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Abstract

Recently, multiple-input multiple-output (MIMO) architecture has been applied
widely in many wireless communication systems because of its high spectrum
efficiency. Various approaches are explored for the MIMO detection, which can be
classified to three categories: sub-optimal, near-optimal and optimal solution.

We propose the multilevel cluster-based MIMO detection algorithm by
partitioning the transmitted MIMO signal.vectors. into clusters with the multilevel
N-QAM structures in each dimension. Qur:method detects correct transmitted signal
vector by searching the corresponding clusters in hierarchical tree structure. Moreover,
both branch and bound and phase detection techniques are addressed to archive low
complexity design.

Through simulation in IEEE 802.11n platform with TGn channel E, it indicates
the complexity of proposed algorithm is less than the K-best SD with the same
performance. Hence, the proposed algorithm provides a near-optimal solution with
low computation complexity design for wireless MIMO system.
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Chapter 1

Introduction

Recently, multiple-input multiple-output (MIMO) architecture has been applied
widely in many wireless communication 'systems because of its high spectrum
efficiency. To exploit the spectrum efficiency, large number of antennas and/or high
order QAM constellations are often employed, which leads a challenge to design the
MIMO detection with acceptable complexity and sub-optimal performance.

Various approaches are exploredfor the detection of MIMO signals [1]. For
linear detection approaches, Zero-Forcing (ZF) or Minimum Mean Square Error
(MMSE) uses the inverse of estimated channel response to extract the desired signals.
Both of these two approaches are simple to implementation, but with the enhancing
channel noise which induce large performance degradation. Another category is the
nonlinear approaches such as V-BLAST and the maximum likelihood detection
(MLD). The V-BLAST algorithm using ordered successive interference cancellation
with QR decomposition [2]. The MLD algorithm gains the optimal performance with
the intractable computation complexity [3]. The sphere decoder (SD) methods [4]
attempted to reduce the search set by searching the candidates that lie within the
radius, which still provides the ML performance. However, the radius of SD varies
with the channel realization which makes its complexity is higher in the low SNR
region. Some methods [5]-[7] reduce the search set by employing the multilevel
structure of the N-QAM constellations. The multilevel structure decomposes N-QAM
demodulation naturally into a sequence of sub-demodulations with a hierarchical
order, which has been widely investigated for complexity reduction purpose [8].

In this paper, we develop a novel algorithm that detects the received MIMO
symbol vectors by partitioning the multi-dimensional symbols into clusters according



to the multilevel N-QAM structures in each dimension. In [5], this work identified the
M most significant QAM symbol combinations by SGA algorithm and exploits the
multilevel structure of QAM constellations to reduce complexity with depth-first
searching and breadth-first searching. In [6] and [7], both of these two works detected
the likelihood MIMO symbols in the multi-dimensional MIMO symbol set which
perform hierarchical QPSK searching within full constellation of symbol points.
Nevertheless, [6] did not show its feasibility by simulation results and [7] has an error
floor for low bit error rate (BER).

The remainder of this paper is organized as follows. The system assumptions
with problem statement are addressed in Section Il. The proposed multilevel
cluster-based algorithms are described on example in Section I1l. The complexity
reduction strategies are described in Section IV. Performance and complexity are
evaluated and compared with different approaches in Section V. Finally, Section VI
gives conclusions.



Chapter 2

System Assumptions

A. System Description

Consider a NixNgr spatial multiptexing MIMO system, where Ntand Ng are the
number of transmitted and received antennas. The-data is encoded by scrambler,
convolutional code, puncture, interleaver, N-QAM modulation and transmitted over the
N antennas simultaneously. Assuming perfect timing and frequency synchronization,
the received baseband signal for NrxNg MIMO system is modeled as following:

y=Hx+n (D)

T . . .
where x:[xl,xz,...,xNT] ([*]' means transpose), x is the transmitted signal
modulated with N-QAM constellation in the i-th transmitted antenna in the transmitted

signal space; vy :[yl, Yoyeens yNR]T denote the received symbol vector in the received

signal space, and nz[nl,nz,...,nNR T indicates an independent identical distributed

(i.i.d.) complex zero-mean Gaussian noise vector with variance o per dimension.
Moreover, the frequency selective fading [9] is represented by the NgxN+t channel
matrix H, whose elements h;; represent the complex transfer function from the j-th
transmit antenna to the i-th receive antenna. We assume that the receiver knows the



channel matrix perfectly, and that Ng=Nr in this paper.

