

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

自時花托連結網路利用一五編碼方式

Self-Timed Torus Interconnection Network with

one-of-five encoding

研 究 生：黃曼珍

指導教授：陳昌居 教授

中 華 民 國 九 十 七 年 六 月

自時花托連結網路利用一五編碼方式

Self-Timed Torus Interconnection Network with one-of-five encoding

研 究 生：黃曼珍 Student：Man-Chen Huang

指導教授：陳昌居 Advisor：Chang-Jiu Chen

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

In

Computer Science

June 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年六月

 i

Self-Timed Torus Interconnection Network with

one-of-five encoding

Student :::: Man-Chen Huang Advisor :::: Prof. Chang-Jiu Chen

Department of Computer Science and Information Engineering

National Chial-Tung University

Abstract

 Because of the slow signal propagation caused by the high wire loads and

resistance, the interconnection of SoC cannot be satisfied by the use of a shared bus. A

common method of substitution is using unidirectional, point-to-point connections

and multiplexers. The Networks on Chip (NoC), due to their characteristics such as

scalability, flexibility, high bandwidth, have been proposed as a suitable approach to

meet communication requirements in SoC. However, the global clock of the network

may cause lots of problems such as clock skew and the design of global clock

architecture.

Hence, Torus topology was selected to suffice the scalable demands in SoC. We

implemented the network with self-timed, cut-through routing approach with

one-of-five data encoding. In the experiment, we verify the results of transitions in the

interconnection network are correct and our system should operate at 63.9MHz. Today,

the multi-core systems are produced in SoC; we can use our network to communicate

between them and resolve some clock problems efficiently.

 ii

Contents
Abstract ...i

Contents ..ii

List of Figures... iii

List of Tables ...iv

Chapter 1. Introduction..1

1.1 Motivation...1

1.2 Asynchronous circuit design ...2

1.2.1 Advantages and challenges of asynchronous circuits2

1.2.2 The signaling protocols..3

1.2.3 The data encoding protocols ...4

1.3 The interconnection network ..5

1.3.1 Shared bus ..6

1.3.2 Ring ...7

1.3.3 Star ..8

1.3.4 Mesh ..9

1.3.5 Torus ...10

1.4 Improving interconnect performance ..10

1.5 Organization of this thesis...11

Chapter 2. Related work...12

2.1 The torus topology ...12

2.2 Introduction to TRC ..13

2.3 System design with TRC ...14

Chapter 3. The design of the self-timed torus network with one-of-five18

3.1. The System Design ...18

3.2. The Logic Designs ..21

3.2.1 The Router ..24

3.2.2 The Arbiter (Tree) and merge ..29

3.2.3 The pipeline latch ...32

Chapter 4. Experiment results ...33

4.1. Performance ...34

4.2. Area ...34

Chapter 5. Conclusions and future work..35

Reference ..36

 iii

List of Figures
Figure 1.1 The Two-phase handshake protocol...3

Figure 1.2 The Four-phase handshake protocol...4

Figure 1.3 The interconnection network..5

Figure 1.4 Shared bus network ..6

Figure 2.1 A torus system ..14

Figure 3.1 The overview of the torus network...18

Figure 3.2 Example of the packet flow..19

Figure 3.3 Packet format..20

Figure 3.4 The block diagram of D_N...22

Figure 3.8 Set Dec..27

Figure 3.9 Decrement...27

Figure 3.10 (a) 3-input asymmetric C-element (b) transistor level28

Figure 3.11 Route control ..29

Figure 3.12 Mutual exclusion (MUTEX) circuit ...29

Figure 3.13 Arbitrated Call Block ...30

Figure 3.14 An arbiter using MUTEX and merge ...31

Figure 3.15 Arbitration Tree..31

Figure 3.16 Pipeline latch ..32

Figure 4.1 System simulation ..33

 iv

List of Tables
Table 1. The 1-of-4 data encoding...4

Table 2. One-of-five data encoding ...21

Table 3. The corresponding behavior of the current state ...26

Table 4. The truth table of the route signal, state and next state..................................26

Table 5. The area and gate count of the modules ..34

 1

Chapter 1. Introduction

1.1 Motivation

Because the performance of a large SoC composed by several cores depends

strongly on its interconnection structure, the traditional global shared bus architecture

may not satisfy the new requirements of interconnection network of modern large

SoC.

A popular method to replace it is to use unidirectional, point-to-point

connections and multiplexers. The Networks on Chip (NoC) have been proposed as a

suitable approach to meet communication requirements in SoC due to their

characteristics such as scalability, flexibility and high bandwidth. To continue

increasing the number and variety of macrocells embedded on a single chip, the

modern SoC requires interconnects with greater flexibility system networks.

Most of the current NoCs uses the mesh topology. However, there are no

feedback links in the last nodes in every row and column. It may cause some

performance degradation for unidirectional connection. Thus the torus topology was

selected in our design. Any node in the network can transmit data to any other nodes

in the network with a simple unidirectional network.

