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運用 GasP 之低功耗一對多對一結構 

先進先出裝置 

 

研究生：孫銘澤                      指導教授：陳昌居 教授 

 

國立交通大學資訊學院資訊科學與工程研究所 

 

摘  要 

現今電路設計的趨勢朝向低耗電發展，但也常常會因此而喪失其原本電路的效能，

所以擁有低功耗和高效能的電路更具優勢。在本篇論文中，我們提出一個低功耗且高效

能一對多對一結構先進先出裝置之設計與實作。它是基於GasP的電路模組所延伸出來的

系統，且為了實作此系統，我們提出一個方法可以將此系統的演算法轉換成相對應之

GasP的電路模組。接著為了評估先前提出的系統演算法優劣，我們在實作電路前會概略

評估此演算法對應出來的電路模組是否符合低功耗和高效能的實作目標。最後我們分別

實作了多個先進先出裝置來做比較，其中它們分別為十級和十八級且皆為一個位元儲存

空間，於每秒三十億筆資料下以TSMC 180奈米製程模擬。結果指出一對多對一結構先

進先出裝置在耗電方面幾乎擁有最好的表現，特別在十八級時可以達到多一倍的節能結

果，且在更多級數的先進先出裝置更可顯現出其優勢。 
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A Low Power 1-n-1 Structure FIFO 

Implementation with GasP 
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National Chiao Tung University 

 

Abstract 
The current trend of circuit design is towards low power, but the performance is often 

degraded. Therefore the circuits with power-efficiency and high performance are superior. 

This thesis presents a low power and high performance 1-n-1 structure FIFO implementation, 

based on GasP modules. In order to implement the system, we explain a method to transform 

the algorithm of systems into the corresponding GasP modules. Then we derived several 

equations to analysis the algorithm to conform our purpose before we really implement our 

design. Finally, we compared the proposed structure with other structures. The depths we 

compared are ten and eighteen, and the width is one bit. We assume that the environment 

sends three billion data items per second to the FIFOs and it is simulated with the TSMC 

180nm process. The result indicates the 1-n-1 FIFOs almost have the best outcome. In 

particular, the 1-n-1 FIFO with eighteen stages has one time improvement more than the 

square FIFO, and the predominance is more obvious when the depth of FIFOs becomes 

larger. 
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Chapter 1 Introduction 
The goal of this thesis is to implement a fast and power-efficient asynchronous FIFO. 

In the first chapter, we introduce some advantages of asynchronous circuits. Then, we 

introduce the evolution of modern asynchronous pipelines(FIFOs) in this field. Finally, the 

organization of this thesis is described. 

1.1 Advantages of Asynchronous Circuits 
Synchronous design styles are used to most digital circuits today. It is simple to design 

their control circuits because all components just share and notice the clock signal which 

distributed over the whole circuit. However, the arrival time of the clock signal may be not 

the same at different parts of the circuit. It is a well-known problem called “clock skew”. 

Asynchronous design styles are fundamentally different. The components communicate 

with each other by handshaking circuits so that there are no common and global signals. 

Compared with the synchronous design styles, the asynchronous design style has many 

benefits: 

(1) NO clock skew problem : Asynchronous components communicates by handshaking 

circuits so that there is no globally distributed clock; thus the designer can ignore the 

clock skew problem. 

(2) High operating speed : The worst-case timing assumption is needed in synchronous 

circuits. Asynchronous circuit often have computation detection mechanism to 

complete the operations, and it is local latencies rather than global worst-case 

latency.  

(3) Low power-consumption : Synchronous clock signal is sent to every component, and 

all components must operate when it arrives, even if it is not necessary in portions of 

current computation. The fundamentality of synchronous systems results in worse 

power-efficiency. However, asynchronous circuits are just fired when it is actually 



  2

necessary. Energy is only consumed for needed operations. The fundamentality of 

asynchronous systems causes better power-efficiency. 

(4) Excellent EM emissions : Handshaking circuits exchange signals at random points in 

time. It is unlike synchronous clock signal ticks at the same time so that EM 

emissions is much better. Lexau et al. implemented both synchronous and 

asynchronous counterflow pipeline models [1], and the result showed a dramatic 9 

dB reduction in peak EM emissions at essentially constant performance levels [2]. 

There are more potential advantages are discussed in [3] and [4] such as better 

modularity, robustness toward variations in supply voltage and temperature, etc. Modern 

high-speed asynchronous circuits tend to design with full-custom procedure because of few 

CAD tools support and lack of testing methods. Although it is more elastic to circuits, 

designer must spend more time on layout. For this reason, asynchronous circuits are not 

popular for modern design style. 

1.2 The Evolution of Modern Asynchronous Pipelines 
Modern asynchronous pipelines mainly use the { two-phase , four-phase } and 

{ bundled-data , dual-rail } handshaking protocols, and there are many asynchronous 

processors implemented by them. Many asynchronous CAD tool and textbooks also use these 

protocols as their foundation. However different architectures of pipeline are discussed in the 

recent years. The Lookahead pipeline, a variation of domino pipelines, uses complex circuits 

and more signals to achieve shorter cycle time. On the contrary, the GasP and STFB use 

pulse-mode circuits to reduce the handshaking protocols but they still have high throughputs. 

Theses handshaking protocols and pipelines will be introduced in this section. 

1.2.1 Two-phase and Four-phase Handshaking Protocols 

In asynchronous circuits, the major handshaking protocols are two-phase and four-phase 

handshaking. A “signal event” in the two-phase handshaking protocol is defined when request 
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and acknowledgement lines change, and it means handshaking signals exchanged when the 

“signal event” actives. Hence some articles use the terms “non-return-to-zero “ or “transition 

signaling” instead of two-phase handshaking.   

Compared with two-phase handshaking, four-phase handshaking is more complex. (1) 

When the communication cycle starts, the sender sends out data and then pull up the request 

line. (2) The receiver obtains the data and then pull up the acknowledgement line. (3) The 

sender pushes down the request line to respond the receiver. (4) The receiver pushes down the 

acknowledgement line, and the communication cycle completes. Some articles also use the 

terms “return-to-zero “ or “level signaling” instead of two-phase handshaking according to its 

behavior. 

1.2.2 Bundled-data and Dual-rail Handshaking Protocols 

We can distinguish between bundled-data and dual-rail on how they transfer the data 

signals. The bundled-data protocol encodes data signals by using normal Boolean levels. It 

separates the request and acknowledgement lines from the data signals. In opposition to the 

bundled-data protocol, the dual-rail protocol encodes the request signals into the data 

signals; therefore two wires represent one bit information.  

The dual-rail protocol is a special kind of one-hot encodings, and it can be extended as 

1-of-n encodings. The 1-of-n encodings can also be extended to m-of-n encodings. If the 

circuits are designed for communication, m-of-n encodings are better choices. It can reduce 

the overhead of communication, but the computation circuits of m-of-n encodings are very 

complex. 

