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Abstract

Low-Complexity Multi-Mode Signal Detection
Algorithm and VLSI Implementation for

Multiple-Input Multiple-Output Channels

Student : Di-You Wu Advisor : Dr. Lan-Da Van

Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University

ABSTRACT

In this thesis, we use parallel interference cancellation (PIC), group interference
suppression (GIS) and iteration. techniques to-‘construct a generalized parallel
grouped-iterative (GPGI) detection framework and one new low-complexity algorithm
for multiple-input multiple-output (MIMO) channels. The proposed detection
framework provides three parameters and three sub-algorithms to configure a range of
tradeoffs between performance and complexity. The presented framework not only
covers the conventional BLAST-ordered decision feedback (BODF), grouped, iterative,
and B-Chase detection algorithms, but also derives the GPGI-Type 1 (GPGI-T1)
detection algorithm with low computational complexity. In (8,8) system with uncoded
16-QAM inputs, one instance of the GPGI-T1 algorithm not only substantially reduces
the complexity by 33.9% but also outperforms the BLAST-ordered decision feedback
algorithm by 10 dB. Another instance of the GPGI-T1 algorithm can save complexity

by 36.8% at the penalty of 0.4 dB loss compared with the B-Chase detector. Last,



Abstract

according to the proposed GPGI-T1 algorithm, we implement a multi-mode MIMO
signal detector in TSMC 0.18 um CMOS process. The resulting implementation can
work in (2,2) or (4,4) system, and supports QPSK, 16-QAM, and 64-QAM modulation
modes. Importantly, the resulting MIMO detection implementation possesses the

comparable power efficiency among five ASIC designs.
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Chapter 1 Introduction

Chapter

Introduction

Multiple-Input-Multiple-Output (MIMO) technology can significantly improve
data transmission rate in bandwidth-limited wireless communications without
increasing transmission power. Much research [1-2] has shown that the channel
capacity increases with the number of antennas. Because of the above benefit, the
MIMO technique has been considered in modern high-speed wireless communication
standard including wireless LAN [3] and maebile wireless MAN. For the MIMO
communication systems, the detection:scheme-is-more complex than that in the SISO
communication systems. Since the ‘MIMO. communications transmit information at
very high data rates, the low computational complexity detection algorithm at the
receiver is essentially considered.

In terms of detection performance, the maximum likelihood (ML) detection
scheme is an optimum solution at the receiver. However, it is manifest that the detection
complexity raises as the number of antennas and the constellation size increases.
Therefore, the computational complexity of the ML scheme is too huge for hardware
implementation and unsuitable for high-speed communications. The sphere decoding
(SD) scheme [4]-[6] searching for the closest lattice point inside the radius bounded
sphere achieves the same performance of the ML detection with efficient computational
complexity. However, the complexity of the SD algorithm is unstable owing to the

variation of the iteration number which is higher at low signal to noise ratio (SNR)

1



Chapter 1 Introduction

environment especially. Hence, the SD algorithm has higher computational complexity
at low SNR communication environment due to the larger iteration numbers. On the
other hand, the variable throughput of the SD algorithm also affects the system
performance. The Bell Laboratories layered space-time (BLAST) wireless
communication system [1] uses multi-element antenna arrays at both the transmitter and
receiver to achieve high spectral efficiency. This technology is referred to as the
diagonal BLAST (D-BLAST). The D-BLAST theoretically approaches the Shannon
capacity for multiple transmitters and receivers, but the D-BLAST is complex and
impractical. The vertical BLAST (V-BLAST) system [7], [8] is a simplified architecture
of the D-BLAST, where the BLAST-ordered decision feedback (BODF) detection
algorithm named in [16] (also called successive interference cancellation (SIC)
detection algorithm named in [19]).:is applied. Although the BODF algorithm has low
computational complexity, the poor,_bit-error rate (BER) performance is incurred. Other
efficient implementations of the BQODF -algorithm' [9], [10] aim at low-complexity

computation but still possess poor BER performance.

1.1 Motivation

Many researchers currently concentrate on developing detection algorithms in both
complexity and performance between the ML and BODF detection algorithms [11], [12].
The above research work divides symbols into two groups by two schemes. The
QR-decomposition [11] is partially applied to the channel matrix such that two
sub-channels are orthogonal to each other. The second scheme [12] uses group
interference suppression (GIS) technique [13] to divide the V-BLAST system into two
lower dimensional sub-systems. After group partition, the first-group symbols are

detected by the ML detection and the second-group symbols are detected by a
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suboptimal algorithm after cancelling the interference from the first-group symbols.
Although the previous published schemes using the ML and suboptimal detection
algorithms can achieve better performance, the high computational complexity is
incurred. Thus, we are motivated to devise a MIMO detection algorithm that features
the low computational complexity and satisfactory performance. Furthermore, in order
to trade off the performance and complexity for different demands, we develop a

framework to cover the previous and proposed algorithms.

1.2 Thesis Organization

This thesis is organized as follows. Brief review of the MIMO detection algorithms
is described in Chapter 2. In Chapter 3, one.generalized parallel grouped-iterative
(GPGI) framework has been presented. In the same-chapter, how to generate existing
algorithms through this framework will be-discussed. In Chapter 4, we propose one new
low complexity detection algorithm. via this framework. We present the complexity
analysis, performance simulation and chip implementation results in Chapter 5. Last,

the conclusions are presented.
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Chapter

Review of the MIMO Detection
Algorithms

In this chapter, the MIMO system model will be given, and introduce some

existing MIMO detection algorithms.

2.1 MIMO System Model

A MIMO system with N transmit.antennas-and M receive antennas is considered in

this thesis as shown in Fig. 2.1. The diserete-time received signal r can be written as
r=Hs+n, (1)

where s denotes the Nx 1 vector of the simultaneous transmitted symbols that selects
from constellation C, and |C| denotes the constellation size. H is the MxN equivalent

channel transfer matrix, n is the Mx 1 complex white Gaussian noise vector with zero

mean and variance of o. In this thesis, the elements in H are assumed to be

independent identically distributed (1ID) complex Gaussian random variable with zero
mean, where the dimension is under M>N. It is assumed that the receiver knows
channel matrix H perfectly. This is shown that the ML detector is an optimum solution

for the receiver in which the scheme detects all sub-stream symbols jointly by choosing
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the symbol vector which maximizes likelihood function. The above treatment is

equivalent to the minimum Euclidean distance (MED) function in (2).

s=argmin|r —Hs, ||2 , 2)

where |x| denotes 2-norm of the vector x and s; denotes i-th candidate choosing

from all possible combination of symbols. Note that the number of all combinations is
IC|". Nevertheless, the high computation-complexity ML scheme blocks the VLSI
implementation. Several low-complexity detection algorithms [11-19] have been widely

studied. Herein, we briefly review the complexity-oriented algorithms as follows.
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N . ﬁ
Ay X i = i Ty # Detection

—>

Fig. 2.1: A MIMO system with'Ntransmitters and M receivers.

