

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

在異質雙核心平台上設計與分析

動態分工的視訊解碼器

Design and Analysis of a Dynamic Task Partitioning Approach

for Video Decoding on Heterogeneous Dual-core Platforms

研 究 生：沈宗範

指導教授：蔡淳仁 教授

中 華 民 國 九 十 七 年 六 月

 ii

在異質雙核心平台上設計與分析動態分工的視訊解碼器

Design and Analysis of a Dynamic Task Partitioning Approach for Video
Decoding on Heterogeneous Dual-core Platforms

研 究 生：沈宗範 Student：Tsung-Fan Shen

指導教授：蔡淳仁 Advisor：Chun-Jen Tsai

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis
Submitted to Institute of Computer Science and Engineering

College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer Science

June 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年六月

 iii

Abstract

This thesis presents the design of a video decoder to demonstrate the advantages

of dynamic task partitioning for multimedia applications on heterogeneous embedded

dual-core systems. Typical application processors for mobile devices are composed of

a RISC core for control tasks and a DSP core for data stream processing. For such

systems, a common design practice is to perform static task partitioning at design time.

Task assignments to each core is fixed and do not change according to runtime system

behavior. In this thesis, we proposed a dynamically partitioned approach where the

task partitioning across heterogeneous cores is done at runtime. An MPEG-4 Simple

Profile video decoder has been implemented using this approach on a TI OMAP 5912

platform for the analysis. Comparing to a decoder optimized for the DSP core, the

performance gain is about 40% on average. We also demonstrated that the gain from

dynamic task partitioning is even larger than the static partitioning approach when the

cores are running other tasks. The experimental results show that dynamic task

partitioning on heterogeneous dual-core systems can achieve more than 40 fps of

QVGA video decoding at 96 MHz clock rate even when one of the cores is loaded

with other tasks.

 iv

Acknowledge

能夠完成本論文，我要感謝我的指導教授蔡淳仁博士。這兩年的研究所求學

過程中，感謝老師對我細心的指導，老師對研究上嚴謹的態度以及實事求是的精

神，讓我學習到很多專業的知識。還要感謝嵌入式多媒體系統實驗室的學長、同

學以及學弟妹，在實驗室大家彼此互相幫助、學習成長。最後我想謝謝我的家人

與朋友，有你們的支持以及鼓勵，讓我可以完成碩士論文。

 v

Content

Chapter 1. Introduction..1

1.1. Motivation..1
1.2. Heterogeneous Dual-Core Processors..1

1.2.1. The OMAP 5912..2
1.2.1.1. The ARM Core..3
1.2.1.2. The DSP Core ...3
1.2.1.3. OSK 5912..4

1.2.2. Inter-Processor Communication Mechanisms of OMAP 59126
1.2.2.1. MPUI Interface (MPUI)..6
1.2.2.2. MPU/DSP Shared Memory...6
1.2.2.3. MPU/DSP Mailbox ...7

1.3. Scope of the Thesis ..7

Chapter 2. Previous Work ..9

2.1. Static Task Partitioning ..9
2.2. Dynamic Task Partitioning...10

Chapter 3. Optimization for DSP Architecture15

3.1. Overall Architecture of Optimized DSP Decoder......................................15
3.1.1. Memory Map of the DSP Video Decoder ..15
3.1.2. Bitstream File Format Used in this Thesis...18
3.1.3. Intra Frame Decoding Flow...19
3.1.4. Inter Frame Decoding Flow...20

3.2. Detail Optimization Techniques for DSP Architecture21
3.2.1. C-code Level Optimization..22

3.2.1.1. Using Function Pointer Array to Replace Switch Statement22
3.2.1.2. Using Clipping Table to Replace if Statement............................22

3.2.2. Using TI C55x IMGLIB ..22
3.2.2.1. IDCT Routine..23
3.2.2.2. Interpolation Routine ..24

3.2.3. Using Intrinsics ..26
3.2.4. Using MUST_ITERATE Pragma ..27
3.2.5. Using DMA..27

3.2.5.1. DMA Throughput Analysis...28

 vi

3.2.5.2. Data Transfer for Boundary Pixel Extension..............................30
3.2.5.3. Decoding Pipeline Analysis for Top/Bottom Rows of

