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論文摘要 

 在叢集式伺服器上提供穩定的服務及有效利用資源是很重要的一個課題。以

往在伺服器上發生資源負荷過載的處理方法為行程中斷或是行程搬移，這兩個方

法皆不夠有彈性及透明化。前者直接中斷行程，讓使用者感受到不便；後者雖可

有效解決資源負荷過載的問題，但是必須先克服一些技術上的問題。 

隨著虛擬機器的普及化，有人研究利用虛擬機器的搬移機制來解決資源負荷

過載且擺脫以往不透明及沒有彈性的問題。但是之前的研究全都是把負載最重的

虛擬機器搬移到負載最輕的機器上。 

在此論文中，我們觀察出虛擬機器間內部傳輸較佳的特性，並根據此特性設

計出一套可以增進叢集式伺服器內虛擬機器整體效能的搬移機制。在資源負荷過

載時，此搬移機制可以把傳輸量大的虛擬機器聚在一起，籍以求得較佳的效能。 
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Abstract 

Using resource effectively and providing reliable services are both significant in 

the cluster. The previous researches to solve system overload are process suspend and 

process migration, but they are all not flexible and transparent. The former make user 

be aware of termination of service. And the latter can solve system overload 

successfully but it need some technique supports. 

 Some researches solve system overload by VM migration, it can successfully 

solve system overload and get more transparent and flexible. But the main idea of 

previous researches focus on that migrate the VM with highest load to lowest load 

destination.  

 In this thesis, we know that the performance of network traffic via 

Inter-Virtual-Machine Communication is better than via network. According to this 

feature, we present a Inter-Virtual-Machine Communication aware migration policy. 

When system overload occurs, the policy will union the VMs that have high traffic to 

each other in the same physical machine to get better performance. 
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Chapter 1 Introduction 

1.1 Motivation 

Using resource efficiently and providing reliable services are both critical issues 

for server clusters. However, excessive utilizations of resources such as CPU, memory, 

network and disk bandwidths would lead to system overload, which decreases the 

service reliability and performance. A sudden load surge could cause a significant 

deterioration of service quality, even leads to service denial. 

A number of load management mechanisms have been proposed for balancing the 

loads of the servers in a network service. In those mechanisms, the load controller 

dispatches the requests to the servers according to the server load. If an overload 

occurs, the controller can dispatch requests to the other servers or move some requests 

from the overloaded server (i.e., the hotspot) to the other servers.  

Another way to solve the problem of system overload is through process 

migration, which can eliminate system overload effectively by moving process from 

the overloaded machine to another one with a lighter load. Process migration is not 

limited to load management within a network service. However, there are some 

challenges for process migration, such as full transparency, dependence of other 

processes, fast transferring for process state, proper migration algorithm and etc 

[1][5][9][10][11][12]. High implementation cost is needed if the operating systems 

themselves do not support process migration. 

In virtualization environments, which rapidly gain in popularity in recent years, 

system overloads can easily be solved by using virtual machine (VM) migration [VM 

migration, sandpiper], which is user-transparent and hence avoids the above 

implementation costs. However, existing migration policies[22][23][24][25], which 
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determines the VM to be migrated and the destination host, focus mainly on the load 

balancing and hotspot elimination, but ignore the fact that different VMs in the same 

physical machine may communicate with each other.  

In this thesis, we assume the communication performance in a physical machine 

is superior to that among physical machines. This assumption holds for low-cost 

clusters, which do not use specialized high speed links (such as Myrinet) for 

intra-cluster communication. Moreover, several techniques such as XenLoop and 

XenSocket have been proposed to improve the communication performance in a 

physical machine. As a result, it is common that the performance of optimized 

shared-memory based communication would outperform the NIC based 

communication. 

We refer the communication between different guest VMs in the same physical 

machine as Inter-Domain Communication (IDC). Instead of passing the network 

interface card (NIC), IDC is usually implemented in shared memory in modern 

virtualization environments so that its bandwidth is not limited by the NIC. It is 

limited by the spend of CPU and Memory. Moreover, traffic via IDC can get better 

performance than original network because the speed of CPU is often faster than 

network interface card, especially in the workload of higher network I/O, such ftp, 

data center and web cluster.  

According to our experimental results, grouping the virtual machines that 

communicate with one another, which are referred to as a logical group in this thesis, 

on the same machine helps to achieve a better performance. However, existing 

migration policies focus mainly on eliminating the hotspots and may separate the 

members (i.e., the VMs) of a logical group on different physical machines, leading to 

a performance degradation.  

Table 1.1: Performance Results of Netperf via NIC and IDC 
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 Throughput (Mb/sec) CPU Utilizations (%) 
NIC 283.17 61.708725 
IDC 1113.755 82.61254 

 

As an example, Table 1.1 compares the performance results of netperf[30], a 

network benchmark, via NIC and IDC under a four-domain environment. Two netperf 

instances, with each of which contains a pair of netperf client and server programs, 

run in the environment, and each domain executes one of the programs. The IDC 

values show the results when all the netperf client programs communicate with their 

servers via IDC while the NIC show the results when all the netperf client programs 

communicate with their servers via NIC. As shown in the table, the throughput of IDC 

outperforms that of NIC by four times with the cost of about 21% CPU utilization. As 

another example, we run the Support test of SPECweb2005[31] with 90 sessions in 

the same four-domain environment. As shown in Table 1.2 and 1.3, communication 

via IDC can achieve a shorter response time without the extra cost of CPU resources. 

Specifically, 24.6% of the response time can be reduced in average.  

 

Table 1.2 : Response time of each request type in SPECweb via NIC and IDC 
Request Types  

  home search catalog product fileCatalog file download Average
NIC 

results(ms) 223 229.5 227 413.75 331.5 330.75 1757.75 415.25
IDC 

results(ms) 156 158.5 156 296.5 230.75 233 1547.75 313 

 

Table 1.3 : CPU Utilizations of SPECweb via NIC and IDC 
  CPU Utilizations (%)

NIC 70.2125 
IDC 68.9375 
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To take advantage of the superior performance of IDC, we propose a new VM 

migration policy that considers IDC when making migration decisions. The policy 

solve system overload while trying to keep a logical group in the same physical 

machine (i.e., group union). Moreover, we also design and implement an automatic 

load management system and integrate the proposed policy into the system. 

