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Abstract 
 

This thesis presents the design of a video decoder to demonstrate the advantages 

of dynamic task partitioning for multimedia applications on heterogeneous embedded 

dual-core systems. Typical application processors for mobile devices are composed of 

a RISC core for control tasks and a DSP core for data stream processing. For such 

systems, a common design practice is to perform static task partitioning at design time. 

Task assignments to each core is fixed and do not change according to runtime system 

behavior. In this thesis, we proposed a dynamically partitioned approach where the 

task partitioning across heterogeneous cores is done at runtime. An MPEG-4 Simple 

Profile video decoder has been implemented using this approach on a TI OMAP 5912 

platform for the analysis. Comparing to a decoder optimized for the DSP core, the 

performance gain is about 40% on average. We also demonstrated that the gain from 

dynamic task partitioning is even larger than the static partitioning approach when the 

cores are running other tasks. The experimental results show that dynamic task 

partitioning on heterogeneous dual-core systems can achieve more than 40 fps of 

QVGA video decoding at 96 MHz clock rate even when one of the cores is loaded 

with other tasks. 
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Chapter 1. Introduction 

1.1. Motivation 

Many embedded multimedia devices today are built with heterogeneous 

multi-core platforms. For example, in the dual-core architecture, a general purpose 

RISC processor core (GPP) and a digital signal processor core (DSP) are integrated 

into an SoC. Existing task partitioning methodologies for heterogeneous dual-core 

platforms only adopt static task partitioning policy during design time. Dynamic task 

partitioning policy is only used for symmetric multi-core platforms [1][2]. Static task 

partitioning works properly for traditional mobile applications where the GPP core is 

slow and only suitable for the execution of control tasks. However, new generations 

of RISC processors are usually powerful enough to take over some of the 

computationally expensive data stream processing jobs. In addition, multimedia 

applications for embedded systems have become very sophisticated and their 

computational resource requirement changes dynamically at run time.  

In this thesis, we proposed a dynamic task partitioning paradigm for 

heterogeneous multi-core platfroms. With this approach, tasks are assigned to 

different cores dynamically depending on runtime loading of each core. In addition, 

each core schedules the tasks assigned to them independently to other cores. MPEG-4 

simple profile video decoder is used as an example to demonstrate that the dynamic 

task partitioning approach outperforms the traditional static task partitioning approach 

significantly. Therefore, it is very promising for practical applications. 

1.2. Heterogeneous Dual-Core Processors 

Today, there are many different application processors for embedded multimedia 
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applications that are based on heterogeneous dual core architectures. One of the 

popular processors in this category is the OMAP (Open Multimedia Application 

Platform) processors designed by Texas Instruments [3][4][5]. In general, the OMAP 

platforms have dual-core architecture consisting of both an ARM RISC processor 

core and a TI TMS320 series DSP core. 

1.2.1. The OMAP 5912 

The OMAP 5912 is a highly integrated hardware and software platform, designed 

to meet the application processing needs of next-generation embedded devices. The 

OMAP 5912 couples an ARM926EJ-S RISC core and a TMS320C5510 DSP core. 

The ARM9 RISC core is very popular for embedded systems and the C5510 DSP core 

provides high performance with low power consumption. The OMAP 5912 functional 

block diagram is shown in Fig. 1[6]. 

 

Fig. 1. OMAP 5912 functional block diagram 
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1.2.1.1. The ARM Core  

The features of the ARM926EJ-S processor core are list as follows: 

 192MHz maximum frequency 

 Support 32-bit and 16-bit (Thumb Mode) Instruction Sets 

 Support 16K-Byte Instruction cache, 8K-byre data cache, and 17-word 

write-back buffer 

 Support Memory management Unit (MMU) and two 64-Entry Translation 

Look-Aside buffer (TLBs) for MMU 

1.2.1.2.  The DSP Core 

On the DSP side, the features of the TMS320C5510 core are list as follows: 

 192MHz maximum frequency 

 One/Two Instructions Executed per Cycle 

 Dual Multipliers (Two Multiply-Accumulates per Cycle) 

 Two Arithmetic/Logic Units and five Internal Data/Operand Buses (3 Read 

Buses and 2 Write Buses) 

 32K×16-Bit On-Chip Dual-Access RAM (DARAM) and 48K×16-Bit On-Chip 

Single-Access RAM (SARAM) 

 Support Instruction Cache (16K Bytes) 

 Support video hardware accelerators for DCT, inverse-DCT, pixel interpolation, 

and motion estimation for video compression 

There are fore man functional units of the DSP, the conceptual block diagram of 

the DSP is shown in Fig. 2. The C5510 DSP uses instruction pipelining that has two 
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decoupled segments. The first segment is the fetch pipeline that fetches 32-bit 

instructions from memory and places them in the instruction buffer queue, and then 

feeds the second pipeline segment with 48-bit instruction packets. The second 

segment is the pipeline that decodes instructions and performs data accesses and 

computations. In addition, the pipeline protection mechanism inserts delay cycles as 

necessary to prevent read operations and write operations from happening out of the 

intended order. 

 

Fig. 2. The block diagram of C5510 DSP [7] 

 

1.2.1.3. OSK 5912 

In this thesis, the proposed dynamically partitioned MPEG-4 decoder is 

implemented on the OSK 5912 development board. The OMAP 5912 Starter Kits 

(OSK 5912) is a development board that integrated an OMAP 5912 chip and also 
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includes some components as follows: 

 32 Mbyte DDR SDRAM 

 32 Mbyte Flash ROM 

 4 Expansion connectors (bottom side) 

 RS-232 Serial Port 

 10 MBPS Ethernet port 

 USB Host Port 

 Compact flash connector 

 On board IEEE 1149.1 JTAG connector for optional emulation 

Besides, there is a Q-VGA LCD Module that is also connected to the OSK 5912 

development board. We use the Q-VGA module for displaying the decoded frame. 

The OSK 5912 and the Q-VGA module are shown in Fig. 3. 
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Fig. 3. The OSK 5912 and Q-VGA display module 

1.2.2. Inter-Processor Communication Mechanisms of OMAP 5912 

Inter-processor communication mechanism plays an important role in 

multiple-core systems. In OMAP 5912 platform, it provides three mechanisms for 

communication between the MPU and the DSP. 

1.2.2.1. MPUI Interface (MPUI) 

The MPU interface allows the Microprocessor Unit (MPU) and the system DMA 

controller to communicate with the DSP and its peripherals. The MPUI can access the 

full memory space (16M bytes) of the DSP. The MPUI is the only way for the MPU to 

access the I/O space of the DSP. 

1.2.2.2. MPU/DSP Shared Memory 

By setting the DSP MMU [8] through the MPU core, the DSP core can access the 
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shared SRAM and external SDRAM via the traffic controller (TC). The DSP MMU 

maps the physical address space in shard memory to part of the DSP virtual address 

space. 

1.2.2.3. MPU/DSP Mailbox 

The third mechanism for communication between MPU and DSP is through the 

mailbox. There are four sets of mailbox registers located in public TIPB space. The 

registers are shared between the two processors, so the MPU and the DSP core may 

both access these registers within their own public TIPB space, but read/write 

accessibility of each register is different for each processor. Take ARM2DSP mailbox 

for example, MPU can read/write the register, but only read the register located in 

DSP core. 

Each set of mailbox registers consists of two 16-bit registers and a 1-bit flag 

register. When one processor write data to a command register, an interrupt will be 

issued to the other processor core and sets the corresponding flag register. The 

interrupted processor core acknowledges this interrupt request by reading the 

command word, which also clears the flag register. 

