

@ o% GasP 2 M# - ¥ 05 % - B Lk N %R

A Low Power 1-n-1 Structure FIFO implementation with GasP

bR R R A% o Student : Ming-Tse Sune
iR MmE A Advisor : Chang-Jiu Chen
B2 2 < 7

FRf g e sm g

L owm o

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National ‘Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

June 2008

Hsinchu, Taiwan, Republic of China

PEARAY LS AT

=
Wf REKF AR e MR R e K €Tt 2 E R AT R I
ARG M e i R R EREC AR Y o AR S - BT o
- - BHEAEA N KR 2 WIFER I o U A GasPen§ B e W) kel
A G s AP - B ET B k S eE B R e S A R 2
GasPeh T befre c B F 5 1R AR NP AT R 2 BT > AP g FT D € Pk
KOTRFEET B & MA e o F (TP e RS AP AW
MEE Rt ROEP v R R tafet AR R - B E
ZREONEHZ L REFRT UTSMC 1804 F fAelst - B%4n - 5 8- Bt
BANEE AET 0 BTG B FOLA R Fu bt N aET ED] - B B

500 4 Sadeanhei ik {VERNE R

A Low Power 1-n-1 Structure FIFO

Implementation with GasP

Student : Ming-Tse Sune Advisor : Dr. Chang-Jiu Chen

Institute of Computer Science and Engineering
College of Computer Science

National Chiao Tung University

Abstract

The current trend of circuit.design iis towatds low power, but the performance is often
degraded. Therefore the circuits with power-efficiency and high performance are superior.
This thesis presents a low power and hrgh performance 1-n-1 structure FIFO implementation,
based on GasP modules. In order to implement the system, we explain a method to transform
the algorithm of systems into the corresponding GasP modules. Then we derived several
equations to analysis the algorithm to conform our purpose before we really implement our
design. Finally, we compared the proposed structure with other structures. The depths we
compared are ten and eighteen, and the width is one bit. We assume that the environment
sends three billion data items per second to the FIFOs and it is simulated with the TSMC
180nm process. The result indicates the 1-n-1 FIFOs almost have the best outcome. In
particular, the 1-n-1 FIFO with eighteen stages has one time improvement more than the
square FIFO, and the predominance is more obvious when the depth of FIFOs becomes

larger.

il

Acknowledgement
FAALR A BRI Y B X0 & 457 Sl RFLHUR A L
WEAFE - RAETE e EZ LS A AT ST LR 0 4 BT
Bk RS Aflet o BEHE AT B R 0 A s EAY R §TA

PP #nd oo B B E R A

&
~

frax
™

fRifc s Mk - BN DT AT B A

i3
RA 0 F IR P AE] AR NHE Y ke HE R

il

CONTENTS

ADSEEACT auueeerreneeieereneecereeseecessoseesessssessssssssessssssessosssnnes ii
ACKNOWIECAZEMENL.....uueiiirrerinsrercsssnncssercsssnissssnsssssnssssasssssassssssssssssssssssssssssssssssssssasssssssssssssssssnes iii
CONTENTS cttttteteieeeieeeeeeeeessessssssssssssessses iv
LSt Of FIGUIES ccccoouvereiinrinnsnnicssnnicssnnissssnesssensssssnsssssssssssssssssssssasssssnssssssssssssssssssssssssssssasssssnsssssnss vi
LIST Of TADLES ceeuuueerreneeeereeneeceneeneeceessseesessssessessssesscssssesssssssesssssssesssssssssssssssssssssssssssssssesssssssssnes viii
CHAPTER 1 INTRODUCTION......cccttteeeeueeeecceeeeressssseessssssssess 1
1.1 ADVANTAGES OF ASYNCHRONOUS CIRCUITSouuuuuueueeieeeeeeeeeeeeueeeeseeeseesesesseessseesseeneeee. 1
1.2 THE EVOLUTION OF MODERN ASYNCHRONOUS PIPELINESccvvuiiiiiiiiiieiieeeeeeeeeeeeenes 2
1.2.1 Two-phase and Four-phase Handshaking Protocols............................c..ccc.c....... 2
1.2.2 Bundled-data and Dual-rail Handshaking Protocolsccc.......... 3
1.2.3 Modern Asynchronous Pipelines (FIFOS)cccccoovvveeiiienieaniieannnn. 3

1.3 ORGANIZATION OF THIS THIESIS ... 151 us fhe i sheneeueeueeneesesssesesesessssssssssssssssssssssssssssesareee 8
CHAPTER 2 RELATED WORIKS e ciiiieesieeiteersnmeeeseccssssess 9
2.1 SYNCHRONOUS FIFOS IMPLEMENTATION ...t 9
2.2 THE DESIGN OF GASP CIRCUITS fitiieeeiiiiile i 10
2.2.1 A Design Based on GasP Modules..........................cc.ccovveviiiaiiiiaiiiaaiiieaeene, 10
2.2.2 Translating FSM Specification into GasP Circuitsc.ccccooevvveeenennn... 14
23ALINEARFIFO ..o 17
24ASQUAREFIFO ... 18
2.5 THE BRIEF INTRODUCTION ABOUT 1-N-1 FIFOS..........cooooiiiiii 26

CHAPTER 3 TRANSLATING DATA FLOW STRUCTURE INTO GASP CIRCUITS27

3.1 TRANSFORMING DATA FLOW STRUCTURE INTO PRELIMINARY CONTROL CIRCUITS 27
3.2 TRANSFORMING PRELIMINARY CONTROL CIRCUITS INTO REAL CONTROL

CIRCUITS ...ttt et et ettt et b bt sbe bt e s bt b eaaesae e 29
CHAPTER 4 THE 1-N-1 FIFOS....ccouininuinrensinsuinsensesssissesssesssnssssssssssssssssssssssssssssssssssssssass 32
4.1 THE IDEAS ABOUT REDUCING DATA MOVEScccociiiiiiiiiiiiiiieieneeie e 32
42THEBASISOF A 1-N-1 FIFO........ccccccciiiiiiiiiiiiiiitceceeee e 32
4.2.1 The Data flow Structure and Algorithms for Branches and Mergence............... 33
4.2.2 Preliminary Control Circuits for Branches and Mergence.................................. 34
4.2.3 GasP Circuits for Branches and Mergence.......................ccccoccvevvceveeieeencnnannn. 35

v

4.3 THE 1-N-1 FIFO WITH NINE STAGES ...ootttueeteeeeetteeeeeeeeeeeeeeeareeeeeeeeeeeeeenseaesseeeseeennnnns 40

4.4 POWER-ESTIMATION FOR LINEAR, SQUARE, BINARY TREE, AND 1-N-1 FIFOs.......... 45
CHAPTER 5 EXPERIMENTAL RESULTS . ..cccctnniinniiennnicssanisssanesssassssasssssssssssssssssssssnns 48
5.1 THE CYCLE TIME OF THESE FIFOS..........coooiiiiiii e 48
5.2 THE POWER CONSUMPTION OF THESE FIFOScccoooiiiiiieee e, 50
5.3 THE TRANSISTORS COUNTSccocuiiiiiiiiiieeeitiieeeeeiteeeeetteeeeesaseeeessaseeeesasseeeesessseeeannes 54
CHAPTER 6 CONCLUSIONS AND FUTURE WORKS.....cicerntiersnnicssanesssassssasssssasesones 55
REFERENCES ...cuciiiiiiiniinnniinnanicssssissssnesssssessasssssasssssssssssassssnss 56

List of Figures

Figure 1.1 : A four-phase bundled-data pipeline...........cceeeveeiseiiseensenssnensecssnecsenssnecsseccnnes 4
Figure 1.2 : A two-phase bundled-data pipeline..........ccceeveeecierissnicssnercssnicssnnncssnnecssasecssnnes 5
Figure 1.3 : A 1-bit wide four-phase dual-rail pipeline........c.ccccceevvrervurrcrvnicssnrcsssercscrarcssnenes 5
Figure 1.4 : The LP2/1 PIPEINE ...cuueerveereeiruensinnsnensnnssnensenssnesssessssesssnsssnssssesssssssssssssssssesssses 6
Figure 1.5 : (a) A STFB stage (b) A GasP stage........coeievverircercsssnicssnnicssnnscssanssssssssssasssssanes 7

Figure 2.1 : One stage of the linear FIFO with asynchronous reset (a) Symbol (b)

DEtail CIFCUILS ccuueeireiiiiisiiiteieiiiticstintnieentecssissstssseessseesssssssnssssssssessssssssssssassssesssssssssssssassns 9
Figure 2.2 : An irregular FIFO 10
Figure 2.3 : Alternative control circuit of asP¥.........ccocevevvrivivrisirercsssnicsssercssnncsssnscssanssnns 11
Figure 2.4 : GasP with self-resetting NAND.cc.ccevveerrenseensensnnssensenssaensncsssesssnessassssacens 13
Figure 2.5 : The corresponding circuits betweéen self-resetting NANDccccccevvuercrrurecnnns 13
Figure 2.6 : Translating FSM specification into GasP modules...........cceevuerveersuecsnecnnnne 14
Figure 2.7 : Translating GasP modules into-detailed GasP circuits 16
Figure 2.8 : Translating GasP modules'into detailed GasP circuits 16

Figure 2.9 : A two-stage linear FIFO, (a) usual stages, (b) optimized stages, (c) detailed

