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Early Load : Hiding Load-to-Use Latency in Deep Pipeline Processors

Student : Shun-Chieh Chang Advisors : Dr. Chung-Ping Chung

Department of Computer Science and Information Engineering

National Chiao Tung University

Abstract

In order to achieve high instruction throughput, high performance processors tend to use
more and deeper pipelines. As -pipeline -gets deeper and wider, the instruction execution
latency becomes longer. The longer instruction execution latency induces more pipeline stall
cycles in an in-order processor. Asconventional selution is out-of-order instruction issue and
execution; but it is too expensive for some applications, such as embedded processors. An
economical solution for low-cost designs is to out-of-order execute only some critical
instructions. We focus on load instructions, due to their frequent occurrences and long
execution latency in a deep pipeline. If a subsequent instruction depends on the load
instruction, it may need to stall in the pipeline to wait for the load outcome. The maximum
possible number of stall cycles is called the load-to-use latency.

In this thesis, we propose a hardware method, called the early load, to hide load-to-use
latency via executing load instructions early. Early load requires that load instructions be
identified early and issued for execution early. In the meantime, an error detection method is
proposed to stop or invalidate incorrect early loads, ensuring correctness without inducing

extra performance degradation. Early load can both hide load-to-use latency and reduce



load/store unit contention, at only a little hardware cost.

Our experiments show that for a 12-stage in-order dual-issue design, early load can give
a 11.64% performance gain in Dhrystone benchmark; and a 18.60% maximal and 5.15%
average gain for MiBench benchmark suite. Meanwhile, early load induces 24.08% additional
memory accesses. The incurred hardware cost is about ten thousand transistors and

corresponding control circuits.
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Chapter 1 Introduction

In order to achieve high instruction throughput, high performance processors tend to use
more and deeper pipelines. Meanwhile, the cache memory has been moved toward high
densities instead of short access time. These trends have relative increased cache access
latencies as measured in processor clock cycle. The growing load latency dominates the
overall performance because it may induce large stall cycles at run time. Following
instructions, if depends on load instruction, need to stall pipeline to wait the data fetched by
the load instruction. So, hiding the load-to-use latency is one way to improve the processor
performance.

This thesis proposes a hardware:method, called the early load, to hide the load-to-use
latency with only a little hardware cost. Early load allows load instructions to load the data
from the cache before it enters the execution stage. In.the meantime, a error detection method
has been proposed to avoid starting the early load operation that may be fetched the wrong
data from the cache and invalidate the early load operation that already executed and it
fetched the wrong data from cache.

The remainder of this chapter presents the background and motivation necessary to
prepare the reader for the remaining chapters. Section 1.1 introduces the conventional pipeline
design. Section 1.2 introduces load instructions and the load-to-use latencies. Section 1.3
explores the effect of load latency. Section 1.4 capsules the existing approaches for reducing
the effect of load-to-use latency. Section 1.5 describes the research goal. Section 1.6 details

the organization of the remaining chapters.



1.1 Convention Pipeline Design

Pipelining is an implementation technique that exploits parallelism among the
instructions in a sequential instruction stream. RISC instructions classically take five steps:
1. Fetch instruction from memory.
2. Read registers while decoding the instruction. The format of RISC instructions
allows reading and decoding to occur simultaneously.
3. Execute the operation or calculate an address.
4. Access an operand in data memory.

5. Write the result into a register.

IF | ID | EX | MEM | WB
| e | |
| | : I
| | | |
| | | |
| | | I
Instruction Instrulction Instruction ! Instruction ! Access ! Write-Back
Fetch N Queuia Decode : Execute : Data : Register
| | |
: I |Cache : File
| | I
| | |
| | |
I I |
I I |
I I |
I I |
| | |
! ! !

Figure 1. Convention 5-stage Pipeline Design

Figure 1 illustrates a conventional 5-stage pipeline design of processors. Referring to
Figure 1, the pipeline has the instruction fetch stage (IF), the instruction decode stage (ID),
the instruction execution stage (EX), the memory access stage (MEM), and the write-back
stage (WB). In the conventional pipeline design, the instruction fetch stage and the instruction
decode stage is separated by the instruction queue so as to reduce the performance loss of the

processor caused by mismatch of issue rate and fetch rate. The architecture is also called



decoupled architecture. Accordingly, most instructions do not enter the instruction decode
stage right after they are fetched into the processor; instead, they wait in the instruction queue
until the previous instructions are issued. The instruction fetch stage fetches instructions from
an instruction cache memory (or a main memory) and pushes the instructions into the
instruction queue. The instruction queue stores the instructions fetched by the instruction fetch
stage based on the first in first out (FIFO) rule and provides the instructions to the instruction
decode stage sequentially.

Generally speaking, before executing an instruction, the processor needs to decode the
instruction by using the instruction decoder. The decoded instruction is sent to the instruction
execution stage. The instruction execution stage includes the arithmetic and logic unit (ALU)
which executes an instruction operation according to the decoding result of the instruction
decode stage. In the memory access stage, load- instructions access the cache memory (or
main memory) to get the data and store instructions check the address hits in the cache or not.
If the instruction operation executed by the-instruction execution stage generates a calculation
result, the write-back stage then writes.the calculation result back into the register file or
cache memory (or main memory).

When the pipeline gets deeper, each stage will be spilt into several stages. Figure 2
illustrates the 12-stage pipeline design. In Figure 2, the 12-stage pipeline has 3 stages for
instruction fetch, 3 stages for instruction decode, 2 stages for instruction execution, 2 stages

for memory access, and one stage for data write-back.

IF1, IF2 , IF3 D1 |, ID2 , ID3 , EX1 |, EX2 |, EX3 , EX4 |, EX5 , WB

| | | | | | | | | | |

| l I I l i i i ! i !

| | : | | : | : | | :

. . . | . | |
Instruction Fetch %Instr:hctlon %Instructlon i Instruction i Access Data Cache i Data

Queye Decode ! Execute ! ! Write-Back

I | I

| | |

| | |

Figure 2. 12-stage Pipeline Design



1.2  Anatomy of Load Instructions

Load instructions move data from memory to registers. Most of them have two inputs,
base address and offset, are added or subtracted together to produce the effective address
which used to access the cache memory (or main memory). In most instruction set
architecture, the base address always supplies by the general proposal register, called base
register. And the offset can be an immediate value, i.e. registertimmediate addressing mode,
or supplies by the general proposal register, called index register, i.e. registertregister
addressing mode.