According to the performance results, we demonstrate that the system is capable of 

solving multiple system overloads, and the IDC aware migration policy can achieve a 

superior performance by group union, when compared to the migration policy 

proposed by Sandpiper[24], an existing VM migration system. Specifically, the 

proposed policy can reduce the response time by up to 24% under the support test of 

the SPECweb2005 benchmark and improve the network communication performance 

by up to 102% under the netperf benchmark. 

 

1.2 Structure of the Thesis 

The rest of this thesis in structured as follows. Section 2 presents the related work. 

Section 3 presents the design and implementation of the load management system and 

the IDC aware migration policy. The performance evaluation is presented in Section 4. 

Finally, Section 5 gives the conclusions and the future work.  
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Chapter 2 Related Work 

 In this chapter, first, we introduce some researches about process migration task 

because it is the foundation of migration. Then, we introduce some researches about 

migration of virtual machine. Finally, we introduce some researches about 

Inter-Virtual-Machine that can improve the performance of our mechanism. 

 

2.1 Process Migration 

Process migration is an act of transferring an executing process between two 

machines. This idea was first presented by Finkel et al.[6], and also, Rashid and 

Robertson[7] in the 80’s. Powell and Miller[5] firstly added feature of process 

migration on DEMOS/MP operating system. There are some challenges for process 

migration, such as full transparency, dependence of other processes, fast transferring 

for process state, proper migration algorithm and etc. The past 

researches[1][5][9][10][11][12] have provided several mechanisms to overcome those 

challenges in different operating systems, but it spent the expensive implementation 

cost if the operating systems do not support process migration. 

 Generally speaking, process migration for reaching load-balance in distributed 

systems has three major tasks: migration algorithm, load information management 

and distributed scheduling [13]. The algorithms of process migration are quite similar, 

and they can be summarized as following. Firstly, a migration request is issued to a 

remote node, and then the process is detached from source node. Secondly, we need to 

do some preparations before state transferring, such as redirecting the communication, 

extracting the process state and creating the destination process instance. Then, 

process state is transferred and imported into a new instance. Finally, resume the new 
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instance from destination node. Load information management is also an important 

component of process migration because we need to get the information that we want 

and normalize it. In addition, transferring the information as small as possible to 

improve the performance is also important. Distributed scheduling plays the major 

role of load balancing or overloads eliminating. The main goal is to determine when 

to migrate which process to where. Distributed scheduling can not only achieve 

load-balance but also eliminate overload; moreover, improve overall performance if 

we migrate right process to right destination.  

Milojicic et al. [14] first suggested that move the client to destination where the 

server is located to improve performance because the client/server communication 

takes place in parallel. To get the better performance, the operating system needs to 

provide parallel programming environment and parallel run-time support system, such 

as PVM system [16]. 

 

2.2 Migration in Virtual Machine 

 Different from process migration, virtual machine migration can avoid many 

difficulties faced by process migration, such as process state saved and transferred, 

name space of process, and transparency of process migration. Moreover, the virtual 

machine environment provides a clean platform between operating system and 

hardware to solve the dependence issue.  

Self-migration [19] used the mechanism, resend-on-write and transferred the 

remained dirty pages after checkpoint has been suspended to reduce the overall 

migration time, but it can not keep the service alive. Clark et al. [3] presented a 

transparent and fast virtual machine migration, named live-migration on Xen [4]. To 

achieve live-migration, there are three phases of transferring memory, pre-copy, 

stop-and-copy and demand-copy. When migration starting, all pages are transferred in 
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pre-copy phase. If the rate of dirty pages is lower than limited, it enters the 

stop-and-copy phase to transfer the remained dirty pages. After being finished of 

transferring dirty pages, the destination virtual machine starts and provides the service 

as before. If the page fault occurs, it will copy the page from source machine. They 

successfully minimized both downtime and total migration time and keep the service 

alive.  

There are two types of storage in the common virtual machine environment, one 

is local disk and the other is using Network Attached Storage (NAS). NAS is a better 

choice for modern clusters because it can provide strong availability of data by 

building in RAID and the front-end can reduce the expensive disk I/O. Doing 

migration is unreasonable in the previous researches if only using local disk because 

the migrated domain on the destination machine will still access the local disk on the 

source machine. Nevertheless, Bradford et al. [20] has mentioned that transferring 

memory state as well as local persistent state in WAN, it will make the virtual 

machine environment friendlier. Therefore, doing migration is suitable for academy, 

industry, as well as common user. 

With the maturity of virtual machine migration, some people try to solve system 

overload or making load-balance of clusters by using domain migration. Menasce and 

Bennani presented an autonomic virtualized environment [22], they consider 

dynamically CPU priority allocation and allocation of CPU shares in virtual machine 

to achieve load-balance. However, it just considers the factors of CPU and do not use 

the technique of virtual machine migration. Ruth et al.[23] builds autonomic virtual 

machine with consideration of CPU resource and memory resource, and it keeps each 

virtual machine’s resource utilization within a specific range.  

The above researches make the idea of load-balance and autonomic in the virtual 

machine become more practical, but they still lack consideration. T. Wood et al.[24] 
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show black-box and gray-box strategies to observe the utilization of resources and 

eliminate hotspots. They present Sandpiper, as a complete solution to support 

load-balance and autonomic virtualized environment with consideration of CPU, 

memory resource and network bandwidth in the virtual machine environment, and it 

consists of profiling engine, hotspot detector and migration manager. They integrate 

those resources into a formula to reduce the time of decision and use the swap 

mechanism to make migration more practical. Hyser et al.[25] presented overview of 

a virtual machine placement system and used a mean-value migration policy. 

 

2.3 Inter-Domain Communication 

 Although the virtual machine environment can provide several advantages, the 

performance of virtual machine is still lower than the native machine. Some 

researches [26][27][28] introduced that I/O virtualization is the significant 

performance overhead of virtual machine environment because all of the I/O 

operations will go through domain-0 and VMM, and it caused the expensive domain 

switch and longer path of I/O operation. The main idea of solving the problem is 

bypassing domain-0 and VMM to reduce the overhead of communication between 

two domains on the same machine. 

XenSocket [28] is a socket-based solution for increasing inter-domain 

throughput in xen. XenSocket avoid the TCP/IP overhead and bypass the domain-0 by 

providing a socket-based interface to shared memory buffers for inter-domain 

communication, but it can not support the general socket interface. Kim et al.[26] 

presented XWAY channel to deal with the socket between two guest domains. XWAY 

achieves high performance by bypassing TCP/IP stacks, avoiding page exchanging 

overhead, and create a directed and shorter communication path between two different 

guest domains. It also supports the general socket interface and live migration easily.  
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Chapter 3 Design and Implementation 

In this chapter, we describe the design and implementation of the load 

management system and the IDC aware migration policy. Section 3.1 describes the 

design goal. Section 3.2 introduces the system design, which is followed by the 

description of the proposed IDC aware migration policy in Section 3.3. Finally, the 

implementation details are described in Section 3.4.  