B. Problem Statement

To employ large number of antennas and/or high order QAM constellations, the
MLD requires unacceptable computation to exhausted search the most likelihood
symbol combination. To overcome the complexity problem, finding the likelihood
candidates according to the multilevel structure of the N-QAM constellations can
significantly reduce the search space. The partition rule of multilevel N-QAM structure
is described as an example of 64-QAM constellation in Fig. 1(a) The 64 constellation
points are firstly partitioned into four distinct sets according to the four quadrants of I-Q
plane. Each quadrant comprises a 16-QAM constellation and is coupled to a square
point which is a mean value of the sixteen points. The quadrants can be further
partitioned into four sub-sets (4-QAM) recursively. The four constellation points in
each of 4-QAM constellations are coupled to a star point which is a mean value of the
four points.

More accurately, the definitions for.the.mean .symbols of multilevel structure in
N-QAM constellation are as follows. The: N-QAM constellation can be recursive

partitioned to L levels where L= log, N.The P"! is a subset of constellation points
which are in the partition i at level* 4 (¢ =1,2,...,L) . The set of mean symbols at level

¢ can be defined as S' £{s;,s;,--,sy |, where s/ is the mean symbol of P"' and
N, =4""xN. For /=1, s is the constellation point in N-QAM constellation. The

relation between s’ and its coupled constellation points is expressed as

Lz_sa]
s = I )

For MIMO multi-dimensional symbols, the transmitted symbol vector is

xlz[sll,si,...,sﬁh ]T for transmitted antennas 1,2, ---,N, . The /-th level mean

, , u L :
symbol vectors can be defined as x' é[sf sﬁ,-~-,sﬁ,T] and obtain with multilevel

4



N-QAM structure of each dimension in transmitted symbol vector. The set of all

possible mean symbol vectors at level /7 is X' = {x“} T
12N,

The aim of the multilevel MIMO detection is to find the nearest N-QAM symbol

combination ( x*') by hierarchical search strategy. [5] found the M most possible QAM

symbol combinations by SGA algorithm with depth-first searching or breadth-first
searching for multilevel 64 QAM structure. The SGA algorithm translate MIMO
symbols uses the zero forcing output as a reference estimation to find the likelihood
approximation vectors in transmitted signal space, which leads the risks of performance
degradation caused by zero forcing. [7] tries to detect the likelihood transmitted signals
in the received signal space which does not need the help of inversion of channel matrix.
However, a serious systematic error which causes error floor at low BER is mentioned.
Such systematic error is generated due to the cross-talk elements in channel matrix H,
which makes the nearest mean vector with the minimum Euclidian distance in the
transmitted signal space doesn’t always imply that it is still the nearest one in the
received signal space. The following equation shows such mismatch of signal detection
between transmitted signal space and received.signal space.

”(Hx—Hx‘)”2 :”H (x~x")||2 =(x—x[)H H"H (x—x”) (3)

For MIMO channel, H"H only ensures its diagonal elements are positive real
) 2 - - - 2
value, which leads ”( Hx — Hx' )” is not necessarily proportional to ”( X— X' )” . Thus,

our problems associated with multilevel cluster-based MIMO detection are to
overcome the systematic error in the received signal space and to design of near ML
performance algorithm with low complexity cost.



Chapter 3
Multilevel Cluster-Based MIMO

Detection

A. Principles of Reducing Search Space

Instead of exhausted searching all possible transmitted vectors in the MLD, this
work proposes a hierarchical search according to the multilevel structure of N-QAM
constellation. We first divide the set of all possible transmitted symbol vectors into
different level of clusters according to the N-QAM multilevel partition rule. The
Cluster i at level ¢ is a group of similar transmitted symbol vectors with mean vector

