB PM2
VM5 Support(server) 600 65 3 128MB PM2
VM6 Support(database) 600 65 3 192MB PM3

 We show that our system can solve multiple overloads in this experiment. Table

4.6 shows the configurations of this experiment. We use three physical machines, each

of which has 1G DDR2 RAM. Moreover, we do not allocate enough memory for

VM2, VM4 and VM5 in order to cause memory overload. We create several memory

and CPU overloads on the PM2 and only two CPU overloads of them need to be

solved by migration. Figure 4.14 shows the CPU utilizations, and Figure 4.14 shows

the frequencies of the swap writes. At 80 seconds, there is a large amount of swap

writes on PM2 (marked as A in Figure 4.15). Then, RMN allocates extra memory to

 38

VM2 to eliminate the memory overload. At 130 seconds, the CPU loads of each VM

are increasing. Then, there is a CPU overload on PM2 and solved by migrating VM4

to PM1. This migration successfully solves CPU overload and reclaim enough

physical memory in PM2. Next, there are three times of memory allocations for VM2

(marked as C, D and E in Figure 4.15) to solve the continue CPU and memory

overloads in the same time. Notice that, when CPU and memory overloads occur in

the same time, we will solve memory overload first because reducing the frequent

swapping can sometimes decreases CPU utilization. After 170 seconds (marked as E

in Figure 4.15), we eliminate the memory overload that caused by VM2, but there is

still CPU overload. At 210 seconds (see Figure 4.14), RMN tries to do migration and

migrates VM5 to PM3 to achieve the group reunion. Then, the memory usages of

group 1 and 3 are increasing, PM1 and PM3 allocate extra physical memory to VM4

and VM5 to eliminate memory overloads (marked as G and H in Figure 4.15).

Figure 4.14 : A Series of Migrations for Solving Multiple Overloads.

 39

Figure 4.15 : Amount of Swap-Write Pages Per 10 Seconds in Each PM.

4.3 Overhead Evaluation

We evaluate the CPU and memory overhead of the proposed system in this

section. We use iperf-2.0.2 [32] to evaluate the CPU overhead with various

throughputs and numbers of VMs. Figure 4.16 shows the CPU utilizations under

different throughputs. In this experiment, two iperf clients running on two VMs on the

target machine connect to two iperf servers running on two VMs on a different

physical machine. Figure 4.17 shows the CPU utilizations under different numbers of

VMs. In this experiment, we create different numbers of VMs form 2 to 10 on the

target machine, and each of them runs the iperf client. The iperf servers run on top of

two physical machines, and the iperf throughput is fixed as 600Mbps. Both figures

show that the monitoring mechanism for supporting the IDC aware migration policy

causes little CPU overhead.

 40

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900

Throughput (Mbps)

CP
U

 U
til

iz
at

io
ns

 (%
)

IDC-Total
IDC-Domain0
Pure-Total
Pure-Domain0

Figure 4.16 : CPU Utilizations with Different Throughputs

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12

Numbers of VMs

CP
U

 U
til

iz
at

io
ns

 (%
)

IDC-Total
IDC-Domain0
Pure-Total
Pure-Domain0

Figure 4.17 : CPU Utilizations with Different Numbers of VMs

Next, we analyze the memory cost of our system. We define CDi as the number

of domains communicating with domain i. Thus, the extra memory cost of the

resource usage information for domain i can be represented as follows:

 41

mem_cost(i) = 100+CDi*48 Bytes, (7)

where 100 and 48 are the sizes of the domain_info and net_info, respectively.

Therefore, a cluster with N virtual machines, the whole memory cost of the resource

usage information would be

∑
=

∗+∗
N

i
CDi

1
48100 . (8)

Finally, we show the implementation cost. The system is implemented with less

than 3790 lines of C code. We modify/add 1130 lines in the kernel of domain0, 1970

lines in RMN and 690 lines in migration monitor and profile engine.