The global interconnection spans the entire chip which may lead to clock skew

problems. Clock management of the torus network is also problematic. Furthermore,

interconnect delays and crosstalk are becoming worse because the high wire loads and

resistance levels. Using self-timed techniques for torus network on a chip eliminates

these problems.

In this thesis, we implemented a self-timed, asynchronous interconnection

network with torus topology using a delay-insensitive one-of-five data encoding

combined with a return-to-zero signaling protocol for NoCs.

 2

1.2 Asynchronous circuit design

Synchronous circuit design is the major method in digital circuit design.

Unfortunately, the synchronous digital circuit designs increasingly lead to bring many

problems including clock skew, power consumption of clock, EMI, and the global

clock tree distribution, etc. In order to resolve those problems, the asynchronous

circuit design may be the answer to address three problems.

1.2.1 Advantages and challenges of asynchronous circuits

In a word, asynchronous circuit is a clock-less digital circuit. Instead of the

global clock, the handshaking protocols are used. Compared with the synchronous

circuit design, the asynchronous circuit design has some advantages over the

synchronous ones :

(1) Average-case performance : the asynchronous circuit does not need to use

the global clock to synchronize the action; thus, every component can work

at its own speed.

(2) Lower system power requirements : the asynchronous circuit has no clock

signal; therefore, there’s no extra power consumption. It can almost

consume zero power in the idle state, because almost all components are in

idle state.

(3) Modularity : the asynchronous circuit is easier to implement modular design.

Every component can be connected via the same communication protocol.

(4) No clock skew : the asynchronous circuit is clock-less and thus it can avoid

the clock skew problem.

(5) Lower Electro-Magnetic Interference (Noise) : without the clock

distribution, the asynchronous design has low EMI (Electromagnetic

Influence).

 3

However, asynchronous circuit still has some problems over synchronous circuit.

First, without the clock control, asynchronous circuit needs more control signals,

resulting in increasing in area. Second, there are few CAD tools to support

asynchronous circuit design and test, and it makes the asynchronous circuit harder and

longer to design.

1.2.2 The signaling protocols

There are two types of signaling protocols in the asynchronous circuits, the

two-phase and four-phase signaling. The two-phase handshake is shown in Figure 1.1.

The falling and rising edge are signals of request and acknowledgement. After an

action is completed, the control signal does not need to be reset to zero. When the

sender is ready to send the data, the sender changes the request signal (0�1 or 1�0).

Then the receiver changes its acknowledged signal (0�1 or 1�0) and receives the

data at the same time; thus the handshake is completed.

Figure 1.1 The Two-phase handshake protocol

Another type of handshake protocol is four-phase handshaking protocol. It is

different from the two-phase protocol; the active signal must be a rising edge. It

means that the handshake signal must be reset after an action. The four-phase

handshake protocol is shown in Figure 1.2. When the sender is ready to send the data,

the sender pulls up the request signal, called Req. Then, the receiver will pull up the

acknowledge signal, called Ack, and receives the data at the same time. At the end, all

the control signals will be returned to zero, the sender resets the Req signal, and the

 4

receiver resets the Ack signal. The handshake is completed.

Figure 1.2 The Four-phase handshake protocol

1.2.3 The data encoding protocols

There are several types of data encoding in the asynchronous circuit designs, for

examples the bundled data (single rail) [1], dual rail (1-of-2), and 1-of-n (e.g. 1-of-4)

[13]. The bundled data protocol encodes data signals the same with synchronous

circuits. It separates the control signals (REQ and ACK) from the data signals. Except

the bundled data protocol, the DI encoding protocols encode the REQ signal with the

data signals. The dual-rail protocol uses two wires to represent one bit of information,

and the 1-of-4 protocol uses four wires to represent two bits of information. The

1-of-4 protocol only pulls up one wire signal among the four wires. It means that the

1-of-4 protocol only has half transitions (half power) than the dual rail ones. The

1-of-4 data encoding is shown in Table 1.

Table 1. The 1-of-4 data encoding

Signal Data

0001 00

0010 01

0100 10

1000 11

 5

1.3 The interconnection network

In a word, the interconnection network is a programmable system, and its

components include buffers, channels, switches, and controls that work together to

deliver data. It transports data between terminals (processors) as shown in Figure 1.3.

Figure 1.3 The interconnection network

 The most common interconnection network applications include computer

systems, communication switches, and control systems. During the late 1980s, most

of these applications were served by a very simple interconnection networks, such as

shared bus, ring, star, stretch ring [9], mesh and torus, etc. Today, the most popular

method uses point-to-point interconnection network to replace a traditional shared bus

and so on. This trend is due to the performance scaling. The demand for

interconnection performance is increasing with processor performance and network

bandwidth.

 The next several sections give a brief introduction of those interconnection

networks including their advantages and disadvantages.

 6

1.3.1 Shared bus

As shown in Figure 1.4, all processors or components are connected to the

shared bus. The shared bus only broadcasts data to all processors or components.

Thus, any sender transmits data with it, and the data are transmitted to every processor

or component. Such networks can tolerate any faults of some processors or

components.

CA E

DB F

Figure 1.4 Shared bus network

The shared bus architecture has some advantages and disadvantages.

