

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

藉由對群組關聯式的第二階層快取記憶體作路預測來節省動

態讀取耗能

WP-TLB: Way Prediction for Set-Associative L2 Cache to Save

Dynamic Read Energy

研 究 生：周資敏

指導教授：單智君 教授

中 華 民 國 九 十 七 年 十 月

藉由對群組關聯式的第二階層快取記憶體作路預測來節省動態讀取耗能

WP-TLB: Way Prediction for Set-Associative L2 Cache to Save Dynamic Read Energy

研 究 生：周資敏 Student：Tzu-Min Chou

指導教授：單智君 Advisor：Jyh-Jiun Shann

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

October 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年十月

i

藉由對群組關聯式的第二階層快取記憶體作路預測來節省動態讀取耗能

學生: 周資敏 指導教授: 單智君 博士

國立交通大學資訊工程學系(研究所)碩士班

摘要

第二階層快取記憶體 (L2 cache)一般都是設計成群組關聯式快取記憶體

(set-associative cache)，且關聯度 (associativity)很高。相較於直接對映快取記

憶體 (direct-mapped cache)，會花費更多的電耗及存取時間。如果我們在群組關聯式

快取記憶體中，可以預先知道需要的資料在哪一個路 (way)，在只開那個路之下，耗電

及存取時間就可以與一個路同樣大小的直接對映快取記憶體差不多。

在這篇文章中，我們提出了一種針對 L2 cache作路預測 (way prediction)的設計。

藉由在延伸設計的轉譯後備緩衝區 (Translation Lookaside Buffer, TLB)中，儲存用

來存取 L2 cache 之路索引 (way index)，在不失效能的前提之下，達到節省動態耗能

的主要目的，另外還能節省 L2 cache 的平均存取時間。本設計最大的特色是，無論路

預測是否正確，皆可只存取 L2 cache 的一個路，以節省讀取耗能及存取時間。亦即，

即使當錯誤的路預測發生時，也不需要再重開其他的路找尋需要的資料。

我們使用 CACTI 4.2 來評估記憶體元件耗電和存取時間，並修改 SimpleScalar 3.0

來把我們的設計加進去，然後在 SimpleScalar上執行 SPEC 2000得到模擬數據。在 256KB

16-way L2 cache 之中，我們可以節省 65%的動態耗電，減少 17%的 L2 快取平均存取時

間，而只造成 0.6%的靜態耗電增加，且不會有任何效能的流失。

ii

WP-TLB: Way Prediction for Set-Associative L2 Cache to Save Dynamic Read Energy

Student: Tzu-Min Chou Advisor: Dr. Jean Jyh-Jiun Shann

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

Abstract

An L2 cache is usually implemented as a set-associative cache, and its associativity is

usually high. It is obvious that there are more energy and access latency consumed on a

set-associative cache than a direct-mapped cache with the same size. If we can know the way

of the required data in advance, under only activating the corresponding way, the energy con-

sumption and the access latency will be close to a direct-mapped cache which has the same

size as a single way of the L2 cache.

In this paper, we proposed a design for the way prediction of L2 cache. By storing way

indices in extension designed TLB (we called WP-TLB), under the premise that no perfor-

mance is lost, we can achieve the main goal of saving dynamic read energy and the secondary

goal of reducing access latency. Most importantly, whether the way prediction is correct or

not, the energy and access latency can be saved. This is because that we can guarantee that

even when miss prediction of way occurs, the other ways do not need to be probed for

searching the required data.

We use CACTI 4.2 to estimate energy consumption and access latency of memory com-

ponents. Moreover, we run SPEC2000 benchmark in modified SimpleScalar 3.0 simulator.

According to the simulation results, in the best case, the dynamic power can be saved about

65% and the average access latency of L2 cache can be reduced 17%. And the static power is

just increased about 0.6%. No overall performance will lose under our design.

