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摘要 
 
 

為了能夠有效的利用頻寬，高維度的 QAM modulation 以及多輸入多輸出 
(MIMO) 的傳輸系統，已經被很多無線通信系統所廣泛地使用。目前多輸入多輸

出偵測器已有各種的方法被提出，並且可分成三類演算法：次於效能最佳化的演

算法、接近效能最佳化的演算法、演能最佳化的演算法。 
在這篇論文我們提出了多層級叢集為基礎的多輸入多輪出偵測演算法。此演

算法透過多層級的 N-QAM 星狀圖結構將傳送的信號分割成叢集，並且藉由多

階層的樹狀結構來搜尋叢集，偵測出正確的傳送信號。另一方面，我們在多層級

叢集為基礎的演算法中，採用了分支限界的技術還有相位偵測技術來降低演算法

複雜度。 
在 IEEE 802.11n 的系統平台而且符合 TGN 所規範的通道模型中模擬。模擬

結果指出此演算法與 K-Best 球狀解碼器相比，可以較低的複雜度完成相同的系

統效能。因此，此演算法為多輸入多輸出系統提供了具有低複雜度、接近效能最

佳化的偵測演算法。 
 

 



 

 II 

 
 
 
 
 

Abstract 
 
 
 

Recently, multiple-input multiple-output (MIMO) architecture has been applied 
widely in many wireless communication systems because of its high spectrum 
efficiency. Various approaches are explored for the MIMO detection, which can be 
classified to three categories: sub-optimal, near-optimal and optimal solution. 

We propose the multilevel cluster-based MIMO detection algorithm by 
partitioning the transmitted MIMO signal vectors into clusters with the multilevel 
N-QAM structures in each dimension. Our method detects correct transmitted signal 
vector by searching the corresponding clusters in hierarchical tree structure. Moreover, 
both branch and bound and phase detection techniques are addressed to archive low 
complexity design.  

Through simulation in IEEE 802.11n platform with TGn channel E, it indicates 
the complexity of proposed algorithm is less than the K-best SD with the same 
performance. Hence, the proposed algorithm provides a near-optimal solution with 
low computation complexity design for wireless MIMO system.  
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Chapter 1  

Introduction 
 
 
 

Recently, multiple-input multiple-output (MIMO) architecture has been applied 
widely in many wireless communication systems because of its high spectrum 
efficiency. To exploit the spectrum efficiency, large number of antennas and/or high 
order QAM constellations are often employed, which leads a challenge to design the 
MIMO detection with acceptable complexity and sub-optimal performance.  

Various approaches are explored for the detection of MIMO signals [1]. For 
linear detection approaches, Zero-Forcing (ZF) or Minimum Mean Square Error 
(MMSE) uses the inverse of estimated channel response to extract the desired signals. 
Both of these two approaches are simple to implementation, but with the enhancing 
channel noise which induce large performance degradation. Another category is the 
nonlinear approaches such as V-BLAST and the maximum likelihood detection 
(MLD). The V-BLAST algorithm using ordered successive interference cancellation 
with QR decomposition [2]. The MLD algorithm gains the optimal performance with 
the intractable computation complexity [3]. The sphere decoder (SD) methods [4] 
attempted to reduce the search set by searching the candidates that lie within the 
radius, which still provides the ML performance. However, the radius of SD varies 
with the channel realization which makes its complexity is higher in the low SNR 
region. Some methods [5]-[7] reduce the search set by employing the multilevel 
structure of the N-QAM constellations. The multilevel structure decomposes N-QAM 
demodulation naturally into a sequence of sub-demodulations with a hierarchical 
order, which has been widely investigated for complexity reduction purpose [8].  

In this paper, we develop a novel algorithm that detects the received MIMO 
symbol vectors by partitioning the multi-dimensional symbols into clusters according 
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to the multilevel N-QAM structures in each dimension. In [5], this work identified the 
M most significant QAM symbol combinations by SGA algorithm and exploits the 
multilevel structure of QAM constellations to reduce complexity with depth-first 
searching and breadth-first searching. In [6] and [7], both of these two works detected 
the likelihood MIMO symbols in the multi-dimensional MIMO symbol set which 
perform hierarchical QPSK searching within full constellation of symbol points. 
Nevertheless, [6] did not show its feasibility by simulation results and [7] has an error 
floor for low bit error rate (BER). 