Advantages :

(1) Easy to implement and extend.

(2) Suitable for small networks not requiring very high speed.

(3) Cheaper than other topologies.

(4) Cost effective than others.

Disadvantages :

(1) Limited wire length and number of processors or components.

(2) Maintenance costs may be higher in the long run.

(3) Performance degrades as additional processors are attached or under heavy

traffic.

(4) It works best with limited number of nodes.

(5) It may be slower than the other topologies.

 7

(6) If one processor or component is down then the entire network will go

down.

1.3.2 Ring

All processors or components are connected to a ring as shown in Figure 1.5.

The data can be transmitted along the ring. In addition, the data can only go through

them one by one.

CA

DE

B

Figure 1.5 Ring network

The followings are the advantages and disadvantages of the ring network.

Advantages :

(1) Very orderly network where every processor or component can access the

data or have the opportunity to transmit.

(2) Does not require network controller to manage the connectivity between the

processors or components.

Disadvantages :

(1) One malfunctioning processor or bad channel causes problems for the entire

network.

(2) To Move, add and change of the processors or components can affect the

 8

network.

1.3.3 Star

The star network is shown in Figure 1.6 which uses the central switched hub to

control. A fully connected network built around a switched hub approach. The data

from any processor or system is transmitted through the central switched controller to

its destination.

Figure 1.6 Star network

Its advantages and disadvantages are shown below.

Advantages :

(1) Passing of data packet through unnecessary node will be avoided.

(2) Each processor or component is isolated by the link that connects it to the

central switched hub. One processor in the network does not affect the

others in the network.

(3) The topology is easy to understand and establish.

Disadvantages :

(1) The topology is highly dependent on the functioning of the central switched

hub.

 9

(2) The malfunctioning central switched hub causes the entire network fail.

(3) It needs to increase the cost of a central switched hub.

1.3.4 Mesh

The mesh network is shown in Figure 1.7. It is also known as d-dimensional

mesh network where d is 2. The 2-dimensional is a simple interconnection network.

There are links between any node and its adjacent nodes. The number of its adjacent

nodes is limited, usually is 2d.

Figure 1.7 Mesh network

The mesh network’s advantages and disadvantages are shown as below.

Advantages :

(1) When one path is break off in a node, there are still other transmission paths

that can be used.

(2) One node in the network does not affect the others in the network.

Disadvantages :

(1) The cost of this mesh network is expensive.

(2) If the mesh network is unidirectional, the first and the last nodes in every

row and column have no direct links. There are no feedback links to

transmit data.

 10

1.3.5 Torus

The torus network is very similar to the 2-dimensional mesh network. The

different is there are links between the first nodes and the last nodes in every row and

column. Every node in the network can send data to others in the network. The torus

network will be explained in Chapter 2.

1.4 Improving interconnect performance

 After introducing some popular interconnection networks, we can understand

that the network selection is very important. To select a suitable, scalable, and high

performance network becomes a significant lesson. Furthermore, the global clock

design is more difficult in large interconnection network, thus the global

asynchronous local synchronous is proposed [12].

 Some asynchronous network techniques are discussed in [3][11], using the

asynchronous bus network to communication. The throughput can be increased with

asynchronous design, but the area is larger oppositely. There are some techniques to

increase the performance of the interconnections including :

(1) Repeaters and pipeline latches : A higher throughput can be obtained by

using a pipeline latch instead of the amplifier (buffer) /inverter to amplify

the signal and spread the link delay over multiple pipeline stages. Splitting

the long wire into the narrow pipeline stages improves the throughput with

minimal latency.

(2) Datapath width : Unfortunately, adding latches into a wide single-rail

datapath may cause problems because of the high load on the latch-enable

signal. For a delay-insensitive (DI) encoded datapath, it offers the

possibility of operating at a higher frequency by breaking a wide datapath

 11

into a group of narrower datapath.

(3) Delay-Insensitive (DI) interconnects : Delay-insensitive design methods

only obtain the average case delay rather than the worst case. The crosstalk

between wires will cause the redundant delays with single rail design, and

the single rail design needs some timing analysis. A delay-insensitive

design style avoids the need for this timing analysis, its designs that operate

correctly whatever the delay in the interconnecting wires.

1.5 Organization of this thesis

The overview of the torus routing chip (TRC) and the system design of TRC will

be illustrated in the next chapter. The full designs of the self-timed torus network with

one-of-five data encoding will be illustrated in chapter 3. In addition, the experiment

results will be represented in chapter 4. Finally, a brief conclusion and future work are

discussed in chapter 5.

 12

Chapter 2. Related work

2.1 The torus topology

In recent years, the demands of System on Chip (SoC) increasingly, many cores

or processors may be composed on a chip. Thus, the interconnection network

architecture is more important. In fact, traditional and hierarchical buses may

introduce many new problems on large SoCs. A common alternative is using

unidirectional, point-to-point connections and multiplexers. The performance and

throughput can be easily improved via using these interconnection networks.

Therefore, we must choose a suitable, parallel computing interconnection network to

satisfy the requirements of SoC.