1.2.3 Modern Asynchronous Pipelines (FIFOs) 

Muller pipeline : 

The Muller pipeline is presented in [3]. It is a four-phase bundled-data protocol and most 

asynchronous pipelines are variations of its control circuits. The behavior of the Muller 
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pipeline is just like a local clock generator. In figure 1.1, the C-element of this stage 

propagates a 1 (request signal) if its predecessor sends a 1 (request signal) and its successor 

sends a 0 (acknowledgement signal). In the same way it propagates a 0 if its predecessor 

sends a 0 and its successor sends a 1. The signals are like clock pulse signals generated by 

C-elements.            

 

 
Figure 1.1 : A four-phase bundled-data pipeline 

 

Micropipeline : 

Ivan Sutherland introduced the Micropipelines in his 1988 Turing Award lecture [5]. 

The Micropipeline bases on the two-phase bundled-data protocol and it also use the 

foundation of Muller pipeline as its control circuit. In figure 1.2, the different point between 

control circuits of Micropipeline and Muller-pipeline is only the acknowledgement signal 

from its successor used as the control signal of latches. Therefore the latches of the 

Micropipeline are controlled by two signals, “capture” and “pass”. When “capture” and 

“pass” signals are in the same Boolean levels, the latches pass the data signals. Otherwise 

they capture the data signals. 
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Figure 1.2 : A two-phase bundled-data pipeline 

 

Four-phase dual-rail pipeline : 

The RISC microcontroller, APIC18, uses the four-phase dual-rail protocol as its control 

circuits [6]. The request signal of the four-phase dual-rail protocol is encoded into the data 

signals; thus the receiver just detects whether the mixed signals is absorbed or not so that it 

can be delay-insensitive. Although this protocol is robust enough for any timing 

assumptions, it needs more logic gates to implement the functions with only at 50% 

utilization. In figure 1.3, the situations of pipeline stages are alternately “empty” and “valid”. 

If its situation is empty, {d.t,d.f}, the mixed signals, are {0,0}. Otherwise the {d.t,d.f} are 

{0,1} or {1,0}, and it represents the valid data signals are 0 or 1. It should be noticed that if 

{d.t,d.f} equals {1,1}, it is not a legal codeword. That is because it is not need to encode 

any valid information.   

 

 

Figure 1.3 : A 1-bit wide four-phase dual-rail pipeline 
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Lookahead Pipelines : 

In addition to common pipelines introduced above, Lookahead Pipelines are designed 

with special protocols. Their behaviors are similar to the domino pipelines. They extended 

PS0 [7] in order to gain better throughput and introduced several improved protocols [8,9]. 

The key points of those protocols are (1) early evaluation, (2) early done, and (3) combination 

of both. In figure 1.4, the LP2/1 pipeline in [7] combines “early evaluation” and “early done”. 

Each stage receives information from two succeeding stages, the “early evaluation” protocol 

is used, and the “Eval” signal comes from the completion detector two stages ahead so that 

the current stage can evaluate early. The idea of “early done” let the previous pipeline receive 

the information whatever it evaluates or precharges. Because of these reasons, the early 

evaluation” and “early done” protocols can achieve a shorter cycle time. 

 

 
Figure 1.4 : The LP2/1 pipeline 

GasP and STFB : 

In recent ten years, many researchers are interested in pulse-mode circuits, like GasP [10] 

and STFB [11]. The advantage of these pulse-mode circuits is high speed, but come with high 

noise sensitivity. In figure 1.5(a), a STFB stage is implemented in dual-rail protocol, and its 

data, request, acknowledgement signals are transferred via the same tri-state wires. A GasP 

stage is implemented in bundled-data protocol as shown in figure 1.5(b). The request and 

acknowledgement signals of GasP circuits are also transferred via the same tri-state wires, and 
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the self-resetting mechanism let the cycle time be shorter. Both GasP and STFB circuits 

weakly keep states by states keepers on tri-state wires, and the wires must be susceptible to 

noise especially in smaller noise margins. Golani and Beerel presented high-performance 

noise-robust asynchronous circuits to mitigate sensitiveness to noise, including transistor 

sizing and wire spacing rules [12].  

In particular, the request and acknowledgement signals of pulse-mode circuits are 

generated by the PMOS and NMOS which are marked with circles in figure 1.5. Because the 

handshaking protocol is simpler than the protocols introduced above, it can reduce the cycle 

time so that the pulse-mode circuits can operate in high speed.  

The goal of this thesis is to implement a fast and power-efficient asynchronous FIFO with 

GasP circuits; thus the details of GasP circuits will be described in the next chapter.  

 

 
Figure 1.5 : (a) A STFB stage (b) A GasP stage 

 
 
 
 
 



  8

1.3 Organization of This Thesis 
In the next chapter, we will discuss some issues in the design of GasP circuits. Then, in 

chapter 3 we provide an approach to transform a data flow structure into parallel compositions 

of GasP circuits. In chapter 4 we present the details of the FIFO architecture and estimate the 

power-consumption roughly. The implementation, verification and result are exhibited in 

chapter 5. Finally, we give conclusions in chapter 6. 
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Chapter 2 Related Works 
 In this chapter, we will introduce the synchronous FIFOs, and then the design of GasP 

circuits is introduced clearly. It includes the features of GasP circuits, the operations when it 

works, the FSM specification to describe them, and ways to translate FSM specification into 

GasP circuits, i.e. a linear FIFO and a square FIFO. Finally, a brief introduction about the 

proposed 1-n-1 FIFO will be mentioned. 

2.1 Synchronous FIFOs Implementation 
Although this thesis focuses on asynchronous systems which is implemented with 

GasP circuits, synchronous FIFOs are need to be compared with asynchronous FIFOs. Thus 

we introduce two major methods to implement the synchronous FIFOs. The first one is 

common linear FIFO with asynchronous reset, and one of its stage is shown in figure 2.1. 

The input port “D” receives data items from its predecessor and the output port “Q” sends 

data items to its successor, all data items are moved when the clock signal changes. When 

the clock signal is 0, a data item is delivered to the first part of this stage. Otherwise a data 

item is delivered from the first one to the output port “Q”.     

 

 
Figure 2.1 : One stage of the linear FIFO with asynchronous reset (a) Symbol (b) 

Detail circuits 
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The second one is the irregular FIFO, it uses two pointers to position the head and tail. 

The two pointers work in coordination with the control circuit as shown in figure 2.2, and the 

control circuit will send the control signals to let the irregular FIFO synchronize correctly. 

Because the synchronous irregular FIFOs are discussed fewer and it seems to have fewer 

benefits in synchronous systems, we only selected the linear FIFO to compare with our 

design. 

 

 
Figure 2.2 : An irregular FIFO 

 

2.2 The Design of GasP Circuits 
In this session, we will discuss the evolution of GasP circuits, its detailed design, and 

its timing constraints. Then we will introduce how to use the finite-state machines (FSM) 

specification to describe a GasP module, and translating GasP modules into GasP circuits. 

2.2.1 A Design Based on GasP Modules 

In [13], Molnar brought a basic control circuits for an asynchronous pipeline called 

Asynchronous Symmetric Persistent Pulse Protocol, “asP*”, and it can be regarded that the 

last three letters of GasP meant its asP* ancestry. “asP*” uses a series of flip-flops to control 
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circuits and special transition latches. In figure 2.3, the asP* circuits are symmetric, and their 

forward latency and reversed latency are equal. The performance of asP* circuits is report in 

[14]. 