A load instruction is composed of several operations. First, it has been fetched by the
instruction fetcher from instruction memory and has been pushed into the instruction queue.
Second, it has been decoded by the instruction-decoder and read the register file to get the
source operands, like the base register and index.register. Third, it calculates the effective
address by arithmetic logic unit-for the following data memory access. Forth, it fetches the
target data from the data memory. Finally, it-writes back the loaded data to the destination
register in the register file. Figure 3 shows the major operations of load instructions with its

execution order.

Instruction Instru:ction Instruction Effective Access Data
| .
Fetch L Queye Decode Address Data Write-Back
Calculation Cache Register File

Figure 3. Major operations of load instructions with execution order



Load instructions sometimes incurred long waiting time for the following instruction that
depends on it, as they need to calculate the memory address and fetch target data from data
memory. The latency is composed of address calculation, cache access, and opportunistic
external memory access. If a subsequent instruction depends on the load instruction, it may
need to stall the pipeline in front of the execution stage until the data produced by the load
instruction becomes available. That will induce large stall cycles at run time. A conventional
solution is out-of-order instruction issue and execution. However, out-of-order execution is
too expensive for some applications, such as embedded processors. An economical solution
for low-cost designs is to out-of-order execute only some critical instructions, we focus on the
load instructions. Load instructions have long instruction execution latency and take large
parts of total instructions at run time. In most ISAs, only the divide instructions have longer

instruction execution latency than the load instructions.

Load R1, [R2 #4] ADD R1, R1, #4

' v

< > > Time
Load-to-use Latency

(a) Load-to-use Latency

Load R1, [R2 #4] Cache Miss ADD R1, R1, #4

v ' v

» .
7 Time

A

v

Cache-miss Penalty

(b) Cache-miss Penalty

Figure 4. The two parts of load latency



The maximum possible number of cycles that following instructions, if depend on the
load, need to stall pipeline to wait the data fetched by the load instruction is called load-to-use
latency, it determines by pipeline design. It depends on the number of execution stage,
number of memory access stage, expected cache-miss penalty and forwarding network design.
The cache-miss penalty is the additional latency due to cache miss. The best case is hit in the
highest level cache, and the expected cache-miss penalty is zero in this case. The worst case is
hit in main memory, because the main memory miss will cause the context switch. In this case,
the expected cache-miss penalty is hundreds of cycles. Figure 4 shows those two parts of load
latency. The latency of load instructions increases as pipeline gets deeper. In the 5-stage
pipeline, the load-to-use latency is just only 1 cycle, shown in Figure 1. But, the load-to-use

latency increases to 5 cycles in the 12-stage pipeline, shown in Figure 4.

1.3 The Effect of Load-to-Use Latency

Typically, the latency between data.loading and data processing increases along with the
depth of the pipeline in the conventional processor design, and which may induce large stall
cycles and affect the processor performance considerably. The following code sequence
illustrates the latency of load instructions:

LOAD Rm, [mem_addr]

ADD Rd, Rm, Rn

Assume the processor pipeline as shown in Figure 1 is a conventional in-order 5-stage
pipeline design. The instruction fetch stage fetches LOAD instruction and ADD instruction
sequentially from the instruction memory and pushes them into the instruction queue. After
the instruction decode stage decodes these instructions, the instruction execution stage first
executes the LOAD instruction. The load/store unit fetches the target data from the address

mem_addr in the data memory and stores the data into the register Rm in the register file. The



data loading operation is completed in the memory access stage. If the instruction execution
stage and memory access stage need n cycles to complete the LOAD instruction, the
dependent ADD instruction needs to stall the pipeline for n cycles in front of the instruction
execution stage until Rm value becomes available. Numbers of stall cycles n will increase as

pipeline gets deeper. Figure 5 illustrates how load latency affects program execution.

Instruction Clock Cycle
1 2 3 4 5 6 7
LOAD Rm, [mem_addr] IF ID EX MEM WB
4
ADD Rd, Rm, Rn IF ID stall EX MEM  WB

Figure 5. The effect of load latency
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Figure 6. The Percentage of Load Instructions

We assume the processor has 12-stage in-order dual-issue pipeline design, and the
latency of load instructions is 5 cycles in this processor. We analyzed the programs, the

Dhrystone benchmark [9] and the MiBench benchmark suite [8], in our simulator, and found



that: the load-to-use latency induces large stall cycles (2.51 cycles/load) at run time; the load
instructions take 20.0% in Dhrystone benchmark and 18.35% in MiBench benchmark suite of
total instructions. Figure 6 shows the load instructions take percentage of total instructions. So,

hiding the load-to-use latency is one way to improve processor performance.

1.4 Previous Work

Hiding the load-to-use latency has two major design directions: early or speculatively
execute the load instructions and fill the load-to-use latency with independent instructions.
This thesis focuses on the early or speculative execute the load instruction to hide the
load-to-use latency. Previous work that hides.or reduces the latency of load instructions can be
categorized into two kinds of approaches: software-based approaches and hardware-based
approaches.

The software-based approach is known-as-static-instruction scheduling in compiler time.
For example, the unrolling and jamming for loops [5] enlarges a basic block so that more
instruction can be scheduled to hide long execution latency. However, not all load instructions
can be scheduled across loop iterations; for example, it depends on the loop termination
condition. In addition, software scheduling is not efficient for a processor of limited
architectural register space.

The hardware-based approach like zero-cycle load [1] and early load address resolution
[6] alleviates the load-to-use latency by fast address calculation but only for limited number
of cycles. Runahead execution [2] and flea-flicker two-pass pipeline [3] can tolerate the
cache-miss penalty by executing the independent instruction when the processor is stalled by
data cache miss. However, the long delay of mode switching, checkpointing, and recovery

makes it unsuitable for the relatively short load-to-use latency.



1.5 Research Goal

In this thesis, we present a hardware approach, called early load, to hide the load-to-use
latency in an in-order issue processor. We found some opportunities that we can use.

First, the base register of load instruction is sometimes ready for a while before load
instruction is issued. We can read the base register and calculate the effective address early; it
has possibility to be right. Second, in order to alleviate the performance loss due to the
mismatch of fetch rate and issue rate, the fetch stage and the decode stage is separated by the
instruction queue in conventional processor pipeline design, called decouple architecture, as
shown in Figure 1. When instructions are fetched into processor, they wait in the instruction
queue until the previous instructions are_issued. We can make use of the time that instructions
wait in the instruction queue to load the, target data‘early. We use those two opportunities to
design our early load mechanism.