 

3.1 Design Goal 

 The design goals of the load management system are as follows. 

 Maximize Resources Utilizations 

In the proposed load management system, the available resources of a 

physical machine should be used as a first step to eliminate the overload 

condition. VM migration is used when the available resources of a hotspot 

machine is not enough to solve the overload problem. 

 Little Overhead 

The load management system requires gathering domain load 

information. For performance consideration, the load gathering job should 

not incur noticeable overhead to the system. 

 Performance Improvement 

The migration policy should consider IDC so as to obtain a larger 

performance gain after VM migration.  

 

3.2 System Overview 

 In this section, we give a basic description of the proposed load management 
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system. 

 

3.2.1 Background 

Xen is an open source virtual machine monitor (VMM) developed by University 

of Cambridge[4], and it has high performance due to the use of para-virtualization. 

Xen provides a split device driver model [8], in which a dedicated domain (i.e., 

domain 0) acts as the driver domain that serves all the device access requests from the 

guest domains. When an access request is generated from the guest operating system, 

the front-end driver of the guest domain passes the request to back-end driver of 

domain 0 through the shared-memory based I/O channel. Moreover, Xen supports live 

migration [3] and provides a grant table mechanism, called the grant table 

mechanism[8], to share memory pages between domains for improving the IDC 

performance.  

 

3.2.2 System Architecture 

 

Figure 3.1 : The System Architecture. 
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The proposed load management system is based on Xen. Figure 3.1 shows the 

architecture of the load management system, which consists of the load collector, 

hotspot detector, migration manager, migration monitor and profiling engine. The 

former three components reside in a dedicated machine called Resources Management 

Node (RMN) while the latter two run in the domain 0 of each cluster node. The 

profiling engine collects the resource usage information of each domain on a cluster 

node and sends the information to the load collector periodically. The per-domain 

resource usage information consists of the CPU utilization, the size of the allocated 

memory, the frequency of swap writes and utilized network bandwidth. After 

receiving the resource usage information, RMN records the information into a history 

table. Then, the hotspot detector analyzes the information and detects if is there is a 

hotspot. If a hotspot machine is detected, the migration manager selects a victim 

domain on the hotspot machine and a destination physical machine with enough 

resources according to the migration policy. Finally, the migration manager sends the 

migration request to the hotspot machine to trigger domain migration. One exception 

is that, under memory overload, the VMM would try to allocate more memory 

resources to the overloaded domain first before performing the domain migration. 

Figure 3.2 shows the message flow of VM migration control in our system. In the 

figure, the upper part shows the flow corresponding to a memory overload that can be 

solved by allocating more memory for the overloaded domain, while the bottom part 

shows the flow that solving the overload problem by domain migration. After the 

finish of the VM migration, the resource usage information on the source machine of 

the migration is reclaimed. 
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Figure 3.2 : The Message Flow of VM Migration Control 

 

3.3 IDC Aware Migration Policy 

IDC Aware Migration Policy 

Thee basic idea of the policy is to group together domains that have moderate or 

heavy communication traffic among them and run the group on the same physical 

machine so as to utilizing the high performance of IDC. To simply the description, we 

assume that each group has an unique group ID (GID) are located at the same 

physical machine.  
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The basic abstraction of purposed IDC aware migration policy is migrate the 

highest load domain from source to light load destination. In addition, the chosen 

victim (i.e., the domain to be migrated) is with high throughput to corresponding 

destination. To choose the victim from hotspot machine easily and reasonably for all 

case of system overload, we defined the volume function Vijk for domain with index j 

in the physical machine i and the destination machine is with index k as following: 

Vijk = CPUij*Ci + Memij*Mi + NBijk*Ni                  (3) 

Where CPUij represented as CPU utilization, Memij represented as memory utilization, 

NBijk is Network benefit for domain j in physical machine i and the destination is 

machine k. Ci, Mi and Ni are the overload flags for CPU, Memory and Network 

separately. Network benefit is meant that real reclaimed network traffic from physical 

NIC on the hotspot machine. Different from Sandpiper, they calculate network traffic 

including IDC and we exclude IDC. Sandpiper does not make sense because IDC 

does not pass through physical NIC. 

If the physical machine got overload of CPU, the Ci would be set to 1, otherwise 

it would be 0. Mi and Ni are the same as Ci, but to consider the feature of IDC totally, 

we always set Ni to be 1. We can easily understand that the proper victim is with 

highest Vijk, because it can release more resources to address the correct type of 

overloads. It is also a difference from Sandpiper. With this volume function, we can 

find the proper victim and destination easily as soon as possible. 

Network Benefit 

The real reclaimed network traffic, network benefit, is quite significant to avoid 

the erroneous decision of hotspot detection and choosing victim domain. Figure 3.3 

and 3.4 illustrate the situations before and after migration, respectively. The 

definitions of the symbols are shown in Table 3.1. Suppose the victim VMi1 has to be 

migrated from source machine PMi to PMj. VMi1 has three types of communication: 
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Is, denoting the volume of IDC, Nsd, denoting the volume of traffic from VMi1 to the 

destination machine, and Nso, denoting the volume of traffic from VMi1 to the other 

physical machines. After the migration, the Is would become Nds, the connection 

from destination to source via NIC, the Nsd would become Id, the IDC on the 

destination, and the Nso would become Ndo, the connection from VMi1 (on the 

destination) to the other physical machines, still remains. Without losing the 

generality, we assume that Ndo is equal to Nso.  

 

Figure 3.3 : The Network Communication before Migration 

 

PMj (Desination)

VMi1

GID 1
VMj1

GID 1
Dom0VMi2

GID 1
Dom0
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Figure 3.4 : The Network Communication after Migration 
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Table 3.1 : Symbol Definitions 

Symbol Definition 

Is  Inter-Domain Communication on Source. 

Id Inter-Domain Communication on Destination. 

Nso Volume of traffic from Source to Other machine. 

Nsd Volume of traffic from Source to Destination. 

Ndo Volume of traffic from Destination to Other machine. 

Nds Volume of traffic from Destination to Source. 

AB Available Bandwidth after migration. 

NB Network Bound for one domain in virtual machine. 

