
國立交通大學

資訊科學與工程研究所

碩 士 論 文

在基於非揮發性隨機存取記憶體系統上提供改

善作業系統效能的機制

Operating System Support on NVRAM-Based Systems

研 究 生：蕭智文

指導教授：張瑞川 教授

中華民國九十七年七月

 i

在基於非揮發性隨機存取記憶體系統上提供改

善作業系統效能的機制

學生：蕭智文 指導教授：張瑞川教授

國立交通大學資訊科學與工程研究所

論 文 摘 要

 硬碟效能長久以來一直是電腦系統中一個主要瓶頸，根據 Moore’s Law，處

理器的效能以每年 60%的速度增進；而硬碟的效能僅以每年 10%的速度增進，因

此在處理器和硬碟之間產生了極大的效能差距。非揮發性記憶體(Non-volatile

RAM)是最近幾年新興的一項記憶體技術，其具有非揮發性的特性可以有效改善

系統效能。由於傳統緩衝快取以及確保檔案系統資料一致性的設計都是建立在揮

發性記憶體上，因此我們在非揮發性記憶體性統上提出三種機制，來進一步增加

緩衝快取的效能以及減少確保資料一致性的負擔。第一，我們在 VFS 和一般檔

案系統之間加入一層 Ram-based 檔案系統來暫時的存放新建立檔案，其目的為延

遲檔案分配給檔案系統的時間以避免檔案零碎的情形以及減少不必要的 IO。第

二，我們修改原本以檔案為單位的寫回策略，而進一步的考慮寫回的區塊在磁碟

上的相對應位置，讓較連續且較鄰近的資料一起寫回，以減少寫回的時間；另外，

我們還確保不要寫回最近剛被更新過的頁面。最後，我們提供了一個簡單機制可

同時確保檔案系統的一致性而不需要額外的磁碟 IO 負擔。實驗結果顯示我們的

機制之效能優於 Ext2 大約 76%；優於 Ext3 大約 94%。

 ii

Operating System Support on NVRAM-Based

Systems
Student: Chih-Wen Hsiao Advisor: Prof. Ruei-Chuan Chang

Computer Science and Engineering College of Computer

Science

National Chiao Tung University

Abstract

 Disk performance has become the major bottleneck of most computer systems for a

long time. Following the Moore’s Law, the performance of processors improves by

about 60% per year. However, the performance improvement of disks is only about

10%, resulting in an increasing performance gap between processors and disks.

Non-volatile memory is an emerging technology in recent years and the characteristic

of non-volatile can improve the performance of system. Because the traditional buffer

cache management and guaranteeing file system consistent are based on volatile

memory, we propose three mechanisms on non-volatile system to improve further the

performance of buffer cache and reduce the overhead of consistency. First, we put

Ram-based file system between VFS and file system to temporarily store all new files.

Its main purpose is delay allocation for all new files to avoid the file fragmentation

and reduce the redundant IO traffic. Second, we modify the original file-by-file write

back policy and write back the contiguous or neighbor dirty blocks to reduce the seek

time and rotation delay of the disk. Besides, we do not write back the

recently-updated dirty pages. Last, we propose a simple mechanism that can

 iii

guarantee the file system consistent without any overhead of disk IO. The

experimental results show that the performance of our mechanisms is superior to Ext2

about 76%, and Ext3 about 94%.

 iv

致謝
 感謝我的指導老師 張瑞川教授以及 張大緯教授，兩位老師對我的論文所做的

指導，感謝在系統實驗室上所有的學長和同學對我的幫助和建議，另外還要感謝

張大緯教授兩年來不遲辛苦的和我們遠端視訊做討論，真的很辛苦他。

 最後感謝我的家人，在我求學兩年中最我的支持和關心。

 v

TABLE OF CONTENTS
論文摘要………………………………………………………………………...…..…i

Abstract…………………………………………………………………………….…ii

致謝…………………………………………………………………………...………iv

Table of Contents………………………………………………………….....……….v

List of Figures……………………………………………………………………….vii

List of Tables……………………………………………………………….………...ix

Chapter 1 Introduction……………………………….……………………………...1

1.1 Motivation……………………………………………………...…………….1

1.2 Our Mechanisms…………………………………………………….……….2

1.3 Structure of the Thesis…………………………………………….…………4

Chapter 2 Related Work…………………………………………………….……….5

 2.1 System Recovery…………………………………………………………….5

 2.2 NVRAM as Storage Device………………………………………………….6

 2.3 NVRAM as Buffer…………………………………………………………...7

 2.4 Transaction Support………………………………………………………….9

Chapter 3 Design and Implementation…………………………………………… 11

 3.1 Background………………………………………………………………….11

 3.1.1 Temporary-File File System…………………………………………..11

 3.1.2 Intelligent Write-Back Policy…………………………………………15

 3.1.3 Transaction Support on File System Operations……………………...18

 3.2 Implementation and Integration of the Approaches………………………...22

 3.2.1 Implementation of Three Mechanisms………………………………..22

 3.2.2 Integration of Three Mechanisms……………………………………..28

Chapter 4 Performance Evaluation………………………………………………..29

 vi

 4.1 Experimental Environment and Configurations…………………………….29

 4.2 The Performance Results of TempFFS……………………………………...32

 4.3 The Performance Results of Intelligent Write-Back Policy………………...37

4.4 The Performance Results of Transaction Support on Ext2…………………41

4.5 Put it all Together……………………………………………………………45

Chapter 5 Conclusions……………………………………………………………...51

References…………………………………………………………………………...52

 vii

LIST OF FIGURES
Figure 3.1 Architecture of the Temporary-File File System………………………….13

Figure 3.2 Transformation Steps……………………………………………………..14

Figure 3.3 the Zone Information Table……………………………………………….17

Figure 3.4 Zone with Different Average Segment Length…………………………...18

Figure 3.5 the Main Data Structure of Journaling……………………………………20

Figure 3.6 the Core Functions of Journaling ………………………………………...20

Figure 3.7 Pseudo Code of Segment/Zone Algorithm……………………………….25

Figure 3.8 Implementation of the Transaction API (Pseudo Code) …………………27

Figure 3.9 Integration of the TempFFS, Intelligent Write Back and File Operation

Transaction Support …………………………………………………………………28

Figure 4.1 Performance Improvements of TempFFS (Bonnie++)……..……………32

Figure 4.2 Performance Improvements of TempFFS (Untar and Compile Linux

Kernel)………………………………………………………………………………33

Figure 4.3 Performance Improvements of TempFFS (Postmark)……………………34

Figure 4.4 Rations of Files Deleted in TempFFS (Postmark)………………………..34

Figure 4.5 Reduction of IO Traffic with TempFFS………………………………….35

Figure 4.6 Average File Distance (Postmark)……………………………………….35

Figure 4.7 Performance Comparison of the Write Back Polices (Bonnie++)……….37

Figure 4.8 Performance Comparison of the Write Back Polices (Untar and Compile

 viii

Linux Kernel)………………………………………………………………………..38

Figure 4.9 Performance Comparison of the Different Locative Write Back Polices...39

Figure 4.10 Performance Comparison of the Write Back Polices (Postmark)……….39

Figure 4.11 Accumulate Inter-requests Distance (Postmark)………………………...40

Figure 4.12 Repeated Write Back Blocks (Postmark)………………...………….…..41

Figure 4.13 Performance of the Transactions Support Mechanism (Bonnie++)…..…41

Figure 4.14 Performance of the Transactions Support Mechanism (Untar and Compile

Linux Kernel)………………………………………………………………………..43

Figure 4.15 Performance of the Transactions Support Mechanism (Postmark)…….44

Figure 4.16 Performance Results of Different Combinations (Bonnie++)………….46

Figure 4.17 Performance Results of Different Combinations (Linux Kernel Untarring

and Compilation)……………………………………………………………………47

Figure 4.18 Performance Results of Different Combinations (Postmark, 512-10K

bytes)………………………………………………………………………….……..48

Figure 4.19 Performance Results of Different Combinations (Postmark, 512-2M

bytes)…………………………………………………………………………………49

 ix

LIST OF TABLES
Table 1.1 MRAM and DRAM Characteristic…………………………………………3

Table 4.1 Evaluation Environment…………………………………………………...30

Table 4.2 Experimental Configurations………………………………………………31

Table 4.3 Memory Overhead of the Transaction Support Under Different

Workloads…………………………………………………………………………….45

 1

Chapter 1 Introduction

1.1 Motivation

 The speed of processor is double every eighteen months by Moore’s Law, but the

performance of the computer system grows slowly due to the slow I/O. The disk I/O

time is mainly dominated by seek time and rotation delay. Because data in volatile

memory (DRAM) is not persistent, system must periodically write back dirty data to

the disk for avoiding data loss due to the power failure. Therefore, performance of

disk IO is worse.

With the well advances in non-volatile memory (NVRAM) technologies, many

kinds of non-volatile RAM such as MRAM [9] (Magnetoresistive RAM), FeRAM

(Ferro Electric RAM), PRAM (Phase-change RAM) and OUM (Ovonics Unified

Memory) [10] have been proposed. NVRAM is an emerging technique to solve the

problem to the slow disk IO. As semiconductor technology makes progress, we can

anticipate NVRAM to become a common component of computer systems. Since

MRAM among them is comparable with DRAM in terms of capacity, speed and cost,

MRAM is considered as the potential replacement of DRAM as the main memory for

computer systems. Therefore, we can regard data in memory as persistent and exploit

some approaches about NVRAM to improve performance of disk IO.