With the early load mechanism, we identify the-load instruction and execution condition
in fetch cycle by pre-decoding instructions, and load the target data when the instructions wait
in the instruction queue. Meanwhile, we also propose a mechanism to avoid and invalidate the
early load operations that fetch the wrong data from data memory. In the following section,
we will describe the early load mechanism in detail. If the early load operation is success to
be executed, the load-to-use latency problem is alleviated.

Apply early load mechanism in the system, it allows early executing the load instruction
when load/store unit is idle. The early load mechanism can hide the load-to-use latency and
reduce the load/store unit contention. Hence, the early load mechanism can improve the

processor performance.



1.6 Organization of This Thesis

The remainder of this thesis is organized as follows: Section 2 describes the related work.
Section 3 details the early load mechanism. Section 4 presents the results of our experiments.
Section 5 discusses the strength and weakness of our approach. Finally, Section 6 concludes

our work.
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Chapter 2 Related Work

We can consider the latency of load instructions into two parts: load-to-use latency and
cache-miss penalty. The techniques proposed to reduce the effect of latency of load
instructions can be separate into two kinds of approaches: for load-to-use latency and for

cache-miss penalty.

2.1 For Load-to-Use Latency

The latency that following instruction waits for their operands produced by the load
instruction is called load-to-use latency. There are two approaches, zero-cycle load and early
load address resolution, to reducing the effect. of: load-to-use latency. In the following

sub-section, we will detail those two techniques.

B
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Figure 7. Implementation of the fast address calculation mechanism
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2.1.1 Zero-Cycle Load

Zero-cycle load [1] combines fast address calculation with an early-issue mechanism to
make pipeline capable of hiding latency of many loads that hit in the data cache. The fast
address calculation [13] mechanism predicts effective addresses early in the pipeline, thereby
allowing loads to commence execution and complete. Figure 7 shows the implementation of

the fast address calculation mechanism for a direct-mapped cache [13].

Fetch Decode Execute
[-Cache
Mode Other
predecode | lype A Ope_rand
z k(i‘f'ﬁ,el Result
8 A A
= Operand > If‘
& bl F Forward J
- i
BRIC Base_| o P~ C8he MBypass -
Base N _I—) Logic Al

Figure 8. Implementing zero-cycle load mechanism

Figure 8 shows the approach to implementing zero-cycle load in an in-order issue
pipeline [1]. The instruction cache return not only the instruction but also the pre-decode
information. The base register and index cache (BRIC) is a small cache indexed by the load
instruction’s address, recorded the base register value and the index register value
(registertregister addressing mode) by history. In the decode stage, the load instructions
access the cache with fast address calculation mechanism and the result is produced at the end

of the decode stage.
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With zero-load mechanism, the depending instructions have no visible latency because it
allows load instructions to produce the value before it enters the execution stage. However,
not all loads can execute with zero latency. The early-issue mechanism brings additional
register and memory hazard, and the zero-cycle load occasionally fails. To ensure the
correctness of the mechanism, it needs a recovery mechanism that will induce performance
degradation. In order to achieve zero-cycle load, load instructions must complete in only two

cycles.

2.1.2 Early Load Address Resolution

Early load address resolution [6] presents a non-speculative technique that partially hides
the load-to-use latency by allowing the early“issue of load instruction. This technique avoids
the pipeline stall due to load instruction’s base register dependency.

Register tracking provides.a method to safely compute the address of memory load. It
enables early computations of the wvalues of register by tracking the simple operations in
decode time. With register tracking mechanism, the dependency of the base register of load
instructions can be easy settled. Several tracking schemes are proposed:

e Stack pointer tracking allows safe early resolution of stack references by track of

the value of the ESP register.

*  Absolute address tracking allows the early resolution of constant-address loads.

* Displacement-based tracking tackles all loads with addresses of the form

registerzimmediate by tracking the values of all general-propose registers.

The register tracking takes place in decode stage needs to track the register values
immediately and the reduced cycle number from decode to execution stage is not much.

Meanwhile, it has a larger hardware overhead to track and compute the register value.

13



2.2  For Cache-Miss Penalty

The additional latency due to cache miss is called cache-miss penalty. There are three
approaches, data pre-fetching, runahead execution, and flea-flicker, to reducing the effect of

cache-miss penalty. In the following sub-section, we will detail those three techniques.

2.2.1 Data Pre-fetching

Data pre-fetching [4] cuts the overall cache-miss penalty by bringing likely-to-be-used
data from distant memory to an upper level of the memory hierarchy ahead of time. Since the
goal of data pre-fetching is only to bring closer the likely-to-be-used data, no recovery scheme
is required; because a misprediction (i.e.-a useless, pre-fetch) does not have any severe impact
except for wasted bandwidth and the possible.eviction of some data from the memory
hierarchy. However, data pre-fetching does not eliminate the load-to-use latency of the first

level cache access.

2.2.2 Runahead Execution

Runahead execution [2] has been proposed to tolerate cache-miss penalty. In runahead
execution, the processor checkpoints the processor state and enters the runahead mode when a
long latency cache miss occurs. Execution continues bypassing the miss and dependent
instructions, and pre-fetches data. When the cache-miss-causing instruction completes, the
processor exits the runahead mode, restores the processor states, and execution restarts from
the point of the load miss.

Runahead execution allows the processor to execute the instructions that do not depend

on the data of the long latency cache misses. Once the processor returns to the normal mode,

