
�

������������

��������	
�

�����������������������������

��������	
�� ��� ���
 � � � � � � � � � �

�

Design of an Unified Entropy IP for H.264 CAVLC/CABAC

Decoding

������� � � �

	
 � � �
 � � ��� � �

��				������������

 ii

��������	
�������
 � � � � � � � � � �

Design of an Unified Entropy IP for H.264 CAVLC/CABAC Decoding

� � ��� � � Student�Yi-Tsen Chen

	
 � � �
 � � Advisor�Chun-Jen Tsai

� � � � � �

� � � � � � � � � �

� � �

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2008

Hsinchu, Taiwan, Republic of China

���������	

 iii

Acknowledge
�� � � � � � � � � ! " �# $ % & � ' () * + , - . / " ��0 1 � 2 3

& � � 4 5 � � 6 7 � 8 9 : ; " �< = > ? @ A B C � D E " �# $ % 0 1 � F

G ' (" �H & I J K �� L 3 " �M N 3 O � � 4 5 P Q R S O 6 T U V W < X

Y Z [\] ��^ % % _ ` a � b � c d e f g h i j k " �H & c � � � M N I

l m n m o p " �q r & s % % & � e t " �u v 7 e t � w x " �& y z { | � }

~" �q r # � � z � v MMESLAB � f � " �Z � # $ % d e ��

 iv

Abstract

In this thesis, we designed a synthesizable RTL model of the entropy decoder

(CAVLC and CABAC) for the AVC (a.k.a. H.264) video coding standard. The design

has been verified on the Xilinx Vertex 5-based FPGA development board, ML506,

using full system verification with the AVC/H.264 reference software JM 12.2. The

size of the combined CAVLD and CABAD logic is reasonably small. It only occupies

about 7000 slices (21% logic resource of the target device). At a clock rate of 50MHz,

the performance of the design can achieve decoding of bitrates over 11 mbps for

CAVLD and 8 mbps for CABAC.

 v

Table of Contents
Chapter 1. Introduction .. 1

1.1. Motivation .. 1
1.2. Target Platform ... 2
1.3. Outline of the Thesis ... 4

Chapter 2. Previous Work .. 5
2.1. CAVLD .. 5
2.2. CABAD .. 6

Chapter 3. Design of the CAVLD Logic ... 9
3.1. Introduction to the CAVLD Entropy Decoder 9

3.1.1. Algorithm of CAVLD ... 9
3.2. Overall System Architecture ... 11

3.2.1. AMBA AHB BUS Wrapper for CAVLD 11
3.2.2. CAVLD Top Module ... 13

3.3. State Controller ... 15
3.3.1. Interface of State Controller .. 15
3.3.2. States of the Controller .. 18
3.3.3. Barrel Shifter .. 20

3.4. Bitstream Preprocessing Logics .. 22
3.4.1. First One Detector ... 22

3.4.1.1. Interface of First One Detector 22
3.4.1.2. Architecture of First One Detector 23

3.4.2. Switch Input Module ... 24
3.4.2.1. Switch_input_1 Module ... 24
3.4.2.1.1. Interface of Switch_input_1 Module 24
3.4.2.1.2. Architecture of switch_input_1 Module 25
3.4.2.2. Switch_input_2 Module ... 26
3.4.2.2.1. Interface of switch_input_2 Module........................... 26
3.4.2.2.2. Architecture of switch_input_2 Module 27

3.5. Coeff_token Decoder .. 27
3.5.1. Interface of Coeff_token Decoder ... 27
3.5.2. Architecture of Coeff_token Decoder .. 29

3.6. Trailing_ones Calculator ... 31
3.6.1. Interface of Trailing_ones Calculator .. 31
3.6.2. Architecture of Trailing_ones Calculator 32

3.7. Level Decoder .. 33
3.7.1. Interface of Level Decoder .. 33

 vi

3.7.2. Architecture of Level Decoder .. 35
3.8. Total_zeros Decoder ... 40

3.8.1. Interface of Total_zeros Decoder ... 40
3.8.2. Architecture of Total_zeros Decoder ... 41

3.9. Run_before Decoder ... 43
3.9.1. Interface of Run_before Decoder .. 43
3.9.2. Architecture of Run_before Decoder ... 45

3.10. A CAVLD Decoding Example .. 46
Chapter 4. Design of the CABAD Logic .. 53

4.1. Introduction to the CABAD Entropy Decoder 53
4.1.1. Algorithm of CABAD ... 53

4.2. Overall System Architecture ... 54
4.2.1. AMBA AHB BUS Wrapper for CABAD 54
4.2.2. CABAD Top Module .. 55

4.3. Binary Arithmetic Coding ... 58
4.3.1. Normal Decoding Process (AC_Regular_mode) 59

4.3.1.1. Interface of Normal Decoding Process 60
4.3.1.2. Flow Chart of Normal Decoding Process 62
4.3.1.3. Architecture of Normal Decoding Process 62

4.3.2. Bypass Decoding Process (AC_Bypass_mode) 67
4.3.2.1. Interface of Bypass Decoding Process 68
4.3.2.2. Flow Chart of Bypass Decoding Process 68
4.3.2.3. Architecture of Bypass Decoding Process 69

4.3.3. Final Decoding Process (AC_Final_mode) 71
4.3.3.1. Interface of Final Decoding Process 71
4.3.3.2. Flow Chart of Final Decoding Process 72
4.3.3.3. Architecture of Final Decoding Process 73

4.4. Initialization for context variables ... 76
4.4.1. Interface of Initialization for context variables 76
4.4.2. Architecture of Initialization for context variables 77

4.5. State Controller for each Syntax Element Controller 79
4.6. MB Skip Flag ... 81

4.6.1. Interface of MB Skip Flag ... 81
4.6.2. Flow Chart of MB Skip Flag ... 84

4.7. MB Type... 84
4.7.1. Interface of MB Type .. 84
4.7.2. Flow Chart of MB Type in I_slice ... 85
4.7.3. Flow Chart of MB Type in P_slice .. 87

 vii

4.7.4. Flow Chart of MB Type in B_slice .. 88
4.8. Sub MB Type .. 91

4.8.1. Interface of Sub MB Type ... 92
4.8.2. Flow Chart of Sub MB Type in P_slice 92
4.8.3. Flow Chart of Sub MB Type in B_slice 93

4.9. Intra�Prediction�Mode�for�Luma4x4 .. 95
4.9.1. Interface of Intra�Prediction�Mode�for�Luma4x4 95
4.9.2. Flow Chart of Intra�Prediction�Mode�for�Luma4x4 96

4.10. Intra Prediction Mode for Chroma .. 96
4.10.1. Interface of Intra Prediction Mode for Chroma 96
4.10.2. Flow Chart of Intra Prediction Mode for Chroma 97

4.11. Reference�Frame�Index ... 98
4.11.1. Interface of Reference�Frame�Index .. 98
4.11.2. Flow Chart of Reference�Frame�Index 99

4.12. Motion Vector Difference ... 99
4.12.1. Interface of Motion Vector Difference 100
4.12.2. Flow chart of Motion Vector Difference 101

4.13. Coded Block Pattern ... 101
4.13.1. Interface of Coded Block Pattern... 101
4.13.2. Flow Chart of Coded Block Pattern ... 102

4.14. MB Based Quantization Parameter ... 103
4.14.1. Interface of MB Based Quantization Parameter 103
4.14.2. Flow Chart of MB Based Quantization Parameter 103

4.15. Coded Block Flag ... 104
4.15.1. Interface of Coded Block Flag ... 104
4.15.2. Flow Chart of Coded Block Flag ... 105

4.16. Significance Map .. 106
4.16.1. Interface of Significance Map ... 106
4.16.2. Flow Chart of Significance Map .. 107

4.17. Level Information ... 108
4.17.1. Interface of Level Information... 108
4.17.2. Flow Chart of Level Information ... 109

4.18. A CABAD Decoding Example.. 110
Chapter 5. Experimental Results .. 115

5.1. Synthesis Results of the Proposed Design 115
5.2. Performance of the Proposed Design .. 116

5.2.1. Performance of the CAVLD Logic .. 116
5.2.2. Performance of the CABAD Logic.. 119

 viii

5.2.3. Comparisons with Previous Work.. 122
5.2.3.1. Comparison of CAVLD Logic with the Design in [8]
 122
5.2.3.2. Performance of CABAD Logic 123

5.2.4. Performance Analysis on Target Platform 124
Chapter 6. Conclusions and Future Work ... 126
References ... 127

 ix

List of Figures

Fig 1. Bit-rate savings provided by CABAC relative to CAVLC of

h.264/AVC (from [11]) .. 2
Fig 2. ML-506 development board. ... 3
Fig 3. Target platform system architecture ... 4
Fig 4. Architecture of the bus wrapper module 12
Fig 5. Select input logic in Fig 4.. 13
Fig 6 Select output logic in Fig 4. .. 13
Fig 7. Overall architecture of the CAVLD top module 15
Fig 8. Interface of CAVLD controller .. 18
Fig 9. Finite state machine of CAVLD... 20
Fig 10. Architecture of Shift_count and carry signal.............................. 20
Fig 11. Architecture of forward signal ... 21
Fig 12. Architecture of Input_data signal .. 21
Fig 13. interface of first one detector ... 22
Fig 14. Architecture of first one detector ... 23
Fig 15. Architecture of Priority_1 ~ Priority_5 24
Fig 16. Interface of switch_input_1 module .. 25
Fig 17. Architecture of sil_ok signal ... 25
Fig 18. Architecture of switch_output_1 signal 26
Fig 19. interface of switch_input_2 ... 27
Fig 20. Architecture of switch_output_2 signal 27
Fig 21. Interface of Coeff_token Decoder ... 29
Fig 22. vlcnum logic in Fig 21 .. 29
Fig 23 output logic1 in Fig 21. ... 30
Fig 24. output logic2 in Fig 21 .. 31
Fig 25. Interface of Trailing_ones Calculator .. 32
Fig 26. Architecture of Output_trailing_ones .. 32
Fig 27. Architecture of Trailing_ones_ok and Trailing_ones_total_ok ... 33
Fig 28. Interface of Level Decoder .. 35
Fig 29. level prefix logic in Fig 28 .. 35
Fig 30. num of bits logic in Fig 28 .. 36
Fig 31. level suffix logic in Fig 28... 36
Fig 32. output level logic in Fig 28 .. 37
Fig 33. suffix length logic in Fig 28 .. 38

 x

Fig 34. level ok logic in Fig 28 .. 39
Fig 35. Interface of Total_zeros Decoder ... 41
Fig 36. max coeff logic in Fig 35 .. 41
Fig 37. output logic1 in Fig 35 .. 42
Fig 38. output logic2 in Fig 35 .. 42
Fig 39. Interface of Run_before Decoder .. 44
Fig 40. zero left logic in Fig 39 ... 45
Fig 41. run before logic in Fig 39 .. 45
Fig 42. total ok logic in Fig 39 .. 46
Fig 43. zero left out logic in Fig 39 ... 46
Fig 44. example for Coeff_token decoder .. 48
Fig 45. example for Trailing_ones decoder .. 48
Fig 46. example for Level decoder (1/2) .. 49
Fig 47. example for Level decoder (2/2) .. 49
Fig 48. example for Total_zeros decoder ... 50
Fig 49. example for Run_before decoder (1/4) 50
Fig 50. example for Run_before decoder (2/4) 51
Fig 51. example for Run_before decoder (3/4) 51
Fig 52. example for Run_before decoder (4/4) 51
Fig 53. Architecture of the bus wrapper module 55
Fig 54. Overall architecture of the CABAD top module 58
Fig 55. Interface of normal decoding process .. 61
Fig 56. Flow chart of normal decoding process 62
Fig 57. decide MPS or LPS logic in Fig 55 ... 62
Fig 58. state logic in Fig 55 ... 63
Fig 59. range logic in Fig 55 ... 63
Fig 60. dbitsleft logic in Fig 55 ... 64
Fig 61. MPS logic in Fig 55 .. 65
Fig 62. Bin logic in Fig 55 .. 65
Fig 63. value logic in Fig 55.. 66
Fig 64. Next logic in Fig 55 .. 67
Fig 65. Interface of bypass decoding process ... 68
Fig 66. Flow chart of bypass decoding process 68
Fig 67. dbitsleft logic in Fig 65 ... 69
Fig 68. next logic in Fig 65 ... 69
Fig 69. value logic in Fig 65.. 70
Fig 70. Bin logic in Fig 65 .. 71
Fig 71. Interface of final decoding process .. 72

 xi

Fig 72. Flow chart of the final decoding process 72
Fig 73. Bin logic in Fig 71 .. 73
Fig 74. range logic in Fig 71 ... 73
Fig 75. Next logic in Fig 71 .. 74
Fig 76. value logic in Fig 71.. 75
Fig 77. dbitsleft logic in Fig 71 ... 75
Fig 78. Interface of initialization for context variables 77
Fig 79. ok logic in Fig 78 .. 77
Fig 80. MPS state logic in Fig 78 .. 78
Fig 81. ram logic in Fig 78 .. 79
Fig 82. State controllers for each syntax element controller 79
Fig 83. Interface of MB Skip Flag ... 84
Fig 84. Flow chart of MB Skip Flag .. 84
Fig 85. Interface of MB type ... 85
Fig 86. Flow chart of MB Type in I_slice .. 86
Fig 87. Flow chart of MB Type in P_slice ... 88
Fig 88. Flow chart part1 of MB Type in B_slice 89
Fig 89. Flow chart part2 of MB Type in B_slice 90
Fig 90. Interface of Sub MB Type ... 92
Fig 91. Flow chart of Sub MB Type in P_slice 93
Fig 92. Flow chart of Sub MB Type in B_slice 94
Fig 93. Interface of Intra�Prediction�Mode�for�Luma4x4 96
Fig 94. Flow chart of Intra�Prediction�Mode�for�Luma4x4 96
Fig 95. Interface of Intra Prediction Mode for Chroma 97
Fig 96. Flow chart of Intra Prediction Mode for Chroma 98
Fig 97. Interface of Reference�Frame�Index .. 99
Fig 98. Flow chart of Reference�Frame�Index.. 99
Fig 99. Interface of Motion Vector Difference 100
Fig 100. Flow chart of Motion Vector Difference 101
Fig 101. Interface of Coded Block Pattern 102
Fig 102. Flow chart of Coded Block Pattern 103
Fig 103. Interface of MB Based Quantization Parameter 103
Fig 104. Flow chart of MB Based Quantization Parameter 104
Fig 105. Interface of Coded Block Flag ... 105
Fig 106. Flow chart of Coded Block Flag 106
Fig 107. Interface of Significant Map .. 107
Fig 108. Flow chart of Significant Map ... 108
Fig 109. the interface of Level Information 109

 xii

Fig 110. Flow chart of Level Information 110
Fig 111. AC_Regular_mode of arithmetic decoding engine for one

bin 112
Fig 112. Example for AC_Regular_mode 113
Fig 113. Example for AC_Bypass_mode 113
Fig 114. Example for AC_Final_mode .. 113

 xiii

List of Tables

Table 1. Table in Fig 22 .. 30
Table 2. thresholds for determining whether to increment

suffix_Length ... 39
Table 3. bitstream example for Intra frame 47
Table 4. bitstream example for Inter frame 47
Table 5. Binarization for MB Type in I_slice 87
Table 6. Binarization for MB Type in P_slice 88
Table 7. Binarization for MB Type in B_slice 91
Table 8. Binarization for Sub MB Type in P_slice 93
Table 9. Binarization for Sub MB Type in B_slice 95
Table 10. bitstream example for Intra frame 110
Table 11. bitstream example for Inter frame 111
Table 12. Synthesis settings .. 115
Table 13. Macro statistics of CAVLD and CABAD logics 116
Table 14. Slice logic utilization of CAVLD and CABAD logics 116
Table 15. Encoding parameters of each test sequence 117
Table 16. The number of decoding cycles, blocks, coefficients,

trailing-ones and total-zeros of the 4x4 blocks in I_SLICE of each
sequence 117

Table 17. The number of decoding cycles, blocks, coefficients,
trailing-ones and total-zeros of the 4x4 blocks in P_SLICE of each
sequence 117

Table 18. The number of decoding cycles, blocks, coefficients,
trailing-ones and total-zeros of the 2x2 blocks in I_SLICE of each
sequence 118

Table 19. The number of decoding cycles, blocks, coefficients,
trailing-ones and total-zeros of 2x2 blocks in P_SLICE of each
sequence 118

Table 20. The number of decoding cycles per each block type of each
sequence 118

Table 21. Totals bits and Mbits/sec of each slice type of each sequence
 119

Table 22. Encoding parameters of each test sequence 119
Table 23. Total number of decoding cycles of each slice type of each

 xiv

sequence 119
Table 24. Cycle/MB of each slice type of each sequence 120
Table 25. The average number of occurrences of each syntax element

in I_SLICEs .. 120
Table 26. The average number of occurrences of each syntax element

in P_SLICEs ... 121
Table 27. The average number of occurrences of each syntax element

in B_SLICEs .. 122
Table 28. Totals bits and Mbits/sec of each slice type in each sequence

 ... 122
Table 29. Comparisons of average cycle / MB with design in [8] ... 122
Table 30. Comparisons of maximum working frequency with design in

[8] 123
Table 31 Comparisons of average cycle / MB with design in [18]. . 123
Table 32. Comparisons of maximal working frequency with design in

[18] 123
Table 33. Performance of the CAVLD logic on the target platform.. 124
Table 34. Comparisons of average cycles/MB on experimental

development board and using estimation of CABAD logic 125

 1

Chapter 1. Introduction

1.1. Motivation

Entropy coding is an important part of today’s video and image coding

applications. It is often applied together with other lossy image compression

techniques to increase the data compression rate. One of the popular entropy coding

techniques is the Variable Length Coding (VLC). The main idea of variable length

coding is to minimize the average codeword length. Shorter codewords are assigned

to frequently occurring data and longer codewords are assigned to infrequently

occurring data. In early MPEG video coding standards like MPEG-1, MPEG-2 and

MPEG-4, the VLC technique has been used to reduce the amount of video data

streams according to a fixed statistical model. In order to further increase the data

compression ratio, AVC (a.k.a. H.264) has adopted the Context-based Adaptive

Variable Length Coding (CAVLC) technique to encode the residual data organized as

4x4 or 2x2 blocks of transform coefficients. Due to the context-adaptive feature of the

H.264 CAVLC, its coding efficiency is higher than that of the traditional MPEG

entropy coders at the cost of slightly higher complexity.

Another entropy coding technique adopted in H.264 is the Context-based

Adaptive Binary Arithmetic Coding (CABAC) for main profile video. Wiegand et al.

[11] compare the coding efficiency of CABAC with the coding efficiency of CAVLC

of H.264/AVC. As shown in Fig 1, the bit-rate savings of CABAC relative to CAVLC

of H.264/AVC are shown against the average PSNR of the luminance component for

the five interlaced sequences of the test set. It can be seen that CABAC outperforms

CAVLC of H.264/AVC for the typical area of target applications. For the range of

 2

acceptable video quality for broadcast application of about 38–42 dB average bit-rate

savings around 8% are achieved, where higher gains are obtained at lower rates.

Fig 1. Bit-rate savings provided by CABAC relative to CAVLC of
h.264/AVC (from [11])

Although most of the H.264 main profile stream is encoded using CABAC, its

decoding algorithm is basically sequential and needs large computation to calculate

range, offset and context variables, making it difficult to achieve high decoding

performance. The CABAC decoding complexity required to process high definition

images in real time is about 3 giga-operations per second. Although this computing

complexity is still less than the block processing complexity, the CABAC decoding

becomes a major bottleneck in real time processing of high bitrate data due to its

sequential nature. In summary, in order to support real-time H.264 video applications,

it is necessary to design dedicated hardware for CAVLC and CABAC decoding.