CIICUILS weviiiunreiinnecssnnenssnncssnnessnnessssnesssseessssesssssesssssesssssesssssesssssessssnesssssesssssesssssssssssssssssssssnssssns 18
Figure 2.10 : The square FIFO’s data MOVEMENTS........ccocererrurccssarcsssancssnrssssssssssssssnssssanns 19
Figure 2.11 : The control circuits of the square FIFOcuenenneennuenisnensueesnecsensneens 22
Figure 2.12 : (a) The stages of the top row (b) The stages of the bottom row................... 22

Figure 2.13 : Stage 1 (a) Stage with data moves (b) The processing graph for FSM
specification (¢) The GasP modules of Stage 1c..cccevverevrveresirercsssnrcssnrcssercsssnssssssssssasssnns 24
Figure 2.14 : Stage 16 (a) Stage with data moves (b) The processing graph for FSM
specification (¢) The GasP modules of Stage 16ccovvrerevercrsrercssercscercssercsssnscssssssssasssnns 25

Figure 2.15 : The 1-n-1 FIFO With 9 Stages.......cceineineenienssnnnsaenssnenssesssnecssessncsssesssssesaenes 26

vi

Figure 3.1 : (a) The data flow structure of a linear FIFO (b) The preliminary diagram
for the control circuits of the linear FIFQ..........uiiiiiivsiiinisinininicssnrcssnncsssencssseecsssesnns 28
Figure 3.2 : The processing diagram for coming data itemsccccceeveecsueiseccseecsercanens 30

Figure 3.3 : The corresponding diagram between preliminary control circuits and real

CONLTO] CITCUILS cuueeerreirrriiiniiieiiiniiseinsticsnessstiseecssesssisssnssssesssesssssssssssssssssassssssssssssassssassssssssases 31
Figure 4.1 : The data flow for branches and mergence 33
Figure 4.2 : The pointers for the data flow StrUCTUTe.........ccevvricsrricsrnricssanscsssrssssssssssanesnns 34
Figure 4.3 : The preliminary control circuits for a branchcveeeveennennnensneeseeennnne 34
Figure 4.4 : The preliminary control circuits for the mergence..........cccceeueecvueesernsuennenens 35
Figure 4.5 : A GasP module and its input and output ports...........ceeeveecsensseesseecsnecsnenn 36
Figure 4.6 : The GasP control circuits for a branchceievvveicnceicnseicssencssnescssanecnns 37
Figure 4.7 : The details of figure 410ccciiiilunennennnensenssnnnsnenssnensenssnecssesssscsssessssessaenes 37
Figure 4.8 : The GasP control circuits for the mergence..........ccccceeecurecrverccssnncsssnresssanesnes 38
Figure 4.9 : The preliminary control circuits for a binary tree FIFO............coueeevuerunee 39
Figure 4.10 : The GasP control circuits for a binary tree FIFQccocceevveicrvuricssnrcsnnns 40
Figure 4.11 : Continuous data items gotten from the input port............cueevveeseesveenenn. 42
Figure 4.12 : Continuous data items sent out by the output portccccceeevueevevericcrercsenns 43
Figure 4.13 : The preliminary control circuits for the 1-n-1 FIFO.............ccovueevuvreruennne. 44
Figure 4.14 : The GasP control circuits for the 1-n-1 FIFO............cccevirvueisecisuenseecnnen. 44
Figure 4.15 : Power-comparison for FIFOSiinninnieninennennennsnensncsssesssesssasssseens 47
Figure 5.1: The timing constraint for 1-n-1 FIFOsiniineenseennercsnensecnseecsseecsnnns 49
Figure 5.2 : The layouts of 1-n-1 FIFOs (a) eighteen stages (b) ten stages.......ccccceerveenneee. 53

vii

Table 2.1 :

Table 4.1 :

Table 4.2 :

Table 5.1 :

Table 5.2 :

Table 5.3 :

Table 5.4 :

Table 5.5 :

List of Tables

All paths of the square FIFO........ciiiiieiveiniseinisninssnicssnssssssesssssesssssssssssssns 20
The paths of the binary tree FIFO in figure 4.9cueeeenvennecnsnensercsnensaneens 40
Equations for average working GasP modules per data item...........cccceuueeeee. 47
The cycle time of the FIFOs.....uuiiieinneensnenninnsnensnensnecsnecsaenssesssesssscssesssncens 49
3 billion request signals per second (only GasP control circuits)............cc...... 50
3 billion monotonous data items per second (Full circuits)ccceeceeeeceeccsneennns 51
3 billion various data items per second (Full circuits)ccceeeeervurccsrarcccaresens 52
The transiStors COUNLSccuuiieivreissrresssnecssnicsssrecsssnessssnessssesssssssssssesssssssssssssssaes 54

viii

Chapter 1 Introduction

The goal of this thesis is to implement a fast and power-efficient asynchronous FIFO.
In the first chapter, we introduce some advantages of asynchronous circuits. Then, we
introduce the evolution of modern asynchronous pipelines(FIFOs) in this field. Finally, the

organization of this thesis is described.

1.1 Advantages of Asynchronous Circuits

Synchronous design styles are used to most digital circuits today. It is simple to design
their control circuits because all components just share and notice the clock signal which
distributed over the whole circuit. However, the arrival time of the clock signal may be not
the same at different parts of the circuit. It is a well-known problem called “clock skew”.

Asynchronous design styles are_fundameftally different. The components communicate
with each other by handshaking-eircuits o that there are no common and global signals.
Compared with the synchronous design-styles, the~asynchronous design style has many
benefits:

(1) NO clock skew problem : Asynchronous components communicates by handshaking
circuits so that there is no globally distributed clock; thus the designer can ignore the
clock skew problem.

(2) High operating speed : The worst-case timing assumption is needed in synchronous
circuits. Asynchronous circuit often have computation detection mechanism to
complete the operations, and it is local latencies rather than global worst-case
latency.

(3) Low power-consumption : Synchronous clock signal is sent to every component, and
all components must operate when it arrives, even if it is not necessary in portions of
current computation. The fundamentality of synchronous systems results in worse

power-efficiency. However, asynchronous circuits are just fired when it is actually

necessary. Energy is only consumed for needed operations. The fundamentality of
asynchronous systems causes better power-efficiency.

(4) Excellent EM emissions : Handshaking circuits exchange signals at random points in
time. It is unlike synchronous clock signal ticks at the same time so that EM
emissions is much better. Lexau et al. implemented both synchronous and
asynchronous counterflow pipeline models [1], and the result showed a dramatic 9
dB reduction in peak EM emissions at essentially constant performance levels [2].

There are more potential advantages are discussed in [3] and [4] such as better

modularity, robustness toward variations in supply voltage and temperature, etc. Modern
high-speed asynchronous circuits tend to design with full-custom procedure because of few
CAD tools support and lack of testing methods. Although it is more elastic to circuits,
designer must spend more time on- layout. For this reason, asynchronous circuits are not

popular for modern design style.

1.2 The Evolution of Modern-Asynchronous Pipelines

Modern asynchronous pipelines” ‘mainly" ‘use the { two-phase , four-phase } and
{ bundled-data , dual-rail } handshaking protocols, and there are many asynchronous
processors implemented by them. Many asynchronous CAD tool and textbooks also use these
protocols as their foundation. However different architectures of pipeline are discussed in the
recent years. The Lookahead pipeline, a variation of domino pipelines, uses complex circuits
and more signals to achieve shorter cycle time. On the contrary, the GasP and STFB use
pulse-mode circuits to reduce the handshaking protocols but they still have high throughputs.

Theses handshaking protocols and pipelines will be introduced in this section.

1.2.1 Two-phase and Four-phase Handshaking Protocols

In asynchronous circuits, the major handshaking protocols are two-phase and four-phase

handshaking. A “signal event” in the two-phase handshaking protocol is defined when request

and acknowledgement lines change, and it means handshaking signals exchanged when the
“signal event” actives. Hence some articles use the terms “non-return-to-zero “ or “transition
signaling” instead of two-phase handshaking.

Compared with two-phase handshaking, four-phase handshaking is more complex. (1)
When the communication cycle starts, the sender sends out data and then pull up the request
line. (2) The receiver obtains the data and then pull up the acknowledgement line. (3) The
sender pushes down the request line to respond the receiver. (4) The receiver pushes down the
acknowledgement line, and the communication cycle completes. Some articles also use the
terms “return-to-zero ““ or “level signaling” instead of two-phase handshaking according to its

behavior.

1.2.2 Bundled-data and Dual-rail Handshaking Protocols

We can distinguish between bundled=datatanddual-rail on how they transfer the data
signals. The bundled-data protocol ‘encodes data signals by using normal Boolean levels. It
separates the request and acknowledgement lines from the data signals. In opposition to the
bundled-data protocol, the dual-rail protocol”encodes the request signals into the data
signals; therefore two wires represent one bit information.

The dual-rail protocol is a special kind of one-hot encodings, and it can be extended as
1-of-n encodings. The 1-of-n encodings can also be extended to m-of-n encodings. If the
circuits are designed for communication, m-of-n encodings are better choices. It can reduce
the overhead of communication, but the computation circuits of m-of-n encodings are very

complex.