14



it can computation continues while the load misses discovered during runahead execution no
longer stall the pipeline. Runahead execution provides performance improvements in two
main areas: instruction and data prefetching. The instruction prefetching improvement comes
from prefetching runahead instructions into the L2 cache and the trace (or instruction) cache,
and training the branch predictors during runahead mode. Data-prefetching improvement
comes from prefetching runahead load requests into the L2 cache and L1 data cache, and
training the hardware data prefetchers’ buffers during runahead mode. However, the long
delay of mode switching, checkpointing, and recovery makes it unsuitable for the relatively

short load-to-use latency.
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Figure 9. Execution and memory access timeline for runahead execution and

flea-flicker multi-pass pipeline

2.2.3 Flea-Flicker Two-Pass Pipeline

Flea-flicker two-pass pipeline [3] exploits compile-time scheduling on simple in-order
hardware while achieving excellent cache miss tolerance through persistent advance
pre-execution beyond otherwise stalled instructions. The pipeline systematically makes
multiple passes through instructions that follow a stalled instruction. Each passes increase the

speed of the subsequent passes with its valid execution results preserved in a result buffer.
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Figure 9 shows the different between runahead execution and flea-flicker two-pass pipeline.
Multi-pass pipelining tolerates long latencies without the overhead associated with
dynamic scheduling or register renaming. Unlike most pre-execution schemes, multi-pass
pipelining provides for the persistence of valid advance execution results. Reusing these
results increases efficiency, hides the latency of multiple-cycle instructions and, through a
novel mechanism, accelerates in-order execution. A notion of instruction criticality further
enhances the handling of miss latencies and reduces fruitless speculative execution by
indicating when there is little opportunity for advance execution. The flea-flicker two-pass
pipeline has limitation the same with runahead execution, the long delay of mode switching,
checkpointing, and recovery makes it unsuitable for the relatively short load-to-use latency,

too.
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Chapter 3 Early Execution of Data Load

In section 1.5, we mentioned some opportunities that can be used. First, the base register
of load instructions is sometimes ready for a while before load instruction is issued. Second,
when the instructions are fetched into processor, they wait in the instruction queue until the
previous instructions are issued. Hence, we can read the base register and calculate the
effective address early. And make use of the time that the load instruction waits in the
instruction queue to fetch the target data early from the data memory and store it in a buffer. If
the early operation is valid and complete before the corresponding load instruction is issued,
and the data is already in the buffer without executing the load instruction. Hence, the
problem of load-to-use latency is alleviated.

To design the early load meehanism,we have three major research goals. First, identify
the load instruction and execution condition before the early load operation starts. Second,
start the early load operation at the time that made the early load operation complete on time
when the load instruction is issued. Third, deal with all of the early load operations that
fetched the wrong data from data cache.

The early load mechanism has two parts: the early load identification and the avoidance
and invalidation mechanism. The early load identification identifies the load instruction early
and execution condition, and executes the load instruction to load data at the time that made
the early load operation complete on time when the load instruction is issued. The avoidance
and invalidation mechanism is a detection method to avoid starting the early load operation
that may be fetched the wrong data from cache and invalidate the early load operation that
already executed and it fetched the wrong data from cache. Figure 10 shows the system that is

12-stage in-order dual-issue pipeline with the early load mechanism.
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The early load mechanism logic shown in Figure 10 must to identify the load instruction
and its execution condition early. The pre-decoder in the instruction fetch stage used to
identity the load instruction in front of the instruction queue. The early load queue (ELQ) has
been used to record the early load candidates and its early loaded data in order in the pipeline.
The register status table (RST) used to record all of the register status and renaming
information from the register file to the early load queue. The information also used to avoid
and invalidate the incorrect early load operation. Detailed design description will be provided

in the following sub-sections.

3.1 Early Load Identification

In order to early execute the load instruction;.we need to indentify the load instruction
before the early load operation-is.executed. .Therefore, indentify the load instruction that
stored in the instruction queue is-difficult-to-design. We must be read the instruction from the
instruction queue and decode it. Hence, pre-decode the load instruction before instruction
push into instruction queue has been chosen in our design.

When the instruction fetch stage fetches an instruction, the instruction fetch stage first
pre-decodes the instruction to identify the load instruction and its execution condition.
Whether to store the instruction into an early load queue is determined according to the
pre-decode result. If the instruction does not belong to the target type, the instruction is stored
only into the instruction queue (the instruction is not stored into the early load queue). Then,
the instruction is executed by the instruction decode stage and the instruction execution stage.
If the instruction belongs to the target type, the instruction is stored not only into the
instruction queue but also into the early load queue. The load instruction stored in the early
load queue, called the early load candidate, will load data early when the instruction waits in

the instruction queue.
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Because the early loaded data may be incorrect, we need a method to make sure the
correctness of the early loaded data. An avoidance mechanism has been proposed to avoid
starting the early load operation that may be fetched the wrong data, and the invalidation
mechanism has been proposed to invalidate the early load operation that already started
executing and it fetched the wrong data from the cache. We will detail the avoidance and
invalidation mechanism in the section 3.2.

The target type of the early load instruction is load instructions which take 18.35% of
total instructions at run time. The load instructions need to have register+immediate
addressing mode, because of low accuracy for registertregister addressing mode (< 10%).
The register+immediate addressing mode take 86.53% of total load instructions, shown in
Figure 11. Finally, the execution condition of instructions must be always, because of easy for

design. And the always condition takes 99% of total.load instruction.
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Figure 11. The percentage of two addressing mode
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The pre-decoder needs to indentify load instructions and execution condition before the
instructions push into the instruction queue. Meanwhile, we don’t want to increase the clock
cycle time. Figure 12 shows the design of the pre-decoder. We duplicate the pre-decoder and
pre-decode instructions parallel with cache tag comparison. After the tag comparison, choose
the pre-decode information based on the result of tag comparison. That we can indentify the

load instruction in fetch cycle and no need to increase the clock cycle time.
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Figure 12. Duplicate the pre-decoder parallel with tag comparison

The early load queue is a queue parallels with the instruction queue. It records the early
load candidates in order in the pipeline. Each entry of early load queue includes the following
information:

- Active[0]: The ELQ entry has been active for execute.

- Status[1:0]: The status of the ELQ entry; prepare, busy, complete, or invalid.
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- BReg[3:0]: The base register index of load instruction.

- Offset[11:0]: The offset value of the load instruction.

- Adr_mode[3:0]: The addressing mode of the load instruction.

- Adr[31:0]: The memory address of the load instruction.

- EL_Data[31:0]: The early loaded data of the load instruction.

The early load queue has two pointers: head pointer and tail pointer. The head pointer

point at the oldest load instruction in the pipeline; adjusted when the load instruction

committed. The tail pointer points at the 1st empty entry which is prepared for the next load

instruction. Figure 13 shows the structure of early load queue.

Active Status BReg Adr_mode Offset Addr EL data
Head—» 1'bl 2’b01 4’bL111 4’1110 12’hO0F 32’hFF... 32’hFF...F
1’b0 2’b11 4’b1000 4:H1110 12°0BF 32°h00 32’h00...0

Tall —»

Figure 13. Structure of early load queue

The pre-decoder in the IF stage identifies the instruction type and condition code, and

decodes the base register index, offset, and the addressing mode. If the load instruction has

the address of the form register+immediate, it will be push into the early load queue and the

status bit will be set to prepare state.