There are some problems in traditional DRAM-based system if the main memory is

NVRAM. Firstly, according to some research [37][38][46], many small files are

short-lived. Once the file is created in file system, file system must do some disk IO

operations, such as reading metadata of the file. Even many files are deleted soon

after created, they also need perform disk IO. Besides, after these files are deleted, it

produces some fragmentation in the disk. Secondly, the traditional DRAM-based

write-back policy is file-by-file since it can reduce the number of non-up-to-date files

 2

when power outages. But there are two disadvantages: first, the dirty pages per file

maybe distributed far in the disk. It must spend many seek time and rotation delay on

writing back these dirty pages. Second, if it writes back all dirty pages of a file,

system can not make sure whether it does not write back recently-updated pages.

According to time locality, recently-updated pages may be re-accessed and

re-modified recently. Therefore, if it writes back recently-updated pages, it wastes the

disk IO operations. Lastly, the file system consistency has been an important issue

recently. Many file systems use the technique to support data consistency such as

journaling, but it needs extra journaling IO to write logs into the disk earlier.

Therefore, on the basis of three problems, we propose three mechanisms

corresponding three problems to improve performance of the file system.

1.2 Our Three Mechanisms

 In this thesis, we propose the Buffer Cache management and transaction support on

file system operations in NVRAM systems. We have two mechanisms temporary-file

file system (TempFFS) and intelligent write back policy (WB) in Buffer Cache

management and one mechanism for transaction support on file system operations

(trans) for maintaining file system consistency.

 Firstly, we add TempFFS between VFS and file system to apply delayed allocation

simultaneously on all existing file systems. Different from file system specific

implementations that maintain newly-created files on their own, such as XFS[47], and

Ext4, TempFFS maintains newly-created files for all the file systems. Upon memory

pressure or sync operations, the files are transferred to their original file systems and

block allocation of these files takes place. Therefore, an existing file system can enjoy

the benefit of delayed allocation without any code modifications.

 3

 Secondly, due to the data in NVRAM is persistent; we modify original write back

policy which is file-by-file and does not consider recency. We consider the location of

dirty pages in the disk and write back contiguous or neighbor dirty pages to reduce the

seek time and rotation delay of the disk. Besides, we consider recency that we do not

write back the recently-updated dirty pages.

 Lastly, our transaction support mechanism can ensure both file system consistency

without inducing any extra disk I/O. Since the data in NVRAM is persistent, it needs

not write journaling IO before. We only make sure the file operation is atomic. In

order to achieve atomic, we duplicate all data and metadata before they are modified

in the file operation into undo logs. Once the file operation has finished successfully,

the undo logs can be removed immediately. If the crash happens in the progress of the

file operation, the undo log can be used to restore to the consistent state. Since our

undo logs are placed in NVRAM and deleted later, it needs not any extra disk I/O.

 We implement our three mechanisms in Linux 2.6.12. Since large capacity MRAM

is not generally available in the market, and the performance characteristics of DRAM

and MRAM are comparable and shown in Table 1.1, we use DRAM to emulate

MRAM.

Table 1.1 MRAM and DRAM Characteristic

Device Type MRAM DRAM

Volatility No Yes Characteristic

Erase Needed No No

Access Time 50ns ~5ns

Read Time 50ns 50ns

Performance

Write Time 50ns 50ns

 4

Operation Power Supply 1.8V 1.8-5V

 According to our experimental results, the performance improvement of our

TempFFS is about 35% compared to Ext2, the performance improvement of our

intelligent write-back is about 65% compared to Ext2 and the performance

improvement of our transaction support is about 80% compared to Ext3. Lastly, the

performance improvement of the combinations of three proposed mechanisms is

about 90% compared to Ext3.

1.3 Structure of the Thesis

 The remainder of this thesis is organized as follows. Chapter 2 describes the related

work about NVRAM. Chapter 3 presents the design and implementation details of the

proposed mechanisms. The performance results are shown in Chapter 4. Finally, we

give conclusions in Chapter 5.

 5

Chapter 2 Related Work

 In this chapter, we introduce some researches about NVRAM. In Section 2.1, we

introduce some researches exploiting NVRAM to recover system when system

crashes. In Section 2.2, some researches use NVRAM as storage device to improve

the performance of file system. In Section 2.3, some researches use NVRAM as

buffer to reduce disk IO, especially write operation. In Section 2.4, we introduce

researches about providing file system consistency.

2.1 System Recovery

Ren Ohmura [33] in Keio University exploits the characteristic of NVRAM in

system recovery. They propose a scheme to recovery the state of peripheral devices in

NVRAM systems so that the system can resume its execution after an unpredictable

power failure. They record all messages between CPU and devices in NVRAM and

system re-sends messages recorded in memory to recovery devices into previous state

when power failure.

Harp [25] records all updates of files in server nodes. Files in individual node can

survive after the failure because file operations are logged in memory at several nodes.

The Recovery Box [2] stores the state of system in NVRAM and protects the region

of storing the system state to not overwrite when system crashes. After the system

crashes, it uses the protected system state to recover system.

 Rio [8] enables the data in memory to survive operating system crashes and power

outages. It uses write protections to protect files in file cache and does not

accidentally overwrite the file cache while system is crashing. Therefore, the files in

Rio are persistent and safe when system crashes.

 6

2.2 NVRAM as Storage Device

 Because the flash is cheap and has the characteristic of non-volatile, the more and

more file systems which are designed for flash memory are proposed, such as JFFS2

[44] and Microsoft Flash [24] and so on. However, the flash memory has some limits:

firstly, flash must erase the block before writing it. Secondly, the block in flash has

finite number of erase-write cycles. Therefore, the flash system usually writes data by

using non-in-place update and it makes the number of erase-write cycles in each block

are similar by using wear leveling technique.

 In order to speed up the writing in flash system, eNVy [45] uses a small amount of

battery-backed SRAM as write buffer and uses copy-on-write technique to copy

corresponding data in flash into SRAM, then modifies data in SRAM. Lastly, it writes

back data into flash memory when the amount of SRAM is full. Hwan Doh [11] also

exploits non-volatile memory to enhance the performance of flash file system. They

propose a flash-based file system that stores all metadata in NVRAM and stores all

file data in flash memory. The advantages of using NRAM as a metadata store are the

mount time of flash is reduce to the minimum and access all metadata is speeder than

before.

 MRAMFS [12] is a prototype in-memory file system to put all data/metadata in

NVRAM. However, the amount of NVRAM may be not enough containing of a large

number of files. Therefore, they use the compression method to reduce occupied

space and use the different compression method to compress metadata and data

because metadata often has the fixed format. In metadata they can save about 60%

space and save about 40%~60% space for file data.

 There are some recent works in Hybrid Disk/NVRAM file system such as

 7

HeRMES file system [31] and Conquest file system [42]. HeRMES considers that the

metadata is frequently modified in the file system requests. Therefore, they suggest

that use of compression techniques in order to minimize the amount of memory

required for metadata and place all metadata in NVRAM to improve the performance

of file system requests. Conquest assumes that the system is in the sufficient amount

of NVRAM. Therefore, it stores all small files and metadata in NVRAM and disk

holds only the data content of remaining large files. The advantages are that it can

avoid the overhead of accessing small file and metadata because metadata and small

files are placed in NVRAM and it can optimize the arrangements of large files to

reduce the fragmentation in disk because there are only large files in disk.

The above works have some disadvantages. Firstly, they almost place all metadata

in NVRAM but the occupied space of metadata/data is constantly increasing as users

create files at all times. Secondly, although the metadata is frequently accessed in file

system, it is not that all metadata are frequently accessed. Therefore, they place all

metadata in NVRAM such that there is some non-recently-used metadata occupied

the NVRAM space resulting in performance decreases.

2.3 NVRAM as Buffer

 In addition to storage device, the general purpose of NVRAM is as the write buffer.

eNVy [45] mentioned in Section 2.2 uses a small amount of battery-backed SRAM as

write buffer to improve the performance of write operations in flash. Mark Baker [1]

proposes that if they provide a NVRAM as write buffer, it can reduce disk access by

about 20% on most of file systems, and by about 90% on one frequently-accessed file

system.

 Theodore R. Haining [19] mentions that the use of non-volatile write caches

 8

provides two benefits: some writes will be avoided because dirty blocks will be

overwritten in the cache, and physically contiguous dirty blocks can be grouped into a

single I/O operation. They also present some write back strategies, such as least

recently used (LRU), shortest access time first (STF) and largest segment per track

(LST) to manage non-volatile write buffer and find that write buffer can reduce a

large number of write requests to improve the performance of system.

 Robert Y. Hou [20] exploits non-volatile memory to improve the performance of

RAID5. In each write request, RAID5 needs to execute “read-modify-writes” which

means that single-block writes require the old data block and old parity block to be

read, modify them to generate the new parity block, and then the new data and new

parity can be written to their respective locations. Read-modify-writes can reduce the

performance of RAID5 arrays because it needs four disk accesses in each write

request. Therefore, they use non-volatile memory as the write buffer of RAID5 to

improve the performance of write operations.

Above researches are also about using write buffer to improve write operations,

Alex Batsakis [3] mentions read operations may depend upon write operations

because buffering dirty pages will occupy the memory for read caching. They address

this problem by separately allocating memory between write buffering and read

caching and by writing dirty pages to disk opportunistically before the operation

system submits them for write-back. They also write back dirty pages which are

almost adjacent, but they do not consider whether the dirty pages are not

recently-updated.

