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提早載入：在深管線處理器設計下隱藏載入使用延遲 

學生：張順傑 指導教授：鍾崇斌 博士 

 

國立交通大學資訊工程學系﹙研究所﹚碩士班 

 

中文摘要 

 

高效能處理器為了達到更高的指令產出量，其設計會趨近於有更寬的指令發出寬度

以及更深的管線設計。隨著管線變得越深以及越寬，指令的執行延遲變得越來越長，對

於 in-order 處理器來說，變長的指令執行延遲會造成更多的 Stall 週期。一般的解決方

法是使用 out-of-order 指令發出的管線設計，但是這對於一些應用來講是過於昂貴的，

例如嵌入式處理器；比較經濟的解決方法是只針對某些特定的指令做 out-of-order 發

出，這篇論文針對的是載入指令。載入指令在深管線處理器中有較長的執行延遲，且由

於執行頻率高而造成大量的 Stall 週期；如果接下來的指令與載入指令相依，則必須暫

停管線直到載入指令完成，這些暫停的週期稱為載入-使用延遲。 

在這篇論文中，我們提出一個硬體設計的方法在載入/儲存單元空閒時提早執行載

入指令，這個方法我們稱之為提早載入。提早載入能夠提早辨識出載入指令，並允許載

入指令在還沒輪到循序執行前，提早從記憶體中載入所需要的資料；同時，我們提出一

個偵錯方法，能夠避免錯誤的提早載入運算，以確保提早載入資料的正確性，並且不會

造成額外的效能損失。提早載入方法可以隱藏載入-使用延遲以及降低載入/儲存單元的

競爭，並且只耗費額外不多的硬體。 

在我們的實驗結果中，我們使用一個 12-stage in-order dual-issue 的處理器，在
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Dhrystone Benchmark 我們的方法可以達到 11.64%的效能改善，而在 MiBench benchmark 

suite 方面，我們的方法最大可以達到 18.60%的效能改善，而整體平均的效能改善為

5.15%。同時提早載入的方法會增加所有 Load 指令額外 24.08%的記憶體存取。所耗費

的硬體約為 10K 個電晶體以及相關的控制線路。 
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Early Load：Hiding Load-to-Use Latency in Deep Pipeline Processors 

Student：Shun-Chieh Chang Advisors：Dr. Chung-Ping Chung 

 

Department of Computer Science and Information Engineering 

National Chiao Tung University 

Abstract 

 

In order to achieve high instruction throughput, high performance processors tend to use 

more and deeper pipelines. As pipeline gets deeper and wider, the instruction execution 

latency becomes longer. The longer instruction execution latency induces more pipeline stall 

cycles in an in-order processor. A conventional solution is out-of-order instruction issue and 

execution; but it is too expensive for some applications, such as embedded processors. An 

economical solution for low-cost designs is to out-of-order execute only some critical 

instructions. We focus on load instructions, due to their frequent occurrences and long 

execution latency in a deep pipeline. If a subsequent instruction depends on the load 

instruction, it may need to stall in the pipeline to wait for the load outcome. The maximum 

possible number of stall cycles is called the load-to-use latency. 

 In this thesis, we propose a hardware method, called the early load, to hide load-to-use 

latency via executing load instructions early. Early load requires that load instructions be 

identified early and issued for execution early. In the meantime, an error detection method is 

proposed to stop or invalidate incorrect early loads, ensuring correctness without inducing 

extra performance degradation. Early load can both hide load-to-use latency and reduce 
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load/store unit contention, at only a little hardware cost. 

Our experiments show that for a 12-stage in-order dual-issue design, early load can give 

a 11.64% performance gain in Dhrystone benchmark; and a 18.60% maximal and 5.15% 

average gain for MiBench benchmark suite. Meanwhile, early load induces 24.08% additional 

memory accesses. The incurred hardware cost is about ten thousand transistors and 

corresponding control circuits. 
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Chapter 1  Introduction 

 

In order to achieve high instruction throughput, high performance processors tend to use 

more and deeper pipelines. Meanwhile, the cache memory has been moved toward high 

densities instead of short access time. These trends have relative increased cache access 

latencies as measured in processor clock cycle. The growing load latency dominates the 

overall performance because it may induce large stall cycles at run time. Following 

instructions, if depends on load instruction, need to stall pipeline to wait the data fetched by 

the load instruction. So, hiding the load-to-use latency is one way to improve the processor 

performance. 

This thesis proposes a hardware method, called the early load, to hide the load-to-use 

latency with only a little hardware cost. Early load allows load instructions to load the data 

from the cache before it enters the execution stage. In the meantime, a error detection method 

has been proposed to avoid starting the early load operation that may be fetched the wrong 

data from the cache and invalidate the early load operation that already executed and it 

fetched the wrong data from cache. 

The remainder of this chapter presents the background and motivation necessary to 

prepare the reader for the remaining chapters. Section 1.1 introduces the conventional pipeline 

design. Section 1.2 introduces load instructions and the load-to-use latencies. Section 1.3 

explores the effect of load latency. Section 1.4 capsules the existing approaches for reducing 

the effect of load-to-use latency. Section 1.5 describes the research goal. Section 1.6 details 

the organization of the remaining chapters. 
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1.1  Convention Pipeline Design 
 

Pipelining is an implementation technique that exploits parallelism among the 

instructions in a sequential instruction stream. RISC instructions classically take five steps: 

1. Fetch instruction from memory. 

2. Read registers while decoding the instruction. The format of RISC instructions 

allows reading and decoding to occur simultaneously. 

3. Execute the operation or calculate an address. 

4. Access an operand in data memory. 

5. Write the result into a register. 

 

Figure 1. Convention 5-stage Pipeline Design 

 

Figure 1 illustrates a conventional 5-stage pipeline design of processors. Referring to 

Figure 1, the pipeline has the instruction fetch stage (IF), the instruction decode stage (ID), 

the instruction execution stage (EX), the memory access stage (MEM), and the write-back 

stage (WB). In the conventional pipeline design, the instruction fetch stage and the instruction 

decode stage is separated by the instruction queue so as to reduce the performance loss of the 

processor caused by mismatch of issue rate and fetch rate. The architecture is also called 
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decoupled architecture. Accordingly, most instructions do not enter the instruction decode 

stage right after they are fetched into the processor; instead, they wait in the instruction queue 

until the previous instructions are issued. The instruction fetch stage fetches instructions from 

an instruction cache memory (or a main memory) and pushes the instructions into the 

instruction queue. The instruction queue stores the instructions fetched by the instruction fetch 

stage based on the first in first out (FIFO) rule and provides the instructions to the instruction 

decode stage sequentially. 