There are many topologies of interconnection network, such as shared bus, ring,

mesh, torus etc. Among these topologies, the shared bus and ring topology may not be

satisfied for the scalable SoC.

Several Networks on Chip (NoC) have been reported in the literature [8]. In our

work, we select the torus network to implement. Except above advantages, it also

reduces the network diameter; thus it can keep the latency small.

Torus topology is similar to mesh topology; the only difference is that nodes at the

edges are connected to the nodes at the opposite edges. Due to the symmetry, torus

imposes the same degree for all routers; this makes them homogeneous and the

routing algorithm easily to implement.

Thus, the torus topology is a suitable network to suffice the scalable SoC. The

next section presents a design using torus topology with self-timed approach.

 13

2.2 Introduction to TRC

A self-timed chip, the torus routing chip (TRC) [15] is proposed in 1986. It uses

bundled data encoding to perform cut-through routing [10] in k-ary n-cube

multiprocessor interconnection networks. In addition, it uses a new method to avoid

deadlock called virtual channels [16]. It provides deadlock-free packet

communications in k-ary 2-cube (2-dimensional) network. The TRC can be used to

construct concurrent computers with up to 216 nodes in each dimension. It may be a

little difficult to distribute a global clock over the network. In order to avoid this

problem, the TRC is entirely self-timed.

The TRC uses cut-through routing [10] to replace store-and-forward routing. The

method can reduce the latency of communications that traverse more than one channel.

It transmits each byte of the packet to the next node when it arrives, instead of reading

an entire packet before starting transmission to the next node. Moreover, the

communications do not use the memory bandwidth of intermediate nodes. A packet

does not interact with the processor or memory of intermediate nodes along its route.

In the TRC network, packets are routed and transmitted strictly until they reach their

destination.

In order to avoid deadlock problem, the TRC uses virtual channels to execute

deadlock-free routing in torus networks. It splits each physical channel into two

virtual channels and makes routing dependent on the virtual channel. The details of

attestation and method are described in [16].

 The next section describes the system design of the TRC.

 14

2.3 System design with TRC

The torus routing chip (TRC) can be used to construct k-ary n-cube

interconnection networks. Each TRC routes packets in two dimension, and can be

used to construct networks of dimension greater than two. A block diagram of a 4-ary

2-cube TRC is shown in Figure 2.1. Each node consists of a processor, its local

memory, and a TRC. Every TRC in the torus is connected to its processor by a

processor input channel and output channel. Connections on the edges of the torus

wrap around to the opposite edge.

Figure 2.1 A torus system

The TRC uses cut-through routing to transmit a flit (Def. 1). A flit in the TRC is

a byte which 8 bits must be transmitted in parallel here. The X and Y channels both

consist of 8 data wires and 4 control wire, as known as the bundled data encoding

protocol. The 4 control wires are used to separate request/acknowledge signal pairs

for each of two virtual channels. The processor channels are also 8 bits wide, but have

only two control wires each.

 15

Definition 1. A flow control digit or flit is the smallest unit of information that a queue

or channel can accept or refuse. Generally a packet consists of many flits. Each packet

carries its own routing information.

The packet format in TRC begins with two address bytes. The data field of the

packet follows the addresses. This field may contain any number of non-zero data

bytes. In the end of a packet, the packet is terminated by a zero tail byte. The two

address bytes contain the relative X and Y addresses of the destination node. The

relative address is a count of the number of channels that must be traversed to reach

the destination.

 The TRC network’s routing rule is, first handling the X dimension, then in the Y

dimension. Packets are routed in the dimension of decrementing the relative address

at each step. First, when the relative X address is decremented to zero, it means that

the packet has reached the correct X-dimension destination. The X address is then

stripped from the packet, and the packet begins routing in the Y dimension. When the

Y address is decremented to zero, the packet has reached the destination node. The Y

address is then stripped from the packet, and the data and tail bytes are transmitted to

the node. The transition of the packet is completed. The following algorithm shows

the processing of flits arriving at the x-input channel.

// x-input in TRC

wait for new flit on x_input

read relative_x_address from x_input

 16

if relative_x_address is zero then

 drop it

 wait for relative_y_address on x_input

 if relative_y_address is zero then

 drop it

 wait for and read flit_data from x_input

 send flit_data to own processor

while (flit_data ≠ tail) do

 wait for and read flit_data from x_input

 send flit_data to own processor

 else // relative_y_address is not zero

 decrement relative_y_address

 send relative_y_address along y-dimension

 pass all flit_data in the packet arriving on x_input

along the y-dimension until the tail has been sent

else // relative_x_address is not zero

 decrement relative_x_address

 send relative_x_address along x-dimension

wait for relative _y_address (may be zero) on the x_input and

pass it along the x-dimension

pass all flit_data in the packet arriving at the x_input

along the x-dimension until the tail has been sent

 17

The design of the TRC began in August 1985. A new version TRC in December

1985 can operate at 20 MHz, the input to output delay is 50ns, and throughput is 64

Mbits/s in each dimension.