 Due to the capacity of MRAM is increasing continuously, it maybe replace DRAM

as the main memory of computing system in the future. We not only use the technique

of non-volatile write buffer to delay write, but also use the better write-back policy to

 9

improve the performance of file operations.

2.4 Transaction Supporting

 Traditionally, file system consistency has been maintained by using synchronous

writes to restrict the proper ordering of metadata updates, but this approach degrades

the performance of file system because the proceeding of metadata updates is

dominated by the disk speed. Soft updates [30] eliminates the need for synchronous

disk I/O. Soft updates is an implementation mechanism that enforces the

dependencies of metadata updates and allows the metadata caching for write back.

 Log-structured file system [39] proposed by Mendel Rosenblum treats the file

system as a segmented log and always writes all modified data blocks and metadata

into the end of the log. File system changes are buffered in the cache and then written

into the disk sequentially in single disk IO operation. Therefore, it can improve the

performance of write operation but it can not write all related metadata in single write

operation since if crashes happen in the progress of disk operation, the file system

remains an inconsistent state.

 Journaling [35][44][47] is nowadays a widely-used technique for file system

consistency. It logs metadata and data updates into a stable storage before the updates

are performed on the disk. Hence, it produces the extra journaling IO traffic that is

critical impact on the system performance.

 Kevin M. Greenan [17] introduces two approaches to reliably storing file system

structures in NVRAM. Firstly, they strengthen memory consistency by using

page-level write protection and error correcting codes. Secondly, it periodically calls

online consistency checker to replay all transaction logs for checking file system

inconsistency. If it finds the inconsistency in file system, it immediately recovers the

 10

state of file system. However, it needs to periodically replay all transaction logs even

if the file system is normal and does not have any failures.

 Henry Mashburn [40] proposes recoverable virtual memory (RVM) that is simple

user-lever library to handle atomic file operation and data persistence. Firstly, it

copies the range of memory which will be updated to the undo log in memory, then

updates data, and lastly writes the updated data to the redo log in disk. Therefore, it

needs three copy operations for each file operation.

 Vista [27] proposed by David Loweel is simple user-library runs on Rio mentioned

in Section 4.1. Because Rio protects the files in memory to be persistent, Vista can

eliminate the redo log to speed up disk operations and it only uses undo log to make

sure the file operation is atomic. However, it must be based on Rio and because it is

user-level library, Vista is not user-transparent.

 We propose a simple lightweight transaction support on file system operations in

NVRAM environment and it only needs to add only about 40 line-codes in kernel and

about 300 line-codes in implementation. It also provides the same strength of

consistency as the journaling mode of Ext3.

 11

Chapter 3 Design and Implementation

 In this chapter, we describe the design and implementation of the proposed

mechanisms. In Section 3.1, we first introduce the three mechanisms for improving

the performance and ensuring the consistency of file systems on NVRAM based

computer systems, namely Temporary-File File System (TempFFS), intelligent

write-back policy, and transaction support on file system operations. In Section 3.2,

we show the details of implementing and integrating the mechanisms and provide an

analysis on the integration of the mechanisms.

3.1 Background

 In this section, we describe the proposed NVRAM-based buffer cache management

mechanisms, which include Temporary-File File System and intelligent write-back

policy. Both mechanisms aim at improving the file system performance based on the

non-volatility feature of main memory. Moreover, we also describe a lightweight

transaction support mechanism on file system operations, which takes advantage of

the non-volatility feature of main memory for ensuring the consistency and data

integrity of the file system.

3.1.1 Temporary-File File System (TempFFS)

The first goal of TempFFS is to reduce the fragmentation of the underlying file

systems. With numerous and concurrent file creation/deletion/appending activities, a

file system is easy to become fragmented, which leads to performance degradation.

Moreover, according to the previous studies [37][38][46], many files are short-lived,

meaning that they are deleted soon after their creation. Allocating disk space for these

files, which involves disk IO operations for reading the file system metadata (e.g.

block allocation map), is unnecessary.

 12

To reduce the file system fragmentation and the unnecessary disk IO operations,

some advanced file systems such as XFS [47]and ext4 support delayed allocation,

which delays the disk block allocation of a newly-created file until the data is needed

to be flushed back to the disk due to memory pressure or sync operations. However,

the delayed allocation feature is not shared among all file systems. Only the file

systems that implement the feature can benefit from it.

Instead of integrating the delayed allocation feature into a specific file system, we

implement a RAM-based file system named TempFFS in order to apply the feature

simultaneously on existing file systems such as ext3 and NTFS. Based on the concept

of stackable file systems, TempFFS sits between VFS (virtual files system) and file

system implementations and is transparent to the latter, as shown in Figure 3.1. All

new files are initially written to TempFFS and associated with their original file

systems when they are created. TempFFS uses page cache as the file store, and the

files are transferred into their corresponding file systems upon memory pressure or

sync operations. In this way, existing file systems can benefit from delayed allocation

without code modifications. Note that a file can stay for a long time in TempFFS. This

raises the risk of data loss if the main memory is volatile. On systems with

non-volatile main memory, however, memory data can survive power failures. The

implementation of TempFFS was achieved by modify the code of an existing RAM

file system (i.e., the RamFS [34]) for ease of implementation.

 13

Figure 3.1 Architecture of the Temporary-File File System

TempFFS stores files in kernel memory, which cannot be paged out in traditional

UNIX operating systems (including Linux). Upon memory pressure, an OS usually

writes back the dirty pages that belong to the buffer cache or user processes to the

storage device so as to release more memory space. In this situation, TempFFS checks

if its size is larger than a specific threshold. If it is, TempFFS shrinks its size by

evicting pages of the least recently used files. All the evicted files are transformed into

their original file systems so that the corresponding data can be written back. In

addition, we transform files whose sizes are larger than a specific threshold (currently,

1MB) due to the following two reasons. First, according to previous research

[37][38][46], most short-lived files are small ones, if it puts short-lived files in

TempFFS, it can reduce some IO traffics. Second, creating a huge file may cause the

transform of a large number of short-lived small files before they are deleted,

Transform Transform

Create

General File System Operation

VFS

TempFFS

User Process

VFAT

Page Cache

Read / Write

EXT2

 14

reducing the benefit of delay allocation.

We manage the files in TempFFS in a LRU list. The number of pages that should be

evicted from TempFFS, say N, is proportional to the number of pages in TempFFS.

Specifically, N is calculated according to the following equation:

 N = NR_WB * NR_TempFFS / NR_Dirty,

where NR_WB represents the target number of pages that need to be written back,

NR_TempFFS represents the number of (dirty) pages in TempFFS, and NR_Dirty

represent the number of dirty pages in the system. As shown in Figure 3.2,

transforming a file involves the following three steps.

Figure 3.2 Transformation Steps

 First, the file create operation of the original file system is invoked to produce the

metadata (inode) of the file. Second, several inode fields such as timing information,

access rights and file size, are copied to the new inode. Third, a sequence of disk

block allocation operations of the original file system are invoked for allocating the

Ram FS

Block 5

Block 6 Block 7

Original FS

(2)Copy Some
Inode Fields

(3)Allocate Blocks

Data Block Pointers

(1)Create a File System Inode

NULL

Inode fields

 15

disk space for the file. Because the operations are invoked consecutively, the resulting

data blocks tend to be contiguous. After the allocation, the data is associated with the

allocated blocks and the metadata in the TempFFS is deleted.

3.1.2 Intelligent Write-Back Policy

 Modern operating systems write back dirty pages periodically or when the number

of free pages is below a specific threshold (i.e., memory pressure). On systems with

non-volatile main memory, dirty pages are already persistent and thus need not to be

written back into the disk periodically. Instead, they need to be written back only

under memory pressure or sync operations. Currently, Linux utilizes a file-by-file

write back policy, which scans the list of dirty inodes and submits the dirty pages of

each inode to the IO subsystem. The rationale behind this policy is to reduce the

numbers of non-up-to-date files when power outages or system crashes. Assume that

100 files are updated and each file has 10 dirty pages in memory. If the system

crashes after 500 dirty pages are written back to disk, it would be better to write all

the dirty pages of 50 files than write 5 dirty pages of all the files.

However, this policy may write back recently-updated pages, which has two

drawbacks. First, writing back such pages can not help to release the situation of

memory pressure since these pages will not be reclaimed by the page replacement

policy. One purpose of writing back dirty pages is to reclaim the page so as to

maintain a reasonable number of free pages in the system. In Linux, all pages

belonging to user processes and page cache are grouped into two lists, the active list

and the inactive list. The former includes pages which have been accessed recently

while the latter contains pages that have not been accessed for a period of time. The

file-by-file policy may write back dirty pages in the active list. However, most

LRU-like page replacement policies tend not to reclaim these pages since the pages

 16

are used recently. Second, according to time locality, these pages will be marked dirty

soon after their write back. Thus, writing back such pages is of little use. The pages

may need to be written back again soon. Some UNIX systems like Solaris do not have

such problem. They only write back dirty pages that are not used recently.

The common problem of the write back policies of the existing UNIX operating

systems (including Linux) is that they ignore the disk location of the dirty pages when

submitting the pages to their IO subsystems. Although an IO subsystem can sort the

requests submitted to it, there may still a significant amount of seek and rotation delay

among the dirty pages.