Generally speaking, before executing an instruction, the processor needs to decode the 

instruction by using the instruction decoder. The decoded instruction is sent to the instruction 

execution stage. The instruction execution stage includes the arithmetic and logic unit (ALU) 

which executes an instruction operation according to the decoding result of the instruction 

decode stage. In the memory access stage, load instructions access the cache memory (or 

main memory) to get the data and store instructions check the address hits in the cache or not. 

If the instruction operation executed by the instruction execution stage generates a calculation 

result, the write-back stage then writes the calculation result back into the register file or 

cache memory (or main memory). 

When the pipeline gets deeper, each stage will be spilt into several stages. Figure 2 

illustrates the 12-stage pipeline design. In Figure 2, the 12-stage pipeline has 3 stages for 

instruction fetch, 3 stages for instruction decode, 2 stages for instruction execution, 2 stages 

for memory access, and one stage for data write-back. 

 

Figure 2. 12-stage Pipeline Design 
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1.2  Anatomy of Load Instructions 
 

Load instructions move data from memory to registers. Most of them have two inputs, 

base address and offset, are added or subtracted together to produce the effective address 

which used to access the cache memory (or main memory). In most instruction set 

architecture, the base address always supplies by the general proposal register, called base 

register. And the offset can be an immediate value, i.e. register±immediate addressing mode, 

or supplies by the general proposal register, called index register, i.e. register±register 

addressing mode. 

A load instruction is composed of several operations. First, it has been fetched by the 

instruction fetcher from instruction memory and has been pushed into the instruction queue. 

Second, it has been decoded by the instruction decoder and read the register file to get the 

source operands, like the base register and index register. Third, it calculates the effective 

address by arithmetic logic unit for the following data memory access. Forth, it fetches the 

target data from the data memory. Finally, it writes back the loaded data to the destination 

register in the register file. Figure 3 shows the major operations of load instructions with its 

execution order. 

 

 
 

Figure 3. Major operations of load instructions with execution order 
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Load instructions sometimes incurred long waiting time for the following instruction that 

depends on it, as they need to calculate the memory address and fetch target data from data 

memory. The latency is composed of address calculation, cache access, and opportunistic 

external memory access. If a subsequent instruction depends on the load instruction, it may 

need to stall the pipeline in front of the execution stage until the data produced by the load 

instruction becomes available. That will induce large stall cycles at run time. A conventional 

solution is out-of-order instruction issue and execution. However, out-of-order execution is 

too expensive for some applications, such as embedded processors. An economical solution 

for low-cost designs is to out-of-order execute only some critical instructions, we focus on the 

load instructions. Load instructions have long instruction execution latency and take large 

parts of total instructions at run time. In most ISAs, only the divide instructions have longer 

instruction execution latency than the load instructions. 

 

 

Figure 4. The two parts of load latency 
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The maximum possible number of cycles that following instructions, if depend on the 

load, need to stall pipeline to wait the data fetched by the load instruction is called load-to-use 

latency, it determines by pipeline design. It depends on the number of execution stage, 

number of memory access stage, expected cache-miss penalty and forwarding network design. 

The cache-miss penalty is the additional latency due to cache miss. The best case is hit in the 

highest level cache, and the expected cache-miss penalty is zero in this case. The worst case is 

hit in main memory, because the main memory miss will cause the context switch. In this case, 

the expected cache-miss penalty is hundreds of cycles. Figure 4 shows those two parts of load 

latency. The latency of load instructions increases as pipeline gets deeper. In the 5-stage 

pipeline, the load-to-use latency is just only 1 cycle, shown in Figure 1. But, the load-to-use 

latency increases to 5 cycles in the 12-stage pipeline, shown in Figure 4. 

 

1.3  The Effect of Load-to-Use Latency 
 

Typically, the latency between data loading and data processing increases along with the 

depth of the pipeline in the conventional processor design, and which may induce large stall 

cycles and affect the processor performance considerably. The following code sequence 

illustrates the latency of load instructions: 

LOAD   Rm, [mem_addr] 

ADD  Rd, Rm, Rn 

Assume the processor pipeline as shown in Figure 1 is a conventional in-order 5-stage 

pipeline design. The instruction fetch stage fetches LOAD instruction and ADD instruction 

sequentially from the instruction memory and pushes them into the instruction queue. After 

the instruction decode stage decodes these instructions, the instruction execution stage first 

executes the LOAD instruction. The load/store unit fetches the target data from the address 

mem_addr in the data memory and stores the data into the register Rm in the register file. The 
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data loading operation is completed in the memory access stage. If the instruction execution 

stage and memory access stage need n cycles to complete the LOAD instruction, the 

dependent ADD instruction needs to stall the pipeline for n cycles in front of the instruction 

execution stage until Rm value becomes available. Numbers of stall cycles n will increase as 

pipeline gets deeper. Figure 5 illustrates how load latency affects program execution. 

 

 

 

Figure 5. The effect of load latency 
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Figure 6. The Percentage of Load Instructions 

 

We assume the processor has 12-stage in-order dual-issue pipeline design, and the 

latency of load instructions is 5 cycles in this processor. We analyzed the programs, the 

Dhrystone benchmark [9] and the MiBench benchmark suite [8], in our simulator, and found 

Instruction Clock Cycle 
1     2     3     4     5     6     7 

LOAD Rm, [mem_addr] 

ADD Rd, Rm, Rn 

IF ID EX MEM 

IF ID stall EX MEM WB 

WB 
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that: the load-to-use latency induces large stall cycles (2.51 cycles/load) at run time; the load 

instructions take 20.0% in Dhrystone benchmark and 18.35% in MiBench benchmark suite of 

total instructions. Figure 6 shows the load instructions take percentage of total instructions. So, 

hiding the load-to-use latency is one way to improve processor performance. 

 

1.4  Previous Work 
 

Hiding the load-to-use latency has two major design directions: early or speculatively 

execute the load instructions and fill the load-to-use latency with independent instructions. 

This thesis focuses on the early or speculative execute the load instruction to hide the 

load-to-use latency. Previous work that hides or reduces the latency of load instructions can be 

categorized into two kinds of approaches: software-based approaches and hardware-based 

approaches. 

The software-based approach is known as static instruction scheduling in compiler time. 

For example, the unrolling and jamming for loops [5] enlarges a basic block so that more 

instruction can be scheduled to hide long execution latency. However, not all load instructions 

can be scheduled across loop iterations; for example, it depends on the loop termination 

condition. In addition, software scheduling is not efficient for a processor of limited 

architectural register space. 