iii

致謝

感謝我的指導教授 單智君這兩年來對我細心的教誨，讓我由懵懂無知的門外漢，

漸漸地深入計算機架構這個領域。另外要感謝 鍾崇斌教授在計劃會議中給予的意見指

導，雖然嚴厲但非常受用。最後要感謝論文研究過程中參與討論以及不吝付出幫助的學

長姐和同學們，你們的意見使我更容易看透自己研究的缺點與需要改善的地方。

感謝主，因為有祢的寵幸，使我在研究過程中更能不怕挫折打倒。我願舉起我的心

來敬拜祢，用生命來回應祢的愛，喔！我的主，讓我單單在乎祢，盡情的敬拜祢，阿們。

iv

Table of Contents

摘要 ... i

Abstract ... ii

致謝 ... iii

Table of Contents ... iv

List of Figures .. vi

List of Tables ... viii

Chapter 1 Introduction .. 1

1.1 Power Consumption of an L2 Cache ... 1

1.2 Way Prediction Concept .. 3

1.3 Motivation & Objective ... 4

Chapter 2 Background and Related Work ... 6

2.1 On-chip cache system .. 6

2.2 Way Probe Organization .. 8

2.3 Predictive Sequential Associative Cache ... 9

2.4 Way-Predicting Set-Associative Cache for High Performance and Low energy

Consumption ... 10

2.5 Location Cache: A Low-Power L2 Cache System .. 12

2.6 Comparisons of Related Works ... 14

Chapter 3 Design Approach .. 16

3.1 Design Strategy .. 16

3.2 Architecture Overview ... 19

3.3 Way Table Design ... 20

3.4 Case Analysis ... 26

3.5 Hardware Implementation ... 27

Chapter 4 Experimental Result ... 29

4.1 Simulation Environment .. 29

4.2 Energy Equations ... 31

v

4.3 Benchmark Evaluation ... 34

4.4 Access Latency for L2 Cache .. 43

4.5 Discussion .. 44

Chapter 5 Conclusion and Future Work .. 46

5.1 Conclusion ... 46

5.2 Future Work ... 46

References .. 50

vi

List of Figures

FIGURE 1-1 POWER DISTRIBUTION OF OVERALL PROCESSOR .. 2

FIGURE 1-2 A NORMAL READ ACTIVITY OF 4-WAY SET-ASSOCIATIVE CACHE .. 2

FIGURE 1-3 READ ENERGY PER ACCESS IN A 512KB 8-WAY CACHE .. 3

FIGURE 2-1 COMMON CONFIGURATIONS OF CACHE SYSTEM ... 7

FIGURE 2-2 ARCHITECTURE OF OUR CACHE SYSTEM .. 8

FIGURE 2-3 AN EXAMPLE FOR P.S.A CACHE .. 10

FIGURE 2-4 AN EXAMPLE OF W.P.S.A CACHE .. 11

FIGURE 2-5 ACTIONS WHEN MISS WAY PREDICTION ... 12

FIGURE 2-6 THE DEFINITION OF “NEXT CACHE LINE” ... 12

FIGURE 2-7 ARCHITECTURE OF LOCATION CACHE SYSTEM ... 13

FIGURE 2-8 PREDICTION RATES IN DIFFERENT ENTRIES LOCATION CACHE ... 14

FIGURE 3-1 A TLB AND THE ATTACHED WAY TABLE ... 17

FIGURE 3-2 PERFORMANCE DEGRADATION WHEN ACCESS WAY INDEX AFTER L1 MISS OCCURS 17

FIGURE 3-3 BLOCK BUFFERING FOR WAY TABLE ... 18

FIGURE 3-4 AVERAGE BUFFER HIT RATE (SPEC2000) .. 19

FIGURE 3-5 ARCHITECTURE OVERVIEW OF OUR DESIGN ... 20

FIGURE 3-6 CONTENTS OF THE WAY TABLE ... 21

FIGURE 3-7 UTILIZATION RATES IN WAY TABLE ... 22

FIGURE 3-8 INDEXING OF THE WAY INDEX IN WAY TABLE BY USING “FIELD INDEX” ... 23

FIGURE 3-9 AN EXAMPLE OF MISS PREDICTION WAY... 25

FIGURE 3-10 AN EXAMPLE OF DYNAMIC ENERGY SAVING OF L2 CACHE BY WAY PREDICTION 25

FIGURE 3-11 CASE ANALYSIS FOR OUR DESIGN .. 27

FIGURE 3-12 ARCHITECTURE OF WAY PREDICTION HARDWARE .. 28

FIGURE 4-1 ADDITIONAL LEAKAGE POWER OF L2 CACHE ... 33

FIGURE 4-2 NORMALIZED DYNAMIC READ ENERGY ... 34

FIGURE 4-3 STATISTICS OF L1 AND L2 CACHE MISS RATES ... 35

FIGURE 4-4 STATISTICS OF L1 AND L2 AVERAGE CACHE MISS RATES ... 35

FIGURE 4-5 AVERAGE L1 MISS TYPE ... 35

FIGURE 4-6 WAY TABLE HIT RATE WHEN L1 IS MISS ... 36

FIGURE 4-7 AVERAGE WAY TABLE HIT RATE WHEN L1 IS MISS ... 36

FIGURE 4-8 AVERAGE WAY HIT TYPE .. 37

FIGURE 4-9 NUMBER OF WAY TABLE HITS PER WAY TABLE WRITE ... 38

FIGURE 4-10 RATIO OF DYNAMIC READ ENERGY SAVING (COMPARE TO ORIGINAL L2 CACHE) 39

FIGURE 4-11 RATIO OF DYNAMIC READ ENERGY SAVING (COMPARE TO OVERALL CACHE) 39

FIGURE 4-12 DYNAMIC ENERGY SAVING OF DIFFERENT CACHE CONFIGURATIONS ... 40

FIGURE 4-13 L2 DYNAMIC POWER SAVING FOR DIFFERENT WAY TABLE ENTRIES .. 41

file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212�

vii

FIGURE 4-14 DYNAMIC ENERGY SAVED (COMPARED TO LOCATION CACHE) ... 42

FIGURE 4-15 CHIP AREA INCREASE (COMPARED TO L2 CACHE) .. 43

FIGURE 4-16 PERFORMANCE ENHANCED (MEASURED BY CYCLE COUNTS)... 43

FIGURE 4-17 AVERAGE CACHE OCCUPANCY OF PREDICT ACCESSES .. 44

FIGURE 5-1 WP-TLB PLAYS AS PRE-ACTIVATION ROLE .. 47

FIGURE 5-2 PERFORMANCE DEGRADATION FOR WAKING UP L2 CACHE .. 48

FIGURE 5-3 DESIGN FOR NON-BLOCKING L1 CACHE ... 49

file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212
file:///G:\1022_way-prediction\way-prediction\thesis%20paper\1022_���~�פ�_�P���.docx%23_Toc212

viii

List of Tables

TABLE 2-1 COMPARISONS OF RELATED WORKS ... 15

TABLE 3-1 TIMING OF WRITING AND UPDATING WAY TABLE ... 24

TABLE 4-1 CACHE CONFIGURATIONS ... 29

TABLE 4-2 WAY TABLE SIZE ... 30

TABLE 4-3 PARAMETERS OF MEMORY COMPONENTS FROM CACTI 4.2 ... 32

TABLE 4-4 STATISTICS OF DIFFERENT WAY TABLE ENTRIES ... 40

TABLE 4-5 COMPARISONS OF RELATED WORKS AND OUR DESIGN .. 45

1

Chapter 1 Introduction

Since on-chip L2 cache is bigger and bigger nowadays, low power L2 cache becomes an

important issue in the cache system design. In this thesis, we study the design of low power

L2 caches in architecture level. And our means is to save the dynamic energy of L2 caches.

The power consumption of an on-chip set-associative L2 cache is discussed in this chap-

ter. We analyze the dynamic read energy per access in set-associative cache and introduce the

basic concept of way prediction approach. Motivations and objectives are also presented here.

1.1 Power Consumption of an L2 Cache

In the nowadays desktop processor design, on-chip set-associative L2 cache is always a

necessary component. A level-2 cache can decrease cache miss rate thus enhance performance.

Properly speaking, a larger L2 cache can decrease cache miss rate more, but its power con-

sumption will also increase significantly. There are some characteristics of an L2 cache that

we concerned:

1. The associativity is high (≥ 4).

– Higher associativity means that more cache lines should be read per access.

2. Cache line size is big (≥ 64 Bytes).

– Bigger cache line means that more read energy when accessing a cache line.

3. Access frequency depends on L1 miss rate.

– The higher L1 miss rate, the more L2 cache accesses will occur, and thus energy con-

sumption of the L2 cache will increase.

Figure 1-1 shows the power distribution of an overall processor (70 nm) [1]. The propor-

tion of 1MB L2 cache power is 20%. 11% of the processor power is the static power of the L2

cache and the other 9% part is the dynamic power. Currently, many researches focus on static

power of L2 cache and their achievements have already saved about 80% of static power.

2

However, there are just few researches focus on dynamic power of L2 cache which will also

increase while the size of L2 cache is growing. And most importantly, much of dynamic

energy consumes on reading unnecessary tags and data. So we would like to save dynamic

energy from this 9% part.

In a RAM-tagged N-way set-associative cache, N tags and N L2 cache lines are accessed

concurrently. After N tags comparison, if tag hit occurs, only one cache line will be chosen

from N L2 cache lines. Figure 1-2 shows the simple architecture of a 4-way set-associative

cache. Assume that the required data is in way 2. In the conventional process, all tags and

cache lines are accessed concurrently. But, i.e., unnecessary tags and data in other ways (way

0, way1 and way 3) are read out too. Compared to a set-associative cache with sequential

Figure 1-1 Power Distribution of Overall Processor

Figure 1-2 A Normal Read Activity of 4-way Set-associative Cache

3

search approach, this conventional process reduces the latency of accessing cache but energy

consumption will get higher.

Figure 1-3 shows the read energy per access in a 512KB 8-way L2 cache which is a

common configuration in desktop processor. Reading of data and tags consumes 77.9% of

total read energy per access. Since only a single way will be the required data while the cache

is hit, 68.3% of read energy consumes on accessing unnecessary tags and data. Our research

will focus on eliminating this unnecessary read energy. To achieve this goal, a way prediction

mechanism can be applied by early identifing the way of the required data, and only a single

way is activated if the way prediction is correct.

1.2 Way Prediction Concept

The basic idea of a way prediction scheme is to make a prediction of the way where the

required data may be located in a set-associative cache. This scheme will probe the predicted

way first. Only a single way is accessed at the first probe. If the prediction is correct, access

latency and energy consumption of the cache is similar to that of a direct-mapped cache with

the same size of a single way. In the general approaches, if the first probe misses, the second

probe will access all ways expect the first probed way. In other words, if the prediction is

wrong, the cache is accessed again to retrieve the desired data, that is, the cache is accessed

twice. The performance will degrade since the access latency of the cache becomes longer.

Figure 1-3 Read Energy per Access in a 512KB 8-way Cache

76.7%

1.2%

0.4%

4.9% 17.0%

Read Energy per Access(512KB, 8 way)

read data (76.7%)

read tag (1.2%)

compare (0.4%)

mux driver (4.9%)

data output (17%)

4

1.3 Motivation & Objective

 In this section, the motivations and objectives are discussed. The motivations will focus

on the benefits that past researches do not achieve. And we also introduce our design ap-

proach and goals in this section briefly.

Three motivations are showed below:

1. There is much dynamic read energy consumed on accessing unnecessary tags and cache

lines in an L2 cache (about 68% in 512KB 8-way L2 cache). If we can early identify the

way of the required data, at least 68% of dynamic read energy can be saved per access.

2. The researches of way prediction for L2 cache are few. The best power saving of L2

cache among these researches is about 47% because the prediction accuracy is not high

(70~80%). The optimal case should save 70~80% of dynamic read energy.

3. If we can guarantee that the other ways except the predicted way need not to be probed

when the way prediction is wrong, both power consumption and access latency of L2

cache can be enhanced.

Three objectives of our design are showed below:

1. Attach a table, called way table, in a translation lookaside buffer (TLB) to record the way

index of an L2 cache line when this line is placed into L2 cache. Way Index indicates the

way number in a set-associative cache. And this enhanced TLB is called way predicted

TLB (WP-TLB). The merit of attaching the way table in a TLB is that the way table need

not store and compare tags then.

2. When an address reference come to WP-TLB, the way index of the L2 cache line asso-

ciated with this address reference in the way table is searched for way prediction. If the

way table miss occurs, all tags and data are read out which is the same as a conventional

access of a set-associative cache. If the way table hit occurs, only a single way is acti-

vated whether the way prediction is correct or not. When the way table hit occurs and

5

prediction is wrong, we called this situation as miss way prediction.

3. When miss way prediction occurs, make sure that miss prediction line is not in other

ways. The way index in the way table is the latest information. If the wrong way index

causes miss way prediction, it means that the corresponding L2 cache line was replaced

and has never been moved in L2 cache again. Thus only a single way must be probed

when miss way prediction occurs.

 In the next chapter, we will introduce the background associated with our research more

precisely and also discuss some related researches which can be applied on L2 cache. The de-

tails of our design will be proposed in Chapter 3. And the experimental results and discussions

are showed in Chapter 4. The last chapter include conclusion of this research and future works.

And the future works will discuss static power of L2 cache and discuss our design under

another cache environment.

6

Chapter 2 Background and Related Work

This chapter will introduce on-chip cache system more precisely, and discuss some re-

lated works of way prediction mechanisms which may be applied to the L2 cache. We also

summarize the comparisons of the related works.

2.1 On-chip cache system

In the conventional two-level cache system, L1 cache should be probed first. L2 cache

would be accessed if and only if L1 cache misses occurred. This kind of cache hierarchy will

improve overall hit rate of on-chip cache. In modern on-chip cache design, designers prefer

lower cache miss rate because cache miss penalty needs hundreds of cycles. These penalties

usually result in bad performance. Therefore, bigger caches become more and more popular

due to the necessity of higher cache hit rate. However, L1 cache size is not supposed to be

enlarged because L1 cache is usually implemented to fit the cycle time of the CPU pipeline.