X", which is defined as C"" 2 {x*|s e P"'}

" The divisions are recursively to
:

form a multilevel cluster tree in Fig 1(b). The root node represents the set of all possible
transmitted symbol vectors and other nodes are the means of clusters. Each node at
layer ¢ extends 4" nodes to next layer (¢ —1). The breadth-first search is applied to
search the correct transmitted vectors in the multilevel cluster tree, which is mainly
composed of two parts of stages: 1) The cluster matching stages. 2) The detail matching
stage. The searching begins with root and finds the nearest cluster means from layer L
to layer 2. For each layer, the searching chooses the nodes which fall inside the sphere
with a given radius as candidate nodes, and discards other nodes in future consideration.
The candidate nodes are the nodes whose branches are active for further searching. The
criteria of candidate node in cluster matching stages is defined as



D(x"")=[y-rx" [ < @

where ' is the radius constraint for layer ¢. Therefore, the set of candidate nodes at
layer ¢ can be defined as

QZZ{XM | x"Tell’, ||y—Hx“||<;/'} Q' I (5)

where T1' is the set of all possible nodes extended from the candidate nodes at layer

(¢+1) andall nodes in Q' can extend their branch to next layer (f—l). For layer one,

the detail matching performs the ML search to find the nearest transmitted signal vector.
The transmitted signal vector can be detected based on ML criteria for detail matching

X = argmin ||y—Hx“|| (6)

Xl’ Tertt

e 06 "
7777777 ﬁ_/ U ) S —
/
° O O
s02¢ Toooooaim: ‘ ™ ]
e - /256 ~./ 256 - [256
T AT e Cluster
e s ...‘\‘ e “3... matchmg
| / \ |
| v \ ! \

| ) [ [l ] “ Detail

Fig. 1 (a) Example of multilevel partitions with mean symbols in 64-QAM constellation. (b) Example of

multilevel cluster tree in 64-QAM constellation.



B. Dynamic Estimation of Radius Constraint

To reduce the search space, the cluster mean outside the radius constraint will be
discarded for low-level searching or detail matching. The constraint vector for layer ¢

is definedas v"° :(xl’ c_x" ) ,where x“' could be any cluster mean at level ¢ and

1c

X" ¢ is a vector of constellation point combination whose vector elements are one of

the four corner constellation points in P“' . Fig. 2 describes the examples of layer three

and layer two for one of the dimensions of x"' in 64-QAM constellation and there are

4™ possible constraint vectors corresponding to. x"'. The distance vector between

the received signal vector without AWGN effect and “x"' can be obtained as

2

||y— Hx“”2 :”(Hxl’k)— Hx“”2 =||H (xl'k —x“)”2 s”va’C

(7)

The length of all possible constraint vectors for x“' is equal in transmitted signal

space. However, it is no longer equal in received signal space due to the cross-talk
effect in MIMO channel which introduce different channel gain for elements in the
constraint vectors. Hence, the maximum length of possible constraint vectors is chosen
as the constraint value to include the nearest cluster.

d’ = max{[Hv" [ },c =1,...,4" (8)

The same constraint is applied to other nodes at the same layer because the length
of their constraint vectors is the same. To combat with AWGN, the radius is defined as

y'=a'-d', a'>1 9)



where o' is a real value of threshold for layer ¢. If «' is set too large, more
candidates is included which causes more computation complexity. On the other hand,
the nearest cluster could not be included when « is not large enough, which causes
performance degradation. Fig 3 shows the observation of performance degradation
with « setting at different SNR for 4x4 64-QAM MIMO system. The 64-QAM needs
two level cluster matching stages where o' and o are their factors, respectively.
The result presents that the influence of o' is less than the influence of «® on
performance degradation. The reason is that the distance between cluster mean vectors
at higher layer is larger than the distance between cluster mean vectors at lower layer
which enhances the noise immunity for higher layer cluster matching.