1.2.3 Modern Asynchronous Pipelines (FIFOs)

Muller pipeline :
The Muller pipeline is presented in [3]. It is a four-phase bundled-data protocol and most

asynchronous pipelines are variations of its control circuits. The behavior of the Muller

pipeline is just like a local clock generator. In figure 1.1, the C-element of this stage
propagates a 1 (request signal) if its predecessor sends a 1 (request signal) and its successor
sends a 0 (acknowledgement signal). In the same way it propagates a 0 if its predecessor

sends a 0 and its successor sends a 1. The signals are like clock pulse signals generated by

C-elements.
Ack
Aok
Aok Ak
C CHt— EReg
C Feg Reg
Reg
[[
Data En En En
|ﬂ. *
Latch Latch Latch
Figure 1.1 : A four-phase bundled-data pipeline
Micropipeline :

Ivan Sutherland introduced the Micropipelines in his 1988 Turing Award lecture [5].
The Micropipeline bases on the two-phase bundled-data protocol and it also use the
foundation of Muller pipeline as its control circuit. In figure 1.2, the different point between
control circuits of Micropipeline and Muller-pipeline is only the acknowledgement signal
from its successor used as the control signal of latches. Therefore the latches of the
Micropipeline are controlled by two signals, “capture” and “pass”. When “capture” and
“pass” signals are in the same Boolean levels, the latches pass the data signals. Otherwise

they capture the data signals.

Ak

Ak '

Lok &k

C C — REq

C Feg Reg

Reg
[[
Data En En En
|#.
Latch Latch Latch

Figure 1.2 : A two-phase bundled-data pipeline

Four-phase dual-rail pipeline :

The RISC microcontroller, APIC18, uses the four-phase dual-rail protocol as its control
circuits [6]. The request signal of the four-phase dual-rail protocol is encoded into the data
signals; thus the receiver just detects whethersthe mixed signals is absorbed or not so that it
can be delay-insensitive. Although this protocol “is robust enough for any timing
assumptions, it needs more logic: gates to-implement the functions with only at 50%
utilization. In figure 1.3, the situations of'pipeline stages are alternately “empty” and “valid”.
If its situation is empty, {d.t,d.f}, the mixed signals, are {0,0}. Otherwise the {d.t,d.f} are
{0,1} or {1,0}, and it represents the valid data signals are 0 or 1. It should be noticed that if
{d.t,d.f} equals {1,1}, it is not a legal codeword. That is because it is not need to encode

any valid information.

Ak
Ak J
Ty
dt ch -E*’l] <
df CH)] " . .

Figure 1.3 : A 1-bit wide four-phase dual-rail pipeline

(9]

Lookahead Pipelines :

In addition to common pipelines introduced above, Lookahead Pipelines are designed
with special protocols. Their behaviors are similar to the domino pipelines. They extended
PSO [7] in order to gain better throughput and introduced several improved protocols [8,9].
The key points of those protocols are (1) early evaluation, (2) early done, and (3) combination
of both. In figure 1.4, the LP2/1 pipeline in [7] combines “early evaluation” and “early done”.
Each stage receives information from two succeeding stages, the “early evaluation” protocol
is used, and the “Eval” signal comes from the completion detector two stages ahead so that
the current stage can evaluate early. The idea of “early done” let the previous pipeline receive
the information whatever it evaluates or precharges. Because of these reasons, the early

evaluation” and “early done” protocols can achieve a shorter cycle time.

'3

r 3
&

= . . I l r ‘—
Completion -
Detector PC Eval PC Eval PC Eval

Dual-rail Dual-rail Dual-rail

Function Function Function

Figure 1.4 : The LP2/1 pipeline
GasP and STFB :

In recent ten years, many researchers are interested in pulse-mode circuits, like GasP [10]
and STFB [11]. The advantage of these pulse-mode circuits is high speed, but come with high
noise sensitivity. In figure 1.5(a), a STFB stage is implemented in dual-rail protocol, and its
data, request, acknowledgement signals are transferred via the same tri-state wires. A GasP
stage is implemented in bundled-data protocol as shown in figure 1.5(b). The request and

acknowledgement signals of GasP circuits are also transferred via the same tri-state wires, and

the self-resetting mechanism let the cycle time be shorter. Both GasP and STFB circuits
weakly keep states by states keepers on tri-state wires, and the wires must be susceptible to
noise especially in smaller noise margins. Golani and Beerel presented high-performance
noise-robust asynchronous circuits to mitigate sensitiveness to noise, including transistor
sizing and wire spacing rules [12].

In particular, the request and acknowledgement signals of pulse-mode circuits are
generated by the PMOS and NMOS which are marked with circles in figure 1.5. Because the
handshaking protocol is simpler than the protocols introduced above, it can reduce the cycle
time so that the pulse-mode circuits can operate in high speed.

The goal of this thesis is to implement a fast and power-efficient asynchronous FIFO with

GasP circuits; thus the details of GasP circuits will be described in the next chapter.

Figure 1.5 : (a) A STFB stage (b) A GasP stage

1.3 Organization of This Thesis

In the next chapter, we will discuss some issues in the design of GasP circuits. Then, in
chapter 3 we provide an approach to transform a data flow structure into parallel compositions
of GasP circuits. In chapter 4 we present the details of the FIFO architecture and estimate the
power-consumption roughly. The implementation, verification and result are exhibited in

chapter 5. Finally, we give conclusions in chapter 6.

Chapter 2 Related Works

In this chapter, we will introduce the synchronous FIFOs, and then the design of GasP
circuits is introduced clearly. It includes the features of GasP circuits, the operations when it
works, the FSM specification to describe them, and ways to translate FSM specification into
GasP circuits, i.e. a linear FIFO and a square FIFO. Finally, a brief introduction about the

proposed 1-n-1 FIFO will be mentioned.

2.1 Synchronous FIFOs Implementation

Although this thesis focuses on asynchronous systems which is implemented with
GasP circuits, synchronous FIFOs are need to be compared with asynchronous FIFOs. Thus
we introduce two major methods to implement the synchronous FIFOs. The first one is
common linear FIFO with asynchroneus reset; and one of its stage is shown in figure 2.1.
The input port “D” receives datasitems from:its predecessor and the output port “Q” sends
data items to its successor, all data items.are moved when the clock signal changes. When
the clock signal is 0, a data item iS.delivered to the first part of this stage. Otherwise a data

item is delivered from the first one to the output port “Q”.

clock First Part
\:/ clocl«::! ~reset \ clock
b ! I
o D R LB e
op il ock |17
~clocks |y ~etoek clock
' IL\ ~clock s ~reset
feget -~ ____TITL - —clock
(a) (b

Figure 2.1 : One stage of the linear FIFO with asynchronous reset (a) Symbol (b)

Detail circuits

The second one is the irregular FIFO, it uses two pointers to position the head and tail.
The two pointers work in coordination with the control circuit as shown in figure 2.2, and the
control circuit will send the control signals to let the irregular FIFO synchronize correctly.
Because the synchronous irregular FIFOs are discussed fewer and it seems to have fewer

benefits in synchronous systems, we only selected the linear FIFO to compare with our

design.
Ttregular FIF O
—»
FIFO ' ,
pointer
Addr. —
| Control —
o > Svstem Bus
Circiut “—»
: «—»
Addr.
FIFC
pointer

Figure 2.2 : An irregular FIFO

2.2 The Design of GasP Circuits

In this session, we will discuss the evolution of GasP circuits, its detailed design, and
its timing constraints. Then we will introduce how to use the finite-state machines (FSM)

specification to describe a GasP module, and translating GasP modules into GasP circuits.
2.2.1 A Design Based on GasP Modules

In [13], Molnar brought a basic control circuits for an asynchronous pipeline called
Asynchronous Symmetric Persistent Pulse Protocol, “asP*”, and it can be regarded that the

last three letters of GasP meant its asP* ancestry. “asP*” uses a series of flip-flops to control

10

circuits and special transition latches. In figure 2.3, the asP* circuits are symmetric, and their
forward latency and reversed latency are equal. The performance of asP* circuits is report in

[14].

PLACE PLACE

PATH PATH

PATH |
Empty Full

I Empty Full

L_-_- - _

One Stage

Figure 2.3 : Alternative control circuit of asP*

The GasP asynchronous circuits provide controls for simple pipelines. Its general idea is
that “in very fast asynchronous circuits it is better to make the forward latency long and the
reverse latency short”. For this reason, GasP circuits take time to copy data forward through
a latch, but none are moved backwards.

Let us define two key words “PLACE” and “PATH” to distinguish two kinds of circuits:
“PLACE” represents circuits which hold the data item, “PATH” represents circuits which
control the flow of data, and then PATHs and PLACEs alternate in the pipeline as shown in
figure 2.3 and figure 2.4. Each PATH has a predecessor and successor PLACE, and each
PLACE has a predecessor and successor PATH. PATHs must act only when both its
predecessor PLACE is FULL and its successor PLACE is EMPTY.

Sutherland and Fairbanks pointed out that a PATH must get through below four things

when it fires [10] :

11

(1) It must make data latches momentarily transparent.

(2) It must declare its successor stage FULL

(3) It must declare its predecessor stage EMPTY.

(4) It must reset the output of the series N-type transistors to the inactive or HI state.

In figure 2.4, the GasP circuits described here have a forward latency of four gate delays
and a reverse latency of two gate-delays, and then the total cycle time is therefore six
gate-delays (NO. 123456).

GasP circuits store each state with state conductor to indicate whether it is FULL or
EMPTY. In particular, it uses the state encoding “HI=EMPTY” and “LO=FULL” for all state
conductor, and the HI signal declares no data in the present latch at this moment. On the
contrary, the LO signal declares that there is a data item in this latch. Because we implement
GasP circuits with standard NAND symbol to replace the self-resetting NAND gate, the
corresponding circuits between them will be shown. infigure 2.5.

In order to implement cotrect functionality of-GasP circuits, two conditions must be
satisfied. The first one is meeting the setup and-hold time, and the other one is the cycle time
must be longer than the minimum delay of six gate-delays. To achieve the conditions, we
would adjust the transistor size to reduce the logical effort with what explained in [15] and

[16].