Enlarging L1 cache size may cause deeper CPU pipeline or longer cycle time. The other

choice is enlarging L2 cache size. The bigger L2 cache may decrease the cache miss rate but

the dynamic and static power will increase significantly.

Figure 2-1 shows a general cache system architecture and the configurations of compo-

nents in the cache system. Level-1 (L1) cache which is indexed by virtual address is usually

separated into instruction cache and data cache and their size should not be too large. Transla-

tion lookaside buffer (TLB) is designed for translating virtual address to physical address.

TLB is also separated into instruction TLB and data TLB. An unified level-2 (L2) cache

which is indexed by physical address contains instructions and data. The size of L2 cache is

about 10 times bigger than L1 cache and its associativity is usually higher than eight or the

same.

The overall access latency of on-chip cache is about five or more clock cycles. However,

the off-chip data transfer for cache miss penalty is about hundreds of clock cycles. Avoiding

7

off-chip transfers is an important method for enhancing performance. A general solution is

choosing a large size and high associativity L2 cache. This kind of L2 cache can decrease

cache miss rate efficiently.

 Assumption of our cache system environment is showed in Figure 2-2. Separate instruc-

tion and data L1 caches are implemented, and so are TLBs. An unified L2 cache which con-

tains instructions and data is implemented. Moreover, blocking L1 caches are implemented

[2]. Blocking cache means that when cache miss occurs, the cache will stall until the required

data are written into the cache. We also use Block Buffering technique for TLB [3]. A TLB

buffer which maintains the last accessed TLB entry is probed first. In Figure 2-2, an ITLB

buffer and a DTLB buffer are attached for ITLB and DTLB respectively.

Figure 2-1 Common Configurations of Cache System

8

INSTRUCTION

L1 CACHE

UNIFIED L2 CACHE

ITLB

Instruction Address

virtual address

=

tag

tag

L1 Miss

physical

address

ITLB Buffer

DATA

L1 CACHE

DTLB

Data Address

virtual address

=

tag

tag

L1 Miss

physical

address

DTLB Buffer

L1 Cache Line

L1 Cache Line physical address

L1 Cache Line

Bus

2.2 Way Probe Organization

 Prior works for way prediction can be categorized by the order of the way which the

cache is probed. There are two organizations for cache probing order:

1. Statically Ordered Cache Probes

A fixed way, called the direct-mapped location, is probed first. The cache line of the pre-

dicted way should be moved to the direct-mapped location. This scheme may consume

large amount of power as well as bus bandwidth thus it is not popular in modern cache

design.

Statically ordered cache probes include the Hash-Rehash cache design [4] and the Pseu-

do-associative cache design [5] which were originally proposed to reduce the miss rates

of direct-mapped caches.

2. Dynamically Ordered Cache Probes

Figure 2-2 Architecture of Our Cache System

9

The initial probe into a cache is not limited to a fixed way, but rather to any way in the

cache. This scheme can redirect the first probe to the predicted way. No cache line trans-

fer between each way.

Most of way prediction mechanisms in current design are based on dynamically ordered

cache probes. The Predictive Sequential Associative (P.S.A) cache design [6] moves the

prediction procedure to previous stages of pipelining so that the most recently used

(MRU) information is presented to the cache simultaneously with the memory reference.

The Reactive-Associative Cache design [7] moves most active blocks to direct-mapped

positions and reactively displaces only conflicting blocks based on the PSA cache design.

The Way-Predicting Set-Associative (W.P.S.A) cache design [8] keeps the MRU infor-

mation associated to each set. The spirit of the Location Cache design [9] shows that the

next cache line which should be placed in the next set may be referenced later when ac-

cessing the current cache line.

 In the next three sections, we will introduce related works of dynamically ordered cache

probes which can be applied to L2 cache.

2.3 Predictive Sequential Associative Cache

 In a sequential search set-associative cache, ways are sequentially probed by an order to

find the required data. Brad Calder and et al proposed a Predictive Sequential Associative

(P.S.A) cache uses prediction sources to guide the cache examination in order to reduce the

amount of searching and thus average access latency [6]. Although this research is not for re-

ducing cache power, the design concept can be applied to reduce it.

 In P.S.A cache, two data structures, the steering bit table and the rehash bits, are used to

implement predictive cache. The Steering Bit Table (SBT) determines which way in a set

should be probed first. And the rehash bits reduce the number of probes. When miss way pre-

diction occurs, the rehash bits of a missing way would indicate which way should be probed

10

next. Figure 2-3 shows a simple 2-way P.S.A. cache architecture. The prediction sources can

be effective address, register contents and offset, and register numbers and offset. For exam-

ple, in Figure 2-3, the prediction source is partial bits of effective address, that is, 001_10.

When this cache line is referenced but not in L2 cache, the most right bit of tag bits will de-

cide which way should be placed. So the cache line with 001_10 will be placed in way 1.

However, if way 1 has already been occupied by another cache line, a rehash function will be

performed to place this cache line to another way and then set the rehash bit of the placed line

entry. In this example, the prediction source will index to entry-6 of steering bit table. And

this entry stores the information of the first probed way, i.e., way number one. If the data is

not in it, the rehash bits will indicate which way should be probed next by using rehash func-

tion. In this case, the first probe has already searched out the required data.

There are two drawbacks of P.S.A cache:

 Hash collision is a big problem when the entries of steering bit table are few. This will

cause the number of probes per reference getting high.

 In access latency and power domains, sequential search is not proper to high associativi-

ty cache. In the worst case, an N-way cache will be accessed N times.

2.4 Way-Predicting Set-Associative Cache for

Figure 2-3 An Example for P.S.A cache

11

High Performance and Low energy Consump-

tion

 Koji Inoue and et al are proposed a Way-Predicting Set-Associative (W.P.S.A) cache for

reducing energy consumption of a set associative cache [8]. When accessing a cache set, most

recently used (MRU) block was treated as way prediction source. W.P.S.A cache proposed

MRU way prediction mechanism. It is a simple idea but the effect is pretty good.

 The MRU information for each set, which is a flag, is used to speculatively choose one

way from the corresponding set. Figure 2-4 shows the basic architecture of MRU way predic-

tion. Each set has MRU information bits which indicate the most recently used way. When a

reference is coming, MRU way is probed first. If miss way prediction occurs, other ways

should be probed concurrently in the next cycle, and thus, double of cache access latency will

be spent as shown in Figure 2-5. This approach will gain much better prediction accuracy in

instruction cache than in data cache. And the hardware overhead is very low.

There are two drawbacks of W.P.S.A cache:

 When miss way prediction, the other ways would be probed to find required data. Cache

access latency will become longer.

 L2 caches are unified caches, where most of the references come from L1 data cache

Figure 2-4 An Example of W.P.S.A cache

12

misses. Therefore, MRU based prediction does not always work well in L2 caches.

2.5 Location Cache: A Low-Power L2 Cache

System

 Rui Min and et al proposed a location cache believes that the memory locations are

usually referenced in sequences or strides. It means that the next cache line with the same tag

may be referenced later when accessing current cache line. In Figure 2-6, the current cache

line and the next cache line are the continuous memory location. Both of these two cache lines

have the same tag and will be placed in the adjacent sets. This paper proposes to use a small

cache, called location cache, to store the location (way information) of the next cache line

when accessing the current line. And the design is for L2 cache only.

Figure 2-5 Actions When Miss Way Prediction

Figure 2-6 the Definition of “Next Cache Line”

13

 Whenever a reference to the L2 cache is generated, the way information of the next

cache line is searched in the next set and feed the way information into the location cache.

Figure 2-7 is copied from the conference paper [9]. The location cache is accessed in parallel

with the L1 caches. The tag arrays of the L2 cache are duplicated and these duplicated tag ar-

rays are called location tag arrays. When the L2 cache is accessed, the location tag arrays are

accessed to generate the way information for the next possible memory reference. The gener-

ated location information is then sent to and stored in the location cache.

 Figure 2-8 is the prediction accuracy of location caches with different numbers of entries.

It also compares the location cache to the Way-Predicting Set-Associative Cache. You can see

that if the entries of location cache are more than 256 or the same, the prediction rate will be

better than W.P.S.A cache. Our approach and this research have many similarities. But some

drawbacks in this paper will be solved in our research.

There are two drawbacks of location cache:

 It is the same as the W.P.S.A cache that, when miss way prediction occurs, the other

ways would be probed to find the required data. Cache access latency will become long-

er.

 Tag arrays of the L2 cache need to be duplicated, and thus, hardware overhead and pow-

er consumption will increase.

Figure 2-7 Architecture of Location Cache System

14

2.6 Comparisons of Related Works

 Table 2-1 is the comparisons of related works. The P.S.A cache and W.P.S.A cache can be

applied to both L1 and L2 caches. Location cache is design for L2 cache and thus the energy

saving of L2 cache is quite good. All of three related works need to activate other ways when

miss way prediction occurs. In the aspect of saving read energy of 512KB 8-way L2 cache,

from our simulation statistics, location cache and W.P.S.A cache can save about 50% and 30%

of dynamic read energy, respectively. Since P.S.A cache is not suitable for high associativity

cache, the energy saving of 8-way cache will be low. Compared on storage overhead issue,

based on the energy saving mentioned above, W.P.S.A cache needs the lowest 192 bytes sto-

rage and the storage overhead is fixed. The location cache needs a 1KB location cache and

8KB duplicated tag arrays. P.S.A cache needs a 4096-entry steering bit table and a rehash bit

of each line entry of L2 cache. The storage overhead is about 2KB but save the lowest read

energy of L2 cache.