Following problem is when to execute the early load operation. We need to start the early

load operation at suitable time. If the time to start the early load operation is too early, the

base register of load instruction has higher possibility to be not ready. If the time to start the

early load operation is too late, the early load operation can not complete the early load
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operation on time when the load instruction is issued. Hence, we set an early load lookahead
pointer into the instruction queue to decide when to start the early load operation, like Figure
14. The EL pointer pointed the instruction behind the head pointer with N instructions. The N
value is called early load distance, it is a fixed value determined by simulation. When the
pointer points a load instruction in the instruction queue, set its corresponding early load
queue entry to active. When the load/store unit is idle, chooses the oldest and active early load
candidate in the early load queue to start the early load operation and set its status to busy.
After the operation finished, the loaded data will be stored into the corresponding entry in

early load queue and set its status to complete.

Instruction Queue

head — )
, EL Distance
Early load Queue
EL — LOAD Y
>
taiik —» Active

Figure 14. Set early load lookahead pointer into the instruction queue

When the load instruction goes into the ID stage, the status of early load queue entry is
checked. If the status is valid, following register access of this destination register will be
renamed to the corresponding early load queue entry and the load instruction does not need to
execute again. Following instructions depending on this register will get the data from the
early load queue. If the status is invalid, load instruction will be executed actually. And the

early load queue entry will be deallocate when the load instructions are committed.
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The early load procedure has six steps. First, identify the load instruction before
instruction has been pushed into instruction queue. The early load candidate will be pushed
into early load queue and set the early load queue entry’s status to prepare but not active.
Second, when the EL pointer points a load instruction in the instruction queue, sets its
corresponding early load queue entry to active. Third, checks the load/store unit is idle or not
each cycle. If the load/store unit is idle, choose the oldest and active early load candidate in
the early load queue to execute the early load operation and set its status to busy. When the
early load operation complete, set its status of early load queue entry to complete. Forth,
check the correctness of early loaded data. If the early loaded data is incorrect, set the early
load queue entry’s status to invalid. The avoidance and invalidation mechanism will describe
in detail in next section. Fifth, when the load instruction into ID-stage, check its
corresponding early load queue .entry is complete or not. If yes, renaming the load
instruction’s destination register to early load gueue entry. And keep the renaming information
in the register status table. Finally, when-the load instruction is committed, deallocate the

early load queue entry.

Cycle
Instructions
1 2 3 4 5 6 7 8 9
CMP r1, #10 IF ID EXE MEM WB
BEQ loop IF ID EXE MEM wB
LOAD r2, [r0 #0] IF ID EXE MEM WB
ADD 13, 3,12 IF ID Stall Stall EXE MEM WB
ADD 1,11, #1 IF Stall Stall ID EXE MEM WB
()
CMP r1, #10 IF ID EXE MEM WB
BEQ loop IF ID EXE MEM WB
LOAD r2, [0 #0] IF ID (EL) . EXE MEM WB
ADD 13,13, 12 IF D | EXE | MEM | wB
ADD 11,11, #1 IF ID EXE MEM wWB
(b)

Figure 15. (a) Without early load mechanism (b) With early load mechanism
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Figure 15 shows two examples with and without early load mechanism. Figure 15 (a) is a
process timing table of each instruction in the pipeline when the processor executes the same
program segment without using the early load method. Figure 15 (b) is a process timing table
of each instruction in a pipeline when the processor executes a particular program segment by
using the early load method described above. In the tables, IF represents “instruction fetch”,
ID represents “instruction decode”, EXE represents “instruction execution”, MEM represents
“memory access”, and WB represents “data write-back”. In addition, EL represents that the
early load method is executed.

As shown in Figure 15 (a), because the instruction “LOAD r2, [rO #0]” needs to be
fetched from the data cache into the register r2, the next instructions “ADD r3, r3, r2” and
“ADD rl, r1, #1” are stalled pipeline for several cycles until the data fetching operation of the
instruction “LOAD r2, [r0 #0]” is completed. As shown in Figure 15 (b), since the early load
method described in foregoing description is-adopted, the instruction “LOAD r2, [rO #0]”
already fetches its early loaded data from-the-data cache into the early load queue through the
early load operation during the instruction decoding phase ID, so that the instruction data
fetching operation MEM needs not to fetch data from the data cache again. Accordingly, the
following instruction “ADD r3, r3, r2” does not have to wait and the instruction executing
operation EXE is carried out right after the instruction decoding operation ID is completed.
In the embodiment described above, the early loaded data corresponding to an instruction is
early loaded when the instruction waits in the instruction queue. Accordingly, the stall cycles
between data loading and data processing in the design of pipeline processor can be avoided.
The deeper the depth of the pipeline is, the number of stall cycles will increase and the better
the performance of the early load method will get.

The last problem is how to make sure the correctness of early load operation. Because
we executed the load instruction to fetch data from cache system early, the early loaded data

has possibility to be wrong. We need a method to make sure the correctness of the early
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loaded data and recover it when the incorrect early load operation happened. The simple
method is that we execute the load instruction actually and compare the data and early loaded
data. If the values of two data are the same, the early load operation is right. Otherwise, the
early load operation is wrong and need to recover. The recovery mechanism is flush the
pipeline, and re-fetch the instructions after the load instruction. Just like the branch miss
prediction recovery.

The drawbacks of the checking method are higher memory (cache) pressure and larger
recover penalty. Each of load instructions needs to access memory twice that induces the
higher memory pressure. If the early load operation is wrong, the recover penalty is the same
with branch miss determined by the depth of pipeline. If we can check the correctness of early
load operation before the load instruction issued to the execution stage, we can reduce the
larger recover penalty due to wrong early load operation by re-executing the load instruction
immediately. The following section.will provide a method to avoid starting the early load
operation that may be fetch the wrong data-from.cache to reduce the increasing cache pressure
due to early load mechanism, and invalidate the early load operation that already executed and

it fetch the wrong data.