  

According to above description, we define network benefit that given as 

following:  

 Network benefit = Nso + Nsd – Nds       (1) 

The Network benefit is like the utilization of network, but it is more accurate in 

releasing network resource in the virtual machine. The main ideas of the design of 

network benefit is the source can reclaim accurate network bandwidth and get better 

performance with consideration of IDC and destination. Generally, we consider the 

available resources that after migration are equal to the released resources form victim 

domain, but available resources are less than released resources. The reason is that 

there are IDC between another domains and victim domain at source machine. After 

migration, the IDC becomes the original network traffic between source and 

destination machine, so that the accurate available resources in network is Nso + 

Nsd – Nds, named Network benefit to distinguish form the original network 

utilization. 

 For example, with the concept of group that we mention as above, there were 

 15



several groups in the source machine and we supposed that we have two candidate 

domains with equal resources, named A and B. A was with higher IDC in one of 

groups. B was a single domain in source machine and connected to domains which 

are located in other machines. B had higher network traffic than its IDC, and A was 

opposite. That is to say, B had higher Nso + Nsd and lower Is, and A had lower Nso + 

Nsd and higher Is. According to our model, Nds were higher related to Is because Is 

will change to Nds after migration. If one domain’s IDC is higher than another, its 

Nds traffic would has the same situation. It we choose A to be the proper victim, we 

could not release more network resource and would get lower performance because 

we decrease the IDC of A. With the Network benefit function, B gets the bigger value, 

so that we choose it to be the proper victim. As our expectation, Network benefit can 

help us to choose the proper victim with lower IDC to be migrated and release more 

network resource. We can summarize above, it is a good choice if the domain has 

higher network benefit, because the victim has higher network traffic and lower IDC. 

We should make the domain stayed on the source machine if the domain has lower 

network benefit. 

 But we have a significant challenge in calculating Network benefit; it is how to 

get the correct value of Nds. We can get Nso, Nsd and Is by tracking the network 

traffic on source machine, but we have no idea about the real values of Nds and Id 

after migration. To let Network benefit be more reasonable and accurate, we need to 

predict the value of Nds. It is a hard work because our system is based on the virtual 

machine environment, it caused that we did not have a well prediction of Nds by 

using previous researches[29]. The previous researches about predicting the future 

network traffic all focus on the more stable environment than virtual machine.  That 

is to say, they did their researches on single machine and there are no other effective 

factors except the running applications. On the virtual machine environment, we 
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should consider the running applications on the domain as well as the effects of other 

domains on the source machine. So, we present a simple algorithm to predict Nds 

without consider the all effective factors; it can reduce the dimensions of prediction 

algorithm and has reliability of a certain degree in normal case. Our simple prediction 

algorithm is as following: 

Nds = min (Is, AB, NB)       (2) 

In our model, we introduce AB and NB, AB is available bandwidth after 

migration and NB is the network bound in virtual machine. Virtual machine has lower 

network performance than native physical machine because the domains can not 

direct access the physical network devices. It restricts the real network bandwidth of 

virtual machine, and to make our prediction more accurate, we must define the value 

of network bound of virtual machine, NB. In the case of network overload, Nds is 

related with Is, AB and NB, and we consider these conditions as following: 

1. Nds was higher related to Is because it was exchanged from Is, Generally, the 

value of Nds was lower than Is in the high network performance environment. 

2. Nds is defined as the original network traffic after migration, so it can not 

exceed the available bandwidth of the source machine. 

3. As the mention as above, the network throughput can not reach the limit of 

gigabit network interface card in the virtual machine environment. The Nds 

was bounded in network bound of virtual machine, NB. 

According to above, we predict the value of Nds to be the minimum of Is, AB and NB  

 

 In the normal case of choosing destination machine, we also want to consider the 

effect of IDC, but predict the Id that was changed from Nsd is harder than predict Nds. 

So we only consider if there is enough resources in the destination, but not the effect 

of the IDC in the destination.  
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In following discussion, we suppose the destination machine have enough 

resources to solve system overload by using migration. In the case of having CPU or 

network overload, as the mention as above, we find the victim with maximal volume 

value and destination that have enough resources. If the destination does not have 

enough resources to contain the victim domain with maximal volume value, we would 

choose the next bigger one from volume list until the destination machine can contain 

it. Moreover, if there are two domains which have the same volume value and 

destination machine also has enough resources, we would choose the domain with 

higher network traffic to be the victim. 

In the case of having memory overload, it is the same as having CPU or network 

overload partially. The difference of solving overload is that we provide the dynamic 

provisioning technique to allocate physical memory to the target guest domain before 

doing migration. When the memory overload happened, we will find the victim with 

bigger volume value and allocate extra physical memory to victim domain to 

eliminate the frequent swap. If it still has memory overload, we will repeat this 

process until the physical memory of this machine is empty. The rules of dynamic 

provisioning were described as following: 

1. The extra additional physical memory is a fixed amount of quantity for 

victim guest domain at every allocation. 

2. Any guest domain can not add the extra physical memory unlimitedly. If the 

allocated physical memory of target domain has already achieved the 

maximal amount, the memory reallocation of target domain would not be 

allowed. 

3. The memory reallocation should be stopped if there is no any free physical 

memory on the physical machine. 

Moreover, if there are CPU and memory overloads in the same time, we would solve 
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memory overload first because eliminating the memory overload sometimes can solve 

CPU overload. 

 

 

3.4 Implementation 

 We present the implementation details in this section. 

 

3.4.1 Information Collection 

Information Collection Setup 

The information collection can be broken down into three parts: CPU, memory 

and network. To make our implementation more simple and flexible, the code 

modifications are only done in the privilege domain (i.e., domain 0). We build two 

data structures domain_info and net_info for information collection, as shown in 

Figure 3.5. The domain_info records the necessary information of each domain, such 

as domain ID, CPU usage, the amount of allocated memory, amount of swap 

operations and network information. The net_info structure records the volume of a 

specific kind of traffic (e.g., IDC from domain 1 to domain 10). Each domain_info 

consists of four lists of net_info structures for recording Tx and Rx volumes of the 

NIC and IDC traffic. Each net_info consists of the IP address, MAC address and total 

traffic bytes of the remote domain. For IDC, remote domain id is also included in the 

net_info structure. 