12

State: Hl = EMPTY Forward Latency=123 4
LO = FULL Reverse Latency=56

State ‘i >3'—’S State
in Conductor

State
Conductor L

Conductor

Keeper Keeper Keeper
B0 B0 7
4

2
PLACE E E PLACE E PLACE
- -5
) Data Latch) Data Latch
PATH PATH
DataIn DataOut

Data direction

Figure 2.4:: GasPwith self-resetting NAND

Figure 2.5 : The corresponding circuits between self-resetting NAND

and standard NAND

2.2.2 Translating FSM Specification into GasP Circuits

The method of how to translate FSM specification into GasP circuits is introduced in
[17] and [18], and it is often used to plan the PATHs. The basic state transition is shown
below :

P=(a0->Q)

Where P is defined as an input state, Q is an output state, and a0 is a GasP module. When
state P is set, module a0 will be fired. Then state Q is set, and at the same time state P is reset.
The operations can be finished in one cycle. The mapping is shown in figure 2.6(a).

A more complex FSM with deterministic choice is in figure 2.6(b), its state transition is
shown below :

I=(bl->J|b2->K)

Where 1 is still defined as an“input state; J:and*K are output states, and bl, b2 are GasP
modules. The environment can determine which modules should be fired. Therefore module
bl or b2 may be fired according to. the deterministic choice. In other words, state J may be
fired not only setting I but also the determination of this environment. The status of state K is
the same as state J. Therefore module bl and b2 may be fired by setting I and environment

information, and then the corresponding state J and K are set.

b1

a0 |B2->K) - >

b2

K

(a) (b3

Figure 2.6 : Translating FSM specification into GasP modules

(a) a basic state transition, (b) deterministic choice

14

The following section describes how to translate GasP module into detailed GasP circuits.
Figure 2.7 shows the relative mapping between modules and circuits, a0 and al can be
regarded as an event is fired. P is one state stored in the state conductor, and it is full or empty.
The label 4 refers the gate-delays between two modules when events are fired, and the
numbers 1, 2, 3, and 4 means the successive gate-delays between events. Figure 2.8 is the
same as figure 2.7. Q is one state between two modules, the label 2 also refers the gate-delays,

and the successive gate-delays are number 1 and 2.

15

af
Keeper Keeper Keeper
VA S TPl 7A VA
I P
State a0 M b p State
Conductor :\ = | Conductor

INVN
5 '_I_l_'_‘

Figure 2.7 : Translating GasP médules into detailed GasP circuits

(4 gate-delays between 2 modules)

Q0,2
<

aoe al

Keeper Keeper Keeper

VAL (TA

State
Conductor

o al *i >D—05 State
L Conductor

\----_---_-._-_-’

Figure 2.8 : Translating GasP modules into detailed GasP circuits

(2 gate-delays between 2 modules)

16

2.3 A Linear FIFO

The linear FIFO consists of GasP circuits shown in figures 2.7 and 2.8. We can use FSM
specification to describe it, and give the corresponding modules. Considering the middle

stages of a linear pipeline, the FSM is shown below :

Stage N = Stage N+1 =
state E where state G where
E=(a0->F) G=(al ->H)
F=(al >E) H=(a2->G)
end end

In figure 2.9(a), E, F G, and H are statesrand a0;.al, and a2 are modules. In particular, the
shaded triangle of modules indicates where the initial states are. Otherwise the unshaded
triangles represent the state are not the initial-ones. Figure 2.9(b) is optimized from figure
2.9(a), and figure 2.9(c) is the detailed circuits of figure 2.9(b). One confusing key point is the
difference between stages and modules. Figure 2.9 is a good example that a two-stage linear
FIFO with three modules, and therefore one stage may be constructed with many modules in

GasP circuits.

17

al . al . iz

' State —Dv—Hi . State
| C?mldllctm'@ | C.‘mlcluctm'@

(c)

Figure 2.9 : A two-stage linear FIFO, (a) usual stages, (b) optimized stages, (c) detailed

circuits

2.4 A Square FIFO

Ebergen presented a square FIFO implemented with GasP circuits [17]. The square
FIFO is one of the low-latency and power-efficient FIFOs, and it consists of a
two-dimensional array of stages. The route of one data item is schemed by the FSM
specification of stages and the input-output behavior is the same as usual FIFOs.

Figure 2.10 illustrates the operation of a square FIFO with 16 stages. It consists of a top

18

row of stages, some column FIFOs which are simple linear FIFOs, and a bottom row of stages.
The top row sends out the data items to the column FIFOs in a round-robin fashion, and the
bottom row also receives the corresponding data items in a round-robin fashion. Because
every data item must go through stages of the square FIFO in order, the data items are

distributed to their fixed route.

| A e [)

- s (s s3!S

I : 1 I

5 | ! |

'ss [ise [is7 |88

| | : :

T

| 89 'S10 |} 811 | 812

I

I ! I l

! I I I

| | ! ' S16

S N K o

Figure 2.10°: The square FIFO’S data movements

The data items goes through the square FIFO via four possible paths which are drawn
by the dotted lines. The first data item goes through the square FIFO in the sequence S1, S2,
S3, S4, S8, S12, and S16 stages. The routing path of the second data item is S1, S2, S3, S7,
S11, S15, and S16. The routing path of the third data item is S1, S2, S6, S10, S14, S15, and
S16. The routing path of the fourth data item is S1, S5, S9, S13, S14, S15, and S16. It needs
the round-robin scheme and then repeats the same routing path. Therefore the routing path
of fifth data item is the same as the first one and so on.

All data flow paths in figure 2.10 are listed in the table 2.1 where the variable m is an
integer and m can be considered as the number of cycles. For example the routing path of

the 21™ data item is 4m + 1*! in the table 2.1.

19

Table 2.1 : All paths of the square FIFO

The kth data item | Through stages from input port to output port
4m + 1% S1>S2->S3->S4->S8>S12->S16
4m + 2™ S1>82->S3->S7->S11->S15->S16
4m + 3" S1>S2->S6>S10>S14->S15->S16
4m + 4™ S1->S5>S9->S13->S14->S15>8S16

The full control circuits of the square FIFO is shown in figure 2.11. The control
circuits for data paths dictates data movements by letting the corresponding pass gates
transparent. In figure 2.11, the stages 5~12 are simple linear pipeline shown in the above
section. The control circuits for the top row are inthe stages 1~4, and the bottom ones are in
the stages 13~16. Therefore the FSM speeification of stage 5~12 are the same as a linear
FIFO in figure 2.8. However special ESM specification is needed to describe the top and
bottom rows. Because the bottom row: is easier tobe described than the top row, the bottom
row is presented first.

The problem for the bottom row is to determine when a data item can be received from
the left-side or up-side. Most solutions involve counting mechanism, but the solution of [17]

is different. Its rule for each stage of the bottom row is shown as follows :

“If the present data item passing through a stage comes from the left-most stage, the
next data item for the stage must come from the stage above. Otherwise the next data item

comes from the stage to the left. The first data item comes from the stage above. “

The rule of the bottom row can guarantee the order of data items because it totally

corresponds the sequence of data items sent out by the top row. The rule of the top row is

20

similar to the rule of the bottom row, and the problem for the top row is to determine when
a data item can be sent to the right-side or down-side. The solution of the top row is also
similar to the one of the bottom row. Each stage of the bottom row looks to a special data item
moving right, and each stage of the top row looks to a special “bubble” item moving left. The
interpretation of a bubble is a movement that involves both a movement of a data item to the
right and a movement of a bubble item to the left. So the rule for each stage of the top row is

shown as follows :

“If a data item moves into a stage of the top row by means of a swap with a bubble
originating from the right-most stage, the next data item move out of the stage must be
down; otherwise, the next data move item must be to the right. Initially, each stage of the

top row is empty.”

The rules for each stage of the top-and.-bottom rews are explained above. Figure 2.12(a)
illustrates the data moves of the top row. To keep track of whether a bubble comes from the
right-most stage or not, it uses two types of arrows to distinguish. One is the dotted arrows
which keep the track of a bubble coming from the right-most stage, and the other is the solid
arrows recording all the other moves. Figure 2.12(b) is similar to figure 2.12(a). It shows the
data moves of the bottom row. In order to keep track of whether a data item comes from the
left-most stage or not, it also uses two types of arrows to distinguish. One is the dotted arrows
which record a data item coming from the left-most stage, and the other is the solid arrows

recording all the other moves.

21

- Sl. S4
P> ()
,‘:»rr[fll
—I:< W
1y 4l
=5 IR
Mis) |V.<318+
59 312
gy Eﬁl
—
7 1
S13](_
=

S1g b 915 2= g4

Figure 2.11 : The control circuits of the square FIFO

's

N

A
.l *'316

= ::) = I
|7513 814 * 815

(b)

(&)

Figure 2.12 : (a) The stages of the top row (b) The stages of the bottom row

22

The rules for each stage of the top and bottom rows are explained clearly, and now we
can give the FSM specification for the top and bottom rows. The FSM specification of stage 1

is shown as follows:

Stage 1 =
state EO where
EO=(r0->F0)
FO=(rl1->E0|rrl ->EI)
El=(rr0->F1)
Fl1=(dl->E0)

End

Let us translate FSM specification into GasP modules. Figure 2.13(a) shows the stage
1 with data moves, and then we use the ' ESM_specifieation to draw the processing graph in
figure 2.13(b). Finally, we translate the proecessing graph in figure 2.13(b) into the
implementation of GasP modules in figure 2.13(c).