1.3. Scope of the Thesis 

The organization of the rest of the thesis is organized as follows. Chapter 2 

introduces some previous work related to task partitioning policy in multiprocessor 

systems. Chapter 3 describes the architecture and implementation details of a 

slice-based MPEG-4 video decoder optimized for a DSP processor alone. This 

optimized DSP-only decoder will be used as the baseline reference to demonstrate the 

advantage of the proposed dynamic partitioning approach. Chapter 4 presents the 

proposed dynamic task partitioning approach to MPEG-4 video decoder on dual-core 
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platforms. The experimental results will be shown in chapter 5 and finally, the 

conclusion and discussions will be given in chapter 6. 
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Chapter 2. Previous Work 

 In multiprocessors systems, task partitioning determines which task should be 

assigned to which processor, and task scheduling determines when to execute the 

tasks assigned to a particular processor. Generally speaking, the task partitioning can 

be roughly divided into two approaches according to the time partition decision is 

done. The first approach is static partitioning where task partitioning is done at 

development time. The second approach is dynamic partitioning where task 

partitioning is done at runtime according to task loading of each core. Although there 

are some research try to achieve dynamic task partitioning by profiling application at 

development time and perform dynamic partitioning at run time based on profiling 

data [9][10] these proposals are for symmetric multi-core systems. The main topic of 

this thesis is about dynamic task partition on heterogeneous multi-core platforms, 

which have not been covered by other researchers yet. Therefore, in this chapter, we 

review some work on static task partitioning on heterogeneous multi-core platforms 

and dynamic task partitioning for symmetric multi-core platforms. 

2.1. Static Task Partitioning 

A common practice for task partition on heterogeneous multi-core platforms is to 

perform static task partitioning. First, profiling and analysis of a system behavior is 

conducted. Then, task partitioning decision is made based on the computation profile 

of the system behavior on each cores and the communication profile across different 

cores. 

Take the design in [1] as an example. An MP3 decoding system is implemented 

in a Motorola DSP 56654 which combines a RISC core and a 16-bit fixed point DSP. 
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In [1], MP3 decoding algorithm runs on the DSP core and the RISC core is in charge 

of system management and user interface (UI). The RISC core will receive commands 

through the UI and assign decoding tasks to the DSP core. However, after the task is 

assignment, the RISC core will go into an idle state until DSP assert an interrupt to the 

RISC core to signal the completion of a task. Another example is described in [2]. An 

MPEG-4 video decoder is implemented on a heterogeneous dual-core platform with a 

RISC core and a DSP core. In that paper, the DSP core is responsible for video 

decoding and the RISC core manages the reception of the raw video bitstream from 

the transmission module and communication with the DSP core. 

Static task partitioning is commonly used in industry and may work properly for 

traditional mobile applications. However, it is not suitable for new generations of 

complicated embedded multimedia applications. 

2.2. Dynamic Task Partitioning 

It is quite common that in a mobile multimedia device, several computationally 

expensive tasks are assigned to the DSP while the RISC (which only handles sporadic 

UI/system management tasks) is idle. In this case, statically partitioned tasks 

pre-assigned to DSP at design time may not be able to achieve desirable performance 

at runtime since the DSP is overloaded. Further more, although the DSP core is 

heavily loaded in this case, the RISC core is idling most of the time waiting for new 

tasks to arrive. 

New generations of RISC processors are usually powerful enough to take over 

some of the computationally expensive jobs. Besides, multimedia application has 

become complicated and dynamic at run time and static partitioning approach may not 

reach optimal performance when the runtime system state is different from the 

assumed static state at development time. In dynamic task partitioning, each task is 
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assigned on the run time according to system state and processing loading of each 

core. 

Lauwereins et al. proposed a TCM (task concurrency management) model and 

two-phase scheduling method in order to manage concurrent task scheduling into 

multiprocessor platform [9]. This approach tries to minimize the energy consumption, 

but also satisfy system timing constraint. The TCM methodology (shown in Fig. 4) 

comprised of three stages. The first is concurrency extraction. In this first stage, the 

system extracts and explicitly models the potential parallelism and dynamic behavior 

of the application. In the second stage, it tries to find the dependency between 

different tasks. The third stage mainly consists of a two-phase scheduling approach. 

The two-phase scheduling is static scheduling at design time and dynamic scheduling 

at runtime. In the first phase, it uses static scheduling to show all possible 

combination and generate a Pareto-optimal set. In the second phase, select the optimal 

combination of those tasks. This will minimize the run time computational complexity 

and lead to power saving. 

Fig. 4. The TCM model in [9] 
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Xue et al. [10] discuss dynamic partitioning of processor and memory resources 

in multiprocessor SoC architecture. The proposed approach has two major 

components, shown in Fig. 5. The first component is the Profiler. The Profiler 

includes an offline preprocessing of applications which gives us an estimated profile 

for each application. The second component of the approach is a run-time resource 

partitioner which partitions both the processing core and memory space among 

executing application. 

 

Fig. 5. The component of Profile and Resource Partitioner [10] 

Chiu et al. [11] proposed a tightly-coupled dual-core partitioning framework for 

multimedia application on heterogeneous dual-core platforms. In that framework, a 

task will be dynamically assigned to either the RISC core or the DSP core, depending 

on the load of each core at runtime. If both cores are available, then tasks will be 

distributed to both cores for parallel execution. The paper uses MPEG-4 simple 

profile encoder as an example to investigate proposed tightly-coupled partitioning 

framework on the TI-OMAP 1510 dual-core platform. The task granularity is set at 

macroblock level and the experimental results show that dynamic partitioning 
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approach runs faster than a static task partitioning solution. 

Gai et al. [12] investigated the problem of multiprocessor partitioning for 

heterogeneous architectures composed by a general purpose processor and a DSP. The 

paper treat DSP core as a functional specific unit and make DSP core execute in a 

non-preemptive fashion. In order to achieve scheduling efficiently and still maintain 

some kind of real-time guarantee, the paper improves the Distributed Priority Ceiling 

Protocol (DPCP). The DPCP was proposed by R. Rajkumar in 1990 [13], where it is 

used for task allocation on main CPU and DSP. The DPCP is described as follows. A 

set of n periodic tasks scheduled by the rate-monotonic algorithm can always meet 

their deadlines if 

)12(.... /1
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1

2

2

1

1
−≤+++ nn

T
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T
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C  

T: period time  

C: computation time 

The real-time task model is considered in Fig. 6. Each task execute Ci
DSP units of 

time, and Ci
pre、Ci

post units of time of pre-process and post- process. Besides, define 

Ci= Ci
pre + Ci

post, and Pi is the priority of the job i. 

 

Fig. 6. Structure of a DSP Task execution model [12] 
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As a result, according to the DPCP approach, the schedulability of the task set is 

guaranteed by the following test: 

)(
T

CC 
T
CC

     ,...,1 lub
i

DSP
ii

j

DSP
jj iUBni i

pp ij
≤

++
+

+
=∀ ∑ >  

Where )12()( /1
lub −= iiiU ,and Bi is a blocking factor computed as follows: 

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+

= ∑ ><

skregular taa for                                                                 0

 task  a DSPfor                   C  }{max DSP
j

ijij
PP

j

iDSP
jPP

i T
TC

B  

However, in the above formula, Ci unit of time is the master processor processing 

time, and it can be remove from the above formula. Therefore, this paper proposes a 

modified DPCP approach and removes the master processor processing time (Ci). 

Finally, simulations have shown that modified DPCP always outperforms the original 

DPCP protocol and achieves a significant improvement for large task sets with high 

processor utilization. 
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Chapter 3. Optimization for DSP 

Architecture 

In this chapter, we present a slice-based MPEG-4 video decoder optimized for 

DSP architecture. For the proposed dynamic task partitioning decoder, a video slice 

will be used as a task unit. Therefore, optimized implementations of slice decoding 

modules for the RISC core and the DSP core are necessary to achieve good 

performance. Optimization of a video slice decoder for a RISC core is quite trivial 

while optimization for a DSP core is relatively more complex. The performance of the 

optimized DSP video decoder is comparable to that of the optimized OMAP video 

decoder published by TI [19]. In the following sections, we will describe the decoder 

architecture in detail. 

3.1. Overall Architecture of Optimized DSP Decoder 

Before we present some detail optimization techniques, the overall architecture of 

the DSP decoder is presented in this section. The key issue of optimizing a video 

decoder for the DSP core is to take advantage of the multiple memory banks available 

in the system to increase data bandwidth. Hence, in section 3.1.1, we begin our 

discussion with the way memory banks in the OMAP platform are used by the 

optimized video decoder. 