In this paper, we propose an intelligent write-back policy, which considers the

recency as well as the disk locations of the dirty blocks to reduce the IO traffic, seek

time and rotation delay. To reduce the IO traffic, the proposed policy recency only

writes back dirty pages in the inactive list.

To reduce the seek time, we divide a disk into a number of zones, which is a set of

continuous blocks on the disk, and write back dirty pages in a zone-by-zone manner.

The dirty page information is recorded in a set of identical data structures called zone

information tables, each of which correspond to a zone. When a page becomes dirty

and inactive, we record the page in the corresponding zone information table

according to the disk block number of the page.

Each time the write-back procedure is invoked, the proposed policy selects a zone

and writes back dirty pages in that zone. This reduces the seek time because the disk

blocks of the written-back dirty pages are close. In order to further reducing the

rotation delay, the policy selects a zone with the maximum Average Segment Length

(ASL), which is defined in Equation 1. A segment stands for a set of continuous dirty

 17

blocks in a zone, and there is generally no rotation delay between two continuous

blocks. Therefore, this policy tries to select a zone which contains more continuous

dirty pages to reduce both the seek time and the rotation delay of the IO traffic caused

by dirty page write back.

Average Segment Length (ASL) = Number of Dirty Pages in the Zone/Number of

Segments in the Zone ___Equation 1

 The zone information table, which is shown in Figure 3.3, it records some

information such as, dirty pages numbers, segment numbers, segment list which

contains of all segment in the zone, page list which includes all dirty pages of the

inactive list in the zone, and length (Average Segment Length).

Figure 3.3 the Zone Information Table

Zone1 Zone2 Zone3 Zone4 ZoneN

Disk Layout

Pages NO

Segment NO

Segment List

6

3

100 155 188

Seg List.

Page List.

Length: 3

Seg List.

Page List.

Length: 2

Seg List.

Page List.

Length: 1

100 155 188

101 102 156

Zone Information Table

 18

Figure 3.4 Zone with Different Average Segment Length

Figure 3.4 shows an example of the zone selection. The dirty pages of zone 4 and

zone 6 are both 7, but the dirty pages of zone 6 are more continuous (i.e., with a larger

value of ASL) than zone 4. Therefore, zone 6 is selected to be written back.

As mentioned before, this policy only writes back pages in the inactive list in order

to reduce the write back IO traffic. Therefore, only the dirty pages in the inactive list

are recorded in the zone information tables. To accomplish this, we need to insert or

remove the information about a dirty page when it becomes inactive or active.

Specifically, when a dirty page becomes inactive (i.e., moves from the active list to

the inactive list), we record it in the corresponding zone information table. When the

page becomes active again or clean, the recorded information is removed. This allows

us to write back only inactive dirty pages.

3.1.3 Transaction Support on File System Operations

Journaling is a widely-used technique for guaranteeing file system consistently. It

logs metadata and data updates that are completed in memory into a stable storage

Zone 5

Zone 4 Zone 6

Dirty Pages

ASL = 1.75 ASL = 3.5

ASL=Average Segment length

 19

before the updates are performed on the disk. When the system crashes, the log is

replayed to restore the status of the file system. Therefore, journaling ensures file

system consistency by using a redo log. The overhead of journaling is that it requires

additional disk I/O operations for logging. On non-volatile memory based computing

systems, one straightforward approach for eliminating such I/O operations is to place

the log in the memory instead of disk. However, the drawback of simply placing logs

in memory is that it occupies a large memory space. For example, it typically needs

256MB memory space as journaling space. Additionally, to minimize the IO overhead,

a journaling file system usually writes the updates to the log in batches with size

about 16 to 64 MB. A significant amount of updates might be lost if the system fails

before the updates are written to the log.

To address the problems mentioned above, we design a lightweight transaction

mechanism on systems with non-volatile main memory. The mechanism not only

ensures file system consistently but also eliminates the need of large memory space

and extra disk I/O.

 The basic idea of the mechanism is undo log. Because the data in NVRAM does

not lose, we need not write journaling logs into the disk before. We only need make

sure that each file operation is atomic. To ensure the atomicity of each file operation,

we duplicate the data and metadata in the undo log before they are modified. Once a

file operation has finished successfully, the duplicated data and metadata can be

removed immediately. If the system crashes, the content in the undo log (i.e., the

original values of the metadata and data of the uncompleted operations) is used to

recover the file system state. The main data structure of our lightweight transaction

mechanism is shown in Figure 3.5.

 20

Figure 3.5 Main Data Structure of Transaction Support

 In order to make sure the atomicity of the updates involved in a file operation, all

metadata and data modified by the file operation are collected into a transaction and

recorded in a data structure called trans. When metadata or data is going to be

modified by a file operation, the original content is copied to a memory area pointed

by a data structure called replica, which is then attached to trans. The replica also

records the addresses of the metadata/data that are under update. This allows the

metadata/data to be recovered by the original content if necessary.

Figure 3.6 Core Functions of Transaction Support

Read block bitmap & group descriptor

Modify metadata

Duplicate metadata

Transaction_start

Transaction_stopAccess Metadata Modify data

Duplicate data

Write

trans replica replica
Replica list

trans

trans

Transaction list

…

Metadata
/ Data

 Duplicated
version

Process

 21

 We implemented the transaction support in a file system independent manner and

provide a transaction API by which file systems can leverage to achieve file operation

atomicity. Figure 3.6 shows an example usage of the transaction API. Before each file

operation, the file system firstly invokes the transaction_start() function, which

initializes the trans data structure for the current process and inserts the trans data

structure into the global transaction list. Then, the file system calls duplicate() which

duplicates the data and metadata before they are going to be updated. It initializes a

replica data structure and copies the original values of the metadata/data into a

temporally-allocated area, then maps the area to its replica. The replica data structure

will be inserted into the replica list of the corresponding trans. Lastly, after the file

operation, the file system calls transaction_stop() which terminates the transaction. It

removes all duplicated data and metadata of corresponding this trans without

affecting data integrity and file system consistency because all metadata/data in the

file operation have already finished upgrading. Therefore, the transaction support

mechanism can have the same strength as the journal mode of ext3 because it

duplicates data and metadata before they are updated. Moreover, it causes little

overhead in file system because it deletes all replicas of data and metadata once file

operations finished and does not cause any additional disk I/O.

 22

3.2 Implementation and Integration of the Approaches

 In this section, we describe the detailed implementation and integration of the three

approaches.

3.2.1 Implementation of Three Mechanisms

 As mentioned before, we implement TempFFS by modifying an existing RAM file

system called Ram-FS (Resizable simple ram File System), and then insert it between

VFS and file system implementations. We intercept the invocation of the VFS file

create function (i.e., vfs_create()) and direct the invocation to the file create function

in RamFS. After the creation, operations on the file will use the file operations in

RamFS because the file now is placed in RamFS not in file system, such as Ext2.

 Upon memory pressure or the size of file is over the threshold, we transform files in

Ram-FS into the file system. The detail steps of transform are shown in Section 3.1.1.

After transforming, the file is belong to the file system, we only use the original file

operations in file system to access it.

 To implement the intelligent write-back policy relo (recency and location), we

record the information of a page in a zone information table, which is shown in Figure

3.3. When the page becomes dirty and inactive, we record this dirty page into the

corresponding zone information table. To achieve this, we invoke a function

add_to_zone() in two situation. First, when it calls the function that marks the page

dirty (i.e., set_page_dirty()), we check the active flag (PG_active) of the page. If this

dirty page is in the inactive list (i.e., PG_active flag is not set), we invoke a function

add_to_zone() for set_page_dirty() function. Second, when it calls the function that

moves the page form the active list into the inactive list (i.e.,

add_page_to_inactive_list()), we check whether the page is dirty or not. If this page is

dirty, we invoke a function add_to_zone() for add_page_to_inactive_list() function.

 23

The pseudo code of the add_to_zone() function is shown in Figure 3.7(a). First, we

get the block number of the page, and calculate the zone corresponding to this page

(i.e., block number of page divides block number per zone). Second, numbers of dirty

pages in zone information table increases by one. If the former block and latter block

of this page do not record in zone information table, it means that this page stands

alone. If this page is recorded in the zone information table, it produces a new

segment (contiguous dirty pages). Therefore, segment numbers of zone information

table increases by one. Lastly, we calculate the ASL (average segment length) as a

basis of selecting the zone to write back.

 When the dirty page is clean or active, we also need to remove the information of

the page from the zone information table. To achieve this, we invoke a function

remove_from_zone() in two situation. First, when it calls the function that clears dirty

of the page (i.e., clear_page_dirty_for_io()), we invoke a function

remove_from_zone() for each call of the clear_page_dirty_for_io() function. Second,

when it calls the function that moves the page form the inactive list into the active list

(i.e., add_page_to_active_list()), we invoke a function remove_from_zone() for each

call of the add_page_to_active_list() function. The pseudo code of the

remove_from_zone() function is shown in Figure 3.7(b). First, we also get the block

number of this page to calculate the corresponding zone. Second, the dirty page

numbers decreases by one. If the former block and latter block of this page do not

record in zone information table, when it removes this page, it reduces a segment.

Therefore, segment numbers of zone information table decreases by one. If the former

block and latter block of this page both record in zone information table, when it

removes this page, the original segment divide into two segments. Therefore, segment

numbers of zone information table increases by one. Lastly, it recalculates the ASL of

this zone.