 

 

Figure 2.3 : Alternative control circuit of asP* 

 

The GasP asynchronous circuits provide controls for simple pipelines. Its general idea is 

that “in very fast asynchronous circuits it is better to make the forward latency long and the 

reverse latency short”. For this reason, GasP circuits take time to copy data forward through 

a latch, but none are moved backwards.  

Let us define two key words “PLACE” and “PATH” to distinguish two kinds of circuits: 

“PLACE” represents circuits which hold the data item, “PATH” represents circuits which 

control the flow of data, and then PATHs and PLACEs alternate in the pipeline as shown in 

figure 2.3 and figure 2.4. Each PATH has a predecessor and successor PLACE, and each 

PLACE has a predecessor and successor PATH. PATHs must act only when both its 

predecessor PLACE is FULL and its successor PLACE is EMPTY. 

Sutherland and Fairbanks pointed out that a PATH must get through below four things 

when it fires [10] : 
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(1) It must make data latches momentarily transparent. 

(2) It must declare its successor stage FULL 

(3) It must declare its predecessor stage EMPTY. 

(4) It must reset the output of the series N-type transistors to the inactive or HI state. 

In figure 2.4, the GasP circuits described here have a forward latency of four gate delays 

and a reverse latency of two gate-delays, and then the total cycle time is therefore six 

gate-delays (NO. 123456).  

GasP circuits store each state with state conductor to indicate whether it is FULL or 

EMPTY. In particular, it uses the state encoding “HI=EMPTY” and “LO=FULL” for all state 

conductor, and the HI signal declares no data in the present latch at this moment. On the 

contrary, the LO signal declares that there is a data item in this latch. Because we implement 

GasP circuits with standard NAND symbol to replace the self-resetting NAND gate, the 

corresponding circuits between them will be shown in figure 2.5.     

 In order to implement correct functionality of GasP circuits, two conditions must be 

satisfied. The first one is meeting the setup and hold time, and the other one is the cycle time 

must be longer than the minimum delay of six gate-delays. To achieve the conditions, we 

would adjust the transistor size to reduce the logical effort with what explained in [15] and 

[16].  
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Figure 2.4 : GasP with self-resetting NAND 

  

Figure 2.5 : The corresponding circuits between self-resetting NAND 

and standard NAND 
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2.2.2 Translating FSM Specification into GasP Circuits 

 The method of how to translate FSM specification into GasP circuits is introduced in 

[17] and [18], and it is often used to plan the PATHs. The basic state transition is shown 

below : 

P = ( a0 -> Q ) 

Where P is defined as an input state, Q is an output state, and a0 is a GasP module. When 

state P is set, module a0 will be fired. Then state Q is set, and at the same time state P is reset. 

The operations can be finished in one cycle. The mapping is shown in figure 2.6(a).  

A more complex FSM with deterministic choice is in figure 2.6(b), its state transition is 

shown below : 

I = ( b1 -> J | b2 -> K ) 

Where I is still defined as an input state, J and K are output states, and b1, b2 are GasP 

modules. The environment can determine which modules should be fired. Therefore module 

b1 or b2 may be fired according to the deterministic choice. In other words, state J may be 

fired not only setting I but also the determination of this environment. The status of state K is 

the same as state J. Therefore module b1 and b2 may be fired by setting I and environment 

information, and then the corresponding state J and K are set.  

 

Figure 2.6 : Translating FSM specification into GasP modules  

(a) a basic state transition, (b) deterministic choice 
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The following section describes how to translate GasP module into detailed GasP circuits. 

Figure 2.7 shows the relative mapping between modules and circuits, a0 and a1 can be 

regarded as an event is fired. P is one state stored in the state conductor, and it is full or empty. 

The label 4 refers the gate-delays between two modules when events are fired, and the 

numbers 1, 2, 3, and 4 means the successive gate-delays between events. Figure 2.8 is the 

same as figure 2.7. Q is one state between two modules, the label 2 also refers the gate-delays, 

and the successive gate-delays are number 1 and 2.   
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Figure 2.7 : Translating GasP modules into detailed GasP circuits  

(4 gate-delays between 2 modules) 

 

 
Figure 2.8 : Translating GasP modules into detailed GasP circuits 

(2 gate-delays between 2 modules) 
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2.3 A Linear FIFO 
 The linear FIFO consists of GasP circuits shown in figures 2.7 and 2.8. We can use FSM 

specification to describe it, and give the corresponding modules. Considering the middle 

stages of a linear pipeline, the FSM is shown below : 

 

 Stage N =       Stage N+1 = 

      state E where       state G where 

      E = ( a0 -> F )       G = ( a1 -> H ) 

        F = ( a1 -> E )       H = ( a2 -> G ) 

      end          end 

 

In figure 2.9(a), E, F G, and H are states and a0, a1, and a2 are modules. In particular, the 

shaded triangle of modules indicates where the initial states are. Otherwise the unshaded 

triangles represent the state are not the initial ones. Figure 2.9(b) is optimized from figure 

2.9(a), and figure 2.9(c) is the detailed circuits of figure 2.9(b). One confusing key point is the 

difference between stages and modules. Figure 2.9 is a good example that a two-stage linear 

FIFO with three modules, and therefore one stage may be constructed with many modules in 

GasP circuits. 
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Figure 2.9 : A two-stage linear FIFO, (a) usual stages, (b) optimized stages, (c) detailed 

circuits 

 

2.4 A Square FIFO 
Ebergen presented a square FIFO implemented with GasP circuits [17]. The square 

FIFO is one of the low-latency and power-efficient FIFOs, and it consists of a 

two-dimensional array of stages. The route of one data item is schemed by the FSM 

specification of stages and the input-output behavior is the same as usual FIFOs. 

Figure 2.10 illustrates the operation of a square FIFO with 16 stages. It consists of a top 
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row of stages, some column FIFOs which are simple linear FIFOs, and a bottom row of stages. 

The top row sends out the data items to the column FIFOs in a round-robin fashion, and the 

bottom row also receives the corresponding data items in a round-robin fashion. Because 

every data item must go through stages of the square FIFO in order, the data items are 

distributed to their fixed route. 

 

Figure 2.10 : The square FIFO’s data movements 

 

The data items goes through the square FIFO via four possible paths which are drawn 

by the dotted lines. The first data item goes through the square FIFO in the sequence S1, S2, 

S3, S4, S8, S12, and S16 stages. The routing path of the second data item is S1, S2, S3, S7, 

S11, S15, and S16. The routing path of the third data item is S1, S2, S6, S10, S14, S15, and 

S16. The routing path of the fourth data item is S1, S5, S9, S13, S14, S15, and S16. It needs 

the round-robin scheme and then repeats the same routing path. Therefore the routing path 

of fifth data item is the same as the first one and so on. 