6 0 0o olle o e e e R
* * | * | e o | Ty
© 0 0o oflle e e e i ! ! % A’.
o o - o o 3 e o - o o ® \73'2“ i,"\731 ® i ; CRX |
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O 0 0 Ofe e e e ) | 1 .\ VP
********************* ) | '\723 *
o o o olo o o o ® ® L ] v @ | .’ “
* * * * it \* | ¥ W
o o o o|lo o o o H Layer 2
n [ .’ ® ® ‘.
o o o o|lo o o o
* * * *
O O O OoO|o O O O Layer 1

Fig. 2 Constraint vectors of 64-QAM constellation for different layer with one dimension in

MIMO symbol vector.
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Fig. 3 Alpha vs. PER under fixed SNR.for 64-QAM.4 x 4 MIMO-OFDM systems (TGN E channel)

C. Fixed Number of Candidates Selection

Since the number of the candidate nodes which fall within the radius constraint is
not a constant, a M-algorithm is employed to keep the M best candidates at each layer.
We first sort the candidate nodes and ranking these nodes with their Euclidean distance
metric. The nodes of M smallest distance metric are chosen as M best candidate nodes.
At the cluster matching layers, only the M best candidate nodes can expand to next
layer and other nodes are discarded to reduce the search. Thus the value of M should be
large enough, which significantly affects the system performance and computation
complexity. The different to a general M-algorithm is that each cluster matching layer is
applied with different values of M. The proper values of M are observed through the
relation of PER and the value of M. Fig. 4 show the example of 4x4 64QAM
transmission which has two different values of M to apply in two cluster matching
layers.

10



PER vs. 1-level Candidate Number
(SNR fixed at 29 dB)
T

|
20 40 60 80 100 120 140
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Fig. 4 PER vs. selected candidate number (IM=best candidates ) under fixed SNR for 64-QAM 4 x 4
MIMO-OFDM systems (TGN E channel)
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Chapter 4

Complexity Reduction

A. Fixed Number of Candidates Selection

The BBD method is a general search algorithm, which divides the feasible sets
into several subsets and associates each-subset to @ branch. For each branch, the
feasible set is further divided and associated to-sub-branches. The algorithm is applied
recursively to the sub-problems; forming a BBD tree of sub-problems. The
lower-bounding and upper-bounding processes are applied to avoid searching the
whole BBD tree to obtain the optimal solution. If the objective cost to a branch (lower
bound) exceeds the cost of the best known feasible solution (upper bound), the whole
branch is pruned in the BBD tree. Therefore the leaf nodes in the BBD tree represent
the feasible solutions of the optimization problem.

Several BBD methods have been employed in wireless communication system
for obtaining optimal solution. In multi-user detection, BBD with BFS and BBD with
DFS have been used in [10] and [11] to find the minimum distance between different
user codes. For the MIMO diction, an iterative list BBD algorithm is investigated in
[12]. In our work, we apply BBD to reduce the complexity of measuring full
Euclidean distance in Eq. (5) and Eq. (6). To find the candidate nodes form  at each
layer of the multilevel cluster tree can be treated as the root feasible set in BBD tree.
In Eq. () and Eq. (6), to obtain the candidate nodes with full dimensional
computation of distance metric can be avoided by comparing the partial Euclidean
distance with branch and bound search strategy. To apply branch and bound search,
we first transform the signal vector and channel matrix to real domain and the Eq. (1)

12



can be written as

HRé{rea'(H) img(H)} (10)

where real(-) and img(-) denote the real and image parts of (), respectively. The QR
decomposition can be performed on channel matrix.

H, =QR (11)

where Q is an 2Ngx2Ng unitary matrix (QQ" =1) and R is an 2Ntx2Nt upper
triangular matrix .The Eq. (10) can be rewritten as

VRSP RX kD (12)

where y; and n; denote the;vectors including the first 2Ny rows of Q-y, and

Q- ng, respectively. Hence, the distance vector z = [zl, Zy, ey 2y, ]T is obtained as

Z, A TR lin, X
z Y. 0 r, - T X
2 22 2N 2
= T o (13)
Zy, Y, 0 - 0 ny (X

The distance metric to find the likelihood candidates is
. 2 & 2
D(x) =|y'-Rx| :znzj” (14)
j=1

Since D(z) is derived form z,,z, ...z, , a BBD tree can be employed to search

the minimum distance of Eq. (14). The root of the BBD tree is labeled with X which
means the set of all possible vectors ( x). Each node at layer (i-1) branches £ new

13



nodes at next layer i and the branch cost of node X\" is defined as

2 i-1
z +D(X")<B (15)

D(x") =Z‘

2
Z(Nm‘)” :‘

(Ng—i+1)

where B is the upper bound for BBD strategy. It can be easily seen that the search
strategy is breadth-first. The distance cost will quickly accumulate layer by layer

because ||zi||2 >0 and most branches can be pruned due to the excess of upper bound.