3.1.1. Memory Map of the DSP Video Decoder 

In addition to the external SDRAM and SRAM memory banks that are common 

for an embedded system, the TI C5510 DSP core has two on-chip memory blocks, 

including a 64KB dual-access RAM (DARAM) and a 96KB single-access RAM 
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(SARAM). Frequently accessed data should be stored on the on-chip memory due to 

higher memory bandwidth. However, these on-chip memory blocks are usually too 

small to contain the entire working set of data of a multimedia algorithm. Take video 

decoding for example, when decoding an inter frame, the reference frame buffer is 

frequently accessed for motion compensation. The resolution of the QVGA video 

frames are 320×240, which means that the frame size is 112.5 Kbytes (with video 

format YCBCR 4:2:0). The entire reference frame is too big to be placed in the 

on-chip memory. In this section, we discuss how different memory banks are used for 

the DSP video decoder. In this thesis, we have used the TI Code Composer Studio 

(CCS) as the development toolchain. The CCS compiler generates code and data into 

logical units called sections, as shown in Table 1 [14]. 

Table 1. Section Descriptions 

  

 In Table 1, the .stack and .sysstack sections which store parameters and local 

variables are accessed frequently within a function calls. Since C55x may issue two 
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instructions per cycle, simultaneous accesses to more than one parameters and local 

variables occur frequently. If these sections are allocated in the SARAM block, then 

additional memory wait cycles will hinder the performance. Hence, we allocate these 

two stack sections in DARAM. For similar reason, the .bss (which contains global 

variables) section is also assigned to the DARAM. 

Since reference frame will be frequently accessed throughout the decoding of a 

slice. The performance will suffer significantly if we have to access external memory 

for the reference frame data. In order to accelerate overall decoding performance, we 

use the on-chip memory to cache the reference frame data. Two memory buffers, 

Internal Current Macroblock Buffer (ICMB) and Internal Reference Macroblock 

Buffer (IRMB), are allocated in the on-chip memory. The IRMB contains some 

macroblock data of previously decoded frame, and the ICMB is an internal buffer for 

placing currently decoded macroblock YCBCR data. The on-chip memory map of the 

MPEG-4 decoder for the DSP is shown in Fig. 7. 

DARAM
64KB

SARAM
96KB

0x0000

0x8000

.cinit

.switch

.cio

.const

Internal Bitstream 
Buffer(IBB)

ICMB

IMGLIB 
IDCT Buffer

IRMB

.stack

.sysstack

.bss

.sysmem

.vector

IMGLIB 
Interpolation Buffer

Clip_table
 

Fig. 7. Memory map of DSP on-chip memory 



 18

 Due to the size limit of the internal memory, some data sections and the code 

section have to be assigned to the external memory. We can use SDRAM as an 

external memory space by using the DSP MMU to map part of its virtual memory 

space to the SDRAM on the MPU side. When the DSP MMU is enabled, the DSP 

address space starting from 0x050000 to 0xFFFFFF is mapped to the physical 

SDRAM area that stores shared data between MPU and DSP. Fig. 8 shows the 

external memory map of the DSP video decoder. 

External Input 
bitstream

Output YUV data

External Ref. Frame

External Cur. Frame
0x10100000

0x10200000

0x10300000

DSP MMU

SDRAM

0x10000000

0x200000

.text (Code section)

DSP Virtual Address

 

Fig. 8. Memory map of external memory (SDRAM)  

3.1.2. Bitstream File Format Used in this Thesis 

The input bitstream of the mpeg-4 decoder is placed in the external memory 

(SDRAM). To achieve better decoding performance, we allocated an Internal 

Bitstream Buffer (IBB) in the on-chip SARAM that is large enough to store bitstream 

data for one compressed video frame. Before decoding a frame, we need to move the 

bitstream of the frame into the IBB. Most file formats (such as the ISO MP4 standard) 

allow quick extraction of one video frame of bitstream data from the raw bitstream. 

To simplify the file parsing operation, we have designed a very simple file format that 

stores the bitstream in the following way. The raw video header bitstream data and 

each video frame of bitstream data are prefixed with a 16-bit length field that specifies 
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the size (in bytes) of the video header or video frame. These length-prefixed video 

data units are then stored in a file in decoding order. At decoding time, the decoder 

can reads the bitstream file sequentially and transfers the bitstream of a single frame 

into IBB quickly. Since standardized file format (such as the MP4 file) parsing is not 

the key concern in this thesis, the simplified file format allows us to concentrate on 

the design of the slice-based decoder. 

3.1.3. Intra Frame Decoding Flow 

For intra frame decoding, the input bitstream passes through the VLD module, 

the DC/AC prediction module, the inverse quantization module, and the IDCT 

module. The intra frame decoding flow chart is shown in Fig. 9. 

Bitstream
VLD DC/AC

Prediction
Inverse

Quantization IDCT YCBCR

Bitstream
VLD DC/AC

Prediction
Inverse

Quantization IDCT YCBCR  

Fig. 9. Intra frame decoding flow chart 

In the proposed framework, the output YCBCR data is places into ICMB. This 

buffer can hold 1×6 macroblocks. The size of ICMB is determined according to the 

DMA throughput analysis experiment to be discusses in section 3.2.5. After decoding 

an intra frame each time, the decoder will store the output YCBCR macroblock in 

ICMB, which acts as a FIFO buffer. When the FIFO buffer is full, all the macroblock 

data in ICMB will be transferred to the current frame buffer. The current frame buffer 

is stored in external SDRAM. The intra macroblock decoding diagram is shown in Fig. 

10. 
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Fig. 10. Intra-macroblock decoding 

3.1.4. Inter Frame Decoding Flow 

For inter frame decoding, the decoding loop is similar to the intra frame decoding 

loop. The only difference is that the reconstruction of the current macroblock YCBCR 

data must accesses the previously decoded frame (called the reference frame) since 

the motion compensation module need the reference frame to construct the current 

macroblock predictor. The inter frame decoding flow chart is shown in Fig. 11.  
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Fig. 11. Inter frame decoding flow chart 

In the proposed architecture, the previous frame buffer in Fig. 11 is the IRMB. 

The size of the IRMB is only large enough to store 3×8 macroblocks since we must 

limit the usage of the on-chip memory. However, this size limit assumes that the 
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f_code in the video bitstream shall be 1 (we will explain the constraint shortly), which 

conforms to the 3GPP specification for Simple Profile video support. The inter 

macroblock decoding diagram is shown in Fig. 12.  

Decode 
Inter-Macroblock

External Ref. Frame

move
Reference

External Cur. Frame

move

ICMB

IRMB

16
16  

Fig. 12. Inter-macroblock decoding 

If the f_code is set to 1, when decoding a macroblock, the decoder would only 

refer to the 3×3 macroblocks in the reference frame around the co-located macroblock 

of current macroblock. Before the decoding of a new macroblock (except for the 

boundary ones), 3×1 reference macroblocks will be transferred from the external 

reference frame buffer into the IRMB. In order to improve the overall decoding 

performance, we use the DSP DMA for macroblock transfer. The detail analysis about 

using DSP DMA for macroblock transfer is shown in 3.2.5. 

3.2. Detail Optimization Techniques for DSP Architecture 

In this section, we discuss the techniques used to optimize the decoding 

performance on the DSP core. In summary, the techniques used including C-level 

code optimizations, using IMGLIB functions, using intrinsic functions, and using DSP 



 22

DMA to pipeline decoding operations and data transfer operations. 

3.2.1. C-code Level Optimization 

The original C model of the video decoder was designed for general purpose 

applications without any architecture dependent optimization. Before the 

DSP-specific optimizations can be applied, coding styles that are not efficient for 

embedded processor cores must be modified first. For example, conditional branches, 

which stall the decoding pipeline should be removed as much as possible. 

3.2.1.1. Using Function Pointer Array to Replace Switch Statement 

Switch statement contains many comparison operations and conditional jumps. 

For better efficiency, it can be replaced by function pointer array indexed by the 

conditional variable of the switch statement. After using function pointer array to 

replace switch statements in one of the motion compensation function,  

interpolate8x8_switch(), the function gains 6% improvement by itself. 

3.2.1.2. Using Clipping Table to Replace if Statement 

Saturation operation is common to signal processing algorithms, including video 

decoding. There are many modules in MPEG-4 video decoders that clip the out to a 

range, say 0 ~ 255. If a clipping table is used to implement saturation operation, the 

computation time improved 64.16% by itself. 