 The full design of the TRC uses self-time, bundled data encoding protocol. It

also means that the design must have many timing analyses and constraints. It may

cause redundant interconnect delays and reduce the throughput. Moreover, the

crosstalk problem is significant with high wire load in bundled data encoding. These

problems can be solved efficiently with only need a few timing constraint with the

delay-insensitive data encoding.

Thus, we proposed and implemented a self-timed torus interconnection network

with one-of-five encoding. The implementation of our design will be described in the

next chapter.

 18

Chapter 3. The design of the self-timed torus

network with one-of-five encoding
In chapter 1, we have discussed how to improve the interconnect performance.

Obviously, the data-path and interconnect method will affect the throughput. Thus, we

will redesign a 4-ary self-timed torus interconnection network with one-of-five data

encoding. The transmission method of flits in the packet is the same as the torus

routing chip (TRC), cut-through routing. However, the data encoding is different from

that of original TRC.

The next two sections will illustrate the system and all logic designs of the torus

interconnection network with one-of-five encoding.

3.1. The System Design

The torus interconnection network was represented in chapter 2. The overview of

system design including the processors (dotted lines) linking in each node of the torus

network is shown in Figure 3.1.

D_N 0

(0 , 0)

D_N11

(2 , 3)

D_N 10

(2 , 2)

D_N 9

(2 , 1)

D_N 15

(3 , 3)

D_N 6

(1 , 2)

D_N 14

(3 , 2)

D_N 13

(3 , 1)

D_N 12

(3 , 0)

D_N 8

(2 , 0)

D_N 5

(1 , 1)

D_N 4

(1 , 0)

D_N 3

(0 , 3)

D_N 2

(0 , 2)

D_N 1

(0 , 1)

D_N 7

(1 , 3)

Figure 3.1 The overview of the torus network

 19

 An example of a packet transmission flow is shown in Figure 3.2. If the packet0

should be sent from P0 to P14, the transition flow is shown as the gray line. First, the

packet0 from P0 is sent to the linking node D_N0, and then D_N0 extracts the relative

address and send the packet to the correct output dimension. Thus, the packet flow is

D_N0� D_N1� D_N2� D_N6� D_N10� D_N14. When it arrives its destination,

the node D-N14, it sends the data of packet0 to the interconnect processor P14. The

transmission flow is completed.

Figure 3.2 Example of the packet flow

In the thesis, we implement a 4-ary 2-cube, a 4 by 4 symmetrical mesh. To match

up the one-of-five data encoding, a flit in our design is 5-bits.

 20

 The packet format is shown in Figure 3.3. A packet begins with two 5-bits

address. The location of the destination node is composed of a 5-bit relative X address

and a 5-bit relative Y address. The data of the packet follows after the address. Then,

the packet is terminated by a tail EOP (end-of-packet).

Figure 3.3 Packet format

According to the packet format, our system follows the routing flow represented

below :

Step 1 : extracts x and y addresses

Step 2 : constructs the correct path connection according to the addresses

Step 3 : transmit the data through the selected path until the EOP flit is detected

 Our design uses a delay-insensitive data encoding combined with a four-phase

(return-to-zero) signaling protocol. The connection consists of one acknowledgement

wire and five forward-going wires. Table 2 shows this one-of-five data encoding

where only one wire in a group is allowed to signal data at any one time (known as

one-hot encoding). During normal data transmission, one of the wires (w3, w2, w1,

w0) transmission two valid data bits per cycle. The end-of-packet (EOP) signal

separates consecutive data transfer. This data encoding requires only a simple

five-input OR gate to detect valid data at the receiver.

 21

Table 2. One-of-five data encoding

EOP signal w3 w2 w1 w0 Information

0 0 0 0 0 Idle state

0 0 0 0 1 Two-bit data value 00

0 0 0 1 0 Two-bit data value 01

0 0 1 0 0 Two-bit data value 10

0 1 0 0 0 Two-bit data value 11

1 0 0 0 0 End of packet

3.2. The Logic Designs

The proposed architectural overview is shown in Figure 3.1. The design of each

node will be introduced here. The inner block diagram of a node is shown in Figure

3.4. It consists of three input router blocks, a central switch with arbiters, and three

output pipeline latches. There are also two sub-routers in X and P router modules

separately. In addition, the pipeline latches are used to replace buffers in the output

channels.

The router is responsible for selecting the correct route. When a packet header

arrives, the router selects the correct output channel, adjusts the header by

decrementing and sometimes stripping the flit, and then passes all flits to the switch

until the EOP is detected.

 22

Figure 3.4 The block diagram of D_N

The detailed sub-modules of D_N are shown in Figure 3.5. The data from

X-dimension can be transmitted to any output channel; however, the addresses of data

from the processor must be detected to prevent the data sent back to itself. Thus, both

the module Router X and Router P uses two sub-routers to select the correct output

channels. When the data arrive, the router will determine the next state, select the

appropriate output channel, and manipulate the current flit.

 The switch performs switching and arbitration with arbiters. An arbiter (tree)

uses two or three input interlock (mutual-exclusion) element in each output channel;

hence only one input channel can use the output channel. If inputs are received

simultaneously, the interlock will decide which can be granted first.