Macroblocks..31
3.2.5.4. Decoding Pipeline Analysis for Middle Rows of Macroblocks..33

3.2.6. Performance Improvement Summary ..35

Chapter 4. Dynamic Task Partition Framework....37

4.1. Design Issues for Dual-Core Processing..37
4.1.1. Data Accessing Unit Size...37
4.1.2. Endian Issue ...38
4.1.3. Cache Coherency Problem...39

4.2. Inter-Processor Communication of Dual-core Decoding...........................40
4.3. Global Memory Map of Dynamically Partitioned MPEG-4 Decoder40
4.4. Dual-core Decoding Architecture ..41

4.4.1. Task Granularity...42
4.4.2. Mailbox Command API ...43
4.4.3. Task Partitioner and Task Interface..44

4.5. Communication Overhead ...47

Chapter 5. Experimental Results.............................49

5.1. Experiment of QCIF Decoding Performance ..49
5.2. Experiment of QVGA Decoding Performance ..52
5.3. Experiment of Adding another Task to DSP Core53

Chapter 6. Conclusions and Future Works56

References …………………………………………..58

 vii

List of Figures

Fig. 1. OMAP 5912 functional block diagram..2
Fig. 2. The block diagram of C5510 DSP [7] ...4
Fig. 3. The OSK 5912 and Q-VGA display module ...6
Fig. 4. The TCM model in [9] ...11
Fig. 5. The component of Profile and Resource Partitioner [10]12
Fig. 6. Structure of a DSP Task execution model [12] ..13
Fig. 7. Memory map of DSP on-chip memory..17
Fig. 8. Memory map of external memory (SDRAM) ...18
Fig. 9. Intra frame decoding flow chart...19
Fig. 10. Intra-macroblock decoding ..20
Fig. 11. Inter frame decoding flow chart...20
Fig. 12. Inter-macroblock decoding ..21
Fig. 13. IMGLIB interpolation..26
Fig. 14. IMGLIB interpolation flow chart...26
Fig. 15. Decoding of top row of macroblocks for QCIF video...............................31
Fig. 16. Timing diagram of decoding of top/bottom rows of macroblocks32
Fig. 17. Decoding of middle rows of macroblocks for QCIF video34
Fig. 18. Timing diagram of decoding of middle rows of macroblocks...................35
Fig. 19. Global memory map of the dynamically partitioned MPEG-4 decoder41
Fig. 20. Dual-core decoding architecture ..42
Fig. 21. The Task Partitioner and the Task Interface diagram.................................45
Fig. 22. Task Partitioner and Task Interface communication sequence diagram47

 viii

List of Tables

Table 1. Section Descriptions ...16
Table 2. Specification of the IMGLIB IDCT routine ...23
Table 3. Execution time of each IDCT routine ...24
Table 4. Specification of the IMGLIB interpolation routine25
Table 5. Improvement of using IMGLIB Interpolation routine............................26
Table 6. DMA transfer performance from SARAM to SDRAM..........................29
Table 7. DMA moves n 3×1 macroblocks from SDRAM to DARAM30
Table 8. Definition of M., B. and D..32
Table 9. Execution time of decoding of top/bottom rows of macroblocks...........33
Table 10. Execution time of decoding of middle rows of macroblocks35
Table 11. Performance improvement of DSP video decoder..................................36
Table 12. Mailbox command from Task Partitioner to Task Interface43
Table 13. Mailbox command from Task Interface to Task Partitioner43
Table 14. The local variables inside the Task Partitioner45
Table 15. The local variables inside the Task Interface ..46
Table 16. The execution stage of communication via mailbox interrupt................48
Table 17. Processor parameters used for the experiments49
Table 18. QCIF decoding performance of 64kbps input bitstream.........................50
Table 19. QCIF decoding performance of 128kbps input bitstream.......................51
Table 20. QVGA decoding performance ..52
Table 21. Partition number decoding slice..53
Table 22. QVGA Decoding performance when DSP is busy54
Table 23. Task Partition ration of each sequence..55
Table 24. Task Partition ratio..55

