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Abstract 

 Because of the slow signal propagation caused by the high wire loads and 

resistance, the interconnection of SoC cannot be satisfied by the use of a shared bus. A 

common method of substitution is using unidirectional, point-to-point connections 

and multiplexers. The Networks on Chip (NoC), due to their characteristics such as 

scalability, flexibility, high bandwidth, have been proposed as a suitable approach to 

meet communication requirements in SoC. However, the global clock of the network 

may cause lots of problems such as clock skew and the design of global clock 

architecture.  

Hence, Torus topology was selected to suffice the scalable demands in SoC. We 

implemented the network with self-timed, cut-through routing approach with 

one-of-five data encoding. In the experiment, we verify the results of transitions in the 

interconnection network are correct and our system should operate at 63.9MHz. Today, 

the multi-core systems are produced in SoC; we can use our network to communicate 

between them and resolve some clock problems efficiently.  
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Chapter 1. Introduction 

1.1  Motivation 

Because the performance of a large SoC composed by several cores depends 

strongly on its interconnection structure, the traditional global shared bus architecture 

may not satisfy the new requirements of interconnection network of modern large 

SoC.  

A popular method to replace it is to use unidirectional, point-to-point 

connections and multiplexers. The Networks on Chip (NoC) have been proposed as a 

suitable approach to meet communication requirements in SoC due to their 

characteristics such as scalability, flexibility and high bandwidth. To continue 

increasing the number and variety of macrocells embedded on a single chip, the 

modern SoC requires interconnects with greater flexibility system networks. 

Most of the current NoCs uses the mesh topology. However, there are no 

feedback links in the last nodes in every row and column. It may cause some 

performance degradation for unidirectional connection. Thus the torus topology was 

selected in our design. Any node in the network can transmit data to any other nodes 

in the network with a simple unidirectional network.  

The global interconnection spans the entire chip which may lead to clock skew 

problems. Clock management of the torus network is also problematic. Furthermore, 

interconnect delays and crosstalk are becoming worse because the high wire loads and 

resistance levels. Using self-timed techniques for torus network on a chip eliminates 

these problems.  

In this thesis, we implemented a self-timed, asynchronous interconnection 

network with torus topology using a delay-insensitive one-of-five data encoding 

combined with a return-to-zero signaling protocol for NoCs. 
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1.2  Asynchronous circuit design 

Synchronous circuit design is the major method in digital circuit design. 

Unfortunately, the synchronous digital circuit designs increasingly lead to bring many 

problems including clock skew, power consumption of clock, EMI, and the global 

clock tree distribution, etc. In order to resolve those problems, the asynchronous 

circuit design may be the answer to address three problems. 

1.2.1 Advantages and challenges of asynchronous circuits 

In a word, asynchronous circuit is a clock-less digital circuit. Instead of the 

global clock, the handshaking protocols are used. Compared with the synchronous 

circuit design, the asynchronous circuit design has some advantages over the 

synchronous ones : 

(1) Average-case performance : the asynchronous circuit does not need to use 

the global clock to synchronize the action; thus, every component can work 

at its own speed. 

(2) Lower system power requirements : the asynchronous circuit has no clock 

signal; therefore, there’s no extra power consumption. It can almost 

consume zero power in the idle state, because almost all components are in 

idle state. 

(3) Modularity : the asynchronous circuit is easier to implement modular design. 

Every component can be connected via the same communication protocol.  

(4) No clock skew : the asynchronous circuit is clock-less and thus it can avoid 

the clock skew problem.  

(5) Lower Electro-Magnetic Interference (Noise) : without the clock 

distribution, the asynchronous design has low EMI (Electromagnetic 

Influence). 
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However, asynchronous circuit still has some problems over synchronous circuit. 

First, without the clock control, asynchronous circuit needs more control signals, 

resulting in increasing in area. Second, there are few CAD tools to support 

asynchronous circuit design and test, and it makes the asynchronous circuit harder and 

longer to design. 

1.2.2 The signaling protocols 

There are two types of signaling protocols in the asynchronous circuits, the 

two-phase and four-phase signaling. The two-phase handshake is shown in Figure 1.1. 

The falling and rising edge are signals of request and acknowledgement. After an 

action is completed, the control signal does not need to be reset to zero. When the 

sender is ready to send the data, the sender changes the request signal (0�1 or 1�0). 