3.2 Avoidance and Invalidation Mechanism

To design the avoidance and invalidation mechanism, we analyzed the early load
mechanism first and found that two violations may be produced by allowing a load instruction
to fetch data from the cache early. One of the violations is base register dependency violation
and the other one is memory dependency violation. Base register dependency violation takes
place when older instruction is calculating the value of the base register and accordingly the
instruction which performs “early load” may obtain the old value of the base register and

access the memory according to the old value. In this case, wrong data is fetched from the
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wrong address. Memory dependency violation takes place when the instruction which
performs “early load” accesses the same memory address as another store instruction which
older than the early load instruction, so that the data fetched by the instruction which performs
“early load” may not be updated. The avoidance mechanism is used for avoid starting the
early load operation that may be wrong and the invalidation mechanism is used to invalidate

the early load operation that already executed and it fetch the wrong data.

CMP rl, #10 STR r3, [r1, #0]
BEQ loop LOAD r2, [rl #0]
ADD rl, rl, #1 ADD r1, rl, #1
LOAD r2, [r1 #0] ADD r3,r3, 12
ADD r3, 13, r2 B loop
(a) Base Register Dependency Violation (b) Memory Dependency Violation

Figure 16. Two examples of the violation conditions

Figure 16 are two examples of those two violation conditions. In Figure 16(a), if the rl
value is not ready when the LOAD instruction is undergoing the early load operation. The
early load operation of the LOAD instruction is wrong due to base register dependency
violation. In Figure 16(b), when the LOAD instruction is undergoing the early load operation,
the execution of STR instruction is not complete. The value at the address [r1, #0] is not yet
updated. So, the early load operation of the LOAD instruction is wrong due to the memory
dependency violation. Our design must be check those two dependency violation and avoid
them happening.

The avoidance and invalidation mechanism checks these two violation conditions. The
register status table keeps track of the register status, checks data of the base register
dependency, and records the renaming information. Each entry of register status table includes

following information:

27



- Status[1:0]: The status of the register; ready, busy, or rename.

- ELQ_ID[3:0]: The ELQ entry that this register renamed to.

- Stage[2:0]: A count down counter subtract one each cycle, used to indicate which
instruction is calculating the register value in the pipeline.

The register status table is a table which records all of the resister status and renaming
information from the register file to early load queue. The register status table has been
updated in the instruction decode stage and reset in the write-back stage by the instruction’s
destination register. When the instruction has been issued, set status of its destination register
in the register status table to busy and the stage to execution latency. The status bits will
decrease one per cycle. When the stage bits becomes zero, reset the register status to ready. If
the register has been renamed to early load queue entry, keep the renaming information in the
ELQ _ID and set the register status‘to rename. Figure 17 shows the structure of the register

status table.

ROIR1|R2|R3|R4|R5|R6|R7|R8|R9|R10|R11|R12|R13|R14|R15

Status[1:0]

ELQ_ID[3:0]

Stage[2:0]

Figure 17. Structure of the register status table

In the avoidance and invalidation mechanism, the occurrences of these two dependency
violations have been checked. If these dependency violations occurred, the corresponding
entry in the early load queue is set to invalid in advance. Correct data is fetched from the
cache or the memory when the instruction execution stage and memory access stage execute

the instruction.
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Avoidance mechanism: avoid starting the early load operation that may be fetched the wrong
data.
Case 1: by checking the base register status to avoid starting the early load operation
that may be fetched the wrong data:
When any instruction passes through the instruction decode stage, setting the
status field of the destination register thereof in the register status table to busy.
Before the early load operation starts, check the base register status in the
register status table. If the status of the base register is busy, setting the status
files of the corresponding entry in the early load queue to invalid without
starting the early load operation.
Invalidation mechanism: invalidate the early load operation that already started and fetched
the wrong data.
Case 2: by checking the base register version. to-invalidate the early load operation that
already started and fetched the wrong-data:
When any instruction”passes.through the instruction decode stage, setting the
status field of the destination register thereof in the register status table to busy,
searching the early load queue to determine whether there is any instruction uses
this base register and it already started the early load operation. If yes, setting
the status field of the corresponding entry in the early load queue to invalid.
Case 3: by checking the load address content to invalidate the early load operation that
already started and fetched the wrong data:
When a store instruction generates a memory address in the instruction
execution stage, searching the early load queue to determine whether there is the
same memory address in the early load queue and it already started the early
load operation. If yes, set the status field of the corresponding entry in the early

load queue to invalid.
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In overview, the early load mechanism is adopted in the processor pipeline, the target
data is early loaded from the cache into early load queue in the processor when the instruction
waits to be executed in the instruction queue and the avoidance and invalidation mechanism is
provided to avoid and invalidate the incorrect early load operation. Thereby, if the pipeline
successfully early loads the target data into the early load queue, the delay between data
loading and data processing can be reduced effectively, and even when the pipeline cannot
early load the target data into the early load queue successfully, the performance of the

processor is not affected.
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Chapter 4 Simulation and Evaluation

In chapter 3, we proposed the mechanism and architecture of the early load mechanism
which allows a load instruction to fetch data from the cache early. In this chapter, we present
the simulation results and evaluations of our design. In section 4.1, we describe the simulation
environment and the benchmark programs that we used to evaluate the performance
improvement in the simulation. In section 4.2, we examined the effects for some variable, like

the distance of early load, the size of early load queue, and the length of load-to-use latency.

4.1 Experimental Environment

4.1.1 Simulation Tool

The simulator used in this thesis is derived.from the SimpleScalar/ARM [7], a suite of
functional and timing simulation tools for the ARM ISA. The timing simulator executes only
user-level instructions, performing a detailed timing simulation of microprocessor with two
levels of instruction and data cache memory. Simulation is execution-driven, including
execution down any speculative path until the detection of a fault, TLB miss, branch
misprediction, or etc.

For precise simulation result report, we rewrite the SimpleScalar to support cycle-based
simulation different from instruction-based simulation. We evaluated the performance
improvement of early load mechanism by extending SimpleScalar/ARM [7] to support early
load mechanism and examining the performance of Dhrystone [9], MiBench benchmark suite
[8], and SPEC2000 benchmark suite [10] running on this simulator. To observe the

performance in more detail, we examined effects of the distance of early load, the size of
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early load queue, and the length of load-to-use latency.

4.1.2 Benchmark Suite

The benchmark programs that we used are from MiBench benchmark suite [8]. These
benchmarks are divided into six suites with each suite targeting a specific area of the
embedded market. The six categories are Automotive and Industrial Control, Consumer
Devices, Office Automation, Networking, Security, and Telecommunications. All the
programs are available as standard C source code so that it focuses on portable applications
written in high-level languages as processor architecture and software developers are moving
in this direction. Where appropriate, there provide a small and large data set. The small data
set represents a light-weight, useful:embedded application of benchmark, while the large data
set provides a more stressful, real-world application. We use the large data set in this thesis.
All programs of MiBench benchmark suites-are-publicly available and widely used on general
purpose processors. Since many past embedded ‘applications have been written directly in
assembly language, it has been difficult to collect a portable set of benchmarks for embedded

domain.