 1

Chapter 1. Introduction

1.1. Motivation

Many embedded multimedia devices today are built with heterogeneous

multi-core platforms. For example, in the dual-core architecture, a general purpose

RISC processor core (GPP) and a digital signal processor core (DSP) are integrated

into an SoC. Existing task partitioning methodologies for heterogeneous dual-core

platforms only adopt static task partitioning policy during design time. Dynamic task

partitioning policy is only used for symmetric multi-core platforms [1][2]. Static task

partitioning works properly for traditional mobile applications where the GPP core is

slow and only suitable for the execution of control tasks. However, new generations

of RISC processors are usually powerful enough to take over some of the

computationally expensive data stream processing jobs. In addition, multimedia

applications for embedded systems have become very sophisticated and their

computational resource requirement changes dynamically at run time.

In this thesis, we proposed a dynamic task partitioning paradigm for

heterogeneous multi-core platfroms. With this approach, tasks are assigned to

different cores dynamically depending on runtime loading of each core. In addition,

each core schedules the tasks assigned to them independently to other cores. MPEG-4

simple profile video decoder is used as an example to demonstrate that the dynamic

task partitioning approach outperforms the traditional static task partitioning approach

significantly. Therefore, it is very promising for practical applications.

1.2. Heterogeneous Dual-Core Processors

Today, there are many different application processors for embedded multimedia

 2

applications that are based on heterogeneous dual core architectures. One of the

popular processors in this category is the OMAP (Open Multimedia Application

Platform) processors designed by Texas Instruments [3][4][5]. In general, the OMAP

platforms have dual-core architecture consisting of both an ARM RISC processor

core and a TI TMS320 series DSP core.

1.2.1. The OMAP 5912

The OMAP 5912 is a highly integrated hardware and software platform, designed

to meet the application processing needs of next-generation embedded devices. The

OMAP 5912 couples an ARM926EJ-S RISC core and a TMS320C5510 DSP core.

The ARM9 RISC core is very popular for embedded systems and the C5510 DSP core

provides high performance with low power consumption. The OMAP 5912 functional

block diagram is shown in Fig. 1[6].

Fig. 1. OMAP 5912 functional block diagram

 3

1.2.1.1. The ARM Core

The features of the ARM926EJ-S processor core are list as follows:

 192MHz maximum frequency

 Support 32-bit and 16-bit (Thumb Mode) Instruction Sets

 Support 16K-Byte Instruction cache, 8K-byre data cache, and 17-word

write-back buffer

 Support Memory management Unit (MMU) and two 64-Entry Translation

Look-Aside buffer (TLBs) for MMU

1.2.1.2. The DSP Core

On the DSP side, the features of the TMS320C5510 core are list as follows:

 192MHz maximum frequency

 One/Two Instructions Executed per Cycle

 Dual Multipliers (Two Multiply-Accumulates per Cycle)

 Two Arithmetic/Logic Units and five Internal Data/Operand Buses (3 Read

Buses and 2 Write Buses)

 32K×16-Bit On-Chip Dual-Access RAM (DARAM) and 48K×16-Bit On-Chip

Single-Access RAM (SARAM)

 Support Instruction Cache (16K Bytes)

 Support video hardware accelerators for DCT, inverse-DCT, pixel interpolation,

and motion estimation for video compression

There are fore man functional units of the DSP, the conceptual block diagram of

the DSP is shown in Fig. 2. The C5510 DSP uses instruction pipelining that has two

 4

decoupled segments. The first segment is the fetch pipeline that fetches 32-bit

instructions from memory and places them in the instruction buffer queue, and then

feeds the second pipeline segment with 48-bit instruction packets. The second

segment is the pipeline that decodes instructions and performs data accesses and

computations. In addition, the pipeline protection mechanism inserts delay cycles as

necessary to prevent read operations and write operations from happening out of the

intended order.

