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論 文 摘 要 

 硬碟效能長久以來一直是電腦系統中一個主要瓶頸，根據 Moore’s Law，處

理器的效能以每年 60%的速度增進；而硬碟的效能僅以每年 10%的速度增進，因

此在處理器和硬碟之間產生了極大的效能差距。非揮發性記憶體(Non-volatile 

RAM)是最近幾年新興的一項記憶體技術，其具有非揮發性的特性可以有效改善

系統效能。由於傳統緩衝快取以及確保檔案系統資料一致性的設計都是建立在揮

發性記憶體上，因此我們在非揮發性記憶體性統上提出三種機制，來進一步增加

緩衝快取的效能以及減少確保資料一致性的負擔。第一，我們在 VFS 和一般檔

案系統之間加入一層 Ram-based 檔案系統來暫時的存放新建立檔案，其目的為延

遲檔案分配給檔案系統的時間以避免檔案零碎的情形以及減少不必要的 IO。第

二，我們修改原本以檔案為單位的寫回策略，而進一步的考慮寫回的區塊在磁碟

上的相對應位置，讓較連續且較鄰近的資料一起寫回，以減少寫回的時間；另外，

我們還確保不要寫回最近剛被更新過的頁面。最後，我們提供了一個簡單機制可

同時確保檔案系統的一致性而不需要額外的磁碟 IO 負擔。實驗結果顯示我們的

機制之效能優於 Ext2 大約 76%；優於 Ext3 大約 94%。 

 

 



 ii

Operating System Support on NVRAM-Based 

Systems 
Student: Chih-Wen Hsiao      Advisor: Prof. Ruei-Chuan Chang 
 
 

Computer Science and Engineering College of Computer 

Science  

National Chiao Tung University 
 
 

Abstract 

  Disk performance has become the major bottleneck of most computer systems for a 

long time. Following the Moore’s Law, the performance of processors improves by 

about 60% per year. However, the performance improvement of disks is only about 

10%, resulting in an increasing performance gap between processors and disks. 

Non-volatile memory is an emerging technology in recent years and the characteristic 

of non-volatile can improve the performance of system. Because the traditional buffer 

cache management and guaranteeing file system consistent are based on volatile 

memory, we propose three mechanisms on non-volatile system to improve further the 

performance of buffer cache and reduce the overhead of consistency. First, we put 

Ram-based file system between VFS and file system to temporarily store all new files. 

Its main purpose is delay allocation for all new files to avoid the file fragmentation 

and reduce the redundant IO traffic. Second, we modify the original file-by-file write 

back policy and write back the contiguous or neighbor dirty blocks to reduce the seek 

time and rotation delay of the disk. Besides, we do not write back the 

recently-updated dirty pages. Last, we propose a simple mechanism that can 
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guarantee the file system consistent without any overhead of disk IO. The 

experimental results show that the performance of our mechanisms is superior to Ext2 

about 76%, and Ext3 about 94%. 
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Chapter 1 Introduction 

1.1 Motivation 

  The speed of processor is double every eighteen months by Moore’s Law, but the 

performance of the computer system grows slowly due to the slow I/O. The disk I/O 

time is mainly dominated by seek time and rotation delay. Because data in volatile 

memory (DRAM) is not persistent, system must periodically write back dirty data to 

the disk for avoiding data loss due to the power failure. Therefore, performance of 

disk IO is worse. 

With the well advances in non-volatile memory (NVRAM) technologies, many 

kinds of non-volatile RAM such as MRAM [9] (Magnetoresistive RAM), FeRAM 

(Ferro Electric RAM), PRAM (Phase-change RAM) and OUM (Ovonics Unified 

Memory) [10] have been proposed. NVRAM is an emerging technique to solve the 

problem to the slow disk IO. As semiconductor technology makes progress, we can 

anticipate NVRAM to become a common component of computer systems. Since 

MRAM among them is comparable with DRAM in terms of capacity, speed and cost, 

MRAM is considered as the potential replacement of DRAM as the main memory for 

computer systems. Therefore, we can regard data in memory as persistent and exploit 

some approaches about NVRAM to improve performance of disk IO. 

There are some problems in traditional DRAM-based system if the main memory is 

NVRAM. Firstly, according to some research [37][38][46], many small files are 

short-lived. Once the file is created in file system, file system must do some disk IO 

operations, such as reading metadata of the file. Even many files are deleted soon 

after created, they also need perform disk IO. Besides, after these files are deleted, it 

produces some fragmentation in the disk. Secondly, the traditional DRAM-based 

write-back policy is file-by-file since it can reduce the number of non-up-to-date files 
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when power outages. But there are two disadvantages: first, the dirty pages per file 

maybe distributed far in the disk. It must spend many seek time and rotation delay on 

writing back these dirty pages. Second, if it writes back all dirty pages of a file, 

system can not make sure whether it does not write back recently-updated pages. 

According to time locality, recently-updated pages may be re-accessed and 

re-modified recently. Therefore, if it writes back recently-updated pages, it wastes the 

disk IO operations. Lastly, the file system consistency has been an important issue 

recently. Many file systems use the technique to support data consistency such as 

journaling, but it needs extra journaling IO to write logs into the disk earlier. 

Therefore, on the basis of three problems, we propose three mechanisms 

corresponding three problems to improve performance of the file system. 

1.2 Our Three Mechanisms 

  In this thesis, we propose the Buffer Cache management and transaction support on 

file system operations in NVRAM systems. We have two mechanisms temporary-file 

file system (TempFFS) and intelligent write back policy (WB) in Buffer Cache 

management and one mechanism for transaction support on file system operations 

(trans) for maintaining file system consistency. 

  Firstly, we add TempFFS between VFS and file system to apply delayed allocation 

simultaneously on all existing file systems. Different from file system specific 

implementations that maintain newly-created files on their own, such as XFS[47], and 

Ext4, TempFFS maintains newly-created files for all the file systems. Upon memory 

pressure or sync operations, the files are transferred to their original file systems and 

block allocation of these files takes place. Therefore, an existing file system can enjoy 

the benefit of delayed allocation without any code modifications. 
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  Secondly, due to the data in NVRAM is persistent; we modify original write back 

policy which is file-by-file and does not consider recency. We consider the location of 

dirty pages in the disk and write back contiguous or neighbor dirty pages to reduce the 

seek time and rotation delay of the disk. Besides, we consider recency that we do not 

write back the recently-updated dirty pages. 

  Lastly, our transaction support mechanism can ensure both file system consistency 

without inducing any extra disk I/O. Since the data in NVRAM is persistent, it needs 

not write journaling IO before. We only make sure the file operation is atomic. In 

order to achieve atomic, we duplicate all data and metadata before they are modified 

in the file operation into undo logs. Once the file operation has finished successfully, 

the undo logs can be removed immediately. If the crash happens in the progress of the 

file operation, the undo log can be used to restore to the consistent state. Since our 

undo logs are placed in NVRAM and deleted later, it needs not any extra disk I/O. 

  We implement our three mechanisms in Linux 2.6.12. Since large capacity MRAM 

is not generally available in the market, and the performance characteristics of DRAM 

and MRAM are comparable and shown in Table 1.1, we use DRAM to emulate 

MRAM. 