Then the receiver changes its acknowledged signal (0�1 or 1�0) and receives the 

data at the same time; thus the handshake is completed. 

 

Figure 1.1 The Two-phase handshake protocol 

Another type of handshake protocol is four-phase handshaking protocol. It is 

different from the two-phase protocol; the active signal must be a rising edge. It 

means that the handshake signal must be reset after an action. The four-phase 

handshake protocol is shown in Figure 1.2. When the sender is ready to send the data, 

the sender pulls up the request signal, called Req. Then, the receiver will pull up the 

acknowledge signal, called Ack, and receives the data at the same time. At the end, all 

the control signals will be returned to zero, the sender resets the Req signal, and the 



 

 4 

receiver resets the Ack signal. The handshake is completed. 

 

 

Figure 1.2 The Four-phase handshake protocol 

1.2.3 The data encoding protocols 

There are several types of data encoding in the asynchronous circuit designs, for 

examples the bundled data (single rail) [1], dual rail (1-of-2), and 1-of-n (e.g. 1-of-4) 

[13]. The bundled data protocol encodes data signals the same with synchronous 

circuits. It separates the control signals (REQ and ACK) from the data signals. Except 

the bundled data protocol, the DI encoding protocols encode the REQ signal with the 

data signals. The dual-rail protocol uses two wires to represent one bit of information, 

and the 1-of-4 protocol uses four wires to represent two bits of information. The 

1-of-4 protocol only pulls up one wire signal among the four wires. It means that the 

1-of-4 protocol only has half transitions (half power) than the dual rail ones. The 

1-of-4 data encoding is shown in Table 1. 

 

Table 1. The 1-of-4 data encoding 

Signal Data 

0001 00 

0010 01 

0100 10 

1000 11 
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1.3  The interconnection network 

In a word, the interconnection network is a programmable system, and its 

components include buffers, channels, switches, and controls that work together to 

deliver data. It transports data between terminals (processors) as shown in Figure 1.3. 

 

 

Figure 1.3 The interconnection network 

 

 The most common interconnection network applications include computer 

systems, communication switches, and control systems. During the late 1980s, most 

of these applications were served by a very simple interconnection networks, such as 

shared bus, ring, star, stretch ring [9], mesh and torus, etc. Today, the most popular 

method uses point-to-point interconnection network to replace a traditional shared bus 

and so on. This trend is due to the performance scaling. The demand for 

interconnection performance is increasing with processor performance and network 

bandwidth.  

 The next several sections give a brief introduction of those interconnection 

networks including their advantages and disadvantages. 
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1.3.1 Shared bus 

As shown in Figure 1.4, all processors or components are connected to the 

shared bus. The shared bus only broadcasts data to all processors or components. 

Thus, any sender transmits data with it, and the data are transmitted to every processor 

or component. Such networks can tolerate any faults of some processors or 

components.  

CA E

DB F

 

Figure 1.4 Shared bus network 

 

The shared bus architecture has some advantages and disadvantages. 

Advantages : 

(1) Easy to implement and extend. 

(2) Suitable for small networks not requiring very high speed. 

(3) Cheaper than other topologies. 

(4) Cost effective than others. 

Disadvantages : 

(1) Limited wire length and number of processors or components. 

(2) Maintenance costs may be higher in the long run. 

(3) Performance degrades as additional processors are attached or under heavy 

traffic. 

(4) It works best with limited number of nodes. 

(5) It may be slower than the other topologies. 
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(6) If one processor or component is down then the entire network will go 

down. 

 

1.3.2 Ring 

All processors or components are connected to a ring as shown in Figure 1.5. 

The data can be transmitted along the ring. In addition, the data can only go through 

them one by one. 

CA

DE

B

 

Figure 1.5 Ring network 

 

The followings are the advantages and disadvantages of the ring network. 

Advantages : 

(1) Very orderly network where every processor or component can access the 

data or have the opportunity to transmit. 

(2) Does not require network controller to manage the connectivity between the 

processors or components. 

Disadvantages : 

(1) One malfunctioning processor or bad channel causes problems for the entire 

network. 

(2) To Move, add and change of the processors or components can affect the 



 

 8 

network. 