3.2.2. Using TI C55x IMGLIB 

The C5510 DSP in OMAP 5912 has some hardware acceleration support for 

image and video processing routines. The routines can be invoked through the TI 

C55x IMGLIB library API [15]. TI C55x IMGLIB is an optimized image/video 

processing functions library for C programmers using TMS320C55x DSP. The library 
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is a collection of 31 high-level optimized DSP functions for the TMS320C55x DSP. It 

includes many C-callable, assembly-optimized, general-purpose image/video 

processing routines. The library is implemented using C55x hardware extension 

instructions, and the source code of the library is available. For video decoding, we 

used the IMGLIB routines to support IDCT and interpolation functions. 

3.2.2.1. IDCT Routine 

 The TI C55x IMGLIB provides 2-D inverse discrete cosine transform for 8x8 

IDCT coefficients. Table 2 shows the specification of the IMGLIB IDCT routine [15]. 

Table 2. Specification of the IMGLIB IDCT routine  

IDCT for an 8x8 Image Block Using Built-In Hardware Extensions 
Syntax void IMG_idct_8x8(short *idct_data, short *inter_buffer); 

Inputs: 
 idct_data: Points to a short format array [0...63] 

containing an 8x8 macroblock row by row. Data format is 
Q13.3. 

 inter_buffer: Points to a short format array [0...71] used as 
a temporary buffer that contains intermediate results in the 
transform. 

Outputs: 

Arguments 

 idct_data: Points to a short format array [0...63] 
containing an 8x8 macro-block row by row. Data format 
is Q16.0 

Description 
   The routine IMG_idct_8x8 implements the IDCT using built-in 
hardware extensions for an 8x8 image block. Input terms are 
expected to be signed Q13.3 values, producing signed Q16.0 results. 

To use this IMGLIB IDCT routine for IDCT, one must use Q13.3 as the input 

data format. However, most integer IDCT routine uses the input data format Q16.0 

[16]. Thus, we need to shift left by 3 bits for each input coefficient. The left-shift 

operation can be done using intrinsic function _shl(). The IMGLIB IDCT routine is 

about 12 times faster than the original integer IDCT routine in our C model. Table 3 
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shows the execution time of three IDCT routine. 

Table 3. Execution time of each IDCT routine 
 

Idct routine DSP cycles 
Execution 
time ratio 

(%) 
Our IDCT routine 5578 1204.75 
IMG_idct_8x8() 581 125.48 

IMG_idct_8x8() with Intrinsic shift 463 100.00 

3.2.2.2. Interpolation Routine 

 The TI C55x IMGLIB provides 16×16 block pixel interpolations which uses 

built-in hardware extensions. Table 4 shows the specification of the IMGLIB 

interpolation routine [15]. The IMGLIB interpolation has some difference to the 

original 8×8 interpolation routine in our C model. First, the input pixel width is 16-bit 

in the C model, but the IMGLIB interpolation expects the input to be 8-bit per pixel. 

Second, the IMGLIB interpolation routine processes a 16×16 block, instead of an 8×8 

block as the interpolation routine in our C model does. Third, the IMGLIB 

interpolation routine processes pixel interpolations in the vertical, horizontal, and 

diagonal directions simultaneously. But for video decoding, we only need 

interpolation in one of these three directions. Finally, vertical pixel interpolation is a 

little bit different between the IMGLIB routine and the one in our C model, as shown 

in Fig. 13.  

As a result, we need to do some adjustments to each 8×8 input block. The flow 

chart is shown in Fig. 14. Simply put, we must pack the input data to fit the IMGLIB 

interpolation format first, and then shift the position of each pixel to the right by 1 

pixel. In addition, we also modified the assembly code of the IMGLIB interpolation 

routine, because we only need 8×8 block interpolation instead of 16×16. 
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Table 4.  Specification of the IMGLIB interpolation routine 

Pixel Interpolation for 16x16 Image block using built-in hardware 
extensions 
Syntax IMG_pix_inter_16x16(short *reference_window, short 

*pixel_inter_block, int offset, short *align_variable); 
Inputs: 

 reference_window: Points to a packed integer format 
buffer [0...1152] that contains a 48x48 image block row 
by row. Must be doubleword aligned. Every four pixels 
are packed into one 32-bit doubleword. Data format 
Q16.0. 

 offset: Specifies the top-left corner index of the 18×18 
MBE (MBE=16×16 macroblock + extension) in 
reference_window. Offset is even because of the 
doubleword alignment. 

 align_variable: Configures four alignment cases of the 
MBE in the reference_window. 

Outputs: 

Arguments 

 pixel_inter_block: Points to a packed integer format 
buffer [0...612] that contains the 36×34 interpolated 
result. Only the lower 33×33 part that corresponds to 
the whole 36×34 interpolated zone is usually used. 
Every four pixels are packed into one 32-bit 
doubleword. 

Description The routine IMG_pix_inter_16x16 implements pixel 
interpolation for a 16×16 source block located in 
reference_window using built-in hardware extensions and it is 
useful in video compression. To implement full interpolation for 
the 16×16 source block, the 18x18 MBE (MBE=16×16 
macroblock + extension) is needed. The full interpolated zone is 
composed of 36×34 pixels, but only the lower 33×33 part 
corresponding to the full interpolated zone is usually interested. 
The original pixels and interpolated pixels in the full interpolated 
zone are organized in different 16 bits to adapt to the related 
motion estimation technique.  
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Fig. 13. IMGLIB interpolation  
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Fig. 14. IMGLIB interpolation flow chart 

Table 5 shows the improvement between two interpolation routines on decoding 

300 frames of a 64 kbps QCIF foreman sequence. 

Table 5. Improvement of using IMGLIB Interpolation routine 

Interpolation routine Timer ticks 
Execution 

time ratio(%) 
Original C-model interpolation 17325066 295.31 
IMGLIB-based interpolation 5866564 100.00 

3.2.3. Using Intrinsics 

 The C55x CCS compiler provides intrinsic functions, which maps directly to 

C55x instructions (similar to inline assembly). Those intrinsic functions include lots 

of basic arithmetic instructions like addition, subtraction, and multiplication. Also 

included are the saturation operation (but only supports 1- or 2-word size), the 

rounding operation, shift operation, and the absolute value operation. 

In the original C-model of the MEPG-4 decoder, we used some #define to define 

some simple arithmetic operations, like #define MIN(X,Y) ((X)<(Y)?(X):(Y)). 
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However, we can use intrinsic functions to replace them. For example, we can use 

_min(X, Y) to replace the MIN(X, Y). 

3.2.4. Using MUST_ITERATE Pragma 

 The MUST_ITERATE pragma is used to convey programmer’s knowledge about 

loops to the compiler. It should be used as much as possible to aid the compiler in the 

optimization of loops. The format of the pragma is: 

#pragma MUST_ITERATE(min, max, mult) 

All fields are optional, min is the minimal number of iterations of the loop, max is 

the maximal number of iterations of the loop, and mult tells the compiler that the loop 

always executes a multiple of mult times. If some of these values are not known until 

runtime, do not include them in the pragma. The MUST_ITERATE pragma must 

appear immediately before the loop. 

We can use this technique in our c code program, for example, if a loop must 

iterate 64 times. We can use a MUST_ITERATE pragma to make the compiler 

generates an efficient hardware loop by the following statement. 

#pragma MUST_ITERATE(64,64) 

However, according to our experiments, using the MUST_ITERATE pragma in 

the C model does not gain much improvement at all. The reason is probably because 

the loop iterations in the C model are usually fixed at compiler time. With level-three 

optimization and fixed loop iterations, the compiler can achieve the same performance 

as if the MUST_ITERATE pragma is used. 

3.2.5. Using DMA 

TI C5510 DSP core includes a DMA(Direct Memory Access) logics for data 

transfer. DMA can move data without CPU involvement, and allows burst mode 
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transfer that may not be supported by the processor cores. While the processor core is 

busy processing data internally, the DMA controller can use the system bus to transfer 

data simultaneously. 

The C5510 DMA [17] has 6 channels where each channel has independent 

source/destination addresses, priority selection, channel enable control, and interrupt 

selection. The source/destination memory space for a DMA data transfer can be the 

external memory interface, SARAM, DARAM, and peripherals (like the serial ports). 

Besides, DSP DMA support four addressing modes including constant addressing, 

post-incremented addressing, index addressing, and double-indexed addressing. Those 

four addressing modes can help us to move data flexibly. 