Table 1.1 MRAM and DRAM Characteristic 

Device Type MRAM DRAM 

Volatility No Yes Characteristic 

Erase Needed No No 

Access Time 50ns ~5ns 

Read Time 50ns 50ns 

Performance 

Write Time 50ns 50ns 
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Operation Power Supply 1.8V 1.8-5V 

  According to our experimental results, the performance improvement of our 

TempFFS is about 35% compared to Ext2, the performance improvement of our 

intelligent write-back is about 65% compared to Ext2 and the performance 

improvement of our transaction support is about 80% compared to Ext3. Lastly, the 

performance improvement of the combinations of three proposed mechanisms is 

about 90% compared to Ext3. 

1.3 Structure of the Thesis 

  The remainder of this thesis is organized as follows. Chapter 2 describes the related 

work about NVRAM. Chapter 3 presents the design and implementation details of the 

proposed mechanisms. The performance results are shown in Chapter 4. Finally, we 

give conclusions in Chapter 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 5

Chapter 2 Related Work  

  In this chapter, we introduce some researches about NVRAM. In Section 2.1, we 

introduce some researches exploiting NVRAM to recover system when system 

crashes. In Section 2.2, some researches use NVRAM as storage device to improve 

the performance of file system. In Section 2.3, some researches use NVRAM as 

buffer to reduce disk IO, especially write operation. In Section 2.4, we introduce 

researches about providing file system consistency. 

2.1 System Recovery 

Ren Ohmura [33] in Keio University exploits the characteristic of NVRAM in 

system recovery. They propose a scheme to recovery the state of peripheral devices in 

NVRAM systems so that the system can resume its execution after an unpredictable 

power failure. They record all messages between CPU and devices in NVRAM and 

system re-sends messages recorded in memory to recovery devices into previous state 

when power failure.  

Harp [25] records all updates of files in server nodes. Files in individual node can 

survive after the failure because file operations are logged in memory at several nodes. 

The Recovery Box [2] stores the state of system in NVRAM and protects the region 

of storing the system state to not overwrite when system crashes. After the system 

crashes, it uses the protected system state to recover system. 

  Rio [8] enables the data in memory to survive operating system crashes and power 

outages. It uses write protections to protect files in file cache and does not 

accidentally overwrite the file cache while system is crashing. Therefore, the files in 

Rio are persistent and safe when system crashes.  
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2.2 NVRAM as Storage Device 

  Because the flash is cheap and has the characteristic of non-volatile, the more and 

more file systems which are designed for flash memory are proposed, such as JFFS2 

[44] and Microsoft Flash [24] and so on. However, the flash memory has some limits: 

firstly, flash must erase the block before writing it. Secondly, the block in flash has 

finite number of erase-write cycles. Therefore, the flash system usually writes data by 

using non-in-place update and it makes the number of erase-write cycles in each block 

are similar by using wear leveling technique. 

  In order to speed up the writing in flash system, eNVy [45] uses a small amount of 

battery-backed SRAM as write buffer and uses copy-on-write technique to copy 

corresponding data in flash into SRAM, then modifies data in SRAM. Lastly, it writes 

back data into flash memory when the amount of SRAM is full. Hwan Doh [11] also 

exploits non-volatile memory to enhance the performance of flash file system. They 

propose a flash-based file system that stores all metadata in NVRAM and stores all 

file data in flash memory. The advantages of using NRAM as a metadata store are the 

mount time of flash is reduce to the minimum and access all metadata is speeder than 

before. 

  MRAMFS [12] is a prototype in-memory file system to put all data/metadata in 

NVRAM. However, the amount of NVRAM may be not enough containing of a large 

number of files. Therefore, they use the compression method to reduce occupied 

space and use the different compression method to compress metadata and data 

because metadata often has the fixed format. In metadata they can save about 60% 

space and save about 40%~60% space for file data. 

  There are some recent works in Hybrid Disk/NVRAM file system such as 



 7

HeRMES file system [31] and Conquest file system [42]. HeRMES considers that the 

metadata is frequently modified in the file system requests. Therefore, they suggest 

that use of compression techniques in order to minimize the amount of memory 

required for metadata and place all metadata in NVRAM to improve the performance 

of file system requests. Conquest assumes that the system is in the sufficient amount 

of NVRAM. Therefore, it stores all small files and metadata in NVRAM and disk 

holds only the data content of remaining large files. The advantages are that it can 

avoid the overhead of accessing small file and metadata because metadata and small 

files are placed in NVRAM and it can optimize the arrangements of large files to 

reduce the fragmentation in disk because there are only large files in disk.  

The above works have some disadvantages. Firstly, they almost place all metadata 

in NVRAM but the occupied space of metadata/data is constantly increasing as users 

create files at all times. Secondly, although the metadata is frequently accessed in file 

system, it is not that all metadata are frequently accessed. Therefore, they place all 

metadata in NVRAM such that there is some non-recently-used metadata occupied 

the NVRAM space resulting in performance decreases. 

2.3 NVRAM as Buffer 

  In addition to storage device, the general purpose of NVRAM is as the write buffer. 

eNVy [45] mentioned in Section 2.2 uses a small amount of battery-backed SRAM as 

write buffer to improve the performance of write operations in flash. Mark Baker [1] 

proposes that if they provide a NVRAM as write buffer, it can reduce disk access by 

about 20% on most of file systems, and by about 90% on one frequently-accessed file 

system.  

  Theodore R. Haining [19] mentions that the use of non-volatile write caches 
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provides two benefits: some writes will be avoided because dirty blocks will be 

overwritten in the cache, and physically contiguous dirty blocks can be grouped into a 

single I/O operation. They also present some write back strategies, such as least 

recently used (LRU), shortest access time first (STF) and largest segment per track 

(LST) to manage non-volatile write buffer and find that write buffer can reduce a 

large number of write requests to improve the performance of system.  

  Robert Y. Hou [20] exploits non-volatile memory to improve the performance of 

RAID5. In each write request, RAID5 needs to execute “read-modify-writes” which 

means that single-block writes require the old data block and old parity block to be 

read, modify them to generate the new parity block, and then the new data and new 

parity can be written to their respective locations. Read-modify-writes can reduce the 

performance of RAID5 arrays because it needs four disk accesses in each write 

request. Therefore, they use non-volatile memory as the write buffer of RAID5 to 

improve the performance of write operations.  

Above researches are also about using write buffer to improve write operations, 

Alex Batsakis [3] mentions read operations may depend upon write operations 

because buffering dirty pages will occupy the memory for read caching. They address 

this problem by separately allocating memory between write buffering and read 

caching and by writing dirty pages to disk opportunistically before the operation 

system submits them for write-back. They also write back dirty pages which are 

almost adjacent, but they do not consider whether the dirty pages are not 

recently-updated. 

  Due to the capacity of MRAM is increasing continuously, it maybe replace DRAM 

as the main memory of computing system in the future. We not only use the technique 

of non-volatile write buffer to delay write, but also use the better write-back policy to 
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improve the performance of file operations. 