 

typedef struct net_info *netinfo_ptr; 
typedef struct net_info{ 

domid_t               domid;  // domain id (only for IVM) 
__be32        ip;   // ip address 
u8         mac[6];      // mac address 
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unsigned long    total_bytes; // total bytes of traffic 
netinfo_ptr    prev;  // point to previous net_info 
netinfo_ptr    next;   // point to next net_info 

}net_info_t; 
 
struct net_info_header{ 

int      count;  // total count of list  
netinfo_ptr    front;  // the first net_info item 
netinfo_ptr          tail;   // the last net_info item 
spinlock_t     lock;   // for list protected. 

}; 
 
typedef struct domain_info *dominfo_ptr; 
typedef struct domain_info { 

domid_t     domid;    // domain id 
__be32     ip;          // ip address of domain 

u8         mac[6];      // mac address of domain 

unsigned int     swap_blkif;  // id for swap partation 

unsigned int     root_blkif;    // id for root disk partation 

struct timespec      time_stamp;   // time stamp 

struct timespec      time_period;   // time period 

unsigned long    cpu;    // cpu execution time 

unsigned long    mem;   // current allocated memory 

unsigned long    max_mem;  // the maximun of memory 

unsigned long   swap_r ;       // amount of swapping read page 

unsigned long    swap_w ;     // amount of swapping write page 

struct net_info_header  itx;    // TX net_info_header for IDC 

struct net_info_header  otx;    // TX net_info_header for network 

  struct net_info_header  irx;    // RX net_info_header for IDC 

  struct net_info_header  orx;    // RX net_info_header for network 

dominfo_ptr            prev;   // point to previous domain_info 
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dominfo_ptr    next;    // point to next domain_info 

}domain_info_t; 

Figure 3.5 : The Main Data Structures for Information Collection 

 

To create a domain, the function do_domctl() is invoked, which in turn invokes 

the do_xen_hypercall(). In the hypercall, the privilege domain execute privcmd_ioctl() 

to ask the VMM to create a domain. VMM then chooses a proper domain id for the 

new domain and create a new guest domain. Next, VMM sets up the event channel, 

creates the grant table, performs other domain initialization jobs, and adds the domain 

to the run queue for domain scheduling. Finally, VMM sends an event to the privilege 

domain to initialize the back-end drivers of the newly-created guest domain such as 

xenbus, balloon driver, virtual block device interface, virtual network interface and 

etc.. 

The domain_info should be registered at the boot time of each guest domain 

without the modifications of guest domain. Modifying the guest operating system for 

such registration would raise the portability problem since it is hard to support 

different operating systems on the guest domains. Moreover, we also want to reduce 

the frequencies of expensive system calls or hypercalls so as to decrease the overhead 

of collecting resource usage information. According to the design goals above, we 

choose to register the data structure of domain_info upon the initialization of the 

Xenbus driver. Such an approach results in a lower implementation cost since no 

modifications to the VMM and guest domains are needed. Then, we create a mapping 

between swap partition and virtual block device to records swap information into the 

domain_info at the starting time of virtual block device[21]. The mapping helps us to 

separate swap read/write operations from other disk IO operations. Finally, we record 

the MAC and IP addresses into domain_info of guest domain at receiving/transmitting 
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the first packet for that domain. After the description about the setup of the 

domain_info and net_info, we next describe the information collection approach. All 

the collected information is sent by the Profiling Engine to the RMN periodically, 

which is done via TCP/IP. 

 

CPU and Memory Information 

 The CPU execution time can be obtained easily by using Xenstat, the tool 

provided by Xen. Xenstat utlizes hypercalls to obtain the detailed resource usage 

information from the VMM, such CPU execution time, total network traffic, current 

memory size and maximal size of memory. To obtain the frequency of swap writes, 

we have to track the swapping disk I/O in the backend block device interface. Upon a 

block request, if the target device id is equal to a swap partition id of a guest domain, 

we regard the request is a swap operation. 

 

Network Information 

 The collection of network information has the largest overhead in our system 

because we need to parse packets to classifiy them into IDC and NIC traffic. 

Upon receiving a packet, either from a guest domain or from the NIC card, we 

check the packet’s IP addresses to see if the packet belongs to intra-cluster 

communication (i.e., both source and destination are in the cluster) and MAC address 

of each packet if the same as MAC address of remote guest domain. Only intra-cluster 

communication is recorded for saving the recording cost. If the condition holds, we 

count this packet into the corresponding field of the net_info structure of the guest 

domain. To reduce the time of searching a net_info structure, the most recently 

accessed net_info is cached. 
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3.4.2 Migration Monitor and RMN 

 In this section, we describe the detailed implementation of the migration monitor 

and the components in the RMN. 

 

Migration Monitor 

 The migration monitor handles two kinds of requests sent from the RMN if the 

latter detects a hotspot. One is memory allocation request and the other is domain 

migration request. Upon receiving a memory allocation request that is accompanied 

with the ID of the target domain and the request memory size, the migration monitor 

issues a memory allocation hypercall for allocating that size of memory for the given 

domain. Upon receiving a domain migration request, which is accompanied with the 

victim domain and the destination machine, the migration monitor issues a migration 

command to migrate the victim domain to the destination. 

 

Load Collector 

 As the per-domain resource usage information is sent to the load collector, it 

arranges the information into a history table It also establishes another table for 

recording the traffic among all domains and sort the information according to the 

traffic volumes for efficient search. 

 As the migration command is sent to hotspot machine, the dom_info of victim 

guest domain was registered on the destination machine, which leads to the existence 

of two dom_infos for the same guest domain on the source and destination. To 

synchronize the statistics from different machine after migration, we should check the 

lifetime of the victim from source and destination machine separately. Otherwise, 

there will exist that history table of a domain belong to different machines Figure 3.6 

shows the process of load collector and lifetime of victim during the time of migration. 
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The Profile engine sends the resource usage information for victim to load collector, 

which will collect the resource usage information if the state of victim is not paused 

( paused means the domain is unavailable) to avoid non-synchronized statistic. More 

accurately, load collector record the information of migrated domain only when its 

state is running. After the time of migration finished, the profile engine on the source 

will be weak up to send statistic information. 

 

 
Figure 3.6 : The Lifetime of Migrating Victim Domain. 

 

Hotspot Detector 

An instantaneous system overload would not be regarded as a hotspot. If the 

current resource usage information shows a system overload, the hotspot detector 

predicts the load of such potential hotspot. VM migration is triggered only when the 

result of the prediction also shows a system overload. This avoids VM migration due 

to sudden utilization peaks. According to the history table, the hotspot detector 

predicts the utilization of the next round by using the autoregression of order 1. Given 

the sequence of history volumes: u1, u2 , …, uk, where uk is the utilization of the k-th 

round, we predict uk+1 by using the following AR(1) predictor,  
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uk+1 = μ + φ( uk – μ )                        (4) 

where μ is the mean value of sequence and φ is the parameter of time series. 