The remainder of this paper is organized as follows. The system assumptions 
with problem statement are addressed in Section II. The proposed multilevel 
cluster-based algorithms are described on example in Section III. The complexity 
reduction strategies are described in Section IV. Performance and complexity are 
evaluated and compared with different approaches in Section V. Finally, Section VI 
gives conclusions. 
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Chapter 2  

System Assumptions 
 
 
 

A. System Description  

Consider a NT×NR spatial multiplexing MIMO system, where NT and NR are the 
number of transmitted and received antennas. The data is encoded by scrambler, 
convolutional code, puncture, interleaver, N-QAM modulation and transmitted over the 
NT antennas simultaneously. Assuming perfect timing and frequency synchronization, 
the received baseband signal for NT×NR MIMO system is modeled as following:  

 

H= +y x n                                 (1) 

 

where 1 2, ,...,
T

T

Nx x x =  x ( [ ]* T means transpose), ix  is the transmitted signal 

modulated with N-QAM constellation in the i-th transmitted antenna in the transmitted 

signal space; 1 2, ,...,
R

T

Ny y y =  y  denote the received symbol vector in the received 

signal space, and 1 2, ,...,
R

T

Nn n n =  n  indicates an independent identical distributed 

(i.i.d.) complex zero-mean Gaussian noise vector with variance 2σ  per dimension. 
Moreover, the frequency selective fading [9] is represented by the NR×NT channel 
matrix H, whose elements hij represent the complex transfer function from the j-th 
transmit antenna to the i-th receive antenna. We assume that the receiver knows the 
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channel matrix perfectly, and that NR=NT in this paper. 
 
 

B. Problem Statement  
To employ large number of antennas and/or high order QAM constellations, the 

MLD requires unacceptable computation to exhausted search the most likelihood 
symbol combination. To overcome the complexity problem, finding the likelihood 
candidates according to the multilevel structure of the N-QAM constellations can 
significantly reduce the search space. The partition rule of multilevel N-QAM structure 
is described as an example of 64-QAM constellation in Fig. 1(a) The 64 constellation 
points are firstly partitioned into four distinct sets according to the four quadrants of I-Q 
plane. Each quadrant comprises a 16-QAM constellation and is coupled to a square 
point which is a mean value of the sixteen points. The quadrants can be further 
partitioned into four sub-sets (4-QAM) recursively. The four constellation points in 
each of 4-QAM constellations are coupled to a star point which is a mean value of the 
four points.  

More accurately, the definitions for the mean symbols of multilevel structure in 
N-QAM constellation are as follows. The N-QAM constellation can be recursive 

partitioned to L  levels where 4logL N= . The ,iP  is a subset of constellation points 

which are in the partition i at level   ( 1, 2, , )L=  . The set of mean symbols at level 

  can be defined as { }1 2, , , NS s s s


   

  , where is  is the mean symbol of ,iP  and 

14N N−= ×


. For =1 , 1
is  is the constellation point in N-QAM constellation. The 

relation between is  and its coupled constellation points is expressed as 

 

( )( )
1 ,

1

1/ 4

i
j

j
s P

i L

s

s
N

∈

− +

 
 
 
 =
∑







                            (2) 

 
For MIMO multi-dimensional symbols, the transmitted symbol vector is 

1 1 1 1
1 2, ,...,

T

T

Ns s s =  x  for transmitted antennas 1, 2, , TN . The -th  level mean 

symbol vectors can be defined as 1 2, , ,
T

T

Ns s s  x   

   and obtain with multilevel 
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N-QAM structure of each dimension in transmitted symbol vector. The set of all 

possible mean symbol vectors at level   is { }, 

1,2, , NT

i

i N
X

=
x



 



 . 