2.4 Transaction Supporting  

  Traditionally, file system consistency has been maintained by using synchronous 

writes to restrict the proper ordering of metadata updates, but this approach degrades 

the performance of file system because the proceeding of metadata updates is 

dominated by the disk speed. Soft updates [30] eliminates the need for synchronous 

disk I/O. Soft updates is an implementation mechanism that enforces the 

dependencies of metadata updates and allows the metadata caching for write back. 

  Log-structured file system [39] proposed by Mendel Rosenblum treats the file 

system as a segmented log and always writes all modified data blocks and metadata 

into the end of the log. File system changes are buffered in the cache and then written 

into the disk sequentially in single disk IO operation. Therefore, it can improve the 

performance of write operation but it can not write all related metadata in single write 

operation since if crashes happen in the progress of disk operation, the file system 

remains an inconsistent state.   

  Journaling [35][44][47] is nowadays a widely-used technique for file system 

consistency. It logs metadata and data updates into a stable storage before the updates 

are performed on the disk. Hence, it produces the extra journaling IO traffic that is 

critical impact on the system performance.  

  Kevin M. Greenan [17] introduces two approaches to reliably storing file system 

structures in NVRAM. Firstly, they strengthen memory consistency by using 

page-level write protection and error correcting codes. Secondly, it periodically calls 

online consistency checker to replay all transaction logs for checking file system 

inconsistency. If it finds the inconsistency in file system, it immediately recovers the 
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state of file system. However, it needs to periodically replay all transaction logs even 

if the file system is normal and does not have any failures. 

  Henry Mashburn [40] proposes recoverable virtual memory (RVM) that is simple 

user-lever library to handle atomic file operation and data persistence. Firstly, it 

copies the range of memory which will be updated to the undo log in memory, then 

updates data, and lastly writes the updated data to the redo log in disk. Therefore, it 

needs three copy operations for each file operation. 

  Vista [27] proposed by David Loweel is simple user-library runs on Rio mentioned 

in Section 4.1. Because Rio protects the files in memory to be persistent, Vista can 

eliminate the redo log to speed up disk operations and it only uses undo log to make 

sure the file operation is atomic. However, it must be based on Rio and because it is 

user-level library, Vista is not user-transparent.  

  We propose a simple lightweight transaction support on file system operations in 

NVRAM environment and it only needs to add only about 40 line-codes in kernel and 

about 300 line-codes in implementation. It also provides the same strength of 

consistency as the journaling mode of Ext3. 
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Chapter 3 Design and Implementation 

  In this chapter, we describe the design and implementation of the proposed 

mechanisms. In Section 3.1, we first introduce the three mechanisms for improving 

the performance and ensuring the consistency of file systems on NVRAM based 

computer systems, namely Temporary-File File System (TempFFS), intelligent 

write-back policy, and transaction support on file system operations. In Section 3.2, 

we show the details of implementing and integrating the mechanisms and provide an 

analysis on the integration of the mechanisms. 

3.1 Background 

  In this section, we describe the proposed NVRAM-based buffer cache management 

mechanisms, which include Temporary-File File System and intelligent write-back 

policy. Both mechanisms aim at improving the file system performance based on the 

non-volatility feature of main memory. Moreover, we also describe a lightweight 

transaction support mechanism on file system operations, which takes advantage of 

the non-volatility feature of main memory for ensuring the consistency and data 

integrity of the file system.   

3.1.1 Temporary-File File System (TempFFS) 

The first goal of TempFFS is to reduce the fragmentation of the underlying file 

systems. With numerous and concurrent file creation/deletion/appending activities, a 

file system is easy to become fragmented, which leads to performance degradation. 

Moreover, according to the previous studies [37][38][46], many files are short-lived, 

meaning that they are deleted soon after their creation. Allocating disk space for these 

files, which involves disk IO operations for reading the file system metadata (e.g. 

block allocation map), is unnecessary. 
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To reduce the file system fragmentation and the unnecessary disk IO operations, 

some advanced file systems such as XFS [47]and ext4 support delayed allocation, 

which delays the disk block allocation of a newly-created file until the data is needed 

to be flushed back to the disk due to memory pressure or sync operations. However, 

the delayed allocation feature is not shared among all file systems. Only the file 

systems that implement the feature can benefit from it. 

Instead of integrating the delayed allocation feature into a specific file system, we 

implement a RAM-based file system named TempFFS in order to apply the feature 

simultaneously on existing file systems such as ext3 and NTFS. Based on the concept 

of stackable file systems, TempFFS sits between VFS (virtual files system) and file 

system implementations and is transparent to the latter, as shown in Figure 3.1. All 

new files are initially written to TempFFS and associated with their original file 

systems when they are created. TempFFS uses page cache as the file store, and the 

files are transferred into their corresponding file systems upon memory pressure or 

sync operations. In this way, existing file systems can benefit from delayed allocation 

without code modifications. Note that a file can stay for a long time in TempFFS. This 

raises the risk of data loss if the main memory is volatile. On systems with 

non-volatile main memory, however, memory data can survive power failures. The 

implementation of TempFFS was achieved by modify the code of an existing RAM 

file system (i.e., the RamFS [34]) for ease of implementation. 
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Figure 3.1 Architecture of the Temporary-File File System 

 

TempFFS stores files in kernel memory, which cannot be paged out in traditional 

UNIX operating systems (including Linux). Upon memory pressure, an OS usually 

writes back the dirty pages that belong to the buffer cache or user processes to the 

storage device so as to release more memory space. In this situation, TempFFS checks 

if its size is larger than a specific threshold. If it is, TempFFS shrinks its size by 

evicting pages of the least recently used files. All the evicted files are transformed into 

their original file systems so that the corresponding data can be written back. In 

addition, we transform files whose sizes are larger than a specific threshold (currently, 

1MB) due to the following two reasons. First, according to previous research 

[37][38][46], most short-lived files are small ones, if it puts short-lived files in 

TempFFS, it can reduce some IO traffics. Second, creating a huge file may cause the 

transform of a large number of short-lived small files before they are deleted, 
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reducing the benefit of delay allocation. 

We manage the files in TempFFS in a LRU list. The number of pages that should be 

evicted from TempFFS, say N, is proportional to the number of pages in TempFFS. 

Specifically, N is calculated according to the following equation: 

 N = NR_WB * NR_TempFFS / NR_Dirty,  

where NR_WB represents the target number of pages that need to be written back, 

NR_TempFFS represents the number of (dirty) pages in TempFFS, and NR_Dirty 

represent the number of dirty pages in the system. As shown in Figure 3.2, 

transforming a file involves the following three steps. 

 

Figure 3.2 Transformation Steps 

  First, the file create operation of the original file system is invoked to produce the 

metadata (inode) of the file. Second, several inode fields such as timing information, 

access rights and file size, are copied to the new inode. Third, a sequence of disk 

block allocation operations of the original file system are invoked for allocating the 
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disk space for the file. Because the operations are invoked consecutively, the resulting 

data blocks tend to be contiguous. After the allocation, the data is associated with the 

allocated blocks and the metadata in the TempFFS is deleted. 