 24

In Linux, when the system writes back the data in memory into the disk, the system

wakes up the Pdflush thread to call background_writeout(). In background_writeout(),

we change the original function (writeback_inodes()) into writeback_segment_zone()

which selects a zone to write back. It is shown in Figure 3.7(c). First, we select the

zone with largest average segment length. Second, we traverse all page lists recorded

in zone information table to write back all pages. Lastly, if the number of written-back

pages is greater than or equal to the number of demand for write-back pages, it

finishes. If not, it selects the next zone to write back.

 25

 Figure 3.7 Pseudo Code of Segment/Zone Algorithm

/* Adding a page to the zone info. table */
add_to_zone(page){
 get page’s block number;
 zone_number = page_block_number / pages_per_zone;
 zone_information_table[zone number].dirty_pages++;
 if (a new segment is created for this page)
 zone.segment++;
 ASL = zone. dirty_pages / zone.segment
}

(a)

/* removing a page from the zone info. table */
remove_from_zone(page){
 get page’s block number;
 zone_number = page_block_number / pages_per_zone;
 zone_information_table[zone number]. dirty_pages --;
 if (a segment is deleted due to the removal of the page)
 zone.segment--;
 if (a new segment is produced due to the removal of the page)
 zone.segment++;

 ASL = zone. dirty_pages / zone.segment
}

(b)

/* Segment-zone writeback algorithm*/
writeback_segment_zone(writeback_control wbc){

begin : select the zone with largest average segment length;
traverse the all segment’s page list of the zone to writeback all pages;

 if (number of pages written back >= wbc.nr_to_write)
 finish;
 else
 writeback_segment_zone(wbc);
 goto begin;
}

(c)

 26

 As mentioned in Section 3.1.3, we provide a transaction API for file systems the

require transaction support. Figure 3.8 shows the pseudo code of the major function

implementations, transaction_start(), transaction_stop() and duplicate(), in the API.

Transaction_start() firstly creates a transaction data structure trans, links this trans

into current process. Lastly, it inserts this trans into the global transaction list.

Transaction_stop() firstly gets a transaction data structure trans from current process,

clears the pointer of current process that points to this tans. Lastly, it frees all

duplicated data (replica) of this trans, and removes this trans form global transaction

list. Duplicate() firstly also gets a transaction data structure trans from current process,

creates a replica data structure to store the duplicated data, and inserts this replica into

corresponding trans. Lastly, it duplicates the data into this replica.

 To demonstrate the effectiveness of the API, we augmented the ext2 file system to

leverage the API. We inserted the function pair transaction_start() and

transaction_stop() in all ext2 file system operations such as ext2_create(), ext2_link(),

ext2_mkdir(), ext2_unlink(), ext2_rmdir(), etc. Moreover, we inserted the invocation

of duplicate() in functions that modify metadata and data such as ext2_new_inode(),

ext2_free_inode(), ext2_new_block() and ext2_free_blocks(), etc. We ensure the

invocation of the duplicate() function is right before the modification of metadata or

data.

 27

Figure 3.8 Implementation of the Transaction API (Pseudo Code)

/* Creating a transaction and inserting it to the transaction list */
transaction_start(){
 create a transaction data structure;
 link this trans into current process;
 insert this trans into transaction list;
}

(a)

/* removing a transaction from the transaction list */
transaction_stop(){
 get a trans from current->journal_info; // journalling filesystem info
 set current->journal_info as NULL;
 free all replicas in this trans;
 free this trans from transaction list;
}

(b)

/* duplicate metadata or data*/
duplicate(buffer_head *bh, size_t size){
 get a trans from current process;
 create a replica data structure;
 insert this replica into replica list of trans;
 copy data from buffer_head *bh to this replica;
}

(c)

 28

3.2.2 Integration of Three Mechanisms

 Three mechanisms can operate independently, and also can combine the

corresponding both of three mechanisms, even can integrate three mechanisms

together. We integrate the proposed three approaches in Linux 2.6.12. The overall

structure of three approaches is shown in Figure 3.9.

Figure 3.9Integration of the TempFFS, Intelligent Write Back and File Operation Transaction Support

 We create all files in TempFFS, the other file operations, such as read, write, and

delete use the file operations of Ramfs if this file is placed in TempFFS and use file

operations of original file system if this file is transformed into the file system. When

it needs flush the dirty pages into the disk, it uses intelligent write back policy (relo).

Moreover, we inserted the invocation of the transaction API into both ext2 file system

and TempFFS to maintain their consistency.

The performance results of different combinations of the three approaches are

shown in Chapter 4.

TempFFS

Disk

Intelligent write-back pages to disk

Transform pages to file system

Other file operations

Create file VFS

 File system Transactions

Transactions

 29

Chapter 4 Performance Evaluation

 In this chapter, we evaluate the performance of the three proposed mechanisms.

Section 4.1 describes the experimental environment and all the configurations under

performance comparison. Section 4.2 presents the performance improvements of

TempFFS. In Section 4.3, we compare the performance of various write-back policies

mentioned in Section3.1.2. Section 4.4 shows the performance and memory overhead

of the lightweight transaction support mechanism on file system operations. Finally,

we present the performance results of all combinations of the three proposed

mechanisms in Section 4.5.

4.1 Experimental Environment and Configurations

 Table 4.1 shows the experimental environment. Since large capacity MRAM is not

generally available in the market, and the performance characteristics of DRAM and

MRAM are comparable, we use DRAM to emulate MRAM. We evaluate the

performance of the proposed mechanisms under two popular benchmarks.

 Bonnie++ [5] is a micro-benchmark that measures the performance of single file

access. Three kinds of tests in Bonnie++ are performed, character_write, block_write,

and rewrite. The character write test writes a 2GByte file sequentially in a

character-by-character manner. The block write test writes a 2GByte file in a (several

bytes per block) block-based way. The rewrite test reads the existed block of file and

modifies it, then writes file by block-based. Postmark [22] is a macro-benchmark that

emulates the access pattern of an email server. It creates many files whose size

between Max. Size and Min. Size which are defined by users, and then operates the

assigned number of transactions which may be create/delete or read/append, lastly

deletes all files. In this experiment, we run 200k transactions, with the numbers of

 30

files from 5k to 30k and the file size ranging form 512 bytes to 10 Kbytes. For the

other parameters, we use the default settings of Postmark.

 Moreover, we also measure the performance under the execution of real application

such as untarring and compiling Linux kernel. We untar a package that contains the

source code and object files of Linux 2.6.12, and then compiling the kernel.

Table 4.1 Evaluation Environment

CPU AMD Athlon 64 3000+
Memory 1 GB DDR 400 Hardware
Disk Maxtor 80G 7200 RPM

OS Linux 2.6.12
Software

Workloads Bonnie++ 1.03a, Untar,
Make, Postmark 1.5

 Table 4.2 shows all the experimental configurations under performance comparison.

In the first two configurations, the original ext2 and ext3 file systems are used. For

ext3, we use the Journal mode since it is the only one that provides data integrity. The

mext3 configuration is the same as ext3 except that it improves the performance of

ext3 by placing the logs in a ramdisk residing on MRAM. The last seven

configurations represent various ways of combinations of the three proposed

mechanisms.

 31

Table 4.2 Experimental Configurations

Configurations Description

Ext2 Ext2 file system

Ext3 Journal mode of ext3 file system

Mext3 Ext3 with logs on MRAM

Ext2_Trans Lightweight transaction support on file system

operations

TempFFS Temporary-File file system

WB Intelligent write-back policy

TempFFS_Ext2_Trans Temporary-File file system + transaction support

WB_Ext2_Trans Intelligent write-back + transaction support

TempFFS_WB Temporary-File file system + intelligent write-back

TempFFS_WB_Ext2_Trans Temporary-File file system + intelligent write-back +

transaction support

 32

4.2 The Performance Results of TempFFS

0
5000

10000
15000
20000
25000
30000
35000

character
write

block write rewrite

Th
ro

ug
hp

ut
 (K

by
te

s/s
ec

)

Ext2

Ext2 with
TempFFS

Figure 4.1 Performance Improvements of TempFFS (Bonnie++)

 In this section, we present the performance improvements achieved from TempFFS

by comparing the performance of the ext2 file system with and without TempFFS

under different workloads. In the first experiment, we compare the performance under

Bonnie++. The values of the parameters, including the file size and the block size, are

the same as those in Section 4.1.

 Figure 4.1 shows the results. From the figure, we can see that TempFFS does not

result in noticeable performance improvements. This is mainly because the size

limitation of a file in TempFFS. As mentioned in Section 3.1.1, a file in TempFFS is

transformed to it original file system if its size exceeds the size limitation (currently,

1Mbytes). Thus, the 2GByte file is transformed to ext2 soon after its creation and

therefore gets little benefit from TempFFS.

 33

0
20

40
60

80
100

120
140

untar make

Ex
ec

ut
io

n
tim

e
(s

ec
s)

Ext2

Ext2 with
TempFFS

Figure 4.2 Performance Improvements of TempFFS (Untar and Compile Linux Kernel)

 In the second experiment, we measure the performance of TempFFS under Linux

kernel untarring and compilation. Figure 4.2 shows the results. From the figure, we

can see that TempFFS degrades the performance of ext2 by 18% under the untar

workload. Although untaring Linux kernel produces a significant number of small

files, they are never be deleted. Therefore, the files are just first placed in TempFFS,

and then transformed to their original file systems. No IO traffic can be saved.

Moreover, the file creation does not result in a large degree of fragmentation, and thus

TempFFS can seldom help in this workload. Instead, it degrades the performance due

to the file transformation overhead.