0.39 0.48 0.51
0.71 0.77 0.68

0

0.2

0.4

0.6

0.8

1

Entries of Location Cache

32 64 128 256 512 W.P.S.A.

Figure 2-8 Prediction Rates in Different Entries Location Cache

15

To give a simple abstract of our approach, we focus on saving dynamic read energy on L2

cache. In our design, the other ways do not need to be probed when miss way prediction oc-

curs. We achieve high read energy saving of L2 cache and the storage overhead is acceptable.

In the next chapter, we will detailed introduce our design strategy and approach.

Table 2-1 Comparisons of Related Works

16

Chapter 3 Design Approach

This chapter shows our design details. In section 3.1, we introduce how to make choices

of storing way index and to reduce energy overhead of using way index. Section 3.2 is our

design architecture overview and our design specifics are showed in section 3.3. Moreover,

many cases of cache activities should be analyzed and possible hardware implementation is

proposed in section3.4 and section 3.5, respectively.

3.1 Design Strategy

In our approach, a table is designed to store the way indices of L2 cache lines when an L2

cache line is moved into L2 cache. If we use an independent table to store way indices, the

extra tag should be add for each entry. However, if attach the table in TLB, we need not to

store tag in each entry and can avoid doing the tag comparison because TLB has already done

the job. A TLB has a fixed number of slots containing page table entries, which map virtual

addresses onto physical addresses. In general, a page contains many L2 cache lines according

to the page size and the L2 cache line size. We can attach a table to store the way indices for

the L2 cache lines contained in this page. This table is called a way table and the way index is

the way number of an L2 cache line. Each way table entry needs N fields to store way indices

if the page contains N L2 cache lines. And the number of way table entries is the same as the

number of the TLB entries. More way table entries will contain more way indices. Energy

saving of different numbers of way table entries will be discussed in Section 4.3. Figure 3-1

shows the concept of modern TLB [10] and the way table. Each entry of the TLB stores a vir-

tual page number (VPN) and a physical page number (PPN) which is accessed simultaneously

with the way table. When a VPN reference comes, the corresponding PPN and way table en-

try are read out. One field of the read out way table entry which contains the corresponding

way index can be chosen by partial virtual address. Compared to location cache, we can use

fewer bits to store way index per L2 cache line.

17

Considering the issue of access timing, there are two possible timing for accessing way

index:

1. After L1 miss occurs: If we access way index after L1 miss occurs, the performance will

degrade due to additional delay for accessing way table. Figure 3-2 shows the perfor-

mance loss estimated by the execution cycle counts of SPEC2000 [11] benchmark. Our

simulation results show that access a 128-entry way table and an 8KB L1 cache needs

one cycle and access an 512KB L2 cache needs five cycles. If the way table is accessed

after the L1 cache miss occurs, the performance will cause 1.01% degradation in average.

2. At every L1 access cycles: In this case, the time for accessing way index in a TLB may

Figure 3-1 A TLB and the Attached Way Table

2.17%

0.03%

1.01%

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

performance degradation(estimate by cycle counts)

ammp applu
apsi art
bzip2 crafty
eon equake
facerec fma3d
galgel gap
gcc gzip
lucas mcf
mesa mgrid
parser perlbmk
swim twolf
vpr wupwise
average

Figure 3-2 Performance Degradation When Access Way Index after L1 Miss Occurs

18

be hidden in the access latency of an L1 cache. However, it also means that we have to

access way index in every L1 access cycle even if L1 cache hit occurs.

 Among the above two choices, we choose the second approach because of two reasons.

First, we do not want to suffer any performance degradation. The additional execution cycles

will waste the power of the whole chip, not just only the power of the cache system. However,

accessing the way table in every cycles is not a power efficient way. Although the second ap-

proach causes unnecessary accesses of the way table, the dynamic energy of accessing these

unnecessary way indices is much smaller than the extra static energy of a whole processor.

The second reason is that we may apply a technique called block buffering [3] to decrease the

access energy when hitting in the buffer. Figure 3-3 is the concept of applying block buffering

technique to the way table. In this figure, way buffer is a single entry buffer which keeps the

last accessed entry of the way table. Before accessing the way table, the way buffer is ac-

cessed first. If the way buffer hits, then the way table access is passed by. This technique can

eliminate the drawback of accessing a way index of the way table in every cycle since the

power of accessing way index in a single entry buffer is much lower than in the way table.

 Figure 3-4 shows the average buffer hit rate of SPEC2000 benchmark. The hit rate of a

128-entry ITLB is 77% and the hit rate of a 128-entry DTLB is 51%. Therefore, most of the

way indices are hit in the way buffer and, hence, the way table access times decrease. The

Figure 3-3 Block Buffering for Way Table

19

overall dynamic energy of the way table also becomes lower.

3.2 Architecture Overview

Figure 3-5 shows our cache architecture. For low power goal, we record way index by

extending additional bits in TLB when an L2 cache line is moved into L2 cache. These addi-

tional bits in the TLB are called way table. We separate the way table into an instruction way

table and a data way table. The enhanced TLB is called Way Predicted TLB (WP-TLB). Be-

fore this L2 cache line is accessed again, we could search its corresponding way index in the

way table. If the way table contains the way index of this L2 cache line, then we can just ac-

tivate the predicted way of the L2 cache for saving dynamic energy.

When an L2 cache line is swapped out of the L2 cache, the corresponding way index in

the way table will not be invalidated. This action will cause miss way prediction problem.

Fortunately, in our approach, when miss way prediction occurs, the dynamic energy is also

saved because the other ways do not need to be probed to find the required cache line. This is

because that each L2 cache line has its own position in the way table, and no two different L2

cache lines will be written to the same field of a way table entry. Therefore, when miss way

prediction occurs, it means that this L2 cache line is not in the L2 cache. If this L2 cache line

is in another way, the way table must have been stored the correct way index when this L2

Figure 3-4 Average Buffer Hit Rate (SPEC2000)

20

cache line is moved into one of the other ways. Based on this design approach, we do not

need to invalidate the corresponding way index in the way table when an L2 cache line is

swapped out. The complexity of the way table implementation is getting simple.

3.3 Way Table Design

Contents and utilization of a way table

 Figure 3-6 shows the proposed way table structure. The number of fields depends on

memory page size dividing by L2 cache line size. And the number of entries in a way table is

the same as the number of TLB entries. If a page contains N L2 cache lines, N fields are at-

tached to each way table entry. Each field contains a valid bit and a way index. The valid bit is

equal to one if this line’s way index has ever been recorded. All ways of the L2 cache will be

activated simultaneously while the corresponding valid bit is zero. This valid bit can guaran-

tee that we will not use the way index which has never been recorded. If no valid bit is pro-

vided in the way table, the following case will happen: when an L2 cache line was ever rec-

orded but the corresponding TLB entry was replaced, the way index of this L2 cache line will

not backup. Later a reference of this cache line comes again; the TLB will miss and then place

Figure 3-5 Architecture Overview of Our Design

21

the corresponding page into a TLB entry. Because we do not have the valid bit for each way

index, so the way index will indicate an indeterminate way and may cause miss way predic-

tion. In this situation, we need to probe the other ways when miss way prediction occurs be-

cause the required data may be located in one of them. The way index is the way number of

the L2 cache line. A 4-way L2 cache means we need two bits to record.

In Figure 3-7, if we use N fields to store way indices for a page, the average utilization

fields of SPEC2000 benchmark are 37% for a 128-entry instruction way table and 63% for a

128-entry data way table. The utilization rate means that how many fields are recorded in a

way table entry. The utilization rate is the higher is the better. For a data way table, the highest

rate is 95% and the lowest rate is 6%. The gap between the highest and the lowest rate is very

large because the data use for each program is usually different. And the average rate is 63%

proves that most of N fields for a page are utilized efficiently. For an instruction way table, the

highest rate is 58% and the lowest rate is 25%. This result is caused by branch instructions.

The average rate is only 37% tells us that we can reduce half of fields per entry, for example,

two L2 cache lines share one field. Leaving the cache line competition problem aside, if the

numbers of fields are reduced by half, the additional tag need to be added in each field in or-

der to recognize different L2 cache lines. And the overall way table size with N/2 fields is

similar to a way table with N fields. The conclusion is that if we want to reduce the numbers

of fields, one-fourth of fields or fewer are better. And it may be worthy when the utilization

Figure 3-6 Contents of the Way Table

22

rate is less than 25%.