1.2. Target Platform

In this thesis, we used an FPGA development board – ML506 to verify our

 3

design. The ML-506 development board is shown in Fig 2, and the key features of the

ML-506 are list as follows:

� Virtex 5 XC5VSX50TFFG1136.

� 64 Mbyte flash prom (32Mb x 2).

� 64-bit wide, 256-MB DDR2 Memory.

� JTAG Programming Interface.

� 10/100 Ethernet PHY

� RS-232 - serial port

� USB-2.0 PHY

� Audio in, Audio out.

� Video input, Video (DVI/VGA) output

Fig 2. ML-506 development board.

ML-506 has enough logic gate capacity to emulate a complete SoC reference

design with a complex 32-bit processor core and some IP’s as shown in Fig 3. The

central processing unit (CPU) of the target platform is a Sun SPARC v8 compliant

soft-core processor, LEON3. The reference hardware platform shown in Fig 3 is

 4

constructed using the GRLIB IP library version 1.0.18 developed by Gaisler

Research.

The proposed design of the CAVLD and CABAD logics will be implemented on

the target platform and a full hardware-software system verification based on the

AVC/H.264 reference software implementation JM 12.2 [26] will be conducted to

verify the correctness of the proposed entropy decoding hardware logics. Both the

CAVLD and CABAD logics will communicate with the rest of the system

components (CPU, memory, etc.) via the AMBA AHB bus protocol.

Fig 3. Target platform system architecture

1.3. Outline of the Thesis

The organization of the rest of the thesis is as follows. Chapter 2 introduces some

previous work related to CAVLD and CABAD logic design. Chapter 3 describes the

algorithm, architecture, and implementation details of the proposed CAVLD logic.

Chapter 4 describes the algorithm, architecture, and implementation details of the

CABAD logic. Chapter 5 shows the experimental results, and finally, the conclusion

and discussions will be given in Chapter 6.

 5

Chapter 2. Previous Work

In this Chapter, we will review some previous designs of the CAVLD and the

CABAD architecture.

2.1. CAVLD

Chang et al. [4] published an efficient CAVLD architecture and proposed four

different techniques to reduce both the hardware cost and power consumption of

CAVLD. These techniques are Partial Combinational Component Freezing (PCCF),

Hierarchical Logic for Look-up Tables (HLLT), Zero_left Table Elimination by

Arithmetic (ZTEBA), and Zero Codeword Skip (ZCS). As compared to the

architecture proposed in [3], the design achieves 23% reduction in hardware cost and

40% improvement in speed.

PCCF is a technique to assign one enable signal to each CAVLC decoder

component to freeze the non-operating component of combinational circuits to

achieve low-power consumption. HLLT is used to partition the original big LUT into

many small LUTs so that the unused parts of the LUTs can be disabled for reducing

power consumption. ZTEBA is a technique for more efficient decoding of Run-before

syntax elements by finding out the rules among the LUTs. ZCS is used to skip

decoding of zero codewords when all coefficients in 4x4 or or 2x2 blocks are zeros.

Lin et al. [7] suggested a power-efficient approach called prefix pre-decoding

that can reduce power consumption by 25%. Based on empirical analysis, the lengths

of codewords in Coeff_token hardly exceed 8. Therefore, LUTs are divided into two

groups: one group contains LUTs with codewords smaller than 8 and the other group

contains codewords that can exceed 8.

 6

Yu et al. [8] proposed several techniques to improves the performance of

CAVLD, including merging the Coeff_token and T1s processes together to reduce

cycles, skipping some decoding process if no coefficient is necessary to be decoded,

and decoding multiple symbols in Run_before stage. The proposed design uses 90

cycles for one MB decoding on average, which can meet real time HDTV requirement

and saves 64% of cycle count on average when compared with the design in [4].

Tseng et al. [9] proposed an algorithm with a redesign of the LUTs. If a pattern is

matched in their look-up table, they can skip the standard CAVLD procedure and

reconstruct a block directly. The performance can be improved by 10% compared

with the standard CAVLD procedure. In short, the most frequently occurring

4x4-block (or 2x2-block) bitstream patterns are recorded in a table so that a full block

decoding can be done quickly. They sample 4,000 frequent patterns and arrange them

according to their frequencies. Sum of frequencies of top 4,000 patterns occupies

67.63% of number of decoded block, They re-arrange the order of these 4,000

patterns according to their bit lengths, and there are 81.07% of patterns represented

within 8 bits and 96.93% of patterns represented within 12 bits. The pattern-search

algorithm is based on a two-pass table look-up method and all the coefficients in a

4x4 (or 2x2) block can be reconstructed directly.

Kim et al. [10] proposed a new CAVLC decoding method using arithmetic

hashing operations instead of the conventional table look-up method. Experimental

results show that the proposed algorithm is 50% faster and uses 95% less memory

access comparing with three conventional search-based table lookup CAVLC

algorithms such as Moon’s method [5].

2.2. CABAD

Yu et al. [17] divided syntax elements into two classes according to their

 7

occurring frequency during the decoding process. For more frequent syntax elements,

a new architecture that can decode two regular bins together with one bypass bin in

one cycle is proposed. These syntax elements include Motion Vector Difference,

Significance Map, and Level Information. And they also divide context models into

18 groups according to their access frequency. With this mechanism, access frequency

to the RAM storing context models is greatly reduced. For a typical 4Mbps bitstream

at D1 resolution, experimental results show that on average each MB can be decoded

within 500 cycles.

Yang et al. [18] proposed several techniques to optimize the CABAC decoding

process. At MB information level, previously decoded MB information is packed so

that accesses to this information for current MB decoding are more efficient. At

slice-data and MB layer level, they perform careful pipeline scheduling, using

segmented context tables, adding cache registers, and doing look-ahead codeword

parsing to improve decoding performance. In summary, it takes three cycles to

generate a bin. When an internal loop occurs, there might be a succession of context

memory accesses using the same context values. Therefore, cache registers are used to

store the context values and write back to context memory only once at the end of the

internal loop. In addition, they propose a look-ahead codeword parsing scheme to

detect if the re-normalization on the probability model occurs in CABAD. If the

look-ahead condition fits, they can decode two bins in each cycle. Otherwise, it takes

one cycle to decode one-bit of CABAD codeword. Furthermore, they partition one

context table into multiple segmented context memories. Thus, combining the

segmented context memories with cache registers, they can read and write memory in

a more flexible way. By exploiting all the proposed design techniques, they can

averagely reduce about 53% of cycles count in the CABAD decoding process.

 8

Similarly, Zheng et al. [22], also point out that not all the parameters of a reference

MB or all the possible values of an SE need to be stored. They have shown that the

bits that are required to store a reference MB are only 142 bits. The proposed

architecture and control/decoding strategy have improved the time efficiency by

27.9%, 18.2%, and 48.8% for I frames, P frames, and B frames compared with the

architecture in Chen et al. [16].

 9

Chapter 3. Design of the CAVLD Logic

As mentioned in section 1.2, the target platform is a LEON3-based FPGA

development board (shown in Fig 3.). In this chapter, we will present our design of

the CAVLD logic and how it is integrated into the LEON platform. First, in section

3.1, we present the CAVLD algorithm. In section 3.2, we present the overall

architecture of the CAVLD logic and its interface to the LEON processor and the

memory subsystem. In section 3.3, we present the state controller of CAVLD. In

section 3.4, we discuss some front-end logics, including the first one detector and the

switch input module, used to preprocess the input bitstream and extract bit-patterns

for the CAVLD logic. Then, we will present the main decoding components of

CAVLD which converts the bit patterns to syntax elements, including the Coeff_token

decoder (section 3.5), the Trailing_ones calculator (section 3.6), the Level decoder

(section 3.7), the Total_zeros decoder (section 3.8), and the Run_before decoder

(section 3.9). In section 3.10, we will give a CAVLD decoding example.

3.1. Introduction to the CAVLD Entropy Decoder

3.1.1. Algorithm of CAVLD

The algorithm of CAVLD is described as follows:

Step 1. Decoding the number of coefficients and trailing ones:

In this step, CAVLD decodes both the total number of nonzero

coefficients (Total_coeff) and the number of trailing ones (trailing ± 1

values). Total_coeff can be anything from 0 to 16 for 4x4 blocks, 0 to 4

for 2x2 blocks and Trailing_ones can be anything from 0 to 3. If there

are more than three trailing ones, only the last three are counted as

 10

trailing ones and others are treated as normal coefficients. When

Total_coeff is equal to 0, only this step is required.

Step 2. Decoding the sign of each Trailing_ones coefficient:

Number of trailing ones is calculated in step1. The sign of each trailing

one is decoded using one bit from the bitstream. Bit 0 stands for +1

and bit 1 stands for –1. This step is done in reverse order, so that the

highest frequency trailing one comes first. If the number of trailing

ones is equal to 0, we will skip this step.

Step 3. Decoding the levels of remaining non-zero coefficients:

The level (sign and magnitude) for each remaining non-zero

coefficient in the block is decoded in reverse order, starting with the

highest frequency. Each level value is coded in Golomb code and can

be represented as 0...01xx...xs. The “0...01” is the prefix, and “xx...xs”

is the suffix.

Step 4. Decoding the total number of zeros before the last coefficient:

This step is used to decode the total number of zeros before the last

non-zero coefficient with the information of Total_coeff at 4x4 or 2x2

blocks. We partition the tables by Total_coeff and looked up these

small variable-length tables indexed by the bitstream we will decode.

If Total_coeff is equal to 0 or Max_coeff, we will skip this step.

Step 5. Decoding each run of zeros:

The number of zero preceding the highest non-zero coefficient

(run_before) is decoded in reverse order. A run_before parameter is

decoded for each non-zero coefficient, starting with the highest

 11

frequency, with two exceptions:

I. If there are no more zeros left to decode, (i.e.∑ e][run_befor =

Total_zeros), it is not necessary to decode any more run_before

values.

II. It is not necessary to decode run_before for the final (lowest

frequency) non-zero coefficient.

There are seven sub tables for run_before decoding. These tables are

designed based on the Zero_left value, which is calculated by

subtracting previous run from previous Zero_left and initialized with

Total_zeros. When Zero_left is equal to 0, the remaining runs of rest

coefficients is set to 0.

 After the introduction of RTL model of CAVLD logic, we will give a example in

section 3.10.

3.2. Overall System Architecture

3.2.1. AMBA AHB BUS Wrapper for CAVLD

In this section, we first discuss the bus wrapper module of the CAVLD logic for

AMBA AHB bus protocol. In order to integrate the proposed CAVLD logic into the

AMBA system bus of the target platform, we designed a bus wrapper for AHB 2.0

protocol. If, in the future, we have to port the CAVLD/CABAD logic to other bus

protocols, we only need to modify the bus wrapper.

The interface and the architecture of the bus wrapper module are shown in Fig 4.

Most of the interface signals are defined in the AMBA 2.0 bus protocol specification.

The interface signals that are not part of the standard AMBA signals are explained as

 12

follows:

� hcachei and hcacheo are 1-bit input signals indicate that the data on the data

bus is cacheable or non-cacheable.

� hirq is a 32-bit input signal indicates interrupt result bus.

� testen is a 1-bit input signal indicates scanning test enable.

� testrst is a 1-bit input signal indicates scanning test reset.

� scanen is a 1-bit input signal indicates scanning enable.

� testoen is a 1-bit input signal indicates testing output enable.

� hconfig is a set of registers indicates memory access register.

Fig 4. Architecture of the bus wrapper module

We use the select_signal to select the input signals of CAVLD module

connecting the hwdata as shown in Fig 5. We use select_signal to select the output

signals of CAVLD module connecting to hrdata as shown in Fig 1.

 13

Fig 5. Select input logic in Fig 4

Fig 6. Select output logic in Fig 4

3.2.2. CAVLD Top Module

CAVLD top module includes all of the CAVLD components. The interface and

the architecture of the CAVLD top module are shown in Fig 7, and the interface

signals are explained as follows.

� nA and nB are each a 5-bit input signal indicates the number of non-zero

coefficients in the left and top block of current block.

� nA_valid and nB_valid are each 1-bit input signal indicate whether upper or

left block is available or not.

� Decode_start is a 1-bit input signal is used to enable the CAVLD module.

� Decode_type is a 3-bit input signal indicates the type of the current block.

� Input_stream is a 32-bit input signal indicates the bitstream we will decode.

� Update_stream_ok is a 2-bit input signal indicates whether the Input_data

 14

signal is updated or not.

� Output_ok is a 1-bit input signal indicates whether the level and run for the

current block are finished outputting or not.

� Output_enable is a 1-bit output signal indicates whether the level and run

for the current block can begin outputting or not.

� forward is a 2-bit output signal indicates whether we needed to update

Input_data signal or not.

� temp_level_0 ~ temp_level_15 and temp_run_0 ~ temp_run_15 are each

16-bit output signal indicates the value of level and run of the current block.

� Shift_count is a 6-bit output signal indicates the number of bits is used in

Input_data signal and which is used to get the unused bitstream of the

Input_data signal.

� We use a 53-bit common_input signal to stand for {clk, rst, nA, nB,

nA_valid, nB_valid, Decode_start, Decode_type, Input_stream,

Update_stream_ok, Output_ok}.

� We use a 521-bit common_output signal to stand for {Shift_count,

Output_enable, forward, temp_level_0 ~ temp_level_15, temp_run_0 ~

temp_run_15}.

As shown in Fig 7, all decoding modules communicate with the State Controller

to get data and control signals we need, and all decoding modules got input bitstream

from the Switch_input_1 or the First_one_detector modules.

 15

Fig 7. Overall architecture of the CAVLD top module

3.3. State Controller

State controller module includes a state transition controller and a barrel shifter.

3.3.1. Interface of State Controller

The interface of the state controller is shown in Fig 8. The interface signals of the

controller are explained as follows:

 16

� common_input and common_output are 53-bit and 515-bit signals which

are described in 3.2.2.

� ok_group is a 5-bit input signal which stands for {Coeff_token_ok,

Trailing_ones_ok, Level_ok, Total_zeros_ok, Run_before_ok}.

� total_ok_group is a 3-bit input signal which stands for

{Trailing_ones_total_ok, Level_total_ok, Run_before_total_ok}.

� Num_of_bits_group is a 20 bit input signal which stands for

{Num_of_bits_Coeff_token, Num_of_bits_Trailing_ones,

Num_of_bits_Level, Num_of_bits_Total_zeros,

Num_of_bits_Run_before}.

� Total_coeff and Trailing_ones are each 5-bit and 2-bit input signal which

connects the Total_coeff and Trailing_ones output signal of Coeff_token

Decoder.

� Trailing_ones_count_out and Output_Trailing_ones are each 2-bit and

16-bit input signal which connects the Trailing_ones_count_out and

Output_Trailing_ones output signal of Trailing_ones Calculator.

� Output_Level, Prefix_greater_than_15, Suffix_Length_out,

Level_count_out and Level_Prefix_for_Prefix_greater_than_15_out are

each 16-bit, 1-bit, 3-bit, 5-bit and 15-bit input signal which connects the

Output_Level, Prefix_greater_than_15, Suffix_Length_out,

Level_count_out and Level_Prefix_for_Prefix_greater_than_15_out signal

of Level Decoder.

� Output_Total_zeros is a 4-bit put signal which connects the

Output_Total_zeros output signal of Total_zeros Decoder.

� Zero_left_out and Run_before are each 4-bit and 4-bit output signal which

connects Zero_left_out and Run_before output signal of Run_before

 17

Decoder.

� Input_data is a 64-bit output signal indicates the bitstream we will decode.

� vlcnum is a 3-bit output signal which is used to select the look-up tables for

decoding coeff_token for a 4x4 block or a 2x2 block.

� enable_group is a 5-bit output signal which stands for {Coeff_token_enable,

Trailing_ones_enable, Level_enable, Total_zeros_enable,

Run_before_enable} indicates which decoding module is working on this

time.

� Trailing_ones_count_in and Temp_Trailing_ones are each 2-bir and 2-bit

output signal which connects the Trailing_ones_count_in and

Temp_Trailing_ones input signal of Trailing_ones Calculator.

� Temp_Total_Coeff, Suffix_Length_in, Level_Prefix_in and Level_count_in

are each 5-bit, 3-bit, 16-bit and 5-bit output signal which connects the

Total_Coeff, Suffix_Length_in, Level_Prefix_in and Level_count_in input

signal of Level Decoder.

� Max_coeff is a 5-bit output signal which connects the Max_coeff input

signal of Total_zeros Decoder.

� Temp_Total_zeros and Zero_left_in are each 4-bit and 4-bit output signal

which connects the Temp_Total_zeros and Zero_left_in input signal of

Run_before Decoder.

 18

Fig 8. Interface of CAVLD controller

3.3.2. States of the Controller

The controller is a finite state machine as shown in Fig 9. We need 7 states to

decode bitstream in CAVLD module. For decoding a 4x4 or 2x2 blocks, we will go

from state1 to state7. In Fig 9, ‘A’ through ‘P’ are state transition conditions which

are described as follows:

� Condition A indicates Coeff_token_ok is equal to 0. On the other words, if

coeff_token module is not finished, we will be still in state1.

� Condition B indicates Total_coeff is equal to 0. On the other words, we will

skip the current block, and we will transfer to state6.

� Condition C indicates Coeff_token_ok is equal to 1. On the other words, if

coeff_token module is finished, we will transfer to state2.

� Condition D indicates Trailing_ones_total_ok is equal to 0. On the other

words, if trailing_ones module is not finished, we will be still in state2.

� Condition E indicates Trailing_ones is equal to 0. On the other words, we

will skip the trailing_ones module, and we will transfer to state3.

 19

� Condition F indicates Trailing_ones_total_ok is equal to 1. On the other

words, if trailing_ones module is finished, we will transfer to state3.

� Condition G indicates Level_total_ok is equal to 0. On the other words, if

level module is not finished, we will be still in state3.

� Condition H indicates Total_coeff is equal to Trailing_ones. On the other

words, we will skip the level module, and we will transfer to state4.

� Condition I indicates Level_total_ok is equal to 1. On the other words, if

level module is finished, we will transfer to state4.

� Condition J indicates Total_zeros_ok is equal to 0. On the other words, if

total_zeros module is not finished, we will be still in state4.

� Condition K indicates Total_zeros_ok is equal to 1. On the other words, if

total_zeros module is finished, we will transfer to state5.

� Condition L indicates Run_before_ok is equal to 0. On the other words, if

run_before module is not finished, we will be still in state5.

� Condition M indicates Total_zeros is equal to 0. On the other words, we will

skip the run_before module, and we will transfer to state6.

� Condition N indicates Run_before_ok is equal to 1. On the other words, if

run_before module is finished, we will transfer to state6.

� Condition O indicates we started output the level and run signal of the

current block.

� Condition P indicates we finished output the level and run signal of the

current block and start to decode a new block.

 20

Fig 9. Finite state machine of CAVLD

3.3.3. Barrel Shifter

The Shift_count and carry signal are processed by the logic shown in Fig 10. The

carry signal is used to decide the forward signal.

��������

��������

=

>=

��������

Fig 10. Architecture of Shift_count and carry signal

If Prefix_greather_than_15 is equal to 0, Shift_count is set to Shift_count add

Num_of_bits_XX, XX can be Coeff_token, Trailing_ones, Level, Total_zeros or

 21

Run_before. Otherwise, Shift_count is set to (Shift_count +

Level_Prefix_for_Prefix_greater_than_15_out). And then if Shift_count is greater

than or equal to 16, Shift_count is set to (Shift_count – 16) and carry is set to 1.

The forward signal is generated by the logic shown in Fig 11.