 

1.3.3 Star 

The star network is shown in Figure 1.6 which uses the central switched hub to 

control. A fully connected network built around a switched hub approach. The data 

from any processor or system is transmitted through the central switched controller to 

its destination.  

 

Figure 1.6 Star network 

 

Its advantages and disadvantages are shown below.  

Advantages : 

(1) Passing of data packet through unnecessary node will be avoided. 

(2) Each processor or component is isolated by the link that connects it to the 

central switched hub. One processor in the network does not affect the 

others in the network. 

(3) The topology is easy to understand and establish. 

Disadvantages : 

(1) The topology is highly dependent on the functioning of the central switched 

hub. 
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(2) The malfunctioning central switched hub causes the entire network fail. 

(3) It needs to increase the cost of a central switched hub. 

 

1.3.4 Mesh 

The mesh network is shown in Figure 1.7. It is also known as d-dimensional 

mesh network where d is 2. The 2-dimensional is a simple interconnection network. 

There are links between any node and its adjacent nodes. The number of its adjacent 

nodes is limited, usually is 2d. 

 

Figure 1.7 Mesh network 

The mesh network’s advantages and disadvantages are shown as below. 

Advantages : 

(1) When one path is break off in a node, there are still other transmission paths 

that can be used.  

(2) One node in the network does not affect the others in the network. 

Disadvantages : 

(1) The cost of this mesh network is expensive. 

(2) If the mesh network is unidirectional, the first and the last nodes in every 

row and column have no direct links. There are no feedback links to 

transmit data.  
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1.3.5 Torus 

The torus network is very similar to the 2-dimensional mesh network. The 

different is there are links between the first nodes and the last nodes in every row and 

column. Every node in the network can send data to others in the network. The torus 

network will be explained in Chapter 2. 

 

1.4  Improving interconnect performance 

 After introducing some popular interconnection networks, we can understand 

that the network selection is very important. To select a suitable, scalable, and high 

performance network becomes a significant lesson. Furthermore, the global clock 

design is more difficult in large interconnection network, thus the global 

asynchronous local synchronous is proposed [12]. 

 Some asynchronous network techniques are discussed in [3][11], using the 

asynchronous bus network to communication. The throughput can be increased with 

asynchronous design, but the area is larger oppositely. There are some techniques to 

increase the performance of the interconnections including : 

(1) Repeaters and pipeline latches : A higher throughput can be obtained by 

using a pipeline latch instead of the amplifier (buffer) /inverter to amplify 

the signal and spread the link delay over multiple pipeline stages. Splitting 

the long wire into the narrow pipeline stages improves the throughput with 

minimal latency. 

(2) Datapath width : Unfortunately, adding latches into a wide single-rail 

datapath may cause problems because of the high load on the latch-enable 

signal. For a delay-insensitive (DI) encoded datapath, it offers the 

possibility of operating at a higher frequency by breaking a wide datapath 
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into a group of narrower datapath. 

(3) Delay-Insensitive (DI) interconnects : Delay-insensitive design methods 

only obtain the average case delay rather than the worst case. The crosstalk 

between wires will cause the redundant delays with single rail design, and 

the single rail design needs some timing analysis. A delay-insensitive 

design style avoids the need for this timing analysis, its designs that operate 

correctly whatever the delay in the interconnecting wires.  

1.5  Organization of this thesis 

The overview of the torus routing chip (TRC) and the system design of TRC will 

be illustrated in the next chapter. The full designs of the self-timed torus network with 

one-of-five data encoding will be illustrated in chapter 3. In addition, the experiment 

results will be represented in chapter 4. Finally, a brief conclusion and future work are 

discussed in chapter 5. 
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Chapter 2. Related work 

2.1  The torus topology 

In recent years, the demands of System on Chip (SoC) increasingly, many cores 

or processors may be composed on a chip. Thus, the interconnection network 

architecture is more important. In fact, traditional and hierarchical buses may 

introduce many new problems on large SoCs. A common alternative is using 

unidirectional, point-to-point connections and multiplexers. The performance and 

throughput can be easily improved via using these interconnection networks. 

Therefore, we must choose a suitable, parallel computing interconnection network to 

satisfy the requirements of SoC. 

There are many topologies of interconnection network, such as shared bus, ring, 

mesh, torus etc. Among these topologies, the shared bus and ring topology may not be 

satisfied for the scalable SoC.   