The hardware-based approach like zero-cycle load [1] and early load address resolution 

[6] alleviates the load-to-use latency by fast address calculation but only for limited number 

of cycles. Runahead execution [2] and flea-flicker two-pass pipeline [3] can tolerate the 

cache-miss penalty by executing the independent instruction when the processor is stalled by 

data cache miss. However, the long delay of mode switching, checkpointing, and recovery 

makes it unsuitable for the relatively short load-to-use latency. 
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1.5  Research Goal 
 

In this thesis, we present a hardware approach, called early load, to hide the load-to-use 

latency in an in-order issue processor. We found some opportunities that we can use. 

First, the base register of load instruction is sometimes ready for a while before load 

instruction is issued. We can read the base register and calculate the effective address early; it 

has possibility to be right. Second, in order to alleviate the performance loss due to the 

mismatch of fetch rate and issue rate, the fetch stage and the decode stage is separated by the 

instruction queue in conventional processor pipeline design, called decouple architecture, as 

shown in Figure 1. When instructions are fetched into processor, they wait in the instruction 

queue until the previous instructions are issued. We can make use of the time that instructions 

wait in the instruction queue to load the target data early. We use those two opportunities to 

design our early load mechanism. 

With the early load mechanism, we identify the load instruction and execution condition 

in fetch cycle by pre-decoding instructions, and load the target data when the instructions wait 

in the instruction queue. Meanwhile, we also propose a mechanism to avoid and invalidate the 

early load operations that fetch the wrong data from data memory. In the following section, 

we will describe the early load mechanism in detail. If the early load operation is success to 

be executed, the load-to-use latency problem is alleviated. 

Apply early load mechanism in the system, it allows early executing the load instruction 

when load/store unit is idle. The early load mechanism can hide the load-to-use latency and 

reduce the load/store unit contention. Hence, the early load mechanism can improve the 

processor performance. 
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1.6  Organization of This Thesis 
 

The remainder of this thesis is organized as follows: Section 2 describes the related work. 

Section 3 details the early load mechanism. Section 4 presents the results of our experiments. 

Section 5 discusses the strength and weakness of our approach. Finally, Section 6 concludes 

our work. 
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Chapter 2  Related Work 

 

We can consider the latency of load instructions into two parts: load-to-use latency and 

cache-miss penalty. The techniques proposed to reduce the effect of latency of load 

instructions can be separate into two kinds of approaches: for load-to-use latency and for 

cache-miss penalty. 

 

2.1  For Load-to-Use Latency 
 

The latency that following instruction waits for their operands produced by the load 

instruction is called load-to-use latency. There are two approaches, zero-cycle load and early 

load address resolution, to reducing the effect of load-to-use latency. In the following 

sub-section, we will detail those two techniques. 

 

 

Figure 7. Implementation of the fast address calculation mechanism 
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2.1.1  Zero-Cycle Load 
 

Zero-cycle load [1] combines fast address calculation with an early-issue mechanism to 

make pipeline capable of hiding latency of many loads that hit in the data cache. The fast 

address calculation [13] mechanism predicts effective addresses early in the pipeline, thereby 

allowing loads to commence execution and complete. Figure 7 shows the implementation of 

the fast address calculation mechanism for a direct-mapped cache [13]. 

 

 

Figure 8. Implementing zero-cycle load mechanism 

 

Figure 8 shows the approach to implementing zero-cycle load in an in-order issue 

pipeline [1]. The instruction cache return not only the instruction but also the pre-decode 

information. The base register and index cache (BRIC) is a small cache indexed by the load 

instruction’s address, recorded the base register value and the index register value 

(register±register addressing mode) by history. In the decode stage, the load instructions 

access the cache with fast address calculation mechanism and the result is produced at the end 

of the decode stage. 
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With zero-load mechanism, the depending instructions have no visible latency because it 

allows load instructions to produce the value before it enters the execution stage. However, 

not all loads can execute with zero latency. The early-issue mechanism brings additional 

register and memory hazard, and the zero-cycle load occasionally fails. To ensure the 

correctness of the mechanism, it needs a recovery mechanism that will induce performance 

degradation. In order to achieve zero-cycle load, load instructions must complete in only two 

cycles. 

 

2.1.2  Early Load Address Resolution 
 

Early load address resolution [6] presents a non-speculative technique that partially hides 

the load-to-use latency by allowing the early issue of load instruction. This technique avoids 

the pipeline stall due to load instruction’s base register dependency. 

 Register tracking provides a method to safely compute the address of memory load. It 

enables early computations of the values of register by tracking the simple operations in 

decode time. With register tracking mechanism, the dependency of the base register of load 

instructions can be easy settled. Several tracking schemes are proposed: 

 Stack pointer tracking allows safe early resolution of stack references by track of 

the value of the ESP register. 

 Absolute address tracking allows the early resolution of constant-address loads. 

 Displacement-based tracking tackles all loads with addresses of the form 

register±immediate by tracking the values of all general-propose registers. 

The register tracking takes place in decode stage needs to track the register values 

immediately and the reduced cycle number from decode to execution stage is not much. 

Meanwhile, it has a larger hardware overhead to track and compute the register value. 
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2.2  For Cache-Miss Penalty 
 

The additional latency due to cache miss is called cache-miss penalty. There are three 

approaches, data pre-fetching, runahead execution, and flea-flicker, to reducing the effect of 

cache-miss penalty. In the following sub-section, we will detail those three techniques. 

 

2.2.1  Data Pre-fetching 
 

Data pre-fetching [4] cuts the overall cache-miss penalty by bringing likely-to-be-used 

data from distant memory to an upper level of the memory hierarchy ahead of time. Since the 

goal of data pre-fetching is only to bring closer the likely-to-be-used data, no recovery scheme 

is required; because a misprediction (i.e. a useless pre-fetch) does not have any severe impact 

except for wasted bandwidth and the possible eviction of some data from the memory 

hierarchy. However, data pre-fetching does not eliminate the load-to-use latency of the first 

level cache access. 

 

2.2.2  Runahead Execution 
 

Runahead execution [2] has been proposed to tolerate cache-miss penalty. In runahead 

execution, the processor checkpoints the processor state and enters the runahead mode when a 

long latency cache miss occurs. Execution continues bypassing the miss and dependent 

instructions, and pre-fetches data. When the cache-miss-causing instruction completes, the 

processor exits the runahead mode, restores the processor states, and execution restarts from 

the point of the load miss. 

Runahead execution allows the processor to execute the instructions that do not depend 

on the data of the long latency cache misses. Once the processor returns to the normal mode, 



15 
 

it can computation continues while the load misses discovered during runahead execution no 

longer stall the pipeline. Runahead execution provides performance improvements in two 

main areas: instruction and data prefetching. The instruction prefetching improvement comes 

from prefetching runahead instructions into the L2 cache and the trace (or instruction) cache, 

and training the branch predictors during runahead mode. Data-prefetching improvement 

comes from prefetching runahead load requests into the L2 cache and L1 data cache, and 

training the hardware data prefetchers’ buffers during runahead mode. However, the long 

delay of mode switching, checkpointing, and recovery makes it unsuitable for the relatively 

short load-to-use latency. 