2.2 Grouped Detection (GD)

The grouped detection algorithm [12] applies the ordering, GIS [13], ML algorithm
to the first group symbols, interference canceling (IC), and BODF algorithm to the
second group symbols as shown in Fig.2.2. The GIS not only plays the role of dividing
symbols into two groups but also suppresses the performance influence of the low SNR
signals. After ordering symbols, the ML detection algorithm at the first group is
employed to detect higher SNR signals. Because of the property of the ML algorithm,
we can detect symbols at the early stage and guarantee the performance without error

propagation. The remaining symbols at the second group disturbed by high noise power

5



Chapter 2 Review of the MIMO Detection Algorithms

can be detected by a suboptimal algorithm such as the BODF detection algorithm

[7]-[10].

S f X
r
Ha
v " u
H
First group: R o]
2 Cls ¢ ML algorithm > IC .;é)
H— & 5,5
5 i
O r 8
\ 4
o Second group: Ss >
Hb OSIC(BODF)/PIC algorithm

GIS : Group Interference Suppression
Fig. 2.2: Block diagram_of the grouped detection.

2.3 Iterative Detection (ID)

The iterative detection algorithm detects symbols iteratively was proposed in [14],
[15]. The traditional BODF algorithm detecting each symbol once propagates errors
owing to the low-diversity symbols and thus greatly constraints the overall system
performance. The algorithm detects symbols repeatedly in some specific sequence such
that low-diversity symbols are detected by using decisions from high-diversity symbols
to retrieve the high diversity gain. Enhancing diversity for all symbols can decrease
error propagation. An example is provided in Fig. 2.3 to show the detection flow using

the iterative detection [15].
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BLAST order _
Stat—» g3 S2l—>{ st —ﬂ SOl STl s28> s3
(S3'==53)
S3'=S3 or
MaxIteNum

S = Reorder {SO, S1, S2, S3}

Fig. 2.3: An Example of the iterative detection at 4 transmitted symbols.

2.4 Chase Detection

The Chase detection algorithm [16]; {17] which shown in Fig. 2.4 determines
which symbol detected first, list length, filter type,-and sub-detector algorithm for the
MIMO detection application. Many detection algorithms including ML, BODF, parallel
[18], B-Chase and S-Chase can be derived from the Chase detection algorithm by
adjusting the above four parameters. Table 2.1 shows how to generate the different
detection algorithms. The B-Chase detection based on the BODF algorithm provides a
tradeoff between the complexity and performance by choosing the list length. When the
list length equals the constellation size, the performance of the B-Chase detection is
close to that of the ML detection. Although the SD algorithm has better performance
than the above Chase detector does, the SD detector shows larger computational
complexity in [16]. For example, in [16], at BER=10", the SD and B-Chase algorithms
respectively own the complexity of 57 RM/b and 18 RM/b, where RM/b represents the

required number of real multiplications per detected bit. Hence, in this thesis, we
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consider the Chase detection algorithm for complexity comparison instead of the SD

algorithm.
v
v
S h} "
List S, A8
detector i) :<+J
Selecti o
symboli s,
> h‘.

~

Sub-detector

5

—
¥

Sub-detector

MED "

T

5

decision

Sub-detector

i

!

Fig. 2.4: Block diagram of the Chase detection.

Table 2.1: Cases of the Chase detection algorithm

First-symbol index | List length )
Detector : L Filter type Sub-detector
ML any IC| ZF1 ML
BODF *2
BLAST order 23 ZF or MMSE BODF
[71-[10]
Parallel Selecting
. IC| ZF any
[18] algorithm 1
B-Chase Selectin
_ g 1=L=|C| ZF or MMSE BODF
[16] algorithm 1 or 2

“17F : Zero forcing

“2MMSE : Minimum mean square error

2.5 GPIC Detection

The generalized parallel interference cancellation (GPIC) detection algorithm [19]

is similar to the Chase detection algorithm. The GPIC detection uses two PIC

techniques; one is the same as that of the Chase detection algorithm, and another is

referred to as a redetection scheme. Fig. 2.5 shows the block diagram of the GPIC

detection. For the first PIC technique, the GPIC extends the number of the symbols
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detected first compared with the Chase detection. In this case, the number of list lengths

is the same as the number of all possible combinations of the symbols detected first.

Then, the GPIC detection applies the redetection scheme to detect residual symbols,

where the redetection scheme uses linear detection (LD) algorithm for lower

computational complexity.

¥

Linear
5  Wweight
i matrix
H m‘ear generation
- | 5|  weight
anne ;
H order & . matrix
- o > generation
partition
H
P ¥ W=qxp
& Re-decision p=C§"K
\ r Y . 3 S
L + - Decision : 1
candidates _D_’)GD_ , , =
for first K | i re-decl dM.EP 'aé
: i ¢ r—)] e-decisi ecision
symbol S, : r, Dl —F) . 5 §
_l I_);: )-'! ecision i "
s{re-decision | —

q=|C[*

Fig. 2.5: Block diagram of the GPIC detection.
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Chapter

Generalized Parallel Grouped-Iterative
(GPGI) MIMO Detection Framework

In this chapter, we develop the generalized parallel group-iterative (GPGI)
framework. Through this framework, we not only generate several previously reported
detection algorithms including BODF, . GD, ID, B-Chase, GPIC(K,0) detection
algorithms, but also propose a new: flexibleidetéction.algorithm [20]. It is shown in Fig.
3.1 that the GD algorithm outperforms the 1D algorithm at high SNR environment. On
the other hand, the GD algorithm™has weaker performance than the ID does at low SNR
environment. We are motivated to take ‘advantages of both algorithms in the following
way to attain the low complexity and take into account of the satisfactory performance.
Note that each GD and ID algorithm has higher computational complexity than the new
one detection algorithm. The proposed GPGI framework can be performed by six steps
as shown in Fig. 3.2. We partition all symbols into two groups referred to as group-1 and
group-11 symbols by the GIS scheme and then apply iterative detection to the two
group-symbols. In order to further improve performance, we generate more candidates

to look for better solution.