 42

Chapter 5 Conclusions and Future Works

5.1 Conclusions

We present an automatic load management system with IDC aware migration

policy. It can solve system overloads immediately and effectively and the

implementation overhead of our system to support IDC aware migration policy is

insignificant. Compare to other migration policy, IDC aware migration policy can get

better performance by achieving group reunion with lower CPU cost.

5.2 Future Works

In this thesis, we present IDC aware migration policy, but we use a simple

predicted algorithm of Nds. However, it is not a precise way to evaluate the value of

Nds, and so is Id. Maybe we can predict it according to disk I/O, CPU utilization,

memory size and dependence of network traffic of other domains. In the policy of

choosing destination, we just check if the remainder resource on the destination is

enough to contain the victim domain now. But we do not consider that the resource

usage of victim will be changed after migration. Without the well prediction of

resource usage, it maybe causes the destination does not contain the victim and want

to do migration because another system overload is happened.

Moreover, K. Kim et al.[26] and X. Zhang et al.[28] present different ways to

increase the performance of Inter-Domain Communication. With the implementation

of their works, our IDC aware migration policy should be more significant.

 43

References
[1] M. M. Theimer, K. A. L., and D. R. Cheriton, “Preemptable Remote Execution

Facilities for the V-System”, In Proceedings of the 10th ACM Symposium on
Operating Systems Principles, pp. 2-12, Dec. 1985.

[2] M. Nelson, B. Lim, and G. Hutchins. “Fast Transparent Migration for Virtual

Machines”, In Proceedings of the USENIX 2005 Annual Technical Conference,
pp. 391-394, Apr. 2005.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and

A.Warfield, “Live Migration of Virtual Machines”, In Proceedings of the 2nd
Symposium on Networked Systems Design and Implementation, pp. 273-286,
May, 2005.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I.

Pratt, and A. Warfield, “Xen and the art of virtualization”, In Proceedings of the
19th ACM symposium on Operating Systems Principles, pp. 164-177, Oct.
2003.

[5] M. L. Powell and B.P. Miller, “Process Migration in DEMOS/MP”, In

Proceedings of the 9th Symposium on Operating Systems Principles, pp.
110–119, Oct. 1983.

[6] R. Finkel, "The Arachne Kernel", Technical Report TR-380, University of

Wisconsin, Apr. 1980.

[7] R. F. Rashid and G.G. Robertson, "Accent: A Communication Oriented Network

Operating System Kernel", In Proceedings of the 8th Symposium on Operating
System Principles, pages 64–75, Dec. 1981,

[8] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M. Williamson.

Safe hardware access with the Xen virtual machine monitor. In 1st Workshop
on Operating System and Architectural Support for the On-Demand IT
Infrastructure, Oct. 2004

[9] M. Litzkow, M. Livny and M. Mutka, “Condor - A Hunter of Idle Workstations”,

In Proceedings of the 8th International Conference on Distributed Computing

 44

Systems, pp. 104-111, 1988.

[10] A. Barak, S. Guday and R. G. Wheeler, “The MOSIX Distributed Operating

System: Load Balancing for UNIX”, LNCS 672, Springer, Berlin, 1993.

[11] J. Casas, D. Clark, R. Konoru, S. Otto, R. Prouty and J. Walpole, “MPVM: A

Migration Transparent Version of PVM”, Oregon Graduate Institute School of
Science & Engineering, Technical Report: CES 95-002, Feb. 1995.

[12] F. Douglas “Transparent Process Migration in the Sprite Operating System”,

(PhD Thesis, University of California, Berkeley), Sep. 1990.

[13] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou, “Process

migration”, ACM Computing Surveys, pp. 241-299, Sep. 2000.

[14] D. Milojicic, P. Giese, and W. Zint , “Experiences with Load Distribution on

Top of the Mach Microkernel”, In Proceedings of the USENIX Symposium on
Experiences with Distributed and Multiprocessor Systems, Sep. 1993.