The relation between L2 cache lines and fields of the way table

A page would map to a physical memory block if this page resided at the memory. Figure

3-8 is an example about how a memory reference map to the dedicate field. In Figure 3-8, we

assume the virtual page 101110 maps to the physical page 1101. A memory reference 101110

0101 comes. After TLB translation, the physical address which is divided into tag, set and line

offset fields is 1101 0101. The page offset contains four bits and the line offset contains two

bits. It means that there are four L2 cache lines (A, B, C and D) in this memory page. And the

left two bits of the page offset (we called field index) would indicate the field in the way table

that we should access. In this example, the field index 01 which belongs to cache line B will

indicate to the field 1 of the corresponding way table entry. Therefore, when a memory refer-

ence comes to the way table or an L2 cache line is moved into L2 cache, we can easily access

the correct field of the way table by using its field index.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

iway dway

25.36%

6.37%

58.25%

95.43%

37.39%

63.30%

Utilization Rates in Way Table

lowest

highest

average

Figure 3-7 Utilization Rates in Way Table

23

Writing and updating the way table

Table 3-1 shows the timing and the actions when writing and updating a way table. There

are two writing conditions. First, when an L2 cache line is moved into the L2 cache, the way

index of this line would be recorded into the way table. Second, when way table miss (valid

bit is 0) but L2 cache hit occurs, it means that the way table ever recorded the way index of

the L2 cache line but suddenly the page of this line was swapped out of the TLB, and the cor-

responding way table entry is not backup. So we must record its way index again. Besides,

when an L2 cache line is swapped out, we do not invalidate the valid bit of the corresponding

field in the way table because the overhead of searching way table for invalidating the way

index of the replaced cache line is much complicated. Moreover, avoid the invalidation of the

replaced cache line will cause miss way prediction. However, our approach will probe only a

single way when miss way prediction occurs. So the effective of no invalidation for the re-

placed cache line seems not serious. The way table needs to be updated a new way index in

one situation: when miss way prediction occurs which will be discussed briefly in the next

paragraph.

Figure 3-8 Indexing of the Way Index in Way Table by Using “Field Index”

24

Figure 3-9 is an example of the miss way prediction case. Originally, line B has already

resided at way 1. After line A which comes from the main memory is moved into way 1, line

B is swapped out of L2 cache. At this moment, we do not invalidate the valid bit of line B’s

corresponding field. Later a memory reference of line B comes, and then its valid bit and the

way index of the corresponding field are 1 and 01, respectively. Only way 1 is probed at the

first access, and line A resides in it. Thus miss way prediction occurs and the way table needs

to be updated the new way index of line B. In Figure 3-9, when miss way prediction occurs, if

line B was ever moved into way 0, 2 or 3, the corresponding field would be updated the new

way index with way 0, 2 or 3 but not way 1. The field of line B holds a wrong way index be-

cause since line B was replaced by line A, line B has never been moved into the L2 cache

again. Miss way prediction tells us that line B is not in L2 cache. In fact, our approach guar-

antees that the miss predicted line is not in L2 cache. We do not need to spend extra delay for

activating the other ways of the corresponding set. The read energy is also saved when miss

way prediction occurs.

Table 3-1 Timing of Writing and Updating Way Table

25

A basic example of saving dynamic energy

Figure 3-10 shows an example of saving the dynamic energy. Line A is an L2 cache line

and it contains four L1 cache lines, which are A0, A1, A2 and A3. When the data of A1 is ac-

cessed in the first time, A (A0, A1, A2 and A3) was moved into the L2 cache and then A1 was

moved into the L1 cache. The way index of the corresponding field of the way table was

wrote. Later the references of A0, A2 and A3 came, the way index could be found in the way

table and just activated A’s way in L2 cache. Probably, A1 was dropped out of L1 cache but A

was still in L2 cache. The memory reference of A1 could just activate a single way in L2

cache. Besides, if A is dropped out of the L2 cache but the corresponding field is not flushed

by TLB replacement, the dynamic read energy can also be saved while references of A comes.

This situation is such called miss way prediction.

Timings of just activating a single way (save dynamic energy) are summarized below:

Figure 3-9 an Example of Miss Prediction Way

Figure 3-10 an Example of Dynamic Energy Saving of L2 Cache by Way Prediction

26

– When references of A0, A2 or A3 come.

– A1 is dropped out of the L1 cache but A is still in the L2 cache.

– A is dropped out of the L2 cache but the valid bit of corresponding field is still be 1.

3.4 Case Analysis

 In this section, we would like to analyze all cases of an L2 cache in a read procedure.

Figure 3-11 shows the flow chart of cache access activities. When L1 cache hit occurs, the L2

cache will never be accessed. The energy of the L2 cache may be saved while the L1 cache is

missed. When L1 cache miss occurs, at this moment, the TLB and the way table are already

accessed. If TLB is missed, the way table would be missed too. All ways in the L2 cache must

be activated in this case. And if TLB is hit, there are two possibilities, hit or miss, for the way

table. If the way table is hit, whether the prediction is correct or not, the dynamic read energy

is saved due to just activating a single way. And the way table needs to be updated when miss

way prediction occurs. The other possibility is that the way table miss occurs. There are two

conditions that way table would miss:

Case 1: The data was never placed into the L2 cache. So the way index has never been rec-

orded in the way table.

Case 2: The data has ever placed in the L2 cache. But this way index was flushed due to page

replacement. Suddenly this page came back to TLB and the way index which was

recorded before is not retained.

We will not save any energy but need to write the way index to the way table in these two

cases.

27

3.5 Hardware Implementation

 We propose gate-level hardware architecture and high level simulation to verify our de-

sign. Figure 3-12 shows the additional hardware in our design. A way table is integrated into

the TLB to store way indices. Each way table entry contains some fields which are according

to memory page size divided by L2 cache line size. And a multiplexer is added to choose the

corresponding field by field index. After that, a valid bit and a way index are transferred to the

L2 cache decoder. The L2 cache decoder will perform a way prediction access or a normal

access which decides by the valid bit and the signal bit of L1 cache miss. We ignore the extra

control logic in L2 cache decoder because we believe the power and area which compared to

the L2 cache is much lower. In fact, the finite state machine of the extra control logic only has

few state transitions. The control signal’s overhead is also ignored for the same reason. The

energy overhead is almost consumed on the way table and the multiplexer.

Figure 3-11 Case Analysis for Our Design

28

 The way table design and architecture have been proposed in this chapter. In the next

chapter, we would like to describe our design in the simulator. And also, the power consump-

tions of caches and the way table should be estimated by the power tool. At last, we will eva-

luate and analyze the simulation results briefly.

Figure 3-12 Architecture of Way Prediction Hardware

29

Chapter 4 Experimental Result

The simulation environment and the energy equation are discussed here. And also, the

statistics of simulation results will be analyzed in section 4.3. In section 4.4, we will introduce

the possibility of reducing the access latency of L2 cache.

4.1 Simulation Environment

In this section, we will estimate the power of each cache components and the overhead of

our design. The first thing that we would like to do is choosing a cache configuration for

analysis. We refer to Pentium 4 processor’s cache configuration. Table 4-1 is the cache confi-

guration that we analyze. We do not use the modern cache configuration because the bench-

mark is SPEC2000 which was published in year 2000. The SPEC2000 is not suitable for large

cache, for example, the overall cache miss rate is only 2.40% if the L1 cache size is

16KB+16KB (a 16KB instruction cache and a 16KB data cache). Under this situation, the

memory references are almost hit in the L1 cache and thus the L2 cache seems useless. Gen-

erally, a hit rate of 90% or better is considered a normal case for an L1 cache. In an L2 cache,

a hit rate of above 50% is considered acceptable [12]. So we choose 8KB+8KB L1 caches

with 32-byte line size and associativity of two. For the L2 cache, typical size with 512 KB

Table 4-1 Cache Configurations

30

and line size with 128 Bytes is chosen. Both 8-way and 16-way L2 caches which are in the

same size are compared. The technology node is 130nm. Our processor is single issue and

in-order execution. And the read/write port of the cache only needs one. We run the bench-

mark under all kinds of cache configurations and describe the simulation results in Section 4.3.

Moreover, we assume that the page size is 4 KB and the numbers of page are 2
20

.

Table 4-2 shows way table sizes in different associativity L2 caches. We assume that the

TLB contains 128-enrty, therefore there is a 128-entry way table and each entry contains 32

fields. The size of a 128-entry way table will never exceed 3 KB if the associativity are

smaller than 32. The way table is like a pure SRAM which is accessed following the tag

comparison of the TLB. If TLB is hit in entry m, it will signal to way table, and thus the entry

m of way table is read out.

 We use CACTI 4.2 [13] to obtain energy statistics of all cache components including the

way table. Moreover, we modify SimpleScalar 3.0 [14] for our design and obtain some statis-

tics of cache activities. The overview of our simulation environments is described below:

 Our processor simulator is SimpleScalar 3.0.

SimpleScalar is a cycle-based processor simulator. It can simulate the behaviors of in-

structions in each pipeline stage. So the statistics output from SimpleScalar are more

precise than instruction-based simulator.

 Our benchmark is SPEC2000.