3.1.2 Intelligent Write-Back Policy 

  Modern operating systems write back dirty pages periodically or when the number 

of free pages is below a specific threshold (i.e., memory pressure). On systems with 

non-volatile main memory, dirty pages are already persistent and thus need not to be 

written back into the disk periodically. Instead, they need to be written back only 

under memory pressure or sync operations. Currently, Linux utilizes a file-by-file 

write back policy, which scans the list of dirty inodes and submits the dirty pages of 

each inode to the IO subsystem. The rationale behind this policy is to reduce the 

numbers of non-up-to-date files when power outages or system crashes. Assume that 

100 files are updated and each file has 10 dirty pages in memory. If the system 

crashes after 500 dirty pages are written back to disk, it would be better to write all 

the dirty pages of 50 files than write 5 dirty pages of all the files.  

However, this policy may write back recently-updated pages, which has two 

drawbacks. First, writing back such pages can not help to release the situation of 

memory pressure since these pages will not be reclaimed by the page replacement 

policy. One purpose of writing back dirty pages is to reclaim the page so as to 

maintain a reasonable number of free pages in the system. In Linux, all pages 

belonging to user processes and page cache are grouped into two lists, the active list 

and the inactive list. The former includes pages which have been accessed recently 

while the latter contains pages that have not been accessed for a period of time. The 

file-by-file policy may write back dirty pages in the active list. However, most 

LRU-like page replacement policies tend not to reclaim these pages since the pages 
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are used recently. Second, according to time locality, these pages will be marked dirty 

soon after their write back. Thus, writing back such pages is of little use. The pages 

may need to be written back again soon. Some UNIX systems like Solaris do not have 

such problem. They only write back dirty pages that are not used recently. 

The common problem of the write back policies of the existing UNIX operating 

systems (including Linux) is that they ignore the disk location of the dirty pages when 

submitting the pages to their IO subsystems. Although an IO subsystem can sort the 

requests submitted to it, there may still a significant amount of seek and rotation delay 

among the dirty pages. 

In this paper, we propose an intelligent write-back policy, which considers the 

recency as well as the disk locations of the dirty blocks to reduce the IO traffic, seek 

time and rotation delay. To reduce the IO traffic, the proposed policy recency only 

writes back dirty pages in the inactive list. 

To reduce the seek time, we divide a disk into a number of zones, which is a set of 

continuous blocks on the disk, and write back dirty pages in a zone-by-zone manner. 

The dirty page information is recorded in a set of identical data structures called zone 

information tables, each of which correspond to a zone. When a page becomes dirty 

and inactive, we record the page in the corresponding zone information table 

according to the disk block number of the page. 

Each time the write-back procedure is invoked, the proposed policy selects a zone 

and writes back dirty pages in that zone. This reduces the seek time because the disk 

blocks of the written-back dirty pages are close. In order to further reducing the 

rotation delay, the policy selects a zone with the maximum Average Segment Length 

(ASL), which is defined in Equation 1. A segment stands for a set of continuous dirty 
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blocks in a zone, and there is generally no rotation delay between two continuous 

blocks. Therefore, this policy tries to select a zone which contains more continuous 

dirty pages to reduce both the seek time and the rotation delay of the IO traffic caused 

by dirty page write back. 

Average Segment Length (ASL) = Number of Dirty Pages in the Zone/Number of 

Segments in the Zone _________________________________________Equation 1 

  The zone information table, which is shown in Figure 3.3, it records some 

information such as, dirty pages numbers, segment numbers, segment list which 

contains of all segment in the zone, page list which includes all dirty pages of the 

inactive list in the zone, and length (Average Segment Length). 

 

Figure 3.3 the Zone Information Table 
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Figure 3.4 Zone with Different Average Segment Length 

 

Figure 3.4 shows an example of the zone selection. The dirty pages of zone 4 and 

zone 6 are both 7, but the dirty pages of zone 6 are more continuous (i.e., with a larger 

value of ASL) than zone 4. Therefore, zone 6 is selected to be written back. 

As mentioned before, this policy only writes back pages in the inactive list in order 

to reduce the write back IO traffic. Therefore, only the dirty pages in the inactive list 

are recorded in the zone information tables. To accomplish this, we need to insert or 

remove the information about a dirty page when it becomes inactive or active. 

Specifically, when a dirty page becomes inactive (i.e., moves from the active list to 

the inactive list), we record it in the corresponding zone information table. When the 

page becomes active again or clean, the recorded information is removed. This allows 

us to write back only inactive dirty pages. 

3.1.3 Transaction Support on File System Operations 

Journaling is a widely-used technique for guaranteeing file system consistently. It 

logs metadata and data updates that are completed in memory into a stable storage 
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before the updates are performed on the disk. When the system crashes, the log is 

replayed to restore the status of the file system. Therefore, journaling ensures file 

system consistency by using a redo log. The overhead of journaling is that it requires 

additional disk I/O operations for logging. On non-volatile memory based computing 

systems, one straightforward approach for eliminating such I/O operations is to place 

the log in the memory instead of disk. However, the drawback of simply placing logs 

in memory is that it occupies a large memory space. For example, it typically needs 

256MB memory space as journaling space. Additionally, to minimize the IO overhead, 

a journaling file system usually writes the updates to the log in batches with size 

about 16 to 64 MB. A significant amount of updates might be lost if the system fails 

before the updates are written to the log. 

To address the problems mentioned above, we design a lightweight transaction 

mechanism on systems with non-volatile main memory. The mechanism not only 

ensures file system consistently but also eliminates the need of large memory space 

and extra disk I/O.  

 The basic idea of the mechanism is undo log. Because the data in NVRAM does 

not lose, we need not write journaling logs into the disk before. We only need make 

sure that each file operation is atomic. To ensure the atomicity of each file operation, 

we duplicate the data and metadata in the undo log before they are modified. Once a 

file operation has finished successfully, the duplicated data and metadata can be 

removed immediately. If the system crashes, the content in the undo log (i.e., the 

original values of the metadata and data of the uncompleted operations) is used to 

recover the file system state. The main data structure of our lightweight transaction 

mechanism is shown in Figure 3.5. 
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Figure 3.5 Main Data Structure of Transaction Support 

  In order to make sure the atomicity of the updates involved in a file operation, all 

metadata and data modified by the file operation are collected into a transaction and 

recorded in a data structure called trans. When metadata or data is going to be 

modified by a file operation, the original content is copied to a memory area pointed 

by a data structure called replica, which is then attached to trans. The replica also 

records the addresses of the metadata/data that are under update. This allows the 

metadata/data to be recovered by the original content if necessary.  
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  We implemented the transaction support in a file system independent manner and 

provide a transaction API by which file systems can leverage to achieve file operation 

atomicity. Figure 3.6 shows an example usage of the transaction API. Before each file 

operation, the file system firstly invokes the transaction_start() function, which 

initializes the trans data structure for the current process and inserts the trans data 

structure into the global transaction list. Then, the file system calls duplicate() which 

duplicates the data and metadata before they are going to be updated. It initializes a 

replica data structure and copies the original values of the metadata/data into a 

temporally-allocated area, then maps the area to its replica. The replica data structure 

will be inserted into the replica list of the corresponding trans. Lastly, after the file 

operation, the file system calls transaction_stop() which terminates the transaction. It 

removes all duplicated data and metadata of corresponding this trans without 

affecting data integrity and file system consistency because all metadata/data in the 

file operation have already finished upgrading. Therefore, the transaction support 

mechanism can have the same strength as the journal mode of ext3 because it 

duplicates data and metadata before they are updated. Moreover, it causes little 

overhead in file system because it deletes all replicas of data and metadata once file 

operations finished and does not cause any additional disk I/O. 
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3.2 Implementation and Integration of the Approaches 

  In this section, we describe the detailed implementation and integration of the three 

approaches.  