3.2.5.1. DMA Throughput Analysis 

Although, DMA can help us to get better performance, we have to determine a 

reasonable transfer block size for video decoding applications. We conducted two 

experiments to solve this issue. First, we use the DMA to move n macroblock data 

from SARAM to SDRAM that simulate the data transfer from ICMB to the external 

current frame buffer. The experimental result is shown in Table 6. According to the 

experiment, we can easily see that when n becomes larger, the average moving time 

per macroblock is decreasing. On the other hand, the ICMB occupies more on-chip 

memory when n is large. In our design, we set the number of macroblocks to 6 for 

ICMB to balance between the on-chip memory space used and DMA data transfer 

performance. 
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Table 6. DMA transfer performance from SARAM to SDRAM 

Unit : DSP cycles 

# of macroblock 
 

Total transfer 
 time Transfer time per MB 

1 979 979.0 

2 1483 741.5 

3 2023 674.3 

4 2511 627.7 

5 3037 607.4 

6 3583 597.1 

7 4086 583.7 

8 4580 572.5 

9 5133 570.3 

Second, we use the DMA to transfer n 3×1 macroblocks from SDRAM to 

DARAM to simulate the transfer from external reference frame to IRMB. The 

experimental result is shown in Table 7. According to the experiments, we also know 

that when n becomes larger, the average moving time per 3×1 macroblock is 

decreasing. On the other hand, one must take into account the overlap between DMA 

transfer time and DSP decoding time for pipeline operation. The average time for 

decoding an inter macroblock is approximately 6612 DSP cycles (see Table 9). As a 

result, we need to restrict each burst of DMA data transfer time to 6612 cycles in 

order to arrange for maximal overlap of DSP decoding operation and DMA transfer 

operation for parallel execution. Finally, in our design, we select n to 1 here that 

means we move one group of 3×1 macroblocks to internal memory space per inter 

macroblock decoding.  
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Table 7. DMA moves n 3×1 macroblocks from SDRAM to DARAM 

Unit : DSP cycles 

# of 3×1 macroblock groups Total transfer time Transfer time per group 

1 2571 2571.0 

2 4702 2351.0 

3 6809 2269.6 

4 8966 2241.5 

5 11151 2230.2 

6 13232 2205.3 

7 15337 2191.0 

8 17413 2176.6 

9 19535 2170.5 

3.2.5.2. Data Transfer for Boundary Pixel Extension 

For inter frame decoding, the motion compensation module will reference the 

previous frame. The motion vector may indicates that compensation from outside the 

frame boundary is required. Therefore, we need to perform boundary extension from 

previous frame. In the proposed design, boundary extension is performed on-the-fly 

when reference data is transferred by the DMA from the external reference frame 

buffer to the IRMB. 

The decoding pipeline is set up so that when the DMA is transferring reference 

data of macroblock i+1 to on-chip IRMB, the DSP core is decoding macroblock i in 

parallel. In the next two sections, we perform some analysis on the overlapping 

operation of the inter frame decoding pipeline. First, in section 3.2.5.3, the case of 

decoding top/bottom rows of macroblocks are investigated. Then, in section 3.2.5.4, 

the case of decoding the middle rows of macroblocks is analyzed. 
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3.2.5.3. Decoding Pipeline Analysis for Top/Bottom Rows of Macroblocks 

For top or bottom rows of macroblock decoding, boundary extensions will be 

performed. The first and the last macroblocks in the top row require boundary 

extension in three directions. The others macroblocks in the top row only need 

boundary extension in one direction, as shown in Fig. 15 (the frame size is 176×144 

in this example). 
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Fig. 15. Decoding of top row of macroblocks for QCIF video 

When decoding macroblock 0, the decoder must transfer macroblock number 0, 1, 

11, 12 from the previous frame buffer to the IRMB first, and then apply boundary 

extension to create macroblocks B0, B1, B2, B13, and B15 in the IRMB. But when 

decoding macroblock 1, the decoder just needs to transfer macroblock 2 and 13, and 

use boundary extension to create macroblock B3 in the IRMB. The timing diagram of 

the pipeline operation is shown in Fig. 16. The definitions of some symbols in Fig. 16 

are explained in Table 8. 
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 Fig. 16 (A) shows sequential operation of the decoding process, while Fig. 16 (B) 

shows pipeline operation of the decoding process. Obviously, for top/bottom rows of 

macroblocks, there is not much overlap of execution time between DMA operations 

and DSP operations. The reason is that we need to make sure the reference data is in 

the internal buffer first, before we can start the boundary extension process. The 

measured time of each operation is show in Table 9. 

Table 8. Definition of M., B. and D.   

Definition Description Example 

M. Use DMA to move data 
M.(1,2) : Use DMA to move macroblock 1 and 

macroblock 2 

B. 
Use DMA to do  

boundary extension 

B.(B0,B1) : Use DMA to do boundary extension 

for macroblock B0 and macroblock B1 

D. Decode an macroblock D.(1) : Decode macroblock 1 

 

…
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Fig. 16. Timing diagram of decoding of top/bottom rows of macroblocks 
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Table 9. Execution time of decoding of top/bottom rows of macroblocks 

 
Sequential execution 

(timer ticks) 
Overlapped execution 

(timer ticks) 
DMA 

Overlapped % 
 D.(x), x=0, 1, 2, … 

 (Decode a macroblock)  
412.27 427.51  

DSP side: 770.72 M.(0,1,11,12) and 
B.(B0,B1,B2,B13,and B15) 

840.36 
DMA side: 72.34 

8 %† 

DSP side: 611.54 M.(5,6,7,16,17,and 18 ) and  
B.(B6,B7,and B8) 

755.78 
DMA side: 149.56 

19%† 

DSP side: 284.66 M.(x, x+11) and B.(Bx+1) 
(x=2, 3, 4, 5, …) 

343.29 
DMA side: 60.14 

17%† 

†：The overlapped execution percentage is approximation 

3.2.5.4. Decoding Pipeline Analysis for Middle Rows of Macroblocks 

For each middle row of macroblocks, only the left most and right most 

macroblocks have to perform boundary extension before decoding. Take the non-top 

row of macroblocks of frame for example, and the diagram is shown in Fig. 17. We 

only perform boundary extension for macroblock number B13, B14, B15, B16, B17, 

and B18 in the previous frame. The timing diagram is shown in Fig. 18. As one can 

see, the decoding pipeline has much higher degree of overlapping operations in this 

case. 
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Fig. 17. Decoding of middle rows of macroblocks for QCIF video 

Generally speaking, we can set three DMA channels to transfer the macroblock 

reference data of Y, CB, and CR components independently. However, according to our 

experiments, using three DMA channels to access the external memory via EMIF 

(external memory interface) at the same time causes serious degradation of 

performance. Therefore, we only use one DMA channel to transfer CB, CR, and Y 

components sequentially. The measured time of each operation is show in Table 10. 

With this pipelined design, we have achieved 35% performance improvement 

compared to the original sequential, un-pipelined decoder C model. 
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(B) Overlapped execution of macroblock decoding and DMA data transfer 

Fig. 18. Timing diagram of decoding of middle rows of macroblocks 

 

Table 10. Execution time of decoding of middle rows of macroblocks 

 
Sequential execution

(timer ticks) 
Overlapped execution 

(timer ticks) 
DMA 

Overlapped % 
D.(x), x=11,12, 13, … 

 (Decode a macroblock)  
412.27 427.51  

DSP side: 621.66 M.(0,1,11,12,22.23) and 
B.(B13,B15,and B17) 

799.37 
DMA side: 188.32 

23%† 

DSP side: 210.31 M.(5,6,7,16,17,18,27,28, 
and 29 ) 

829.26 
DMA side: 661.65 

24%† 

DSP side: 190.59 M(x, x’) 
(x=13, 14, 15, …) 

327.57 
DMA side: 141.93 

42%† 

†：The overlapped execution percentage is approximation 

3.2.6. Performance Improvement Summary 

The performance improvements of each of the techniques we have used to 

optimize the DSP decoder is summarized in Table 11. The target sequence is the 

300-frame QCIF version of FOREMAN sequence at 64 kbps. The optimized DSP 

decoder will be used as the baseline reference to compare against the proposed 
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approach in Chapter 4.  