 For the make workload, the presence of TempFFS does not have a noticeable

impact on the performance of ext2. This is because the workload is CPU-bound.

Therefore, make needs not produce I/O operations to create object files because our

package has contained of object files.

 34

0

50

100

150

200

250

5000 10000 15000 20000 25000 30000

Files

Ex
ec

ut
io

n
tim

e
(s

ec
s)

0%
10%
20%
30%
40%
50%
60%
70%
80%

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t

Ext2 Ext2 with TempFFS

Figure 4.3 Performance Improvements of TempFFS (Postmark)

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
s o

f F
ile

s (
%

)

5000 10000 15000 20000 25000 30000

Files

Deleted in TempFFS Deleted in Ext2

Figure 4.4 Percentages of Files Deleted in TempFFS (Postmark)

 35

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

5000 10000 15000 20000 25000 30000

Files

IO
 T

ra
ff

ic
 (

re
qu

es
ts

)

0%

20%

40%

60%

80%

100%

120%

R
ed

uc
tio

n
o
f

IO
 T

ra
ff

ic

Ext2 Ext2 with TempFFS Reduction of IO traffic

Figure 4.5 Reduction of IO Traffic with TempFFS

0
2000
4000
6000
8000

10000
12000
14000

50
00

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0

Files

A
ve

ra
ge

 F
ile

 S
pa

n
(b

lo
ck

s)

Ext2

Ext2 with
TempFFS

Figure 4.6 Average File Span (Postmark)

 In this experiment, we measure the performance improvements of TempFFS under

Postmark. In this experiment, 200k transactions were performed and the file size

ranges from 512 bytes to 10 Kbytes. We measured the performance under various

numbers of files and directories. As shown in Figure 4.3, TempFFS effectively

 36

improves the system performance. Specifically, the performance improvement ranges

from 34% to 69%. This is because a number of files have been deleted before they are

transformed to the file system, reducing both the I/O traffic and the degree of file

fragmentation. We demonstrate this in the following experiments.

As mentioned before, Postmark deletes all the files at the end of its execution.

Figure 4.4 shows the percentage of the number of files deleted in TempFFS and ext2,

with the presence of TempFFS. As shown in the figure, at least 44% of the files are

deleted in TempFFS. In the cases of 5000 and 10000 files, all files are deleted in

TempFFS because the capacity of TempFFS is enough to contain all the files. When

the number of files increases further, a number of files are transformed to ext2,

because of memory pressure, and finally deleted in ext2. For each file deleted in

TempFFS, all its file operations are done in memory and involve no disk IO. Figure

4.5 shows the reduction of IO traffic with the presence of TempFFS. In the cases of

5000 and 10000 files, nearly 100% of the IO traffic can be eliminated since almost all

file operations are done in TempFFS. For the other cases, about 31% of the IO traffic

can be eliminated. Moreover, we show that TempFFS can reduce the degree of file

fragmentation, which is evaluated by using the file span, the distance between the first

block and the last block of a file. During the execution of Postmark, we record the file

span of each file upon the deletion of the file. Figure 4.6 shows the average file span

of all the files. As shown in the figure, the degree of file fragmentation is largely

reduced. Especially, in the cases of 5000 and 10000 files, the average file span is zero

because all the files are deleted in TempFFS and do not have corresponding blocks on

the disk.

 37

4.3 The Performance Results of Intelligent Write-Back Policy

In this section, we compare the performance of the four write-back policies, file,

recency, location, and relo. The file policy is the file based policy used in Linux. It

scans the list of dirty files and writes back the dirty pages of each dirty file. The

recency policy only writes back dirty pages in the inactive list of the Linux page

cache. The location policy selects the zone with the maximum ASL value and writes

back the dirty pages within the selected zone. Finally, the proposed relo policy

combines the location and the recency policies and writes back the inactive dirty

pages in the selected zone.

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

character
write

block write rewrite

Th
ro

ug
hp

ut
 (K

by
te

s/s
ec

)

file
recency
location
relo

Figure 4.7 Performance Comparison of the Write Back Polices (Bonnie++)

 From Figure 4.7 shows the performance comparison of the four policies under the

Bonnie++ benchmark. The values of the parameters, including the file size and the

block size, are the same as those in Section 4.1. As shown in the figure, the

performance results of the latter three policies are all better than those of the first one,

 38

the original write back policy in Linux. As mentioned in Section 3.1.2, this is because

the Linux write back policy does not consider the recency and disk location

information of the dirty pages, resulting in more redundant page write traffic and

longer seek and rotation delay. The proposed relo policy considers both the recency

and the disk location information and outperforms the original Linux policy by 31%

to 34% under the Bonnie++ benchmark.

0

20

40

60

80

100

120

untar make

Ex
ec

ut
io

n
tim

e
(s

ec
s)

file
recency
location
relo

Figure 4.8 Performance Comparison of the Write Back Polices (Untar and Compile Linux Kernel)

 Figure 4.8 shows the performance comparison of the four write back policies under

Linux kernel untarring and compilation. As shown in figure, all the latter three

policies perform better than the original one in Linux, and the proposed relo policy

achieve the best performance among the four. Specifically, relo outperforms the file

policy by 23% in the untar workload. In the make workload, the performance

difference is not obvious since the workload is CPU intensive.

 39

0
20
40
60
80

100
120
140
160

5000 10000 15000 20000 25000 30000

Files

Ex
ec

ut
io

n
tim

e
(s

ec
)

0%
10%
20%
30%
40%
50%
60%
70%

Pe
rfo

rm
an

ce
Im

pr
ov

em
en

t

file zone segment zone_segment
zone/file segment/file zone_segment/file

Figure 4.9 Performance Comparison of the Different Locative Write Back Polices

 Figure 4.9 shows three different locative write back policies, zone-based which

writes back a region of disk and segment-based which writes back a longest

contiguous blocks of disk and zone/segment-based which mentioned in Section 3.2.

The performance improvement of zone/segment-based has about 58% and is best. The

zone-based is better than segment-based because zone-based can save the seek time of

disk and segment-based can save the rotation delay.

0
20
40
60
80

100
120
140
160

5000 10000 15000 20000 25000

Files

Ex
ec

ut
io

n
tim

e
(s

ec
s)

0%
10%
20%
30%
40%
50%
60%
70%
80%

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t

file recency location relo recency/file location/file relo/file

Figure 4.10 Performance Comparison of the Write Back Polices (Postmark)

 40

 Figure 4.10 shows the performance comparison of the four write back policies

under Postmark. In this experiment, 200k transactions were performed and the file

size ranges from 512bytes to 10Kbytes. We measured the performance under various

numbers of files. In this figure, the bars denote the execution time of the Postmark

and the curves denotes the performance improvements of the latter three policies over

the file policy.

As shown in the figure, the performance improvements of the recency, location,

and relo policies are about 62%, 58% and 67%, respectively, as the file numbers are

lager than 15000. In the case of 5000 files and 10000 files, there is no obvious

performance difference among the four policies. This is because the working set is

smaller than the memory size, and hence the write back procedure is seldom

triggered.

0
200
400
600
800

1000
1200
1400

15000 20000 25000 30000

Files

A
cc

um
ul

at
e

In
te

rr
eq

ue
st

s
D

is
ta

nc
e

(m
ill

io
n

bl
oc

ks
)

file zone segment zone_segment(location) recency relo

Figure 4.11 Accumulate Inter-requests Distance (Postmark)

 Figure 4.11 shows the accumulate inter-requests distance which is the accumulate

blocks of all inter-requests. The less of accumulate inter-requests distance means the

more contiguous write-back blocks. The zone/segment-based has the least accumulate

inter-requests distance because it writes back the contiguous or neighbor blocks.

 41

0
10000
20000
30000
40000
50000
60000
70000

15000 20000 25000 30000

Fils

R
ep

ea
te

d
W

rit
eb

ac
k

B
lo

ck
s

file location recency relo

Figure 4.12 Repeated Write Back Blocks (Postmark)

 Figure 4.12 shows the total number of repeated write back blocks. In this

experiment, the recency and relo has the less repeated write back blocks because they

avoid write back the blocks which used recently.

4.4 The Performance Results of Transaction Support on Ext2

0
5000

10000
15000
20000
25000
30000
35000

character
write

block write rewrite

Th
ro

ug
hp

ut
 (K

by
te

s/s
ec

)

Ext3
Mext3
Ext2
Ext2_Trans

Figure 4.13 Performance of the Transactions Support Mechanism (Bonnie++)

As mentioned in Section 3.1.3, we augmented ext2 to utilize the proposed

 42

transaction API to support atomic file operations. In this Section, we compare the

performance of the augmented ext2 with that of ext3. For ext3, we use the journal

mode since the augmented ext2 can ensure both file system consistency and data

integrity. Moreover, we use two versions of ext3. One places the log in a 256 MB disk

partition (ext3), while the other places the log in a 256 MB ramdisk (mext3). Finally,

the performance of the original ext2 is also presented for the evaluation of the runtime

overhead of the transaction API. Note that ext2 supports neither file system

consistency nor data integrity.