=

��������

=

Fig 11. Architecture of forward signal

If carry is equal to 1, forward is set to 1. Otherwise, forward is set to (forward+1).

But the maximum value of forward is 2.

The Input_data signal is generated by the logic shown in Fig 12.

Input
_b i ts tr e a mR1

S h i f te r (6 4 b i t)

R1
R2

f o r w a r d
3 2 3 2

Input_d a ta

2 !22 !2

Fig 12. Architecture of Input_data signal

We use a barrel shifter to generate the Input_data signal. Input_data is set to {R2,

R1}, where R1 and R2 are 32-bit registers. If forward is not equal to 2, we will update

the Input_data signal with 32-bit Input_bitstream signal.

 22

3.4. Bitstream Preprocessing Logics

In this section, we discusses the design of the bitstream parsing front-end logics

used to extract the bit patterns from the bitstream to make it easier for the CAVLD

logic to convert the bit patterns to syntax elements.

3.4.1. First One Detector

This module computes the number of leading zeros in the input bitstream.

3.4.1.1. Interface of First One Detector

The interface of the first one detector is shown in Fig 13, and the interface

signals are explained as follows.

� enable is a 3-bit input signal indicates which module needs leading zeros of

input bitstream.

� input_data is a 16-bit input signal indicates the input bitstream.

� Leading_zeros is a 5-bit output signal indicates the number of leading zeros

of input_data.

� fod_ok is a 2-bit output signal indicates whether this module is finished or

not. If the Coeff_token module used this module, the value of fod_ok is set

to 1, else if the level module used this module, the value of fod_ok is set to

2.

Fig 13. interface of first one detector

 23

3.4.1.2. Architecture of First One Detector

The architecture of the first one detector is shown in Fig 14. Priority_1,

Priority_2, Priority_3, Priority_4 encode first ‘1’ position in each four bits of

input_data signal. Four non-equal gates test whether there is a ‘1’ among the four bits

of input_data signal or not. Priority_5 encodes the first ‘1’ position in the output of

four non-equal gates. The output of Priority_1 ~ Priority_5 are the numbers of leading

zeros of the each four bits. And then we use the output of Priority_5 to select the

output of Priority_1 ~ Priority_4 called temp_output, and we combined the output of

Priority_5 and temp_output[1:0] as the number of leading zeros of input_data.

!= != != !=

Fig 14. Architecture of first one detector

The architecture of Priority_1 ~ Priority_5 is shown in Fig 15.

 24

>=

>=
>=

>=

Fig 15. Architecture of Priority_1 ~ Priority_5

The output of Priority_1 ~ Priority_5 are the numbers of leading zeros of the

each four bits of input_data.

3.4.2. Switch Input Module

We divide the switch input module into two cases: switch_input_1 and

switch_input_2. The switch_input_1 module is used to get the unused bitstream of the

input_data, ex. If the input_data is 0011000101…, the 0011 of the input_data is used,

so the output of the switch_input_1 module is 000101…. And the switch_input_2

module is used to get the unused bitstream not including leading zeros of the output of

the switch_input_1 module, ex. If the output of the switch_input_1 module is

000101…, so the output of the switch_input_2 module is 101….

3.4.2.1. Switch_input_1 Module

3.4.2.1.1. Interface of Switch_input_1 Module

The interface of the switch_input_1 module is shown in Fig 16, and the interface

signals are explained as follows.

� input_data is a 64-bit input signal indicates the bitstream we will decode.

� Shift_count is a 6-bit input signal indicates the number of bits is used in

input_data signal and which is used to get the unused bitstream of the

 25

input_data signal as the switch_output_1 signal.

� Coeff_token_enable, Trailing_ones_enable, Level_enable,

Total_zeros_enable, and Run_before_enable are each 1-bit input signal

indicates which decoding module is working on this time.

� switch_output_1 is a 20-bit output signal indicates the first 20-bit unused

bitstream of the input_data signal.

� si1_ok is a 3-bit output signal indicates whether this module is finished or

not, and this signal is used to enable Coeff_token, Trailing_ones, Level,

Total_zeros or Run_before module.

Fig 16. Interface of switch_input_1 module

3.4.2.1.2. Architecture of switch_input_1 Module

The sil_ok signal is generated by the logic shown in Fig 17.

Fig 17. Architecture of sil_ok signal

 26

The value of the si1_ok signal is depending on {Coeff_token_enable,

Trailing_ones_enable, Level_enable, Total_zeros_enable, Run_before_enable}.

The switch_output_1 signal is generated by the logic shown in Fig 18.

Fig 18. Architecture of switch_output_1 signal

To get the first 20-bit unused bitstream of the input_data signal, we looked up a

fixed 2x64 2-D table indexed of enable and Shift_count.

3.4.2.2. Switch_input_2 Module

3.4.2.2.1. Interface of switch_input_2 Module

The interface of the switch_input_2 module is shown in Fig 19, and the interface

signals are explained as follows.

� enable is a 2-bit input signal which connects the fod_ok output signal of

first one detector module. Only Coeff_token module uses this module.

� switch_output_1 is a 20-bit input signal which connects the

switch_output_1 output signal of switch_output_1 module.

� Leading_zeros is a 5-bit input signal which connects the Leading_zeros

output signal of first one detector module.

� switch_output_2 is a 4-bit output signal indicates the first 4-bit unused

bitstream not including leading zeros of the switch_input_1 signal.

� ok is a 1-bit output signal indicates whether this module is finished or not.

 27

Fig 19. interface of switch_input_2

3.4.2.2.2. Architecture of switch_input_2 Module

The switch_output_2 signal is generated by the logic shown in Fig 20.

Fig 20. Architecture of switch_output_2 signal

To get the first 4-bit unused bitstream not including leading zeros of the

switch_input_1 signal, we looked up a fixed 2x32 2-D table indexed of enable and

Leading_zeros.

3.5. Coeff_token Decoder

This module decodes both the total number of nonzero coefficients (Total_coeff)

and the number of trailing ± 1 values (Trailing_ones). Total_coeff can be anything

from 0 to 16 for 4x4 blocks, 0 to 4 for 2x2 blocks and Trailing_ones can be anything

from 0 to 3. If there are more than three trailing ± 1s, only the last three are treated as

trailing ones and others are treated as normal coefficients. When Total_coeff is equal

to 0, only this module is required.

3.5.1. Interface of Coeff_token Decoder

The interface of Coeff_token Decoder is shown in Fig 21, and the interface

signals are explained as follows:

 28

� vlcnum is a 3-bit input signal which is used to select the look-up tables for

decoding coeff_token for a 4x4 block or a 2x2 block.

� Coeff_token_enable is a 1-bit input signal to enable coeff_token module.

� switch_output_1 is a 20-bit input signal which connects the

switch_output_1 output signal of switch_output_1 module.

� Leading_zeros is a 5-bit input signal which connects the Leading_zeros

output signal of first one detector module.

� fod_ok is a 2-bit input signal which connects the fod_ok output signal of

first one detector module.

� Coeff_token_ok is a 1-bit output signal indicates whether this module is

finished or not.

� Total_Coeff is a 5-bit output signal indicates the total number of nonzero

coefficients.

� Trailing_ones is a 2-bit output signal indicates the number of trailing ± 1

values.

� Num_of_bits_coeff_token is a 5-bit output signal indicates the number of

bits be consumed of input bitstream in this module.

 29

Leading_
z er o s

T o t al _c o ef f
T r ail ing_o nes
N u m _o f _b it s _
C o ef f _t o k en

f o d_o k

s w it c h _
inp u t _1

.

.

.

F ir s t
O ne

D et ec t o r

s il _o k
s w it c h _
o u t p u t _1
[19 :4] s w it c h _

inp u t _2
s w it c h _o u t p u t _1

s i2_o k s w it c h _
o u t p u t _2

o u t p u t
l o gic 1

v l c nu m

C o ef f _t o k en_enab l e

v l c nu m
l o gic

nA
nB

nA _v al id
nB _v al id

D ec o de_t y p e

v l c nu m

!3

3o u t p u t
l o gic 2

[2:0]

[19 :0]

[4:0]

[1:0]

[4:0]

[4:0]

[1:0]

Fig 21. Interface of Coeff_token Decoder

3.5.2. Architecture of Coeff_token Decoder

��������

Fig 22. vlcnum logic in Fig 21

The vlcnum signal is generated by the logic shown in Fig 22.

There are four choices of look-up tables for decoding the coeff_token of a 4x4

block, three variable-length code tables (vlcnum = 0, 1, 2) and a fixed-length code

table (vlcnum = 3), The choice of table depends on the number of non-zero

coefficients in the left and top previously decoded blocks, nA and nB. There is a

variable-length code table (vlcnum = 4) to use for decoding coeff_token for a 2x2

block. If upper and left blocks nB and nA are both available, i.e. in the same slice, nC

= round ((nA+nB)/2). If only the upper is available, nC = nB; if only the left block is

 30

available, nC = nA; if neither is available, nC = 0. And then we looked up tables

indexed by nC to decide the vlcnum output signal.

nC vlcnum

0,1 0

2,3 1

4,5,6,7 2

8 or above 3

Table 1. Table in Fig 22

If there are small than eight non-zero coefficients in neighboring blocks, the

Total_coeff, Trailing_ones and Num_of_bits_Coeff_token signal are generated by the

logic shown in Fig 23.

Fig 23. output logic1 in Fig 21

��������

=

 31

Fig 24. output logic2 in Fig 21

If there are more than eight non-zero coefficients in neighboring blocks, we used

a fixed six bit coding. Be different with output logic1, output logic2 used a simple

combinational logic to replace looking up a fixed-length table. The Total_coeff,

Trailing_ones and Num_of_bits_Coeff_token signal are generated by the logic shown

in Fig 24.

3.6. Trailing_ones Calculator

Number of trailing ones is calculated in the Coeff_token module. The sign of

each trailing one is decoded using one bit from the bitstream. Bit 0 is assigned for +1

and bit 1 is assigned for -1. This module is starting in reverse order, so that the highest

frequency trailing one comes first. If the number of trailing ± 1 values is equal to 0,

we will skip this process.

3.6.1. Interface of Trailing_ones Calculator

The interface of Trailing_ones Calculator is shown in Fig 25, and the interface

signals are explained as follows:

� Trailing_ones_count_in is a 2-bit input signal indicates how many trailing

ones are decoded before this module.

� Temp_Trailing_ones is a 2-bit input signal indicates the total number of

trailing ± 1 values.

� switch_output_1 is a 20-bit input signal which connects the

switch_output_1 output signal of switch_output_1 module.

� si1_ok is a 3-bit input signal which connects the si1_ok output signal of

switch_input_1 module to enable this module.

� Trailing_ones_count_out is a 2-bit output signal indicates how many trailing

 32

ones are decoded after this module.

� Trailing_ones_ok is a 1-bit output signal indicates a trailing one is decoded.

� Trailing_ones_total_ok is a 1-bit output signal indicates all training ones of

4x4 block or 2x2 block are decoded.

� Output_Trailing_ones is a 16-bit output signal indicates the value of trailing

one.

� Num_of_bits_Trailing_ones is a 1-bit output signal indicates the number of

bits be consumed of input bitstream in this module.

Fig 25. Interface of Trailing_ones Calculator

3.6.2. Architecture of Trailing_ones Calculator

Num_of_bits_Trailing_ones is always setting to 1.

The Output_trailing_ones signal is generated by the logic shown in Fig 26.

Fig 26. Architecture of Output_trailing_ones

The Trailing_ones_ok and Trailing_ones_total_ok signals are generated by the

logic shown in Fig 27.

 33

= =

�� �� �� ��

Fig 27. Architecture of Trailing_ones_ok and Trailing_ones_total_ok

If a trailing one is decoded in this time, Trailing_ones_ok is set to 1, otherwise,

Trailing_ones_ok is set to 0. And if all training ones of 4x4 block or 2x2 block are

decoded, on the other words, Temp_Trailing_ones is equal to

Trailing_ones_count_out, Trailing_ones_total_ok is set to 1, otherwise,

Trailing_ones_total_ok is set to 0.

3.7. Level Decoder

The level (sign and magnitude) for each remaining non-zero coefficient in the

block is decoded in reverse order, starting with the highest frequency. Each level

which is Golomb based structured can be represented as 0...01xx...xs. The “0...01” is

the prefix, and “xx...xs” is the suffix.

3.7.1. Interface of Level Decoder

The interface of Level Decoder is shown in Fig 28, and the interface signals are

explained as follows.

� Input_data is a 63-bit input signal indicates the input bitstream.

� Shift_count is a 6-bit input signal indicates the number of bits is used in

Input_data signal and which is used to get the unused bitstream of the

input_data signal.

� Total_Coeff is a 5-bit input signal indicates the total number of nonzero

 34

coefficients.

� Trailing_ones is a 2-bit input signal indicates the number of trailing ± 1

values.

� Suffix_Length_in is a 3-bit input signal indicates the length of the suffix

before this module.

� Level_Prefix_in is a 16-bit input signal indicates the Leading_zeros, which

is only used when the leading_zeros is greater than or equak to 15.

� Level_count_in is a 5-bit input signal indicates how many normal

coefficients not including trailing ones are decoded before this module.

� Leading_zeros is a 5-bit input signal indicates the number of leading zeros

of Input_data.

� fod_ok is a 2-bit input signal which connects the fod_ok output signal of

first one detector module.

� Level_ok is a 1-bit output signal indicates a normal coefficient is decoded.

� Level_total_ok is a 1-bit output signal indicates all normal coefficients of

4x4 block or 2x2 block are decoded.

� Num_of_bits_Level is a 6-bit output signal indicates the number of bits be

consumed of input bitstream in this module.

� Output_Level is a 16-bit output signal indicates the value of level.

� Prefix_greater_than_15 is a 1-bit output signal indicates whether the value

of Leading_zeros is greater than or equal to 15 or not.

� Suffix_Length_out is a 3-bit output signal indicates the length of the suffix

after this module.

� Level_Prefix_for_Prefix_greater_than_15_out is a 15-bit output signal

indicates the temp Leading_zeros of this normal coefficient we will decode,

� Level_count_out is a 5-bit output signal indicates how many normal

 35

coefficients not including trailing ones are decoded after this module.

Fig 28. Interface of Level Decoder

3.7.2. Architecture of Level Decoder

1
0

P r e f i x _g r e a t e r _t h a n _15

L e a d i n g _Z e r o s

1
0

1

L e v e l _P r e f i x

0

L e v e l _
P r e f i x _f o r

_P r e f i x _g r e a t e r _
t h a n _15 _o u t1

0

=

16

=

��������

L e a d i n g _Z e r o s

L e v e l _P r e f i x _i n

Fig 29. level prefix logic in Fig 28

The Prefix_greater_than_15 and Level_Prefix_for_Prefix_greater_than_15_out

signals are generated by the logic shown in Fig 29.

If Leading_zeros is equal to 16, Prefix_greater_than_15 is set to 1 and

Level_Prefix_for_Prefix_greater_than_15_out is set to (Leading_zeros +

 36

Level_prefix_.in).

4

L e v e l _P r e f i x 15

0

1

>=
L e v e l _P r e f i x

S u f f i x _L e n g t h _i n

��������3

==

L e v e l _P r e f i x 14 S u f f i x _L e n g t h _i n0

A N D

0

1

��������

1

��������

L e a d i n g _z e r o s
N u m _o f _b i t s _L e v e l

L e v e l _
S u f f i x _S i z e

Fig 30. num of bits logic in Fig 28

The Num_of_bits_Level and Level_Suffix_Size signals are generated by the

logic shown in Fig 30.

The length of the LevelSuffix, Level_Suffix_Size, is decided by the following

rules:

1. If Level_Prefix is small than 15, Level_Suffix_Size is set to

suffixLength;

2. If Level_Prefix is equal to 14 and suffixLength is equal to 0,

Level_Suffix_Size is set to 4.

3. If Level_Prefix greater than or equal to 15, Level_Suffix_Size is set to

(Level_Prefix – 3).

Num_of_bits_Level is set to (Level_Suffix_Size + Leading_zeros + 1).

<<<<
��������

��������

>

Fig 31. level suffix logic in Fig 28

 37

The Level_Suffix signal is generated by the logic shown in Fig 31.

If Level_suffix_Size is greather than 0, Level_Suffix is set to (Input_data <<

(Shift_count + Leading_zeros + 1)).

>

<<<<

>=>

��������

>==

��������

>=

��������

��������

<<<<
��������

= <

��������

%%

��������

>>>>

��������

>>>>

Fig 32. output level logic in Fig 28

The Output_level signal is generated by the logic shown in Fig 32.

The value of level, Level_Code, is reconstructed according to the following

procedure:

1. If Level_Prefix is greater than 15, Level_Code is set to (15 <<

suffixLength), otherwise, Level_Code is set to (Level_Prefix << suffixLength)

2. If Suffix_Length_in is greater than 0 or Level_Prefix is greater than or

equal to 14, Level_Code is set to (Level_Code + Level_suffix).

 38

3. If Level_Prefix is greater than or equal to 15 and suffixLength is equal

to 0, Level_Code is set to (Level_Code + 15).

4. If Level_Prefix is greater than or equal to 16, Level_Code is set to

(Level_Code + (1 << (Level_Prefix - 3) - 4096)).

5. If Level_Prefix is small than 15 and suffixLength is equal to 0,

Level_Code is set to (Level_Code + 2).

6. If Level_Code[0] is equal to 0, which means Level_code is positive,

Level_Code is set to ((Level_Code + 2) >> 1), otherwise, Level_Code is set to

((-Level_Code - 1) >> 1).

7. Output_Level is set to Level_Code.

=

-

>>

> <

��������

Fig 33. suffix length logic in Fig 28

The Suffix_Length_out signal is generated by the logic shown in Fig 33

The suffix_Length may be between 0 and 6 bits and suffix_Length is adapted

depending on the magnitude of each successive coded level. The choice of

suffix_Length is adapted as follows:

1. Initialize suffix_length to 0 (unless there are more than 10 non-zero

 39

coefficients and less than three trailing ones, in which case initialize to 1),

2. Decode the highest-frequency non-zero coefficient.

3. If the magnitude of this coefficient is larger than a predefined threshold,

increment suffix_Length. (If this is the first level to be decoded and suffix_Length

was initialize to 0, set suffix_Length to 2).

In this way, the choice of suffix is matched to the magnitude of the

recently-decoded coefficients. The thresholds are shown in Table 2.

Current suffix_Length Threshold to increment suffix_Length

0 0

1 3

2 6

3 12

4 24

5 48

6 N/A (highest suffix_Length)

Table 2. thresholds for determining whether to increment suffix_Length

=

Prefix_g rea t er
_t h a n _15 0

0
1

0

1 L ev el _o k

=

0
1

0

1 L ev el _t o t a l _o k

�� �� �� ��

-

Total_
c oe f f

Tr ai li n g
_on e s

L e v e l_
c ou n t_i n 1

L e v e l_
c ou n t_ou t

Fig 34. level ok logic in Fig 28

The level_ok and Level_total_ok signal are generated by the logic shown in Fig

34.

If Prefix_greater_than_15 is equal to 0, Level_ok is set to 1. If Level_count_out

is equal to (Total_coeff - Trailing_ones), Level_total_ok is set to 1.

 40

3.8. Total_zeros Decoder

The Total_zeros Decoder is used to decode the total number of zeros before the

last non-zero coefficient with the information of Total_coeff at 4x4 or 2x2 blocks. We

partition the tables by Total_coeff and looked up these small variable-length tables

indexed by the bitstream we will decode. If Total_coeff is equal to 0 or Max_coeff,

we will skip this process.

3.8.1. Interface of Total_zeros Decoder

The interface of the Total_zeros Decoder is shown in Fig 35, and the interface

signals are explained as follows.