Table 11. Performance improvement of DSP video decoder 

State Item CPU cycles Second FPS 

Performance
improve 

from 
previous 

state 

1 
Initial MEPG-4 decoder C 
model on DSP 

2762695282 28.78 10.42 
 

2 
Compiler using –o3 and –pm 
option 

2075085682 21.62 13.88 33.14 % 

3 
Code section (.text) into 
SDRAM 

5652045923 58.88 5.10 -63.29 % 

4 Enable instruction cache 2173584906 22.64 13.25 260.03% 

5 
Using intrinsic function in 
Quantization module for 
saturation 

1677344205 17.47 17.17 29.58 % 

6 
Using IMGLIB for IDCT 
module 

1415540100 14.75 20.35 18.49 % 

7 
Using IMGLIB for interpolation 
module 

1052574420 10.96 27.36 34.48 % 

8 
Using ICMB to cache output 
data 

948365118 9.88 30.36 10.99 % 

9 
Using IRMB to cache reference 
data and using DMA for 
boundary extension 

582313481 6.07 49.45 62.86 % 

10 
Using DMA for data transfer 
and boundary extension 

492146185 5.13 58.51 18.32 % 

11 Adopt pipeline design 363756454 3.79 79.17 35.30 % 

12 
Using clipping table for 
saturation 

329840944 3.44 87.31 10.28 % 
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Chapter 4. Dynamic Task Partition 

Framework 

Generally speaking, if we want to port a single-core application into the dual-core 

platforms, we need to partition original application into several sub-tasks. The 

partitioning methodologies for heterogeneous dual-core platforms typically use static 

partitioning at development time, and assign each sub-task to either the RISC core or 

the DSP core, but not both. We proposed a dynamically partitioning approach, and 

implemented an MPEG-4 decoder on the OSK 5912 platform to demonstrate the 

efficiency of the proposed approached. The details of the dynamically partitioned 

MPEG-4 decoder are present in this chapter. 

4.1. Design Issues for Dual-Core Processing 

Current heterogeneous dual-core systems have some architectural issues that 

hinder the performance of the dynamic task portioning computation model. These 

issues are discussed in the next few subsections. 

4.1.1. Data Accessing Unit Size 

Generally, most common processor use byte as data accessing unit. But some 

application specific processor may have optimal data accessing unit size. For example, 

on OMAP 5912, the RISC core is a 32-bit ARM that allows byte addressing while the 

DSP core is a 16-bit processor that allows only 16-bit word addressing.  

Therefore it is not possible to design a single data structure that is optimized for 

both cores. Since the computation results of one task may become the input of a task 

that is assigned to a different processor in a dynamic task partitioning system, a 
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simple (non-optimal) solution to this problem is to set the data access unit size to the 

least common multiple of the optimal word sizes of the cores. However, for optimal 

performance, we should either use two heterogeneous cores with same optimal data 

accessing unit size or design some programmable on-the-fly data conversion (or 

packing/unpacking) circuitry for shared data structures. 

4.1.2. Endian Issue 

In the mix-endian systems, endian conversion may be required if a processor 

accesses a memory region containing data stored in a different endianness format. For 

example, if a big-endian processor accessing data stored in little-endian format, then 

the endianness conversion may be required. Special circuitry should be available to 

take care of the endian issue in mix-endian heterogeneous multi-core systems. 

Within the OMAP5912 device, the ARM operates in little-endian mode, DSP uses 

the big-endian data format. However, in the OMAP5912 device, it has endianness 

conversion circuitry. When DSP or DSP DMA accesses to external memory regions, 

there is an endianness conversion unit inside the DSP MMU. On the other hand, when 

the MPUI accesses to the DSP resources, there is an endianness conversion within the 

MPU interface. 

In the bitstream parsing of MPEG-4 decoder, it has a byte and word swap 

computation. However, DSP core will get input bitstream from the SDRAM via DSP 

MMU. As a result, we do not need to perform byte and word swap if we enable the 

endianness conversion unit inside the DSP MMU. 

According to our experiment, the endianness conversion circuitry only can be set 

on the booting time. In the DSP core of dual-core decoding, if we enable the 

endianness conversion, it will affect not only the input bitstream but also the output 
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decoded frame. According to our experiment, disable the endian conversion circuitry 

will gain better performance than enable it. This is we do the software endianness 

conversion on input bitstream is less computation than on the output decoded frame. 

4.1.3. Cache Coherency Problem 

Most high performance processors core today have data cache. In a dynamic task 

partitioning system, this may cause serious issue since the shared data processed by a 

sequence of tasks may be cached differently on different processor cores. Consider a 

situation as following. When a processing core accesses to a memory location and 

saves the data inside its cache. Later, the other processing core is processing and 

writing data to this same location. However, since this memory location is kept in the 

cache of first core, the first processing core may read the old data instead of new data. 

The problem is cache coherency problem.  

A trivial solution is to disable caching of the shared data. However, this affects 

the performance of many processor cores. Therefore, scratch pad memory should be 

used wisely to alleviate the performance hit due to disabling of data cache. For 

example, on OMAP 5912, there are two in-core memories (SARAM and DARAM) 

that should be used properly. 

On the dual-core processing MPEG-4 decoder, the ARM core and the DSP core 

share the current decoded frame and reference frame on SDRAM. We can disable 

those memory regions, but the performance of the decoding will decrease obviously. 

In the proposed design, we still enable the data cache of the ARM core, because the 

cache coherency problem does not happen exactly. The DSP core write decoded slice 

to the share memory region and ARM core refer to those data in next decode slice. 

However, the size of the data cache of ARM core is 8k byte. When the ARM core 

refers to those data, it must be not in the cache. As a result, we still enable the data 
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cache of the memory region that contains reference frame and current frame because 

of the performance consideration. 

4.2. Inter-Processor Communication of Dual-core Decoding 

As we mentioned in section 1.2.2, there are three mechanisms for communication 

between the ARM core and the DSP core. In our proposed dynamically partitioned 

dual-core decoding, we use those mechanisms for communication between the ARM 

core and the DSP core. 

First of all, large amount of shared video data is placed in SDRAM so that both 

cores can access these data directly. A module, refer to as the Task Partitioner, in the 

proposed architecture is in charge of dynamic assignment of task to either ARM core 

or the DSP core. The Task Partitioner is running on the ARM side and therefore it 

requires inter-processor communication mechanism to communicate with the DSP as 

well. Mailbox mechanism is used by the Task Partitioner to communicate with the 

DSP core. 

4.3. Global Memory Map of Dynamically Partitioned 

MPEG-4 Decoder 

The global memory map of the dynamically partitioned MPEG-4 decoder is 

shown in Fig. 19. For the DSP core, the memory map is the same as the optimized 

DSP decoder described in Chapter 3. For the ARM core, all the data are located in the 

SDRAM. The ARM cache is turned on to improve data access performance. 
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Fig. 19. Global memory map of the dynamically partitioned MPEG-4 decoder 

There are five boot modes for the DSP bootloader. The MPU core can select any 

of these boot modes by writing to the DSP_BOOT_CONFIG register. The address 

0x80000 is the boot address of the external memory boot mode [18]. The code section 

of DSP is stored in SDRAM and is mapped to 0x80000 in the DSP virtual memory 

space by the DSP MMU. The DSP instruction cache is also enabled to accelerate 

instruction fetch performance. 

4.4. Dual-core Decoding Architecture  

In the proposed dynamic task partitioning framework, the task is dynamically 

partitioned according to runtime loading of each core. A system control module called 

the Task Partitioner, which is responsible for dynamic task assignment, is running on 

the ARM core, and communicates with the DSP core via mailboxes. On the other 

hand, there is a Task Interface running on the DSP core which is waiting to receive the 

tasks assigned by the Task Partitioner. The dual-core decoding architecture is shown 

in Fig. 20. 
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Fig. 20. Dual-core decoding architecture 

4.4.1. Task Granularity 

The experimental results in [11] show that dynamic partitioning could increase 

the overall performance. However, the experiments also show that the inter-processor 

communication overhead is a crucial factor for such systems. Therefore, the choice of 

task granularity is crucial for the performance of a dynamic task partitioning system. 

If the task granularity is too small, the communication overhead between two cores 

may out-weight the performance gain from parallel execution of the tasks. On the 

other hand, if the task granularity is too large, then the computation model would falls 

back to the static task partition model. 