Several Networks on Chip (NoC) have been reported in the literature [8]. In our 

work, we select the torus network to implement. Except above advantages, it also 

reduces the network diameter; thus it can keep the latency small. 

Torus topology is similar to mesh topology; the only difference is that nodes at the 

edges are connected to the nodes at the opposite edges. Due to the symmetry, torus 

imposes the same degree for all routers; this makes them homogeneous and the 

routing algorithm easily to implement. 

Thus, the torus topology is a suitable network to suffice the scalable SoC. The 

next section presents a design using torus topology with self-timed approach. 
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2.2 Introduction to TRC 

A self-timed chip, the torus routing chip (TRC) [15] is proposed in 1986. It uses 

bundled data encoding to perform cut-through routing [10] in k-ary n-cube 

multiprocessor interconnection networks. In addition, it uses a new method to avoid 

deadlock called virtual channels [16]. It provides deadlock-free packet 

communications in k-ary 2-cube (2-dimensional) network. The TRC can be used to 

construct concurrent computers with up to 216 nodes in each dimension. It may be a 

little difficult to distribute a global clock over the network. In order to avoid this 

problem, the TRC is entirely self-timed. 

The TRC uses cut-through routing [10] to replace store-and-forward routing. The 

method can reduce the latency of communications that traverse more than one channel. 

It transmits each byte of the packet to the next node when it arrives, instead of reading 

an entire packet before starting transmission to the next node. Moreover, the 

communications do not use the memory bandwidth of intermediate nodes. A packet 

does not interact with the processor or memory of intermediate nodes along its route. 

In the TRC network, packets are routed and transmitted strictly until they reach their 

destination. 

In order to avoid deadlock problem, the TRC uses virtual channels to execute 

deadlock-free routing in torus networks. It splits each physical channel into two 

virtual channels and makes routing dependent on the virtual channel. The details of 

attestation and method are described in [16]. 

 The next section describes the system design of the TRC. 
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2.3  System design with TRC 

The torus routing chip (TRC) can be used to construct k-ary n-cube 

interconnection networks. Each TRC routes packets in two dimension, and can be 

used to construct networks of dimension greater than two. A block diagram of a 4-ary 

2-cube TRC is shown in Figure 2.1. Each node consists of a processor, its local 

memory, and a TRC. Every TRC in the torus is connected to its processor by a 

processor input channel and output channel. Connections on the edges of the torus 

wrap around to the opposite edge. 

 

 

Figure 2.1 A torus system 

The TRC uses cut-through routing to transmit a flit (Def. 1). A flit in the TRC is 

a byte which 8 bits must be transmitted in parallel here. The X and Y channels both 

consist of 8 data wires and 4 control wire, as known as the bundled data encoding 

protocol. The 4 control wires are used to separate request/acknowledge signal pairs 

for each of two virtual channels. The processor channels are also 8 bits wide, but have 

only two control wires each.  
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Definition 1. A flow control digit or flit  is the smallest unit of information that a queue 

or channel can accept or refuse. Generally a packet consists of many flits. Each packet 

carries its own routing information. 

 

The packet format in TRC begins with two address bytes. The data field of the 

packet follows the addresses. This field may contain any number of non-zero data 

bytes. In the end of a packet, the packet is terminated by a zero tail byte. The two 

address bytes contain the relative X and Y addresses of the destination node. The 

relative address is a count of the number of channels that must be traversed to reach 

the destination. 

 

 The TRC network’s routing rule is, first handling the X dimension, then in the Y 

dimension. Packets are routed in the dimension of decrementing the relative address 

at each step. First, when the relative X address is decremented to zero, it means that 

the packet has reached the correct X-dimension destination. The X address is then 

stripped from the packet, and the packet begins routing in the Y dimension. When the 

Y address is decremented to zero, the packet has reached the destination node. The Y 

address is then stripped from the packet, and the data and tail bytes are transmitted to 

the node. The transition of the packet is completed. The following algorithm shows 

the processing of flits arriving at the x-input channel. 