 

 
Figure 9. Execution and memory access timeline for runahead execution and 

flea-flicker multi-pass pipeline 

 

2.2.3  Flea-Flicker Two-Pass Pipeline 
 

Flea-flicker two-pass pipeline [3] exploits compile-time scheduling on simple in-order 

hardware while achieving excellent cache miss tolerance through persistent advance 

pre-execution beyond otherwise stalled instructions. The pipeline systematically makes 

multiple passes through instructions that follow a stalled instruction. Each passes increase the 

speed of the subsequent passes with its valid execution results preserved in a result buffer. 
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Figure 9 shows the different between runahead execution and flea-flicker two-pass pipeline. 

Multi-pass pipelining tolerates long latencies without the overhead associated with 

dynamic scheduling or register renaming. Unlike most pre-execution schemes, multi-pass 

pipelining provides for the persistence of valid advance execution results. Reusing these 

results increases efficiency, hides the latency of multiple-cycle instructions and, through a 

novel mechanism, accelerates in-order execution. A notion of instruction criticality further 

enhances the handling of miss latencies and reduces fruitless speculative execution by 

indicating when there is little opportunity for advance execution. The flea-flicker two-pass 

pipeline has limitation the same with runahead execution, the long delay of mode switching, 

checkpointing, and recovery makes it unsuitable for the relatively short load-to-use latency, 

too. 
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Chapter 3  Early Execution of Data Load 

 

In section 1.5, we mentioned some opportunities that can be used. First, the base register 

of load instructions is sometimes ready for a while before load instruction is issued. Second, 

when the instructions are fetched into processor, they wait in the instruction queue until the 

previous instructions are issued. Hence, we can read the base register and calculate the 

effective address early. And make use of the time that the load instruction waits in the 

instruction queue to fetch the target data early from the data memory and store it in a buffer. If 

the early operation is valid and complete before the corresponding load instruction is issued, 

and the data is already in the buffer without executing the load instruction. Hence, the 

problem of load-to-use latency is alleviated. 

To design the early load mechanism, we have three major research goals. First, identify 

the load instruction and execution condition before the early load operation starts. Second, 

start the early load operation at the time that made the early load operation complete on time 

when the load instruction is issued. Third, deal with all of the early load operations that 

fetched the wrong data from data cache. 

The early load mechanism has two parts: the early load identification and the avoidance 

and invalidation mechanism. The early load identification identifies the load instruction early 

and execution condition, and executes the load instruction to load data at the time that made 

the early load operation complete on time when the load instruction is issued. The avoidance 

and invalidation mechanism is a detection method to avoid starting the early load operation 

that may be fetched the wrong data from cache and invalidate the early load operation that 

already executed and it fetched the wrong data from cache. Figure 10 shows the system that is 

12-stage in-order dual-issue pipeline with the early load mechanism. 
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Figure 10. Systems with early load mechanism 
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The early load mechanism logic shown in Figure 10 must to identify the load instruction 

and its execution condition early. The pre-decoder in the instruction fetch stage used to 

identity the load instruction in front of the instruction queue. The early load queue (ELQ) has 

been used to record the early load candidates and its early loaded data in order in the pipeline. 

The register status table (RST) used to record all of the register status and renaming 

information from the register file to the early load queue. The information also used to avoid 

and invalidate the incorrect early load operation. Detailed design description will be provided 

in the following sub-sections. 

 

3.1  Early Load Identification 
 

In order to early execute the load instruction, we need to indentify the load instruction 

before the early load operation is executed. Therefore, indentify the load instruction that 

stored in the instruction queue is difficult to design. We must be read the instruction from the 

instruction queue and decode it. Hence, pre-decode the load instruction before instruction 

push into instruction queue has been chosen in our design. 

When the instruction fetch stage fetches an instruction, the instruction fetch stage first 

pre-decodes the instruction to identify the load instruction and its execution condition. 

Whether to store the instruction into an early load queue is determined according to the 

pre-decode result. If the instruction does not belong to the target type, the instruction is stored 

only into the instruction queue (the instruction is not stored into the early load queue). Then, 

the instruction is executed by the instruction decode stage and the instruction execution stage. 

If the instruction belongs to the target type, the instruction is stored not only into the 

instruction queue but also into the early load queue. The load instruction stored in the early 

load queue, called the early load candidate, will load data early when the instruction waits in 

the instruction queue. 
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Because the early loaded data may be incorrect, we need a method to make sure the 

correctness of the early loaded data. An avoidance mechanism has been proposed to avoid 

starting the early load operation that may be fetched the wrong data, and the invalidation 

mechanism has been proposed to invalidate the early load operation that already started 

executing and it fetched the wrong data from the cache. We will detail the avoidance and 

invalidation mechanism in the section 3.2. 

The target type of the early load instruction is load instructions which take 18.35% of 

total instructions at run time. The load instructions need to have register+immediate 

addressing mode, because of low accuracy for register±register addressing mode (< 10%). 

The register+immediate addressing mode take 86.53% of total load instructions, shown in 

Figure 11. Finally, the execution condition of instructions must be always, because of easy for 

design. And the always condition takes 99% of total load instruction. 
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The pre-decoder needs to indentify load instructions and execution condition before the 

instructions push into the instruction queue. Meanwhile, we don’t want to increase the clock 

cycle time. Figure 12 shows the design of the pre-decoder. We duplicate the pre-decoder and 

pre-decode instructions parallel with cache tag comparison. After the tag comparison, choose 

the pre-decode information based on the result of tag comparison. That we can indentify the 

load instruction in fetch cycle and no need to increase the clock cycle time. 

 

 

Figure 12. Duplicate the pre-decoder parallel with tag comparison 

 

The early load queue is a queue parallels with the instruction queue. It records the early 

load candidates in order in the pipeline. Each entry of early load queue includes the following 

information: 

- Active[0]: The ELQ entry has been active for execute. 

- Status[1:0]: The status of the ELQ entry; prepare, busy, complete, or invalid. 
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- BReg[3:0]: The base register index of load instruction. 

- Offset[11:0]: The offset value of the load instruction. 

- Adr_mode[3:0]: The addressing mode of the load instruction. 

- Adr[31:0]: The memory address of the load instruction. 

- EL_Data[31:0]: The early loaded data of the load instruction. 