All data flow paths in figure 2.10 are listed in the table 2.1 where the variable m is an 

integer and m can be considered as the number of cycles. For example the routing path of 

the 21th data item is 4m + 1st in the table 2.1. 
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Table 2.1 : All paths of the square FIFO 

The kth data item Through stages from input port to output port 

4m + 1st S1 S2 S3 S4 S8 S12 S16 

4m + 2nd S1 S2 S3 S7 S11 S15 S16 

4m + 3rd S1 S2 S6 S10 S14 S15 S16 

4m + 4th S1 S5 S9 S13 S14 S15 S16 

 

The full control circuits of the square FIFO is shown in figure 2.11. The control 

circuits for data paths dictates data movements by letting the corresponding pass gates 

transparent. In figure 2.11, the stages 5~12 are simple linear pipeline shown in the above 

section. The control circuits for the top row are in the stages 1~4, and the bottom ones are in 

the stages 13~16. Therefore the FSM specification of stage 5~12 are the same as a linear 

FIFO in figure 2.8. However special FSM specification is needed to describe the top and 

bottom rows. Because the bottom row is easier to be described than the top row, the bottom 

row is presented first.  

The problem for the bottom row is to determine when a data item can be received from 

the left-side or up-side. Most solutions involve counting mechanism, but the solution of [17] 

is different. Its rule for each stage of the bottom row is shown as follows :  

 

 “If the present data item passing through a stage comes from the left-most stage, the 

next data item for the stage must come from the stage above. Otherwise the next data item 

comes from the stage to the left. The first data item comes from the stage above. “ 

 

The rule of the bottom row can guarantee the order of data items because it totally 

corresponds the sequence of data items sent out by the top row. The rule of the top row is 
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similar to the rule of the bottom row, and the problem for the top row is to determine when  

a data item can be sent to the right-side or down-side. The solution of the top row is also 

similar to the one of the bottom row. Each stage of the bottom row looks to a special data item 

moving right, and each stage of the top row looks to a special “bubble” item moving left. The 

interpretation of a bubble is a movement that involves both a movement of a data item to the 

right and a movement of a bubble item to the left. So the rule for each stage of the top row is 

shown as follows :  

 

“If a data item moves into a stage of the top row by means of a swap with a bubble 

originating from the right-most stage, the next data item move out of the stage must be 

down; otherwise, the next data move item must be to the right. Initially, each stage of the 

top row is empty.” 

 

The rules for each stage of the top and bottom rows are explained above. Figure 2.12(a) 

illustrates the data moves of the top row. To keep track of whether a bubble comes from the 

right-most stage or not, it uses two types of arrows to distinguish. One is the dotted arrows 

which keep the track of a bubble coming from the right-most stage, and the other is the solid 

arrows recording all the other moves. Figure 2.12(b) is similar to figure 2.12(a). It shows the 

data moves of the bottom row. In order to keep track of whether a data item comes from the 

left-most stage or not, it also uses two types of arrows to distinguish. One is the dotted arrows 

which record a data item coming from the left-most stage, and the other is the solid arrows 

recording all the other moves. 
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Figure 2.11 : The control circuits of the square FIFO 

 

 

Figure 2.12 : (a) The stages of the top row (b) The stages of the bottom row 
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The rules for each stage of the top and bottom rows are explained clearly, and now we 

can give the FSM specification for the top and bottom rows. The FSM specification of stage 1 

is shown as follows: 

 

Stage 1 = 

state E0 where 

E0 = ( r0 -> F0) 

F0 = ( r1 -> E0 | rr1 -> E1) 

El = ( rr0 -> F1 ) 

F1 = ( dl -> E0 ) 

End 

 

Let us translate FSM specification into GasP modules. Figure 2.13(a) shows the stage 

1 with data moves, and then we use the FSM specification to draw the processing graph in 

figure 2.13(b). Finally, we translate the processing graph in figure 2.13(b) into the 

implementation of GasP modules in figure 2.13(c).  

In figure 2.13(a) and (b), the dotted arrows represent the bubbles coming from the 

right-most stage of the top row, and they use prefix “rr” instead of “r”. Then we translate the 

FSM specification of stage 1 into figure 2.13(b). The states E0, E1, F0, and F1 are 

corresponded to the circles in figure 2.13(b). The modules r0, rr0, r1, rr1, and d1 are also 

corresponded to the lines in figure 2.13(b). Circles and lines connect with one another by the 

relationships of FSM specification. Finally, we translate the circles in figure 2.13(b) into 

tri-state wires in figure 2.13(c), and transforming the lines in figure 2.13(b) into the real GasP 

modules in figure 2.13(c). 
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Figure 2.13 : Stage 1 (a) Stage with data moves (b) The processing graph for FSM 

specification (c) The GasP modules of stage 1 

 

The FSM specification of stage 16 is similar to the stage 1, and it is shown as follows: 

 

Stage 16 = 

state E0 where 

E0 = ( d12 -> F0 ) 

F0 = ( r16 -> E1 ) 

El = ( r15 -> F0 | rr15 -> F1 ) 

F1 = ( rr16 -> E0 ) 

end 

 

Figure 2.14(a) also shows the stage 16 with data moves, and the processing graph of 

the stage 16 in figure 2.14(b). Finally, the implementation of GasP modules is in figure 

2.14(c).  

The dotted arrows in figure 2.14(a) and (b) stand for the data items coming from the 

left-most stage of the bottom row, and they also use prefix “rr” instead of “r”. Then we 
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transform the FSM specification of stage 16 into figure 2.14(b). The states E0, E1, F0, and F1 

are corresponded to the circles in figure 2.14(b). The modules r0, rr0, r1, rr1, and d1 are also 

corresponded to the lines in figure 2.14(b). Circles and lines link with one another by the 

relationships of FSM specification for the stage 16. Finally, we transform the circles in figure 

2.14(b) into tri-state wires in figure 2.14(c) and translate the lines in figure 2.14(b) into the 

real GasP modules in figure 2.14(c). 

 

 

 Figure 2.14 : Stage 16 (a) Stage with data moves (b) The processing graph for FSM 

specification (c) The GasP modules of stage 16 

 

 The stages 2 and 3 of the top row are similar to stage 1, and the stages 14 and 15 of the 

bottom row are similar to stage 16. The other stages are all simple one-stage linear FIFO. 

Since all stages of the square FIFO can be understood, the control circuits of the square FIFO 

can be implemented as shown in figure 2.11.    
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2.5 The Brief Introduction about 1-n-1 FIFOs 
One goal of this thesis is to reduce the data moves in FIFOs. The architecture of the 

square FIFO in [17] presented fewer data moves than linear FIFO, but it still needs O( n ) 

data moves where n is the number of stages. We hope to find some architecture of FIFOs that 

have high-throughput and fewer data moves with power-efficiency. From the viewpoint of 

algorithm, O(1) reaches the best beneficial result for work efficiency. 

 In order to achieve the goal, the 1-n-1 structure is considered the best architecture for 

the FIFOs. We should find the rule for the 1-n-1 FIFO and implement it with GasP circuits. A 

structure in figure 2.15 is O(1), and the solid arrows indicate the data moves. Each data item 

from the input port to the output port only crosses three stages, stage S1 to one of S2~S8 and 

one of S2~S8 to stage S9. In the general case, the 1-n-1 FIFO with n stages, each data move 

from the input port to the output port also goes through three stages, stage S1 to one of middle 

stages and from one of middle stages to stage Sn. More details of the 1-n-1 FIFO will be 

discussed in the chapter 4. 