10
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1 D-E F

BEFR

Lol — 4 — ID(1aPsk)
| —B —GD@)iPSk)
107 b —F— DI 6QAM) |-
F — B GDE) 1 sAM) [
L] — - iDisa-can [0
o — B - GDE)aAn AN

10 ' .
10 15 20

o

SNR (B

Fig. 3.1: BER performance comparison with GD and ID algorithms in (8,8) MIMO
system.

S| S
—~{ IDF =4
Step 1 Step 2 g’ S Step 6
| n
H, | [Order and]| [ |Determine a List of |} =51 IDF 24! Choose Best || <
Partition | [ P:r,tlaIS,Candlda,ttes 1., & = Candidate | [
S
Symbols L [[21,]*0°1, Il_ﬁ'ﬁl n,| | and Reorder
Step 3 Step 4 Step 5 _
S; Detect Group-I11 SI I Redetect Group-I SI. ) Sn.
‘ | Symbols : Symbols f |Determine {1 '
: Sl.nm S,nﬂf“ Si,nN Si,nk Smﬁ.“ Si,nl Iteration i
' |

Fig. 3.2: Block diagram of the GPGI framework.
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Chapter 3 Generalized Parallel Grouped-Iterative (GPGI) MIMO Detection Framework

3.1 Steps of GPGI Framework

Each step is illustrated in the following.

Step 1: Order and partition all symbols into two groups. Group | has K symbols

{s,Sn,,""*»S, + Wwith the highest order, and the residual (N-K) symbols

n?'vn,?

{s ,+++,S, } are distributed to group II.

Nisa ! TNk

Step 2:  Determine a list of partial candidates {s; ,s; ,---,s; } according to the MED

criterion for the group-1 symbols, where s} =[s/ s/ ---s/ 1", where x" denotes

i,n,
the transpose of x.

Step 3:  Cancel the interference of r fromthe K symbols for each s| to derive r/,

and detect the remaining (N-K) symbols.' s =[s

LNy Si’nmz .'.Si'nN ]T !
Step 4:  Cancel the interference of r.from-the«(N-K) symbols for each s, to derive
r”, and redetect the K symbols ), =[5i,nk Sin. " Sin 1.

Step 5: Determine whether the iterative operation is activated by detection algorithm.

If iteration is triggered, the GPGI framework will update the parameter values.

When there is no iteration, we combine s, and s, into the i-th candidate §, .

Step 6: Choose the best hard decision s among the candidates {s, .S, ,--,S, } by

the MED criterion, and then reorder s intos.

3.2 The Properties of GPGI Framework

We treat steps 3~5 as an iterative decision feedback (IDF) block that detects two
group symbols repeatedly. The operations of steps 1~3 are regarded as the GD

12



Chapter 3 Generalized Parallel Grouped-Iterative (GPGI) MIMO Detection Framework

algorithm. We generate more candidates at step 2 and process each IDF in parallel.
Due to three features of parallel, grouped and iterative, we name as the generalized
parallel grouped-iterative (GPGI) detection framework. In order to configure different
detection algorithms in the GPGI framework, three parameters and three
sub-algorithms are defined in the following.

+ K: Number of symbols in group | whose range is 1 <K<N.

« ¢ List length whose value is 1< ¢ <|C[.

* Imax: Maximum number of iterations whose number is lmax>0.

*5ay, Sap, and sag: Sub-detection algorithms used in step 2, 3, and 4, respectively.
As shown in Table 3.1, while (K, 7, Inax)= (L<K<N, 1, 0) and (sai, sa,, sas)=(BODF,
BODF, Identity), the framework can generate the BODF algorithm in [7-10]. Note that
identity means that we bypass the operations at this.stage and feed the symbols directly

to the next step. When _identity . used- at step 4, we assign

!’

{SingsSin, " "3 Sin =4S 01800, »Si, Y WhAHEAKS 75 Imax)= (1<K<N, 1, 0) and (say, sa,

saz)=(ML, BODF, Identity), the framework:can reduce to the GD algorithm in [12].
While (K, 7, Imax)= (N-1, 1, Imax>1) and (sa;, say, saz)=(BODF, BODF, BODF), the
framework can generate the 1D algorithm in [15]. While (K, 7, Ima)= (1, 1< ¢ <|C|, 0)
and (saz, sap, saz)=(BODF, BODF, Identity), the framework can generate the B-Chase
algorithm in [16]. While (K, ¢, Ima)= (L<K<N , [C[*, 0) and (sa1, Sa,, Sas)=(ML, LD,
Identity), the framework can reduce to the GPIC(K,0) algorithm in [19]. The
generalized parallel interference cancellation (GPIC) algorithm [19] can be regarded as
an extended type of the B-Chase algorithm which differs from the partition of the
number of symbols and sa,. Hence, this framework can cover many conventional
detection algorithms. Furthermore, one new proposed algorithm listed in the last row of

Table 3.1 will be illustrated in the next chapter.

13



Chapter 3 Generalized Parallel Grouped-Iterative (GPGI) MIMO Detection Framework

Table 3.1: Cases of the GPGI framework for MIMO detection

The Iteration
Sub-Algorithm | Sub-Algorithms | Determination
number of _ List length ) )
Detector | used in Step 2: used in Step 3, in Step 5
symbols in !
sa; Step 4: sap, saz | (MaxIteNum=
group | : K
Imax)
BODF .
1=K<N BODF 1 (BODF, Identity) | No (Imax=0)
[7]-[10]
Grouped .
[12] 1<K<N | ML (ZF-GIS) 1 (BODF, Identity) | No (Imax=0)
Iterative N
115] K=(N-1) BODF 1 (BODF, BODF) | Yes(1=Ina)™
B-Chase BODF 1=/ <|C| )
K=1 (BODF, Identity) NO (Imax=0)
[16] ML /=|C]
GPIC(K,0 .
[151 ) 1=K<N ML Ic|* (LD, Identity) NO (Imax=0)
B-Chase SQRDF, _
GPGI-T1 | 1=K<N 1=¢=|c| (5Q _ Flexible™
(ZF-GIS) SQRDF/ Identity)
T (s], ==s,, 0r lteNum (1) = = lya0)end;else set- s, =s; . and iterate.
"2Yes(L=lImax) OF NO. If ({5 .S/ o v+2S) 0 3= ={Si0 St 1510, 30T | = = ), €nd;

else set {s/,,s

!
i,n,?