The aim of the multilevel MIMO detection is to find the nearest N-QAM symbol 

combination ( 1, ix ) by hierarchical search strategy. [5] found the M most possible QAM 

symbol combinations by SGA algorithm with depth-first searching or breadth-first 
searching for multilevel 64 QAM structure. The SGA algorithm translate MIMO 
symbols uses the zero forcing output as a reference estimation to find the likelihood 
approximation vectors in transmitted signal space, which leads the risks of performance 
degradation caused by zero forcing. [7] tries to detect the likelihood transmitted signals 
in the received signal space which does not need the help of inversion of channel matrix. 
However, a serious systematic error which causes error floor at low BER is mentioned. 
Such systematic error is generated due to the cross-talk elements in channel matrix H, 
which makes the nearest mean vector with the minimum Euclidian distance in the 
transmitted signal space doesn’t always imply that it is still the nearest one in the 
received signal space. The following equation shows such mismatch of signal detection 
between transmitted signal space and received signal space. 

 

( ) ( ) ( ) ( )2 2 H HH H H H H− = − = − −x x x x x x x x             (3) 

 
For MIMO channel, HH H  only ensures its diagonal elements are positive real 

value, which leads ( ) 2
H H−x x  is not necessarily proportional to ( ) 2

−x x . Thus, 

our problems associated with multilevel cluster-based MIMO detection are to 
overcome the systematic error in the received signal space and to design of near ML 
performance algorithm with low complexity cost. 
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Chapter 3  

Multilevel Cluster-Based MIMO 

Detection  
 
 
 

A. Principles of Reducing Search Space 

Instead of exhausted searching all possible transmitted vectors in the MLD, this 
work proposes a hierarchical search according to the multilevel structure of N-QAM 
constellation. We first divide the set of all possible transmitted symbol vectors into 
different level of clusters according to the N-QAM multilevel partition rule. The 
Cluster i at level   is a group of similar transmitted symbol vectors with mean vector 

, ix , which is defined as { }, 1 1 ,

1,2,
|

T

i i
i i N

C s P
=

∈x 



 . The divisions are recursively to 

form a multilevel cluster tree in Fig 1(b). The root node represents the set of all possible 
transmitted symbol vectors and other nodes are the means of clusters. Each node at 
layer   extends 4 TN  nodes to next layer ( 1− ). The breadth-first search is applied to 
search the correct transmitted vectors in the multilevel cluster tree, which is mainly 
composed of two parts of stages: 1) The cluster matching stages. 2) The detail matching 
stage. The searching begins with root and finds the nearest cluster means from layer L 
to layer 2. For each layer, the searching chooses the nodes which fall inside the sphere 
with a given radius as candidate nodes, and discards other nodes in future consideration. 
The candidate nodes are the nodes whose branches are active for further searching. The 
criteria of candidate node in cluster matching stages is defined as 
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( ) 2, , i iD y H γ= − <x x                          (4) 

 
where γ   is the radius constraint for layer  . Therefore, the set of candidate nodes at 
layer   can be defined as 

 

{ }, , , :   |   ,  , i i iH γΩ ∈Π − < Ω ⊂ Πx x y x                     (5) 

 
where Π  is the set of all possible nodes extended from the candidate nodes at layer 

( )1+  and all nodes in Ω  can extend their branch to next layer ( )1− . For layer one, 

the detail matching performs the ML search to find the nearest transmitted signal vector. 
The transmitted signal vector can be detected based on ML criteria for detail matching 

 

1, 1

1, 

          
ˆ arg min  

i

iy H
∈Π

= −
x

x x                        (6) 

 
 

… … … 

… 
… 

… 
… … … 

… … 

Cluster 
matching

Detail 
matching

\
… 
256

… 
256

\

\
… 

256

… 

… 

… 

… 

… 

… 

… 

… … 

… … 

… … 

\
… 

256

… … 

… 

256
\

256
\

… 

… 

… 

\
… 

256

… 

\
… 

256

… 

\
… 

256
… … … 

… … … 

… … 
256\

(a) (b)

 Fig. 1 (a) Example of multilevel partitions with mean symbols in 64-QAM constellation. (b) Example of 

multilevel cluster tree in 64-QAM constellation. 
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B. Dynamic Estimation of Radius Constraint 

To reduce the search space, the cluster mean outside the radius constraint will be 
discarded for low-level searching or detail matching. The constraint vector for layer   

is defined as ( ), 1, , c c i= −v x x  , where , ix  could be any cluster mean at level   and 