The early load queue has two pointers: head pointer and tail pointer. The head pointer 

point at the oldest load instruction in the pipeline; adjusted when the load instruction 

committed. The tail pointer points at the 1st empty entry which is prepared for the next load 

instruction. Figure 13 shows the structure of early load queue. 

 

 

 

 

 

Figure 13. Structure of early load queue 

 

The pre-decoder in the IF stage identifies the instruction type and condition code, and 

decodes the base register index, offset, and the addressing mode. If the load instruction has 

the address of the form register+immediate, it will be push into the early load queue and the 

status bit will be set to prepare state. 

Following problem is when to execute the early load operation. We need to start the early 

load operation at suitable time. If the time to start the early load operation is too early, the 

base register of load instruction has higher possibility to be not ready. If the time to start the 

early load operation is too late, the early load operation can not complete the early load 
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operation on time when the load instruction is issued. Hence, we set an early load lookahead 

pointer into the instruction queue to decide when to start the early load operation, like Figure 

14. The EL pointer pointed the instruction behind the head pointer with N instructions. The N 

value is called early load distance, it is a fixed value determined by simulation. When the 

pointer points a load instruction in the instruction queue, set its corresponding early load 

queue entry to active. When the load/store unit is idle, chooses the oldest and active early load 

candidate in the early load queue to start the early load operation and set its status to busy. 

After the operation finished, the loaded data will be stored into the corresponding entry in 

early load queue and set its status to complete. 

 

 

Figure 14. Set early load lookahead pointer into the instruction queue 

 

When the load instruction goes into the ID stage, the status of early load queue entry is 

checked. If the status is valid, following register access of this destination register will be 

renamed to the corresponding early load queue entry and the load instruction does not need to 

execute again. Following instructions depending on this register will get the data from the 

early load queue. If the status is invalid, load instruction will be executed actually. And the 

early load queue entry will be deallocate when the load instructions are committed. 
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The early load procedure has six steps. First, identify the load instruction before 

instruction has been pushed into instruction queue. The early load candidate will be pushed 

into early load queue and set the early load queue entry’s status to prepare but not active. 

Second, when the EL pointer points a load instruction in the instruction queue, sets its 

corresponding early load queue entry to active. Third, checks the load/store unit is idle or not 

each cycle. If the load/store unit is idle, choose the oldest and active early load candidate in 

the early load queue to execute the early load operation and set its status to busy. When the 

early load operation complete, set its status of early load queue entry to complete. Forth, 

check the correctness of early loaded data. If the early loaded data is incorrect, set the early 

load queue entry’s status to invalid. The avoidance and invalidation mechanism will describe 

in detail in next section. Fifth, when the load instruction into ID-stage, check its 

corresponding early load queue entry is complete or not. If yes, renaming the load 

instruction’s destination register to early load queue entry. And keep the renaming information 

in the register status table. Finally, when the load instruction is committed, deallocate the 

early load queue entry. 

Figure 15. (a) Without early load mechanism (b) With early load mechanism 

Cycle 
Instructions 

1 2 3 4 5 6 7 8 9 

CMP r1, #10 IF ID EXE MEM WB     

BEQ loop IF ID EXE MEM WB     

LOAD r2, [r0 #0]  IF ID EXE MEM WB    

ADD r3, r3, r2  IF ID Stall Stall EXE MEM WB  

ADD r1, r1, #1   IF Stall Stall ID EXE MEM WB 

(a) 

CMP r1, #10 IF ID EXE MEM WB     

BEQ loop IF ID EXE MEM WB     

LOAD r2, [r0 #0]  IF ID (EL) EXE MEM WB    

ADD  r3, r3, r2  IF ID EXE MEM WB    

ADD r1, r1, #1   IF ID EXE MEM WB   

(b) 
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Figure 15 shows two examples with and without early load mechanism. Figure 15 (a) is a 

process timing table of each instruction in the pipeline when the processor executes the same 

program segment without using the early load method. Figure 15 (b) is a process timing table 

of each instruction in a pipeline when the processor executes a particular program segment by 

using the early load method described above. In the tables, IF represents “instruction fetch”, 

ID represents “instruction decode”, EXE represents “instruction execution”, MEM represents 

“memory access”, and WB represents “data write-back”. In addition, EL represents that the 

early load method is executed. 

As shown in Figure 15 (a), because the instruction “LOAD r2, [r0 #0]” needs to be 

fetched from the data cache into the register r2, the next instructions “ADD r3, r3, r2” and 

“ADD r1, r1, #1” are stalled pipeline for several cycles until the data fetching operation of the 

instruction “LOAD r2, [r0 #0]” is completed. As shown in Figure 15 (b), since the early load 

method described in foregoing description is adopted, the instruction “LOAD r2, [r0 #0]” 

already fetches its early loaded data from the data cache into the early load queue through the 

early load operation during the instruction decoding phase ID, so that the instruction data 

fetching operation MEM needs not to fetch data from the data cache again. Accordingly, the 

following instruction “ADD r3, r3, r2” does not have to wait and the instruction executing 

operation EXE is carried out right after the instruction decoding operation ID is completed.  

In the embodiment described above, the early loaded data corresponding to an instruction is 

early loaded when the instruction waits in the instruction queue. Accordingly, the stall cycles 

between data loading and data processing in the design of pipeline processor can be avoided. 

The deeper the depth of the pipeline is, the number of stall cycles will increase and the better 

the performance of the early load method will get. 

The last problem is how to make sure the correctness of early load operation. Because 

we executed the load instruction to fetch data from cache system early, the early loaded data 

has possibility to be wrong. We need a method to make sure the correctness of the early 
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loaded data and recover it when the incorrect early load operation happened. The simple 

method is that we execute the load instruction actually and compare the data and early loaded 

data. If the values of two data are the same, the early load operation is right. Otherwise, the 

early load operation is wrong and need to recover. The recovery mechanism is flush the 

pipeline, and re-fetch the instructions after the load instruction. Just like the branch miss 

prediction recovery. 

The drawbacks of the checking method are higher memory (cache) pressure and larger 

recover penalty. Each of load instructions needs to access memory twice that induces the 

higher memory pressure. If the early load operation is wrong, the recover penalty is the same 

with branch miss determined by the depth of pipeline. If we can check the correctness of early 

load operation before the load instruction issued to the execution stage, we can reduce the 

larger recover penalty due to wrong early load operation by re-executing the load instruction 

immediately. The following section will provide a method to avoid starting the early load 

operation that may be fetch the wrong data from cache to reduce the increasing cache pressure 

due to early load mechanism, and invalidate the early load operation that already executed and 

it fetch the wrong data. 