..,S

i,ng
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Chapter

New Type GPGI-Based Detection
Algorithm

In this chapter, we explore the above framework by configuring three parameters
as well as three sub-algorithms and then propose one new detection algorithm called
GPGI-T1. After investigating the configuration parameters including K, 7, Imax and
three sub-algorithms including saq; Sa,, sas, the .GPGI framework can further optimize
the complexity and performance. In‘the proposed algorithm, the ML sub-algorithm used
at step 2 of the GD detection algorithm'is'replaced by-the B-Chase sub-algorithm, where
the performance of the B-Chase detection’is close to that of the ML algorithm with low
computational complexity. For low computational complexity and sub-algorithm
regularity, we use the sorted QR decision feedback (SQRDF) algorithm [21] as sa, and
saz instead of the zero-forcing BODF sub-algorithm used in GD. Next, we give a wide

range of parameters K, 7, and Inax to trade off the complexity and performance.

4.1 Implementation of GPGI-Typel

Each detailed design step implementation of the GPGI-T1 detection algorithm is
summarized in Figs. 4.1, 4.2, and 4.3. Each corresponding design step is described in

the following.
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Step 1: At the first step, we select K symbols with higher SNR to detect first by
near-optimal algorithm such that error propagation can be alleviated. We resort the

columns of channel matrix by 2-norm of the column.

p=|h, | fori=12...N. 3)
Where h.; is the i-th column of H. According to the value of each p;, we can sort the

values and obtain (4)
P, 2Py, 22 Py @

where {n1, n,, ..., Ny} denotes the detection order index. After permuting all symbols s,
the channel matrix H, and identity matrix Iy, we can recast the system function as
follows.

r&aHs +n. (5)

Where H= HIl=[h, h --h }  and s=1I's=[s, s, ---s, I' , and
Mm=[e, e, ---e, 1. According to-the*values of K, s can be separated to two group

symbols s, =[s, s, ---s, 1" and s, =[s ~--s, 1", and simultaneously H can

S
Mt Misz

be considered as two sub-channels H" and H" , where H'=[h h --h ] and

H”:[h ..hnN]_

Step 2:  After symbol partition as shown in lines 1~5 of Fig. 4.1, we still cannot detect
the corresponding symbols because they interfere with each other. In order to solve this
problem and achieve lower complexity, we apply the GIS technique to channel matrix
instead of the QR-decomposition. Then, we can divide original system into two lower
dimensional sub-systems. In Fig. 4.2, we modify the ZF-GIS computation [13] to
generate one sub-system used in Fig. 4.1 with lower complexity. Without loss of the

generality, we illustrate the computation in (4,6) MIMO system, where (X,y) denotes
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x=N and y=M and set K=N/2 at this step. In this case, the ordered channel matrix H

can be written as

H=[h, h, h, h, 1=[HH']

_h11 h, by h14_
hyy Ny hy hy
_ hyy hy, hy hy ©6)
hy hy, hy hy
hs; hs, hg; hg,
_hel he2 e h64_

In the proposed detection algorithm, we employ the matrix Hy to obtain a left null
matrix Z of H", where Hp is an (N —K)x (N —K) square matrix on the bottom of

H"and Zisan (M —N+K)xM matrix. Z and Hy can be respectively expressed in

(7) and (8).
1 =0 enlambiie e &
2 _ 051 07 050%,, X,, | @
0 gn PplRherd B
0 0 00 & X571 "%,
and
h,, h
Hb — |:h53 h54:| ) (8)
63 64

We define xi=[xi1 Xi2 ...Xin-x], and x; can be calculated via the following matrix

computation.

x{ =—(Hp)*h!T fori=1,2, ..., (M-N+K), 9)
where h{. denotes the i-th row of H". In this way, we can retrieve the left null matrix

Z and then apply the Gram-Schmidt orthogonalization [22] to Z to obtain a
row-orthogonal matrix L. Then, L is multiplied on both sides of (5) and we can derive

the following equation as
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F=Hs| +n, (10)
where A=LAand H=LH with dimension of (M —N+K)xK . After the ZF-GIS

operation, we use the B-Chase detection algorithm [16] as sa; to detect the sub-system

in (10) for choosing better ¢ candidates, where ¢ ranges from 1 to |C|. Then, we can

derive an ordered list of partial candidates {s| ,s| ,---,s; } of the / candidates by the

MED criterion in this sub-system.

Steps 3, 4, and 5: For convenience of illustration, the operations at steps 3, 4 and 5
are concurrently described. We just describe the operation of the i-th iterative decision
feedback (IDF). At step 3 and 4 of the proposed work, we apply the SQRDF algorithm

as sa, and sas to detect two sub-systems in (11) and (12).

r=r-Hs =H", +n'; (12)
r'=r=H', =H'’s;"+n". (12)

The SQRDF algorithm can be divided into two parts: sorted QR decomposition (SQRD)
and decision feedback (DF) whose pseudo code is listed in Fig. 4.3. Both parts can be
computed using the algorithm in [17] with slightly modification. After the SQRD
operation on H", we can derive H'II"=Q"R", where Q", R", II" denote the
unitary matrix, upper triangular matrix with positive and real diagonal elements, and
permutation matrix, respectively. Next, we can obtain the vector d” which contains the
reciprocal of the diagonal elements of R”. After multiplying Q" on both sides of (11),

the system can be changed to

y;! — Q"*rir — Q"*r _ Q”*H’S’h — R”§||i + V” ’ (13)

where 5, =II"'s, =[5

Mg SN,

-§i’nN]T, and where x  denotes the conjugate

transpose of x. s, obtained from the DF operation in Fig. 4.3 can be expressed in
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(14).
k
s e[V 5 RL S o | Torb NN kel (10
Where quan(x) denotes the quantization function which quantizes the value x to the

nearest constellation point. The symbols s, can be obtained by reordering s, .

Similarly, at step 4, we can obtain following equations in (15) and (16).

y;=Q'r'=Q"'r-Q"H’s, =R’5 +V'. (15)

k
§i,nC = quan ([y;,k—wl - Z RL—C+1,j§i,nk,j+1 jdlz—c+l,k—c+1j ! for C:l’ 2’ R} K (16)

j=k—-c+2

Where H'TI'=Q'R’ and §, =I"s, =[5, §, ---5,] . The maximum iterative
number of I« affects the computational complexity. The initial iterative number I is set

to zero. When executing step 4 once, I"is increased by one. If s| equals s, or |

equals Imax, We obtain the candidate§, =[s, s,,i]T. Otherwise, let s| =s, and repeat

steps 3 and 4. Note that if 1,=0; there.is no-need to deal with the sub-system of (12),
and the operation of (15) and (16) can be skipped.