1, cx  is a vector of constellation point combination whose vector elements are one of 

the four corner constellation points in ,iP . Fig. 2 describes the examples of layer three 

and layer two for one of the dimensions of , ix  in 64-QAM constellation and there are 

4 TN  possible constraint vectors corresponding to , ix . The distance vector between 

the received signal vector without AWGN effect and , ix  can be obtained as 

 

( ) ( )2 22 2, 1, , 1, , , i k i k i cH H H H H− = − = − ≤y x x x x x v           (7) 

 

The length of all possible constraint vectors for , ix  is equal in transmitted signal 

space. However, it is no longer equal in received signal space due to the cross-talk 
effect in MIMO channel which introduce different channel gain for elements in the 
constraint vectors. Hence, the maximum length of possible constraint vectors is chosen 
as the constraint value to include the nearest cluster. 

 
2, max{ }, 1, , 4 TNcd H c= =v 



                    (8) 

 
The same constraint is applied to other nodes at the same layer because the length 

of their constraint vectors is the same. To combat with AWGN, the radius is defined as 
 

,   1dγ α α= ⋅ >                             (9) 
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where α   is a real value of threshold for layer  . If α   is set too large, more 
candidates is included which causes more computation complexity. On the other hand, 
the nearest cluster could not be included when α  is not large enough, which causes 
performance degradation. Fig 3 shows the observation of performance degradation 
with α  setting at different SNR for 4x4 64-QAM MIMO system. The 64-QAM needs 
two level cluster matching stages where 1α  and 2α  are their factors, respectively. 
The result presents that the influence of 1α  is less than the influence of 2α  on 
performance degradation. The reason is that the distance between cluster mean vectors 
at higher layer is larger than the distance between cluster mean vectors at lower layer 
which enhances the noise immunity for higher layer cluster matching. 

 

3,1v

3,4v

3,2v 2,1v2,2v

2,3v
2,4v

Layer 1

Layer 2

 
Fig. 2 Constraint vectors of 64-QAM constellation for different layer with one dimension in 

MIMO symbol vector.  
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Fig. 3 Alpha vs. PER under fixed SNR for 64-QAM 4 x 4 MIMO-OFDM systems (TGN E channel) 

 
 

 

C. Fixed Number of Candidates Selection  

Since the number of the candidate nodes which fall within the radius constraint is 
not a constant, a M-algorithm is employed to keep the M best candidates at each layer. 
We first sort the candidate nodes and ranking these nodes with their Euclidean distance 
metric. The nodes of M smallest distance metric are chosen as M best candidate nodes. 
At the cluster matching layers, only the M best candidate nodes can expand to next 
layer and other nodes are discarded to reduce the search. Thus the value of M should be 
large enough, which significantly affects the system performance and computation 
complexity. The different to a general M-algorithm is that each cluster matching layer is 
applied with different values of M. The proper values of M are observed through the 
relation of PER and the value of M. Fig. 4 show the example of 4x4 64QAM 
transmission which has two different values of M to apply in two cluster matching 
layers. 

 
 

1α1α 2α 2α
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Fig. 4 PER vs. selected candidate number (M-best candidates ) under fixed SNR for 64-QAM 4 x 4 

MIMO-OFDM systems (TGN E channel) 
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Chapter 4  

Complexity Reduction  
 
 
 

A. Fixed Number of Candidates Selection  

The BBD method is a general search algorithm, which divides the feasible sets 
into several subsets and associates each subset to a branch. For each branch, the 
feasible set is further divided and associated to sub-branches. The algorithm is applied 
recursively to the sub-problems, forming a BBD tree of sub-problems. The 
lower-bounding and upper-bounding processes are applied to avoid searching the 
whole BBD tree to obtain the optimal solution. If the objective cost to a branch (lower 
bound) exceeds the cost of the best known feasible solution (upper bound), the whole 
branch is pruned in the BBD tree. Therefore the leaf nodes in the BBD tree represent 
the feasible solutions of the optimization problem. 