Fig. 2. The block diagram of C5510 DSP [7]

1.2.1.3. OSK 5912

In this thesis, the proposed dynamically partitioned MPEG-4 decoder is

implemented on the OSK 5912 development board. The OMAP 5912 Starter Kits

(OSK 5912) is a development board that integrated an OMAP 5912 chip and also

 5

includes some components as follows:

 32 Mbyte DDR SDRAM

 32 Mbyte Flash ROM

 4 Expansion connectors (bottom side)

 RS-232 Serial Port

 10 MBPS Ethernet port

 USB Host Port

 Compact flash connector

 On board IEEE 1149.1 JTAG connector for optional emulation

Besides, there is a Q-VGA LCD Module that is also connected to the OSK 5912

development board. We use the Q-VGA module for displaying the decoded frame.

The OSK 5912 and the Q-VGA module are shown in Fig. 3.

 6

Fig. 3. The OSK 5912 and Q-VGA display module

1.2.2. Inter-Processor Communication Mechanisms of OMAP 5912

Inter-processor communication mechanism plays an important role in

multiple-core systems. In OMAP 5912 platform, it provides three mechanisms for

communication between the MPU and the DSP.

1.2.2.1. MPUI Interface (MPUI)

The MPU interface allows the Microprocessor Unit (MPU) and the system DMA

controller to communicate with the DSP and its peripherals. The MPUI can access the

full memory space (16M bytes) of the DSP. The MPUI is the only way for the MPU to

access the I/O space of the DSP.

1.2.2.2. MPU/DSP Shared Memory

By setting the DSP MMU [8] through the MPU core, the DSP core can access the

 7

shared SRAM and external SDRAM via the traffic controller (TC). The DSP MMU

maps the physical address space in shard memory to part of the DSP virtual address

space.

1.2.2.3. MPU/DSP Mailbox

The third mechanism for communication between MPU and DSP is through the

mailbox. There are four sets of mailbox registers located in public TIPB space. The

registers are shared between the two processors, so the MPU and the DSP core may

both access these registers within their own public TIPB space, but read/write

accessibility of each register is different for each processor. Take ARM2DSP mailbox

for example, MPU can read/write the register, but only read the register located in

DSP core.

Each set of mailbox registers consists of two 16-bit registers and a 1-bit flag

register. When one processor write data to a command register, an interrupt will be

issued to the other processor core and sets the corresponding flag register. The

interrupted processor core acknowledges this interrupt request by reading the

command word, which also clears the flag register.

1.3. Scope of the Thesis

The organization of the rest of the thesis is organized as follows. Chapter 2

introduces some previous work related to task partitioning policy in multiprocessor

systems. Chapter 3 describes the architecture and implementation details of a

slice-based MPEG-4 video decoder optimized for a DSP processor alone. This

optimized DSP-only decoder will be used as the baseline reference to demonstrate the

advantage of the proposed dynamic partitioning approach. Chapter 4 presents the

proposed dynamic task partitioning approach to MPEG-4 video decoder on dual-core

 8

platforms. The experimental results will be shown in chapter 5 and finally, the

conclusion and discussions will be given in chapter 6.

 9

Chapter 2. Previous Work

 In multiprocessors systems, task partitioning determines which task should be

assigned to which processor, and task scheduling determines when to execute the

tasks assigned to a particular processor. Generally speaking, the task partitioning can

be roughly divided into two approaches according to the time partition decision is

done. The first approach is static partitioning where task partitioning is done at

development time. The second approach is dynamic partitioning where task

partitioning is done at runtime according to task loading of each core. Although there

are some research try to achieve dynamic task partitioning by profiling application at

development time and perform dynamic partitioning at run time based on profiling

data [9][10] these proposals are for symmetric multi-core systems. The main topic of

this thesis is about dynamic task partition on heterogeneous multi-core platforms,

which have not been covered by other researchers yet. Therefore, in this chapter, we

review some work on static task partitioning on heterogeneous multi-core platforms

and dynamic task partitioning for symmetric multi-core platforms.

2.1. Static Task Partitioning

A common practice for task partition on heterogeneous multi-core platforms is to

perform static task partitioning. First, profiling and analysis of a system behavior is

conducted. Then, task partitioning decision is made based on the computation profile

of the system behavior on each cores and the communication profile across different

cores.