Step 6: At the last step, we choose the final hard decision s according to the MED

criterion among the candidates {s S, }. The MED of the i-th candidate is

n1'Sn2"”'
obtained by ¢, =||r—|:|§, . According to the permutation matrix IT at step 1, we

rank the detected symbols s to obtain the final symbols s.

In terms of algorithm flexibility, when K=1, the GPGI-T1 algorithm can performs
as the combination of the Chase and ID algorithms. When ¢ =1, the GPGI-T1 algorithm
reduces to the combination of the GD and ID algorithms. When I,,x=0, the GPGI-T1

algorithm reduces to the combination of the Chase and GD algorithms.
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FUNCTION: GPGI-T1 Detection Algorithm
INPUT: (H, r, M, N, C, K, ¢, lnay) OUTPUT: (s)

© 0 N g koD

N N o
g M W N P O

16.
17.

18.
19.
20.
21.
22.
23.

24,
25.

26.

27.
28.
29.
30.
31.

32.

33
34

fori=1toN, pi=|h.i* end
II = NxN permutation matrix that sorted by p; from Iy
H=HI
H' = first K columns of H
H" = last (N-K) columns of H
[H,P]=ZF-GIS(H' H"r,K)
[s;.s, S| ]1=B-Chase(H,f,C,¢)
[Q",R",d",11"] = SQRD(H",p,Il)
u"=Q"*r
LV =Q"FH
.[Q,R,d', 1I'] = SQRD(H’,p,1)
LU =Q'*r
LV =Q*H"
« Emin= ©©
fori=1tor,
1=0
while (I < Ina) & () #5, ),
if 120, s, =S, end
y'=u"-V's
s, =DF(R",d"y",II", N-K)
y'=u'-V's,
s, =DF(R',d"y’ 1, K)
I=1+1
End
e,=r—H's, —H’s,
=0
forj=1to M,
if &<Emin, & =5+, end
end
if & <Emn, Emin = ¢,
s=[s, s, 1
end
. end

. s=1Is

Fig. 4.1: Processing pseudo code for the implementation of the GPGI-T1 detection

algorithm for Imax=1.
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FUNCTION: ZF-GIS

INPUT: (H,H", r,K)  OUTPUT: (H,#)
H, = (N-K)x(N-K) matrix at the bottom of H"
W=(H;)"

. fori=1to (M-N+K), X; =—Wh!! end

1
2
3
4, X=[x: Xo ... Xwnsx]"
9. Z=[lun : X]
6. L=GSO(2)
7 =LH’
8

f=Lr

I

Fig. 4.2: Processing pseudo code for the proposed modified GIS implementation.

FUNCTION: DF
INPUT: (R,y,d,l1,J)  OUTPUT:(s)
1. fori=1toJ
2 t=X58 S,
3. §, =quan((y, —t)d))
4. end
5. s=1II5

Fig. 4.3: Processing pseudo code for the proposed DF implementation that modified
from [17].

4.2 Reducing Complexity Highlight

There are two schemes to lower the computational complexity. First, we reduce
complexity by reusing tentative computations.
¢ Observing (13) and (15), we can reuse tentative calculations for parallel and
iterative computing such that we just compute the SQRD functionon H’ and H",
Q"r, Q"H', Q"r,and Q"H" once.
* Observing (3), the 2-norm of each column of H can be reused in the computations

of the SQRD function.
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Second, we reduce complexity by avoiding unnecessary computations.

+ When the input symbols are the same as that at the last iteration, we can skip the
calculations in the following iterations. That mean we do not need to reach the
maximum iteration number I« in each IDF.

+ We use pruning and threshold-tightening strategy given in [16] to generate a
threshold Ein which records the last time MED values of other candidates. When
the Euclidean distance is greater than Eni, during the process, the computation can
be terminated.

Using the above two schemes, we can alleviate the computational complexity, where
the complexity analysis of the GPGI-T1 algorithm will be debated in detail in the

following chapter.
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Chapter

Complexity Analysis, Simulation Results,
and Implementation

This chapter demonstrates the complexity and performance of the GPGI-T1
detection algorithm and shows the comparison results with the existing detection
schemes including the BODF, GD, ID,. B-Chase algorithms and GPIC(K,0) detection
algorithm. We use the GPGI-TL1(K; 7, lfa) to denote the GPGI-T1 algorithm with K
symbols distributed to group I, -list length - # “and maximum iteration In.. Moreover,
the B-Chase( /) denotes the ZF B-Chasealgorithm with list length ¢, and the
GPIC(K,E) denotes the GPIC algorithm*with K" symbols in group I and E error symbols

in group I1.

5.1 Complexity Analysis

In Table 5.1, we summarize the number of complex multiplications, complex
divisions and square roots required by the GPGI-T1 algorithm. The GPGI-T1 algorithm
includes the order and partition symbols (OPS), GIS, B-Chase used in sub-system,
precomputationl (PC1), precomputation2 (PC2) and the combination of DF and MED
(DF&MED) of the design steps. PC1(1) and PC1(2) correspond to the operations of
lines 8 and 9-10 of Fig. 4.1, respectively. Similarly, PC2(1) and PC2(2) represent the

operations of lines 11 and 12-13 of Fig. 4.1, respectively. Although the computations of
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division and square root are more complex than those of multiplications, the number of
divisions and square roots is much less than the number of multiplications in the
GPGI-T1 and others algorithms. Therefore, the complexity is measured by the sum of
complex multiplications, divisions and square roots in the worst case. The
multiplication of a number and a constellation point can be implemented by scaled
integers [23] such that we can reduce the number of multiplications. For simplicity, we
assume that the number of transmitters is an even integer and K=N/2 in the GPGI-T1
algorithm, and the channel matrix changes during every symbol period. That means we
process all computations at each symbol period. The comparisons of the worst-case
computational complexity of the GPGI-T1 algorithm, B-Chase scheme, and GPIC(1,0)
algorithm are tabulated in Table 5.2. When M=N, the complexity order of the GPGI-T1,
B-Chase and GPIC algorithms are O(47/24N%),:0(11/3N%) and O(4N®) respectively.
Herein, we do not formulate the complexity of the' GD and ID algorithms since both
algorithms require more computational-complexity than the B-Chase detection, where
the complexity of the GD algorithm is.exponential time of the number of first-group
symbols and the complexity of the ID algorithm almost doubles that of the BODF
algorithm (B-Chase(1)) mentioned in [15]. It is emphasized again that since the SD
detector shows larger computational complexity as addressed in [16], for example, at
BER=10", the SD and B-Chase algorithms respectively own the complexity of 57 RM/b
and 18 RM/b, we only consider the Chase detection algorithm for complexity

comparison instead of the SD algorithm.
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Table 5.1: Computational complexity of the GPGI-T1 algorithm