SPEC2000 is the benchmark for desktop processor. It is suitable for estimate the over-

Table 4-2 Way Table Size

31

all effects of our design. We ran one billion instructions per program. Each of the 25

programs of SPEC2000 is executed independently.

 Our power tool is HP-Lab CACTI 4.2.

CACTI can measure access time, dynamic power, static power, and area of the cache.

It is a well-known power tool in the domain of low power cache design.

 The processor is discussed below:

We use a traditional 5-stage pipeline with single issue and in-order execution. This

simple architecture is enough to present the energy saving of L2 cache. If we use mul-

ti-issue with out-of-order execution, the access order of the L2 cache will be changed,

but the energy saving of an L2 cache will be almost the same because the numbers of

L2 cache accesses will not change a lot. As for the caches, separate L1 caches and

TLBs are selected, and the L2 cache is unified.

 We describe our design into SimpleScalar via modifying the source code of SimpleScalar.

The modification consists of the WP-TLB and its whole procedure in the processor. And then

we set the processor description including cache configurations. After that, we run SPEC2000

on the modified SimpleScalar and it will output some information that we concerned, such as

cache miss rate, way table hit rate, way buffer hit rate, etc. Moreover, we apply the configura-

tions of caches and the way table as inputs to CACTI. Then CACTI will generate the dynamic

energy of each cache component. Finally, we substitute these statistics and energy parameters

into the energy equations which will be discussed in the next section, and get the ratio of

energy saving for L2 cache due to our design.

4.2 Energy Equations

Before running the benchmark, the power equations need to be specified. There are some

symbols must be described first. Dynamic energy consumptions of components that we con-

32

cerned are showed below:

– Eset : energy of reading a set of L2

– Eway : energy of reading a single way of L2

– Ewt-read : energy of reading a way index in way table

– Ewt-write : energy of writing a way index in way table

– Ebuf : energy of accessing the way buffer

 After we obtain the dynamic energy consumptions from CACTI 4.2 as mentioned above

and statistic outputs from SimpleScalar, these data can be substituted into the first three of

the following energy equations. Then these three equations can be substituted into the fourth

energy equation and thus the ratio of energy saving for an L2 cache can be calculated.

1. Total dynamic energy of original L2 cache (DEL2-ori):

Eset × no. of L2 accesses = Eset × L1 miss rate × no. of L1 accesses

2. Total dynamic energy of new L2 cache (DEL2-new):

[way hit rate × Eway + (1 – way hit rate) × Eset] × no. of L2 accesses

3. Overhead of dynamic energy (DEoverhead):

Ewt-read × no. of L1 accesses+ Ewt-write × no. of way table writes + Ebuf × no. of way buf accesses

4. Rate of dynamic energy saving:

1 － [(DEL2-new + DEoverhead) / DEL2-ori]

The caches and the way table configurations which are discussed in section 4.1 are the

Table 4-3 Parameters of Memory Components from CACTI 4.2

33

inputs of CACTI 4.2 and Table 4-3 shows the outputs from CACTI 4.2. For the dynamic read

energy, an 8KB L1 cache is 7 times bigger than a 128-entry way table and 25 times smaller

than a 512KB 8-way L2 cache. [7], [8] and [9] said that "If the prediction is correct, the cache

access latency and power consumption is similar to that of a direct-mapped cache of the same

size." Hence, for the direct-mapped cache with a single way size of 512KB 8-way L2 cache,

the read energy is only 0.126 nJ. It is much smaller than the 512KB 8-way L2 cache. Besides,

if the way buffer is hit, it only consumes 0.0008 nJ in dynamic read energy. Figure 4-1 is the

additional static power of the L2 cache. It only consumes extra 0.62% static power of the

521KB 8-way L2 cache. So we believe that the additional static power can be ignored. The

normalized dynamic read energy is showed in Figure 4-2. All read energies are normalized to

the 512KB 8-way L2 cache. The way table is only 0.6% and a single way of the 8-way L2

cache is 17.7%. Compared to 512KB 16-way L2 cache, it needs 183% read energy because

two times of tags and cache lines will be read out.

0.62%

0.52%

0.45%

0.50%

0.55%

0.60%

0.65%

512KB 8-way L2 512KB 16-way L2

Additional Leakage Power (128 entries way table)

Figure 4-1 Additional Leakage Power of L2 cache

34

 Now we have the power statistics and equations. In the next section, SPEC2000 will be

run in SimpleScalar under more cache configurations.

4.3 Benchmark Evaluation

In our simulation evaluation, we use the SPEC2000 benchmark to run a simulation in

SimpleScalar. Because we focus on the cache power, the processor can use uncomplicated

single issue and in-order execution pipeline with separate L1 cache and TLB. Moreover, the

L2 cache is unified. We ran one billion instructions per program. 25 programs of SPEC2000

are run. Each program was executed independently. We use two 8KB 2-way L1 caches and a

512KB 8-way L2 cache as the baseline environment.

Cache miss statistics

 The cache miss rate is an important effect for power saving. If L1 cache miss rate is low,

the extra power overhead of our design will be comparative high due to less L2 cache ac-

cesses. Even the extra power overhead will exceed to the power saving of our design. Figure

4-3 is the statistics of cache miss rates. The variation of miss rates for instruction L1 caches is

very small, but for a data L1 cache and an L2 cache is big. We can observe the average cache

miss rate in Figure 4-4. The average of total L1 cache miss rate is 3.42%. This low rate is not

beneficial for our design but still saving 50% of the dynamic energy of the L2 cache. If the L1

miss rate is higher the power saving will be better. And the average of L2 cache miss rate

which is 9.95% is acceptable. Figure 4-5 shows the average L1 cache miss type. The 65% of

100.0%

17.7%

183.0%

15.9% 0.6% 0.1%
0.0%

100.0%

200.0%

L2 8-way L2 8(one) L2 16-way L2 16(one) way table way buffer

Normalized Dynamic Read Energy

Figure 4-2 Normalized Dynamic Read Energy

35

L2 cache reads are data references. Although instruction L1 cache miss rate is only 1.58%,

there are 35% L2 cache accesses coming from L1 cache.

 Way table hit rate statistics

In our approach, if the way table is hit, we can save the dynamic energy of the L2 cache

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

il1.miss_rate

dl1.miss_rate

total_L1_miss_rate

ul2.miss_rate

1.58%

8.95%

3.42%

9.95%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

il1.miss_rate dl1.miss_rate total_L1_miss_rate ul2.miss_rate

Average cache miss rate

35%
65%

Average L1 miss type

instruction (35%)

data (65%)

Figure 4-5 Average L1 Miss Type

Figure 4-4 Statistics of L1 and L2 Average Cache Miss Rates

Figure 4-3 Statistics of L1 and L2 Cache Miss Rates

36

by only activating a single way even if the prediction is wrong. So we care about the hit rate

of the way table because "way table hit" means the dynamic energy is saved. Figure 4-6

shows way table hit times divided by L1 cache miss times in instruction and data way tables.

The hit rates of data way tables for each program are unstable because the demands of data

are not always the same in different programs. In average, which is showed in Figure 4-7, the

hit rate of the instruction way table is 92.87% highly.

 Figure 4-7 Average Way Table Hit Rate when L1 is Miss

The main reason is that instructions are usually reused during program execution. Con-

trast to the average hit rate of the data way table, it is 22% lower than the average hit rate of

the instruction way table. However, in Figure 4-8, the type ratio of the way table hit times is

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

iway hit rate dway hit rate

92.87%

70.04%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

iway hit rate dway hit rate

Average way hit rate

Figure 4-6 Way Table Hit Rate when L1 is Miss

37

59% for data hits. This phenomenon describes that increasing the hit rate of the data way table

is more important. The designer may try to increase the entries of the data way table. In our

simulation result, if the hit rate of the data way table increases 1%, the dynamic power saving

of a 512KB 8-way L2 cache will increase 0.85%.

Way table hit times per way table write

 Figure 4-9 shows the way table hit times divided by the way table writes times. This

statistic shows that when we write a way index in the way table, how many hit times of the

way table will happen in average. The higher ratio is preferred. It can be observed that the

variation of the ratio is very big especially for instruction way tables. We think it depends on

the behavior of the program. A program executes more loops will get higher ratio. In average,

the ratio of the instruction way table is 16 and the ratio of the data one is only 2. It means that

we record the way indices of instructions in the way table is more efficient. Each way index

will be used repeatedly 16 times in average.

41%
59%

Average way hit type

iway hits (41%)

dway hits (59%)

Figure 4-8 Average Way Hit Type

38

 Dynamic read energy saving

Figure 4-10 shows the dynamic read energy saving which is compared to an original L2

cache. The highest can save 74.23% and the lowest can just save 10.04% of the dynamic read

energy of the L2 cache. We can see the average rate is 52.43%. It is not the optimum result

but still good enough. Half of dynamic read energy is saved and there is only 0.62% of the

static power increased in the L2 cache. Moreover, we would like to consider the cache system

power. Figure 4-11 is the dynamic read energy saving which is compared to the overall cache

system (L1 cache + L2 cache). Although our objective is not to save L1 cache energy, but we

need to know how much dynamic energy of the overall cache does an L2 cache occupy. The

highest can save 46.24% and the lowest can just save 2.91% of the dynamic read energy of

the overall cache. We can save 24.20% of dynamic read energy even if the whole cache sys-

tem is measured in. Comparisons of Figure 4-10 and Figure 4-11, it can be observed that

about 50% of dynamic cache read energy is consumed by the L2 cache. And greater than half

of the dynamic read energy of the L2 cache can be saved in our approach.