The task granularity is defined at the slice-level for the proposed MPEG-4 video 

decoder. In a video bitstream, each slice includes a start code followed by a sequence 

of coded macroblocks, and there is no dependency between two different slices. Thus, 

a video decoder application can quickly locate the bitstream data required by a task 

(i.e. decoding of a slice) and dynamically assign the task either to the ARM core or 

the DSP core. Parallel execution is achieved automatically if both cores are available. 
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4.4.2. Mailbox Command API 

The ARM core (Task Partitioner) and DSP core (Task Interface) communicate 

with each other via mailbox interrupt mechanism. In our proposed design, there are 

four mailbox command APIs from Task Partitioner to Task Interface, and shown in 

Table 12. Each mailbox command API including command register field and data 

register field. On the other hand, there are five mailbox command APIs from Task 

Interface to Task Partitioner, and shown in Table 13. The Task Partitioner and Task 

Interface share those commands, and when a core invoke a mailbox command 

interrupt, the interrupt service routine of the other core will do the corresponding 

work according to the mailbox command register field. 

Table 12. Mailbox command from Task Partitioner to Task Interface  

Command register field Data register field Description 

A2D_INITIALIZE_DEOCDER Bitstream size Initialize decoder 

A2D_PARSE_SLICE Bitstream size Parse slice information 

A2D_DECODE_SLICE Slice number Decode a slice 

A2D_RELEASE_DECODER 0 Release decoder 

 

Table 13. Mailbox command from Task Interface to Task Partitioner 

Command register field Data register field Description 

D2A_READY 0 Indicate DSP core is ready

D2A_INITIALIZATION_DONE 0 Initialization done 

D2A_PARSIGN_DONE 0 Parsing slice information 
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4.4.3. Task Partitioner and Task Interface 

The Task Partitioner and the Task Interface is the control module of dynamic task 

partitioning system. The diagram of Task Partitioner and Task Interface is shown in 

Fig. 21. On the ARM core, there are three local variables inside the Task Partitioner 

(described in Table 14). Those variables record important information about decoding. 

The decoder begins its life cycle on the ARM core. It will enter the decoding stage 

after global initialization (by ARM). The decoder will communicate with the Task 

Partitioner and get the next decoding slice number. The next decoding slice number is 

calculated as follows: 

Slice Number = MAX ( ARM_SLICE_NUM, DSP_SLICE_NUM ) + 1 ; 

During the decoding stage, slice decoding tasks are continuously dispatched to 

either core until the FINISH_DECODE_FRAME_FLAG is raised (means all the 

slices in a frame has been decoded). The control then returns to the ARM side to 

finish up decoding of current frame and initialize the next frame for decoding again. 

done 

D2A_DECODING_SLICE_DONE Slice number Decoding slice done 

D2A_RELEASING_DONE 0 Releasing done 
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Fig. 21. The Task Partitioner and the Task Interface diagram 

 

Table 14. The local variables inside the Task Partitioner  

Variables Description Value 

ARM_SLICE_NUM Recode the slice number ARM decoding 
0 ~ 

(slice numver-1) 

DSP_SLICE_NUM Recode the slice number DSP decoding 
0 ~ 

(slice numver-1) 

FINISH_DECODE_

FRAME_FLAG 

A flag which represent finish decoding a 

frame 
0 or 1 

On the other hand, the Task Partitioner assigns a task to the DSP core via a 

mailbox command API to the DSP Task Interface module. There are three local 

variables inside the Task Interface module (shown in Table 15). 

The interrupt service routine of mailbox will change some local variables inside 
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the Task Interface module. Take the command A2D_PARES_SLICE for example, the 

SLICE_NUM will be assigned to a number and the DECODE_SLICE_FLAG will be 

assigned to 1. After change those local variable inside the Task Interface module, the 

Task Interface module will choose a task for execution. After the execution of a task, 

the DSP core will issue a mailbox interrupt to inform the ARM core that the task is 

finished. The communication sequences between the Task Partition and the Task 

Interface module is shown in Fig. 22. 

Table 15. The local variables inside the Task Interface  

Variables Description Value 

SLICE_NUM 
The decoding slice number which assign by 

Task Partitioner 

0 ~ 

(slice numver-1) 

DECODE_SLICE_F
LAG 

A flag represent can jump to decode a slice 0 or 1 

DECODE_FINISH_
FLAG 

A flag represent finish decoding 0 or 1 
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Fig. 22. Task Partitioner and Task Interface communication sequence diagram 

 

4.5.  Communication Overhead 

As we mentioned before, the Task Partitioner and the Task Interface communicate 

with each other via mailbox interrupt mechanism. A pair of mailbox interrupts 

between Task Partitioner and Task Interface is described in Table 16. According to our 

experiments, the turn-around time of mailbox interrupt communication cost about 

2188 CPU cycles (from stage 1 to stage 7 described in Table 16).  

However, the QVGA dual-core decoding will invoke 1202 times of mailbox 

interrupt which includes one A2D_INITIALIZE_DEOCDER command, 300 times 

A2D_PARSE_SLICE commands, 900 times A2D_DECODE_SLICE commands, and 

one A2D_RELEASE_DECODER command. As a result, the mailbox interrupt 

communication overhead cost about 0.43% of QVGA dual-core decoding time. 
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Besides, the communication overhead will be decreased when the resolution of 

decoding frame becomes larger. 

Table 16.  The execution stage of communication via mailbox interrupt 

Stage Description 

1 ARM core invokes a mailbox interrupt to DSP core 

2 DSP core jumps into a ISR of mailbox interrupt 

3 DSP core is execute ISR of mailbox interrupt 

4 DSP core invokes a mailbox interrupt to ARM core 

5 
DSP core is exits ISR of mailbox interrupt, and ARM core jumps into a ISR 

of mailbox interrupt at the same time 

6 ARM core is execute ISR of mailbox interrupt 

7 ARM core is exits ISR of mailbox interrupt 
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Chapter 5. Experimental Results 

This chapter will show some experimental results. DSP-only decoding 

experiments are presented in section5.1, and dual-core dynamic task partitioning 

decoding performance is presented in 5.2. Table 17 shows some system parameters 

used in the experiments. Although the maximal clock rate of the OMAP 5912 

processor is 192 MHz, we only set the system clock to 96 MHz for the experiments. 

Table 17.  Processor parameters used for the experiments 

Processor Parameters 

Clock rate: 96 MHz 
ARM core 

I-cache, D-cache: enable 

Clock rate: 96 MHz 
DSP core 

I-cache: enable 

Traffic Controller Clock rate: 96 MHz 

DSP DMA Burst mode, 16-bit width 

5.1. Experiment of QCIF Decoding Performance 

We have used five 300-frame QCIF (176×144) test sequences including Akiyo, 

Carphone, Clair, Foreman, and Mother-and-Daughter to test the proposed system. The 

target bitstreams are coded at both 64kbps and 128kbps. The decoding performance of 

64kbps and 128kbps is shown in Table 18 and Table 19, respectively. The test 

sequences and coding parameters (QCIF resolution and 64kbps) are selected in order 

to compare our performance against the optimized DSP decoder published by TI [19]. 
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Table 18.  QCIF decoding performance of 64kbps input bitstream 

Sequence CPU cycles Second FPS 
Performance

Ratio 

Akiyo 344323868 3.59 83.64 

Carphone 436522868 4.55 65.98  

Clair 423607960 4.41 67.99  

Foreman 427053984 4.45 67.44 

Mother and 
daughter 

410506380 4.28 70.16 

 ARM-only 

Average 408403012 4.25 70.52  74.6% 

Akiyo 251409616 2.62 114.55 

Carphone 319894240 3.33 90.03  

Clair 314714144 3.28 91.51  

Foreman 329840944 3.44 87.31 

Mother and 
daughter 

308166704 3.21 93.46 

 
DSP-only 

Average 304805129.6 3.18 94.49  100.0% 

Akiyo 230459136 2.40 124.97 

Carphone 256430638 2.67 112.31 

Clair 246616494 2.57 116.78 

Foreman 259608406 2.70 110.94 

Mother and 
daughter 

243840726 2.54 118.11 

 
Dual-core 

Average 247391080 2.58 116.41 123.2% 

As Table 18 and Table 19 shown, we found that the decoding performance of the 

DSP-only solution is outperforming the ARM-only solution in both bitrates. The 

results also meet our expectation that a DSP core can achieve better performance than 

a general purpose RISC core for multimedia processing. The dynamic task 

partitioning dual-core decoding implementation is about 23.2% and 27.8% faster on 

average than the DSP-only implementation at 64kbps and 128kbps respectively. 
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Table 19. QCIF decoding performance of 128kbps input bitstream 