 Figure 4.13 shows the performance comparison under the Bonnie++ benchmark. As

shown in the figure, ext2 with transaction support results in the best performance

among the three file systems that ensure file system consistency. This is because it

only duplicates data and metadata in memory during the file operations and does not

involve any disk I/O. It outperforms the ext3 by 63% and the mext3 by 31%. The

performance of ext3 is the worst since the journal mode of Ext3 logs both metadata

and data updates on the disk, it requires a significant number of extra disk IO. Mext3

eliminates some journaling IO traffic. However, the journaling IO traffic is still

required once the journal space is full. Besides, the in-memory journal space of mext3

also occupies the 256MB capacity of the main memory such that the physical memory

decreases a lot. The performance results between ext2 and ext2 with transaction

support are almost the same because our transaction support does not produce I/O

traffics and needs only a small amount of memory space.

 43

0

20

40

60

80

100

120

140

untar make

Ex
ec

ut
io

n
tim

e
(s

ec
s)

Ext3
Mext3
Ext2
Ext2_Trans

Figure 4.14 Untar and Compile Linux Kernel in transaction support

 Figure 4.14 shows the performance comparison under Linux kernel untarring and

compilation. Similar to the results in Figure 4.10, ext2 with transaction support

always results in the better performance than ext3 and mext3. For the untar case, the

performance difference is smaller than that under Bonnie++. This is because untarring

the Linux kernel creates many files but does not modify and delete them later, and

then it produces journal data less than Bonnie++ or Postmark. Therefore, ext2 with

transaction support outperforms the ext3 by 17% and the mext3 by 9%. Besides, the

execution time of ext2 transaction is greater than the ext2 a little. For the make case,

since make application is CPU-bound, the performance results of them are almost the

same.

 44

0
100
200
300
400
500
600
700
800

5000 10000 15000 20000 25000

Files

Ex
ec

ut
io

n
tim

e
(s

ec
s)

0%

20%

40%

60%

80%

100%

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t

Ext3 Mext3 Ext2 Ext2_Trans Ext2_Trans/Ext3 Ext2_Trans/Mext3 Mext3/Ext3

Figure 4.15 Performance of the Transactions Support Mechanism (Postmark)

 Figure 4.15 shows the performance comparison under Postmark. As shown in the

figure, ext2 with transaction support outperforms ext3 and mext3 by 76~93% and

65~81%, respectively.

Since a large number of transactions (i.e., 20k) were performed during the

execution of Postmark, ext3 generates a large volume of journal data and thus a

significant number of journaling I/O, largely increasing the total execution time.

When file numbers is less, the mext3 has better performance improvement because

journal space of mext3 is not often full, and it needs only some writing-back journal

data. But the volume of the journal data is increase as the file numbers increase, the

journal space of mext3 is often full and it must frequently write back journal data to

the disk. Therefore, the performance improvement of mext3 degrades when the file

numbers increase.

 Instead, ext2 with transaction support just duplicates metadata and data (that are

 45

under update) for not-yet-completed file operations. Once the file operation completes,

the duplicated copy is deleted. Thus, it does not generate any journaling IO and its

execution time is almost the same as ext2.

Table 4.3 Memory Overhead of Transaction Support with Workloads

Workloads Maximum Memory Overhead

Untar and Make Linux Kernel 24 KB

Bonnie++ 122 KB

Postmark 24 KB

As mentioned before, the transaction support mechanism duplicates metadata and

data that are under update. Therefore, it requires some memory space for storing the

duplicated copies. In this section, we measure the maximum amount of such extra

memory space required during the execution of the workloads used in this paper. We

record the maximum amount of total replicas in transaction list and update it in

runtime.

Table 4.3 shows the results. As shown in the table, the extra memory space required

is extremely small, only 24 KB for Linux kernel untarring and compilation, 24 KB for

Postmark, and 122 KB for Bonnie++. This is because applications usually do not

update a large amount of metadata or data in a single file operation. From the results,

we can see that the memory overhead of the transaction support mechanism can

nearly be ignored.

4.5 Put it all Together

 In the section, we show the performance results of different combinations of the

three proposed mechanisms.

 46

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

Ext2

Ext2
 w

ith
 Tem

pF
FS

W
B

Tem
pF

FS_W
B

Ext3

Ext2
_T

ran
s

Tem
pF

FS_T
ran

s

W
B_T

ran
s

Tem
pF

FS_W
B_T

ran
s

Configurations

Th
ro

ug
hp

ut
(K

by
te

s/s
ec

)
character write
block write
rewrite

Figure 4.16 Performance Results of Different Combinations (Bonnie++)

Figure 4.16 shows the performance results under Bonnie++. In this figure, the

results of each test contain six bars. The left two bars represent throughput under file

systems that do not ensure file system consistency, whereas the rest represent

throughput under file systems that ensure file system consistency.

Third points in the figure are worth mentioning. First, both the relo write back

policy and the lightweight transaction support mechanism lead to performance

improvements. Second, incorporating TempFFS into the system causes performance

degradation. This is demonstrated by the values of the rightmost two bars of each test.

Comparing the values of the left two bars and the values in both Figure 4.1 and 4.4

also lead to a similar result. This is because, as we mentioned in Section 4.2,

TempFFS does not enhance performance under Bonnie++. Third, by comparing the

values of the first and the fourth bars, we can see that the runtime overhead of

transaction support can nearly be ignored.

 47

0

50

100

150

200

250

Ext2

Ext2
 w

ith
 Tem

pF
FS

W
B

Tem
pF

FS_W
B

Ext3

Ext2
_T

ran
s

Tem
pF

FS_T
ran

s

W
B_T

ran
s

Tem
pF

FS_W
B_T

ran
s

Configurations

Ex
ec

ut
io

n
tim

e
(s

ec
s)

untar
make

Figure 4.17 Performance Results of Different Combinations (Linux Kernel Untarring and Compilation)

 Figure 4.17 shows the execution time of Linux kernel untarring and compilation

under various configurations. Similar to the results in Figure 4.12, both relo and the

lightweight transaction support mechanism lead to performance improvements, and

incorporating TempFFS into the system causes performance degradation. This is

because TempFFS does not have performance improvement under the untar workload.

 Similar to the previous observations, the performance of the make workload is

almost the same among all configurations.

 48

0
100
200
300
400
500
600
700
800

Ext2

Tem
pF

FS W
B

Tem
pF

FS
_W

B
Ext3

MExt3
Tran

s

Tem
pF

FS
_T

ran
s

W
B_T

ran
s

Tem
pF

FS
_W

B_T
ran

s

Configurations

Ex
ec

ut
io

n
tim

e
(s

ec
s)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t

Figure 4.18 Performance Results of Different Combinations (Postmark, 512-10K bytes)

Figure 4.18 shows the performance results under Postmark. In this experiment, the

file size ranges from 512 bytes to 10 Kbytes for default setting and the numbers of

files are 25000. The results can be divided into two groups. In the first group (shown

in the left side of the figure), the file system does not ensure consistency, whereas in

the second group (shown in the right side of the figure), the file system does ensure

consistency.

According to the results of the first group, the performance of TempFFS_WB

achieves the best performance. Specifically, it has a 76% performance improvement,

while TempFFS has a 33% performance improvement and the relo write back policy

has a 66% performance improvement, when compared to ext2. Different from the

previous results, combining TempFFS does have a positive effect on the system

performance for the Postmark workload. Therefore, TempFFS_WB results in the best

performance.

 49

 The second group reveals a similar result. The TempFFS_WB_Trans configuration

achieves the best performance and outperforms ext3 by 94%. A large portion of the

performance improvement is due to the lightweight transaction support mechanism,

which outperforms ext3 by 78% when being used alone. Note that, the small

differences in the following pairs (TempFFS, TempFFS_trans), (WB, WB_trans), and

(TempFFS_WB, TempFFS_WB_trans) again demonstrate that the performance

overhead of our transaction support mechanism can nearly be ignored.

0

100

200

300

400

500

600

700

Ext2

Tem
pF

FS W
B

Tem
pF

FS
_W

B
Ext3

MExt3
Tran

s

Tem
pF

FS
_T

ran
s

W
B_T

ran
s

Tem
pF

FS
_W

B_T
ran

s

Configurations

Ex
ec

ut
io

n
tim

e
(s

ec
s)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t

Figure 4.19 Performance Results of Different Combinations (Postmark, 512-2M bytes)

In the last experiment, we measure the performance of different configurations

under Postmark that the file size ranges from 512 bytes to 2 Mbytes and the numbers

of files are 25000 because we set the threshold of file size in TempFFS is 1Mbytes.

Similar to the results in Figure 4.18, Figure 4.19 shows the results that even if the

file size range is increase, TempFFS_WB achieves the best performance in the first

 50

group, and it outperforms ext2 by about 50%. Moreover, TempFFS_WB_tans

achieves the best performance in the second group, and it outperforms ext3 by 78%.

 51

Chapter 5 Conclusion

 We provide three mechanisms to improve performance of file system on NVRAM

system. First, the TempFFS can avoid some unnecessary IO and reduce file

fragmentations when short-lived files are deleted in TempFFS. Moreover, TempFFS is

put between VFS and file system and it does not modify any codes of file system.

Second, we provide an intelligent write-back policy (relo) that considers both

locations of dirty blocks in the disk and recency. It not only can reduce the seek time

and rotation delay, but also avoids writing back recently-updated dirty pages. Last, we

provide a simple transaction support in NVRAM system. It can make sure the file

operation is consistent and does not produce any extra disk IO overhead.

 In performance results, we not only show the performance improvement per

mechanism, but also show the performance improvement of all combinations among

three mechanisms.

 52

References

[1] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M. Seltzer, “Non-Volatile

Memory for Fast, Reliable File Systems”, Proceedings of the 5th International

Conference on Architectural Support for Programming Languages and

Operating Systems, pp.10-22, October 1992.