3.2.1 Implementation of Three Mechanisms 

  As mentioned before, we implement TempFFS by modifying an existing RAM file 

system called Ram-FS (Resizable simple ram File System), and then insert it between 

VFS and file system implementations. We intercept the invocation of the VFS file 

create function (i.e., vfs_create()) and direct the invocation to the file create function 

in RamFS. After the creation, operations on the file will use the file operations in 

RamFS because the file now is placed in RamFS not in file system, such as Ext2. 

  Upon memory pressure or the size of file is over the threshold, we transform files in 

Ram-FS into the file system. The detail steps of transform are shown in Section 3.1.1. 

After transforming, the file is belong to the file system, we only use the original file 

operations in file system to access it. 

  To implement the intelligent write-back policy relo (recency and location), we 

record the information of a page in a zone information table, which is shown in Figure 

3.3. When the page becomes dirty and inactive, we record this dirty page into the 

corresponding zone information table. To achieve this, we invoke a function 

add_to_zone() in two situation. First, when it calls the function that marks the page 

dirty (i.e., set_page_dirty()), we check the active flag (PG_active) of the page. If this 

dirty page is in the inactive list (i.e., PG_active flag is not set), we invoke a function 

add_to_zone() for set_page_dirty() function. Second, when it calls the function that 

moves the page form the active list into the inactive list (i.e., 

add_page_to_inactive_list()), we check whether the page is dirty or not. If this page is 

dirty, we invoke a function add_to_zone() for add_page_to_inactive_list() function. 
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The pseudo code of the add_to_zone() function is shown in Figure 3.7(a). First, we 

get the block number of the page, and calculate the zone corresponding to this page 

(i.e., block number of page divides block number per zone). Second, numbers of dirty 

pages in zone information table increases by one. If the former block and latter block 

of this page do not record in zone information table, it means that this page stands 

alone. If this page is recorded in the zone information table, it produces a new 

segment (contiguous dirty pages). Therefore, segment numbers of zone information 

table increases by one. Lastly, we calculate the ASL (average segment length) as a 

basis of selecting the zone to write back. 

  When the dirty page is clean or active, we also need to remove the information of 

the page from the zone information table. To achieve this, we invoke a function 

remove_from_zone() in two situation. First, when it calls the function that clears dirty 

of the page (i.e., clear_page_dirty_for_io()), we invoke a function 

remove_from_zone() for each call of the clear_page_dirty_for_io() function. Second, 

when it calls the function that moves the page form the inactive list into the active list 

(i.e., add_page_to_active_list()), we invoke a function remove_from_zone() for each 

call of the add_page_to_active_list() function. The pseudo code of the 

remove_from_zone() function is shown in Figure 3.7(b). First, we also get the block 

number of this page to calculate the corresponding zone. Second, the dirty page 

numbers decreases by one. If the former block and latter block of this page do not 

record in zone information table, when it removes this page, it reduces a segment. 

Therefore, segment numbers of zone information table decreases by one. If the former 

block and latter block of this page both record in zone information table, when it 

removes this page, the original segment divide into two segments. Therefore, segment 

numbers of zone information table increases by one. Lastly, it recalculates the ASL of 

this zone. 
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In Linux, when the system writes back the data in memory into the disk, the system 

wakes up the Pdflush thread to call background_writeout(). In background_writeout(), 

we change the original function (writeback_inodes()) into writeback_segment_zone() 

which selects a zone to write back. It is shown in Figure 3.7(c). First, we select the 

zone with largest average segment length. Second, we traverse all page lists recorded 

in zone information table to write back all pages. Lastly, if the number of written-back 

pages is greater than or equal to the number of demand for write-back pages, it 

finishes. If not, it selects the next zone to write back. 
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  Figure 3.7 Pseudo Code of Segment/Zone Algorithm 

/* Adding a page to the zone info. table */ 
add_to_zone( page ){ 
 get page’s block number; 
 zone_number = page_block_number / pages_per_zone; 
 zone_information_table[zone number].dirty_pages++; 
 if (a new segment is created for this page) 
  zone.segment++; 
 ASL = zone. dirty_pages / zone.segment 
} 

(a) 
 

/* removing a page from the zone info. table */ 
remove_from_zone( page ){ 
 get page’s block number; 
 zone_number = page_block_number / pages_per_zone; 
 zone_information_table[zone number]. dirty_pages --; 
 if (a segment is deleted due to the removal of the page) 
  zone.segment--; 
    if (a new segment is produced due to the removal of the page) 
  zone.segment++; 
 
 ASL = zone. dirty_pages / zone.segment 
} 

(b) 
 

/* Segment-zone writeback algorithm*/ 
writeback_segment_zone(writeback_control wbc){  

begin :   select the zone with largest average segment length; 
traverse the all segment’s page list of the zone to writeback all pages; 

 if (number of pages written back >= wbc.nr_to_write) 
  finish; 
 else 
  writeback_segment_zone( wbc ); 
    goto begin; 
} 

(c) 
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  As mentioned in Section 3.1.3, we provide a transaction API for file systems the 

require transaction support. Figure 3.8 shows the pseudo code of the major function 

implementations, transaction_start(), transaction_stop() and duplicate(), in the API. 

Transaction_start() firstly creates a transaction data structure trans, links this trans 

into current process. Lastly, it inserts this trans into the global transaction list. 

Transaction_stop() firstly gets a transaction data structure trans from current process, 

clears the pointer of current process that points to this tans. Lastly, it frees all 

duplicated data (replica) of this trans, and removes this trans form global transaction 

list. Duplicate() firstly also gets a transaction data structure trans from current process, 

creates a replica data structure to store the duplicated data, and inserts this replica into 

corresponding trans. Lastly, it duplicates the data into this replica. 