52060

16 37

2

0

10

1000

100000

am
m

p

ap
p

lu

ap
si

ar
t

b
zi

p
2

cr
af

ty

eo
n

eq
u

ak
e

fa
ce

re
c

fm
a3

d

ga
lg

el

ga
p

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

p
ar

se
r

p
er

lb
m

k

sw
im

tw
o

lf

vp
r

w
u

p
w

is
e

av
er

ag
e

Number of way table hits per way table write
iway hits / iway writes dway hits / dway writes

Figure 4-9 Number of Way Table Hits per Way Table Write

39

 Compared to different cache configurations

Figure 4-12 is the dynamic energy saving in different kinds of cache configurations. We

choose the 256KB and 512KB L2 caches and both of them contain 8-way and 16-way confi-

gurations. The cache line size is 128 Bytes. The 1MB L2 cache is not simulated because it is

too big for the SPEC2000 benchmark. The simulation result is not impersonality due to the L2

cache hit rate is too high. In Figure 4-12, you can see the energy savings of 256KB 8-way L2

74.23%

10.04%

52.43%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

Dynamic Energy Saved(compare to original L2 cache)

ammp applu apsi art bzip2 crafty eon equake

facerec fma3d galgel gap gcc gzip lucas mcf

mesa mgrid parser swim twolf vpr wupwise average

46.24%

2.91%

24.20%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

Dynamic Energy Saved(compare to overall cache)

ammp applu apsi art bzip2 crafty eon

equake facerec fma3d galgel gap gcc gzip

lucas mcf mesa mgrid parser perlbmk swim

twolf vpr wupwise average

Figure 4-10 Ratio of Dynamic Read Energy Saving (Compare to Original L2 Cache)

Figure 4-11 Ratio of Dynamic Read Energy Saving (Compare to Overall Cache)

40

cache and 512KB 8-way L2 cache are almost the same. And the energy savings of 256KB

16-way L2 cache and 512KB 16-way L2 cache are almost the same, too. The 256KB and

512KB caches with the same associativity will not affect energy saving too much. However,

different associativity with the same cache size will result in different energy savings actually.

In the 256KB 16-way L2 cache, it saves the highest 65.19% of the dynamic energy of the L2

cache and the highest 37.14% of the dynamic energy of the overall cache. The energy con-

sumption of activating one of 16-way is smaller than activating one of 8-way. It is not related

to the way table hit rate or L2 cache miss rate a lot.

Comparisons of different way table entries

If the numbers of entries of the WP-TLB increase, more way indices can be recorded.

Table 4-3 shows the dynamic access energies and hit rates for the way tables with different

256KB, 128B
line, 8way

256KB, 128B
line, 16way

512KB, 128B
line, 8way

512KB, 128B
line, 16way

L2 power saved 53.66% 65.19% 52.43% 62.43%

cache power saved 23.75% 37.14% 24.40% 36.39%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

P
o

w
er

 S
av

in
g

Dynamic Energy Saving of Different Cache Configurations

Figure 4-12 Dynamic Energy Saving of Different Cache Configurations

Table 4-4 Statistics of Different Way Table Entries

41

entries. For a larger way table, more dynamic read energy is consumed. But the hit rate will be

improved, especially in the data way table. The hit rate of the data way table increases signif-

icantly. Figure 4-13 is the dynamic energy saving of an L2 cache in different way table entries.

Because the hit rate is improved by increasing entries, the dynamic power can be saved at

most 61.86% with a 512-entry way table. Considering the tradeoff of the hit rate and the

hardware overhead, we think an instruction way table with 128 entries and a data way table

with 512 entries are the optimum solution.

 If we can just activate a single way for every accesses and have no energy overhead, the

best case of energy saving will be 82%. Our best energy saving is about 62% with a 512-entry

way table. The gap between these two ratios is 20%. There are two reasons cause this 20%

gap:

1. Our total average of the way table hit ratio is 89.2%. And the cold miss occupies 4.2%.

We need to analyze the 6.6% miss rate except the cold miss. The hit rate of the instruc-

tion way table is 93.6% and the cold miss occupies 5.7%. So we have less chance to

enhance the hit rate for an instruction way table. The hit rate of the data way table is

only 89.7% and the cold miss occupies 5.7%. Although increase the number of entries

to 1024 the hit rate will grow up to 89.7%. But a larger way table means the more

energy consumption. The energy saving of a 1024-entry way table is down to 61%.

2. If we would like to reduce the energy overhead of the way table, one solution that we

45.86% 52.43% 56.51% 61.86% 61.13%

0.00%

20.00%

40.00%

60.00%

80.00%

64-entry TLB 128-entry TLB 256-entry TLB 512-entry TLB 1024-entry TLB

L2 Dynamic Power Saving for Different Way Table Entries

Figure 4-13 L2 Dynamic Power Saving for Different Way Table Entries

42

can do is to enlarge the way buffer into 2-entry. Thus more way indices will be hit in the

2-entry way buffer. But the access latency of the WP-TLB will also increase. It will be

longer than a 8KB L1 cache. So we do not consider the 2-entry way buffer if the L1

cache size is smaller than 8KB.

Our approach compares to Location Cache

We would like to compare to the location cache which achieved the best power saving of

the L2 cache among past researches. Because we do not have the detail design information of

location cache, we just get the statistics of location cache from [9] and simulate our approach

in their environment. Their environment is described in the conference paper as fol-

low:"Separate 16KB L1 instruction and L1 data caches were simulated. They are both 4-way

set-associative caches with a cache line size of 64 bytes. The unified L2 cache is a 512KB

8-way set-associative cache with the cache line size of 128 bytes. The L2 cache has 8 banks.

The bus between the L1 and L2 caches is 512-bit wide. Memory function units have 4 ports."

Figure 4-14 shows the comparisons of dynamic read energy saving between different entries

location cache and 128-entry, 256-entry WP-TLB. The 256-entry WP-TLB can save 11% read

energy more than the 512-entry location cache. Compared to the chip area, in Figure 4-15, our

WP-TLB with 256-entry increase only 1.02% chip area, but smaller location cache with

32-entry already increase 1.12% chip area.

Figure 4-14 Dynamic Energy Saved (Compared to Location Cache)

43

4.4 Access Latency for L2 Cache

If the cache can be designed in non-unified access path, the access latency when activat-

ing a single way can be reduced as the access latency of a direct-mapped cache of the same

size of a way [7]. Assume the cycle time is 0.5 ns. The L2 cache access needs 6 cycles and

activating a single way needs 4 cycles. Figure 4-16 shows the performance enhanced which is

measured by cycle counts. The highest program grows 5.1% performance than original. The

ammp grows just 0.1% because the program execution cycles are too much. The average per-

formance enhancement is 2.9%. The reduced time can save the power of the overall processor.

We believe it is a considerable power saving when execution time remains 97%.

0.00%

1.00%

2.00%

Location
Cache(1024)

Location
Cache(32) WP-TLB (256)

WP-TLB (128)
WP-TLB (64)

1.39%
1.12%1.02%

0.48%
0.36%

Chip Area Increase (Compared to L2 Cache)

Figure 4-15 Chip Area Increase (Compared to L2 Cache)

0.1%

2.3%

1.5%
0.7%

0.4%

5.1%

3.2%

2.1%

0.9%

1.7%

0.4%

1.7%

2.5%

1.3%

0.3%

1.8%1.8%1.8%

0.6%
1.2%1.4%1.2%

0.5%0.4%

2.9%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

am
m

p

ap
p

lu

ap
si

ar
t

b
zi

p
2

cr
af

ty

eo
n

eq
u

ak
e

fa
ce

re
c

fm
a3

d

ga
lg

el

ga
p

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

p
ar

se
r

p
er

lb
m

k

sw
im

tw
o

lf

vp
r

w
u

p
w

is
e

av
er

ag
e

Performance Enhanced (Measured by Cycle Counts)

Figure 4-16 Performance Enhanced (Measured by Cycle Counts)

44

Our approach compares to the Location Cache is discussed below:

Location cache also measures the access latency of the L2 cache. The environment is that

an L2 cache access latency needs 6 cycles and a direct-mapped with a single way size needs 4

cycles. We use the simulation result which location cache obtain and simulate in their envi-

ronment. Figure 4-17 shows the average cache occupancy of predict accesses. The lower is

the better and the lowest number is 4. The location cache has the best 4.53 cycles under 512

entries. Besides, W.P.S.A cache is average 5.01 cycles which is similar to the location cache of

128 entries. Our approach is the optimum 4 cycles because all of the predict accesses can re-

duce access latency. Location cache and W.P.S.A cache cannot achieve this because the other

way must be probed when miss way prediction occurs. If the denominator is all of the L2 ac-

cesses, the average cache occupancy will be 4.98 cycles. Location cache does not obtain re-

lated statistics of all of the L2 accesses, so we cannot compare this statistic to it.