 

 

Figure 2.15 : The 1-n-1 FIFO with 9 stages 
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Chapter 3 Translating Data flow Structure into 

GasP Circuits 
In this chapter, we will introduce how to translate data flow structure into corresponding 

GasP circuits. The method has two steps: the first step is to transform a data flow structure 

into preliminary control circuits, and the second step is to depict real GasP circuits by its 

preliminary control circuits. We will give an example of a linear FIFO to understand 

clearly. 

3.1 Transforming Data flow Structure into Preliminary 

Control Circuits 
One goal of this thesis is to transform a data flow structure into parallel compositions 

of GasP circuits. Giving unlike accounts of the incident with [17], we do not use FSM 

specification to describe a stage because it would be too complex to characterize a whole 

system. For example, the square FIFO in [17] and the efficient stack in [18] have 

complicated FSM specification for each stage, even the whole systems. Instead of 

finite-state machines, we prefer to plan a data flow structure first, and then translating it into 

the control circuits.  

In order to explain the method clearly, we give an example of a linear FIFO with five 

stages, and translating it into GasP control circuits. The first step is to plan the data flow 

structure. The data flow structure of a linear FIFO is well-known, and the rule is receiving 

data items from its predecessor and sending them to its successor.  

Figure 3.1(a) illustrates the data flow structure of a linear FIFO, the arrows indicate the 

direction of data moves. Since we know the rule and the data flow structure both, the 

corresponding graph of figure 3.1(a) can be depicted in figure 3.1(b). Figure 3.1(b) is a 

preliminary diagram for the control circuits of the linear FIFO. Its general idea is like the 
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state transition graph (STG) diagram, and there are two rules to be obeyed. The first one is 

1-bounded that no arc can ever contain more than one token, and the second one is no 

deadlock.    

 The circles in figure 3.1(b) can be regarded as switches and the dots can be regarded 

as tokens. A circle must send the dots to all of its output ports when it receives dots from all 

of its input ports. In other words, the switches are transparent when they get tokens from all 

of its input ports, and then producing new tokens to it all output ports.   

 

 
Figure 3.1 : (a) The data flow structure of a linear FIFO (b) The preliminary diagram 

for the control circuits of the linear FIFO 

 

Let us analysis the preliminary diagram whether obeying the rule of the linear FIFO. 

Figure 3.2(a) shows the initial states of the preliminary diagram, and it must be properly set 

for correct operations. Figure 3.2(b) illustrates the first data item coming. When the first data 

item comes, the left-most circle, known as switch, produces a new token to it successor in 

figure 3.2(c). Then the second switch receives tokens from all of its input ports so that it 

becomes transparent. At this moment, the second switch produces new tokens to its 

predecessor and successor, and the second data item enters the linear FIFO in figure 3.2(d). 

The following operations are the same as above, the data items will move to the next stages in 

figure 3.2(e), and the operations will complete until all data items exit the FIFO. 
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3.2 Transforming Preliminary Control Circuits into Real 

Control Circuits 
 When the preliminary diagram is drawn and confirming that all operations are really 

correct, the next step is going to depict real GasP circuits by its preliminary control circuits. 

Figure 3.3(a) and (b) show the corresponding diagram between preliminary control circuits 

and real control circuits. In figure 3.3(a), the circled arrows are corresponded to the triangles 

of GasP modules in figure 3.3(b). If there is a dot beside an arrow, the corresponding triangle 

is shaded. Otherwise the triangle is unshaded. The output port of the circle in figure 3.3(a) is 

also corresponded to the output port of GasP modules in figure 3.3(b). Finally, the 

connections in figure 3.3(a) are relative to the corresponding connections in figure 3.3(b). 

The optimal connections in figure 3.3(c) are on the basis of figure 3.3(b), it was 

mentioned in section 2.3. Finally, we can implement the real circuits in figure 3.3(d) with 

figure 3.3(c), and the procedures to translate data flow structure into GasP circuits are 

complete. In next chapter, we will use this method to implement our circuits instead of the 

FSM specifications. 

 



  30

 

Figure 3.2 : The processing diagram for coming data items  
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Figure 3.3 : The corresponding diagram between preliminary control circuits and real 

control circuits 

 

 

 

 

 

 



  32

Chapter 4 The 1-n-1 FIFOs 
The first goal of this thesis is to reduce the data moves in the FIFO systems. This chapter 

will introduce how to reduce the data moves in the FIFO systems and use the presented 

method to implement our systems. 

4.1 The Ideas about Reducing Data moves 
The focal point for better power-efficiency is to reduce the data moves in systems. In 

synchronous systems, the clock signal triggered off all components to work even if they are 

unnecessary so that energy is consumed more. On the contrary, the asynchronous systems 

are just fired when the operations are actually necessary. The further focal point in 

asynchronous systems is to save more energy with different design of architectures. So the 

different kinds of architectures make different data moves leading to different power 

consumption.  

Section 2.5 mentioned the brief introduction about these ideas, and 1-n-1 FIFOs are good 

choice for fewer data moves. From the viewpoint of algorithms, it is a better algorithm to 

reduce data moves because the structure provides constant data moves in FIFOs. For this 

reason, power consumption is also constant. 

The following is the basis of the 1-n-1 FIFO, and we will construct our system from them. 

The same as the linear pipeline, we are going to use the method which was introduced in 

chapter 3 to implement our circuits.  

4.2 The Basis of A 1-n-1 FIFO 
In this section, we will introduce the basic operations for a 1-n-1 FIFO. In the beginning, 

the data flow structure and algorithms for branches and mergence are defined. Then we 

transform them into preliminary control circuits and verify whether they are correct or not. 

Finally, we translate the preliminary control circuits into GasP modules and the processes for 

GasP modules will be depicted step by step.   
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4.2.1 The Data flow Structure and Algorithms for Branches and 

Mergence 

The basic operations for 1-n-1 FIFOs are branches and mergence. Now we will implement 

them with our procedures, and decide the data flow structure first. Figure 4.1 shows the data 

flow of branches and mergence. Many algorithms can achieve the behaviors, but the simplest 

one for them is using pointers to indicate which stage is the working one. We give a simple 

example to introduce how to use the pointers to make correct data flow. Figure 4.2 illustrates 

the pointers which point at the working stages. In figure 4.2(a), the pointer points at stage S2, 

so the first data item will pass through S2 and the sequence of the first data path are S1, S2, 

and S4. In figure 4.2(b), the pointer points at stage S3, therefore the second data item will go 

through S3 and its data path are S1, S3, and S4. The third data item is the same as the first one, 

the forth data item is the same as the second one, and so on.  

 

 
Figure 4.1 : The data flow for branches and mergence 
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Figure 4.2 : The pointers for the data flow structure 

 

4.2.2 Preliminary Control Circuits for Branches and Mergence 

Since the data flow and its algorithms have been presented above, we are going to map 

the preliminary control circuits. Figure 4.3 is the preliminary control circuits for the stage S1 

in figure 4.2 and the function of stage S1 is a branch. Figure 4.3(a), (b), and (c) illustrate the 

data item which is assigned to the upper switch, and then the pointer is passed to the lower 

switch. The next data item will goes through the lower switch in figure 4.3(d), (e), and (f), and 

the pointer returns to the upper switch.  