[15] P. Krueger and M. Livny, “A Comparison of Preemptive and Non-Preemptive

Load Balancing”, In Proceedings of the 8th International Conference on
Distributed Computing Systems, pp. 123-130, Jun. 1988.

[16] V. S. Sunderam, G. A. Geist, J. Dongarra and R. Manchek, “The PVM

concurrent computing system: Evolution, experiences and trends”, Parallel
Computing, pp. 531-545, Apr. 1994.

[17] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam and M. Rosenblum,

“Optimizing the migration of virtual computers”, In Proc. of the 5th Symposium
on Operating Systems Design and Implementation, pp. 377-390, Dec. 2002.

[18] D. Gupta, R. Gardner and L. Cherkasova, “Xenmon: Qos monitoring and

performance profiling tool”, Technical Report HPL-2005-187, HP Labs, Oct.
2005.

[19] J. G. Hansen and E. Jul, “Self-migration of operating systems”, In Proceedings

of the 11th ACM SIGOPS European Workshop, pp. 126.-130, Sep. 2004.

 45

[20] R. Bradford, E. Kotsovinos, A. Feldmann and H. Schioberg, “Live wide-area
migration of virtual machines including local persistent state”, In Proceedings of
the 3rd international conference on Virtual Execution Environments, pp.
169–179, Jun, 2007.

[21] S. Jones, A. Arpaci-Dusseau and R. Arpaci-Dusseau, “Geiger: Monitoring the

buffer cache in a virtual machine environment”, In Proceedings of the 12th
International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 13–23, Oct. 2006.

[22] D. Menasce and M. Bennani, “Autonomic Virtualized Environments”, In

Proceedings of International Conference on Autonomic and Autonomous
System, Jul. 2006.

[23] P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen, “Autonomic Live

Adaptation of Virtual Computational Environments in a Multi-Domain
Infrastructure”, in Proceedings of the 2006 IEEE International Conference on
Autonomic Computing, pp. 5-14, Jun. 2006.

[24] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and

Gray-box Strategies for Virtual Machine Migration”, In Proceedings the 4th
Symposium on Networked Systems Design and Implementation, pp. 229-242,
Apr. 2007.

[25] C. Hyser, B. McKee, R. Gradner and B. J. Watson, “Autonomic Virtual Machine

Placement in the Data Center”, HP Laboratories, HPL-2007-189, Feb. 2008.

[26] K. Kim, C. Kim, S. I. Jung, H. S. Shin and J.S. Kim, “Inter-domain Socket

Communication Supporting High Performance and Full Binary Compatiblity on
Xen”, In Proceedings of the 4th ACM SIGPLAN/SIGOPS international
conference on Virtual Execution Environments, pp. 11-20, Mar. 2008.

[27] J, Wang, K. L. Wright and K. Gopalan,“XenLoop: A transparent High

Performance Inter-VM Network Loopback”, In Proceedings of the 17th
international symposium on High performance distributed computing, pp.
109-118, Jun. 2008.

[28] X. Zhang, S. McIntosh, P. Rohatgi and J. L. Griffin, “XenSocket: A

 46

High-Throughput Interdomain Transport for Virtual Machine“, In Proceedings
of Middleware, Aug. 2007.

[29] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A Machine Learning Approach

to TCP Throughput Prediction,” In Proceedings of the ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems,
June. 2007.

[30] Netperf-2.4.2 Available at http://www.netperf.org/netperf/

[31] SpecWeb2005 Available at http://www.spec.org/web2005/

[32] Iperf-2.0.2 Available at http://dast.nlanr.net/Projects/iperf

 47

http://www.spec.org/web2005/
http://dast.nlanr.net/Projects/iperf

	Chapter 1 Introduction
	Chapter 2 Related Work
	Chapter 3 Design and Implementation
	Chapter 4 Performance Evaluation
	Chapter 5 Conclusions and Future Works