Several BBD methods have been employed in wireless communication system 
for obtaining optimal solution. In multi-user detection, BBD with BFS and BBD with 
DFS have been used in [10] and [11] to find the minimum distance between different 
user codes. For the MIMO diction, an iterative list BBD algorithm is investigated in 
[12]. In our work, we apply BBD to reduce the complexity of measuring full 
Euclidean distance in Eq. (5) and Eq. (6). To find the candidate nodes form   at each 
layer of the multilevel cluster tree can be treated as the root feasible set in BBD tree. 
In Eq. (5) and Eq. (6), to obtain the candidate nodes with full dimensional 
computation of distance metric can be avoided by comparing the partial Euclidean 
distance with branch and bound search strategy. To apply branch and bound search, 
we first transform the signal vector and channel matrix to real domain and the Eq. (1) 
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can be written as 
 

( )
( )

( )
( )

( ) ( )
( ) ( )

,  ,

,     

        

                            

R R

R R R R

R

real real
img img

H
real H img H

H
img H real H

   
   
   = +
 
 − 

y x
y x

y x
y x n

 



              (10) 

 
where real(·) and img(·) denote the real and image parts of (⋅), respectively. The QR 
decomposition can be performed on channel matrix. 

 

RH QR=                                 (11) 
 

where Q is an 2NR×2NR unitary matrix ( HQQ I= ) and R is an 2NT×2NT upper 
triangular matrix .The Eq. (10) can be rewritten as 

 

R R RR′ ′= +y x n                              (12) 
 

where R′y  and R′n  denote the vectors including the first 2NT rows of RQ ⋅ y  and 

RQ ⋅n , respectively. Hence, the distance vector 1 2, , ,
R

T

Nz z z =  z   is obtained as 

 

'
11 12 11 11

'
2 22 2 22

'

0

0 0

T

T

R TR R T

N

N

N NN N N

r r rz xy
z r r xy

z xy r

     
     
     = −      
                 





 


   



                (13) 

 
The distance metric to find the likelihood candidates is 
 

22

1
( ) '

RN

j
j

D R z
=

= − =∑x y x                       (14) 

 

Since ( )D z  is derived form 1z , 2z …
RNz , a BBD tree can be employed to search 

the minimum distance of Eq. (14). The root of the BBD tree is labeled with ( )0Χ  which 
means the set of all possible vectors ( x ). Each node at layer (i-1) branches β  new 
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nodes at next layer i and the branch cost of node ( )i
kΧ  is defined as 

 

( )
( ) ( )

( )2 2 1
1

0
( ) ( )

R R

i
i i

N j N i
j

D z z D B−
− − +

=

Χ = = + Χ <∑             (15) 

 
where B is the upper bound for BBD strategy. It can be easily seen that the search 
strategy is breadth-first. The distance cost will quickly accumulate layer by layer 

because 2 0iz ≥  and most branches can be pruned due to the excess of upper bound. 

Hence, the proposed BBD can significantly avoid calculating full Euclidean distance 
for all possible vectors in the searching space. Since the nodes in Π  are dynamical 
obtained from upper layer in multilevel cluster tree, the depth first search is hard to be 
applied in the proposed BBD tree because each node does not extent a constant branch. 
The methods of obtaining the upper bound in BBD search strategy are different 
between cluster matching stages and detail matching stages in multilevel cluster tree. 
The upper bounds for each cluster matching stage can directly use the value of its radius 
constraints ( B γ=  ). The basic idea of obtaining the upper bounds in detail matching is 
to select the minimum distance form W possible transmitted signal vectors. We 
randomly chose one of the transmitted signal vectors from each of W upper layer cluster 
whose mean symbol vectors have smallest ranking with Euclidean distance metric. 
Then the smallest Euclidean distance of these W possible transmitted signal vectors can 
be obtained as the upper bounds. The equation can be formula as 

 

( )1, 1 1, 2 1, 1, 1, min ( ), ( ), ( ) ,    ,  1W i iB D D D C i W= ∈ ≤ ≤x x x x        (16) 

 
where 1, iC  is one of the W cluster whose mean symbol vectors have smallest ranking 
with Euclidean distance metric. For the ease of understanding, the breadth-first BBD 
algorithm can be summarized as following steps: 

1) Compute QR decomposition matrix on HR, RH QR= ; 

2) Pre-compute R′y , H
R RQ′ =y y ; 