Sequence CPU cycles Second FPS 
Performance

Ratio 

Akiyo 463978876 4.83 62.07 

Carphone 603838112 6.29 47.69  

Claire 549179806 5.72 52.44  

Foreman 621109950 6.47 46.37 

Mother and 
daughter 

570463228 5.94 50.49 

 

ARM-only 

Average 561713994.4 5.85 51.27  67.1% 

Akiyo 298865728 3.11 96.36 

Carphone 399806496 4.16 72.03  

Claire 383056864 3.99 75.18  

Foreman 420334896 4.38 68.52 

Mother and 
daughter 

383495136 3.99 75.10 

 

DSP-only 

Average 377111824 3.93 76.37  100.0% 

Akiyo 248332388 2.59 115.97 

Carphone 320172226 3.34 89.95  

Claire 287964328 3.00 100.01 

Foreman 316912026 3.30 90.88  

Mother and 
daughter 

301094812 3.14 95.65  

 
Dual-core 

Average 294895156 3.07 97.66  127.8% 

According to [19], the DSP-only decoding performance published by TI is about 

120FPS at 64kbps QCIF resolution for the same five sequences we used in the 

experiments. However, the performance number does not include the latency 

associated with memory-to-memory transfer. As we described in 3.2.5.3 and 3.2.5.4, 

memory transfer occupies a large portion of the decoding time (there is about 30% 

pure data transfer overhead, even after DMA are used to pipeline data transfer and 
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computation). It is obviously that our DSP-only solution achieves better decoding 

performance than that published by TI in [19]. 

5.2. Experiment of QVGA Decoding Performance 

In this section, we have used five 300-frame QVGA (320×240) test sequences 

including Akiyo, Container, Foreman, Mother-and-Daughter, and Silent to test the 

proposed system. The compressed bitstream bitrate is 128kbps. The decoding 

performance of the ARM-only, DSP-only, and proposed dual-core approaches are 

shown in Table 20. As Table 20 shows, the dynamic task partitioning dual-core 

implementation is nearly 40% faster on average than the DSP core. Because of the 

middle rows of macroblocks are increased, the dual-core decoding performance is 

much higher than DSP-only compare with QCIF resolution. The task ratio assigned to 

each core in the dual-core platform is shown in Table 21. 

Table 20. QVGA decoding performance 

Sequence CPU cycles Second FPS 
Performance

Ratio 

Akiyo 917365562 9.56 31.39 

Container 918535156 9.57 31.35 

Foreman 1029947720 10.73 27.96 

Mother and 
daughter 

1061224218 11.05 27.14 

Silent 974654142 10.15 29.55 

 ARM-only 

Average 980345359.6 10.21 29.38 87.0% 

Akiyo 792730192 8.26 36.33 

Container 793496688 8.27 36.30 

Foreman 925548560 9.64 31.12 

DSP-only 
 

Mother and 
daughter 

923119968 9.62 31.20 
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Silent 832330352 8.67 34.60 

Average 853445152 8.89 33.75 100.0% 

Akiyo 576888698 6.01 49.92 

Container 588884308 6.13 48.91 

Foreman 646439190 6.73 44.55 

Mother and 
daughter 

642279328 6.69 44.84 

Silent 600200938 6.25 47.98 

 
Dual-core 

Average 610938492.4 6.36 47.14 139.7% 

 

Table 21.  Partition number decoding slice 

 Number of decoding slice Partition Ratio 
ARM core 600 0.4 
DSP core 900 0.6 

Total 1500 1  
 

5.3. Experiment of Adding another Task to DSP Core 

For the proposed dynamically partitioned approach, the Task Partitioner will 

assign task to the DSP dynamically. When the DSP is loaded with other tasks, more 

workload will be assigned to the RISC core instead.  

In order to simulate behavior, we add a second task to DSP core. The task is 

performs random duration of busy computations continuously. Under this more 

realistic application scenario, the decoding performance of ARM-only, DSP-only and 

the proposed dual-core are shown in Table 22.  

As Table 22 shows, the performance of dual-core decoding is still faster than 

ARM-only and DSP-only because of the dynamically partitioned approach. The 

execution time of ARM core is as same as Table 20, but the execution time of the 

DSP-only and dual-core decoding is longer because of the DSP core is busy with 
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other tasks. 

Table 22. QVGA Decoding performance when DSP is busy 

Sequence CPU cycles Second FPS 
Performance 

Ratio 

Akiyo 917365562 9.56  31.39

Container 918535156 9.57  31.35

Foreman 1029947720 10.73 27.96

Mother and 
daughter 

1061224218 11.05 27.14

Silent 974654142 10.15 29.55

 ARM-only 

Average 980345359.6 10.21 29.38 122.4% 

Akiyo 1128877660 12.36 24.27

Container 1124318853 11.71 25.62

Foreman 1290751400 14.13 21.23

Mother and 
daughter 

1281682541 13.35 22.47

Silent 1175175612 12.24 24.51

 DSP-only 
 

Average 1200161213.4 12.50 24.00 100.0% 

Akiyo 650413214 6.78  44.28

Container 606766292 6.32  47.46

Foreman 705036440 7.34  40.85

Mother and 
daughter 

725642676 7.56  39.69

Silent 681919564 7.10  42.23

 
Dual-core 

Average 673955637.2 7.02  42.73 178.0% 

 

In order to provide better insight to the nature of dynamic task partitioning, the 

task partition ratio of dual-core decoding of each sequence is shown in Table 23. As 

Table 23 shows, we can find that due to another task is added to DSP core, the Task 
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Partitioner will assign more tasks to ARM core dynamically. 

The partition ratio of dual-core decoding without other DSP task and with other 

DSP task is shown in Table 24. As Table 24 shows, when loading of DSP core is 

increased, ARM core will be assigned more tasks automatically. Task Partitioner will 

assign task depending on the runtime computational load of both cores. 

Table 23.  Task Partition ration of each sequence 

Sequence ARM DSP 
Task Partition Ratio 

ARM : DSP 
Akiyo 828 672 1.23 : 1 
Container 872 628 1.38 : 1 
Foreman 886 614 1.44 : 1 
Mother and daughter 845 655 1.29 : 1 
Silent 838 662 1.26 : 1 
Average of five sequences 853.8 646.2 1.32 : 1  

 

Table 24.  Task Partition ratio  

 ARM DSP 
Task Partition Ratio 

ARM : DSP 
Without other DSP Task 600 900 1 : 1.5 

With other DSP Task 853.8 646.2 1.32 : 1  
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Chapter 6. Conclusions and Future Works 

In this thesis, we proposed a dynamic task partition approach for multimedia 

applications on heterogeneous dual-core platforms. An MPEG-4 simple profile video 

decoder using the approach has been implemented on TI OMAP 5912 platform to 

demonstrate the efficiency of the approach. 

We first optimize the MEPG-4 decoder C model for the DSP by adopting various 

DSP specific techniques and by using a pipelined design to overlap DMA data transfer 

time and DSP decoding time. The experimental results show that overlapping of DSP 

decoding job and DMA macroblock transfer job in a pipeline alone give us 35% 

performance improvement. 

Secondly, we implement the decoder using the dynamic task partitioning 

approach [11]. The task granularity is defined at slice-level for the proposed video 

decoder. Based on the experiments shown in sections 5.2 and 5.3, the overall 

decoding performance of the proposed dual-core dynamic task partitioning approach 

outperforms decoding using the ARM core or the DSP core alone. The performance 

of dynamic task partitioning is even better when the DSP is loaded with other tasks. 

Finally, the experiments show that the dual-core approach can easily fulfill real-time 

(30 FPS) decoding of QVGA video at 96 MHz. 

Although the MPEG-4 video decoder application is used to demonstrate the 

concept, the dynamic task partitioning computation model can be easily generalized to 

other applications. In addition, the design effort may not higher than a static task 

partitioning approach. None of the embedded OSes support the dynamic task 

partitioning approach. However, according to the experimental results, the dynamic 
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task partitioning is suitable for multimedia application on heterogeneous dual-core 

embedded system. Future OS can cover the feature of dynamic task partitioning in 

order to achiever better performance.   
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