 

If both the current and the predicted utilizations exceed a threshold, the source 

machine is regarded as a hotspot. Note that, the hotspot detector would not detect the 

loads of the machines that are involving VM migration, since the loads are not stable 

during that period. 

 

Migration Manager 

 When the hotspot is detected, the migration manager will try to send memory 

allocation requests to the overloaded machine if memory overload. If the overload 

cannot be solved by the memory allocation requests, the migration manager would 

choose the victim and the destination machine according to the IDC aware migration 

policy. Next, it sends the migration request and the required information, such as the 

domain id of the victim and the IP address of the privilege domain in the destination 

machine, to the migration monitor corresponding to the victim domain. 
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Chapter 4 Performance Evaluation 

 In the chapter, we present the performance evaluation of the proposed 

IDC-aware migration policy. Section 4.1 describes the experimental environment. In 

Section 4.2, we demonstrate that the policy can solve resource overload problems and 

compare the performance the proposed policy with Sandpiper[24]. In Section 4.3, we 

show the overhead of our system. 

 

4.1 Experimental Environment 

The experimental environment consists of a server cluster of four nodes, a client 

node, and a RMN node. Figure 4.1 illustrates the experimental environment and Table 

4.1 shows the specifications of each node. Each cluster node is equipped with an Intel 

Pentium 4 2.8 GHz processor, 2GB DDR RAM, an Intel Pro 100/1000 Ethernet 

adapter and an 80 GB hard drive. We run Xen 3.1.0 with Linux kernel 2.6.18 on each 

node. The client machine is equipped with an Inter Pentium 4 3.2 GHz processor, 

3GB DDR2 RAM, an Intel Pro 100/1000 Ethernet adapter and an 80 GB hard drive. 

Xen 3.1.0 with Linux kernel 2.6.18 is run on the client machine.  

The RMN node is equipped with an Intel Pentium 3.2 GHz processor, 3GB 

DDR2 RAM, an Intel Pro 100/1000 Ethernet adapter and a 500GB hard drive. Note 

that, the RMN node also acts as the NFS storage server for the guest domains in the 

cluster. All the nodes are connected via the D-Link DGS-1024D gigabit switch, and 

we use SEPCweb2005 and netperf-2.4.2 as the benchmark software for performance 

evaluation.  
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Figure 4.1 : The Experimental Environment 

 

Table 4.1: The Specification of Each Machine 
  Cluster Node Client RMN 

Number of 
nodes 

4 1 1 

CPU Intel P4 2.8G Hz Intel P4 3.2G Hz Intel P4 3.2G Hz 
Memory  2GB DDR RAM 3GB DDR2 RAM 3GB DDR2 RAM 

NIC Intel Pro 100/1000 Intel Pro 100/1000 Intel Pro 100/1000 
HD Seagate IDE 80GB Maxtor SATA 80GB Seagate IDE 500GB 

VMM/OS 
Xen 3.1.0/Gentoo Linux 
kernel 2.6.18 

Xen 3.1.0/Gentoo 
Linux kernel 2.6.18 

None/Gentoo Linux 
kernel 2.6.22.9 

Benchmark 
Software  

SPECweb2005 Server
Netperf-2.4.2 

SPECweb2005 Client None  

 

 

In the following experiments, the thresholds of CPU, memory and network 

overloads are defined as 85% CPU utilization, 150 swap page writes per second, and 
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80% network utilization, respectively, which differs from Sandpiper in two aspects. 

First, Sandpiper counts both read and write operations of swap pages while the 

proposed system counts the swap writes only. This is because that a high frequency of 

swap reads does not indicate the lack of the physical memory. Second, Sandpiper 

includes IDC in the network traffic while the proposed system excludes IDC from the 

network utilization. In our system, only the traffic that passes through the physical 

NIC is regarded as network traffic. The resource usage information is sent to the 

RMN node every 10 seconds. 

 

4.2 Performance Evaluation  

 In this section, we compare the performance results of the proposed IDC aware 

migration policy with the no-migration policy and the policy used in Sandpiper under 

different overload situations. Before the performance comparison, we introduce the 

migration policy of Sandpiper, which uses the following equations for choosing the 

victim. 

Volume = 
netmemcpu −

×
−

×
− 1

1
1

1
1

1 ,            (5) 

VSR = Volume/Size,                    (6) 

where cpu, mem, net denote the CPU, memory and network utilizations of the given 

domain, respectively, and Size denotes the memory size of the domain. The victim 

domain is the one with the largest VSR value, and has to be migrated to the machine 

with the lightest load. 

 

4.2.1 CPU overload 

Table 4.2: The Configurations of Each Domain in Case of Migrating Isolated Domain 

  Workload type 
Run-seconds

(seconds) 
Sessions

Group 
ID 

Physical 
memory 

Initial 
location
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VM1 Support(server) 1800 55 1 256MB PM1 
VM2 Support(database) 1800 55 1 256MB PM1 
VM3 Support(server+database) 1800 50 2 256MB PM1 
VM4 Support(server+database) 1800 60 3 256MB PM1 
VM5 Support(database) 1800 55 5 256MB PM2 
VM6 Support(server+database) 1800 100 4 256MB PM2 
VM7 Support(server) 1800 55 5 256MB PM3 

This experiment demonstrates the use of the domain migration to solve CPU 

overload. Table 4.2 shows the configurations of the guest domains. Four guest 

domains (VM1-VM4) run on the physical machine 1 (PM1). VM1 and VM2 are in the 

same group, meaning that they are the two tiers of the same web service. Therefore, 

IDC exists between the two VMs. VM5 and VM6 runs on PM2, and VM5 

communicates with it group member VM7 residing on PM3. All the VMs run the 

support test of the SPECWeb 2005[31]. 

Such configuration makes CPU overload on PM1. In this situation, Sandpiper 

migrates VM1 to PM3, the physical machine with the lightest load, since VM1 has 

higher CPU utilization and network traffic to VM2. Although Sandpiper can solve the 

CPU overload, it divides the group 1 on the different machines and thus degrades the 

performance of that group. With the consideration of IDC, IDC policy migrates VM4 

instead. Thus, we can solve CPU overload without degrading the performance. Figure 

4.2 shows the response times of different policies. It reveals that migration helps to 

eliminate the resource overload and achieve a better overall system performance. 