Take the design in [1] as an example. An MP3 decoding system is implemented

in a Motorola DSP 56654 which combines a RISC core and a 16-bit fixed point DSP.

 10

In [1], MP3 decoding algorithm runs on the DSP core and the RISC core is in charge

of system management and user interface (UI). The RISC core will receive commands

through the UI and assign decoding tasks to the DSP core. However, after the task is

assignment, the RISC core will go into an idle state until DSP assert an interrupt to the

RISC core to signal the completion of a task. Another example is described in [2]. An

MPEG-4 video decoder is implemented on a heterogeneous dual-core platform with a

RISC core and a DSP core. In that paper, the DSP core is responsible for video

decoding and the RISC core manages the reception of the raw video bitstream from

the transmission module and communication with the DSP core.

Static task partitioning is commonly used in industry and may work properly for

traditional mobile applications. However, it is not suitable for new generations of

complicated embedded multimedia applications.

2.2. Dynamic Task Partitioning

It is quite common that in a mobile multimedia device, several computationally

expensive tasks are assigned to the DSP while the RISC (which only handles sporadic

UI/system management tasks) is idle. In this case, statically partitioned tasks

pre-assigned to DSP at design time may not be able to achieve desirable performance

at runtime since the DSP is overloaded. Further more, although the DSP core is

heavily loaded in this case, the RISC core is idling most of the time waiting for new

tasks to arrive.

New generations of RISC processors are usually powerful enough to take over

some of the computationally expensive jobs. Besides, multimedia application has

become complicated and dynamic at run time and static partitioning approach may not

reach optimal performance when the runtime system state is different from the

assumed static state at development time. In dynamic task partitioning, each task is

 11

assigned on the run time according to system state and processing loading of each

core.

Lauwereins et al. proposed a TCM (task concurrency management) model and

two-phase scheduling method in order to manage concurrent task scheduling into

multiprocessor platform [9]. This approach tries to minimize the energy consumption,

but also satisfy system timing constraint. The TCM methodology (shown in Fig. 4)

comprised of three stages. The first is concurrency extraction. In this first stage, the

system extracts and explicitly models the potential parallelism and dynamic behavior

of the application. In the second stage, it tries to find the dependency between

different tasks. The third stage mainly consists of a two-phase scheduling approach.

The two-phase scheduling is static scheduling at design time and dynamic scheduling

at runtime. In the first phase, it uses static scheduling to show all possible

combination and generate a Pareto-optimal set. In the second phase, select the optimal

combination of those tasks. This will minimize the run time computational complexity

and lead to power saving.

Fig. 4. The TCM model in [9]

 12

Xue et al. [10] discuss dynamic partitioning of processor and memory resources

in multiprocessor SoC architecture. The proposed approach has two major

components, shown in Fig. 5. The first component is the Profiler. The Profiler

includes an offline preprocessing of applications which gives us an estimated profile

for each application. The second component of the approach is a run-time resource

partitioner which partitions both the processing core and memory space among

executing application.

Fig. 5. The component of Profile and Resource Partitioner [10]

Chiu et al. [11] proposed a tightly-coupled dual-core partitioning framework for

multimedia application on heterogeneous dual-core platforms. In that framework, a

task will be dynamically assigned to either the RISC core or the DSP core, depending

on the load of each core at runtime. If both cores are available, then tasks will be

distributed to both cores for parallel execution. The paper uses MPEG-4 simple

profile encoder as an example to investigate proposed tightly-coupled partitioning

framework on the TI-OMAP 1510 dual-core platform. The task granularity is set at

macroblock level and the experimental results show that dynamic partitioning

 13

approach runs faster than a static task partitioning solution.