3) Compute the upper bound B ; if the BBD is applied in cluster matching stage, 

B γ=  , else ( )1, 1, 1, min ( ), ( ), ( )i i WB D D D= x x x ; 

4) Initialize k=1; activate the root node; 

5) Compute ( )
( )

( )2 1
1( ) ( )

R

i i
N iD z D −

− +Χ = + Χ  for all active nodes; 
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6) Prune the branches of the nodes whose ( )( )iD Χ  is larger than a given upper 

bound; 
7) If the current nodes are leaf nodes, stop; otherwise, move to next layer and 

goto step 4; 
 
 

B. First-level Candidate Decision by Phase Detection  

For first layer in N-QAM multilevel tree, the number of nodes which need to 

compute Euclidian distance is 4
TN . A phase detection method is proposed which only 

needs to check the phase of each element in estimated signal vector. Although a 
preprocessing is needed to estimate the transmitted signal vector, the calculation of 
phase is much less complex than the calculation of the squared Euclidean distance. The 
transmitted signal vector ( ˆMMSEx ) can be estimated through minimum mean-squared 

error (MMSE) approach ( 2 1ˆ ( )H H
MMSE H H Hσ −= +x I y , where 2σ  is a noise variance 

and I  is an identity matrix), which needs very little computation complexity. The 

function of phase calculation is denoted as ˆ( )jxθ  where ˆ jx  is the element of 

estimated vector ˆMMSEx . To decide the elements ( , L i
jx ) in each candidate vector ( , L ix ) 

at first layer, the set of possible constellation point can be defined as 
 

1 2 4

1 2 3

1 3 4

2 3 4

ˆ{ , , },         0 ( )<
2

ˆ{ , , },         ( )<
2

ˆ{ , , },         ( ) 0
2
3 ˆ{ , , },         ( )<
2 2

L L L
j

L L L
j

j
L L L

j

L L L
j

s s s if x

s s s if x

s s s if x

s s s if x

πθ

π θ π

π θ

π πθ

 ≤

 ≤

∆ =  − < ≤

 − − ≤


               (17) 

 

where 1
Ls , 2

Ls , 3
Ls  and 4

Ls  is in the upper right section, upper left section, lower left 

section and lower right section of the I-Q plane respectively. Hence, the set of 
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candidate vectors { }, L ix  at first layer can be obtained as 

{ } { }, , , , , 
1 2, , |

T

TL i L i L i L i L i
N j jx x x x = ∈∆ x   and the size of the set is 3 TN .   

We just apply phase detection at first layer because the distance between each 
symbol at highest layer is larger than the distance at lower layer. The large symbol 
distance at first layer reduces the performance loss which is caused by inaccurate 

estimation of linear approach for ˆMMSEx . The choice of number of elements in the j∆  

is the trade-off between computation complexity and system performance. Summarily, 
the complexity reduction of phase detection can be categorized into two ways: 1) The 
simpler method to obtain the candidates, which reduces the complexity of computing 
the squared Euclidean distance and sorting for obtain the M-best candidates. 2) The 
number of candidate decided by phase detection is lesser than the number of candidates 
decided by the squared Euclidean distance, which also introduce lesser sub-branches in 
the lower layer. Thus, phase detection method not only uses a simpler metric to 
searches cluster candidates but also reduces candidate number in multilevel tree. 
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C. Summary of the Cluster-Based Algorithm with 

Complexity Reduction Version 

We summarize the proposed cluster-based algorithm with complexity reduction version 
in serial of steps as follows: 

1) Compute the MMSE output ˆMMSEx  and perform phase detection to obtain the 
candidate nodes in first layer of multilevel tree.  