In figure 2.13(a) and (b), the dotted arrows represent the bubbles coming from the
right-most stage of the top row, and they use prefix “rr” instead of “r”. Then we translate the
FSM specification of stage 1 into figure 2.13(b). The states EO, El, FO, and F1 are
corresponded to the circles in figure 2.13(b). The modules r0, rr0, r1, rrl, and dI are also
corresponded to the lines in figure 2.13(b). Circles and lines connect with one another by the
relationships of FSM specification. Finally, we translate the circles in figure 2.13(b) into
tri-state wires in figure 2.13(c), and transforming the lines in figure 2.13(b) into the real GasP

modules in figure 2.13(c).

23

En
n7— rl
gl s

N
L@ F0
O W t
" I"_'_"rrl . 1 : — E1] !
d1 ir-v@ Fl
vdu
(a) (b
(&)

Figure 2.13 : Stage 1 (a) Stage with data moves (b) The processing graph for FSM

specification (c) The GasP modules of stage 1

The FSM specification of stage:16 is similarto.the stage 1, and it is shown as follows:

Stage 16 =
state EO where
EO=(di2->F0)
FO0=(rl6->EI)
El=(rl5->F0|rrl5->F1)
Fl=(rrl6->E0)

end

Figure 2.14(a) also shows the stage 16 with data moves, and the processing graph of
the stage 16 in figure 2.14(b). Finally, the implementation of GasP modules is in figure
2.14(c).

The dotted arrows in figure 2.14(a) and (b) stand for the data items coming from the

€99
T

left-most stage of the bottom row, and they also use prefix “rr” instead of “r”. Then we

24

transform the FSM specification of stage 16 into figure 2.14(b). The states EO, E1, FO, and F1
are corresponded to the circles in figure 2.14(b). The modules 10, 110, rl, rrl, and d1 are also
corresponded to the lines in figure 2.14(b). Circles and lines link with one another by the
relationships of FSM specification for the stage 16. Finally, we transform the circles in figure

2.14(b) into tri-state wires in figure 2.14(c) and translate the lines in figure 2.14(b) into the

real GasP modules in figure 2.14(c).

412 ¥
i
E
rrlé 15 -*
d1z —————- tr L\ >
H_l 4 "< Fller16
1oz :‘-‘ - :‘J rlf d12 :
816 Lrrls E1
rl5 rlé :
— _\
L@ —» < (16
‘+— rl5 —
rl5 Fi
(a) (b (c)

Figure 2.14 : Stage 16 (a) Stage with data moves (b) The processing graph for FSM

specification (c¢) The GasP modules of stage 16

The stages 2 and 3 of the top row are similar to stage 1, and the stages 14 and 15 of the
bottom row are similar to stage 16. The other stages are all simple one-stage linear FIFO.

Since all stages of the square FIFO can be understood, the control circuits of the square FIFO

can be implemented as shown in figure 2.11.

25

2.5 The Brief Introduction about 1-n-1 FIFOs

One goal of this thesis is to reduce the data moves in FIFOs. The architecture of the

square FIFO in [17] presented fewer data moves than linear FIFO, but it still needs O(\/;)

data moves where n is the number of stages. We hope to find some architecture of FIFOs that
have high-throughput and fewer data moves with power-efficiency. From the viewpoint of
algorithm, O(1) reaches the best beneficial result for work efficiency.

In order to achieve the goal, the 1-n-1 structure is considered the best architecture for
the FIFOs. We should find the rule for the 1-n-1 FIFO and implement it with GasP circuits. A
structure in figure 2.15 is O(1), and the solid arrows indicate the data moves. Each data item
from the input port to the output port only crosses three stages, stage S1 to one of S2~S8 and
one of S2~S8 to stage S9. In the general case;’the 1-n-1 FIFO with n stages, each data move
from the input port to the output port also goes through three stages, stage S1 to one of middle
stages and from one of middle sstages to-Stage Sn. More details of the 1-n-1 FIFO will be

discussed in the chapter 4.

53

54

56

87

S8

Figure 2.15 : The 1-n-1 FIFO with 9 stages

26

Chapter 3 Translating Data flow Structure into

GasP Circuits

In this chapter, we will introduce how to translate data flow structure into corresponding
GasP circuits. The method has two steps: the first step is to transform a data flow structure
into preliminary control circuits, and the second step is to depict real GasP circuits by its
preliminary control circuits. We will give an example of a linear FIFO to understand

clearly.

3.1 Transforming Data flow Structure into Preliminary

Control Circuits

One goal of this thesis is to transform a data flow structure into parallel compositions
of GasP circuits. Giving unlike aecountsrof:the incident with [17], we do not use FSM
specification to describe a stage-because it would betoo complex to characterize a whole
system. For example, the squate: FIFO .in-f17]‘and the efficient stack in [18] have
complicated FSM specification for ‘each 'stage, even the whole systems. Instead of
finite-state machines, we prefer to plan a data flow structure first, and then translating it into
the control circuits.

In order to explain the method clearly, we give an example of a linear FIFO with five
stages, and translating it into GasP control circuits. The first step is to plan the data flow
structure. The data flow structure of a linear FIFO is well-known, and the rule is receiving
data items from its predecessor and sending them to its successor.

Figure 3.1(a) illustrates the data flow structure of a linear FIFO, the arrows indicate the
direction of data moves. Since we know the rule and the data flow structure both, the
corresponding graph of figure 3.1(a) can be depicted in figure 3.1(b). Figure 3.1(b) is a

preliminary diagram for the control circuits of the linear FIFO. Its general idea is like the

27

state transition graph (STG) diagram, and there are two rules to be obeyed. The first one is
1-bounded that no arc can ever contain more than one token, and the second one is no
deadlock.

The circles in figure 3.1(b) can be regarded as switches and the dots can be regarded
as tokens. A circle must send the dots to all of its output ports when it receives dots from all
of its input ports. In other words, the switches are transparent when they get tokens from all

of its input ports, and then producing new tokens to it all output ports.

+S1—vsz—+ss—+s4—hs_«fL

,#' ;‘ (a) 'I“ * N
1
!

-]
< ’
~

x', v ¥ \‘* ‘\A
OO0 =000
» * » » »
(b)

Figure 3.1 : (a) The data flow structure of a linear FIFO (b) The preliminary diagram

for the control circuits of the linear FIFO

Let us analysis the preliminary diagram whether obeying the rule of the linear FIFO.
Figure 3.2(a) shows the initial states of the preliminary diagram, and it must be properly set
for correct operations. Figure 3.2(b) illustrates the first data item coming. When the first data
item comes, the left-most circle, known as switch, produces a new token to it successor in
figure 3.2(c). Then the second switch receives tokens from all of its input ports so that it
becomes transparent. At this moment, the second switch produces new tokens to its
predecessor and successor, and the second data item enters the linear FIFO in figure 3.2(d).
The following operations are the same as above, the data items will move to the next stages in

figure 3.2(e), and the operations will complete until all data items exit the FIFO.

28

3.2 Transforming Preliminary Control Circuits into Real

Control Circuits

When the preliminary diagram is drawn and confirming that all operations are really
correct, the next step is going to depict real GasP circuits by its preliminary control circuits.
Figure 3.3(a) and (b) show the corresponding diagram between preliminary control circuits
and real control circuits. In figure 3.3(a), the circled arrows are corresponded to the triangles
of GasP modules in figure 3.3(b). If there is a dot beside an arrow, the corresponding triangle
is shaded. Otherwise the triangle is unshaded. The output port of the circle in figure 3.3(a) is
also corresponded to the output port of GasP modules in figure 3.3(b). Finally, the
connections in figure 3.3(a) are relative to the corresponding connections in figure 3.3(b).

The optimal connections in figure 3.3(€),are on the basis of figure 3.3(b), it was
mentioned in section 2.3. Finally, we can implement the real circuits in figure 3.3(d) with
figure 3.3(c), and the procedures to translate data “flow structure into GasP circuits are
complete. In next chapter, we will use this method to implement our circuits instead of the

FSM specifications.

29

-0000020

1st data item

,------------__

O

OO0 020

----------- - (b)
*O“Q“’“Q“O“O
------------------ *(©
2nd data item e
E"O”’““O”“‘O”’“*"’”““O”“’O
! R R R - -
—————————————————————————— g * W
feSoscsonos
““““““““““ (e)

Figure 3.2 : The processing diagram for coming data items

30

l (c)

Keeper | Keeper | Keeper

b TRy G4

State —|>v—<i ' State —D?—E State
C.‘ml(luctm‘@ L fC.‘ml(luctmj ;C.‘mlcluctm‘@

INVN
n ||_|_,_|—|
INVN
=

(M)

Figure 3.3 : The corresponding diagram between preliminary control circuits and real

control circuits

31

Chapter 4 The 1-n-1 FIFOs

The first goal of this thesis is to reduce the data moves in the FIFO systems. This chapter
will introduce how to reduce the data moves in the FIFO systems and use the presented

method to implement our systems.

4.1 The Ideas about Reducing Data moves

The focal point for better power-efficiency is to reduce the data moves in systems. In
synchronous systems, the clock signal triggered off all components to work even if they are
unnecessary so that energy is consumed more. On the contrary, the asynchronous systems
are just fired when the operations are actually necessary. The further focal point in
asynchronous systems is to save more energy with different design of architectures. So the
different kinds of architectures make 'differént data moves leading to different power
consumption.

Section 2.5 mentioned the brief introduction about these ideas, and 1-n-1 FIFOs are good
choice for fewer data moves. From the viewpoint-of algorithms, it is a better algorithm to
reduce data moves because the structure provides constant data moves in FIFOs. For this
reason, power consumption is also constant.