BELONG MULTIPLICATIONS DIVISIONS | SQUARE
TO ROOT
OPS STEP 1 MN
GIS STEP 2 1/6M *+1/2M 2N-1/2MN +MNK-1/2MK ? | 1/2N 2-NK | M-N+K
+1/6N 3-N 2K+3/2NK %-2/3K *+3/2M +1/2K 2+M
-MN+3/2MK-N 2+3/2NK-1/2K ?+1/3M -3/2N+3/2K
-1/6N+1/6K
B-CHASE | STEP2 3MK 2-3NK ?+11/3K *+2MK-2NK+5K 2 | 1/2K 2 2K
(£=IC)) +1/3K+2K|C]| +3/2K
PC1 (1) |Ster3 MN Z-2MNK+MK 2+1/2N >-NK+1/2K ? | N-K N-K
(2) -1/2N+1/2K
MNK-MK 2+MN-MK 0 0
PC2" (1)|STer4 MK %+1/2K %-1/2K K K
(2) MNK-MK 2+ MK 0 0
DF&MED" | STEr 3,4, | (N1, +M)? 0 0
6
TOTAL ALLSTEPS | 1/6M 3+1/2M *N+1/2MN *+MNK 1/2N%NK | M+3K
GPGI-T1 +5/2MK2+1/6N-*-N“K=3/2NK *+3K * +K2+M
+3/2M *+MN#72MK-3/2N *-3/2NK -1/2N+3 K

+11/2K 2+1/3M-2/3N+1/2K+2K|C]|

+(N I M) 7

“When Imax equals zero, the computational complexity of PC2 is equal to zero and the

multiplication complexity of DF&MED is changed to (M+N-K) ¢ .

Table 5.2: Complexity comparison among the proposed GPGI-T1 and conventional

algorithms
ALGORITHM | MULTIPLICATIONS/DIVISIONS/SQUARE ROOTS
B-CHASE 3MN 2+2/3N 3+2MN+7/2N *+23/6N+2N ¢ ™
GPIC(1,0) AMN *-4MN+N 2+3/2M-2N+1+MN|C|
GPGI-T1 1/6M 3+1/2M ®N+13/8MN 2-1/3N *+3/2M >+11/4MN

+3/8N 2+7/3M+25/12N+N|C[+(N I, +M) ¢ "2

“'When 1</ <|C|, the additional computation complexity of 1/6N 3+3/2N 2+4/3N is
needed.
“?In this case, N is an even integer and K=N/2.
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5.2 Simulation Results

On the other hand, we show simulation results to sustain the performance of the
GPGI-T1 detection algorithm. The simulation environment is assumed Rayleigh
flat-fading channel and no correlation between sub-channels. The performance
measurement targets at the SNR that reaches BER=10"°. Fig. 5.1 shows the performance
of the GPGI-T1 algorithm with different Kand ¢ in (8,8) system with 16-QAM inputs.
We can find that the performance with larger K is better than that with smaller K under
the same /. In this case, the complexity of the GPGI-T1 algorithm with K=6
approximately doubles with K=2 under the same /¢, and the range of performance of
the GPGI-T1 algorithm with K=6 is narrow. In order to trade off the complexity and
performance, we prefer to choose K in the range.from 2 to N/2. Fig. 5.2 shows the
performance of the GPGI-T1 algorithm with different I,.x and ¢ in (8,8) system with
QPSK inputs. The performance  of.the- GPGI-T1 -algorithm can be improved by
increasing Imax under the same ¢ ."\We. set K=N/2 and suitable value of I in the
GPGI-T1 algorithm to compare with the existing detection algorithms. Figs. 5.3-5.10
show the performance in (4,4), (6,6), (8,8), and (4,6) systems. Figs. 5.3, 5.5, 5.7, and 5.9
use the constellation of QPSK, and Figs. 5.4, 5.6, 5.8, and 5.10 use the constellation of
16-QAM.

From the comparison results, we can find out the BER performance of the
GPGI-T1 algorithm can be significantly enhanced by slightly increasing the list length
¢ . For example, GPGI-T1(2,2,1) outperforms GPGI-T1(2,1,1) by 3.3 dB and 3 dB with
respect to QPSK and 16-QAM inputs in (4,4) system, and just increases complexity
3.3% and 2.8%. The better performance can be obtained with longer list length;
GPGI-T1(2,16,1) outperforms GPGI-T1(2,1,1) by 5 dB with 16-QAM inputs. On the
other hand, better BER performance can be obtained by increasing Inax under the same
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list length. For example, in (8,8) system with QPSK inputs, GPGI-T1(4,4,3)
outperforms GPGI-T1(4,4,0) and GPGI-T1(4,4,1) by 1.3 dB and 0.3 dB, respectively. In
summary, the computational complexity and BER performance of the GPGI-T1
algorithm depends on these parameters given above. The smaller K, 7, Ima, and
simplified sub-algorithm achieve low complexity. Otherwise, the higher K, 7, I, and

better sub-algorithm attain better performance.

107 L

1':" ...'.'.'.'.'.'.'.'.'.'.'.'.'E'.'.'.'.'.'.'.'.'.'.'.'.'.'