� Total_Coeff is a 5-bit input signal indicates the total number of nonzero

coefficients.

� Max_coeff is a 5-bit input signal indicates the max number of nonzero

coefficients.

� switch_output_1 is a 20-bit input signal which connects the

switch_output_1 output signal of switch_output_1 module.

� si1_ok is a 3-bit input signal which connects the si1_ok output signal of

switch_input_1 module to enable this module.

� Total_zeros_ok is a 1-bit output signal indicates whether this module is

finished or not.

� Output_Total_zeros is a 4-bit output signal indicates the total number of

zeros before the last non-zero coefficient in 4x4 or 2x2 blocks.

� Num_of_bits_Total_zeros is a 4-bit output signal indicates the number of

bits be consumed of input bitstream in this module.

 41

=

=

Fig 35. Interface of Total_zeros Decoder

3.8.2. Architecture of Total_zeros Decoder

Fig 36. max coeff logic in Fig 35

The Max_coeff signal is generated by the logic shown in Fig 36.

If Decode_type is equal to ChromaDC, Max_coeff is set to 4; otherwise, if

Decode_type is equal to Intra16x16AC or ChromaAC, Max_coeff is set to 15;

otherwise, if Decode_type is equal to Intra16x16DC or Luma, Max_coeff is set to 16;

 42

Fig 37. output logic1 in Fig 35

if Decode_type is not ChromaDC. The Output_Total_zeros and

Num_of_bits_Total_zeros signals are generated by the logic shown in Fig 37.

We partition the tables to 15 tables by Total_coeff and looked up these small

variable-length tables indexed by switch_output_1.

Fig 38. output logic2 in Fig 35

if Decode_type is ChromaDC. The Output_Total_zeros and

Num_of_bits_Total_zeros signals are generated by the logic shown in Fig 38.

We partition the tables to 3 tables by Total_coeff and looked up these small

variable-length tables indexed by switch_output_1.

 43

3.9. Run_before Decoder

The number of zero preceding the highest non-zero coefficient (run_before) is

decoded in reverse order. A run_before parameter is decoded for each non-zero

coefficient, starting with the highest frequency, with two exceptions:

� If there are no more zeros left to decode, (i.e. ∑ e][run_befor =

Total_zeros), it is not necessary to decode any more run_before values.

� It is not necessary to decode run_before for the final (lowest frwquency)

non-zero coefficient.

There are seven sub tables for run_before decoding. These tables are divided

based on the Zero_left which is calculated by subtracting previous run from previous

Zero_left and initialized with Total_zeros. When Zero_left is equal to 0, the remaining

runs of rest coefficients is set to 0.

3.9.1. Interface of Run_before Decoder

The interface of Run_before Decoder is shown in Fig 39, and the interface

signals are explained as follows.

� Temp_Total_zeros is a 4-bit input signal which connects

Output_Total_zeros output signal of the total_zeros module, and it is used to

initialize the value of Zero_left.

� Zero_left_in is a 4-bit input signal indicates how many remaining zeros are

not decoded before this module.

� switch_output_1 is a 20-bit input signal which connects the

switch_output_1 output signal of switch_output_1 module.

� si1_ok is a 3-bit input signal which connects the si1_ok output signal of

switch_input_1 module to enable this module.

 44

� Total_coeff is a 5-bit input signal which is used to initialize the value of

Tmep_Total_coeff. And Tmep_Total_coeff is used to decide whether the

final (lowest frwquency) non-zero coefficient is happened or not.

� Run_before_ok is a 1-bit output signal indicates a run_before is decoded.

� Run_before_total_ok is a 1-bit output signal indicates all run_before of 4x4

block or 2x2 block are decoded.

� Zero_left_out is a 4-bit output signal indicates how many remaining zeros

are not decoded after this module.

� Run_before is a 4-bit output signal indicates the number of zero preceding

the current non-zero coefficient

� Num_of_bits_Run_before is a 4-bit output signal indicates the number of

bits be consumed of input bitstream in this module.

=

Fig 39. Interface of Run_before Decoder

 45

3.9.2. Architecture of Run_before Decoder

Fig 40. zero left logic in Fig 39

The Zero_left signal is generated by the logic shown in Fig 40.

The Run_before and Num_of_bits_Run_before signals are generated by the logic

shown in Fig 41.

We looked up tables depend on Zero_leet and switch_input_1.

.

.

.

V L C 1

V L C 2

V L C 7

1

2

7

s w i tc h _ou tp u t_1

s w i tc h _ou tp u t_1

s w i tc h _ou tp u t_1

N u m _of _b i ts _R u n _b e f or e
R u n _b e f or e

Z e r o_le f t

>=

7

7

Z e r o_le f t

1
0

Fig 41. run before logic in Fig 39

The Run_before_total_ok signal is generated by the logic shown in Fig 42.

If there are no more zeros left to decode (i.e. Zero_left_in = Run_before), or

run_before for the final (lowest frwquency) non-zero coefficient (i.e.

 46

Temp_Total_coeff = 1), Run_before_total_ok is set to 1.

= =

��������

Fig 42. total ok logic in Fig 39

The Zero_left_out signal is generated by the logic shown in Chapter 1.

If Temp_Total_coeff is equal to 1, Zero_left_out is set to 0. Otherwise,

Zero_left_out is set to (Zero_left – Run_before).

=

��������

Fig 43. zero left out logic in Fig 39

3.10. A CAVLD Decoding Example

A bitstream example for intra frame and inter frame is shown in Table 3 and

Table 4. The entropy encoding method of Luma4x4, ChromaDC and ChromaAC SEs

are CAVLC, so we decode these SEs using the proposed CAVLD logic, and the

entropy encoding method of other SEs are UVLC which is very simple, so we decode

these SEs using software.

 47

Table 3. bitstream example for Intra frame

Table 4. bitstream example for Inter frame

An example for Coeff_token decoder is shown in Fig 44. If we have an input

bitstream 000010001110010111101101… , this stream will be processed with

switch_input_1 logic, first-one detector logic and switch_input_2 logic, we can get

the Si2_out like this: 10001110010111101101… . Then we use nc, the first four bit of

Si2_out, 1000, and Leading_zeros as input singals of output logic1 to get the

Total_coeff and Trailing_ones of the 4x4 block, and number of bits we used in stream

 48

of Coeff_token decoder,

The stream was partitioned into two sub-streams by underscore, the sub-stream

before underscore, 0000100, stands for used bitstream, and the other sub-stream after

underscore, 01110010111101101… , stands for unsed bitstream.

Fig 44. example for Coeff_token decoder

An example for Trailing_ones decoder is shown in Fig 45. Because we get the

Trailing_ones of the 4x4 block in Coeff_token decoder, so we need to decide the signs

of three trailing ones, and put these trialing ones into output_array.

Fig 45. example for Trailing_ones decoder

 49

An example for Level decoder is shown in Fig 46 and Fig 47. We need to decode

two levels in this example. First, we use the originl stream as input signal to

switch_input_1 logic to get the Si1_out which stands for the unused stream in original

stream, and then Si1_out is processed with level prefix, num of bits, level suffix and

output level logics to get the Output_Level, and put the Output_Level into

output_array.

Fig 46. example for Level decoder (1/2)

Fig 47. example for Level decoder (2/2)

 50

An example for Total_zeros decoder is shown in Fig 48. We use Total_coeff and

Si1_out as input signals to output logic1 to get the total number of zeros before the

last coefficient and number of bits we used in Si1_out of Total_zeros decoder,

=

Fig 48. example for Total_zeros decoder

An example for Run_before decoder is shown in Fig 49 ~ Fig 52. We use the

Zero_left and Si1_out as input signals to run before logic to get Run_before for each

non-zero coefficient and number of bits we used in Si1_out of Run_before decoder.

Then we insert the same number of zeros as Run_before of each non-zero coefficient

and put them in output_array.

Fig 49. example for Run_before decoder (1/4)

 51

stream: 00001000111001011110_1101
S i 1_o u t: 1101

zero
l ef t
l og i c

Tem p _Tot a l _zeros
Z ero_l ef t _i n

3
2

Zero_
l ef t

2
ru n

b ef ore
l og i c

N u m _of _b i t s _R u n _b ef ore
R u n _b ef ore

1
0

c oef f
l og i cTot a l _c oef f5

T em p _
t ot a l _c oef f

S i 1_ou t

3
zero l ef t
ou t l og i c Z ero_l ef t _ou t 2

stream: 000010001110010111101_101
o u tp u t_array : 3, 1, -1, -1, 0, 1

Fig 50. example for Run_before decoder (2/4)

stream: 000010001110010111101_101
S i 1_o u t: 101

zero
l ef t
l og i c

Tem p _Tot a l _zeros
Z ero_l ef t _i n

3
2

Zero_
l ef t

2
ru n

b ef ore
l og i c

N u m _of _b i t s _R u n _b ef ore
R u n _b ef ore

1
0

c oef f
l og i cTot a l _c oef f5

T em p _
t ot a l _c oef f

S i 1_ou t

2
zero l ef t
ou t l og i c Z ero_l ef t _ou t 2

stream: 0000100011100101111011_01
o u tp u t_array : 3, 1, -1, -1, 0, 1

Fig 51. example for Run_before decoder (3/4)

Fig 52. example for Run_before decoder (4/4)

 52

It is not necessary to decode run_before for the final (lowest frequency) non-zero

coefficient, so we put the remaining zeros in front of the final (lowest frequency)

non-zero coefficient, and the output_array is: 0, 3, 0, 1, -1, -1, 0, 1. The final 4x4

coefficient block we decoded is

0 3 -1 0

0 -1 1 0

1 0 0 0

0 0 0 0

 53

Chapter 4. Design of the CABAD Logic

As mentioned in section 1.2, the target platform is a LEON3-based FPGA

development board (shown in Fig 3.). In this chapter, we will present our design of

the CABAD logic and how it is integrated into the LEON platform. First, in section

4.1, we present the CABAD algorithm and give a example for this algorithm. In

section 4.2, we present the overall architecture of the CABAD logic and its interface

to the LEON processor and the memory subsystem. In section 4.3, we will present the

binary arithmetic coding including normal decoding process, bypass decoding process

and final decoding process. In section 4.4, we will present the initialization of context

variables. In section 4.5, we will present the state controller for each syntax element

controller. Then, we will present each syntax element decoding component of

CABAD which converts the bit patterns to syntax elements, including MB Skip Flag

(section 4.6), MB Type (section 4.7), Sub MB Type (section 4.8), Intra Prediction

Mode for Luma4x4 (section 4.9), Intra Prediction Mode for Chroma (section 4.10),

Reference Frame Index (section 4.11), Motion Vector Difference (section 4.12),

Coded Block Pattern (section 4.13), MB Based Quantization Parameter (section 4.14),

Coded Block Flag (section 4.15), Significant Map (section 4.16) and Level

Information (section 4.17). In section 4.18, we will give a CAVLD decoding example.

4.1. Introduction to the CABAD Entropy Decoder

4.1.1. Algorithm of CABAD

The algorithm of CABAD is described as follows:

Step 1. Context and probability modeling:

The H.264 standard defines an extensive set of context information

 54

associated with syntax elements (SEs). In this step, context modeling

selects the context index according to which SE is to be decoded and the

previously decoded syntax information from top, left, or the current

macroblock (MB).

Step 2. Binary arithmetic decoding:

In this step, the CABAC decoder decodes one bin of the bitstream and

updates probability model.

Step 3. Binarization:

In this step, binarization is in charge of checking if the successive

decoded bin (or bit) is in bin string. If not, the decoder will keep on

decoding next bin. If yes, the decoder is prepared to decode the next SE.

After the introduction of RTL model of CAVLD logic, we will give a example in

section 4.18.

4.2. Overall System Architecture

4.2.1. AMBA AHB BUS Wrapper for CABAD

In this section, the bus wrapper module of the CABAD logic for AMBA AHB

bus protocol is similar to that described in 3.2.1. The main difference is that the bus

wrapper module of the CABAD logic includes one block RAM which stores

Ctx->MPS and Ctx->state for each symbol during the CABAD decoding process, as

shown in Fig 53.

 55

Fig 53. Architecture of the bus wrapper module

4.2.2. CABAD Top Module

CABAD top module includes all of the CABAD components. The interface and

the architecture of the CABAD top module are shown in Fig 54, and the interface

signals are explained as follows.

� a, b are each 8-bit input signal indicates the information needed for almost

syntax element controllers. i.e. information for left and top macro-block of

current macro-block.

� MVD_component is a 1-bit input signal indicates deciding the Ctx_id of

MVD syntax element.

� top_value_in, top_range_in, and top_Dbitsleft_in are 25-bit, 9-bit and 5-bit

input signals using for AC engine.

� which_SE is a 5-bit input signal indicates which syntax element is decoding

on this time.

� next_16bits is a 16-bit input signal from the bitstream we will decode. If

 56

AC_Dbitsleft_in is small or equal the number of bits to be consumed in AC

engine, we will combine this signal with offset indicates output signal

AC_value_out.

� slice_type is a 2-bit input signal indicates the type of the current slice which

is decoded. There are four types of slice: I_slice, SI_slice, P_slice and

B_slice..

� input_next_16bits_ok is a 1-bit input signal indicates the value of

next_16bits is updated or not. If yes, the value of input_next_16bits_ok is

equal to 1, otherwise, the value of input_next_16bits_ok is equal to 0.

� initial_ram is a 1-bit input signal to enable Context variable Initialization..

� img_qp is a 8-bit input signal indicates the quantized parameter of the

current slice which will be decoded

� model_number is a 2-bit input signal corresponding to fixed decision for

inter slices. The value of model_number can be 0, 1 and 2.

� last_dquant_in is a 8-bit input signal which is indicating for the preceding

macro-block of current macro-block in decoding order.

� fld is a 1-bit input signal indicates the method of scanning in macro-block is

zig-zag scan or interlace scan.

� ram1_dout is a 16-bit input signal indicates the Ctx->state and Ctx->MPS

from the Context Models RAM.

� Coeff_in is a 16-bit input signal. Each bit of this signal indicates there is

zero or non-zero coefficient in corresponding position in a given scanning

order for a block. If there is a non-zero coefficient in corresponding position,

the corresponding bit of Coeff_15_to_0 is set to 1, otherwise, the

corresponding bit of Coeff_15_to_0 is set to 0.

� use_next_16bits_wire is a 1-bit output signal indicates requesting the

 57

processor to update the value of next_16bits.

� top_value_out_wire, top_range_out_wire and top_Dbitsleft_out_wire are

25-bit, 9-bit and 5-bit output signals from syntax element controllers.

� SE_value1_wire and SE_value2_wire are each 8-bit output signals indicates

the value of the syntax element we decoded.

� SE_context_wire is a 8-bit output signal indicates the type of current

macro-block.

� initial_ram_ok is a 1-bit output signal indicates end of Context variable

Initialization.

� SE_OK_wire is a 1-bit output signal indicates whether we have finished

decoding one syntax element or not.

� last_dquant_wire is a output signal indicates the value of dquant.

� ram1_din_wire is a 16-bit output signal indicates the context variables

which will be stored in block ram.

� ram1_addr_wire is a 10-bit output signal indicates the location of the

context variables which will be stored in block ram.

� ram1_we_wire is a 1-bit output signal to enable the block ram for context

variables.

� Coeff_0_out ~ Coeff_15_out are each 16-bit output signal indicating the

value of the significant coefficients in corresponding position of a block.

 58

Fig 54. Overall architecture of the CABAD top module

4.3. Binary Arithmetic Coding

The principle of binary arithmetic coding is based on recursive interval

subdivision of the interval which is called R (Range). The interval is subdivided into

two subintervals according to the given estimation of the probability PLPS of Least

Probable Symbol (LPS): one interval is rLPS = R⋅PLPS which is assigned to the LPS,

and the other interval is rMPS = R – rLPS, which is assigned to the MPS. Depending

on offset falls into rLPS (LPS occur) or rMPS (MPS occur), the corresponding

subinterval is chosen as the new interval.

In practical implementation of a binary arithmetic codec, there are two main

 59

factors determine the throughput. The first one is the multiplication operation in the

expression rLPS = R⋅PLPS, which calculates the interval subdivision. The other one is

the update of new probability PLPS. CABAD inherits the table-based mechanism in

Q-coder but provide better compression efficiency. In CABAD, in order to decrease

the complexity of computing R⋅PLPS, the multiplication results are pre-stored in a

fixed table. Range value is approximated by four quantized values using an

equal-partition of the whole range 28 ≤ R ≤ 29 into four cells. The value of PLPS is

approximated by 64 quantized values indexed by the 6-bit state value. According to

above terms, the approximated subinterval range values rLPS is table-based by

looking up from a 4x64 2D table. State value is updated after decoding each bin by

looking up a fixed table indexed of original state and MPS_or_LPS_occur which

decides the new subinterval is rLPS or rMPS. To used fixed precision integer

arithmetic, the range and offset must be renormalized after decoding each bin. During

the renormalization process, the range is left shift to guarantee the most significant bit

of range is always 1.

The binary arithmetic coding in Context-based Adaptive Binary Arithmetic

Decoding (CABAD) is divided into three different processes: normal decoding

process, bypass decoding process and final decoding process. Each decoding process

is explained as follows.

4.3.1. Normal Decoding Process (AC_Regular_mode)

This process is invoked to decode a Bin as output in almost syntax element

controllers. It takes dynamically estimating probability PLPS and Most Probable

Symbol as inputs to decide the output value of Bin, and it may consume multiple bits

of bitstream we will decode in renormalization.

 60

4.3.1.1. Interface of Normal Decoding Process

The interface of normal decoding process is shown in Fig 55, and the interface

signals are explained as follows.

� AC_Enable_regular is a 1-bit input signal to enable this normal decoding

process.

� AC_state_in is a 6-bit input signal indicates dynamically estimating

probability PLPS. The value of PLPS is approximated by 64 quantized value

indexed by this signal.

� AC_range_in is a 9-bit input signal indicates the interval of this decoding

process, and the value of this signal is must greater and equal than 28 and

small than 29.

� AC_Dbitsleft_in is a 5-bit input signal indicates how many bits are not

consumed to be offset in AC_value_in signal.

� AC_value_in is a 25-bit input signal composed of 9-bit offset and some bits

from bitstream and the length is AC_Dbitsleft_in. The advantage of doing

this is saving lots of memory access to get bits from bitstream in

renormalization.

� AC_MPS_in is a 1-bit input signal indicates the Most Probable Symbol.

� AC_bitstream_next_16bits is a 16-bit input signal from the bitstream we

will decode. If AC_Dbitsleft_in is small or equal the number of bits to be

consumed in decoding process, we will combine this signal with offset

indicates output signal AC_value_out.

� OK_AC_regular is a 1-bit output signal indicates end of this process. This

process can be done in only one cycles, so when AC_Enable_regular is set

to 1 in this cycles, OK_AC_regular is set to 1 in next cycles

 61

� AC_range_out(9-bits), AC_state_out(6-bit), AC_Dbitsleft_out(5-bit),

AC_value_out(25-bit), AC_MPS_out(1-bit) and AC_Bin_out(1-bit) are

output signals, and the value of these are computed by AC_range_in,

AC_state_in, AC_Dbitsleft_in, AC_value_in, AC_MPS_in and AC_MPS_in

input signals and some internal signals shown in Fig 55.

� Use_AC_bitstream_next_16bits is a 1-bit output signal indicates whether

the AC_bitstream_next_16bits has used or not.