Hence, the proposed BBD can significantly avoid calculating full Euclidean distance
for all possible vectors in the searching space. Since the nodes in T1' are dynamical
obtained from upper layer in multilevel cluster tree, the depth first search is hard to be
applied in the proposed BBD tree because each node does not extent a constant branch.
The methods of obtaining the upper bound in BBD search strategy are different
between cluster matching stages and detail matching stages in multilevel cluster tree.
The upper bounds for each cluster matching stage can directly use the value of its radius
constraints (B = »"). The basic idea of obtaining the.upper bounds in detail matching is
to select the minimum distance form W :possible:transmitted signal vectors. We
randomly chose one of the transmitted signal vectors from each of W upper layer cluster
whose mean symbol vectors have smallest ranking: with Euclidean distance metric.
Then the smallest Euclidean distance of these W.possible transmitted signal vectors can
be obtained as the upper bounds. The equation can be formula as

B =min(D(x"*),D(x"?),---D(x*")), x"'eC"', 1<i<W (16)

where C"' is one of the W cluster whose mean symbol vectors have smallest ranking
with Euclidean distance metric. For the ease of understanding, the breadth-first BBD

algorithm can be summarized as following steps:
1) Compute QR decomposition matrix on Hg, H, =QR;

2) Pre-compute y,, y,=Q"y.;

3) Compute the upper bound B ; if the BBD is applied in cluster matching stage,
B=y', else B=min(D(x"'),D(x""),--D(x""));

4) Initialize k=1; activate the root node;

. 2 .
5) Compute D(X(')):‘ +D(X"Y) for all active nodes;

Z

Ng—i+1)

14



6) Prune the branches of the nodes whose D(X(i)) is larger than a given upper

bound;
7) If the current nodes are leaf nodes, stop; otherwise, move to next layer and
goto step 4,

B. First-level Candidate Decision by Phase Detection

For first layer in N-QAM multilevel tree, the number of nodes which need to

compute Euclidian distance is N.*. A phase detection method is proposed which only

needs to check the phase of each element in estimated signal vector. Although a
preprocessing is needed to estimate the transmitted signal vector, the calculation of

phase is much less complex than the calculation of the squared Euclidean distance. The
transmitted signal vector (X, ) can be estimated through minimum mean-squared

error (MMSE) approach ( X, =(H™H +a®1)."H y, where & isa noise variance

and | is an identity matrix), which needs very little computation complexity. The

function of phase calculation is denoted as™ €(X;) where X; is the element of

estimated vector X, - To decide the elements ( ;' ') in each candidate vector (x"")

at first layer, the set of possible constellation point can be defined as

{sr.s;.8.%, inge(;(j)<%

. T ~
{SlL!S;!S:!‘;}! If ESG(XJ')<7T (17)
A. =
{sh,sb sty i %w(f(j)so

{st,st,sty,if _37’2 e(ij)<%

where s’, s, st and s; isin the upper right section, upper left section, lower left

section and lower right section of the 1-Q plane respectively. Hence, the set of

15



candidate  vectors {xL"} at first layer can be obtained as

{x“}={[X1L'i,x2L’i,---x,§'Ti]T | x5! eAj} and the size of the set is 3" .

We just apply phase detection at first layer because the distance between each
symbol at highest layer is larger than the distance at lower layer. The large symbol
distance at first layer reduces the performance loss which is caused by inaccurate

estimation of linear approach for X, . The choice of number of elements in the A,

is the trade-off between computation complexity and system performance. Summarily,
the complexity reduction of phase detection can be categorized into two ways: 1) The
simpler method to obtain the candidates, which reduces the complexity of computing
the squared Euclidean distance and sorting for obtain the M-best candidates. 2) The
number of candidate decided by phase detection is lesser than the number of candidates
decided by the squared Euclidean distance, which also introduce lesser sub-branches in
the lower layer. Thus, phase detection method not only uses a simpler metric to
searches cluster candidates but also reduces candidate number in multilevel tree.