 To demonstrate the effectiveness of the API, we augmented the ext2 file system to 

leverage the API. We inserted the function pair transaction_start() and 

transaction_stop() in all ext2 file system operations such as ext2_create(), ext2_link(), 

ext2_mkdir(), ext2_unlink(), ext2_rmdir(), etc. Moreover, we inserted the invocation 

of duplicate() in functions that modify metadata and data such as ext2_new_inode(), 

ext2_free_inode(), ext2_new_block() and ext2_free_blocks(), etc. We ensure the 

invocation of the duplicate() function is right before the modification of metadata or 

data. 
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Figure 3.8 Implementation of the Transaction API (Pseudo Code) 

 

 

 

 

 

/* Creating a transaction and inserting it to the transaction list */ 
transaction_start( ){ 
 create a transaction data structure; 
    link this trans into current process; 
    insert this trans into transaction list; 
} 

(a) 
 
 

/* removing a transaction from the transaction list */ 
transaction_stop( ){ 
   get a trans from current->journal_info; // journalling filesystem info 
   set current->journal_info as NULL; 
   free all replicas in this trans; 
   free this trans from transaction list; 
} 

(b) 
 
 

/* duplicate metadata or data*/ 
duplicate(buffer_head *bh, size_t size){  
   get a trans from current process; 
   create a replica data structure; 
   insert this replica into replica list of trans; 
   copy data from buffer_head *bh to this replica; 
} 

(c) 
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3.2.2 Integration of Three Mechanisms 

  Three mechanisms can operate independently, and also can combine the 

corresponding both of three mechanisms, even can integrate three mechanisms 

together. We integrate the proposed three approaches in Linux 2.6.12. The overall 

structure of three approaches is shown in Figure 3.9. 

 

Figure 3.9Integration of the TempFFS, Intelligent Write Back and File Operation Transaction Support 

  We create all files in TempFFS, the other file operations, such as read, write, and 

delete use the file operations of Ramfs if this file is placed in TempFFS and use file 

operations of original file system if this file is transformed into the file system. When 

it needs flush the dirty pages into the disk, it uses intelligent write back policy (relo). 

Moreover, we inserted the invocation of the transaction API into both ext2 file system 

and TempFFS to maintain their consistency.  

The performance results of different combinations of the three approaches are 

shown in Chapter 4.   
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Chapter 4 Performance Evaluation 

  In this chapter, we evaluate the performance of the three proposed mechanisms. 

Section 4.1 describes the experimental environment and all the configurations under 

performance comparison. Section 4.2 presents the performance improvements of 

TempFFS. In Section 4.3, we compare the performance of various write-back policies 

mentioned in Section3.1.2. Section 4.4 shows the performance and memory overhead 

of the lightweight transaction support mechanism on file system operations. Finally, 

we present the performance results of all combinations of the three proposed 

mechanisms in Section 4.5. 

4.1 Experimental Environment and Configurations 

  Table 4.1 shows the experimental environment. Since large capacity MRAM is not 

generally available in the market, and the performance characteristics of DRAM and 

MRAM are comparable, we use DRAM to emulate MRAM. We evaluate the 

performance of the proposed mechanisms under two popular benchmarks. 

  Bonnie++ [5] is a micro-benchmark that measures the performance of single file 

access. Three kinds of tests in Bonnie++ are performed, character_write, block_write, 

and rewrite. The character write test writes a 2GByte file sequentially in a 

character-by-character manner. The block write test writes a 2GByte file in a (several 

bytes per block) block-based way. The rewrite test reads the existed block of file and 

modifies it, then writes file by block-based. Postmark [22] is a macro-benchmark that 

emulates the access pattern of an email server. It creates many files whose size 

between Max. Size and Min. Size which are defined by users, and then operates the 

assigned number of transactions which may be create/delete or read/append, lastly 

deletes all files. In this experiment, we run 200k transactions, with the numbers of 
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files from 5k to 30k and the file size ranging form 512 bytes to 10 Kbytes. For the 

other parameters, we use the default settings of Postmark.  

  Moreover, we also measure the performance under the execution of real application 

such as untarring and compiling Linux kernel. We untar a package that contains the 

source code and object files of Linux 2.6.12, and then compiling the kernel. 

Table 4.1 Evaluation Environment 

CPU AMD Athlon 64 3000+ 
Memory 1 GB DDR 400     Hardware 
Disk Maxtor 80G 7200 RPM 

OS Linux 2.6.12 
Software 

Workloads Bonnie++ 1.03a, Untar, 
Make, Postmark 1.5 

 

  Table 4.2 shows all the experimental configurations under performance comparison. 

In the first two configurations, the original ext2 and ext3 file systems are used. For 

ext3, we use the Journal mode since it is the only one that provides data integrity. The 

mext3 configuration is the same as ext3 except that it improves the performance of 

ext3 by placing the logs in a ramdisk residing on MRAM. The last seven 

configurations represent various ways of combinations of the three proposed 

mechanisms. 
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Table 4.2 Experimental Configurations 

Configurations Description 

Ext2 Ext2 file system 

Ext3 Journal mode of ext3 file system 

Mext3 Ext3 with logs on MRAM  

Ext2_Trans Lightweight transaction support on file system 

operations 

TempFFS Temporary-File file system 

WB Intelligent write-back policy 

TempFFS_Ext2_Trans Temporary-File file system + transaction support 

WB_Ext2_Trans Intelligent write-back + transaction support 

TempFFS_WB Temporary-File file system + intelligent write-back 

TempFFS_WB_Ext2_Trans Temporary-File file system + intelligent write-back + 

transaction support 
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4.2 The Performance Results of TempFFS  
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Figure 4.1 Performance Improvements of TempFFS (Bonnie++) 

  In this section, we present the performance improvements achieved from TempFFS 

by comparing the performance of the ext2 file system with and without TempFFS 

under different workloads. In the first experiment, we compare the performance under 

Bonnie++. The values of the parameters, including the file size and the block size, are 

the same as those in Section 4.1. 

  Figure 4.1 shows the results. From the figure, we can see that TempFFS does not 

result in noticeable performance improvements. This is mainly because the size 

limitation of a file in TempFFS. As mentioned in Section 3.1.1, a file in TempFFS is 

transformed to it original file system if its size exceeds the size limitation (currently, 

1Mbytes). Thus, the 2GByte file is transformed to ext2 soon after its creation and 

therefore gets little benefit from TempFFS. 
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Figure 4.2 Performance Improvements of TempFFS (Untar and Compile Linux Kernel) 

  In the second experiment, we measure the performance of TempFFS under Linux 

kernel untarring and compilation. Figure 4.2 shows the results. From the figure, we 

can see that TempFFS degrades the performance of ext2 by 18% under the untar 

workload. Although untaring Linux kernel produces a significant number of small 

files, they are never be deleted. Therefore, the files are just first placed in TempFFS, 

and then transformed to their original file systems. No IO traffic can be saved. 

Moreover, the file creation does not result in a large degree of fragmentation, and thus 

TempFFS can seldom help in this workload. Instead, it degrades the performance due 

to the file transformation overhead.  

  For the make workload, the presence of TempFFS does not have a noticeable 

impact on the performance of ext2. This is because the workload is CPU-bound. 

Therefore, make needs not produce I/O operations to create object files because our 

package has contained of object files. 
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Figure 4.3 Performance Improvements of TempFFS (Postmark) 
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Figure 4.4 Percentages of Files Deleted in TempFFS (Postmark) 
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Figure 4.5 Reduction of IO Traffic with TempFFS 

0
2000
4000
6000
8000

10000
12000
14000

50
00

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0

Files

A
ve

ra
ge

 F
ile

 S
pa

n 
(b

lo
ck

s)

Ext2

Ext2 with
TempFFS

 

Figure 4.6 Average File Span (Postmark) 

  In this experiment, we measure the performance improvements of TempFFS under 

Postmark. In this experiment, 200k transactions were performed and the file size 

ranges from 512 bytes to 10 Kbytes. We measured the performance under various 

numbers of files and directories. As shown in Figure 4.3, TempFFS effectively 
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improves the system performance. Specifically, the performance improvement ranges 

from 34% to 69%. This is because a number of files have been deleted before they are 

transformed to the file system, reducing both the I/O traffic and the degree of file 

fragmentation. We demonstrate this in the following experiments.  