 

3.2  Avoidance and Invalidation Mechanism 
 

To design the avoidance and invalidation mechanism, we analyzed the early load 

mechanism first and found that two violations may be produced by allowing a load instruction 

to fetch data from the cache early. One of the violations is base register dependency violation 

and the other one is memory dependency violation. Base register dependency violation takes 

place when older instruction is calculating the value of the base register and accordingly the 

instruction which performs “early load” may obtain the old value of the base register and 

access the memory according to the old value. In this case, wrong data is fetched from the 
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wrong address. Memory dependency violation takes place when the instruction which 

performs “early load” accesses the same memory address as another store instruction which 

older than the early load instruction, so that the data fetched by the instruction which performs 

“early load” may not be updated. The avoidance mechanism is used for avoid starting the 

early load operation that may be wrong and the invalidation mechanism is used to invalidate 

the early load operation that already executed and it fetch the wrong data. 

 

CMP    r1, #10 STR    r3, [r1, #0] 

BEQ    loop LOAD  r2, [r1 #0] 

ADD    r1, r1, #1 ADD  r1, r1, #1 

LOAD  r2, [r1 #0] ADD  r3, r3, r2 

ADD    r3, r3, r2 B     loop 

(a) Base Register Dependency Violation (b) Memory Dependency Violation 

Figure 16. Two examples of the violation conditions 

 

Figure 16 are two examples of those two violation conditions. In Figure 16(a), if the r1 

value is not ready when the LOAD instruction is undergoing the early load operation. The 

early load operation of the LOAD instruction is wrong due to base register dependency 

violation. In Figure 16(b), when the LOAD instruction is undergoing the early load operation, 

the execution of STR instruction is not complete. The value at the address [r1, #0] is not yet 

updated. So, the early load operation of the LOAD instruction is wrong due to the memory 

dependency violation. Our design must be check those two dependency violation and avoid 

them happening. 

The avoidance and invalidation mechanism checks these two violation conditions. The 

register status table keeps track of the register status, checks data of the base register 

dependency, and records the renaming information. Each entry of register status table includes 

following information: 
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- Status[1:0]: The status of the register; ready, busy, or rename. 

- ELQ_ID[3:0]: The ELQ entry that this register renamed to. 

- Stage[2:0]: A count down counter subtract one each cycle, used to indicate which 

instruction is calculating the register value in the pipeline. 

The register status table is a table which records all of the resister status and renaming 

information from the register file to early load queue. The register status table has been 

updated in the instruction decode stage and reset in the write-back stage by the instruction’s 

destination register. When the instruction has been issued, set status of its destination register 

in the register status table to busy and the stage to execution latency. The status bits will 

decrease one per cycle. When the stage bits becomes zero, reset the register status to ready. If 

the register has been renamed to early load queue entry, keep the renaming information in the 

ELQ_ID and set the register status to rename. Figure 17 shows the structure of the register 

status table. 

 

  R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

Status[1:0]                                 

ELQ_ID[3:0]                                 

Stage[2:0]                                 

Figure 17. Structure of the register status table 

 

In the avoidance and invalidation mechanism, the occurrences of these two dependency 

violations have been checked. If these dependency violations occurred, the corresponding 

entry in the early load queue is set to invalid in advance. Correct data is fetched from the 

cache or the memory when the instruction execution stage and memory access stage execute 

the instruction. 
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Avoidance mechanism: avoid starting the early load operation that may be fetched the wrong 

data. 

Case 1: by checking the base register status to avoid starting the early load operation 

that may be fetched the wrong data: 

When any instruction passes through the instruction decode stage, setting the 

status field of the destination register thereof in the register status table to busy. 

Before the early load operation starts, check the base register status in the 

register status table. If the status of the base register is busy, setting the status 

files of the corresponding entry in the early load queue to invalid without 

starting the early load operation. 

Invalidation mechanism: invalidate the early load operation that already started and fetched 

the wrong data. 

Case 2: by checking the base register version to invalidate the early load operation that 

already started and fetched the wrong data: 

When any instruction passes through the instruction decode stage, setting the 

status field of the destination register thereof in the register status table to busy, 

searching the early load queue to determine whether there is any instruction uses 

this base register and it already started the early load operation. If yes, setting 

the status field of the corresponding entry in the early load queue to invalid. 

Case 3: by checking the load address content to invalidate the early load operation that 

already started and fetched the wrong data: 

When a store instruction generates a memory address in the instruction 

execution stage, searching the early load queue to determine whether there is the 

same memory address in the early load queue and it already started the early 

load operation. If yes, set the status field of the corresponding entry in the early 

load queue to invalid. 
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In overview, the early load mechanism is adopted in the processor pipeline, the target 

data is early loaded from the cache into early load queue in the processor when the instruction 

waits to be executed in the instruction queue and the avoidance and invalidation mechanism is 

provided to avoid and invalidate the incorrect early load operation. Thereby, if the pipeline 

successfully early loads the target data into the early load queue, the delay between data 

loading and data processing can be reduced effectively, and even when the pipeline cannot 

early load the target data into the early load queue successfully, the performance of the 

processor is not affected.
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Chapter 4  Simulation and Evaluation 

 

In chapter 3, we proposed the mechanism and architecture of the early load mechanism 

which allows a load instruction to fetch data from the cache early. In this chapter, we present 

the simulation results and evaluations of our design. In section 4.1, we describe the simulation 

environment and the benchmark programs that we used to evaluate the performance 

improvement in the simulation. In section 4.2, we examined the effects for some variable, like 

the distance of early load, the size of early load queue, and the length of load-to-use latency. 

 

4.1  Experimental Environment 
 

4.1.1  Simulation Tool 
 

The simulator used in this thesis is derived from the SimpleScalar/ARM [7], a suite of 

functional and timing simulation tools for the ARM ISA. The timing simulator executes only 

user-level instructions, performing a detailed timing simulation of microprocessor with two 

levels of instruction and data cache memory. Simulation is execution-driven, including 

execution down any speculative path until the detection of a fault, TLB miss, branch 

misprediction, or etc. 

For precise simulation result report, we rewrite the SimpleScalar to support cycle-based 

simulation different from instruction-based simulation. We evaluated the performance 

improvement of early load mechanism by extending SimpleScalar/ARM [7] to support early 

load mechanism and examining the performance of Dhrystone [9], MiBench benchmark suite 

[8], and SPEC2000 benchmark suite [10] running on this simulator. To observe the 

performance in more detail, we examined effects of the distance of early load, the size of 
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early load queue, and the length of load-to-use latency. 

 

4.1.2  Benchmark Suite 
 

The benchmark programs that we used are from MiBench benchmark suite [8]. These 

benchmarks are divided into six suites with each suite targeting a specific area of the 

embedded market. The six categories are Automotive and Industrial Control, Consumer 

Devices, Office Automation, Networking, Security, and Telecommunications. All the 

programs are available as standard C source code so that it focuses on portable applications 

written in high-level languages as processor architecture and software developers are moving 

in this direction. Where appropriate, there provide a small and large data set. The small data 

set represents a light-weight, useful embedded application of benchmark, while the large data 

set provides a more stressful, real-world application. We use the large data set in this thesis. 