4.5 Discussion

Table 4-5 is the comparisons of related works and our design. The P.S.A cache and

W.P.S.A cache can be applied to both the L1 and L2 caches. And location cache and our ap-

proach are design for L2 cache thus the energy saving of an L2 cache is good by using these

two designs. There is no additional delay when miss way prediction occurs in our approach

Figure 4-17 Average Cache Occupancy of Predict Accesses

45

but the other three related works need. In the aspect of saving read energy of a 512KB 8-way

L2 cache, from our simulation statistics, we can save about 60% of read energy but location

cache and W.P.S.A cache can only save about 50% and 30% respectively. Because P.S.A

cache is not suitable for high associativity cache, we do not measure its energy saving. Com-

pared on storage overhead issue, based on the energy saving mentioned above, W.P.S.A cache

needs the lowest 192 bytes storage and the storage of W.P.S.A cache design is fixed. The sto-

rage overhead of P.S.A cache is about 2KB but save the lowest read energy of L2 cache. The

location cache needs a 1KB location cache and 8KB duplicated tag arrays. So the storage

overhead of location cache is at least 8KB. Our approach just needs two 256-entry way tables

and two single entry way table buffers. The size is about 4KB but save 60% of read energy of

L2 cache.

Our simulation results show that both the read energy and average access latency of L2

cache can be saved. The static power only increases a little. Much of dynamic power of L2

cache will not be wasted by accessing unnecessary data. Besides, the energy saving of L2

cache is better than past researches and the overhead is acceptable.

Table 4-5 Comparisons of Related Works and Our Design

46

Chapter 5 Conclusion and Future Work

5.1 Conclusion

The L2 cache size is much bigger than before. In year 2000, the L2 cache size is only

256KB in general. However, a 6MB shared L2 cache has already implemented in commercial

on-chip cache design nowadays [17]. Although the static power of an L2 cache is more and

more important due to deeper technology process, the increasing dynamic power of an L2

cache cannot be disregarded. We proposed a design to save dynamic energy and average

access latency of an L2 cache. And also present a possible aspect to save the static power of

an L2 cache in the future work section.

Our approach guarantees that the other ways do not need to be probed when miss way

prediction occurs. Moreover, we use a way buffer to reduce average access energy of a way

table, and the way table is integrated into TLB to avoid storing and comparing tag for each

entry.

Compared to location cache, we do not need to duplicate L2 cache tag arrays and can

save more power than it. By the way, the average access latency of an L2 cache is also smaller

than location cache. In our simulation results, the dynamic read energy of the L2 cache can be

saved about 52~65%, and the average access latency of an L2 cache can be reduced 15~17%.

The dynamic energy overhead consumes 4.5~6% and the static power overhead is just in-

creased about 0.3~0.6%.

5.2 Future Work

Static Power Consideration

When a drowsy mode L2 cache [15] is implemented, our way table can play a

pre-activated role in one situation which is showed in Figure 5-1. In this case, the access la-

tency of an L1 cache needs two cycles delay and the L2 cache is in drowsy mode unless a ref-

47

erence comes. Assume that our WP-TLB can finish in one cycle. If the way table is hit, the L2

cache can be pre-activated in cycle 1 (the second cycle). Thus we can just pre-activate the

corresponding cache line of the L2 cache because we have already gotten its way index. As-

suming the delay of waking up an L2 cache can be finished in one cycle. We will not lose any

performance for waking up an L2 cache when the prediction is correct in our way table. Fig-

ure 5-2 is the performance degradation for waking up an L2 cache. If we do not pre-activate

the L2 cache, the performance will decrease 1% of original non-drowsy cache design. And the

performance will only decrease 0.25% if we use a way table to hint the pre-activation of the

drowsy L2 cache. Unfortunately, there are some unnecessary pre-activations when the L1

cache is hit. This approach will more useful if our way table can recognize whether the data is

in the L1 cache or not. One possible solution is to store some information in each of the way

table in order to recognize if this line has already resided in the L1 cache.

Figure 5-1 WP-TLB Plays as Pre-activation Role

48

Design for the non-blocking L1 cache

In the non-blocking L1 cache environment [16], the L1 cache will not stall even if the L1

cache is missed. There may be more than one reference at the L2 cache in the same cycle. The

problem is that we will lose the write position of the way table if another reference comes to

TLB. When this reference needs to be updated into the way table, in the blocking L1 cache

implementation, it is easy to keep write position because the TLB is stop serving. However, in

the non-blocking one, the write position of previous reference will be covered by consequent

reference. Therefore we must search TLB to find the corresponding entry of the way table.

Both the extra access latency and the dynamic energy will increase. To solve this problem, we

can use a write queue which contains the entry number and the field index in each entry of a

queue to record the write position. Figure 5-3 shows a possible solution for a non-blocking L1

cache environment. An additional write queue is proposed in our design. When a reference

comes to the L2 cache, we put its corresponding entry number and field index in the rear of

the write queue. If a reference is finished in the L2 cache, we pop out the head of the write

queue. This pop out entry will be the corresponding entry number and field index of this ref-

erence.

1.01%

0.25%
0.00%

0.50%

1.00%

1.50%

no pre-activation pre-activation

Performance Degradation for Waking Up L2 Cache

Figure 5-2 Performance Degradation for Waking Up L2 Cache

49

Figure 5-3 Design for Non-blocking L1 Cache

50

References

[1] D. Kudithipudi, S. Petko, and E. John, "Cache Leakage Power Analysis in Embedded

Applications ", The 47th JEEE International Midwest Symposium on Circuits and Sys-

tem, 2004.

[2] Gurindar S. Sohi and Manoj Franklin, "High-bandwidth data memory systems for su-

perscalar processors", Proceedings of the fourth international conference on Architectural

support for programming languages and operating systems, 1991.

[3] Jung-Hi Min, Jung-Hoon Lee, Seh-Woong Jeong, and Shin-Dug Kim, "A Selectively

Accessing TLB for High Performance and Lower Power", Proceedings of IEEE

Asia-Pacific Conference on ASIC, 2002.

[4] A. Agarwal, J. Hennesy, and M. Horowits, "Cache performance of operating systems and

multiprogramming", in ACM Transactions on Computer Systems, pp. 393–431, No-

vember 1988.

[5] A. Agarwal and S. D. Pudar, "Column-associative caches: a technique for reducing the

miss rate of direct-mapped caches", in Proc. of the 35th annual International Symposium

on Computer Architecture (ISCA), pp. 179–190, 1993.

[6] Brad Calder, Dirk Grunwald and Joel Emer, "Predictive Sequential Associative Cache",

2nd International Symposium on High Performance Computer Architecture, pages

244-253, February, 1996.

[7] T. N. Vijaykumar, "Reactive-associative caches", in International Conference on Parallel

Architectures and Compiler Techniques (PACT’01), pp. 49–61, 2001.

[8] Koji Inoue, Tohru Ishihara, Kazuaki Murakami, "Way-Predicting Set-Associative Cache

for High Performance and Low Energy Consumption", Low Power Electronics and De-

sign, International Symposium on, 2001.

[9] Rui Min, Wen-Ben Jone and Yiming Hu, "Location Cache: A Low-Power L2 Cache Sys-

51

tem", 2004. ISLPED '04. Proceedings of the 2004 International Symposium on Low

Power Electronics and Design, 2004.

[10] Ballesil, Anastacia P. Alarilla, Luis M. Alarcon, Louis P., "A Study of Power Trade-offs

in Translation Lookaside Buffer Structures", 2006 IEEE Region 10 Conference, TEN-

CON 2006.

[11] Henning, J.L., "SPEC CPU2000: Measuring CPU Performance in the New Millennium",

issue COMPUTER 2000/07 p28~p35, July 2000.

[12] John L. Hennessy, David A. Patterson, "Computer Architecture: A Quantitative Approach,

Third Edition", Chapter 5, Morgan Kaufmann Publishers, 2003.

[13] D. Tarjan, S. Thoziyoor, N.P. Jouppi, "Cacti 4.0", Tech. Rep., Compaq Western Research

Lab, 2006.

[14] Doug Burger, Todd M. Austin, "The SimpleScalar Tool Set, Version 2.0", ACM SI-

GARCH Computer Architecture News, v.25 n.3, p.13-25, June 1997.

[15] K. Flautner and et al. "Drowsy caches: simple techniques for reducing leakage power",

In ISCA, pages 148–157, 2002.

[16] Tien-Fu Chen, Jean-Loup Baer, "Reducing memory latency via non-blocking and pre-

fetching caches", ACM SIGPLAN Notices Volume 27 Issue 9, September 1992.

[17] © Intel Corporation, "Intel® Core™2 Duo Processor E8000Δ and E7000Δ Series Data-

sheet", Document Number: 318732-002, April 2008.

	封面
	內頁
	final_畢業論文_周資敏.pdf