4.1.3 Simulator Configuration

Table 1 summarizes the configuration of the target machine used in the simulator. We use
the ARMV5E ISA processor with 2-issue in-order pipeline in our simulator. The L1 caches are
separated into L1 instruction cache and L1 data cache without L2 cache. Each of L1 cache is
32KB 4-way set associated cache. And the branch prediction is prefect. We evaluated the

performance impact with different distance of early load (1 to 7 instructions), different sizes
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of early load queue (4, 8, 12, and 16 entries), and two different lengths of the load-to-use

latency (3 and 5 cycles).

Table 1. Simulation configuration detail

Instruction Set Architecture | ARM ISA version 5 with Enhanced DSP instruction set

Fetch/Decode/lssue Width | 2 instructions per cycle

L1 I-cache 32K 4-way set associate,

L1 D-cache 32K 4-way set associate,

Instruction Queue Size 24 entries, EL Distance = 1~7 instructions

Early Load Queue Size 4/8/12/16 entries

Depth of pipeline 8 stages 2 stages fetch/2 stages decode /3 stages execution/1

(500MHz) | stage writeback

12 stages | 3 stages fetch/3 stages decode /5 stages execution/1
(800MHz) | stage writeback

20 stages | 5 stages fetch/5 stages decode /8 stages execution/2
(1.2GHz) - | stage writeback

Issue Model In-order issue of up 2 operations per cycle

Function Units 2-integer ALU, 1-load/store:unit, and 1-multiplier; no floating units

4.2  Experimental:Results

4.2.1 Distance of Early Load

In this section, we evaluate the performance impact of different early load distance from
1 to 7 instructions. The processor under evaluation has 12-stage pipeline and 16-entry early
load queue. Figure 18 and Table 3 shows the performance improvement for various distance
of early load.

We need to start the early load operation at suitable time. The simulation result shows the
fixed distance of early load is 4 instructions for MiBench benchmark suite. In our target
machine, the execution latency of early load operation is 6 cycles. The average IPC is about

0.7 instruction per cycle. And the operand is read form register in ID2 stage. So, the best
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distance of early load is 4 instructions. Figure 19 shows the trend of distance of early load

from 1 to 7 instructions.
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Figure 18. Performant ' with different early load distance
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Figure 19. Trend of different early load distance
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4.2.2 Size of Early Load Queue

In this section, we evaluate the performance impact of the size of early load queue for
three sizes, 4, 8, 12 and 16 entries. The processor under evaluation has 12-stage pipeline and
the early load distance is 4 instructions. Figure 20 and Table 4 shows the performance

improvement for various sizes of early load queue.
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Figure 20. Performance improvement with different size of early load queue

The early load queue needs to keep all of the early load candidates in the back-end
pipeline. In our target machine, maximum of instructions in the back-end pipeline is 40. The
load instruction takes 18.35% of total instructions. So, 8 load instructions is in the base-end
pipeline in average. The simulation result shows the suitable size of early load queue is 8 or
12 entries. Because of the distribution of load instructions in the pipeline is not uniform.

Figure 21 shows the trend of sizes of the early load queue from 4 to 16 entries.
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Figure 21. Trend of sizes of the early load queue

4.2.3 Length:of Load-to-use Latency

In this section, we evaluate the performance impact of length of load-to-use latency for
two lengths, 3 cycles and 5 cycles. The processor under evaluation has 12-entry early load
queue and early load distance is 4. Figure 22 and Table 5 shows the performance
improvement for two length of load-to-use latency.

The performance improvement increases as the length of load-to-use latency increases.
In the 8-stage pipeline, the load-to-use distance is 3 cycles. The static instruction scheduling
of compiler can easily hide the load-to-use latency. In the 12-stage pipeline, the load-to-use
distance increases to 5 cycles. In this situation, solving the problem of load-to-use latency by
the static instruction scheduling becomes harder. The load-to-use latency problem is more
seriously in deeper pipeline, and the early load mechanisms we proposed is more efficient in

deeper pipeline, see the Table 5.
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Figure 22. Performance improvement with different length of load-to-use latency

4.2.4 Result on SPEC2000 Benchmark Suite

In previous section, we evaluated the meehanism in number of context. And we get the

configuration that can achieve -the imost_performance improvement. In this section, we

evaluate the mechanism in another benchmark-suite, SPEC2000 benchmark suite [10], to see

the performance improvement. We use the 12 stages of the pipeline, 12 entries of the early

load queue, and early load distance is 4. Table 2 shows the performance improvement for the

SPEC2000 Benchmark suite.

Table 2. Performance improvement in SPEC2000 benchmark suite

Benchmark Evaluation
Without Early Load With Early Load Performance Improvement
bzip2 0.42 0.44 6.42%
gap 0.49 0.61 24.8%
gzip 0.39 0.42 7.54%
mesa 0.65 0.65 0.54%
equake 0.61 0.65 7.01%
apsi 0.32 0.32 0.01%
Average 9.27%
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Table 3. Performance improvement with different early load distance

Benchmark Number of Instruction (Million) Evaluation
W/O EL N=1 N=2 N=3 N=4 N=5 N=6 N=7
cre32 403.85 0.83 0.24% 0.26% 0.27% 0.25% 0.25% 0.25% 0.25%
basicmath 3922.86 0.69 1.47% 1.55% 1.60% 1.54% 1.43% 1.49% 1.39%
bitcount 641.5 0.72 2:20% 2.20% 2.20% 2.20% 2.20% 2.20% 2.20%
dijkstra 237.44 0.43 14.90% 16.77% 18.66% 18.60% 18.59% 11.32% 11.32%
gsort 361.99 0.62 7:50% 7.74% 8.25% 8.34% 8.18% 8.27% 8.31%
sha 129.57 0.95 0:51% 0.37% 0.37% 0.38% 0.38% 0.38% 0.38%
stringsearch 51.07 0.44 0.93% 5.12% 4.87% 4.93% 4.96% 4.96% 4.94%
susan 112.18 0.77 4.15% 5.07% 5.09% 5.32% 5.32% 5.32% 3.74%
Average 4.49% 4.88% 5.16% 5.19% 5.15% 4.28% 4.05%
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Table 4. Performance improvement with different size of early load queue