AC_E n a b l e _r e g u l a r

O K _AC_r e g u l a r

U s e _AC_b i t s t r e a m
_n e x t _16 b i t s

AC_r a n g e _i n

AC_D b i t s l e f t _o u t

AC_s t a t e _i n

AC_v a l u e _i n

AC_D b i t s l e f t _i n

AC_M P S _i n

AC_M P S _o u t

M P S _o r _
L P S _o c c u r

d e c i d e
M P S
o r
L P S
l o g i c

M P S
l o g i c

s t a t e
l o g i c AC_s t a t e _o u t

B i n
l o g i c

AC_B i n _o u t

1
0

1
0

r a n g e
l o g i c

r L p s
M P S _
r a n g e

AC_r a n g e _o u t

D b i t s
l e f t
l o g i c

r e n o r m

AC_b i t s t r e a m _
n e x t _16 b i t s

v a l u e
l o g i c

n e x t
l o g i c

AC_v a l u e _o u t

[5:0]

[8:0]

[4:0]

[2 4:0]

[15:0]

[8:0]

[5:0]

[4:0]

[2 4:0]

Fig 55. Interface of normal decoding process

 62

4.3.1.2. Flow Chart of Normal Decoding Process

Fig 56. Flow chart of normal decoding process

The flow chart of normal decoding process is shown in Fig 56.

4.3.1.3. Architecture of Normal Decoding Process

��������

<<<<

>

Fig 57. decide MPS or LPS logic in Fig 55

The MPS_or_LPS_occur signal is generated by the logic shown in Fig 57.

 63

To get the value of rLps, we looked up a fixed 64x4 2-D table indexed of

AC_state_in and AC_range_in[7:6]. Because AC_range_in is composed of rLps and

rMps(MPS_range), so MPS_range is equal to (AC_range_in – rLps). To decide the

value of MPS_or_LPS_occur, we compared the value of AC_range_in with offset in

AC_value_in. If offset is greater than AC_range_in, MPS_or_LPS_occur is set to 0

indicating MPS-occur. Otherwise, MPS_or_LPS_occur is set to 1 indicates

LPS-occur.

Fig 58. state logic in Fig 55

The AC_state_out signal is generated by the logic shown in Fig 58.

To get the value of AC_state_out, dynamically estimating probability PLPS for

next decoding process, we looked up a fixed 64x2 2-D table indexed of AC_state_in

and MPS_or_LPS_occur.

>=

<<<<

<<<<

Fig 59. range logic in Fig 55

The AC_range_out signal is generated by the logic shown in Fig 59.

 64

AC_range_out is depending on how many bits are needed in renormalization of

MPS_range or rLps.

If MPS occur, we have only zero or one bit in renormalization, so AC_range_out

is set to MPS_range or (MPS_range << 1). Otherwise, if LPS-occur, we looked up a

fixed table indexed of rLps to get renorm, so AC_range_out is set to (rLps <<

renorm).

��������

>

��������

>=

��������

>

��������

Fig 60. dbitsleft logic in Fig 55

The AC_Dbitsleft_out signal is generated by the logic shown in Fig 60.

If there are not enough bits in AC_value_in signal to consume of next decoding

process, the value of AC_Dbitsleft_out will need to add 16.

 65

=

Fig 61. MPS logic in Fig 55

The AC_MPS_out signal is generated by the logic shown in Fig 61.

if LPS-occur and AC_state_in is equal to zero, AC_MPS_out is a inverse of

AC_MPS_in. Otherwise, AC_MPS_out is set to AC_MPS_in.

Fig 62. Bin logic in Fig 55

The AC_Bin_out signal is generated by the logic shown in Fig 62.

AC_Bin_out is depending on LPS-occur or MPS-occur, if LPS-occur,

AC_Bin_out is a inverse of AC_MPS_in. Otherwise, AC_Bin_out is set to

AC_MPS_in.

 66

>=

��������

>

��������

>

��������

<<<<

Fig 63. value logic in Fig 55

The AC_value_out signal is generated by the logic shown in Fig 63.

If MPS-occur, AC_value_out is set to AC_value_in or ((AC_value_in << 16) |

AC_bitstream_next_16bits) depending on the value of AC_DbitsLeft_temp.

if LPS-occur, AC_value_out is set to value_temp or ((value_temp << 16) |

AC_bitstream_next_16bits) depending on the value of (AC_Dbitsleft_in - renorm).

 67

>=

MPS_r a n g e 2 5 6

Y e s

N o

A C _D b i t s l e f t _i n

��������

A C _D b i t s l e f t _i n

>

0

1

��������

A C _D b i t s l e f t _i n

r e n o r m

>

0

U s e _A C _b i t s t r e a m
_n e x t _16 b i t s

Y e s

N o1

0

Y e s

N o1

0

MPS_o r _L PS_
o c c u r

0

1

Fig 64. Next logic in Fig 55

The Use_AC_bitstream_next_16bits signal is generated by the logic shown in

Fig 64.

If there are not enough bits to consume in AC_value_in signal of next decoding

process, Use_AC_bitstream_next_16bits is set to 1. Otherwise,

Use_AC_bitstream_next_16bits is set to 0.

4.3.2. Bypass Decoding Process (AC_Bypass_mode)

This process is invoked to decide the sign value of motion vector and level, or it

is invoked in unary/k-th order Exp-Golomb (UEGK) binarzation process of motion

vector and level information syntax element controllers.

As the different as normal decoding process, the value of dynamically estimating

probability PLPS is set to 0.5. It directly read one bit from the bitstream and produces

 68

one Bin as output. So we don’ t need the information about dynamically estimating

probability PLPS and Most Probable Symbol.

4.3.2.1. Interface of Bypass Decoding Process

The interface of bypass decoding process is shown in Fig 65, and the interface

signals are similar with normal decoding process, so we don’ t explain these signals

here.

Fig 65. Interface of bypass decoding process

4.3.2.2. Flow Chart of Bypass Decoding Process

Fig 66. Flow chart of bypass decoding process

The flow chart of bypass decoding process is shown in Fig 66.

 69

4.3.2.3. Architecture of Bypass Decoding Process

=

��������

Fig 67. dbitsleft logic in Fig 65

The AC_Dbitsleft_out signal is generated by the logic shown in Fig 67.

If (AC_Dbitsleft_in – 1) is greater than 0, AC_Dbitsleft_out is set to

(AC_Dbitsleft_in – 1). Otherwise, AC_Dbitsleft_out is set to 16.

=

��������

Fig 68. next logic in Fig 65

The Use_AC_bitstream_next_16bits signal is generated by the logic shown in

Fig 68.

Use_AC_bitstream_next_16bits is depending on whether there are enough bits to

consume in AC_value_in signal of next decoding process or not. If yes,

Use_AC_bitstream_next_16bits is set to 0. Otherwise,

Use_AC_bitstream_next_16bits is set to 1.

 70

=

��������

<<<<

>

��������

Fig 69. value logic in Fig 65

The AC_value_out signal is generated by the logic shown in Fig 69.

If there are not enough bits to consume in AC_value_in signal of next decoding

process, temp_of_AC_value_out is set to ((AC_value_in << 16) |

AC_bitstream_next_16bits). Otherwise, temp_of_AC_value_out is set to

AC_value_in. And then if AC_range_in is greater than the offset in

temp_of_AC_value_out signal, AC_value_out is set to temp_of_AC_value_out.

Otherwise, AC_value_out is set to (temp_of_AC_value_out - (AC_range_in <<

AC_Dbitsleft_out)).

 71

=

��������

<<<<

>

Fig 70. Bin logic in Fig 65

The AC_Bin_out signal is generated by the logic shown in Fig 70.

If AC_range_in is greater than the offset in temp_of_AC_value_out signal,

AC_Bin_out is set to 0. Otherwise, AC_Bin_out is set to 1.

4.3.3. Final Decoding Process (AC_Final_mode)

This process is invoked to decode of end_of_slice_flag and the bin indicating the

I_PCM mode. It directly read one bit from the bitstream and produces one Bin as

output.

As the similar as bypass decoding process, we don’ t need the information about

dynamically estimating probability PLPS and Most Probable Symbol.

4.3.3.1. Interface of Final Decoding Process

The interface of final decoding process is shown in Fig 71, and the interface

signals are similar with normal decoding process, so we don’ t explain these signals

 72

here.

Fig 71. Interface of final decoding process

4.3.3.2. Flow Chart of Final Decoding Process

Fig 72. Flow chart of the final decoding process

The flow chart of final decoding process is shown in Fig 72.

 73

4.3.3.3. Architecture of Final Decoding Process

<<<<

AC_r a n g e _i n
��������2

AC_D b i t s l e f t _i n

>

AC_v a l u e _i n

Y e s
N o1

0 AC_B i n _o u t

AC_r a n g e _m i n u s _2

Fig 73. Bin logic in Fig 71

The AC_Bin_out signal is generated by the logic shown in Fig 73.

If AC_range_in_minus_2 is greater than the offset in AC_value_in signal,

AC_Bin_out is set to 0. Otherwise, AC_Bin_out is set to 1.

If AC_Bin_out is 1, it indicates finish decoding the current slice. Otherwise, if

AC_Bin_out is 0, it indicates finish decoding the current macro block.

<<<<
��������

>

>=

<<<<

Fig 74. range logic in Fig 71

The AC_range_out signal is generated by the logic shown in Fig 74.

If AC_range_in_minus_2 is small or equal than the offset in AC_value_in signal,

AC_range_out is set to AC_range_in. Otherwise, AC_range_out is depending on

 74

whether the AC_range_in_minus_2 needed to renormalize. If yes, AC_range_out is

set to (AC_range_in_minus_2 << 1). Otherwise, AC_range_out is set to

AC_range_in_minus_2.

��������

Fig 75. Next logic in Fig 71

The Use_AC_bitstream_next_16bits signal is generated by the logic shown in

Fig 75.

Use_AC_bitstream_next_16bits is depending on whether there are enough bits to

consume in AC_value_in signal of next decoding process or not. If yes, the value of

Use_AC_bitstream_next_16bits is set to 0. Otherwise, the value of

Use_AC_bitstream_next_16bits is set to 1.

<<<<
��������

>

>=

��������

 75

Fig 76. value logic in Fig 71

The AC_value_out signal is generated by the logic shown in Fig 76.

If AC_range_in_minus_2 is greater than the offset in AC_value_in signal, and

the most significant bit of AC_range_in_minus_2 is zero, and there are not enough

bits to consume in AC_value_in signal of next decoding process, AC_value_out is set

to ((AC_value_in << 16) | AC_bitstream_next_16bits). Otherwise, AC_value_out is

set to AC_value_in.

<<<<
��������

>

>=

��������

Fig 77. dbitsleft logic in Fig 71

The AC_Dbitsleft_out signal is generated by the logic shown in Fig 77.

If AC_range_in_minus_2 is greater than the offset in AC_value_in signal, and

the most significant bit of AC_range_in_minus_2 is zero, AC_Dbitsleft_out is

depending on whether there are enough bits to consume in AC_value_in signal of next

decoding process or not. If no, AC_Dbitsleft_out is set to 16. Otherwise,

AC_Dbitsleft_out is set to (AC_Dbitsleft_in – 1).

Otherwise, the AC_Dbitsleft_out is set to AC_Dbitsleft_in.

 76

4.4. Initialization for context variables

For each context variable, there are two variables Ctx->state and Ctx->MPS

which are initialized using m and n pre-stored in ROM. Ctx->state corresponds to

estimating probability PLPS and Ctx->MPS corresponds to the value of most probable

symbol. And then we stored Ctx->state and Ctx->MPS in Block-RAM for all syntax

element decoders as input information for decoding Bins. We supported 258 context

variables for I_slice, and 293 context variables for P_slice and B_slice.

4.4.1. Interface of Initialization for context variables

The interface of the context variables initialization module is shown in Fig 78,

and the interface signals are explained as follows.

� initial_ram is a 1-bit input signal to enable context variable initialization..

� slice_type is a 2-bit input signal indicates the type of the current slice which

is decoded. There are four types of slice: I_slice, SI_slice, P_slice and

B_slice.

� img_qp is a 8-bit input signal indicates the quantized parameter of the

current slice which will be decoded.

� model_number is a 2-bit input signal corresponding to fixed decision for

inter slices. The valur of model_number can be 0, 1 and 2.

� fld is a 1-bit input signal indicates the method of scanning in macro-block is

zig-zag scan or interlace scan.

� initial_ram_ok is a 1-bit output signal indicates end of this process.

� ram_din is a 16-bit output signal indicates the context variables which will

be stored in block ram.

� ram_addr is a 10-bit output signal indicates the location of the context

 77

variables which will be stored in block ram.

� ram_we is a 1-bit output signal to enable the block ram for context

variables.

Fig 78. Interface of initialization for context variables

4.4.2. Architecture of Initialization for context variables

��������

==

Fig 79. ok logic in Fig 78

The initial_ram_ok signal is generated by the logic shown in Fig 79.

For each context variable, the Ctx->state and Ctx->MPS are initialized, and

SE_num will be increased one for each initialization. So if all of the Ctx->state and

Ctx->MPS are initialized, initial_ram_ok will be set to 1.

 78

**
>>>>

++
MAX

MIN
MAX

>=>=

��������

��������

Fig 80. MPS state logic in Fig 78

The Ctx->state and Ctx->MPS signals are generated by the logic shown in Fig

80.

The two values assigned to Ctx->state and Ctx->MPS for the initialization are

derived from img_qp, which is derived in equation 4.4.2.1 Given m and n,

temp_state = min(max((((m * max(0 , img_qp)) >> 4) + n) , 1) , 126); eq.4.4.2.1

And then the value of Ctx->state and Ctx->MPS are depending on equation

4.4.2.2.

Ctx->state = (temp_state >= 64) ? (temp_state – 64) : (63 – temp_state);

Ctx->MPS = (temp_state >= 64) ? 1 : 0; eq.4.4.2.2

 79

Yes
N o

!=!=0

i n i t i al _r am

{C t x ->st at e,C t x ->M P S }

Yes
N o

Yes
N o

r am 1_d i n

r am 1_ad d r

r am 1_w e
1

0

0

S E _n u m

0

Fig 81. ram logic in Fig 78

The ram1_din, ram1_addr and ram1_we signals are generated by the logic shown

in Fig 81.

We put Ctx->state and Ctx->MPS in the Context Models RAM, and the address

of each Ctx->state and Ctx->MPS is SE_num.

4.5. State Controller for each Syntax Element Controller

The finite state machine of each syntax element controller is shown in Fig 82.

State 1 State 2 State 3 State 4 State 5

State 6 State 7

B

A D

C E

F G

H

I J

Fig 82. State controllers for each syntax element controller

 80

We used 7 states to decode Bins of each syntax element in the corresponding

syntax element controller. If we want to use bypass or final decoding process for

binary arithmetic coding, we will start in State 3, because we don’ t need Ctx->state

and Ctx->MPS for these decoding process. Otherwise, if we want to use regular

decoding process for binary arithmetic coding, we will start in State 1.

In State 1, we wanted to get Ctx->state and Ctx->MPS from Context Models

RAM, and we waited them in State 2, and then we get the values of them and we

output some information, ex. AC_value, AC_Dbitsleft, AC_range, Enable_AC, to

enable binary arithmetic coding in State 3. To go on, in State 4, when AC is finished

decoding this bin, we get the updated value of Ctx->state and Ctx->MPS if we needed

and get some information from binary arithmetic coding. If the value of signal

Use_AC_bitstream_next_16bits from binary arithmetic coding is 1, we will transfer to

State 5 or State 6 depending on whether we will continue to decode this syntax

element or not. If yes, we will transfer to State 5, else we will transfer to State 6.

Otherwise, If the value of signal Use_AC_bitstream_next_16bits from binary

arithmetic coding is 0, we will transfer to State 1, State 3 or State 7 depending on

whether we will continue to decode this syntax element or not. If yes, we will transfer

to State 1 or State 3 depending on which decoding process of binary arithmetic coding

to decode next bin, else we will transfer to State 7 to finish decoding this syntax

element. When we in State 5 or State 6, we will wait updated value of

AC_bitstream_next_16bits, and then we will transfer to State1, State3 or Stare 7.

‘A’ through ‘J’ are state transition conditions, which are described as follows:

� Condition A indicates “ OK_AC_X is equal to 0” . On the other words, if

OK_AC_X is equal to 1, we will transfer to next state. Note: the X of

OK_AC_X can be regular, bypass or final.

 81

� Condition B indicates the value of Use_AC_bitstream_next_16bits is equal

to 0 and we will continue decoding this syntax element.

� Condition C indicates the value of Use_AC_bitstream_next_16bits is equal

to 1 and we will continue decoding this syntax element.

� Condition D and Condition I indicate waiting the updated value of

AC_bitstream_next_16bits, if the value of AC_bitstream_next_16bits is

updated, we will transfer to next state.

� Condition E and Condition G indicate the value of

AC_bitstream_next_16bits is updated and we will transfer to next state.

� Condition F indicates the value of Use_AC_bitstream_next_16bits is equal

to 1 and we will finish decoding this syntax element.

� Condition H indicates the value of Use_AC_bitstream_next_16bits is equal

to 0 and we will finish decoding this syntax element.

� Condition J indicates “ SE_OK is equal to 1” . Other the other words, if we

finished decoding this syntax element, we will hold in this state until new

syntax element comes.

4.6. MB Skip Flag

The value of MB Skip Flag indicates whether the current macro-block in P or B

slice is skipped or not.

4.6.1. Interface of MB Skip Flag

The interface of MB Skip Flag is shown in Fig 83, and the interface signals are

explained as follows.

� a, b are each 1-bit input signal indicates the MB Skip Flag value of the left

and top neighboring macro-block.

 82

� value_in, range_in, and Dbitsleft_in are 25-bit, 9-bit and 5-bit input signals

which connect to the input signals of top module or the output signals of

binary arithmetic coding depending on the value of from_top_or_AC.

� which_SE is a 5-bit input signal indicates which syntax element is decoding

at this time.

� slice_type is a 2-bit input signal indicates the type of the current slice which

is decoded. There are four types of slice: I_slice, SI_slice, P_slice and

B_slice..

� input_AC_bitstream_next_16bits_from_top_ok is a 1-bit input signal

indicates the value of AC_bitstream_next_16bits is updated or not. If yes,

the value of input_AC_bitstream_next_16bits_from_top_ok is equal to 1,

otherwise, the value of input_AC_bitstream_next_16bits_from_top_ok is

equal to 0.

� OK_AC_regular is a 1-bit signal indicates AC_Regular_mode of binary

arthimetic coding is finished.

� state_in and MPS_in are 6-bit and 1-bit input signals which connect to the

output signals of AC_Regular_mode of binary arthimetic coding.

� Bin_in and use_AC_bitstream_next_16bits_from_AC are 1-bit and 1-bit

input signals which connect to the output signals of the binary arithmetic

coding.

� ram1_dout is a 16-bit input signal indicates the Ctx->state and Ctx->MPS

from the Context Models RAM.

� use_AC_bitstream_next_16bits_to_top is a 1-bit output signal indicates

requesting the software to update the value of AC_bitstream_next_16bits.

� SE_OK is a 1-bit output signal indicates whether we have finished decoding

this syntax element or not.

 83

� value_out, range_out and Dbitsleft_out are 25-bit, 9-bit and 5-bit output

signals which conncet to the output signals of top module and input signals

of binary arithmetic coding.

� SE_value1 is 8-bit output signals indicates the value of the syntax element

we decoded.

� enable_AC_regular is a 1-bit output signal to enable AC_Regular_mode of

binary arthimetic coding.

� state_our and MPS_our are 6-bit and 1-bit output signals which connect to

the input signals of AC_Regular_mode of binary arithmetic coding.

� ram1_din, ram1_addr and ram1_we are 16-bit, 10-bit and 1-bit output

signals which connect to the input signals of Context Models RAM.

� from_top_or_AC is a 1-bit output signal to decide the value_in, range_in,

and Dbitsleft_in input signals connect to the input signals of top module or

output signals of binary arithmetic coding.

� last_dquant is a 8-bit output signal indicates the value of dquant.