2) For layer 1, 2L= −  , 
i) Collect the nodes which extended from the candidate node in 

upper layer as a search set ∏  
ii) Compute the radius constraint γ   according Eq. (4) 
iii) Collect the nodes whose , ( )iD x  are less than radius constraint 

by branch and bound search strategy ( B γ=  ). 
iv) Sort the nodes collected by step 2.iii, and select the K   best 

nodes as candidate nodes. 
3) For detail matching ( 1= ), 

i) Collect the nodes which extended from the candidate node in 
layer 2 as a search set L∏  

ii) Find the node which has the smallest distance metric by branch 
and bound search strategy. 
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Chapter 5  

Simulation Results 
 
 
 

A typical MIMO-OFDM system is based on IEEE 802.11n Wireless LANs, TGn 
Sync Proposal Technical Specification [10] which is used as the reference design 
platform. The simulation model is mainly based on TGn multipath specification of 
mode E, which is the multipath fast-fading channel model of 15-taps and 100ns Root 
Mean Square (RMS) delay. The major simulation parameters are shown in Table 1 

 
Table 1 Simulation parameters 

Parameter Value 

Number of antennas 
3Tx and 3Rx, 
4Tx and 4Rx 

Signal bandwidth 20 MHz 
Number of subcarrier 52 
Subcarier modulation 64 QAM 

Packet size 1024 (Bytes) 
FEC coding rate 2/3 
Channel Model TGn E type 
Number of taps 15 

RMS delay spread 100 nsec 

 
The proposed cluster-based detection algorithm has two levels in cluster matching 

and needs to sort cluster candidates in the cluster matching stage. The cluster candidate 
number is critical for detection complexity and detection precision. Consequently, the 
approach applies a branch and bound strategy to reduce the number and a sorting 



 

 19 

strategy to fix cluster candidate number. The fast phase decision method is another way 
to reduce cluster candidates number. Since the fast phase decision method has fixed 
candidate number in the first cluster matching stage, it only needs to select cluster 
candidate in the second stage. However, the phase decision method suffers from signal 
distortion in large number of antennas. Thus the proposed cluster-based with three 
phase decision method can mitigate the error detection. This section compares 
performance and complexity between different detection methods in MIMO detection. 
Note that the performance comparison is considered under packet error rate 0.08 and 
normalizes to the ML detection methods. 

 

A. Performance Evaluation  

For the purpose of performance comparison, the performance of various MIMO 
detection methods is considered. Fig. 5 and Fig. 6 present the PER for 3 x 3 and 4 x 4 
MIMO-OFDM systems. As can be seen from the figure, there is a large gap between the 
linear and nonlinear MIMO detection methods. The nonlinear detection methods such 
as the proposed Cluster-based method and K-best sphere decoder maintain SNR 
degradation within 0.4dB in the Fig. 5 and 0.2dB to 0.45dB in the Fig. 6 

The table 2 summarizes the performance and the performance is normalized to 
ML detection method. The proposed cluster method can maintain performance within 
0.45dB such that the method is suitable for practical system. 

Table 2 Summaries performance comparison for various detection methods 

Method 

3 x 3 MIMO-OFDM system 

ML 
Cluster 
(33,61) 

K-Best SD 
(k=8) 

VBLAST MMSE ZF 

SNR in PER 
0.08 

28.15 
dB 

28.55 dB 28.55 dB 32.20 dB 33.40 dB 34.10 dB 

SNR 
Degradation 

0 dB 0.4 dB 0.4 dB 4.05 dB 5.25 dB 5.55 dB 

Method 

4 x 4 MIMO-OFDM system 

ML 
Cluster 

(100,388) 
K-Best SD 

(k=12) 
VBLAST MMSE ZF 

SNR in PER 
0.08 

28.55 
dB 

29 dB 29 dB 33.15 dB 34.60 dB 35.20 dB 

SNR 
Degradation 

0 dB 0.45 dB 0.45 dB 4.6 dB 6.05 dB 6.65 dB 
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Fig. 5 PER of various detection methods for 64-QAM modulated 3 x 3 MIMO-OFDM systems 

 
Fig. 6 PER of various detection methods for 64-QAM modulated 4 x 4 MIMO-OFDM systems 

PER 0.08 
0.4 dB 

0.45 dB 

PER 0.08 
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Since K-best sphere decoder was accepted as practical, the target of cluster-based 

detection is complexity reduction and remains performance. For the purpose of 
complexity comparison between the K-best sphere decoder and the cluster-based 
methods, we tune K-best parameter: k and cluster parameter: candidate number such 
that different methods have nearly the same performance. 

Fig. 7 and Fig. 8 compare cluster-based detection method and cluster-based 
phase detection method with K-best sphere decoder.  