All programs of MiBench benchmark suites are publicly available and widely used on general 

purpose processors. Since many past embedded applications have been written directly in 

assembly language, it has been difficult to collect a portable set of benchmarks for embedded 

domain. 

 

4.1.3  Simulator Configuration 
 

Table 1 summarizes the configuration of the target machine used in the simulator. We use 

the ARMv5E ISA processor with 2-issue in-order pipeline in our simulator. The L1 caches are 

separated into L1 instruction cache and L1 data cache without L2 cache. Each of L1 cache is 

32KB 4-way set associated cache. And the branch prediction is prefect. We evaluated the 

performance impact with different distance of early load (1 to 7 instructions), different sizes 
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of early load queue (4, 8, 12, and 16 entries), and two different lengths of the load-to-use 

latency (3 and 5 cycles). 

 
Table 1. Simulation configuration detail 

Instruction Set Architecture ARM ISA version 5 with Enhanced DSP instruction set 

Fetch/Decode/Issue Width 2 instructions per cycle 

L1 I-cache 32K 4-way set associate. 

L1 D-cache 32K 4-way set associate. 

Instruction Queue Size 24 entries, EL Distance = 1~7 instructions 

Early Load Queue Size 4/8/12/16 entries 

8 stages 

(500MHz)

2 stages fetch/2 stages decode /3 stages execution/1 

stage writeback 

12 stages 

(800MHz)

3 stages fetch/3 stages decode /5 stages execution/1 

stage writeback 

Depth of pipeline 

20 stages 

(1.2GHz) 

5 stages fetch/5 stages decode /8 stages execution/2 

stage writeback 

Issue Model In-order issue of up 2 operations per cycle 

Function Units 2-integer ALU, 1-load/store unit, and 1-multiplier; no floating units

 

4.2  Experimental Results 
 

4.2.1  Distance of Early Load 
 

In this section, we evaluate the performance impact of different early load distance from 

1 to 7 instructions. The processor under evaluation has 12-stage pipeline and 16-entry early 

load queue. Figure 18 and Table 3 shows the performance improvement for various distance 

of early load. 

We need to start the early load operation at suitable time. The simulation result shows the 

fixed distance of early load is 4 instructions for MiBench benchmark suite. In our target 

machine, the execution latency of early load operation is 6 cycles. The average IPC is about 

0.7 instruction per cycle. And the operand is read form register in ID2 stage. So, the best 
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distance of early load is 4 instructions. Figure 19 shows the trend of distance of early load 

from 1 to 7 instructions. 
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Figure 18. Performance improvement with different early load distance 
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Figure 19. Trend of different early load distance 
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4.2.2  Size of Early Load Queue 
 

In this section, we evaluate the performance impact of the size of early load queue for 

three sizes, 4, 8, 12 and 16 entries. The processor under evaluation has 12-stage pipeline and 

the early load distance is 4 instructions. Figure 20 and Table 4 shows the performance 

improvement for various sizes of early load queue. 
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Figure 20. Performance improvement with different size of early load queue 

 

The early load queue needs to keep all of the early load candidates in the back-end 

pipeline. In our target machine, maximum of instructions in the back-end pipeline is 40. The 

load instruction takes 18.35% of total instructions. So, 8 load instructions is in the base-end 

pipeline in average. The simulation result shows the suitable size of early load queue is 8 or 

12 entries. Because of the distribution of load instructions in the pipeline is not uniform. 

Figure 21 shows the trend of sizes of the early load queue from 4 to 16 entries. 
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Figure 21. Trend of sizes of the early load queue 

 

4.2.3  Length of Load-to-use Latency 
 

In this section, we evaluate the performance impact of length of load-to-use latency for 

two lengths, 3 cycles and 5 cycles. The processor under evaluation has 12-entry early load 

queue and early load distance is 4. Figure 22 and Table 5 shows the performance 

improvement for two length of load-to-use latency. 

The performance improvement increases as the length of load-to-use latency increases. 

In the 8-stage pipeline, the load-to-use distance is 3 cycles. The static instruction scheduling 

of compiler can easily hide the load-to-use latency. In the 12-stage pipeline, the load-to-use 

distance increases to 5 cycles. In this situation, solving the problem of load-to-use latency by 

the static instruction scheduling becomes harder. The load-to-use latency problem is more 

seriously in deeper pipeline, and the early load mechanisms we proposed is more efficient in 

deeper pipeline, see the Table 5. 
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Figure 22. Performance improvement with different length of load-to-use latency 

 

4.2.4  Result on SPEC2000 Benchmark Suite 
 

In previous section, we evaluated the mechanism in number of context. And we get the 

configuration that can achieve the most performance improvement. In this section, we 

evaluate the mechanism in another benchmark suite, SPEC2000 benchmark suite [10], to see 

the performance improvement. We use the 12 stages of the pipeline, 12 entries of the early 

load queue, and early load distance is 4. Table 2 shows the performance improvement for the 

SPEC2000 Benchmark suite. 

Table 2. Performance improvement in SPEC2000 benchmark suite 

Evaluation 
Benchmark 

Without Early Load With Early Load Performance Improvement 

bzip2 0.42 0.44 6.42% 

gap 0.49 0.61 24.8% 

gzip 0.39 0.42 7.54% 

mesa 0.65 0.65 0.54% 

equake 0.61 0.65 7.01% 

apsi 0.32 0.32 0.01% 

Average   9.27% 
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Table 3. Performance improvement with different early load distance 

Evaluation 
Benchmark Number of Instruction (Million) 

W/O EL N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 

crc32 403.85 0.83 0.24% 0.26% 0.27% 0.25% 0.25% 0.25% 0.25% 

basicmath 3922.86 0.69 1.47% 1.55% 1.60% 1.54% 1.43% 1.49% 1.39% 

bitcount 641.5 0.72 2.20% 2.20% 2.20% 2.20% 2.20% 2.20% 2.20% 

dijkstra 237.44 0.43 14.90% 16.77% 18.66% 18.60% 18.59% 11.32% 11.32% 

qsort 361.99 0.62 7.50% 7.74% 8.25% 8.34% 8.18% 8.27% 8.31% 

sha 129.57 0.95 0.51% 0.37% 0.37% 0.38% 0.38% 0.38% 0.38% 

stringsearch 51.07 0.44 0.93% 5.12% 4.87% 4.93% 4.96% 4.96% 4.94% 

susan 112.18 0.77 4.15% 5.07% 5.09% 5.32% 5.32% 5.32% 3.74% 

Average    4.49% 4.88% 5.16% 5.19% 5.15% 4.28% 4.05% 
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Table 4. Performance improvement with different size of early load queue 