� We use a 75-bit common_input signal to stand for {clk, rst, value_in,

range_in, Dbitsleft_in, which_SE, slice_type,

input_AC_bitstream_next_16bits_from_top_ok, OK_AC_regular, state_in,

MPS_in, Bin_in, use_AC_bitstream_next_16bits_from_AC, ram1_dout},

� We use a 84-bit common_output signal to stand for

{use_AC_bitstream_next_16bits_to_top , SE_OK, value_out, range_out,

Dbitsleft_out, SE_value1, enable_AC_regular, state_out, MPS_out,

ram1_din, ram1_addr, ram1_we}, and common_input and common_output

signal will be used in all syntax element controllers.

 84

Fig 83. Interface of MB Skip Flag

4.6.2. Flow Chart of MB Skip Flag

The flow chart of MB Skip Flag is shown in Fig 84, and the binarization of MB

Skip Flag is 1-bit FL coding.

The detail flow of arithmetic coding engine has described in 4.5 State Controller

for each Syntax Element Controller.

Fig 84. Flow chart of MB Skip Flag

4.7. MB Type

The MB Type will be decoded in each macro-block in I_slice and some

macro-blocks in P_slice and B_slice if the macro-blocks are not skipped.

4.7.1. Interface of MB Type

The interface of MB Type is shown in Fig 85, and the interface signals are

 85

explained as follows.

� common_input and common_output are 75-bit and 84-bit signals which be

described in 4.6.1. Interface of MB Skip Flag.

� a, b are each 1-bit input signal. For I_slice, if the MB Type of the left (or top)

neighboring macro-block is not I4MB and I8MB, the value of a (or b) is

equal to 1, otherwise, the value of a (or b) is equal to 0. For B_slice, if the

MB Type of the left (or top) neighboring macro-block is not

B_Direct_16x16, the value of a (or b) is equal to 1, otherwise, the value of a

(or b) is equal to 0.

� OK_AC_final is a 1-bit signal indicates AC_Final_mode of binary

arthimetic coding is finished.

� enable_AC_final is a 1-bit output signal to enable AC_Final_mode of

binary arthimetic coding.

� from_top_or_ACr_or_ACf is a 2-bit output signal to decide the value_in,

range_in, and Dbitsleft_in input signals which connect to the input signals

of top module or output signals of AC_Regular_mode or AC_Final_mode

of binary arithmetic coding.

Fig 85. Interface of MB type

4.7.2. Flow Chart of MB Type in I_slice

The flow chart of MB Type in I_slice is shown in Fig 86, and the binarization of

MB Type in I_slice is referring to Table 5.

 86

Fig 86. Flow chart of MB Type in I_slice

 87

Value (name) of MB Type Bin string

0 (I_4x4) 0

1 (I_16x16_0_0_0) 1 0 0 0 0 0

2 (I_16x16_1_0_0) 1 0 0 0 0 1

3 (I_16x16_2_0_0) 1 0 0 0 1 0

4 (I_16x16_3_0_0) 1 0 0 0 1 1

5 (I_16x16_0_1_0) 1 0 0 1 0 0 0

6 (I_16x16_1_1_0) 1 0 0 1 0 0 1

7 (I_16x16_2_1_0) 1 0 0 1 0 1 0

8 (I_16x16_3_1_0) 1 0 0 1 0 1 1

9 (I_16x16_0_2_0) 1 0 0 1 1 0 0

10 (I_16x16_1_2_0) 1 0 0 1 1 0 1

11 (I_16x16_2_2_0) 1 0 0 1 1 1 0

12 (I_16x16_3_2_0) 1 0 0 1 1 1 1

13 (I_16x16_0_0_1) 1 0 1 0 0 0

14 (I_16x16_1_0_1) 1 0 1 0 0 1

15 (I_16x16_2_0_1) 1 0 1 0 1 0

16 (I_16x16_3_0_1) 1 0 1 0 1 1

17 (I_16x16_0_1_1) 1 0 1 1 0 0 0

18 (I_16x16_1_1_1) 1 0 1 1 0 0 1

19 (I_16x16_2_1_1) 1 0 1 1 0 1 0

20 (I_16x16_3_1_1) 1 0 1 1 0 1 1

21 (I_16x16_0_2_1) 1 0 1 1 1 0 0

22 (I_16x16_1_2_1) 1 0 1 1 1 0 1

23 (I_16x16_2_2_1) 1 0 1 1 1 1 0

24 (I_16x16_3_2_1) 1 0 1 1 1 1 1

25 (I_PCM) 1 1

binIdx 0 1 2 3 4 5 6

Table 5. Binarization for MB Type in I_slice

4.7.3. Flow Chart of MB Type in P_slice

The flow chart of of MB Type in P_slice is shown in Fig 87, and the binarization

of MB Type in P_slice is referring to Table 6.

 88

which_S E =
M B T y p e ?

N o

Y e s

D o n e

B i n 0 = 0?
Y e sN o

M B T y p e = 6
D o n e

Y e s

N o

N o

r a m 1_a d d r = b a s e _a d d r (1) + C t x _id (3)
u s e A C _R e g u l a r _m o d e t o co m p u t e B in 0

r a m 1_a d d r = b a s e _a d d r (1) + C t x _id (6)
u s e A C _R e g u l a r _m o d e t o co m p u t e B i n 1

B in 1 = 1?

u s e A C _F in a l _m o d e t o co m p u t e B i n 2

B in 2 = 0?M B T y p e = 31
D o n e

Y e s

O u t p u t M B T y p e
D o n e

Y e s N o

r a m 1_a d d r = b a s e _a d d r (1) + C t x _id (7)
u s e A C _R e g u l a r _m o d e t o co m p u t e B in 3

r a m 1_a d d r = b a s e _a d d r (1) + C t x _id (8)
u s e A C _R e g u l a r _m o d e t o co m p u t e B in 4

B i n 4 = 0?

r a m 1_a d d r = b a s e _a d d r (1) + C t x _id (9)
u s e A C _R e g u l a r _m o d e t o c o m p u t e B in 5

r a m 1_a d d r = b a s e _a d d r (1) + C t x _id (9)
u s e A C _R e g u l a r _m o d e t o c o m p u t e B in 6

r a m 1_a d d r = b a s e _a d d r (1) + C t x _id (8)
u s e A C _R e g u l a r _m o d e t o co m p u t e B in 5

r a m 1_a d d r = b a s e _a d d r (1) + C t x _id (9)
u s e A C _R e g u l a r _m o d e t o co m p u t e B in 6

r a m 1_a d d r = b a s e _a d d r (1) + C t x _id (9)
u s e A C _R e g u l a r _m o d e t o co m p u t e B in 7

O u t p u t M B T y p e
D o n e

Y e s

N o

r a m 1_a d d r = b a s e _a d d r (1) + C t x _id (4)
u s e A C _R e g u l a r _m o d e t o c o m p u t e B in 1

B in 1 = 0? r a m 1_a d d r = b a s e _a d d r (1) + C t x _id (5)
u s e A C _R e g u l a r _m o d e t o co m p u t e B in 2

M B T y p e = (B in 2 = = 0) ? 1 : 4
D o n e

r a m 1_a d d r = b a s e _a d d r (1) + C t x _id (6)
u s e A C _R e g u l a r _m o d e t o co m p u t e B in 2

M B T y p e = (B in 2 = = 0) ? 3 : 2
D o n e

Fig 87. Flow chart of MB Type in P_slice

Slice type Value (name) of mb_type Bin string

P, SP slice

0 (P_L0_16x16) 0 0 0

1 (P_L0_L0_16x8) 0 1 1

2 (P_L0_L0_8x16) 0 1 0

3 (P_8x8) 0 0 1

4 (P_8x8ref0) na

5 to 30 (Intra, prefix only) 1

Table 6. Binarization for MB Type in P_slice

4.7.4. Flow Chart of MB Type in B_slice

The flow chart of MB Type in B_slice is shown in Fig 88 and Fig 89, and the

 89

binarization of MB Type in B_slice is referring to Table 7.

w h i c h _S E =
M B T y p e?

N o
D o n e

Yes

N o

Yes

Yes

N o

YesN o

Yes

N o

r am 1_ad d r = base_ad d r (11) + C t x _i d (a+b)
u se A C _R eg u l ar _m o d e t o c o m p u t e B i n 0

B i n 0 = 1? M B T y p e = 0
D o n e

r am 1_ad d r = base_ad d r (11) + C t x _i d (3)
u se A C _R eg u l ar _m o d e t o c o m p u t e B i n 1

B i n 1 = 1? r am 1_ad d r = base_ad d r (11) + C t x _i d (5)
u se A C _R eg u l ar _m o d e t o c o m p u t e B i n 2

r am 1_ad d r = base_ad d r (11) + C t x _i d (4)
u se A C _R eg u l ar _m o d e t o c o m p u t e B i n 2

M B T y p e = (B i n 2 = = 0) ? 1 : 2
D o n e

B i n 2 = 0?

r am 1_ad d r = base_ad d r (11) + C t x _i d (5)
u se A C _R eg u l ar _m o d e t o c o m p u t e B i n 3

r am 1_ad d r = base_ad d r (11) + C t x _i d (5)
u se A C _R eg u l ar _m o d e t o c o m p u t e B i n 3

r am 1_ad d r = base_ad d r (11) + C t x _i d (5)
u se A C _R eg u l ar _m o d e t o c o m p u t e B i n 3

O u t p u t M B T y p e
D o n e

r am 1_ad d r = base_ad d r (11) + C t x _i d (5)
u se A C _R eg u l ar _m o d e t o c o m p u t e B i n 3

r am 1_ad d r = base_ad d r (11) + C t x _i d (5)
u se A C _R eg u l ar _m o d e t o c o m p u t e B i n 3

r am 1_ad d r = base_ad d r (11) + C t x _i d (5)
u se A C _R eg u l ar _m o d e t o c o m p u t e B i n 3

{B i n 3,B i n 4} = 11?

P ar t 2

Fig 88. Flow chart part1 of MB Type in B_slice

 90

Fig 89. Flow chart part2 of MB Type in B_slice

 91

Slice type Value (name) of mb_type Bin string

B slice

0 (B_Direct_16x16) 0

1 (B_L0_16x16) 1 0 0

2 (B_L1_16x16) 1 0 1

3 (B_Bi_16x16) 1 1 0 0 0 0

4 (B_L0_L0_16x8) 1 1 0 0 0 1

5 (B_L0_L0_8x16) 1 1 0 0 1 0

6 (B_L1_L1_16x8) 1 1 0 0 1 1

7 (B_L1_L1_8x16) 1 1 0 1 0 0

8 (B_L0_L1_16x8) 1 1 0 1 0 1

9 (B_L0_L1_8x16) 1 1 0 1 1 0

10 (B_L1_L0_16x8) 1 1 0 1 1 1

11 (B_L1_L0_8x16) 1 1 1 1 1 0

12 (B_L0_Bi_16x8) 1 1 1 0 0 0 0

13 (B_L0_Bi_8x16) 1 1 1 0 0 0 1

14 (B_L1_Bi_16x8) 1 1 1 0 0 1 0

15 (B_L1_Bi_8x16) 1 1 1 0 0 1 1

16 (B_Bi_L0_16x8) 1 1 1 0 1 0 0

17 (B_Bi_L0_8x16) 1 1 1 0 1 0 1

18 (B_Bi_L1_16x8) 1 1 1 0 1 1 0

19 (B_Bi_L1_8x16) 1 1 1 0 1 1 1

20 (B_Bi_Bi_16x8) 1 1 1 1 0 0 0

21 (B_Bi_Bi_8x16) 1 1 1 1 0 0 1

22 (B_8x8) 1 1 1 1 1 1

23 to 48 (Intra, prefix only) 1 1 1 1 0 1

binIdx 0 1 2 3 4 5 6

Table 7. Binarization for MB Type in B_slice

4.8. Sub MB Type

If the macro-block is not skipped, and 8x8 sub-macro-block of this macro-block

coded in P_8x8 or B_8x8 mode, an additional syntax element, Sub MB Type is

present that indicating the type of the corresponding block.

 92

4.8.1. Interface of Sub MB Type

The interface of Sub MB Type is shown in Fig 90, and the interface signals are

explained as follows.

� common_input and common_output are 75-bit and 84-bit signals which be

described in 4.6.1. Interface of MB Skip Flag.

� from_top_or_AC is a 1-bit output signal which be described in 4.6.1.

Interface of MB Skip Flag.

Fig 90. Interface of Sub MB Type

4.8.2. Flow Chart of Sub MB Type in P_slice

The flow chart of Sub MB Type in P_slice is shown in Fig 91, and the

binarization of Sub MB Type in P_slice is referring to Table 8.

 93

which_S E =
S u b M B T y p e ? D o n e

N o

Yes

N o

Yes

N o

YesN o

r a m 1_a d d r = b a se_a d d r (20) + C t x _i d (0)
u se A C _R eg u l a r _m o d e t o c o m p u t e B i n 0

B i n 0 = 0? S u b M B T y p e = 0
D o n e

r a m 1_a d d r = b a se_a d d r (20) + C t x _i d (1)
u se A C _R eg u l a r _m o d e t o c o m p u t e B i n 1

B i n 1 = 1? S u b M B T y p e = 1
D o n e

r a m 1_a d d r = b a se_a d d r (20) + C t x _i d (2)
u se A C _R eg u l a r _m o d e t o c o m p u t e B i n 2

B i n 2 = 1?

S u b M B T y p e = 2
D o n e

S u b M B T y p e = 3
D o n e

Fig 91. Flow chart of Sub MB Type in P_slice

Slice type Value (name) of sub_mb_type Bin string

P, SP slice

0 (P_L0_8x8) 1

1 (P_L0_8x4) 0 0

2 (P_L0_4x8) 0 1 1

3 (P_L0_4x4) 0 1 0

Table 8. Binarization for Sub MB Type in P_slice

4.8.3. Flow Chart of Sub MB Type in B_slice

The flow chart of Sub MB Type in B_slice is shown in Fig 92, and the

binarization of Sub MB Type in B_slice is referring to Table 9.

 94

which_S E =
S u b M B T y p e ? D o n e

N o

Y e s

N o

Y e s

Y e sN o

N o

Y e s

N o

r a m 1_a d d r = b a s e _a d d r (20) + C t x _id (3)
u s e A C _R e g u l a r _m o d e t o co m p u t e Bin 0

Bin 0 = 1? S u b M B T y p e = 0
D o n e

r a m 1_a d d r = b a s e _a d d r (20) + C t x _id (4)
u s e A C _R e g u l a r _m o d e t o co m p u t e Bin 1

Bin 1 = 0?

r a m 1_a d d r = b a s e _a d d r (20) + C t x _id (6)
u s e A C _R e g u l a r _m o d e t o co m p u t e Bin 2

S u b M B T y p e = (Bin 2 = = 0) ? 1 : 2
D o n e

r a m 1_a d d r = b a s e _a d d r (20) + C t x _id (5)
u s e A C _R e g u l a r _m o d e t o co m p u t e Bin 2

Bin 2 = 1?

r a m 1_a d d r = b a s e _a d d r (20) + C t x _id (6)
u s e A C _R e g u l a r _m o d e t o co m p u t e Bin 3

r a m 1_a d d r = b a s e _a d d r (20) + C t x _id (6)
u s e A C _R e g u l a r _m o d e t o co m p u t e Bin 4

o u t p u t S u b M B T y p e
D o n e

Y e s

r a m 1_a d d r = b a s e _a d d r (20) + C t x _id (6)
u s e A C _R e g u l a r _m o d e t o co m p u t e Bin 3

Bin 3 = 1?

r a m 1_a d d r = b a s e _a d d r (20) + C t x _id (6)
u s e A C _R e g u l a r _m o d e t o co m p u t e Bin 4

o u t p u t S u b M B T y p e
D o n e

r a m 1_a d d r = b a s e _a d d r (20) + C t x _id (6)
u s e A C _R e g u l a r _m o d e t o co m p u t e Bin 4

r a m 1_a d d r = b a s e _a d d r (20) + C t x _id (6)
u s e A C _R e g u l a r _m o d e t o co m p u t e Bin 5

o u t p u t S u b M B T y p e
D o n e

Fig 92. Flow chart of Sub MB Type in B_slice

 95

Slice type Value (name) of sub_mb_type Bin string

B slice

0 (B_Direct_8x8) 0

1 (B_L0_8x8) 1 0 0

2 (B_L1_8x8) 1 0 1

3 (B_Bi_8x8) 1 1 0 0 0

4 (B_L0_8x4) 1 1 0 0 1

5 (B_L0_4x8) 1 1 0 1 0

6 (B_L1_8x4) 1 1 0 1 1

7 (B_L1_4x8) 1 1 1 0 0 0

8 (B_Bi_8x4) 1 1 1 0 0 1

9 (B_Bi_4x8) 1 1 1 0 1 0

10 (B_L0_4x4) 1 1 1 0 1 1

11 (B_L1_4x4) 1 1 1 1 0

12 (B_Bi_4x4) 1 1 1 1 1

binIdx 0 1 2 3 4 5

Table 9. Binarization for Sub MB Type in B_slice

4.9. Intra����Prediction����Mode����for����Luma4x4

The luminance intra prediction modes for 4x4 blocks are itself predicted

resulting in the syntax element of the value of prev_intra4x4_pred_mode_flag and the

mode indicator rem_intra4x4_pred_mode, where the rem_intra4x4_pred_mode is

only presented if prev_intra_pred4x4_mode_flag is equal to 0.

4.9.1. Interface of Intra����Prediction����Mode����for����Luma4x4

The interface of Intra�Prediction�Mode�for�Luma4x4 is shown in Fig 93, and the

interface signals are explained as follows.

� common_input and common_output are 75-bit and 84-bit signals which be

described in 4.6.1. Interface of MB Skip Flag.

� from_top_or_AC is a 1-bit output signal which be described in 4.6.1.

Interface of MB Skip Flag.

 96

Fig 93. Interface of Intra����Prediction����Mode����for����Luma4x4

4.9.2. Flow Chart of Intra����Prediction����Mode����for����Luma4x4

The flow chart of Intra�Prediction�Mode�for�Luma4x4 is shown in Fig 94, and the

binarization of prev_intra4x4_pred_mode_flag is 1-bit FL coding, the binarization of

rem_intra4x4_pred_mode is 3-bit FL coding.

DoneN o

Y es

I_s l i c e or P,B_s l i c e?

w h i c h _S E = Intra
P re d i c t i o n M o d e f o r

L u m a4x4?

I_s l i c e P_s l i c e or B_s l i c e

Int r a Pr ed i c t i on M od e
f or L u m a 4x4 = -1

Done
Bi n0 = 0?

Y es Y es

r a m 1_a d d r = b a s e_a d d r (12) + C t x_i d (0)
u s e A C _R eg u l a r _m od e t o c om p u t e Bi n0

r a m 1_a d d r = b a s e_a d d r (27) + C t x_i d (0)
u s e A C _R eg u l a r _m od e t o c om p u t e Bi n0

p r ev _i nt r a 4x4_p r ed _m od e_f l a g

Bi n0 = 0?
Int r a Pr ed i c t i on M od e

f or L u m a 4x4 = -1
Done

r a m 1_a d d r = b a s e_a d d r (12) + C t x_i d (1)
u s e A C _R eg u l a r _m od e t o c om p u t e Bi n1

r a m 1_a d d r = b a s e_a d d r (12) + C t x_i d (1)
u s e A C _R eg u l a r _m od e t o c om p u t e Bi n2

r a m 1_a d d r = b a s e_a d d r (12) + C t x_i d (1)
u s e A C _R eg u l a r _m od e t o c om p u t e Bi n3

ou t p u t Int r a Pr ed i c t i on
M od e f or L u m a 4x4

Done

r a m 1_a d d r = b a s e_a d d r (27) + C t x_i d (1)
u s e A C _R eg u l a r _m od e t o c om p u t e Bi n1

r a m 1_a d d r = b a s e_a d d r (27) + C t x_i d (1)
u s e A C _R eg u l a r _m od e t o c om p u t e Bi n2

r a m 1_a d d r = b a s e_a d d r (27) + C t x_i d (1)
u s e A C _R eg u l a r _m od e t o c om p u t e Bi n3

ou t p u t Int r a Pr ed i c t i on
M od e f or L u m a 4x4

Done

r em _i nt r a 4x4_p r ed _m od e

N o N o

Fig 94. Flow chart of Intra����Prediction����Mode����for����Luma4x4

4.10. Intra Prediction Mode for Chroma

Intra Prediction Mode for Chroma specifies the type of spatial prediction used

for chrmoa in macro-blocks using Intra_4x4 or Intra_16x16 prediction.