Observing from the Fig. 7, there is only near 4 dB SNR degradation for 
cluster-based method, cluster-based with phase decision method and K-best sphere 
decoding method. To take account of the complexity, the cluster-based with two phase 
decision method need fewer candidates than the cluster-based with three phase 
decision method, 8 candidates in phase decision stage and 64 candidates in second 
level cluster matching stage, to remain the same performance. 

Observing from the Fig. 8, cluster-based with two phase decision approach can’t 
remain performance within 0.45 dB. Therefore, cluster-based with three phase 
detection method is better candidate for 4 x 4 MIMO-OFDY system. 
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Fig. 7 PER of phase decision methods for 64-QAM modulated 3 x 3 MIMO-OFDM systems 

 

 

Fig. 8 PER of phase decision methods for 64-QAM modulated 4 x 4 MIMO-OFDM systems 

PER 0.08 

PER 0.08 
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B. Complexity Comparison 

The table 3 summarizes the performance and compares sorting operation among 
these methods. Assume heap sort operation is used and then it needs Nlog2N sorting 
operations to sort N element. The table shows that sorting operation in cluster-based 
methods has complexity reduction ranges from 7.37% to 21.5% in 3 x 3 MIMO-OFDM 
system and 29.76% to 76.8% in 4 x 4 MIMO-OFDM system. 
Table 3 Complexity comparison between K-Best SD, CBD, CBD with 2 phase decision 

and CBD with 3 phase decision 

Method 

3 x 3 MIMO-OFDM system 

ML 
K-Best SD 

(k=8) 
Cluster Fixed 

(33,61) 

Cluster 
2-phase 

MMSE (8,61) 

Cluster 
3-phase 

MMSE (27,61) 
SNR in PER 

0.08 
28.15 dB 28.55 dB 28.55 dB 28.55 dB 28.55 dB 

SNR-Loss 0 dB 0.4 dB 0.4 dB 0.4 dB 0.4 dB 

Multiplier 
3145728 
(100%) 

2520 
(0.08%) 

73728 
(2.3%) 

54528 
(1.73%) 

69120 
(2.19%) 

Adder 
2883584 
(100%) 

2342 
(0.08%) 

67392 
(2.3%) 

49792 
(1.72%) 

63168 
(2.19%) 

Comparator NA 
1560 

(100%) 
336 

(21.5%) 
115 

(7.37%) 
198 

(12.69%) 

Method 

4 x 4 MIMO-OFDM system 

ML 
K-Best SD 

(k=12) 
Cluster Fixed 

(100,388) 

Cluster 
2-phase 
MMSE 
(16,283) 

Cluster 
3-phase 

MMSE (81,283) 

SNR in PER 
0.08 

28.55 dB 29.00 dB 29.00 dB 29.3 dB 29.00 dB 

SNR-Loss 0 dB 0.45 dB 0.45 dB 0.75 dB 0.45 dB 

Multiplier 
335544320 

(100%) 
8096 

(0.0024%) 
2508800 
(0.75%) 

1541120 
(0.46%) 

1873920 
(0.55%) 

Adder 
318767104 

(100%) 
7930 

(0.0024%) 
2382336 
(0.75%) 

1463040 
(0.46%) 

1779200 
(0.56%) 

Comparator NA 
3817 

(100%) 
2934 

(76.8%) 
1136 

(29.76%) 
1879 

(49.22%) 
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Chapter 6  

Conclusions 
 

 
 
This work presents a near ML performance, low-complexity cluster-based 

MIMO detection design, which use fast phase decision and branch and bound method 
to reduce the need of system hardware for MIMO-OFDM wireless accesses. 
Simulations and measurements indicate that the proposed scheme can achieve 8% 
PER with about 0.45 dB SNR loss compared with MLD in frequency-selective fading 
of TGn E channel [10]. Without any specific preamble, pilot format and STBC coding, 
this cluster-based MIMO detection method for 4×4 MIMO-OFDM systems can 
provide near ML performance with relatively low complexity. This study does not 
only derive an efficient solution for OFDM-based MIMO receivers, but is also 
well-suited for next-generation wireless LAN discussed in IEEE 802.11 VHT study 
group. 
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