 

 
Figure 4.3 : The preliminary control circuits for a branch 
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Figure 4.4 is the preliminary control circuits for the stage S4 in figure 4.2 and its function 

is a mergence. In figure 4.4(a) and (b), the corresponding data item is received by upper 

switch and then the pointer is passed to the lower switch. Figure 4.4(c), (d), and (e) show that 

the next data item goes through the lower switch and the pointer returns to the uppers switch. 

Due to figure 4.3 and figure 4.4, we know that data items will pass through an 1-n-1 FIFO in 

the proper order. 

 

 

Figure 4.4 : The preliminary control circuits for the mergence 

 

4.2.3 GasP Circuits for Branches and Mergence 

In this section, we implement GasP circuits to branch and merge, and introduce their 

behavior clearly. One basic GasP module for these operations is drawn in figure 4.5 and it can 

achieve the round-robin fashion. Figure 4.5(a) shows a GasP module, the arrows indicate the 

direction of data flow, and the triangles mean self-resetting input ports. Hence “Pin a”, “Pin 

b”, and “Pin d” are self-resetting input ports, and “Pin c” is output port. In Figure 4.5(b) , 

cycle ”a  a1  a2  a” is self-resetting corresponding to “Pin a”, cycle ”b2  b  b1  

b2” is self-resetting corresponding to “Pin b”, and ”d  d1  d2  d3  d” is self-resetting 

corresponding to “Pin d” .  

An input port of a GasP module is said to be set when it delivers a HI signal to the 
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NAND gate in the module; otherwise it is said to be reset. All GasP modules must be set or 

reset initially. In Figure 4.5(a), input port delivers a HI signal to the NAND when the triangles 

are shaded. Otherwise input port delivers a LO signal to the NAND when the triangles are 

unshaded. When all input ports are shaded, it means HI signals are delivered to all pins of the 

NAND gate in the module so that all output ports fire, and then self-resetting input ports are 

going to be unshaded. The details of GasP module in figure 4.5(a) is depicted in figure 4.5(b). 

 

 
Figure 4.5 : A GasP module and its input and output ports  

 

The GasP stage works in a round-robin fashion in figure 4.6 and it is composed of the 

GasP module in figure 4.5. Figure 4.6(a) shows all input ports of module M1 are set and 

module M1 is fired, and then left input ports of module M2 and module M3 are set in figure 

4.6(b). In figure 4.6(b), all input ports of module M2 are set and the output port of module M2 

are fired, and then HI signals are delivered to the NAND of module M3 in figure 4.6(c). 

When next data item is captured in module M1, it will go through module M3. The processes 

are shown in figure 4.6(d), (e), and (f) step by step. Hence modules M2 and M3 will be fired 

by turns. Figure 4.6 is relative to figure 4.3, we translate the preliminary control circuits in 

figure 4.3 into the GasP control circuits in figure 4.6. The details of modules M1, M2 and M3 

are drawn in figure 4.7.  
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Figure 4.6 : The GasP control circuits for a branch 

 

 

Figure 4.7 : The details of figure 4.6 
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Figure 4.8 is relative to figure 4.4, we also transform the preliminary control circuits in 

figure 4.4 into the GasP control circuits in figure 4.8. Figure 4.8(a) illustrates all input ports of 

module M1 are set and module M1 is fired, and then left input port of module M3 is set in 

figure 4.8(b). In figure 4.8(b), all input ports of module M3 are set and then it is fired, and 

then HI signals are delivered to the NAND of module M2 in figure 4.8(c). When next data 

item comes, it will pass through module M2 and M3. The processes are shown in figure 4.8(c), 

(d), and (e) step by step. So modules M1 and M2 send data items to module M3 by turns.  

 

 

Figure 4.8 : The GasP control circuits for the mergence 

 

Since the GasP control circuits for branches and mergence have been introduced above, 

we can use them to implement a binary tree FIFO. Figure 4.9 illustrates the preliminary 

control circuits for a binary tree FIFO with ten stages, and figure 4.10 shows the 

corresponding GasP control circuits. It has fewer data moves than square FIFOs and linear 

FIFOs. In addition to fewer data moves, it avoids some stages shouldering too heavy loading. 

In fact, we hope that the loading can be averagely shared by each stage, and it would be best 
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that all stage have equal loading. Because of these reasons, the binary tree FIFO is a kind of 

better architecture.  

The binary tree FIFO in figure 4.10 has ten stages which consist of GasP modules in 

figure 4.6 and figure 4.8. Data items go through the binary tree FIFO regularly because the 

GasP modules are built in a round-robin fashion. We list the data flow paths in figure 4.10 in 

the table 4.1 where the variable m is an integer. The data items can only route via four 

possible paths. The first data item goes through stages S1, S2, S4, S8, and S10; the second 

data item goes through stages S1, S3, S6, S9, and S10; the third data item passes through 

stages S1, S2, S5, S8, and S10; finally the forth data item passes through stages S1, S3, S7, S9, 

and S10. The routing path of fifth data item is the same as the first one, and so on. 

 

 

Figure 4.9 : The preliminary control circuits for a binary tree FIFO 
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Figure 4.10 : The GasP control circuits for a binary tree FIFO 

 

Table 4.1 : The paths of the binary tree FIFO in figure 4.9 

The kth data item Through stages from input port to output port 

4m + 1st S1 S2 S4 S8 S10 

4m + 2nd S1 S3 S6 S9 S10 

4m + 3rd S1 S2 S5 S8 S10 

4m + 4th S1 S3 S7 S9 S10 

 

4.3 The 1-n-1 FIFO with nine stages 
The timing complexity for the binary tree FIFO in figure 4.10 is O(logn). From the view 

of power-efficiency, we hope to find the best structure to achieve the goal. Therefore the 

1-n-1 FIFO is our solution in our research.   

The following is an example for the 1-n-1 FIFO with nine stages, and the data moves of 

the 1-n-1 FIFO are shown in figure 4.11. The 1-n-1 FIFO receives continuous data items from 

input port until it is overflow. Figure 4.11(a) shows the first data item is received from the 

input port of the 1-n-1 FIFO. Figure 4.11(b) illustrates the second data item is received and 
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the first data item takes an internal move in the 1-n-1 FIFO, and so on. Its behavior is a 

round-robin fashion and the data items will pass through the FIFO in proper order. Figure 

4.12 shows that all data items are sent out by the output port until nothing is in the FIFO. 

Figure 4.12(a) illustrates the first data item exits, and figure 4.12(b) shows the second data is 

sent out. At the same time, the third data item takes an internal move in the 1-n-1 FIFO, and 

so on. The algorithm of this data flow structure also uses pointers to point at which are the 

working stages. So we can translate the data flow structure into the preliminary control 

circuits in figure 4.13, and then implement the GasP control circuits in figure 4.14 by the 

preliminary control circuits. 
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Figure 4.11 : Continuous data items gotten from the input port 
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      Figure 4.12 : Continuous data items sent out by the output port 
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Figure 4.13 : The preliminary control circuits for the 1-n-1 FIFO 

 
Figure 4.14 : The GasP control circuits for the 1-n-1 FIFO 
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4.4 Power-Estimation for Linear, Square, Binary Tree, 

and 1-n-1 FIFOs 
Since all of the FIFOs have been introduced above, let us estimate their 

power-consumption and verify whether the 1-n-1 FIFOs have better efficiency. We present an 

idea to estimate power-consumption roughly; the idea is calculating how many GasP modules 

would work when a data item goes through the FIFOs.  