4.10.1. Interface of Intra Prediction Mode for Chroma

The interface of Intra Prediction Mode for Chroma is shown in Fig 95, and the

 97

interface signals are explained as follows.

� common_input and common_output are 75-bit and 84-bit signals which be

described in 4.6.1. Interface of MB Skip Flag.

� a, b are each 1-bit input signal. If the mb_type of the left (or top)

neighboring macro-block is not equal to IPCM and the

Intra_Prediction_Mode_for_Chroma of the left (or top) neighboring

macro-block is not equal to 0, the value of a (or b) is equal to 1, otherwise,

the value of a (or b) is equal to 0.

� from_top_or_AC is a 1-bit output signal which be described in 4.6.1.

Interface of MB Skip Flag.

Fig 95. Interface of Intra Prediction Mode for Chroma

4.10.2. Flow Chart of Intra Prediction Mode for Chroma

The flow chart of Intra Prediction Mode for Chroma is shown in Fig 96, and the

binarization of Intra Prediction Mode for Chroma is variable-length coding, but the

maximum length of Intra Prediction Mode for Chroma is 3.

 98

Fig 96. Flow chart of Intra Prediction Mode for Chroma

4.11. Reference����Frame����Index

Reference�Frame� Index when present, specifies the index in reference picture

list0 or reference picture list1 of the reference picture to be used for prediction.

4.11.1. Interface of Reference����Frame����Index

The interface of Reference�Frame� Index is shown in Fig 97, and the interface

signals are explained as follows.

� common_input and common_output are 75-bit and 84-bit signals which be

described in 4.6.1. Interface of MB Skip Flag.

� a, b are each 1-bit input signal. If the RefIdxZeroFlag of the neighboring

macro-block or left (or top) sub-macro-block partitions of the current

partition is not equal to 0, the value of a (or b) is equal to 0, otherwise, the

value of a (or b) is equal to 1. RefIdxZeroFlag us to stand for whether

 99

Reference� Frame� Index with value 0 is chosen for the corresponding

partition.

� from_top_or_AC is a 1-bit output signal which be described in 4.6.1.

Interface of MB Skip Flag.

Fig 97. Interface of Reference����Frame����Index

4.11.2. Flow Chart of Reference����Frame����Index

The flow chart of Reference� Frame� Index is shown in Fig 98. and the

binarization of Reference�Frame�Index is unary binarization.

Fig 98. Flow chart of Reference����Frame����Index

4.12. Motion Vector Difference

Motion Vector Differences specifies the difference between a vevtor component

to be used and its prediction. The horizontal motion vector component difference is

 100

decoded first in decoding order, and the vertical motion vector component difference

is decoded second in decoding order,

4.12.1. Interface of Motion Vector Difference

The interface of Motion Vector Difference is shown in Fig 99, and the interface

signals are explained as follows.

� common_input and common_output are 75-bit and 84-bit signals which be

described in 4.6.1. Interface of MB Skip Flag.

� a, b are each 8-bit input signal indicates the value of motion vector

difference component for the left and top macro-block or sub-macro-block

partition of the current macro-block or sub-macro-block partition.

� OK_AC_bypass is a 1-bit input signal indicates AC_Bypass_mode of

binary arthimetic coding is finished.

� MVD_component is a 1-bit input signal indicates the component of motion

vector difference is horizontal or vertical.

� Enable_AC_bypass is a 1-bit output signal to enable AC_Bypass_mode of

binary arthimetic coding.

� from_top_or_ACr_or_ACb is a 2-bit output signal to decide the value_in,

range_in, and Dbitsleft_in input signals which connect to the input signals

of top module or output signals of AC_Regular_mode or AC_Bypass_mode

of binary arithmetic coding.

Fig 99. Interface of Motion Vector Difference

 101

4.12.2. Flow chart of Motion Vector Difference

The flow chart of Motion Vector Difference is shown in Fig 100, and the

binarization of Motion Vector Difference is UEG3 binarization scheme with a cutoff

value of 9.

Fig 100. Flow chart of Motion Vector Difference

4.13. Coded Block Pattern

For each non-skipped macro-block with prediction mode not equal to

intra_16x16, the coded block pattern symbol indicates which of the six 8x8 blocks –

four for luminance and two for chrominance – to decide whether the each 8x8 block

contains nonzero transform coefficients or not.

4.13.1. Interface of Coded Block Pattern

The interface of Coded Block Pattern is shown in Fig 101, and the interface

signals are explained as follows.

� common_input and common_output are 75-bit and 84-bit signals which be

 102

described in 4.6.1. Interface of MB Skip Flag.

� a, b are each 1-bit input signal indicates whether the bit of the coded block

pattern corresponding to the 8x8 blocks to the left and top of the current

block is equal to 0 or not. If it is equal to 0, a and b are equal to 1, otherwise,

a and b are equal to 0

� from_top_or_AC is a 1-bit output signal which be described in 4.6.1.

Interface of MB Skip Flag.

Fig 101. Interface of Coded Block Pattern

4.13.2. Flow Chart of Coded Block Pattern

The flow chart of Coded Block Pattern is shown in Fig 102, and the binarization

of Coded Block Pattern is the concatenation of a 4-bit FL coding and a TU

binarization wuth cutoff value S = 2.

 103

Fig 102. Flow chart of Coded Block Pattern

4.14. MB Based Quantization Parameter

MB Based Quantization Parameter is present for each non-skipped macro-block

with a value of Coded Block Pattern not equal to 0.

4.14.1. Interface of MB Based Quantization Parameter

The interface of MB Based Quantization Parameter is shown in Fig 103, and the

interface signals are explained as follows.

� common_input and common_output are 75-bit and 84-bit signals which be

described in 4.6.1. Interface of MB Skip Flag.

� dquant_in is a 8-bit input signal which indicates the value of mb_qp_delta

for the preceding macro-block of current macro-block in decoding order

� from_top_or_AC is a 1-bit output signal which be described in 4.6.1.

Interface of MB Skip Flag.

� dquant_out is a 8-bit output signal which indicates the value of

mb_qp_delta to using in next macro-block in decoding order

from_t op _or_A C
c ommon _i n p u t [74:0] [8 3 :0] c ommon _ou t p u t

d q u a n t _i n
d q u a n t _ou t

[7:0]
[7:0]

Fig 103. Interface of MB Based Quantization Parameter

4.14.2. Flow Chart of MB Based Quantization Parameter

The flow chart of MB Based Quantization Parameter is shown in Fig 104, and

the binarization of MB Based Quantization Parameter is unary binarization.

 104

which_S E = M B
Ba s e d Q u a n t iz a t i o n

Pa r a m e t e r ?
D o n eN o

Y e s

I_s l ice o r P,B_s l ice ?
I_s l ice P_s l ice o r B_s l ice

Y e s

N o m b _q p _d e l t a = 0
D o n e

N o

Y e s

Y e s

N o N o

Y e s Y e s

N o

Y e s

N o

r a m 1_a d d r = b a s e _a d d r (18) + C t x _id (0 o r 1)
u s e A C _R e g u l a r _m o d e t o co m p u t e Bin 0

r a m 1_a d d r = b a s e _a d d r (39) + C t x _id (0 o r 1)
u s e A C _R e g u l a r _m o d e t o co m p u t e Bin 0

Bin 0 = 1?

r a m 1_a d d r = b a s e _a d d r (18) + C t x _id (2)
u s e A C _R e g u l a r _m o d e t o co m p u t e Bin 1

Bin 0 = 1? m b _q p _d e l t a = 0
D o n e

r a m 1_a d d r = b a s e _a d d r (39) + C t x _id (2)
u s e A C _R e g u l a r _m o d e t o co m p u t e Bin 1

Bin 1 = 1? m b _q p _d e l t a = 1
D o n e Bin 1 = 1? m b _q p _d e l t a = 1

D o n e

r a m 1_a d d r = b a s e _a d d r (18) + C t x _id (3)
u s e A C _R e g u l a r _m o d e t o co m p u t e Bin 2 ~ Bin X

Bin X = 1?

o u t p u t m b _q p _d e l t a
D o n e

r a m 1_a d d r = b a s e _a d d r (39) + C t x _id (3)
u s e A C _R e g u l a r _m o d e t o co m p u t e Bin 2 ~ Bin X

Bin X = 1?

o u t p u t m b _q p _d e l t a
D o n e

Fig 104. Flow chart of MB Based Quantization Parameter

4.15. Coded Block Flag

Coded Block Flag specifies whether the block contains non-zero transform

coefficient levels or not.

4.15.1. Interface of Coded Block Flag

The interface of Coded Block Flag is shown in Fig 105, and the interface signals

are explained as follows.

� common_input and common_output are 75-bit and 84-bit signals which be

described in 4.6.1. Interface of MB Skip Flag.

� a and b are each 1-bit input signal indicating the value of Coded Block Flag

to the left and top blocks of the current block. Only blocks of the same type

are used for context determination. There are five different types of blocks.

 105

If no neighboring block of the same type exists, the value of a or b is equal

to 0. If a neighboring block is outside the picture area or positioned in a

different slice, the value of a or b is equal to default value. If the current

block is coded using an intra prediction mode, the default value is equal to 1,

otherwise, the default value is equal to 0.

� typetoctx_bcbp is a 3-bit input signal indicating the different types of blocks

corresponding to adaptive context model.

� from_top_or_AC is a 1-bit output signal which be described in 4.6.1.

Interface of MB Skip Flag.

Fig 105. Interface of Coded Block Flag

4.15.2. Flow Chart of Coded Block Flag

The flow chart of Coded Block Flag is shown in Fig 106, and the binarization of

Coded Block Flag is 1-bit FL coding.

 106

Fig 106. Flow chart of Coded Block Flag

4.16. Significance Map

If the coded block flag indicates that a block has significant coefficients, the

decoding Bin string of Significant Map syntax element is enabled. For each

coefficient in scanning order, a 1-bit symbol significant_coeff_flag is used. If the

significant_coeff_flag is equal to 1, which indicating that a non-zero coefficient exists

at the scanning position, a further 1-bit symbol last_significant_coeff_flag is used.

This symbol indicates whether the current significant coefficient is the last one inside

the block or not. The last_significant_coeff_flag and significant_coeff_flag for the last

scanning position of a block are never transmitted.

4.16.1. Interface of Significance Map

The interface of Significant Map is shown in Fig 107, and the interface signals

are explained as follows.

� common_input and common_output are 75-bit and 84-bit signals which be

described in 4.6.1. Interface of MB Skip Flag.

� type is a 3-bit input signal indicating the types of blocks. There are seven

types using for this decoder: LUMA_16DC, LUMA_16AC, LUMA_4x4,

CHROMA_DC, CHROMA_AC, CHROMA_DC_2x4 and

CHROMA_DC_4x4.

� fld is a 1-bit input signal indicating the scanning order is zig-zag scan or

interlace scan.

� from_top_or_AC is a 1-bit output signal which be described in 4.6.1.

Interface of MB Skip Flag.

� Coeff_ctr is an 7-bit output signal indicating the number of non-zero

coefficients in blocks.

 107

� Coeff_15_to_0 is a 16-bit output signal. Each bit of this signal indicates

there is zero or non-zero coefficient in corresponding position in a given

scanning order for a block. If there is a non-zero coefficient in

corresponding position, the corresponding bit of Coeff_15_to_0 is set to 1,

otherwise, the corresponding bit of Coeff_15_to_0 is set to 0.

Fig 107. Interface of Significant Map

4.16.2. Flow Chart of Significance Map

The flow chart of Significant Map is shown in Fig 108, and the binarization of

each significant_coeff_flag and last_significant_coeff_flag is 1-bit FL coding.

 108

Fig 108. Flow chart of Significant Map

4.17. Level Information

The value of the significant coefficients is decoded using two coding symbols:

coeff_abs_level_minus1 (representing the absolute value of the level minus 1), and

coeff_sign_flag (representing the sign of levels).

4.17.1. Interface of Level Information

The interface of Level Information is shown in Fig 109, and the interface signals

are explained as follows.

� common_input and common_output are 75-bit and 84-bit signals which be

described in 4.6.1. Interface of MB Skip Flag.

� type is a 3-bit input signal which be described in 4.16.1. Interface of

Significance Map.

� OK_AC_bypass is a 1-bit input signal which be described in 4.12.1

Interface of Motion Vector Difference.

� Coeff_in is a 16-bit input signal which connects to the Coeff_15_to_0 signal

of Significant Map module.

� from_top_or_ACr_or_ACb is a 2-bit output signal which be described in

4.12.1 Interface of Motion Vector Difference.

 109

� Enable_AC_bypass is a 1-bit output signal which be described in 4.12.1

Interface of Motion Vector Difference.

� Coeff_0_out ~ Coeff_15_out are each 16-bit output signal indicating the

value of the significant coefficients in corresponding position of a block.

Fig 109. the interface of Level Information

4.17.2. Flow Chart of Level Information

The flow chart of Level Information is shown in 0, and the binarization of

coeff_abs_level_minus1 is using UEG0 scheme with the cutoff value S = 13, and the

binarization of coeff_sign_flag is using 1-bit FL coding.

 110

Fig 110. Flow chart of Level Information

4.18. A CABAD Decoding Example

Bitstream examples for intra frame and inter frame are shown in Table 10 and

Table 11, respectively. The entropy encoding method of all SEs is CABAC, so we use

our CABAD logic to decode these SEs except end_of_slice_flag.

Table 10. bitstream example for Intra frame

 111

Table 11. bitstream example for Inter frame

Fig 111 is an illustration of AC_Regular_mode of a binary arithmetic decoding

engine for one bin. The arithmetic decoding engine keeps updating two 9-bit registers,

namely “ range” and “ offset” during the whole decoding process. The range register

keeps track of the width of the current interval while the offset register keeps track of

the input bitstream.

When decoding a bin, range is split into two subintervals: rLPS corresponding to

the estimated probability interval of the LPS and rMPS corresponding to the estimated

probability interval of the MPS. During the encoding process, the value of rLPS is

read from a fixed 2-D table of 256 bytes, addressed by 2 bits from the range value and

6bits from the state value. Which subinterval the input bit stream (marked by the

offset) falls into decides whether the bin is MPS or LPS. In Fig 111, the left-side plot

of Fig 111 shows the case that MPS occurs, where the offset is less than rMPS. The

middle plot of Fig 111 shows the case that LPS occurs, where the offset is greater than

or equal to rMPS. The renewal of the range, range_new, and the offset, offset_new,

are shown in right-side of Fig 111. To keep the precision of the whole decoding

process, range_new and offset_new have to be renormalized to ensure the most

 112

significant bit MSB of range is always 1. For example, range_new is 9’ b001010110,

offset_new is 9’ b000110010, during the renormalization process, range_new is left

shifted two bits so that the MSB is 1 and the last two bits are stuffed as 2’ b00;

offset_new is synchronously left shifted two bits and the last two bits are stuffed from

the bitstream. In this way, offset receives bits from the input bit stream to keep track

of the position of the bitstream in the current interval.

Fig 111. AC_Regular_mode of arithmetic decoding engine for one bin

In the following paragraphs, we will give an example for each mode of

binary arithmetic coding.

 113

Fig 112. Example for AC_Regular_mode

Fig 113. Example for AC_Bypass_mode

Fig 114. Example for AC_Final_mode

Examples of AC_Regular_mode, AC_Bypass_mode and AC_final_mode are

shown in Fig 112 ~ Fig 114.

 114

The “ offset” in Fig 111 is the same as the 9-bit bit-pattern in value signals which

is in italic type in Fig 112 ~ Fig 114, and the right-down side in Fig 112 ~ Fig 114 are

our RTL model which implement faithfully by flow chart in Fig 112 ~ Fig 114.

 115

Chapter 5. Experimental Results

This chapter presents some experimental results. As mentioned in Chapter 1, the

hardware-software co-implementation platform we used to verify our design is the

LEON3/GRLIB platform developed by GR Research. The development board we

used for the experiments is Xilinx ML-506. The hardware development toolchain is

Xilinx ISE 10.1.01 and the software development toolchain is the gcc-based cross

compiler for SPARC processor. The operating system used to support the software

partition of the AVC decoder is the eCos operating system. The parameters we used to

synthesize the hardware partition of the decoder (i.e. the CAVLD and CABAD logic)

is shown in Table 12.

Target Device xc5vsx50t-1ff1136

Product Version ISE 10.1.01

Design Goal Balanced (Area and Speed)

Target Clock Rate 50MHz

Table 12. Synthesis settings

We have modified AVC reference software JM12.2 decoder so that the entropy

decoder is replaced by the proposed hardware logic. The target platform is running at

50MHz with a soft core LEON processor and hence the decoding speed is slower than

real time. However, the decoded YCbCr frame data is transferred from ML-506 back

to a host computer throught Ethernet connection so that we can visually as well as

computationally verify the correctness of the decoder.

5.1. Synthesis Results of the Proposed Design

According to the synthesis report, the maximal working frequencies of the

proposed CAVLD architecture and CABAD architecture are 113MHz and 53MHz,

 116

respectively. Since we must integrate both logics into the target platform, we set the

system target clock rate to 50MHz to simplify the clocking system. Table 13 shows

the resource statistics of the synthesized CAVLD and CABAD logics.

 CAVLD CABAD

Adders/Subtractors 21 61

Registers 711 1681

Comparators 35 22

Multiplexers 1 2

Logic shifters 4 8

RAMs 0 1
(128x6-bit single-port block RAM)

ROMs 0 3
(16x20-bit, 256x9-bit, 32x3-bit)

Multipliers 0 1
(9x9-bit)

Table 13. Macro statistics of CAVLD and CABAD logics

Table 14 shows slice utilization of the CAVLD and CABAD logics. The CAVLD

and CABAD only occupy 4% and 17%, respectively, of the total number of slice

LUTs, which is 32640 for xc5vsx50t-1ff1136.

 CAVLD CABAD

Number of Slice LUTs 1443 5697

Table 14. Slice logic utilization of CAVLD and CABAD logics

5.2. Performance of the Proposed Design

This section presents the performance of the proposed CAVLD and CABAD

architecture implemented on the ML-506 development board.

5.2.1. Performance of the CAVLD Logic

We used five QCIF (176x144) bitstreams, including Foreman, Akiyo, Silent,

Mobile, and Stefan, to test the decoder. Each bitstream has 300 frames and is encoded

 117

using the parameters shown in Table 15.