[2] M. Baker and M. Sullivan, “The Recovery Box: Using Fast Recovery to Provide

High Availability in the UNIX environment”, Proceedings of the USENIX

Summer Conference, June 1992.

[3] A. Batsakis and R. Burns, “AWOL: An Adaptive Write Optimizations Layer”,

Proceedings of the USENIX Conference on File and Storage Technologies, pp.

67-80, February 2008.

[4] A. Ames, N. Bobb, S. Brandt , A. Hiatt, C. Maltzahn, E. Miller, A. Neeman, and

D. Tuteja, “Richer File system Metadata Using Links and Attributes”.

Proceedings of the 13th NASA Goddard Conference on Mass Storage and

Technologies (TSST’ 05), pp. 49-60, April 2005.

[5] T. Bray, “Bonnie++ benchmark”, http://www.coker.com.au/bonnie++/

[6] K. Chen, R. B. Bunt and D. L. Eager, “Write Caching in Distributed File

Systems”, Proceedings of the 15th International Conference on Distributed

Computing Systems, pp.457-466, June 1995.

[7] P. M. Chen., “Optimizing Delay in Delayed-Write File Systems”, Technical

Report CSE–TR–293–96, University Michigan, May 1996.

[8] P. Chen, W. NG, G. Rajamani, C. Aycock and D. Lowell “The Rio File Cache:

Surviving Operating System Crashes”, Proceedings of the International

 53

Conference on Architectural Support for Programming Languages and

Operating Systems, pp. 74-83, October 1996.

[9] R. Desikan, S. W. Keckler, D. Burger and R. Austin. “Assessment of MRAM

Technology Characteristics and Architecture”, Technical Report CS-TR-01-36,

University of Texas at Austin, Department of Computer Sciences, April 2001.

[10] B. Dipert. “Exotic Memories, Diverse Approaches”, EDN Magazine, pp.56-70,

April 2001.

[11] I. H. Doh, J. Choi, D. Lee and S. H. Noh, “Exploiting Non-Volatile RAM to

Enhance Flash File System Performance”, Proceedings of the International

Conference on Embedded Software, October 2007.

[12] N. K. Edel, D. Tuteja, E. L. Miller and S. A. Brandt, “MRAMFS: A Compressing

File System for Non-volatile RAM”, Proceeding of the IEEE Society’s 12th

Annual International Symposium on Modeling, Analysis and Simulation of

Computer and Telecommunications Systems, pp. 596-603, Oct. 2004.

[13] N. K. Edel, E. L. Miller, K. S. Brandt and S. A. Brandt, “Measuring the

Compressibility of Metadata and Small Files for Disk/Nvram Hybrid Storage

Systems”, Proceedings of the 2004 International Symposium on Performance

Evaluation of Computer and Telecommunication Systems, July 2004.

[14] B. C. Forney, A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau, “Storage-aware

Caching: Revisiting Caching for Heterogeneous Storage Systems”, Proceedings

of the First Usenix Conference on File and Storage Technologies, pp.61-74,

January 2002.

[15] G. Ganger and M. F. Kaashoek, “Embedded Inodes and Explicit Grouping:

 54

Exploiting Disk Bandwidth for Small Files”, Proceedings of the 1997 USENIX

Technical Conference, pp. 1-18, January 1997.

[16] B. S. Gill and D. S. Modha, “WOW: Wise ordering for writes – combining

spatial and temporal locality in Non-Volatile Caches”, Proceedings of the 4th

Conference on File and Storage Systems, pp. 129–142, Dec. 2005.

[17] K. M. Greenan and E. L. Miller, “Reliability Mechanisms for File Systems using

Non-Volatile Memory as a Metadata Store”, Proceedings of the International

Conference on Embedded Software, October 2006.

[18] K. M. Greenan and E. L. Miller, “PRIMS: Making NVRAM Suitable for

Extremely Reliable Storage”, Proceedings of the 3rd workshop on Hot Topics in

System Dependability, April 2007.

[19] T. Haining and D. Long., “Management Policies for Non-volatile Write Caches”,

Proceedings of the 18th IEEE International Performance, Computing and

Communications Conference, pp. 321–328, February 1999.

[20] R. Y. Hou and Y. N. Patt., “Using Non-volatile Storage to Improve the Reliability

of RAID5 Disk Arrays”, Proceedings of the 27th International Symposium on

Fault- Tolerant Computing, pp. 206–215, June1997.

[21] S. Jiang, X. Ding, F. Chen,E. Tan, and X. Zhang, “DULO: An Effective Buffer

Cache Management Scheme to Exploit Both Temporal and Spatial Locality”,

Proceedings of the 4th USENIX Conference on File and Storage Technologies,

pp.101-114, December.2005.

[22] J. Katcher, “Postmark: A New File System Benchamrk”. Technical Report

TR3022 Network Appliance Inc, October 1997.

 55

[23] A. Kawaguchi, S. Nishioka, and H. Motoda., “A Flash Memory Based File

System”, Proceedings of the 1995 USENIX Technical Conference, pp. 155–164,

January 1995.

[24] M. Levy, “Memory Products, Chapter Interfacing Microsoft’s Flash File System”,

Intel Corporation, pp. 4-318-4-325, 1993.

[25] B. Liskov, S. Ghemawat, R. Gruber, and P. Johnson, “Replication in the Harp

File System”, Proceedings of the 1991 Symposium on Operating System Priciples,

October 1991.

[26] S. Lim, H. J. Choi, and K. H. Park, “Journal Remap-Based FTL for Journaling

File System with Flash Memory”, Proceedings of the High Performance

Computation Conference , pp. 192-203, September 2007.

[27] D. E. Lowell, P. M. Chen, “Free Transactions with Rio Vista”. ACM Symposium

on Operating Systems Principles, October 1997.

[28] C. Lumb ,J. Schindler ,G. Ganger ,D. Nagle and E. Riedel, “Towards Higher Disk

Head Utilization: Extracting Free Bandwidth from Busy Disk Drives”,

Proceedings of the Symposium on Operating SystemsDesign and Implementation,

pp. 87-102, October 2000.

[29] M. McKusick, W. Joy, S. Leffler, and R. Fabry, “A Fast File System for UNIX”,

ACM Transactions on Computer Systems, pp. 181-197, August 1984.

[30] M. McKusick, G. Ganger, “Soft Updates: A Technique for Eliminating Most

Synchronous Writes in the Fast File System”, USENIX Annual Technical

Conference, pp. 24-24, 1999.

[31] E. Miller, S. Brandt, and D. Long, “HeRMES: High-Performance Reliable

 56

MRAM-Enabled Storage”, Proceedings of the Eighth Workshop on Hot Topics in

Operating Systems, pp.95-99, May 2001.

[32] J. C. Mogul, “A Better Update Policy”. Proceedings of the USENIX 1994

Technical Conference, pp.99-111, June 1994.

[33] R. Ohmura, N. Yamasaki, and Y. Anzai, “Device State Recovery in Non-Volatile

Main Memory Systems”, Proceedings of the 27th Annual International

Computer Software and Applications Conference, pp.16-21, November 2003.

[34] “Ramfs”, http://lwn.net/Articles/156098/

[35] “Reiserfs”, http://www.namesys.com

[36] D. Roselli, “Characteristics of File System Workloads”, Technical Report

CSD-98-1029, University of California at Berkeley, December 1998.

[37] D. Roselli, J. Lorch, and T. Anderson, “A comparison of file system workloads”,

Proceedings of the USENIX Annual Technical Conference, pp. 41–54, Jun. 2000.

[38] C. Ruemmler and J. Wilkes, “UNIX disk access patterns”, Proceedings of the

Winter 1993 USENIX Conference, pp. 405–20, 25–29, January 1993.

[39] M. Rosenblum, and J. Ousterhot, “The Design and Implementation of a

Log-Structured File System”, ACM Transaction on Computer Systems, February

1992

[40] M. Satyanarayanan, H. H. Mashburn, P. Kunar, D. C. Steere, and J. J. Kistler,

“Lightweight Recoverable Virtual memory“, ACM Special Interest Group on

Operating Systems, pp. 33-57, February 1993.

[41] W. Vogels, “File System Usage in Windows NT 4.0”, Proceedings of the 17th

 57

Symposium on Operating Systems Principles, pp.93-109, December 1999.

[42] A. Wang, G. H. Kuenning, P. Reiher, and G. J. Popek, “Conquest: Better

Performance Through a Disk/Persistent-RAM Hybrid File System”. Proceedings

of the General Track: 2002 USENIX Annual Technical Conference, pp.15-28,

Jane 2002.

[43] J. Wang and Y. Hu., “PROFS – Performance-Oriented Data Reorganization for

Log-structured File System on Multi-Zone Disks”, Proceedings of the 9th

International Symposium on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems, pp. 285–293, August 2001.

[44] D. Woodhouse, “The Journaling Flash File System”, Ottawa Linux Symposium,

July 2001.

[45] M. Wu, and W. Zwaenepoel, “eNVy: A Non-Volatile, Main Memory Storage

System”, Proceedings of the 6th Conference on Architectural Support for

Programming Languages and Operating Systems, pp. 86-97, October 1994.

[46] W. Vogels, “File System Usage in Windows NT 4.0”, Proceedings of the 17th

Symposium on Operating Systems Principles, pp.93-109, December 1999.

[47] “XFS: A High Performance Journaling File System”,

http://oss.sgi.com/projects/xfs