 

 

// x-input in TRC 

wait for new flit on x_input  

read relative_x_address from x_input  
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if relative_x_address is zero then 

 drop it 

 wait for relative_y_address on x_input   

 if relative_y_address is zero then  

     drop it 

     wait for and read flit_data from x_input  

     send flit_data to own processor 

      

while ( flit_data ≠ tail ) do 

   wait for and read flit_data from x_input  

            send flit_data to own processor 

 else // relative_y_address is not zero 

     decrement relative_y_address  

        send relative_y_address along y-dimension 

  

     pass all flit_data in the packet arriving on x_input  

along the y-dimension until the tail has been sent 

else // relative_x_address is not zero 

 decrement relative_x_address  

 send relative_x_address along x-dimension 

  

wait for relative _y_address (may be zero) on the x_input and  

pass it along the x-dimension 

  

pass all flit_data in the packet arriving at the x_input  

along the x-dimension until the tail has been sent 
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The design of the TRC began in August 1985. A new version TRC in December 

1985 can operate at 20 MHz, the input to output delay is 50ns, and throughput is 64 

Mbits/s in each dimension. 

 The full design of the TRC uses self-time, bundled data encoding protocol. It 

also means that the design must have many timing analyses and constraints. It may 

cause redundant interconnect delays and reduce the throughput. Moreover, the 

crosstalk problem is significant with high wire load in bundled data encoding. These 

problems can be solved efficiently with only need a few timing constraint with the 

delay-insensitive data encoding.   

Thus, we proposed and implemented a self-timed torus interconnection network 

with one-of-five encoding. The implementation of our design will be described in the 

next chapter. 
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Chapter 3. The design of the self-timed torus 

network with one-of-five encoding 
In chapter 1, we have discussed how to improve the interconnect performance. 

Obviously, the data-path and interconnect method will affect the throughput. Thus, we 

will redesign a 4-ary self-timed torus interconnection network with one-of-five data 

encoding. The transmission method of flits in the packet is the same as the torus 

routing chip (TRC), cut-through routing. However, the data encoding is different from 

that of original TRC.  

The next two sections will illustrate the system and all logic designs of the torus 

interconnection network with one-of-five encoding. 

3.1. The System Design 

The torus interconnection network was represented in chapter 2. The overview of 

system design including the processors (dotted lines) linking in each node of the torus 

network is shown in Figure 3.1.  

D_N 0
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D_N11

( 2 , 3 )

D_N 10

( 2 , 2 )

D_N 9

( 2 , 1 )
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D_N 6

( 1 , 2 )

D_N 14

( 3 , 2 )

D_N 13

( 3 , 1 )

D_N 12

( 3 , 0 )

D_N 8

( 2 , 0 )

D_N 5

( 1 , 1 )

D_N 4

( 1 , 0 )

D_N 3

( 0 , 3 )

D_N 2

( 0 , 2 )

D_N 1

( 0 , 1 )

D_N 7

( 1 , 3 )

 

Figure 3.1 The overview of the torus network 
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 An example of a packet transmission flow is shown in Figure 3.2. If the packet0 

should be sent from P0 to P14, the transition flow is shown as the gray line. First, the 

packet0 from P0 is sent to the linking node D_N0, and then D_N0 extracts the relative 

address and send the packet to the correct output dimension. Thus, the packet flow is 

D_N0� D_N1� D_N2� D_N6� D_N10� D_N14. When it arrives its destination, 

the node D-N14, it sends the data of packet0 to the interconnect processor P14. The 

transmission flow is completed. 

 

 

Figure 3.2 Example of the packet flow 

 

In the thesis, we implement a 4-ary 2-cube, a 4 by 4 symmetrical mesh. To match 

up the one-of-five data encoding, a flit in our design is 5-bits.  
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 The packet format is shown in Figure 3.3. A packet begins with two 5-bits 

address. The location of the destination node is composed of a 5-bit relative X address 

and a 5-bit relative Y address. The data of the packet follows after the address. Then, 

the packet is terminated by a tail EOP (end-of-packet). 