Benchmark Number of Instruction (Million) Evaluation
WI/O EL 4-entry ELQ 8-entry ELQ 12-entry ELQ 16-entry ELQ

cre32 403.85 0.83 0.21% 0.25% 0.25% 0.25%
basicmath 3922.86 0.69 1.33% 1.51% 1.54% 1.54%
bitcount 641.5 0.72 2.20% 2.20% 2.20% 2.20%
dijkstra 237.44 0.43 11.26% 18.60% 18.60% 18.60%
gsort 361.99 0.62 7.13% 8.01% 8.43% 8.34%
sha 129.57 0.95 0:18% 0.38% 0.38% 0.38%
stringsearch 51.07 0.44 3.79% 4.91% 4.86% 4.92%
susan 112.18 0.77 3.69% 3.29% 4.97% 5.32%
Average 3.72% 4.89% 5.15% 5.19%
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Table 5. Performance improvement with different length of load-to-use latency

Evaluation
Benchmark Number of Instruction (Million) 3-Cycle 5-Cycles 8-Cycles
W/O EL W/ EL W/O EL W/OEL | W/OEL | Pef. Imp. W/O EL W/O EL Pef. Imp.
cre32 403.85 1.65 1.65 0.83 0.83 0.83 0.25% 0.62 0.75 20.3%
basicmath 3922.86 0.88 0.88 0.69 0.69 0.69 1.54% 0.56 0.57 2.60%
bitcount 641.5 0.82 0.82 0.72 0s72 0.72 2.20% 0.54 0.56 2.42%
dijkstra 237.44 0.86 0.92 0.43 0:43 0.43 18.6% 0.33 0.48 46.7%
gsort 361.99 0.86 0.88 0.62 0.62 0.62 8.43% 0.49 0.57 16.5%
sha 129.57 1.23 1.23 0.95 0.95 0.95 0.38% 0.69 0.72 3.97%
stringsearch 51.07 0.63 0.63 0.44 0.44 0.44 4.86% 0.36 0.42 13.0%
susan 112.18 1.03 1.04 0.77 0.77 0.77 4.97% 0.61 0.67 9.02%
Average 1.31% 5.15% 14.3%
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Chapter 5 Discussion

We evaluated the mechanism in numbers of contexts: the distance of early load, the size
of early load queue, and the length of load-to-use latency. In our experiment, we studied the
impact of performance with different configurations.

We need to start the early load operation at suitable time. Too early or too late make the
performance improvement of early load is not so good. The simulation result shows the fixed
distance of early load is 4 instructions for MiBench benchmark suite. In our target machine,
the execution latency of early load operation is 6 cycles. The average IPC is 0.7 instructions
per cycle. And the operand is read form register in ID2 stage. So, the best distance of early
load is 4 instructions. Fixed distance of‘early load is easy to design, but the early load distance
is a best value in average not a best value for.every situation. Variable distance of early load is
hard to design. In order to design the variable distance of early load, we need to know the
execution behavior for the instruction in the future. But it is hard to predict. However,
dynamically decided the distance of early load can get the better performance.

When the early load mechanism has a small early load queue, less load instructions can
execute earlier because the early load queue is full frequently. Large early load queue has less
chance to be full. But larger early load queue costs more hardware overhead and slow access
time. The proper size of early load queue can be determined by simulation. In our simulation
result shows the suitable size of early load queue is 12 entries.

The problem of load-to-use latency becomes serious, as the depth of pipeline increases.
In a shallow pipeline, the static instruction scheduling of compiler can easily hide the
load-to-use latency. But the compiler is hard to find the independent instructions to fill out the
more pipeline bubbles in deeper pipeline. In a deep pipeline, one valid early load operation

can hide more stall cycles
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In our analysis, early load mechanism allows 29.68% of total load instruction can be
early executed. Another 70.32% can be separated into two parts. One is registertregister
addressing mode. It takes 13.47% of total load instructions. Another is invalid early load
operations due to two dependency violations; it takes 56.85% of load instructions. And most
of them are array accesses.

In the early load mechanism, we can check the early operation is valid or not before the
load instruction enters the execution stage. When the early load is valid, we can succeed to
hide the load-to-use latency. Otherwise, if the early operation is invalid, the load instruction
will be executed without inducing extra performance degradation. The early load mechanism
increases the pressure on data cache access. The additional cache access is 24.08%. Since we

load the data hits in cache, the pressure of memory access does not increase.
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Chapter 6 Conclusion

Increasing depth of pipeline leads to high instruction throughput and high clock rate. But
the long load-to-use latency of deep pipeline processor impacts the processor performance
seriously due to pipeline stalls. Hiding the load-to-use latency becomes one of the most
challenging problems for high performance processors.

In this thesis, we proposed a hardware method, call early load, to hide the load-to-use
latency. Early load allows load instructions loads data from memory system while the load
instruction waits in instruction queue. Meanwhile, the avoidance and invalidation mechanism
provides an error detection method to make sure the early loaded data is correct. When the
early loaded data is correct, the load-to-use-latency between the load instruction and the
dependent instructions becomes:zero. And if the early loaded data is invalid, the load
instruction will be executed without inducing extra performance degradation

The early load can give a 11°64% performance gain in Dhrystone benchmark. We also
evaluated the performance improvement in MiBench benchmark suite. It achieves 18.60%
performance improvement in dijkstra of the MiBench and 5.15% performance improvement
in average. And the additional cache access is 24.08%. We evaluated early load mechanism in
number of contexts. The proper size of early load queue and suitable distance of early load
can be determined by simulation. In our experiment, the 4-instruction early load distance and
12-entry early load queue has been used in our simulator.

The early load mechanism can be extended to the pre-fetch mechanism. In our approach,
when the data cache miss occurs, the early load operation may be invalid. We can make some
change to the early load mechanism to wait the early load operation to be ready when the load
instruction enters the ID stage. By little modification, we may hide additional cache-miss

penalty.
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In the future, we can combine the register tracking mechanism with early load
mechanism. Register tracking enables early computation of the values of register by tracking
the simple operations of the form registerzimmediate or stack pointer. We can use the register
tracking mechanism to track the base register value used to execute the early load operation. It

can avoid the invalid early load operation due to the base register dependency violation.
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