Compare with Sandpiper, IDC policy reduces the response time by 14.7% in group 1 

and 23.3% in group 3, respectively. In group 5, Sandpiper outperforms IDC policy by 

6%. This is because the increased performance of VM4 causes heavier network 

interference with group 5 (i.e., VM 7) on PM3. Moreover, VM4 processes 60 

concurrent sessions while VM1 only processes 50 sessions. This also causes heavier 

network interference with group 5.  
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Figure 4.2 : The Response Time in Experiment of Migrating Isolated Domain. 

 

Figure 4.3 and 4.4 show the CPU and network utilizations under different 

policies. As shown in the figures, less resources are used by IDC policy, as compared 

to the Sandpiper. 
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Figure 4.3 : CPU Utilization of Each Physical Machine 
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Figure 4.4 : Network Utilization of Each Physical Machine 

 

Table 4.3 : The Configurations of Each Domain in Case of Group Reunion 

  Workload type 
Run-seconds

(seconds) 
Sessions

Group 
ID 

Physical 
memory 

Initial 
location

VM1 Support(server) 600 85 1 256MB PM1 
VM2 Support(database) 600 85 1 256MB PM1 
VM3 Support(server) 600 80 2 256MB PM1 
VM4 Support(database) 600 80 2 256MB PM2 

Next, we demonstrate the capability of group reunion of IDC policy. In this 

experiment, four guest domains are run on two physical machines. Table 4.3 shows 

the configurations of each domain. VM1, VM2 and VM3 reside on PM1, and the 

former two form a group. VM3 communicates with it group member VM4 on PM2. 

Such configuration also cause a CPU overload on PM1. Figure 4.5 shows the 

response time of each group. As shown in the figure, both IDC policy and Sandpiper 

can solve the CPU overload and effectively reduce the response time by more than 

80%. Moreover, compared with Sandpiper, IDC policy reduces the response time of 

the both groups by 24%. The reason is as follows. Sandpiper selects VM1 as the 

victim, which divides the group 1 onto different PMs. Instead, IDC policy migrates 

VM3 to PM2 and thus leads to a performance improvement caused by group reunion. 
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Figure 4.5 : The Response Time in The Experiment of Group Reunion. 

 

From Figure 4.6 and 4.7, we can see that IDC policy can achieve a lower 

resource consumption since the resources can be used more efficiently. 
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Figure 4.6 : CPU Utilization of Each Physical Machine in The Experiment of Group 

Reunion. 
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Figure 4.7 : Network Utilization of Each Physical Machine in The Experiment of 

Group Reunion. 

 

4.2.2 Memory Overload 

Table 4.4 : The Configurations of Each Domain (Memory Overload) 

  Workload type 
Run-seconds

(seconds) 
Sessions

Group 
ID 

Physical 
memory 

Initial 
location

VM1 Support(server) 600 70 1 64MB PM1 
VM2 Support(database) 600 70 1 192 MB PM1 
VM3 Support(server) 600 70 2 160MB PM1 
VM4 Support(database) 600 70 2 192 MB PM2 

In this experiment, we show that IDC policy can deal with memory overload by 

memory allocation and domain migration. Table 4.4 shows the configurations of each 

domain. The settings are the same as those in the previous experiment except for the 

session numbers and the physical memory of each domain. In this experiment, both 

PM1 and PM2 have 1GB physical memory, in which 34MB are reserved for the 

on-board graphic card and 512MB are reserved for domain 0. We allocate 64MB, 

192MB, 160MB and 192MB for VM1 to VM4, respectively. Such configurations lead 

to memory overload on VM1 and PM1. Figure 4.8 shows the response time under 

different policies. The values of the no-migration policy are not shown due to that 
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they are significantly large (i.e., 7.075 seconds for group 1 and 0.905 seconds for 

group 2). IDC policy outperforms Sandpiper by 22.8% for group 1 and 17.3% for 

group 2. The reasons are as follows. First, only allocating extra memory for VM1 is of 

little use since there is little memory left on PM1. Second, Sandpiper do the 

mechanism of memory allocation until achieve limit of max-memory for each domain 

or there is no more free physical memory on the source machine. At first memory 

overload, Sandpiper allocates 32MB physical memory to VM1, however it still can 

not solve the memory overload. At the next memory overload, Sandpiper moves VM1 

to destination, which is PM2 ,and then VM1 can get extra physical memory by 

memory allocation on PM2; In IDC policy, we have the same behavior at first 

memory overload. The proposed policy migrates VM3 to PM2 according to IDC at 

second memory overload and thus VM1 can get the physical memory released by 

VM3. 
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Figure 4.8 : The Response Time (Memory Overload) 

Figure 4.9 and 4.10 show CPU and network utilizations under the memory overload. 

The same as above, IDC policy achieves lower resource utilizations than Sandpiper, 
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especially in network utilization. The reason is IDC policy transforms network traffic 

to IDC by migration. 
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Figure 4.9 : CPU Utilization of Each Physical Machine (Memory Overload) 
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Figure 4.10 : Network Utilization of Each Physical Machine (Memory Overload) 

 

4.2.3 Network overload 

Table 4.5 : The Configurations of Each Domain (Network Overload) 

  Workload type 
Run-seconds

(seconds) 
Group 

ID 
Physical 
memory 

Initial  
location 

VM1 Netperf client 600 1 256MB PM1 
VM2 Netperf client 600 2 256MB PM1 
VM3 Netperf client 600 3 256MB PM1 
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VM4 Netperf server 600 1 256MB PM2 
VM5 Netperf server 600 2 256 MB PM2 
VM6 Netperf server 600 3 256MB PM3 

The network overload situation is caused by the configurations shown in Table 

4.5. In this experiment, three two-domain groups are run on four physical machines 

and all the domains communicate with their group members on different physical 

machines. The domains residing on PM1 (i.e., VM1, VM2 and VM3) run the netperf 

client, while the other domains, residing on PM2 and PM3, run the netperf server[31]. 

In addition to PM1-PM3, an idle machine PM4 is used in this experiment.  