16



C. Summary of the Cluster-Based Algorithm with

Complexity Reduction Version

We summarize the proposed cluster-based algorithm with complexity reduction version
in serial of steps as follows:
1) Compute the MMSE output X,,,z and perform phase detection to obtain the
candidate nodes in first layer of multilevel tree.
2) Forlayer /=L-1,---2,
)] Collect the nodes which extended from the candidate node in
upper layer as a search set ]’
i) Compute the radius constraint »* according Eq. (4)
iii) Collect the nodes whose D(x"') are less than radius constraint
by branch and bound search strategy (B = y").
iv) Sort the nodes collected by step 2.iii, and select the K’ best
nodes as candidate nodes.
3) For detail matching (¢ =1),
)] Collect the nodes which extended from the candidate node in
layer 2 as-a search et T1"
i) Find the node which has the smallest distance metric by branch
and bound search strategy.

17



Chapter 5

Simulation Results

A typical MIMO-OFDM system is based on IEEE 802.11n Wireless LANs, TGn
Sync Proposal Technical Specification:[10] swhich is used as the reference design
platform. The simulation model .is mainly.based on TGn multipath specification of
mode E, which is the multipath fast-fading channel model of 15-taps and 100ns Root
Mean Square (RMS) delay. The-major simulation parameters are shown in Table 1

Table 1 Simulation parameters

Parameter Val ue
Number of antennas STx and 3Rx,
4Tx and 4Rx
Signal bandwidth 20 MHz
Number of subcarrier 52
Subcarier modulation 64 QAM
Packet size 1024 (Bytes)
FEC coding rate 2/3
Channel Model TGn E type
Number of taps 15
RMS delay spread 100 nsec

The proposed cluster-based detection algorithm has two levels in cluster matching
and needs to sort cluster candidates in the cluster matching stage. The cluster candidate
number is critical for detection complexity and detection precision. Consequently, the
approach applies a branch and bound strategy to reduce the number and a sorting
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strategy to fix cluster candidate number. The fast phase decision method is another way
to reduce cluster candidates number. Since the fast phase decision method has fixed
candidate number in the first cluster matching stage, it only needs to select cluster
candidate in the second stage. However, the phase decision method suffers from signal
distortion in large number of antennas. Thus the proposed cluster-based with three
phase decision method can mitigate the error detection. This section compares
performance and complexity between different detection methods in MIMO detection.
Note that the performance comparison is considered under packet error rate 0.08 and
normalizes to the ML detection methods.

A. Performance Evaluation

For the purpose of performance comparison, the performance of various MIMO
detection methods is considered. Fig. 5 and Fig. 6 present the PER for 3 x 3 and 4 x 4
MIMO-OFDM systems. As can be seen from the figure, there is a large gap between the
linear and nonlinear MIMO detection methods. The nonlinear detection methods such
as the proposed Cluster-based method .and K-best sphere decoder maintain SNR
degradation within 0.4dB in the Fig. 5 and 0.2dB t0'0.45dB in the Fig. 6

The table 2 summarizes the performance and the performance is normalized to
ML detection method. The propesed cluster method can maintain performance within
0.45dB such that the method is suitable for practical system.

Table 2 Summaries performance comparison for various detection methods

3 x 3 MIMO-OFDM system

Method Cluster K-Best SD
ML VBLAST MMSE ZF
(33,61) (k=8)

SNRinPER | 28.15
0.08 dB
SNR

Degradation

28.55dB | 28.55dB 32.20dB | 33.40dB | 34.100dB

0dB 0.4dB 0.4dB 4.05dB 5.25dB 5.55dB

4 x 4 MIMO-OFDM system

Method Cluster K-Best SD
ML VBLAST MMSE ZF
(100,388) (k=12)

SNRinPER | 28.55
0.08 dB
SNR

Degradation

29dB 29 dB 33.15dB | 34.60dB | 35.20dB

0dB 0.45dB 0.45dB 4.6dB 6.05dB 6.65dB
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PER vs SMR
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Fig. 5 PER of various detection'methods for 64-QAM modulated 3 x 3 MIMO-OFDM systems
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Fig. 6 PER of various detection methods for 64-QAM modulated 4 x 4 MIMO-OFDM systems
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Since K-best sphere decoder was accepted as practical, the target of cluster-based
detection is complexity reduction and remains performance. For the purpose of
complexity comparison between the K-best sphere decoder and the cluster-based
methods, we tune K-best parameter: k and cluster parameter: candidate number such
that different methods have nearly the same performance.