The following is the basis of the 1-n-1 FIFO, and we will construct our system from them.
The same as the linear pipeline, we are going to use the method which was introduced in

chapter 3 to implement our circuits.

4.2 The Basis of A 1-n-1 FIFO

In this section, we will introduce the basic operations for a 1-n-1 FIFO. In the beginning,
the data flow structure and algorithms for branches and mergence are defined. Then we
transform them into preliminary control circuits and verify whether they are correct or not.
Finally, we translate the preliminary control circuits into GasP modules and the processes for

GasP modules will be depicted step by step.

32

4.2.1 The Data flow Structure and Algorithms for Branches and

Mergence

The basic operations for 1-n-1 FIFOs are branches and mergence. Now we will implement
them with our procedures, and decide the data flow structure first. Figure 4.1 shows the data
flow of branches and mergence. Many algorithms can achieve the behaviors, but the simplest
one for them is using pointers to indicate which stage is the working one. We give a simple
example to introduce how to use the pointers to make correct data flow. Figure 4.2 illustrates
the pointers which point at the working stages. In figure 4.2(a), the pointer points at stage S2,
so the first data item will pass through S2 and the sequence of the first data path are S1, S2,
and S4. In figure 4.2(b), the pointer points at stage S3, therefore the second data item will go
through S3 and its data path are S1, S3;and S4: The third data item is the same as the first one,

the forth data item is the same as the second one, and so on.

- s s 88 88 -

Figure 4.1 : The data flow for branches and mergence

33

- S1 sS4 —— 51 sS4

|

v
oo
L

|
E

|

v
o
e

|
E

Figure 4.2 : The pointers for the data flow structure

4.2.2 Preliminary Control Circuits for Branches and Mergence

Since the data flow and its algorithins-have been presented above, we are going to map
the preliminary control circuits. Figure 4.3 is the:preliminary control circuits for the stage S1
in figure 4.2 and the function of'stage S1.15:a branch.-Figure 4.3(a), (b), and (c) illustrate the
data item which is assigned to the.upper switch,.and then the pointer is passed to the lower
switch. The next data item will goes through the lower switch in figure 4.3(d), (e), and (f), and

the pointer returns to the upper switch.

Figure 4.3 : The preliminary control circuits for a branch

34

Figure 4.4 is the preliminary control circuits for the stage S4 in figure 4.2 and its function
is a mergence. In figure 4.4(a) and (b), the corresponding data item is received by upper
switch and then the pointer is passed to the lower switch. Figure 4.4(c), (d), and (e) show that
the next data item goes through the lower switch and the pointer returns to the uppers switch.
Due to figure 4.3 and figure 4.4, we know that data items will pass through an 1-n-1 FIFO in

the proper order.

(d (©

Figure 4.4 : The preliminary control circuits for the mergence

4.2.3 GasP Circuits for Branches and Mergence

In this section, we implement GasP circuits to branch and merge, and introduce their
behavior clearly. One basic GasP module for these operations is drawn in figure 4.5 and it can
achieve the round-robin fashion. Figure 4.5(a) shows a GasP module, the arrows indicate the
direction of data flow, and the triangles mean self-resetting input ports. Hence “Pin a”, “Pin
b”, and “Pin d” are self-resetting input ports, and “Pin ¢” is output port. In Figure 4.5(b) ,
cycle ”a = al = a2 - a” is self-resetting corresponding to “Pin a”, cycle ”b2 = b = bl =
b2” is self-resetting corresponding to “Pin b”, and ’d = d1 - d2 - d3 - d” is self-resetting
corresponding to “Pin d” .

An input port of a GasP module is said to be set when it delivers a HI signal to the

35

NAND gate in the module; otherwise it is said to be reset. All GasP modules must be set or
reset initially. In Figure 4.5(a), input port delivers a HI signal to the NAND when the triangles
are shaded. Otherwise input port delivers a LO signal to the NAND when the triangles are
unshaded. When all input ports are shaded, it means HI signals are delivered to all pins of the
NAND gate in the module so that all output ports fire, and then self-resetting input ports are

going to be unshaded. The details of GasP module in figure 4.5(a) is depicted in figure 4.5(b).

a

d1

(a) (b}

Figure 4.5 : A GasP module and its input and output ports

The GasP stage works in a round-robin fashion in figure 4.6 and it is composed of the
GasP module in figure 4.5. Figure 4.6(a) shows all input ports of module M1 are set and
module M1 is fired, and then left input ports of module M2 and module M3 are set in figure
4.6(b). In figure 4.6(b), all input ports of module M2 are set and the output port of module M2
are fired, and then HI signals are delivered to the NAND of module M3 in figure 4.6(c).
When next data item is captured in module M1, it will go through module M3. The processes
are shown in figure 4.6(d), (e), and (f) step by step. Hence modules M2 and M3 will be fired
by turns. Figure 4.6 is relative to figure 4.3, we translate the preliminary control circuits in
figure 4.3 into the GasP control circuits in figure 4.6. The details of modules M1, M2 and M3

are drawn in figure 4.7.

36

M1

—

| [~
> > <] L
M1 M1 M2
— — —
>
M3
<
—

@ (e) i3}

Figure 4.6 : The GasP control circuits for a branch

Next
Stage

Data direction

Figure 4.7 : The details of figure 4.6

37

Figure 4.8 is relative to figure 4.4, we also transform the preliminary control circuits in
figure 4.4 into the GasP control circuits in figure 4.8. Figure 4.8(a) illustrates all input ports of
module M1 are set and module M1 is fired, and then left input port of module M3 is set in
figure 4.8(b). In figure 4.8(b), all input ports of module M3 are set and then it is fired, and
then HI signals are delivered to the NAND of module M2 in figure 4.8(c). When next data
item comes, it will pass through module M2 and M3. The processes are shown in figure 4.8(c),

(d), and (e) step by step. So modules M1 and M2 send data items to module M3 by turns.

I — 5
Ml M1 M1
= L > <
M3 S~ H M3 M3
M2 M2 « M2

(a) (b) ()

- < —=
M1 M1 -
i _> {-
—+ M3 —+ M3
] =
M2 4 M2

(d) (e)

Figure 4.8 : The GasP control circuits for the mergence

Since the GasP control circuits for branches and mergence have been introduced above,
we can use them to implement a binary tree FIFO. Figure 4.9 illustrates the preliminary
control circuits for a binary tree FIFO with ten stages, and figure 4.10 shows the
corresponding GasP control circuits. It has fewer data moves than square FIFOs and linear
FIFOs. In addition to fewer data moves, it avoids some stages shouldering too heavy loading.

In fact, we hope that the loading can be averagely shared by each stage, and it would be best

38

that all stage have equal loading. Because of these reasons, the binary tree FIFO is a kind of
better architecture.

The binary tree FIFO in figure 4.10 has ten stages which consist of GasP modules in
figure 4.6 and figure 4.8. Data items go through the binary tree FIFO regularly because the
GasP modules are built in a round-robin fashion. We list the data flow paths in figure 4.10 in
the table 4.1 where the variable m is an integer. The data items can only route via four
possible paths. The first data item goes through stages S1, S2, S4, S8, and S10; the second
data item goes through stages S1, S3, S6, S9, and S10; the third data item passes through
stages S1, S2, S5, S8, and S10; finally the forth data item passes through stages S1, S3, S7, S9,

and S10. The routing path of fifth data item is the same as the first one, and so on.

T G — O_T_’ — !

| | L | i

: ' . !l S4 J: . . !

2O : O

: B r * :l a2 l: /_’ L] :

T EBosod Bl

| ! 52 , | |

| I | 85 | 58 | 1

! [R ?q____', _________ I |* .
— <H I I ' 'V_’O‘_

w1 =005 || S

| I ‘T | 1

: v i| <6 E . . ,,: !

S U 1 { I Ny () Pl

L8l . :l ST w! - . I

| L83 & 59 ! S0

e e eem o I-------.—.)O-.ﬂ_ —_ ____ e e e e e I

Figure 4.9 : The preliminary control circuits for a binary tree FIFO

39

51

52

53

510

Figure 4.10 : The GasP control circuits for a binary tree FIFO

Table 4.1 : The paths of the binary tree FIFO in figure 4.9

The kth data item | .Throughistages from input port to output port
4m+ 1% S1>S2->S4->S8->S10
4m + 2" S1383->56>S9->810
4m + 3" S1>52->S5>S8->S10
4m + 4" S1>S3>87>S9->810

4.3 The 1-n-1 FIFO with nine stages

The timing complexity for the binary tree FIFO in figure 4.10 is O(logn). From the view

of power-efficiency, we hope to find the best structure to achieve the goal. Therefore the

1-n-1 FIFO is our solution in our research.

The following is an example for the 1-n-1 FIFO with nine stages, and the data moves of
the 1-n-1 FIFO are shown in figure 4.11. The 1-n-1 FIFO receives continuous data items from
input port until it is overflow. Figure 4.11(a) shows the first data item is received from the

input port of the 1-n-1 FIFO. Figure 4.11(b) illustrates the second data item is received and

40

the first data item takes an internal move in the 1-n-1 FIFO, and so on. Its behavior is a
round-robin fashion and the data items will pass through the FIFO in proper order. Figure
4.12 shows that all data items are sent out by the output port until nothing is in the FIFO.
Figure 4.12(a) illustrates the first data item exits, and figure 4.12(b) shows the second data is
sent out. At the same time, the third data item takes an internal move in the 1-n-1 FIFO, and
so on. The algorithm of this data flow structure also uses pointers to point at which are the
working stages. So we can translate the data flow structure into the preliminary control
circuits in figure 4.13, and then implement the GasP control circuits in figure 4.14 by the

preliminary control circuits.