 Such configuration causes network overload on PM1, and both Sandpiper and 

our IDC policy choose VM3 as the victim. This is because that VM3 has higher 

network traffic with its group member VM6, which does not compete with other 

domains on PM3 for resources. Sandpiper migrates VM3 to the PM4, the machine 

with the lightest load. In IDC policy, however, we migrate VM3 to PM3 due to the 

consideration of IDC. Different to Section 4.2.1, we demonstrate that group reunion 

can also be achieved by choosing the right destination. Figure 4.11 shows the network 

throughput of each group. We can easily see that migration helps to improve the 

performance. Comparing with Sandpiper, IDC policy achieves a similar performance 

for group 1 and 2. For group 3, however, IDC policy outperforms Sandpiper by 102% 

due to the consideration of IDC. Figure 4.12 shows CPU utilization of each physical 

machine. Different from previous experiments, IDC policy results in a higher CPU 

utilization than Sandpiper on the PM3 due to the fact that we migrate VM3 to PM3 

instead of PM4. However, IDC policy still has a lower average CPU utilization than 

Sandpiper. Figure 4.13 show that IDC policy can reduce network traffic and achieve 

better performance by transforming network traffic into IDC. 

 36



0

200

400
600

800

1000

1200

Group1 
(VM1+VM4)

Group2 
(VM2+VM5)

Group3 
(VM3+VM6)

Th
ro

ug
hp

ut
 (M

b/
se

c)

No Migration
Sandpiper
IDC Policy

 
Figure 4.11 : The Performance Results (Network Overload) 
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Figure 4.12 : CPU Utilization of Each Physical Machine (Network Overload) 
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Figure 4.13 : Network Utilization of Each Physical Machine (Network Overload) 

 

4.2.4 Solving multiple types of overloads 

Table 4.6 : The Configurations of Each Domain (Multiple Overloads) 

  Workload type 
Run-seconds

(seconds) 
Sessions

Group 
ID 

Physical 
memory 

Initial 
location

VM1 Support(database) 600 70 1 192MB PM1 
VM2 Support(server) 600 70 2 64MB PM2 
VM3 Support(database) 600 70 2 96MB PM2 
VM4 Support(server) 600 70 1 128MB PM2 
VM5 Support(server) 600 65 3 128MB PM2 
VM6 Support(database) 600 65 3 192MB PM3 

 

 We show that our system can solve multiple overloads in this experiment. Table 

4.6 shows the configurations of this experiment. We use three physical machines, each 

of which has 1G DDR2 RAM. Moreover, we do not allocate enough memory for 

VM2, VM4 and VM5 in order to cause memory overload. We create several memory 

and CPU overloads on the PM2 and only two CPU overloads of them need to be 

solved by migration. Figure 4.14 shows the CPU utilizations, and Figure 4.14 shows 

the frequencies of the swap writes. At 80 seconds, there is a large amount of swap 

writes on PM2 (marked as A in Figure 4.15). Then, RMN allocates extra memory to 
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VM2 to eliminate the memory overload. At 130 seconds, the CPU loads of each VM 

are increasing. Then, there is a CPU overload on PM2 and solved by migrating VM4 

to PM1. This migration successfully solves CPU overload and reclaim enough 

physical memory in PM2. Next, there are three times of memory allocations for VM2 

(marked as C, D and E in Figure 4.15) to solve the continue CPU and memory 

overloads in the same time. Notice that, when CPU and memory overloads occur in 

the same time, we will solve memory overload first because reducing the frequent 

swapping can sometimes decreases CPU utilization. After 170 seconds (marked as E 

in Figure 4.15), we eliminate the memory overload that caused by VM2, but there is 

still CPU overload. At 210 seconds (see Figure 4.14), RMN tries to do migration and 

migrates VM5 to PM3 to achieve the group reunion. Then, the memory usages of 

group 1 and 3 are increasing, PM1 and PM3 allocate extra physical memory to VM4 

and VM5 to eliminate memory overloads (marked as G and H in Figure 4.15). 

 
Figure 4.14 : A Series of Migrations for Solving Multiple Overloads. 
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Figure 4.15 : Amount of Swap-Write Pages Per 10 Seconds in Each PM. 

4.3 Overhead Evaluation 

We evaluate the CPU and memory overhead of the proposed system in this 

section. We use iperf-2.0.2 [32] to evaluate the CPU overhead with various 

throughputs and numbers of VMs. Figure 4.16 shows the CPU utilizations under 

different throughputs. In this experiment, two iperf clients running on two VMs on the 

target machine connect to two iperf servers running on two VMs on a different 

physical machine. Figure 4.17 shows the CPU utilizations under different numbers of 

VMs. In this experiment, we create different numbers of VMs form 2 to 10 on the 

target machine, and each of them runs the iperf client. The iperf servers run on top of 

two physical machines, and the iperf throughput is fixed as 600Mbps. Both figures 

show that the monitoring mechanism for supporting the IDC aware migration policy 

causes little CPU overhead. 
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Figure 4.16 : CPU Utilizations with Different Throughputs 
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Figure 4.17 : CPU Utilizations with Different Numbers of VMs 

 

Next, we analyze the memory cost of our system. We define CDi as the number 

of domains communicating with domain i. Thus, the extra memory cost of the 

resource usage information for domain i can be represented as follows: 
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mem_cost(i) = 100+CDi*48 Bytes,                  (7) 

where 100 and 48 are the sizes of the domain_info and net_info, respectively. 

Therefore, a cluster with N virtual machines, the whole memory cost of the resource 

usage information would be  

∑
=

∗+∗
N

i
CDi

1
48100 .                              (8) 

Finally, we show the implementation cost. The system is implemented with less 

than 3790 lines of C code. We modify/add 1130 lines in the kernel of domain0, 1970 

lines in RMN and 690 lines in migration monitor and profile engine. 
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Chapter 5 Conclusions and Future Works 

5.1 Conclusions 

We present an automatic load management system with IDC aware migration 

policy. It can solve system overloads immediately and effectively and the 

implementation overhead of our system to support IDC aware migration policy is 

insignificant. Compare to other migration policy, IDC aware migration policy can get 

better performance by achieving group reunion with lower CPU cost. 

 

5.2 Future Works 

In this thesis, we present IDC aware migration policy, but we use a simple 

predicted algorithm of Nds. However, it is not a precise way to evaluate the value of 

Nds, and so is Id. Maybe we can predict it according to disk I/O, CPU utilization, 

memory size and dependence of network traffic of other domains. In the policy of 

choosing destination, we just check if the remainder resource on the destination is 

enough to contain the victim domain now. But we do not consider that the resource 

usage of victim will be changed after migration. Without the well prediction of 

resource usage, it maybe causes the destination does not contain the victim and want 

to do migration because another system overload is happened.  

Moreover, K. Kim et al.[26] and X. Zhang et al.[28] present different ways to 

increase the performance of Inter-Domain Communication. With the implementation 

of their works, our IDC aware migration policy should be more significant.  
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