As mentioned before, Postmark deletes all the files at the end of its execution. 

Figure 4.4 shows the percentage of the number of files deleted in TempFFS and ext2, 

with the presence of TempFFS. As shown in the figure, at least 44% of the files are 

deleted in TempFFS. In the cases of 5000 and 10000 files, all files are deleted in 

TempFFS because the capacity of TempFFS is enough to contain all the files. When 

the number of files increases further, a number of files are transformed to ext2, 

because of memory pressure, and finally deleted in ext2. For each file deleted in 

TempFFS, all its file operations are done in memory and involve no disk IO. Figure 

4.5 shows the reduction of IO traffic with the presence of TempFFS. In the cases of 

5000 and 10000 files, nearly 100% of the IO traffic can be eliminated since almost all 

file operations are done in TempFFS. For the other cases, about 31% of the IO traffic 

can be eliminated. Moreover, we show that TempFFS can reduce the degree of file 

fragmentation, which is evaluated by using the file span, the distance between the first 

block and the last block of a file. During the execution of Postmark, we record the file 

span of each file upon the deletion of the file. Figure 4.6 shows the average file span 

of all the files. As shown in the figure, the degree of file fragmentation is largely 

reduced. Especially, in the cases of 5000 and 10000 files, the average file span is zero 

because all the files are deleted in TempFFS and do not have corresponding blocks on 

the disk. 
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4.3 The Performance Results of Intelligent Write-Back Policy 

In this section, we compare the performance of the four write-back policies, file, 

recency, location, and relo. The file policy is the file based policy used in Linux. It 

scans the list of dirty files and writes back the dirty pages of each dirty file. The 

recency policy only writes back dirty pages in the inactive list of the Linux page 

cache. The location policy selects the zone with the maximum ASL value and writes 

back the dirty pages within the selected zone. Finally, the proposed relo policy 

combines the location and the recency policies and writes back the inactive dirty 

pages in the selected zone. 

 

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

character
write

block write rewrite

Th
ro

ug
hp

ut
 (K

by
te

s/s
ec

)

file
recency
location
relo

 

Figure 4.7 Performance Comparison of the Write Back Polices (Bonnie++)   

  From Figure 4.7 shows the performance comparison of the four policies under the 

Bonnie++ benchmark. The values of the parameters, including the file size and the 

block size, are the same as those in Section 4.1. As shown in the figure, the 

performance results of the latter three policies are all better than those of the first one, 
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the original write back policy in Linux. As mentioned in Section 3.1.2, this is because 

the Linux write back policy does not consider the recency and disk location 

information of the dirty pages, resulting in more redundant page write traffic and 

longer seek and rotation delay. The proposed relo policy considers both the recency 

and the disk location information and outperforms the original Linux policy by 31% 

to 34% under the Bonnie++ benchmark. 
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Figure 4.8 Performance Comparison of the Write Back Polices (Untar and Compile Linux Kernel) 

  Figure 4.8 shows the performance comparison of the four write back policies under 

Linux kernel untarring and compilation. As shown in figure, all the latter three 

policies perform better than the original one in Linux, and the proposed relo policy 

achieve the best performance among the four. Specifically, relo outperforms the file 

policy by 23% in the untar workload. In the make workload, the performance 

difference is not obvious since the workload is CPU intensive. 
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Figure 4.9 Performance Comparison of the Different Locative Write Back Polices  

  Figure 4.9 shows three different locative write back policies, zone-based which 

writes back a region of disk and segment-based which writes back a longest 

contiguous blocks of disk and zone/segment-based which mentioned in Section 3.2. 

The performance improvement of zone/segment-based has about 58% and is best. The 

zone-based is better than segment-based because zone-based can save the seek time of 

disk and segment-based can save the rotation delay. 
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Figure 4.10 Performance Comparison of the Write Back Polices (Postmark) 
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  Figure 4.10 shows the performance comparison of the four write back policies 

under Postmark. In this experiment, 200k transactions were performed and the file 

size ranges from 512bytes to 10Kbytes. We measured the performance under various 

numbers of files. In this figure, the bars denote the execution time of the Postmark 

and the curves denotes the performance improvements of the latter three policies over 

the file policy. 

As shown in the figure, the performance improvements of the recency, location, 

and relo policies are about 62%, 58% and 67%, respectively, as the file numbers are 

lager than 15000. In the case of 5000 files and 10000 files, there is no obvious 

performance difference among the four policies. This is because the working set is 

smaller than the memory size, and hence the write back procedure is seldom 

triggered.    
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Figure 4.11 Accumulate Inter-requests Distance (Postmark) 

  Figure 4.11 shows the accumulate inter-requests distance which is the accumulate 

blocks of all inter-requests. The less of accumulate inter-requests distance means the 

more contiguous write-back blocks. The zone/segment-based has the least accumulate 

inter-requests distance because it writes back the contiguous or neighbor blocks. 
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Figure 4.12 Repeated Write Back Blocks (Postmark) 

  Figure 4.12 shows the total number of repeated write back blocks. In this 

experiment, the recency and relo has the less repeated write back blocks because they 

avoid write back the blocks which used recently. 

4.4 The Performance Results of Transaction Support on Ext2 
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Figure 4.13 Performance of the Transactions Support Mechanism (Bonnie++ ) 

As mentioned in Section 3.1.3, we augmented ext2 to utilize the proposed 
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transaction API to support atomic file operations. In this Section, we compare the 

performance of the augmented ext2 with that of ext3. For ext3, we use the journal 

mode since the augmented ext2 can ensure both file system consistency and data 

integrity. Moreover, we use two versions of ext3. One places the log in a 256 MB disk 

partition (ext3), while the other places the log in a 256 MB ramdisk (mext3). Finally, 

the performance of the original ext2 is also presented for the evaluation of the runtime 

overhead of the transaction API. Note that ext2 supports neither file system 

consistency nor data integrity. 