First we want to know the average GasP modules per stage, and then computing how 

many stages will be passed when a data item goes though the FIFOs. Finally, we can 

calculate how many GasP modules work when a data item goes though the FIFOs. Because 

the linear, square, binary tree, and 1-n-1 FIFOs are both symmetric architecture, we can 

simply compute via above description and figures.  

Linear FIFOs :  

If the amount of stages in a linear FIFO is n, the total GasP modules in the linear FIFO 

are (n+1). So (n+1) / n are the average GasP modules per stage.  

Because each data item will go through the linear FIFO via n stages, ((n+1) / n)*n= 

(n+1) is the number how many GasP modules will work when a data item goes though the 

linear FIFO. 

Square FIFOs :  

If the total number of stages in a square FIFO is n, the total GasP modules in square 

FIFO are n *( n -1) + 2*( n + n -1), where n *( n -1) are the number of column 

modules and n + n -1 are top row of modules, and bottom row of modules are the same 

as top row of modules. So ( n *( n -1) + 2*( n + n -1)) / n = (n +3* n -2) / n are the 

average GasP modules per stage. 

Because each data item will pass through the square FIFO via 2* n - 1 stages, 
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(2* n - 1)*((n +3* n -2) / n) is the number how many GasP modules will work when a 

data item goes though the square FIFO. 

Binary Tree FIFOs :  

Suppose that data items are received from the root and its output port is the end point, 

the half height of a tree is h, then the total GasP modules in a binary tree FIFO are 

(20+21+22…2h-2 +2h-1+2h-1+2h-2…+22+21+20) = 2*(2 h-1), where (20+21+22…2h-2 +2h-1) are 

the number of half front modules and (2h-1+2h-2…+22+21+20) are the number of half back 

modules. The total number of stages in the binary tree FIFO are 

(20+21+22…2h-2+2h-1+2h-2…+22+21+20) = 2*(2h-1-1 )+ 2h-1. So 2*(2 h-1) / (2*(2h-1-1 )+ 2h-1) = 

(2 h-1) / (2h-1+2h-2-1) are the average GasP modules per stage. Because each data item will 

pass through the binary tree FIFO via 2*h- 1 stages, (2*h- 1)* (2 h-1) / (2h-1+2h-2-1) are the 

number how many GasP modules will work when a data item goes though the binary tree 

FIFO. 

1-n-1 FIFOs : 

The following is the 1-n-1 FIFOs. If the number of stages is n, the total GasP modules 

are (1+2*(n-2)+1)=2*n-2. So (2*n-2)/n are the average GasP modules per stage. Because 

each data item will go through the 1-n-1 FIFO via 3 stages, 3*((2*n-2)/n) is the number 

how many GasP modules will work when a data item goes though the 1-n-1 FIFO. 

Table 4.2 lists all equations which were computed above, and then we calculate the 

number how many GasP modules will work when a data item goes through FIFOs in figure 

4.15. Obviously the increasing ratio of average working GasP modules in the 1-n-1 FIFOs is 

lesser than the other FIFOs, especially when the numbers of stages are more than 

twenty-five. The main reason is the complexity of 1-n-1 FIFOs are O(1), tree FIFOs are 

O(logn), square FIFOs are O( n ), and linear FIFOs are O(n). As our expectancy, 1-n-1 

FIFOs have the better beneficial result and its power-comparison is almost close to a 
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constant.  

Table 4.2 : Equations for average working GasP modules per data item 

Types of FIFOs Average working GasP modules per data item 

Linear FIFOs n+1 

Square FIFOs (2* n - 1)*((n +3* n -2) / n) 

Binary Tree FIFOs (2*h- 1)* (2 h-1) / (2h-1+2h-2-1) 

1-n-1 FIFOs 3*((2*n-2)/n) 

 

 

Figure 4.15 : Power-comparison for FIFOs 
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Chapter 5 Experimental Results 
In this chapter, we implemented the FIFOs in transistor level and simulated them with 

the TSMC 180nm process. The simulator we used is HSPICE 2005.03. The experimental 

targets are introduced above. They are synchronous FIFOs in figure 2.1, linear FIFOs with 

standard NAND in figure 2.5, square FIFOs in figure 2.11, binary tree FIFOs in figure 4.10, 

and the 1-n-1 FIFOs in figure 4.14. We separately experimented on them and the depth of 

those FIFOs is respectively ten and eighteen stages which have one bit wide data storage. 

5.1 The Cycle Time of These FIFOs  
In order to analyze the performance of these FIFOs, we need to simulate them in the 

same conditions. The cycle time is the essential factor to determine how many data items 

could be received per second. Table 5.1 lists the cycle time of GasP circuits, it is obvious that 

the linear FIFOs are the fastest because its circuits are the simplest and each GasP module just 

connects to its successor and predecessor. 

On the contrary, the 1-n-1 FIFOs are the slowest, its cycle time is more 1.5~1.6 times 

more than the linear FIFOs’. That is because the 1-n-1 FIFOs have a serious problem that the 

first stage and the last stage have too heavy loading. Its right self-resetting input ports of the 

first module has acute fan-out problem and left self-resetting input ports of the last module 

also has critical fan-out problem. It becomes the bottleneck of these circuits.  

The secondary reason for the long cycle time is illustrated in figure 5.1. Figure 5.1(a) 

shows that the module M2 will be fired, and then it sends tokens to module M1 and M3 via 

path 1 and 2. When the path 1 is shorter than path 2, in the other words, the module M1 

receives the token earlier and the operation will be correct as shown in figure 5.1(b). 

Otherwise if the path 2 is shorter than path 1, the operation will be wrong as shown in figure 

5.1(c). In order to satisfy this timing constraint, the transistor size must be adjusted so that the 

cycle time is longer.  
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In order to let these FIFOs receive data in the same frequency, the faster cycle time needs 

to match up the slower one. The cycle time of the 1-n-1 FIFOs become the standard for our 

experiment. We let the GasP circuits receive 3 billion data items per second (333.33ps per 

data item), and the clock signal of the synchronous FIFOs is triggered at 3GHz in our 

simulation.  

 

Table 5.1 : The cycle time of the FIFOs 

Stages 
Linear 

 FIFO 

Square  

FIFO 

Binary Tree 

FIFO 

1-n-1 

 FIFO 

10 
204.73ps 216.98ps 237.54ps 312.95ps 

100% 105.98% 116.03% 152.86% 

18 
205.54ps 228.52ps 236.90ps 332.25ps 

100% 111.18% 115.26% 161.65% 

 

 
Figure 5.1: The timing constraint for 1-n-1 FIFOs 
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5.2 The Power Consumption of These FIFOs  
 In this section, we compare the power consumption between these FIFOs. We 

respectively experiment on three kinds of different conditions in order to analyze the result 

accurately. 