Gai et al. [12] investigated the problem of multiprocessor partitioning for

heterogeneous architectures composed by a general purpose processor and a DSP. The

paper treat DSP core as a functional specific unit and make DSP core execute in a

non-preemptive fashion. In order to achieve scheduling efficiently and still maintain

some kind of real-time guarantee, the paper improves the Distributed Priority Ceiling

Protocol (DPCP). The DPCP was proposed by R. Rajkumar in 1990 [13], where it is

used for task allocation on main CPU and DSP. The DPCP is described as follows. A

set of n periodic tasks scheduled by the rate-monotonic algorithm can always meet

their deadlines if

)12(.... /1

1

1

2

2

1

1
−≤+++ nn

T
C

T
C

T
C

T: period time

C: computation time

The real-time task model is considered in Fig. 6. Each task execute Ci
DSP units of

time, and Ci
pre、Ci

post units of time of pre-process and post- process. Besides, define

Ci= Ci
pre + Ci

post, and Pi is the priority of the job i.

Fig. 6. Structure of a DSP Task execution model [12]

 14

As a result, according to the DPCP approach, the schedulability of the task set is

guaranteed by the following test:

)(
T

CC
T
CC

 ,...,1 lub
i

DSP
ii

j

DSP
jj iUBni i

pp ij
≤

++
+

+
=∀ ∑ >

Where)12()(/1
lub −= iiiU ,and Bi is a blocking factor computed as follows:

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+

= ∑ ><

skregular taa for 0

 task a DSPfor C }{max DSP
j

ijij
PP

j

iDSP
jPP

i T
TC

B

However, in the above formula, Ci unit of time is the master processor processing

time, and it can be remove from the above formula. Therefore, this paper proposes a

modified DPCP approach and removes the master processor processing time (Ci).

Finally, simulations have shown that modified DPCP always outperforms the original

DPCP protocol and achieves a significant improvement for large task sets with high

processor utilization.

 15

Chapter 3. Optimization for DSP

Architecture

In this chapter, we present a slice-based MPEG-4 video decoder optimized for

DSP architecture. For the proposed dynamic task partitioning decoder, a video slice

will be used as a task unit. Therefore, optimized implementations of slice decoding

modules for the RISC core and the DSP core are necessary to achieve good

performance. Optimization of a video slice decoder for a RISC core is quite trivial

while optimization for a DSP core is relatively more complex. The performance of the

optimized DSP video decoder is comparable to that of the optimized OMAP video

decoder published by TI [19]. In the following sections, we will describe the decoder

architecture in detail.

3.1. Overall Architecture of Optimized DSP Decoder

Before we present some detail optimization techniques, the overall architecture of

the DSP decoder is presented in this section. The key issue of optimizing a video

decoder for the DSP core is to take advantage of the multiple memory banks available

in the system to increase data bandwidth. Hence, in section 3.1.1, we begin our

discussion with the way memory banks in the OMAP platform are used by the

optimized video decoder.

3.1.1. Memory Map of the DSP Video Decoder

In addition to the external SDRAM and SRAM memory banks that are common

for an embedded system, the TI C5510 DSP core has two on-chip memory blocks,

including a 64KB dual-access RAM (DARAM) and a 96KB single-access RAM

 16

(SARAM). Frequently accessed data should be stored on the on-chip memory due to

higher memory bandwidth. However, these on-chip memory blocks are usually too

small to contain the entire working set of data of a multimedia algorithm. Take video

decoding for example, when decoding an inter frame, the reference frame buffer is

frequently accessed for motion compensation. The resolution of the QVGA video

frames are 320×240, which means that the frame size is 112.5 Kbytes (with video

format YCBCR 4:2:0). The entire reference frame is too big to be placed in the

on-chip memory. In this section, we discuss how different memory banks are used for

the DSP video decoder. In this thesis, we have used the TI Code Composer Studio

(CCS) as the development toolchain. The CCS compiler generates code and data into

logical units called sections, as shown in Table 1 [14].

Table 1. Section Descriptions

 In Table 1, the .stack and .sysstack sections which store parameters and local

variables are accessed frequently within a function calls. Since C55x may issue two

 17

instructions per cycle, simultaneous accesses to more than one parameters and local

variables occur frequently. If these sections are allocated in the SARAM block, then

additional memory wait cycles will hinder the performance. Hence, we allocate these

two stack sections in DARAM. For similar reason, the .bss (which contains global

variables) section is also assigned to the DARAM.