 I_SLICE P_SLICE

Number of Slice 150 150

QP 28 28

YUV format YUV 420

Frame/Sec 30

Table 15. Encoding parameters of each test sequence

Table 16 shows the number of cycles, blocks, coefficients, trailing-ones and

total-zeros of the 4x4 blocks in I_SLICE of each sequence.

 number of
cycles

number of
blocks

number of
coefficients

number of
trailing-ones

number of
total-zeros

Foreman 12957982 248104 623795 321234 491820

Akiyo 9264316 238062 409171 207393 291440

Silent 13585841 290325 661469 378364 516597

Mobile 44027768 338343 2136923 589270 1097691

Stefan 31091208 294780 1499456 436746 771077

Table 16. The number of decoding cycles, blocks, coefficients, trailing-ones and
total-zeros of the 4x4 blocks in I_SLICE of each sequence

Table 17 shows the number of cycles, blocks, coefficients, trailing-ones and

total-zeros of 4x4 blocks in P_SLICE of each sequence.

 number of
cycles

number of
blocks

number of
coefficients

number of
trailing-ones

number of
total-zeros

Foreman 890813 31514 39605 29301 40615

Akiyo 47062 1656 2024 1484 3135

Silent 684186 22362 30803 21541 28447

Mobile 4093272 99088 191661 129980 399816

Stefan 5593232 110289 266621 159607 449795

Table 17. The number of decoding cycles, blocks, coefficients, trailing-ones and
total-zeros of the 4x4 blocks in P_SLICE of each sequence

Table 18 shows the number of cycles, blocks, coefficients, trailing-ones and

total-zeros of the 2x2 blocks in I_SLICE of each sequence.

 118

 number of
cycles

number of
blocks

number of
coefficients

number of
trailingones

number of
totalzeros

Foreman 638515 21344 30077 20210 9743

Akiyo 782652 21216 38063 19524 9737

Silent 875081 24868 43182 27363 13350

Mobile 1614583 28216 77414 18516 12332

Stefan 1087639 24762 52752 25279 15368

Table 18. The number of decoding cycles, blocks, coefficients, trailing-ones and
total-zeros of the 2x2 blocks in I_SLICE of each sequence

Table 19 shows the number of cycles, blocks, coefficients, trailingones and

totalzeros of the 2x2 blocks in P_SLICE of each sequence.

 number of
cycles

number of
blocks

number of
coefficients

number of
trailingones

number of
totalzeros

Foreman 33315 1810 1277 1154 913

Akiyo 3595 220 124 124 160

Silent 25960 1326 1057 951 883

Mobile 83196 6012 2209 2095 2526

Stefan 150080 7820 5870 5019 4776

Table 19. The number of decoding cycles, blocks, coefficients, trailing-ones and
total-zeros of 2x2 blocks in P_SLICE of each sequence

According to Table 16 ~ Table 19, we can infer the number of decoding cycles

per each block type as shown in Table 20.

Block
type

4x4 block in
I_SLICE

4x4 block in
P_SLICE

2x2 block in
I_SLICE

2x2 block in
P_SLICE

Foreman 52.22 28.26 29.91 18.40

Akiyo 38.91 28.41 36.89 16.34

Silent 46.79 30.59 35.19 19.57

Mobile 130.12 41.30 57.22 13.83

Stefan 105.47 50.71 43.92 19.19

Table 20. The number of decoding cycles per each block type of each sequence

The totals bits and Mbits/sec of each slice type in each sequence is shown in

Table 21, and the average Mbits/sec of these test sequences is 11.66 Mbits/sec.

 119

test sequence total bits of
I_SLICE

total bits of
P_SLICE

Mbits/sec

Foreman 3202422 225748 11.8

Akiyo 2379050 12459 11.8

Silent 3452746 174532 12.0

Mobile 10259178 1126972 11.3

Stefan 7157489 1505532 11.4

Table 21. Totals bits and Mbits/sec of each slice type of each sequence

5.2.2. Performance of the CABAD Logic

We used five QCIF (176x144) bitstreams, including Foreman, Akiyo, Silent,

Mobile, and Stefan, to test the decoder. Each bitstream has 299 frames and is encoded

using the parameters shown in Table 22.

 I_SLICE P_SLICE B_SLICE

Number of Slice 75 75 149

QP 28 28 30

YUV format YUV 420

Frame/Sec 30

Table 22. Encoding parameters of each test sequence

The total number of cycles used to decode each slice type in each sequence is

shown in Table 23.

test sequence total cycles of
I_SLICE

total cycles of
P_SLICE

total cycles of
B_SLICE

Foreman 10625867 2259472 945778

Akiyo 7770697 606804 149422

Silent 11570781 1655197 756183

Mobile 31412088 5994625 1049103

Stefan 22450752 8171555 3247914

Table 23. Total number of decoding cycles of each slice type of each sequence

The number of cycles per MB of each slice type in each sequence is shown in

Table 24.

 120

test sequence cycles/MB of
I_SLICE

cycles/MB of
P_SLICE

cycles/MB of
B_SLICE

Foreman 1431 304 64

Akiyo 1047 81 10

Silent 1558 222 51

Mobile 4230 807 71

Stefan 3023 1100 220

Table 24. Cycle/MB of each slice type of each sequence

For each non-skipped MB, the average number of occurrences of each syntax

element in I_SLICEs of each sequence is shown in Table 25.

Test
sequence

MB Type Sub MB
Type

Intra
Prediction
Mode for
Luma4x4

Intra
Prediction
Mode for
Chroma

Reference
Frame
Index

Foreman 1 0 14.53 1 0

Akiyo 1 0 13.09 1 0

Silent 1 0 15.49 1 0

Mobile 1 0 15.98 1 0

Stefan 1 0 14.90 1 0
 Motion

Vector
Difference

Coded
Block
Pattern

MB Based
Quantizati

on
Parameter

Coded
Block Flag

Significant
Map

Level
Information

Foreman 0 0.90 0.99 18.04 12.71 44.93

Akiyo 0 0.82 0.99 17.45 9.82 31.12

Silent 0 0.97 1 21.18 15.51 49.26

Mobile 0 0.99 1 24.61 21.83 148.97

Stefan 0 0.93 0.99 21.52 17.59 104.45

Table 25. The average number of occurrences of each syntax element in
I_SLICEs

 121

For each non-skipped MB, the average number of occurrences of each syntax

element in P_SLICEs of each sequence is shown in Table 26.

Test
sequence

MB Type Sub MB
Type

Intra
Prediction
Mode for
Luma4x4

Intra
Prediction
Mode for
Chroma

Reference
Frame
Index

Foreman 1 1.27 0.50 0.05 2.19

Akiyo 1 0.54 0 0 1.55

Silent 1 0.84 0.37 0.02 1.83

Mobile 1 1.96 0 0 2.66

Stefan 1 1.84 1.14 0.07 2.74

 Motion
Vector

Difference

Coded
Block
Pattern

MB Based
Quantizati

on
Parameter

Coded
Block
Flag

Significant
Map

Level
Information

Foreman 5.68 0.98 0.48 4.34 2.85 5.92

Akiyo 3.59 1 0.07 0.42 0.22 0.49

Silent 4.47 0.99 0.29 2.79 1.80 3.95

Mobile 7.86 1 0.84 10.86 6.69 20.73

Stefan 7.73 0.99 0.78 11.9 8.94 32.89

Table 26. The average number of occurrences of each syntax element in
P_SLICEs

For each non-skipped MB, the average number of occurrences of each syntax

element in B_SLICEs of each sequence is shown in Table 27.

Test
sequence

MB Type Sub MB
Type

Intra
Prediction
Mode for
Luma4x4

Intra
Predictio
n Mode

for
Chroma

Reference
Frame
Index

Foreman 1 0.39 .0.08 0.01 0.80

Akiyo 1 0.53 0 0 0.73

Silent 1 1.12 0.12 0.01 0.93

Mobile 1 0.66 0 0 1.06

Stefan 1 1.30 0.04 0.01 10.9
 Motion

Vector
Difference

Coded
Block
Pattern

MB Based
Quantization

Parameter

Coded
Block
Flag

Significant
Map

Level
Information

Foreman 3.8 0.99 0.22 1.64 0.94 1.91

 122

Akiyo 3.68 1 0.08 0.40 0.22 0.56

Silent 4.72 0.99 0.44 3.67 2.34 4.80

Mobile 4.89 1 0.30 2.74 1.57 6.36

Stefan 2.44 0.99 0.54 5.12 3.22 10.99

Table 27. The average number of occurrences of each syntax element in
B_SLICEs

The totals bits and Mbits/sec of each slice type in each sequence is shown in

Chapter 1, the average Mbits/sec of these test sequence is 8.68 Mbits/sec.

test sequence total bits of
I_SLICE

total bits of
P_SLICE

Total bits of
B_SLICE

Mbits/sec

Foreman 1876084 398261 146035 8.8

Akiyo 1412962 76276 6860 8.8

Silent 2028917 278075 120843 8.7

Mobile 5381058 1034163 175381 8.6

Stefan 3767965 1403374 574299 8.5

Table 28. Totals bits and Mbits/sec of each slice type in each sequence

5.2.3. Comparisons with Previous Work

In this section, we compare our design with some previously published design.

5.2.3.1. Comparison of CAVLD Logic with the Design in [8]

First, we compare the proposed CAVLD design with that in [8]. Table 1 shows

the average required cycles to decode one MB by our proposed CALVD logics for

different sequences and Table 30 shows the maximum working frequency for our

proposed design and design in [8], and the target devices are different (FPGA vs.

0.18µm process) so that the maximal working frequencies cannot be compared

directly.

Test Sequence Akiyo Foreman Stefan Mobile

QP
28

average
cycles/MB

Proposed design 676 915 2166 3073

Design in [8] 38 53 124 174

Table 29. Comparisons of average cycle / MB with design in [8]

 123

 Max MHz

Proposed design 219
(FPGA)

Design in [8] 125

(0.18 µm)

Table 30. Comparisons of maximum working frequency with design in [8]

It is obvious that the design in [8] requires much less cycles per MB for CAVLD

decoding. However, since CAVLD is usually used only for low bitrate contents (e.g.

less than 10 mbps in general), our design goal for CAVLD is not targeted for highest

performance but for lowest logic resource usage.

5.2.3.2. Performance of CABAD Logic

 Table 1 shows the average required cycles to decode one MB by our proposed

CABAD logics for different slice types and Table 32 shows the maximum working

frequency for our proposed design and design in [18]. Please note that, the cycles per

MB in our design did not take memory access cycle into account. Also, the target

devices are different (FPGA vs. TSMC 0.18µm process) so that the maximal working

frequencies cannot be compared directly.

Test Sequence I_SLICE
(QP = 36)

P_SLICE
(QP = 26)

B_SLICE
(QP = 26)

average
cycles/MB

Proposed design 1017 901 419

Design in [18] 462 307 253

Table 31. Comparisons of average cycle / MB with design in [18]

 Max MHz

Proposed design 60
(FPGA)

Design in [18] 120

(TSMC 0.18 µm)

Table 32. Comparisons of maximal working frequency with design in [18]

 124

5.2.4. Performance Analysis on Target Platform

Although the cycle-accurate performances of the proposed logics when working

in an ideal situation are analyzed in previous sections, we still have to measure the

performance of the proposed logics when they are integrated into a real working

system. In this section, we measure the actual average cycles per macroblocks for

each of the logic in decoding a QCIF version of the (176x144) Foreman bitstream on

the development board. This bitstream has 300 frames and is encoded using the

parameters shown in Table 15.

Table 33 shows the measured average cycles/MB performance of the CAVLD

logic on the target platform, comparing to the cycle-accurate estimate of the logic

when working in an ideal situation (that is, zero wait-state memory and no bus

contensions from other logics). It is obvious from Table 33 that external memory

accesses adds a large overhead on the performance of the proposed design on the

target platform.

CAVLD logic I_SLICE P_SLICE

average cycles/MB
on the target platform

12041 1436

average cycles/MB
using estimation

915 62

Table 33. Performance of the CAVLD logic on the target platform

Table 34 shows the measured average cycles/MB of the CABAD logic on the

target platform. The experiment is conducted using a QCIF (176x144) version of

Foreman bitstreams with 299 frames and is encoded using the parameters shown in

Table 22. Again, external memory access overhead is very high.

CABAD logic I_SLICE P_SLICE B_SLICE

average cycles/MB
on experimental

12427 2521 1526

 125

development board

average cycles/MB
using estimation

1434 304 64

Table 34. Comparisons of average cycles/MB on experimental development
board and using estimation of CABAD logic

As shown in Table 33 and Table 34, the average numbers of processing cycles

per macroblock on the target platform is much more than what we expect based on the

cycle count analysis of both logics. This is due to high external memory access

overhead of current software-hardware interface on the target paltform. However, we

have to point out that the software-hardware interface design in the experimental

system is far from being optimized. We only modify JM12.2 (which is very inefficient)

slightly to enable verification of the correctness of the proposed logics. Therefore, the

external memory access overhad can be significantly reduced if the logic is intended

to be used in a practical system.

 126

Chapter 6. Conclusions and Future Work

In this thesis, we proposed the hardware architecture for CAVLD and CABAD

decoding of the AVC/H.264 standard. The design has been verified on the Xilinx

Vertex 5-based FPGA development board, ML506, using full system verification with

the AVC/H.264 reference software JM 12.2. The proposed design achieves reasonable

performance (8 ~ 11 mbps at 50MHz) with small logic area. Therefore, it is promising

for practical applications.

There are several things that can be improved further. In the proposed design, both the

CAVLD and the CABAD logics perform decoding in sequential manner. It is possible

to perform concurrent decoding of multiple bits at the cost of more on-chip memory

and logic complexity. For high quality full HD applications defined by the AVCHD

specification, we have to support up to 24 mbps CABAD decoding in real time. This

is beyond the capability of the current design. More advanced architecture and careful

pipeline design is required to improve the maximal working frequency and throughput

per cycle so that the performance can be tripled to support full AVCHD specification.

 127

References

[1] Joint Video Team, Draft ITU-T Recommendation and Final Draft International

Standard of Joint Video Specification, ITU-T Rec. H.264 and ISO/IEC 14496-10

AVC, May 2003.

[2] Ming-Ting Sun and Shaw-Min Lei, “ A High-speed Entropy Decoder For

HDTV,” Custom Integrated Circuits Conference, 1992., Proceedings of the IEEE

1992, May, 1992.

[3] Wu Di, Gao Wen, Hu Mingzeng and Ji Zhenzhou, “ A VLSI architecture design

of CAVLC decoder,” ASIC, 2003. Proceedings. 5th International Conference,

Oct. 2003.

[4] Hsiu-Cheng Chang, Chien-Chang Lin and Jiun-In Guo, “ A novel low-cost

high-performance VLSI architecture for MPEG-4 AVC/H.264 CAVLC

decoding,” Circuits and Systems, 2005. ISCAS 2005. IEEE International

Symposium, May 2005.

[5] Yong Ho Moon, Gyu Yeong Kim and Jae Ho Kim, “ An efficient decoding of

CAVLC in H.264/AVC video coding standard,” Consumer Electronics, IEEE

Transactions, Aug. 2005.

[6] Alle, M., Biswas, J. and Nandy, S.K. “ High Performance VLSI Architecture

Design for H.264 CAVLC Decoder,” Application-specific Systems, Architectures

and Processors, 2006. ASAP '06. International Conference, Sept. 2006.

[7] Heng-Yao Lin, Ying-Hong Lu, Bin-Da Liu and Jar-Ferr Yang, “ Low power

design of H.264 CAVLC decoder,” Circuits and Systems, 2006. ISCAS 2006.

Proceedings. 2006 IEEE International Symposium, May 2006.

 128

[8] Guo-Shiuan Yu and Tian-Sheuan Chang, “ A zero-skipping multi-symbol CAVLC

decoder for MPEG-4 AVC/H.264,” Circuits and Systems, 2006. ISCAS 2006.

Proceedings. 2006 IEEE International Symposium, May 2006.

[9] Shau-Yin Tseng and Tien-Wei Hsieh, “ A Pattern-Search Method for H.264/AVC

CAVLC Decoding,” Multimedia and Expo, 2006 IEEE International Conference,

July 2006.

[10] Yong-Hwan Kim, Yoon-Jong Yoo, Jeongho Shin, Byeongho Choi and Pa, J.,

“ Memory-efficient H.264/AVC CAVLC for fast decoding,” Consumer

Electronics, IEEE Transactions, Aug. 2006.

[11] Marpe, D., Schwarz, H. and Wiegand, T., “ Context-based adaptive binary

arithmetic coding in the H.264/AVC video compression standard,” Circuits and

Systems for Video Technology, IEEE Transactions, July 2003.

[12] Marpe, D. and Wiegand, T., “ A highly efficient multiplication-free binary

arithmetic coder and its application in video coding,” Image Processing, 2003.

ICIP 2003. Proceedings. 2003 International Conference, Sept. 2003.

[13] Mrak, M., Marpe, D. and Wiegand, T., “ A context modeling algorithm and its

application in video compression,” Image Processing, 2003. ICIP 2003.

Proceedings. 2003 International Conference, Sept. 2003.

[14] Mrak, M., Marpe, D. and Grgic, S., “ Comparison of context-based adaptive

binary arithmetic coders in video compression,” Video/Image Processing and

Multimedia Communications, 2003. 4th EURASIP Conference, July 2003.

[15] Osorio, R.R. and Bruguera, J.D., “ Arithmetic coding architecture for H.264/AVC

CABAC compression system,” Digital System Design, 2004. DSD 2004.

Euromicro Symposium, Sept. 2004.

 129

[16] Jian-Wen Chen, Cheng-Ru Chang and Youn-Long Lin, “ A hardware accelerator

for context-based adaptive binary arithmetic decoding in H.264/AVC,” Circuits

and Systems, 2005. ISCAS 2005. IEEE International Symposium, May 2005.

[17] Wei Yu and Yun He, “ A high performance CABAC decoding architecture,”

Consumer Electronics, IEEE Transactions, Nov. 2005.

[18] Yao-Chang Yang, Chien-Chang Lin, Hsui-Cheng Chang, Ching-Lung Su and

Jiun-In Guo, “ A High Throughput VLSI Architecture Design for H.264

Context-Based Adaptive Binary Arithmetic Decoding with Look Ahead Parsing,”

Multimedia and Expo, 2006 IEEE International Conference, July 2006.

[19] Eeckhaut, H., Christiaens, M., Stroobandt, D., Nollet, V., “ Optimizing the critical

loop in the H.264/AVC CABAC decoder,” Field Programmable Technology,

2006. FPT 2006. IEEE International Conference, Dec. 2006.

[20] Chung-Hyo Kim and In-Cheol Park, “ High speed decoding of context-based

adaptive binary arithmetic codes using most probable symbol prediction,”

Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International

Symposium, May 2006.

[21] Yi, Y. and Park, I.-C., “ High-Speed H.264/AVC CABAC Decoding,” Circuits

and Systems for Video Technology, IEEE Transactions, April 2007.

[22] Yan Zheng, Shibao Zheng, Zhonghua Huang and Ziliang Zhao, “ A Time and

Storage Optimized Hardware Design for Context-Based Adaptive Binary

Arithmetic Decoding in H.264/AVC,” Multimedia and Expo, 2007 IEEE

International Conference, July 2007.

[23] Jian-Wen Chen and Youn-Long Lin, “ A High-Performance Hardwired CABAC

Decoder,” Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE

 130

International Conference, April 2007.

[24] Peng Zhang, Wen Gao, Don Xie and Di Wu, “ High-Performance CABAC

Engine for H.264/AVC High Definition Real-Time Decoding,” Consumer

Electronics, 2007. ICCE 2007. Digest of Technical Papers. International

Conference, Jan. 2007.

[25] Mei-hua Xu, Yu-lan Cheng, Feng Ran, Zhang-jin Chen, “ Optimizing Design and

FPGA Implementation for CABAC Decoder,” High Density packaging and

Microsystem Integration, 2007. HDP '07. International Symposium, June 2007.

[26] Joint Video Team (JVT), AVC reference software Joint Model version 12.2

(JM12.2), Aug. 2007, available from http://bs.hhi.de/~suehring/tml/.