Evaluation 
Benchmark Number of Instruction (Million) 

W/O EL 4-entry ELQ 8-entry ELQ 12-entry ELQ 16-entry ELQ 

crc32 403.85 0.83 0.21% 0.25% 0.25% 0.25% 

basicmath 3922.86 0.69 1.33% 1.51% 1.54% 1.54% 

bitcount 641.5 0.72 2.20% 2.20% 2.20% 2.20% 

dijkstra 237.44 0.43 11.26% 18.60% 18.60% 18.60% 

qsort 361.99 0.62 7.13% 8.01% 8.43% 8.34% 

sha 129.57 0.95 0.18% 0.38% 0.38% 0.38% 

stringsearch 51.07 0.44 3.79% 4.91% 4.86% 4.92% 

susan 112.18 0.77 3.69% 3.29% 4.97% 5.32% 

Average    3.72% 4.89% 5.15% 5.19% 
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Table 5. Performance improvement with different length of load-to-use latency 

Evaluation 

3-Cycle 5-Cycles 8-Cycles Benchmark Number of Instruction (Million) 

W/O EL W/ EL W/O EL W/O EL W/O EL Pef. Imp. W/O EL W/O EL Pef. Imp. 

crc32 403.85 1.65 1.65 0.83 0.83 0.83 0.25% 0.62 0.75 20.3% 

basicmath 3922.86 0.88 0.88 0.69 0.69 0.69 1.54% 0.56 0.57 2.60% 

bitcount 641.5 0.82 0.82 0.72 0.72 0.72 2.20% 0.54 0.56 2.42% 

dijkstra 237.44 0.86 0.92 0.43 0.43 0.43 18.6% 0.33 0.48 46.7% 

qsort 361.99 0.86 0.88 0.62 0.62 0.62 8.43% 0.49 0.57 16.5% 

sha 129.57 1.23 1.23 0.95 0.95 0.95 0.38% 0.69 0.72 3.97% 

stringsearch 51.07 0.63 0.63 0.44 0.44 0.44 4.86% 0.36 0.42 13.0% 

susan 112.18 1.03 1.04 0.77 0.77 0.77 4.97% 0.61 0.67 9.02% 

Average    1.31%   5.15%   14.3% 
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Chapter 5  Discussion 

 

We evaluated the mechanism in numbers of contexts: the distance of early load, the size 

of early load queue, and the length of load-to-use latency. In our experiment, we studied the 

impact of performance with different configurations. 

We need to start the early load operation at suitable time. Too early or too late make the 

performance improvement of early load is not so good. The simulation result shows the fixed 

distance of early load is 4 instructions for MiBench benchmark suite. In our target machine, 

the execution latency of early load operation is 6 cycles. The average IPC is 0.7 instructions 

per cycle. And the operand is read form register in ID2 stage. So, the best distance of early 

load is 4 instructions. Fixed distance of early load is easy to design, but the early load distance 

is a best value in average not a best value for every situation. Variable distance of early load is 

hard to design. In order to design the variable distance of early load, we need to know the 

execution behavior for the instruction in the future. But it is hard to predict. However, 

dynamically decided the distance of early load can get the better performance. 

When the early load mechanism has a small early load queue, less load instructions can 

execute earlier because the early load queue is full frequently. Large early load queue has less 

chance to be full. But larger early load queue costs more hardware overhead and slow access 

time. The proper size of early load queue can be determined by simulation. In our simulation 

result shows the suitable size of early load queue is 12 entries. 

The problem of load-to-use latency becomes serious, as the depth of pipeline increases. 

In a shallow pipeline, the static instruction scheduling of compiler can easily hide the 

load-to-use latency. But the compiler is hard to find the independent instructions to fill out the 

more pipeline bubbles in deeper pipeline. In a deep pipeline, one valid early load operation 

can hide more stall cycles 
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In our analysis, early load mechanism allows 29.68% of total load instruction can be 

early executed. Another 70.32% can be separated into two parts. One is register±register 

addressing mode. It takes 13.47% of total load instructions. Another is invalid early load 

operations due to two dependency violations; it takes 56.85% of load instructions. And most 

of them are array accesses. 

 In the early load mechanism, we can check the early operation is valid or not before the 

load instruction enters the execution stage. When the early load is valid, we can succeed to 

hide the load-to-use latency. Otherwise, if the early operation is invalid, the load instruction 

will be executed without inducing extra performance degradation. The early load mechanism 

increases the pressure on data cache access. The additional cache access is 24.08%. Since we 

load the data hits in cache, the pressure of memory access does not increase. 
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Chapter 6  Conclusion 

 

Increasing depth of pipeline leads to high instruction throughput and high clock rate. But 

the long load-to-use latency of deep pipeline processor impacts the processor performance 

seriously due to pipeline stalls. Hiding the load-to-use latency becomes one of the most 

challenging problems for high performance processors. 

In this thesis, we proposed a hardware method, call early load, to hide the load-to-use 

latency. Early load allows load instructions loads data from memory system while the load 

instruction waits in instruction queue. Meanwhile, the avoidance and invalidation mechanism 

provides an error detection method to make sure the early loaded data is correct. When the 

early loaded data is correct, the load-to-use latency between the load instruction and the 

dependent instructions becomes zero. And if the early loaded data is invalid, the load 

instruction will be executed without inducing extra performance degradation 

The early load can give a 11.64% performance gain in Dhrystone benchmark. We also 

evaluated the performance improvement in MiBench benchmark suite. It achieves 18.60% 

performance improvement in dijkstra of the MiBench and 5.15% performance improvement 

in average. And the additional cache access is 24.08%. We evaluated early load mechanism in 

number of contexts. The proper size of early load queue and suitable distance of early load 

can be determined by simulation. In our experiment, the 4-instruction early load distance and 

12-entry early load queue has been used in our simulator. 

The early load mechanism can be extended to the pre-fetch mechanism. In our approach, 

when the data cache miss occurs, the early load operation may be invalid. We can make some 

change to the early load mechanism to wait the early load operation to be ready when the load 

instruction enters the ID stage. By little modification, we may hide additional cache-miss 

penalty. 
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In the future, we can combine the register tracking mechanism with early load 

mechanism. Register tracking enables early computation of the values of register by tracking 

the simple operations of the form register±immediate or stack pointer. We can use the register 

tracking mechanism to track the base register value used to execute the early load operation. It 

can avoid the invalid early load operation due to the base register dependency violation. 
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