 

   

 

Figure 3.3 Packet format 

 

According to the packet format, our system follows the routing flow represented 

below : 

Step 1 : extracts x and y addresses 

Step 2 : constructs the correct path connection according to the addresses 

Step 3 : transmit the data through the selected path until the EOP flit is detected  

 

 Our design uses a delay-insensitive data encoding combined with a four-phase 

(return-to-zero) signaling protocol. The connection consists of one acknowledgement 

wire and five forward-going wires. Table 2 shows this one-of-five data encoding 

where only one wire in a group is allowed to signal data at any one time (known as 

one-hot encoding). During normal data transmission, one of the wires (w3, w2, w1, 

w0) transmission two valid data bits per cycle. The end-of-packet (EOP) signal 

separates consecutive data transfer. This data encoding requires only a simple 

five-input OR gate to detect valid data at the receiver. 
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Table 2. One-of-five data encoding 

EOP signal w3 w2 w1 w0 Information 

0 0 0 0 0 Idle state 

0 0 0 0 1 Two-bit data value 00 

0 0 0 1 0 Two-bit data value 01 

0 0 1 0 0 Two-bit data value 10 

0 1 0 0 0 Two-bit data value 11 

1 0 0 0 0 End of packet 

 

3.2. The Logic Designs 

The proposed architectural overview is shown in Figure 3.1. The design of each 

node will be introduced here. The inner block diagram of a node is shown in Figure 

3.4. It consists of three input router blocks, a central switch with arbiters, and three 

output pipeline latches. There are also two sub-routers in X and P router modules 

separately. In addition, the pipeline latches are used to replace buffers in the output 

channels.  

The router is responsible for selecting the correct route. When a packet header 

arrives, the router selects the correct output channel, adjusts the header by 

decrementing and sometimes stripping the flit, and then passes all flits to the switch 

until the EOP is detected. 
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Figure 3.4 The block diagram of D_N 

  

The detailed sub-modules of D_N are shown in Figure 3.5. The data from 

X-dimension can be transmitted to any output channel; however, the addresses of data 

from the processor must be detected to prevent the data sent back to itself. Thus, both 

the module Router X and Router P uses two sub-routers to select the correct output 

channels. When the data arrive, the router will determine the next state, select the 

appropriate output channel, and manipulate the current flit.  

 

 The switch performs switching and arbitration with arbiters. An arbiter (tree) 

uses two or three input interlock (mutual-exclusion) element in each output channel; 

hence only one input channel can use the output channel. If inputs are received 

simultaneously, the interlock will decide which can be granted first. 

 

 After arbitration, some stage pipeline latches are used to replace buffers to store 

the output data in every output channel. Some logic designs are similar to the DI 

one-of-four data encoding modules proposed in [6], such as pipeline latch, merge and 

select.  
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Figure 3.5 The detailed sub-modules of D_N 

 

The finite state machine (FSM) of D_N is shown in Figure 3.6. There are three 

parallel input dimensions, X, Y and P. If different packets to the node are sent to all 

three input channels, the data can be processed respectively. First, each router extracts 

the X or Y addresses and decides whether decrement, strip or pass. Then, it selects the 

correct output channel to send data. If it wins the arbiter to use the output channel, the 

data will be transmitted to the selected output pipeline latches. Otherwise, it must wait 

until it wins the arbitration.  
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 Figure 3.6 The FSM of D_N 

 

3.2.1 The Router 

The router module is shown in Figure 3.7. It includes three sub-modules, 

Set_Dec, Decrement, and Route control. When a flit of packet arrives, the Set_Dec 

module must decide the current state and the current flit whether to strip, decrement, 

or pass. According the current state, the decrement may decrease or bypass the current 

flit. The state and corresponding behavior is shown in Table 3.  
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Figure 3.7 A Router 

 

After the operation, the flit is latched in the C-elements and waits the correct 

output channel from the route control. The route control checks the first flit. If the 

first flit data values is not ‘00’; it means that the packet has not yet arrived the correct 

destination in the current dimension. The packet will be transmitted to the same 

dimension continuously; otherwise, the dimension will be changed. 

 

When the flit is transmitted to the correct dimension by passing through the 

C-elements, the OR gate detects valid data and sends the ack signal to the sender. 

While the sender receivers the ack signal, it will change the flit to the null state and 

wait the ack signal pull down. Then, the sender continuously sends the next flits 

following the above-mentioned step until the EOP flit. 
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Table 3. The corresponding behavior of the current state 

Current state Behavior 

00 Clear or latch 

01 Decrement (shift) 

10 Pass 

11  × (don’t use) 

 

 The Set_Dec module is implemented as a finite state machine. The initial state is 

idle ‘00’. When the first flit is arrived, the current state is set to ‘01’ and it means that 

the decrement module decreases the current flit which is represented address value. 