41

(a) (b) (©)

(]
(]
2

(d) (e ®

[=a]

[
2
[

5 5 5
6 6 G

| i .
(2 (h))

Figure 4.11 : Continuous data items gotten from the input port

42

T
— |le—
/

5 5 5
6 6 6
(@) (b) (©
8 8 8
9 9 9

(d (e) ®
8
9 9

(2 () ®

Figure 4.12 : Continuous data items sent out by the output port

43

O+«—0O+—0O0+—0+«—0+«—0+—0

Q) QO Q-0 0 -Q

Figure 4.13 : The preliminary control circuits for the 1-n-1 FIFO

51

Figure 4.14 : The GasP control circuits for the 1-n-1 FIFO

44

4.4 Power-Estimation for Linear, Square, Binary Tree,

and 1-n-1 FIFOs

Since all of the FIFOs have been introduced above, let us estimate their
power-consumption and verify whether the 1-n-1 FIFOs have better efficiency. We present an
idea to estimate power-consumption roughly; the idea is calculating how many GasP modules
would work when a data item goes through the FIFOs.

First we want to know the average GasP modules per stage, and then computing how
many stages will be passed when a data item goes though the FIFOs. Finally, we can
calculate how many GasP modules work when a data item goes though the FIFOs. Because
the linear, square, binary tree, and 1-n-1 FIFOs are both symmetric architecture, we can
simply compute via above descriptionsand figutes,

Linear FIFOs :

If the amount of stages in a<inear FIFO i1s n, the total GasP modules in the linear FIFO
are (n+1). So (n+1) / n are the average GasP modules per stage.

Because each data item will go through the linear FIFO via n stages, ((n+1) / n)*n=
(n+1) is the number how many GasP modules will work when a data item goes though the
linear FIFO.

Square FIFOs :

If the total number of stages in a square FIFO is n, the total GasP modules in square

FIFO are \/;*(\/;—1) + 2*(\/;+\/;—1), where x/;*(\/;—l) are the number of column
modules and 7 ++/n -1 are top row of modules, and bottom row of modules are the same

as top row of modules. So (\/;*(\/;—1) + 2*(\/;+\/;—1)) In=(n +3*\/;—2) / n are the
average GasP modules per stage.

Because each data item will pass through the square FIFO via 2%n- 1 stages,

45

(2*\/; - 1)*((n +3* Jn -2) / n) is the number how many GasP modules will work when a

data item goes though the square FIFO.
Binary Tree FIFOs :

Suppose that data items are received from the root and its output port is the end point,
the half height of a tree is A, then the total GasP modules in a binary tree FIFO are
(%+2'+22.. 202 4 lyploh2 | 492491490 = 2%(201), where (2°+2'+27...2"2 +2™) are
the number of half front modules and (2™'+2"2...4+2?+2'+2%) are the number of half back
modules. The total number of stages in the binary tree FIFO are
(2%4+214+2%. 22 o2 | 122401400 = 2* (211)+ 201 S0 2% (2 1) 7 (2*(2M-1)+ 2V =
(2"-1) / 2™'+2"%-1) are the average GasP modules per stage. Because each data item will
pass through the binary tree FIFO via 2*h- 1 stages, (2*h- 1)* (2"-1) / (2h'1+2h'2-1) are the
number how many GasP modules®will workswhen a. data item goes though the binary tree
FIFO.

1-n-1 FIFOs :

The following is the 1-n-1 FIFOs. If the number of stages is #n, the total GasP modules
are (1+2*(n-2)+1)=2*n-2. So (2*n-2)/n are the average GasP modules per stage. Because
each data item will go through the 1-n-1 FIFO via 3 stages, 3*((2*n-2)/n) is the number
how many GasP modules will work when a data item goes though the 1-n-1 FIFO.

Table 4.2 lists all equations which were computed above, and then we calculate the
number how many GasP modules will work when a data item goes through FIFOs in figure
4.15. Obviously the increasing ratio of average working GasP modules in the 1-n-1 FIFOs is
lesser than the other FIFOs, especially when the numbers of stages are more than

twenty-five. The main reason is the complexity of 1-n-1 FIFOs are O(1), tree FIFOs are

O(logn), square FIFOs are O(\/;), and linear FIFOs are O(n). As our expectancy, 1-n-1

FIFOs have the better beneficial result and its power-comparison is almost close to a

46

constant.

Average working GasP modules

Table 4.2 : Equations for average working GasP modules per data item

Types of FIFOs

Average working GasP modules per data item

Linear FIFOs

n+1

Square FIFOs

In - D)((n +3*In -2) I n)

Binary Tree FIFOs

(2*h- 1)* 2"-1) 7 (2"'+2"2-1)

1-n-1 FIFOs

3%((2*n-2)/n)

160 -

140

120

100

60

40

=—#—Linear FIFOs
Square FIFOs
==d=Binary Tree FIFOs

==1-n-1 FIFOs

The total stages
Figure 4.15 : Power-comparison for FIFOs

47

Chapter 5 Experimental Results
In this chapter, we implemented the FIFOs in transistor level and simulated them with
the TSMC 180nm process. The simulator we used is HSPICE 2005.03. The experimental
targets are introduced above. They are synchronous FIFOs in figure 2.1, linear FIFOs with
standard NAND in figure 2.5, square FIFOs in figure 2.11, binary tree FIFOs in figure 4.10,
and the 1-n-1 FIFOs in figure 4.14. We separately experimented on them and the depth of

those FIFOs is respectively ten and eighteen stages which have one bit wide data storage.

5.1 The Cycle Time of These FIFOs

In order to analyze the performance of these FIFOs, we need to simulate them in the
same conditions. The cycle time is the essential factor to determine how many data items
could be received per second. Table 5:1lists the cycle time of GasP circuits, it is obvious that
the linear FIFOs are the fastest because its circuits are the simplest and each GasP module just
connects to its successor and predecessor.

On the contrary, the 1-n-1 FIFOs "are the slowest, its cycle time is more 1.5~1.6 times
more than the linear FIFOs’. That is because the 1-n-1 FIFOs have a serious problem that the
first stage and the last stage have too heavy loading. Its right self-resetting input ports of the
first module has acute fan-out problem and left self-resetting input ports of the last module
also has critical fan-out problem. It becomes the bottleneck of these circuits.

The secondary reason for the long cycle time is illustrated in figure 5.1. Figure 5.1(a)
shows that the module M2 will be fired, and then it sends tokens to module M1 and M3 via
path 1 and 2. When the path 1 is shorter than path 2, in the other words, the module M1
receives the token earlier and the operation will be correct as shown in figure 5.1(b).
Otherwise if the path 2 is shorter than path 1, the operation will be wrong as shown in figure
5.1(c). In order to satisfy this timing constraint, the transistor size must be adjusted so that the

cycle time is longer.

48

In order to let these FIFOs receive data in the same frequency, the faster cycle time needs
to match up the slower one. The cycle time of the 1-n-1 FIFOs become the standard for our
experiment. We let the GasP circuits receive 3 billion data items per second (333.33ps per

data item), and the clock signal of the synchronous FIFOs is triggered at 3GHz in our

simulation.
Table 5.1 : The cycle time of the FIFOs
Linear Square Binary Tree 1-n-1
Stages
FIFO FIFO FIFO FIFO
204.73ps 216.98ps 237.54ps 312.95ps
10
100% 105:98% 116.03% 152.86%
205.54ps 228152ps 236.90ps 332.25ps
18
100% F11:8% 115.26% 161.65%
-+ > d
M1 | M2 _[
— '""'"0-<
R e e -
1| 1 -- =
— i M3
(b)

M1

Figure 5.1: The timing constraint for 1-n-1 FIFOs

49

5.2 The Power Consumption of These FIFOs

In this section, we compare the power consumption between these FIFOs. We
respectively experiment on three kinds of different conditions in order to analyze the result
accurately.

The first condition :

We only compare the GasP control circuits with 3 billion request signals per second in
order to avoid the different data patterns causing the discrepant results. In table 5.2, we can
find that the lowest power consumption is 1-n-1 FIFOs regardless of the FIFOs’ depth. When
the depth of FIFO is ten stages, the linear FIFO consumes more 17.6% energy than the 1-n-1
FIFO and the square FIFO consumes even more 67.26% energy. When the FIFOs’ depth is
eighteen stages, the power consumption of the linear FIFO is 176.44% to the 1-n-1 FIFO and
the square FIFO is 201.06% to the 1-n-1FIFO: Moteover, the power consumption of binary
tree FIFOs and 1-n-1 FIFOs is almost near because the number of stages is too small to reveal

their difference.

Table 5.2 : 3 billion request signals per second (only GasP control circuits)

Linear Square Binary Tree 1-n-1
Stages
FIFO FIFO FIFO FIFO
7.9285mW 11.277TmW 7.0327mW 6.7421mW
10
117.60% 167.26% 104.31% 100%
13.830mW 15.760mW 8.4317TmW 7.8385mW
18
176.44% 201.06% 107.58% 100%

50

The second condition :

We compare the GasP full circuits and the synchronous FIFOs with 3 billion
monotonous data items per second in table 5.3, the monotonous data items mean a series of
0 or 1 as input data pattern. These data patterns are gainful for synchronous FIFOs because
they are implemented by simple flip-flops and there is none of control circuits except for the
clock signal in synchronous FIFOs. A series of 0 or 1 make lower switching power
consumption for data paths.