~GPGIT121,3)
| — & -cPGlT12238 |-
107 L — 3% -GPGIT1(2,163) |-
] =¥ —GPGIT14,1,3)
—B —CGPGI-T14.2,3)
oF | A —apai T | R e
Y —k—cPGlT161,3) [
ol —B—GPaIT162,3)
{
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Fig. 5.1: BER performance of the GPGI-T1 algorithm with different K and ¢ in (8,8)
MIMO system with 16-QAM inputs.
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Fig. 5.2: BER performance of the:*GPGI-T1 algorithm with different I,.x and ¢ in
(8,8) MIMO system with QPSK inputs.
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Fig. 5.3: BER performance of the GPGI-T1 algorithm and conventional algorithms in
(4,4) MIMO system with QPSK inputs.
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Fig. 5.4: BER performance of the GPGI-T1 algorithm and conventional algorithms in
(4,4) MIMQ system with 16-QAM inputs.
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Fig. 5.5: BER performance of the GPGI-T1 algorithm and conventional algorithms in
(6,6) MIMO system with QPSK inputs.
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Fig. 5.6: BER performance of the GPGI-T1 algorithm and conventional algorithms in
(6,6) MIMQ system with 16-QAM inputs.
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Fig. 5.7: BER performance of the GPGI-T1 algorithm and conventional algorithms in
(8,8) MIMO system with QPSK inputs.

30



Chapter 5 Complexity Analysis, Simulation Results, and Implementation

| —— ID{1)

3| | —&—acDE

BER
=)
T

107 —& — B-Chase(d)
[l —% —B-Chase(12)
[| —# —B-Chase(16)
5| | ——GPGIT141,3)
F| —B—GPGIT13.23 |

H —&—GPGIT14,43 |
| —%—GraiTia1ee [

5 10 16 20 25
SR (B

Fig. 5.8: BER performance of the GPGI-T1 algorithm and conventional algorithms in

(8,8) MIMQ system with 16-QAM inputs.
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Fig. 5.9: BER performance of the GPGI-T1 algorithm and conventional algorithms in

(4,6) MIMO system with QPSK inputs.
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Fig. 5.10: BER performance of the:xGPGI-T 1 algorithm and conventional algorithms
in (4,6) MIMO system-with 16-QAM inputs.

5.3 Complexity-Performance Tradeoff

Next, we show the complexity-performance tradeoff of the GPGI-T1, B-Chase,
and GPIC(1,0) algorithms in Figs. 5.11 and 5.12. In (8,8) system, GPGI-T1(4,1,3) not
only reduces the complexity of 38.1% and 33.9% but also gains 9.5 dB and 10 dB
compared with the BODF algorithm (B-Chase(1)) with respect to QPSK and 16-QAM
inputs, respectively. GPGI-T1(4,16,3), GPGI-T1(4,4,3), and GPGI-T1(4,2,3) reduce the
complexity of 21.5%, 36.8%, and 39.3% while falling 0.3 dB, 0.4 dB, and 0.8 dB short
of the B-Chase(16) algorithm with 16-QAM inputs respectively. In other configurations
with M=N, the comparison of complexity and performance has behavior similar to that
of the above analysis trend. On the other hand, in (4,6) system, the GPGI-T1 algorithm

has comparable performance and less computational complexity. We do not present the
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comparison with GD and ID here since both algorithms require more computational
complexity compared with the corresponding cases of the GPGI-T1 algorithm, and have
poor BER performance. Therefore, from the complexity and performance analysis, the
GPGI-T1 algorithm attains better complexity-performance tradeoff at the slight penalty
of BER performance degradation compared with the B-Chase and GPIC(1,0) detection
algorithms. Moreover, the GPGI-T1 algorithm has the lowest complexity in all cases

under M=N and provides adjustable performance for different user’s requirements.
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Fig. 5.11: Complexity-performance trade-off of the GPGI-T1, B-Chase and GPIC(1,0)
algorithms with QPSK inputs.
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algorithms with 16-QAM inputs.

5.4 VLSI Implementation

In this section, we begin to show that how implement a multi-mode MIMO

detector using the proposed GPGI-T1 algorithm. We replace the block diagram of the

GPGI framework in Fig. 3.2 to that of our proposed GPGI-T1 algorithm in Fig. 5.13.
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Fig. 5.13: Block diagram of the GPGI-T1 algorithm.
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Besides, the channel matrix H is the same for each frame. It means that we just
compute the variable that only related to H once each frame. So, we divide the detection
flow of the GPGI-T1 algorithm into two parts, preprocessing part and decision part. The
preprocessing part computes just once when the channel matrix H is unchanged, and the
decision part operates for each symbol period. In this thesis, we just implement the
decision part, where the maximum iteration Iy IS equal to zero. The block diagram of

the GPGI-T1 implementation is shown in Fig. 5.14.

. Preprocessing Part Decision Part
SQRD P Pre-
PL[ Qrder { H=QiR, | 7] V-t U 1
b &
.. B-Chase DF
Parteition 7RGIS B He=zH, B Otder Pre- L o Algorithm 3 &MED (> s
H B-Chase

Fig. 5.14: Block diagram of the implementation-of the GPGI-T1 algorithm.

Moreover, we would like to design a multi-mode GPGI-T1 detector which can
work in many practical conditions including (2,2) and (4,4) MIMO system with QPSK,
16-QAM, and 64-QAM inputs. We design the MIMO detector with power-aware feature
in (4,4) MIMO system. Before designing hardware architecture, we simulate the BER
performance of the floating-point GPGI-T1 algorithm and the modified fixed-point
GPGI-T1 algorithm in (4,4) MIMO system with 64-QAM inputs, the critical mode in
our implementation, as shown in Fig. 5.15. The modified GPGI-T1 algorithm changes
the MED function from 2-norm to 1-norm. We can find that GPGI-T1(2,8,0) is a
setting candidate for the trade-off of the BER performance and computational
complexity. Therefore, we set that the maximal list length equals eight in the
multi-mode GPGI-T1 detector, and the maximal input word length equals ten bits. Table
5.3 illustrates how to attain multi-mode BER performance by adjusting the parameter /.
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The pipeline architecture of the multi-mode GPGI-T1 detector is depicted in Fig. 5.16.
The two-group input buffers are used to store inputs and process data simultaneously.
The Pre-U and Pre-B-Chase parts implemented by multiply Accumulate (MAC) unit
process the reused variables for B-Chase and DF&MED parts. The B-Chase part is
divided to four stages. The former two stages are in charged of parallel search and
Euclidean distance calculation. The latter two stages play the role of sorting network
implemented by Bitonic sort. The DF&MED part is divided to four stages including
interference cancellation (IC), decision feedback 1 (DF1), decision feedback 2 (DF2),
and minimum Euclidean distance (MED). The IC stage cancels the interference from
the two symbols obtained by B-Chase. The DF1 and DF2 stages decide another two
symbols and calculate the temporary variable for Euclidean distance calculation. The
MED stage calculates the final Eugclidean distance.and stores the symbols with MED

after comparison.
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Fig. 5.15: BER performance of the GPGl=T L-algorithm and B-Chase algorithm in (4,4)

MIMO:system with 64-QAM inputs.