Then the next state will be latched in the C-elements until the flit returns to zero. 

When the next flit arrives, the next state will be assigned to the current state, and will 

set to be ‘10’, the decrement will pass the flit until detect the EOP flit. The Set_Dec 

will be reset. The truth table of the states and route signal (OR the flit bits w3 to w0 

represent the data information) is shown in Table 4. In addition, the corresponding 

circuit is shown in Figure 3.8. 

 

Table 4. The truth table of the route signal, state and next state 

route state (s[1] s[0]) next state (n[1] n[0]) 

0 00 00 

0 01 10 

0 10 10 

1 00 01 

1 01 10 

1 10 10 
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Figure 3.8 Set Dec 

 

 After the operation of Set_Dec, the decrement module uses the dec signal (2-bits) 

to process the flit whether decrement or pass as shown in Figure 3.9. Note that the dec 

signals will be reset before the flit return to zero. The asymmetric 3-input C-element 

is shown in Figure 3.10(a) with its transistor level in (b). 

  

 
Figure 3.9 Decrement 
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Figure 3.10 (a) 3-input asymmetric C-element (b) transistor level 

 

 As shown in Figure 3.10, it is a 3-input asymmetric C-element. If we are sure 

that the c signal is always pulled down before both the a and b signals are pulled 

down, then the down signal of input c can be ignored. Thus, the asymmetric 

C-element can save a transistor and increase the circuit speed. 

 The Route control module shown in Figure 3.11 will use the first flit data 

information to select the output dimension. The wires from w3 to w1 are ORed 

generate the signal route_x. It means that the information of the encoded data is not 

zero. The route_y signal is the w0 wire; its information of the encoded data is ‘00’. 

The two signals can be used to decide the correct output dimension. After determining 

the correct output dimension, the C-elements hold the select control signals sx and sy 

until the EOP flit of packet is detected. The C-elements in Figure 3.7 latch the flit and 

pass it to the correct dimension by the control signal sx or sy.  

 While the modules detects the neopxy signal from outside, and it means the EOP 

flit is transmitted to the correct dimension, then the route control module will reset the 

control signal to wait the next new packet. 
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Figure 3.11 Route control 

 

3.2.2 The Arbiter ( Tree ) and merge 

The Arbiter or Arbiter tree modules uses the mutual exclusion circuit to make 

sure that only one input channel at one time can use the output channel. The mutual 

exclusion (MUTEX) circuit is shown in Figure 3.12 and the arbitrated Call Block 

[2][4][5] is shown in Figure 3.13.  

The MUTEX circuit can allow only one ack signal to be pulled up. If the R1 and 

R2 are pulled up at the same time, the MUTEX circuit will keep the A1 and A2 signals 

low until metastability1 is resolved.  

 

R1

R2

V1

V2

T1

T2

A2

A1

 

Figure 3.12 Mutual exclusion (MUTEX) circuit 
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note1. Metastability is the state of a non-equilibrium electronic state to persist for a 

long period of time. The asynchronous circuit can avoid this situation 

efficiently.  

 

 The arbitrated call block id designed as shown in Figure 3.13 with the MUTEX 

circuit. If only one request from one of two input channels is produced, the Arbitrated 

Call Block is granted immediately, and if two are produced simultaneously it will 

decide which to grant first. The Arbitrated Call Block can deal with two input 

requests. Thus, the arbiter uses the Arbitrated Call Block to allow only one input 

channel flit to be transmitted shown in Figure 3.14. It also uses the C-elements in 

front of the MUTEX to latch the occupied dimension which wins the MUTEX and 

reset until detects the EOP. After the arbitration, we use OR gate to merge the flits 

that may come from two input channels to one output channel. We also use the 

C-elements to latch the data until the receiver is ready. 

 

 

Figure 3.13 Arbitrated Call Block 
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Figure 3.14 An arbiter using MUTEX and merge 

 

 Figure 3.15 shows the arbitration tree implemented with some arbitrated call 

blocks. A method was proposed in [4][5] to solve many initiator requests and allow 

the bus-bandwidth to be apportioned as required. Our design was shown in Figure 3.5, 

the data of y-dimension output channel may come from up to two input dimension 

channels. Thus, the arbiter module in the y-dimension will use the technique with 

arbiter tree to switch and arbitrate.  