 After arbitration, some stage pipeline latches are used to replace buffers to store

the output data in every output channel. Some logic designs are similar to the DI

one-of-four data encoding modules proposed in [6], such as pipeline latch, merge and

select.

 23

Figure 3.5 The detailed sub-modules of D_N

The finite state machine (FSM) of D_N is shown in Figure 3.6. There are three

parallel input dimensions, X, Y and P. If different packets to the node are sent to all

three input channels, the data can be processed respectively. First, each router extracts

the X or Y addresses and decides whether decrement, strip or pass. Then, it selects the

correct output channel to send data. If it wins the arbiter to use the output channel, the

data will be transmitted to the selected output pipeline latches. Otherwise, it must wait

until it wins the arbitration.

 24

extracts X

address
xin

yin

pin

extracts Y

address

extracts Y

address

extracts X

address

X address = "00"

select output

channel XX address ≠ "00"

select output

channel Y

send data to

X output

pipe-latches

win the X

output arbiter

select output

channel PY address = "00"

Y address ≠ "00"

lose the X output

arbiter, waiting

send data to

Y output

pipe-latches

win the Y

output arbiter

send data to

P output

pipe-latches

win the P

output arbiter

lose the P output

arbiter, waiting

lose the Y output

arbiter, waiting

yout

pout

xout

select output

channel Y

select output

channel PY address = "00"

Y address ≠ "00"

lose the P output

arbiter, waiting

lose the Y output

arbiter, waiting

send data to

Y output

pipe-latches

win the Y output arbiter

send data to

P output

pipe-latches

win the P output arbiter

yout

pout

extracts Y

address

X address = "00"

select output

channel XX address ≠ "00"

lose the X output

arbiter, waiting

select output

channel Y

Y address ≠ "00"
send data to

Y output

pipe-latches

win the Y

output arbiter

lose the Y output

arbiter, waiting

yout

give

up
Y address ="00"

send data to

X output

pipe-latches

win the X

output arbiter xout

 Figure 3.6 The FSM of D_N

3.2.1 The Router

The router module is shown in Figure 3.7. It includes three sub-modules,

Set_Dec, Decrement, and Route control. When a flit of packet arrives, the Set_Dec

module must decide the current state and the current flit whether to strip, decrement,

or pass. According the current state, the decrement may decrease or bypass the current

flit. The state and corresponding behavior is shown in Table 3.

 25

Figure 3.7 A Router

After the operation, the flit is latched in the C-elements and waits the correct

output channel from the route control. The route control checks the first flit. If the

first flit data values is not ‘00’; it means that the packet has not yet arrived the correct

destination in the current dimension. The packet will be transmitted to the same

dimension continuously; otherwise, the dimension will be changed.

When the flit is transmitted to the correct dimension by passing through the

C-elements, the OR gate detects valid data and sends the ack signal to the sender.

While the sender receivers the ack signal, it will change the flit to the null state and

wait the ack signal pull down. Then, the sender continuously sends the next flits

following the above-mentioned step until the EOP flit.

 26

Table 3. The corresponding behavior of the current state

Current state Behavior

00 Clear or latch

01 Decrement (shift)

10 Pass

11 × (don’t use)

 The Set_Dec module is implemented as a finite state machine. The initial state is

idle ‘00’. When the first flit is arrived, the current state is set to ‘01’ and it means that

the decrement module decreases the current flit which is represented address value.

Then the next state will be latched in the C-elements until the flit returns to zero.

When the next flit arrives, the next state will be assigned to the current state, and will

set to be ‘10’, the decrement will pass the flit until detect the EOP flit. The Set_Dec

will be reset. The truth table of the states and route signal (OR the flit bits w3 to w0

represent the data information) is shown in Table 4. In addition, the corresponding

circuit is shown in Figure 3.8.

Table 4. The truth table of the route signal, state and next state

route state (s[1] s[0]) next state (n[1] n[0])

0 00 00

0 01 10

0 10 10

1 00 01

1 01 10

1 10 10

 27

Figure 3.8 Set Dec

 After the operation of Set_Dec, the decrement module uses the dec signal (2-bits)

to process the flit whether decrement or pass as shown in Figure 3.9. Note that the dec

signals will be reset before the flit return to zero. The asymmetric 3-input C-element

is shown in Figure 3.10(a) with its transistor level in (b).

Figure 3.9 Decrement

 28

Figure 3.10 (a) 3-input asymmetric C-element (b) transistor level

 As shown in Figure 3.10, it is a 3-input asymmetric C-element. If we are sure

that the c signal is always pulled down before both the a and b signals are pulled

down, then the down signal of input c can be ignored. Thus, the asymmetric

C-element can save a transistor and increase the circuit speed.

 The Route control module shown in Figure 3.11 will use the first flit data

information to select the output dimension. The wires from w3 to w1 are ORed

generate the signal route_x. It means that the information of the encoded data is not

zero. The route_y signal is the w0 wire; its information of the encoded data is ‘00’.

The two signals can be used to decide the correct output dimension. After determining

the correct output dimension, the C-elements hold the select control signals sx and sy

until the EOP flit of packet is detected. The C-elements in Figure 3.7 latch the flit and

pass it to the correct dimension by the control signal sx or sy.