Table 5.3: Performance selection by choosing different list length

Antenna 4x4
Modulation QPSK 16-QAM 64-QAM
BER Closeto | Closeto | Closeto | Closeto | Closeto | Close to
Performance optimal optimal optimal | optimal / | optimal / | optimal /

Sub- Sub- Sub-
optimal optimal optimal

List length ¢ 2 1 4 1 8 1
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Fig. 5.16: Pipeline architecture of the multi-mode GPGI-T1 detector.

Concerning the chip implementation, the cell-based design flow with Artisan
standard cell library is adopted and the multi-mode GPGI-T1 detector has been
implemented in TSMC 0.18-um CMOS process. The Synopsys Design Compiler is used
to synthesize the RTL design of the proposed detector and Cadence SOC Encounter is
adopted for placement and routing (P&R).-The'Synopsys PrimePower is used to analyze
the power consumption. The active chip layout area of the proposed multi-mode
GPGI-T1 detector as shown in Fig. 5.17 1241 mm x 1.39 mm. Table 5.4 summarizes
the chip characteristics of the multi-mode GPGI-T1-detector. Table 5.5 summarizes the
supplied modes and the respective power consumption of our chip design. It can work
in nine modes, where three and six modes belong to (2,2) and (4,4) systems,
respectively. The multi-mode functions of the GPGI-T1 detector has been proved by
post-layout simulation verification as shown in Fig 5.18.

Table 5.6 provides a comprehensive comparison of the relevant ASIC
implementations for MIMO detection. In [23] and [24], the BER performance of the
implementation algorithms is optimal or close to optimal, respectively, but the power
consumption is large. An implementation of the BODF algorithm by square root method
[9] which shows low computational complexity but poor BER performance was
proposed in [25]. The above chip design [25] including preprocessing part has better

power efficiency than the SD implementation [23], [24], where the power efficiency is
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defined as the ratio of the normalized throughput to the normalized power. Our
implementation of the GPGI-T1 algorithm has best power efficiency compared with
other implementation designs. For example, in (4,4) MIMO system with 16QAM inputs,
our design shows seven times the power efficiency of the implementation in [24].
Furthermore, our design possesses low-complexity computation and multi-mode

implementation with better power efficiency compared with other reference designs.

Fig. 5.17: Chip layout of the multi-mode GPGI-T1 detector.
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Table 5.4: Chip characteristics of the multi-mode GPGI-T1 detector

Power Supply 1.8V

Max. Clock 100 MHz

Max. Power 177 mW

Gate Count 141 K

Active Chip Area 1.41 mm x 1.39 mm
Process Technology TSMC 0.18 um CMOS

Table 5.5: Supplied modes of the GPGI-T1 chip implementation

Antenna 2x2 4x4
Modulation QPSK 16-QAM |.64-QAM QPSK 16-QAM | 64-QAM
BER Closeto | Closeto Closeto Close to Close to Close to
Performance | optimal optimal optimal | optimal / | optimal / | optimal /
Sub- Sub- Sub-
optimal optimal optimal
Throughput | 50Mbps | 100Mbps ‘| :150Mbps | 100Mbps | 200Mbps | 300Mbps
Power (mW) 79 95 126 118/116 137/130 177/161
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Fig. 5.18: Post-layout simulation of the multi-mode GPGI-T1 detector.
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Table 5.6: Comparison of ASIC implementation for MIMO detection

IEEE IEEE IEEE JVLSI Proposed Work
JSSC [23] | JSSC [23] | JSAC [24] | Signal
Design1 | Design 2 Processi
ng [25]"
Antenna 4x4 4x4 4x4 4x4 4x4
Modulation | 16-QAM | 16-QAM | 16-QAM | QPSK QPSK/16-QAM
164-QAM
Detector SD SD K-best SD | BODF GPGI-T1
BER Optimal Close to Close to Sub- Close to optimal
performance optimal optimal optimal / Sub-optimal
Technology | 0.25um 0.25um 0.35um | 0.35um 0.18 um
Cate Count 117 K 50 K 91 K 190 K 141 K
+preproc. | +preproc: | +preproc. +preproc.
Max. Clock | 51 MHz 71MHz | 100'MHz | 80 MHz 100 MHz
Throughput | 73 Mbps | 169 Mbps |.53.3 Mbps 128 100/200/300 Mbps
@20 dB @20 dB Mbps
Power 360 mW N/A 626:mW | 608 mW | Close to Sub-
@25V @28V @2.7V optimal optimal
118/137 | 116/130
/177 mW | /161 mW
Power 0.391 N/A 0.206 0.474 0.847 0.862
Efficiency | Mbps/mw Mbps/Mw | Mbps/m | /1.46/1.69 | /1.54/1.86
w Mbps/m | Mbps/m
W W

“Note that the implementation includes the preprocessing part. If the preprocessing part

is removed, the power consumption will decrease greatly.
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Chapter

Conclusion and Future Work

In this thesis, the GPGI framework that generates many MIMO detection
algorithms has been presented. Based on the GPGI framework, we propose the
GPGI-T1 detection algorithm that trades off the complexity and performance by
modifying the number of symbols detected first, the list length and the numbers of
maximum iterations. The GPGI-T1 detection_algorithm significantly reduces the
multiplication complexity and has comparable BER- performance compared with the
existing detection algorithms. For example; in+(8;8) system with 16-QAM inputs,
GPGI-T1(4,1,3) can reduce the multiplication-complexity by 33.9% and outperform
10 dB compared with the BODF detection at low complexity end. At high
performance end, GPGI-T1(4,16,3) and GPGI-T1(4,2,3) can reduce the multiplication
complexity by 21.5% and 39.3% at the penalty of 0.3 dB and 0.8 dB loss compared
with the B-Chase(16) detection, respectively. With the features of low complexity,
satisfactory BER performance and parallel processing, the GPGI-T1 algorithm is
suitable for modern high-speed communication systems. According to the proposed
GPGI-T1 algorithm, we implement a multi-mode MIMO detector using TSMC
0.18um process CMOS. The resulting implementation supports QPSK, 16-QAM, and
64-QAM modulation modes, and can work in nine modes, where three and six modes
belong to (2,2) and (4,4) systems, respectively. Importantly, the resulting MIMO

detection implementation possesses the comparable power efficiency among five
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ASIC designs.
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