Fig. 7 and Fig. 8 compare cluster-based detection method and cluster-based
phase detection method with K-best sphere decoder.

Observing from the Fig. 7, there is only near 4 dB SNR degradation for
cluster-based method, cluster-based with phase decision method and K-best sphere
decoding method. To take account of the complexity, the cluster-based with two phase
decision method need fewer candidates than the cluster-based with three phase
decision method, 8 candidates in phase decision stage and 64 candidates in second
level cluster matching stage, to remain the same performance.

Observing from the Fig. 8, cluster-based with two phase decision approach can’t
remain performance within 0.45 dB:: Therefore, cluster-based with three phase
detection method is better candidate for 4.x.4 MIMO-OFDY system.
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0 PER vs SMR
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Fig. 7 PER of phase decision methods for.64-QAM modulated 3 x 3 MIMO-OFDM systems
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Fig. 8 PER of phase decision methods for 64-QAM modulated 4 x 4 MIMO-OFDM systems
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B. Complexity Comparison

The table 3 summarizes the performance and compares sorting operation among
these methods. Assume heap sort operation is used and then it needs Nlog,N sorting
operations to sort N element. The table shows that sorting operation in cluster-based
methods has complexity reduction ranges from 7.37% to 21.5% in 3 x 3 MIMO-OFDM

system and 29.76% to 76.8% in 4 x 4 MIMO-OFDM system.

Table 3 Complexity comparison between K-Best SD, CBD, CBD with 2 phase decision
and CBD with 3 phase decision

3 X 3 MIMO-OFDM system

i Cluster Cluster
Method K-Best SD | Cluster Fixed
ML 2-phase 3-phase
(k=8) (33,61)
MMSE (8,61) | MMSE (27,61)
SNR in PER
0.08 28.15dB 28.55 dB 28.55 dB 28.55 dB 28.55 dB
SNR-Loss 0dB 0.4-dB 0.4 dB 0.4dB 0.4dB
o 3145728 2520 73728 54528 69120
Multiplier
(100%) (0.08%) (2.3%) (1.73%) (2.19%)
Adder 2883584 2342 67392 49792 63168
(100%) (0.08%) (2.3%) (1.72%) (2.19%)
1560 336 115 198
Comparator NA
(100%) (21.5%) (7.37%) (12.69%)
4 x 4 MIMO-OFDM system
Cluster
i Cluster
Method K-Best SD | Cluster Fixed 2-phase
ML 3-phase
(k=12) (100,388) MMSE
MMSE (81,283)
(16,283)
SNR in PER
0.08 28.55 dB 29.00 dB 29.00 dB 29.3dB 29.00 dB
SNR-Loss 0dB 0.45dB 0.45dB 0.75dB 0.45dB
Multiolier 335544320 8096 2508800 1541120 1873920
P (100%) | (0.0024%) | (0.75%) (0.46%) (0.55%)
Adder 318767104 7930 2382336 1463040 1779200
(100%) (0.0024%) (0.75%) (0.46%) (0.56%)
3817 2934 1136 1879
Comparator NA
(100%) (76.8%) (29.76%) (49.22%)

23




Chapter 6

Conclusions

This work presents a near ML performance, low-complexity cluster-based
MIMO detection design, which use fast phase:decision and branch and bound method
to reduce the need of system. hardware. for MIMO-OFDM wireless accesses.
Simulations and measurements-indicate ‘that the proposed scheme can achieve 8%
PER with about 0.45 dB SNR loss compared with MLD in frequency-selective fading
of TGn E channel [10]. Without-any specific preamble, pilot format and STBC coding,
this cluster-based MIMO detection.method for- 4x4 MIMO-OFDM systems can
provide near ML performance with relatively low complexity. This study does not
only derive an efficient solution for OFDM-based MIMO receivers, but is also
well-suited for next-generation wireless LAN discussed in IEEE 802.11 VHT study

group.
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