 While the modules detects the neopxy signal from outside, and it means the EOP

flit is transmitted to the correct dimension, then the route control module will reset the

control signal to wait the next new packet.

 29

Figure 3.11 Route control

3.2.2 The Arbiter (Tree) and merge

The Arbiter or Arbiter tree modules uses the mutual exclusion circuit to make

sure that only one input channel at one time can use the output channel. The mutual

exclusion (MUTEX) circuit is shown in Figure 3.12 and the arbitrated Call Block

[2][4][5] is shown in Figure 3.13.

The MUTEX circuit can allow only one ack signal to be pulled up. If the R1 and

R2 are pulled up at the same time, the MUTEX circuit will keep the A1 and A2 signals

low until metastability1 is resolved.

R1

R2

V1

V2

T1

T2

A2

A1

Figure 3.12 Mutual exclusion (MUTEX) circuit

 30

note1. Metastability is the state of a non-equilibrium electronic state to persist for a

long period of time. The asynchronous circuit can avoid this situation

efficiently.

 The arbitrated call block id designed as shown in Figure 3.13 with the MUTEX

circuit. If only one request from one of two input channels is produced, the Arbitrated

Call Block is granted immediately, and if two are produced simultaneously it will

decide which to grant first. The Arbitrated Call Block can deal with two input

requests. Thus, the arbiter uses the Arbitrated Call Block to allow only one input

channel flit to be transmitted shown in Figure 3.14. It also uses the C-elements in

front of the MUTEX to latch the occupied dimension which wins the MUTEX and

reset until detects the EOP. After the arbitration, we use OR gate to merge the flits

that may come from two input channels to one output channel. We also use the

C-elements to latch the data until the receiver is ready.

Figure 3.13 Arbitrated Call Block

 31

sender a

sender b

EOP

w3

w2

w1

w0

ack

C

merge_ack

out1[4]

out1[3]

out1[2]

out1[1]

out1[0]

out2[4]

out2[3]

out2[2]

out2[1]

out2[0]

EOP

w3

w2

w1

w0

ack

r0 g0

Mutual

exclusion

element

r1 g1

C

C

C
+

C
+

C
+

C
+

C
+

C

C
+

C
+

C
+

C

C

C

C

C

out_ack

out[4]

out[3]

out[2]

out[1]

out[0]

Figure 3.14 An arbiter using MUTEX and merge

 Figure 3.15 shows the arbitration tree implemented with some arbitrated call

blocks. A method was proposed in [4][5] to solve many initiator requests and allow

the bus-bandwidth to be apportioned as required. Our design was shown in Figure 3.5,

the data of y-dimension output channel may come from up to two input dimension

channels. Thus, the arbiter module in the y-dimension will use the technique with

arbiter tree to switch and arbitrate.

Figure 3.15 Arbitration Tree

 32

3.2.3 The pipeline latch

After arbitration and merge, only one input dimension can use the output channel.

Then, there are some stages pipeline latches to buffer the flits behind the merge from

the output channel. While the receiver gets the null flit, it will pull down the ack

signal. Then, the flit buffered in the pipeline latches waits until it can be transmitted to

the output channel. The two stage pipeline latch is shown in Figure 3.16.

Pipeline Latch

EOP

w3

w2

w1

w0

ack

receiver

C

C

C

C

C

Pipeline Latch

C

C

C

C

C

in[4]

in[3]

in[2]

in[1]

in[0]

in_ack

Figure 3.16 Pipeline latch

 33

Chapter 4. Experiment results
In chapter 3, we describe the all logic designs of functional blocks in our system.

We use the Verilog HDL to build our system and construct the whole system with

above mentioned sub-modules in chapter 3.

 We implemented our self-timed torus interconnection network with 1-of-5

encoding in gate-level. The design was synthesized and simulated with the TSMC130

nm library. The simulator used is Modelsim 6.0.

The Modelsim software is used to verify the correctness of our system. In order

to verify the correctness, we give the variable length of flits in each packet to every

processor at the same time. Each processor sends three or four packets; total count of

packets is 100. Figure 4.1 shows the wave form of the whole system simulation. In the

experiment, we verify the results of all flits of packets transmitting to the correct

destination processor.

Figure 4.1 System simulation

 34

4.1. Performance

There are 100 packets in our experiment transmitted from 16 processors in the

network. Each processor sends 3 or 4 packets with random length of data and

transmits packets to the random destinations. The transition paths of all packets are

not fixed which may be the shortest path, one, or the longest path, six. According to

the experiment results, the start time of the transition of the first flit sent from random

processor to our system is 134.86 ns, and the end time of the transition of the latest flit

sent from our system to the random processor is 1700.7 ns. The all transition time of

all 100 packets is 1565.84 ns. Thus, as the result of calculate our system should

operate at 63.9MHz.