  

 
Figure 3.15 Arbitration Tree 
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3.2.3 The pipeline latch 

After arbitration and merge, only one input dimension can use the output channel. 

Then, there are some stages pipeline latches to buffer the flits behind the merge from 

the output channel. While the receiver gets the null flit, it will pull down the ack 

signal. Then, the flit buffered in the pipeline latches waits until it can be transmitted to 

the output channel. The two stage pipeline latch is shown in Figure 3.16. 
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Figure 3.16 Pipeline latch 
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Chapter 4. Experiment results 
In chapter 3, we describe the all logic designs of functional blocks in our system. 

We use the Verilog HDL to build our system and construct the whole system with 

above mentioned sub-modules in chapter 3.  

 We implemented our self-timed torus interconnection network with 1-of-5 

encoding in gate-level. The design was synthesized and simulated with the TSMC130 

nm library. The simulator used is Modelsim 6.0. 

The Modelsim software is used to verify the correctness of our system. In order 

to verify the correctness, we give the variable length of flits in each packet to every 

processor at the same time. Each processor sends three or four packets; total count of 

packets is 100. Figure 4.1 shows the wave form of the whole system simulation. In the 

experiment, we verify the results of all flits of packets transmitting to the correct 

destination processor.  

 

 

Figure 4.1 System simulation 
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4.1. Performance 

There are 100 packets in our experiment transmitted from 16 processors in the 

network. Each processor sends 3 or 4 packets with random length of data and 

transmits packets to the random destinations. The transition paths of all packets are 

not fixed which may be the shortest path, one, or the longest path, six. According to 

the experiment results, the start time of the transition of the first flit sent from random 

processor to our system is 134.86 ns, and the end time of the transition of the latest flit 

sent from our system to the random processor is 1700.7 ns. The all transition time of 

all 100 packets is 1565.84 ns. Thus, as the result of calculate our system should 

operate at 63.9MHz.  

4.2. Area 

The area and gate count of the sub-modules and DI-encoding TRC are shown in 

Table 5. Our torus network only includes the interconnection network area, without 

the processors. Because the Router module includes some sub-modules and several 

C-elements, its area is larger. The circuit of Arbiter Tree module uses many gates to 

insure and determine that the circuit can allow only one input channel to use the 

output channel. Moreover, our network uses several stages of Pipeline latch to buffer 

the flits by C-elements, it results in the area of Pipeline latch module is larger.  

Table 5. The area and gate count of the modules 

module area (μm2) gate count 

Router 1275 250 

Arbiter/Tree 683/1193 134/234 

Merge 290 57 

Pipeline latch 7619 1494 

Our torus network 
(without processors) 

543048 106480 
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Chapter 5. Conclusions and future work 
In this thesis, we implement an asynchronous, self-timed interconnection 

network with torus topology. Our system uses the cut-through routing and the 

one-of-five DI encoding that can improve the interconnect performance efficiently. 

Moreover, we use the asynchronous circuits to solve the problems that may arise with 

the global clock. Therefore, the torus topology network has very good scalability, it 

can suffice the demands of SoC interconnect increasingly.  

There are some important reasons using a torus network to implement our 

interconnect network. First, the torus is easier to implement. If the number of the 

interconnected processors increases, the torus network can be easily extended. Second, 

the torus distributes loads to the communication channels more.  

Unfortunately, there is a problem in our design, the deadlock. Our torus network 

uses cut-through routing; it will occupy one channel until the transmission is finished. 

In order to increase the throughput, the problem is hardly to avoid. However, this 

problem must be resolved. There are some methods that can be adopted. First, the 

virtual channels can be implemented with our design. However, the technique has 

some constraints, such as limited packets size and a little higher cost. Second, we can 

add the control signals in each row and column to prevent the deadlock. Although the 

method can solve the deadlock problem, the performance may decrease obviously.  

In the experiment, the simulation result of our self-timed interconnection 

network is proved and the performance is 63.9 MHz. We use a new encoding method, 

1-of-5 encoding, to design the asynchronous torus interconnection network. In the 

future, the technique can be used in the global asynchronous local synchronous 

(GALS) system to resolve the communication problem between many synchronous 

modules which each has own clock rate.  
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