When the FIFOs’ depth is ten stages, the synchronous FIFO has the lowest power
consumption, and the I-n-1 FIFO consumes 12.89% more than it because of lower
switching power consumption and the simplest circuits. When the FIFOs’ depth is eighteen
stages, the 1-n-1 FIFO has the lowest power consumption, and the other FIFO consumes at
least 22.32% more because of the fewer data moves are advantageous for it. In particular,
the square FIFOs consumes the-most energy whether the FIFOs’ depth is ten or eighteen
stages. That is because the algorithmyof square FIFOs is so complex and thus its control
circuits are implemented with many GasP modules. These modules consume much more
energy, especially the modules of the top and bottom rows which have the most
complicated control paths.

Table 5.3 : 3 billion monotonous data items per second (Full circuits)

Linear Square Binary Tree 1-n-1 Synchronous
Stages
FIFO FIFO FIFO FIFO FIFO
8.2398mW 16.104mW | 8.0904mW | 7.2038mW | 6.381mW
10
129.13% 252.37% 126.79% 112.89% 100%
17.524mW 18.437TmW | 9.9847mW | 9.4003mW | 11.498mW
18
186.42% 196.13% 106.22% 100% 122.32%

51

The third condition :

This condition is used to compare with the second condition. The test patterns in this
condition are various, and the switching power consumption for data paths would be
normalized. In table 5.4, we can find that the 1-n-1 FIFOs have the better results than the
others because of the constant data moves. Through the comparisons, we can find that the
synchronous FIFO with ten stages is 105.99% to the 1-n-1 FIFO and the linear FIFO needs
even more 78.91% than the 1-n-1 FIFO when the depth of FIFOs is eighteen. Besides, the
difference between linear FIFOs and square FIFOs become less when the depth of stages

becomes larger because the square FIFOs have fewer data moves. This advantage can

overcome the effect of the complex control circuits of square FIFOs.

Table 5.4 : 3 billion various data items per second (Full circuits)

Linear Square Binary I'ree 1-n-1 Synchronous
Stages
FIFO FIFO FIFO FIFO FIFO
10.238mW 17.083mW"[" 9.0452mW | 7.8242mW | 8.2929mW
10
130.85% 218.34% 109.07% 100% 105.99%
17.646mW 19.959mW | 10.282mW | 9.8628mW 14.865mW
18
178.91% 202.37% 104.25% 100% 150.72%

In order to get more accurate result, we implement the layouts of 1-n-1 FIFOs in figure

5.2. Figure 5.2(a) and (b) show the 1-n-1 FIFOs with eighteen and ten stages respectively.

Thus we can obtain more accurate results via these layouts. Finally, we make a summary of

these kinds of different conditions. The 1-n-1 FIFOs almost have the best results, and their

power consumption has one time improvement more than the square FIFOs. The

predominance is more obvious when the depth of FIFOs becomes larger.

52

IW
B e i =1
T e e e AT

| me———
"-'.'_-.'. -J'l lI
L iy |

rem

1A - AL

()

Figure 5.2 : The layouts of 1-n-1 FIFOs (a) eighteen stages (b) ten stages

53

5.3 The Transistors Counts

We compare the transistors counts between these FIFOs. In table 5.5, the synchronous
FIFOs and the linear FIFOs are nearly equal, and they have the fewest transistors. The
square FIFOs have better results than 1-n-1 FIFOs because the columns of square FIFOs are
linear FIFOs so that it can reduce the counts of transistors.

The transistors of 1-n-1 FIFOs are 150%~170% to synchronous FIFOs and linear
FIFOs because the middle stages of 1-n-1 FIFOs need a lot of transistors to implement the

algorithm. It uses pointers to record the working switches so that most of transistors in 1-n-1

FIFOs are used for it.
Table 5.5 : The transistors counts
Stages Linear Square; .| Binary Tree 1-n-1 Synchronous
FIFO FIFO FIFO FIFO FIFO
287 320 348 443 280
10
102.5% 114.29% 124.29% 158.21% 100%
503 602 571 837 504
18
100% 119.68% 113.52% 166.07% 100.2%

54

Chapter 6 Conclusions and Future Works

Here is a summary of the most important conclusions in this thesis. (1) We explain a
method on how to translate data flow structure into corresponding GasP circuits. The
method has two steps: the first step is to transform a data flow structure into preliminary
control circuits, and the second step is to depict real GasP circuits by its preliminary control
circuits. Then we explain it with an example of constructing a linear FIFO. (2) We tried to
find some architecture of FIFOs that have high-throughput and fewer data movements to be
power-efficient. Thus we propose the 1-n-1 FIFOs with fewest data moves. (3) We present
an idea to estimate power-consumption that calculates how many GasP modules would
work when a data item goes through FIFOs. We also show the estimation results of linear,
square, binary tree, and 1-n-1 FIFOs. Finally, we prove them via simulations, and the 1-n-1
FIFO has one time improvement‘more thansthe square FIFOs. But the transistors of the
1-n-1 FIFO are also more than the other FIFOs: It is approximately more than 60%.

Some FIFOs in this thesis do not include the wire delay information, and it may cause
the results a little imprecise. Therefore the future work is to obtain that more precise results
from simulations can be gotten with the layout of the designs, and more extension of tree
FIFOs can be simulated in order to get more results to compare.

The other future work is the optimized problem. It can be used to determine how many
degrees for each stage will be the most power-efficient. If we just consider the switching
counts in those FIFOs, the 1-n-1 FIFO is the most power-efficient. However if we consider
switching counts and the capacitance, the different processes will make different results.

Therefore the optimized problem in different processes is a tough question.

55

[10]

[11]

[12]

[13]

References

B. Coates, J. Ebergen, J. Lexau, S. Fairbanks, . Jones, A. Ridgway, D. Harris, and 1.

Sutherland, “A Counterflow Pipeline Experiment,” Advanced Research in
Asynchronous Circuits and Systems, 1999. Proceedings., Fifth International
Symposium on 19-21, April 1999, pp.161-172.

J. Lexau, J. Will, and I. Jones “EM emissions of an asynchronous test chip,”

Proceedings of the 14th Int'l Zurich Symposium & Technical Exhibition of

Electromagnetic Compatibility, February 2001, pp. 579-584.

S. Hauck, “Asynchronous design methodologies: an overview,” Proceedings of the
IEEE, Vol. 83, Issue 1, Jan. 1995, pp.69-93
J. Sparsg and S. Furber, Principles Of Asynchronous Circuit Design A Systems

Perspective, Kluwer Academic Publishers, London, 2001.

I. Sutherland, "Micropipelines,” Communications of the ACM, vol .32, no. 6, June
1989, pp. 720-738.

Jen-Chien Wu, “Decoder design of the asynchronous PIC microcontroller,”
National Chiao Tung University) 2006

T.E. Williams, “Self-Timed Rings. and their Application to Division,” Stanford
University, June 1991.

M. Singh and S. Nowick, “High-throughput asynchronous pipelines for fine-grain
dynamic datapaths,” Advanced-Research in Asynchronous Circuits and Systems,
2000. (ASYNC 2000) Proceedings. Sixth International Symposium on 2-6, April
2000, pp. 198-209.

M. Singh and S. Nowick, “Fine-grain pipelined asynchronous adders for high-speed
DSP applications,” VLSI, 2000. Proceedings. IEEE Computer Society Workshop
on 27-28, April 2000, pp. 111-118.

I. Sutherland and S. Fairbanks, “GasP: A Minimal FIFO Control,” Asynchronous
Circuits and Systems, 2001. ASYNC 2001. Seventh International Symposium on
11-14, March 2001, pp. 46-53

M. Ferretti, P.A. Beerel, “Single-track asynchronous pipeline templates using

1-of-N encoding Design,” Design, Automation and Test in Europe Conference and
Exhibition, 2002. Proceedings 4-8, March 2002, pp. 1008-1015.

P. Golani and P. Beerel, “High-performance noise-robust asynchronous circuits,” In

Proceedings of the 2006 Emerging VLSI Technologies and Architectures
(ISVLSI06), 2006, pp. 6.

C.E. Molnar, I.W. Jones, W.S. Coates, and J.K Lexau, ”A FIFO ring performance
experiment,” Advanced Research in Asynchronous Circuits and Systems, April
1997, pp. 279-289.

56

[14]

[15]

[16]

[17]

[18]

C.E. Molnar, I.W. Jones, W.S. Coates, JJ K Lexau, S.M. Fairbanks, and LE.
Sutherland, “Two FIFO ring performance experiments,” Proceedings of the IEEE,
Feb. 1999, pp. 297-307.

LLE. Sutherland and J.K. Lexau, “Designing fast asynchronous circuits,”
Asynchronous Circuits and Systems, 2001. ASYNC 2001 Seventh International
Symposium on 11-14, March 2001, pp. 184-193.

J. Ebergen, P. Cunningham, and J. Gainsley, “Transistor sizing with logical effort:

How to control the speed and energy consumption of a circuit,” In Proc.
International Symposium on Advanced Research in Asynchronous Circuits and
Systems.IEEE Computer Society Press, 2004.

J. Ebergen, “Squaring the FIFO in GasP,” Proc. International Symposium on

Advanced Research in Asynchronous Circuits and Systems, March 2001, pp.
194-205.

J. Ebergen, D. Finchelstein, R. Kao, J. Lexau, and D. Hopkins,”A fast and
energy-efficient stack,” Asynchronous Circuits and Systems, 2004. Proceedings.
10th International Symposium on 19-23, April 2004, pp. 7-16.

57

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