4.2. Area

The area and gate count of the sub-modules and DI-encoding TRC are shown in

Table 5. Our torus network only includes the interconnection network area, without

the processors. Because the Router module includes some sub-modules and several

C-elements, its area is larger. The circuit of Arbiter Tree module uses many gates to

insure and determine that the circuit can allow only one input channel to use the

output channel. Moreover, our network uses several stages of Pipeline latch to buffer

the flits by C-elements, it results in the area of Pipeline latch module is larger.

Table 5. The area and gate count of the modules

module area (μm2) gate count

Router 1275 250

Arbiter/Tree 683/1193 134/234

Merge 290 57

Pipeline latch 7619 1494

Our torus network
(without processors)

543048 106480

 35

Chapter 5. Conclusions and future work
In this thesis, we implement an asynchronous, self-timed interconnection

network with torus topology. Our system uses the cut-through routing and the

one-of-five DI encoding that can improve the interconnect performance efficiently.

Moreover, we use the asynchronous circuits to solve the problems that may arise with

the global clock. Therefore, the torus topology network has very good scalability, it

can suffice the demands of SoC interconnect increasingly.

There are some important reasons using a torus network to implement our

interconnect network. First, the torus is easier to implement. If the number of the

interconnected processors increases, the torus network can be easily extended. Second,

the torus distributes loads to the communication channels more.

Unfortunately, there is a problem in our design, the deadlock. Our torus network

uses cut-through routing; it will occupy one channel until the transmission is finished.

In order to increase the throughput, the problem is hardly to avoid. However, this

problem must be resolved. There are some methods that can be adopted. First, the

virtual channels can be implemented with our design. However, the technique has

some constraints, such as limited packets size and a little higher cost. Second, we can

add the control signals in each row and column to prevent the deadlock. Although the

method can solve the deadlock problem, the performance may decrease obviously.

In the experiment, the simulation result of our self-timed interconnection

network is proved and the performance is 63.9 MHz. We use a new encoding method,

1-of-5 encoding, to design the asynchronous torus interconnection network. In the

future, the technique can be used in the global asynchronous local synchronous

(GALS) system to resolve the communication problem between many synchronous

modules which each has own clock rate.

 36

Reference
[1] A.M.G Peeters, “Single-Rail Handshake Circuits,” doctoral dissertation,

Technische Universiteit Eindhoven, Eindhoven, Netherlands, 1996.

[2] Bainbridge, W.J., A. Bardsley, D.M. Clark et al., “AMULET3i an Asynchronous

System-on-Chip, ” Proc. 6th IEEE Int’l Symp. Asynchronous Circuits and

Systems (Async), IEEE CS Press, Los Alamitos, Calif. , 2000, pp.162-175.

[3] Bainbridge, W.J., Asynchronous System-on-Chip Interconnect, Springer,

Heidelberg, Germany, 2002.

[4] Bainbridge, W.J., Furber, S.B., “Asynchronous Macrocell Interconnect using

MARBLE,” Proc. Async’98, San Diego, (April 1998) pp.122-132

[5] Bainbridge, W.J., Furber, S.B., “MARBLE: An asynchronous on-chip macrocell

bus,” Microprocessors and Microsystems, (July 2000)

[6] Bainbridge, W.J., Furber, S.B., “Delay Insensitive System-on-Chip Interconnect

using 1-of-4 Data Encoding,” Proc. 7th IEEE Int’l Symp. Asynchronous Circuits

and Systems (Async), IEEE CS Press, Los Alamitos, Calif., 2001, pp.118-126.

[7] F. Moraes and Al, "Hermes: an infrastructure for low area overhead packet

switch NoC," Integration VLSI J. vol. 38, no. 1, pp. 69-93, Oct. 2004.

[8] H. Wang, P.S. Peh, and S. Malik, "A technology aware and energy oriented

topology exploration for on-chip networks," in DATE'05, vol. 2, pp 1238-1243,

Mars 2005.

[9] IBM Corporation, CoreConnect Bus Architecture, product brief.

[10] Kermani P, Kleinrlck L (1979), “Virtual cut-through: a new computer

communication switching technique,” Computer Networks 3: 267-286.

[11] Molina, P.A., “The Design of a Delay-Insensitive Bus Architecture using

Handshake Circuits,” Ph.D. theses, Imperial College of Science, Technology and

 37

Medicine, University of London, UK, (1997).

[12] S. Moore, G. Taylor, R. Mullins, P. Robinson , “Point to Point GALS

interconnects,” Proc. 8th IEEE Int’l Symp. Asynchronous Circuits and Systems

(Async), IEEE CS Press, Los Alamitos, Calif., 2002, pp.69-75.

[13] T. Verhoeff, “Delay-Insensitive Codes – An Overview,” Distributed Computing,

vol. 3, no. 1, 1988, pp. 1-8.

[14] W. Dally and B. Towles, “Principles and practices of the interconnections

networks,” Morgan Kaufmann, 2005.

[15] W. J. Dally and C. L. Seitz. “The torus routing chip,” J. of Distributed

Computing, 1(3):187{196, 1986.

[16] W.J. Dally, and C.L. Seitz, “Deadlock-free message in multiprocessor

interconnection networks,” IEEE Trans. on computers, vol. 36, no. 5, May 1987,

pp. 538-546.