The first condition : 

 We only compare the GasP control circuits with 3 billion request signals per second in 

order to avoid the different data patterns causing the discrepant results. In table 5.2, we can 

find that the lowest power consumption is 1-n-1 FIFOs regardless of the FIFOs’ depth. When 

the depth of FIFO is ten stages, the linear FIFO consumes more 17.6% energy than the 1-n-1 

FIFO and the square FIFO consumes even more 67.26% energy. When the FIFOs’ depth is 

eighteen stages, the power consumption of the linear FIFO is 176.44% to the 1-n-1 FIFO and 

the square FIFO is 201.06% to the 1-n-1 FIFO. Moreover, the power consumption of binary 

tree FIFOs and 1-n-1 FIFOs is almost near because the number of stages is too small to reveal 

their difference.  

 

Table 5.2 : 3 billion request signals per second (only GasP control circuits) 

Stages 
Linear 

FIFO 

Square  

FIFO 

Binary Tree

FIFO 

1-n-1 

 FIFO 

10 
7.9285mW 11.277mW 7.0327mW 6.7421mW 

117.60% 167.26% 104.31% 100% 

18 
13.830mW 15.760mW 8.4317mW 7.8385mW 

176.44% 201.06% 107.58% 100% 
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The second condition : 

We compare the GasP full circuits and the synchronous FIFOs with 3 billion 

monotonous data items per second in table 5.3, the monotonous data items mean a series of 

0 or 1 as input data pattern. These data patterns are gainful for synchronous FIFOs because 

they are implemented by simple flip-flops and there is none of control circuits except for the 

clock signal in synchronous FIFOs. A series of 0 or 1 make lower switching power 

consumption for data paths.  

When the FIFOs’ depth is ten stages, the synchronous FIFO has the lowest power 

consumption, and the 1-n-1 FIFO consumes 12.89% more than it because of lower 

switching power consumption and the simplest circuits. When the FIFOs’ depth is eighteen 

stages, the 1-n-1 FIFO has the lowest power consumption, and the other FIFO consumes at 

least 22.32% more because of the fewer data moves are advantageous for it. In particular, 

the square FIFOs consumes the most energy whether the FIFOs’ depth is ten or eighteen 

stages. That is because the algorithm of square FIFOs is so complex and thus its control 

circuits are implemented with many GasP modules. These modules consume much more 

energy, especially the modules of the top and bottom rows which have the most 

complicated control paths. 

Table 5.3 : 3 billion monotonous data items per second (Full circuits) 

Stages 
Linear 

 FIFO 

Square 

FIFO 

Binary Tree

FIFO 

1-n-1 

FIFO 

Synchronous

FIFO 

10 
8.2398mW 16.104mW 8.0904mW 7.2038mW 6.381mW 

129.13% 252.37% 126.79% 112.89% 100% 

18 
17.524mW 18.437mW 9.9847mW 9.4003mW 11.498mW

186.42% 196.13% 106.22% 100% 122.32% 
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The third condition : 

 This condition is used to compare with the second condition. The test patterns in this 

condition are various, and the switching power consumption for data paths would be 

normalized. In table 5.4, we can find that the 1-n-1 FIFOs have the better results than the 

others because of the constant data moves. Through the comparisons, we can find that the 

synchronous FIFO with ten stages is 105.99% to the 1-n-1 FIFO and the linear FIFO needs 

even more 78.91% than the 1-n-1 FIFO when the depth of FIFOs is eighteen. Besides, the 

difference between linear FIFOs and square FIFOs become less when the depth of stages 

becomes larger because the square FIFOs have fewer data moves. This advantage can 

overcome the effect of the complex control circuits of square FIFOs. 

 

Table 5.4 : 3 billion various data items per second (Full circuits) 

Stages 
Linear  

FIFO 

Square 

FIFO 

Binary Tree

FIFO 

1-n-1 

FIFO 

Synchronous 

FIFO 

10 
10.238mW 17.083mW 9.0452mW 7.8242mW 8.2929mW 

130.85% 218.34% 109.07% 100% 105.99% 

18 
17.646mW 19.959mW 10.282mW 9.8628mW 14.865mW 

178.91% 202.37% 104.25% 100% 150.72% 

In order to get more accurate result, we implement the layouts of 1-n-1 FIFOs in figure 

5.2. Figure 5.2(a) and (b) show the 1-n-1 FIFOs with eighteen and ten stages respectively. 

Thus we can obtain more accurate results via these layouts. Finally, we make a summary of 

these kinds of different conditions. The 1-n-1 FIFOs almost have the best results, and their 

power consumption has one time improvement more than the square FIFOs. The 

predominance is more obvious when the depth of FIFOs becomes larger. 
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Figure 5.2 : The layouts of 1-n-1 FIFOs (a) eighteen stages (b) ten stages 
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5.3  The Transistors Counts 
 We compare the transistors counts between these FIFOs. In table 5.5, the synchronous 

FIFOs and the linear FIFOs are nearly equal, and they have the fewest transistors. The 

square FIFOs have better results than 1-n-1 FIFOs because the columns of square FIFOs are 

linear FIFOs so that it can reduce the counts of transistors. 

 The transistors of 1-n-1 FIFOs are 150%~170% to synchronous FIFOs and linear 

FIFOs because the middle stages of 1-n-1 FIFOs need a lot of transistors to implement the 

algorithm. It uses pointers to record the working switches so that most of transistors in 1-n-1 

FIFOs are used for it. 

  

Table 5.5 : The transistors counts 

Stages Linear 

FIFO 

Square 

FIFO 

Binary Tree

FIFO 

1-n-1 

FIFO 

Synchronous 

FIFO 

10  
287 320 348 443 280 

102.5% 114.29% 124.29% 158.21% 100% 

18  
503 602 571 837 504 

100% 119.68% 113.52% 166.07% 100.2% 
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Chapter 6 Conclusions and Future Works 
Here is a summary of the most important conclusions in this thesis. (1) We explain a 

method on how to translate data flow structure into corresponding GasP circuits. The 

method has two steps: the first step is to transform a data flow structure into preliminary 

control circuits, and the second step is to depict real GasP circuits by its preliminary control 

circuits. Then we explain it with an example of constructing a linear FIFO. (2) We tried to 

find some architecture of FIFOs that have high-throughput and fewer data movements to be 

power-efficient. Thus we propose the 1-n-1 FIFOs with fewest data moves. (3) We present 

an idea to estimate power-consumption that calculates how many GasP modules would 

work when a data item goes through FIFOs. We also show the estimation results of linear, 

square, binary tree, and 1-n-1 FIFOs. Finally, we prove them via simulations, and the 1-n-1 

FIFO has one time improvement more than the square FIFOs. But the transistors of the 

1-n-1 FIFO are also more than the other FIFOs. It is approximately more than 60%.  

Some FIFOs in this thesis do not include the wire delay information, and it may cause 

the results a little imprecise. Therefore the future work is to obtain that more precise results 

from simulations can be gotten with the layout of the designs, and more extension of tree 

FIFOs can be simulated in order to get more results to compare.  

The other future work is the optimized problem. It can be used to determine how many 

degrees for each stage will be the most power-efficient. If we just consider the switching 

counts in those FIFOs, the 1-n-1 FIFO is the most power-efficient. However if we consider 

switching counts and the capacitance, the different processes will make different results. 

Therefore the optimized problem in different processes is a tough question.        
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