  Figure 4.13 shows the performance comparison under the Bonnie++ benchmark. As 

shown in the figure, ext2 with transaction support results in the best performance 

among the three file systems that ensure file system consistency. This is because it 

only duplicates data and metadata in memory during the file operations and does not 

involve any disk I/O. It outperforms the ext3 by 63% and the mext3 by 31%. The 

performance of ext3 is the worst since the journal mode of Ext3 logs both metadata 

and data updates on the disk, it requires a significant number of extra disk IO. Mext3 

eliminates some journaling IO traffic. However, the journaling IO traffic is still 

required once the journal space is full. Besides, the in-memory journal space of mext3 

also occupies the 256MB capacity of the main memory such that the physical memory 

decreases a lot. The performance results between ext2 and ext2 with transaction 

support are almost the same because our transaction support does not produce I/O 

traffics and needs only a small amount of memory space. 
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Figure 4.14 Untar and Compile Linux Kernel in transaction support  

  Figure 4.14 shows the performance comparison under Linux kernel untarring and 

compilation. Similar to the results in Figure 4.10, ext2 with transaction support 

always results in the better performance than ext3 and mext3. For the untar case, the 

performance difference is smaller than that under Bonnie++. This is because untarring 

the Linux kernel creates many files but does not modify and delete them later, and 

then it produces journal data less than Bonnie++ or Postmark. Therefore, ext2 with 

transaction support outperforms the ext3 by 17% and the mext3 by 9%. Besides, the 

execution time of ext2 transaction is greater than the ext2 a little. For the make case, 

since make application is CPU-bound, the performance results of them are almost the 

same. 
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Figure 4.15 Performance of the Transactions Support Mechanism (Postmark) 

  Figure 4.15 shows the performance comparison under Postmark. As shown in the 

figure, ext2 with transaction support outperforms ext3 and mext3 by 76~93% and 

65~81%, respectively.  

Since a large number of transactions (i.e., 20k) were performed during the 

execution of Postmark, ext3 generates a large volume of journal data and thus a 

significant number of journaling I/O, largely increasing the total execution time. 

When file numbers is less, the mext3 has better performance improvement because 

journal space of mext3 is not often full, and it needs only some writing-back journal 

data. But the volume of the journal data is increase as the file numbers increase, the 

journal space of mext3 is often full and it must frequently write back journal data to 

the disk. Therefore, the performance improvement of mext3 degrades when the file 

numbers increase. 

  Instead, ext2 with transaction support just duplicates metadata and data (that are 
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under update) for not-yet-completed file operations. Once the file operation completes, 

the duplicated copy is deleted. Thus, it does not generate any journaling IO and its 

execution time is almost the same as ext2. 

Table 4.3 Memory Overhead of Transaction Support with Workloads 

Workloads Maximum Memory Overhead 

Untar and Make Linux Kernel 24 KB 

Bonnie++ 122 KB 

Postmark 24 KB 

   

As mentioned before, the transaction support mechanism duplicates metadata and 

data that are under update. Therefore, it requires some memory space for storing the 

duplicated copies. In this section, we measure the maximum amount of such extra 

memory space required during the execution of the workloads used in this paper. We 

record the maximum amount of total replicas in transaction list and update it in 

runtime. 

Table 4.3 shows the results. As shown in the table, the extra memory space required 

is extremely small, only 24 KB for Linux kernel untarring and compilation, 24 KB for 

Postmark, and 122 KB for Bonnie++. This is because applications usually do not 

update a large amount of metadata or data in a single file operation. From the results, 

we can see that the memory overhead of the transaction support mechanism can 

nearly be ignored. 

4.5 Put it all Together 

  In the section, we show the performance results of different combinations of the 

three proposed mechanisms. 
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Figure 4.16 Performance Results of Different Combinations (Bonnie++) 

Figure 4.16 shows the performance results under Bonnie++. In this figure, the 

results of each test contain six bars. The left two bars represent throughput under file 

systems that do not ensure file system consistency, whereas the rest represent 

throughput under file systems that ensure file system consistency.  

Third points in the figure are worth mentioning. First, both the relo write back 

policy and the lightweight transaction support mechanism lead to performance 

improvements. Second, incorporating TempFFS into the system causes performance 

degradation. This is demonstrated by the values of the rightmost two bars of each test. 

Comparing the values of the left two bars and the values in both Figure 4.1 and 4.4 

also lead to a similar result. This is because, as we mentioned in Section 4.2, 

TempFFS does not enhance performance under Bonnie++. Third, by comparing the 

values of the first and the fourth bars, we can see that the runtime overhead of 

transaction support can nearly be ignored.  
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Figure 4.17 Performance Results of Different Combinations (Linux Kernel Untarring and Compilation) 

  Figure 4.17 shows the execution time of Linux kernel untarring and compilation 

under various configurations. Similar to the results in Figure 4.12, both relo and the 

lightweight transaction support mechanism lead to performance improvements, and 

incorporating TempFFS into the system causes performance degradation. This is 

because TempFFS does not have performance improvement under the untar workload. 

  Similar to the previous observations, the performance of the make workload is 

almost the same among all configurations. 
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Figure 4.18 Performance Results of Different Combinations (Postmark, 512-10K bytes) 

Figure 4.18 shows the performance results under Postmark. In this experiment, the 

file size ranges from 512 bytes to 10 Kbytes for default setting and the numbers of 

files are 25000. The results can be divided into two groups. In the first group (shown 

in the left side of the figure), the file system does not ensure consistency, whereas in 

the second group (shown in the right side of the figure), the file system does ensure 

consistency. 

According to the results of the first group, the performance of TempFFS_WB 

achieves the best performance. Specifically, it has a 76% performance improvement, 

while TempFFS has a 33% performance improvement and the relo write back policy 

has a 66% performance improvement, when compared to ext2. Different from the 

previous results, combining TempFFS does have a positive effect on the system 

performance for the Postmark workload. Therefore, TempFFS_WB results in the best 

performance.  
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  The second group reveals a similar result. The TempFFS_WB_Trans configuration 

achieves the best performance and outperforms ext3 by 94%. A large portion of the 

performance improvement is due to the lightweight transaction support mechanism, 

which outperforms ext3 by 78% when being used alone. Note that, the small 

differences in the following pairs (TempFFS, TempFFS_trans), (WB, WB_trans), and 

(TempFFS_WB, TempFFS_WB_trans) again demonstrate that the performance 

overhead of our transaction support mechanism can nearly be ignored. 
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Figure 4.19 Performance Results of Different Combinations (Postmark, 512-2M bytes) 

In the last experiment, we measure the performance of different configurations 

under Postmark that the file size ranges from 512 bytes to 2 Mbytes and the numbers 

of files are 25000 because we set the threshold of file size in TempFFS is 1Mbytes.  

Similar to the results in Figure 4.18, Figure 4.19 shows the results that even if the 

file size range is increase, TempFFS_WB achieves the best performance in the first 
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group, and it outperforms ext2 by about 50%. Moreover, TempFFS_WB_tans 

achieves the best performance in the second group, and it outperforms ext3 by 78%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 51

Chapter 5 Conclusion  

  We provide three mechanisms to improve performance of file system on NVRAM 

system. First, the TempFFS can avoid some unnecessary IO and reduce file 

fragmentations when short-lived files are deleted in TempFFS. Moreover, TempFFS is 

put between VFS and file system and it does not modify any codes of file system. 

Second, we provide an intelligent write-back policy (relo) that considers both 

locations of dirty blocks in the disk and recency. It not only can reduce the seek time 

and rotation delay, but also avoids writing back recently-updated dirty pages. Last, we 

provide a simple transaction support in NVRAM system. It can make sure the file 

operation is consistent and does not produce any extra disk IO overhead. 

  In performance results, we not only show the performance improvement per 

mechanism, but also show the performance improvement of all combinations among 

three mechanisms.  
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