Since reference frame will be frequently accessed throughout the decoding of a

slice. The performance will suffer significantly if we have to access external memory

for the reference frame data. In order to accelerate overall decoding performance, we

use the on-chip memory to cache the reference frame data. Two memory buffers,

Internal Current Macroblock Buffer (ICMB) and Internal Reference Macroblock

Buffer (IRMB), are allocated in the on-chip memory. The IRMB contains some

macroblock data of previously decoded frame, and the ICMB is an internal buffer for

placing currently decoded macroblock YCBCR data. The on-chip memory map of the

MPEG-4 decoder for the DSP is shown in Fig. 7.

DARAM
64KB

SARAM
96KB

0x0000

0x8000

.cinit

.switch

.cio

.const

Internal Bitstream
Buffer(IBB)

ICMB

IMGLIB
IDCT Buffer

IRMB

.stack

.sysstack

.bss

.sysmem

.vector

IMGLIB
Interpolation Buffer

Clip_table

Fig. 7. Memory map of DSP on-chip memory

 18

 Due to the size limit of the internal memory, some data sections and the code

section have to be assigned to the external memory. We can use SDRAM as an

external memory space by using the DSP MMU to map part of its virtual memory

space to the SDRAM on the MPU side. When the DSP MMU is enabled, the DSP

address space starting from 0x050000 to 0xFFFFFF is mapped to the physical

SDRAM area that stores shared data between MPU and DSP. Fig. 8 shows the

external memory map of the DSP video decoder.

External Input
bitstream

Output YUV data

External Ref. Frame

External Cur. Frame
0x10100000

0x10200000

0x10300000

DSP MMU

SDRAM

0x10000000

0x200000

.text (Code section)

DSP Virtual Address

Fig. 8. Memory map of external memory (SDRAM)

3.1.2. Bitstream File Format Used in this Thesis

The input bitstream of the mpeg-4 decoder is placed in the external memory

(SDRAM). To achieve better decoding performance, we allocated an Internal

Bitstream Buffer (IBB) in the on-chip SARAM that is large enough to store bitstream

data for one compressed video frame. Before decoding a frame, we need to move the

bitstream of the frame into the IBB. Most file formats (such as the ISO MP4 standard)

allow quick extraction of one video frame of bitstream data from the raw bitstream.

To simplify the file parsing operation, we have designed a very simple file format that

stores the bitstream in the following way. The raw video header bitstream data and

each video frame of bitstream data are prefixed with a 16-bit length field that specifies

 19

the size (in bytes) of the video header or video frame. These length-prefixed video

data units are then stored in a file in decoding order. At decoding time, the decoder

can reads the bitstream file sequentially and transfers the bitstream of a single frame

into IBB quickly. Since standardized file format (such as the MP4 file) parsing is not

the key concern in this thesis, the simplified file format allows us to concentrate on

the design of the slice-based decoder.

3.1.3. Intra Frame Decoding Flow

For intra frame decoding, the input bitstream passes through the VLD module,

the DC/AC prediction module, the inverse quantization module, and the IDCT

module. The intra frame decoding flow chart is shown in Fig. 9.

Bitstream
VLD DC/AC

Prediction
Inverse

Quantization IDCT YCBCR

Bitstream
VLD DC/AC

Prediction
Inverse

Quantization IDCT YCBCR

Fig. 9. Intra frame decoding flow chart

In the proposed framework, the output YCBCR data is places into ICMB. This

buffer can hold 1×6 macroblocks. The size of ICMB is determined according to the

DMA throughput analysis experiment to be discusses in section 3.2.5. After decoding

an intra frame each time, the decoder will store the output YCBCR macroblock in

ICMB, which acts as a FIFO buffer. When the FIFO buffer is full, all the macroblock

data in ICMB will be transferred to the current frame buffer. The current frame buffer

is stored in external SDRAM. The intra macroblock decoding diagram is shown in Fig.

10.

 20

Decode
Intra-Macroblock

External Cur. Frame

move

ICMB

16
16

Fig. 10. Intra-macroblock decoding

3.1.4. Inter Frame Decoding Flow

For inter frame decoding, the decoding loop is similar to the intra frame decoding

loop. The only difference is that the reconstruction of the current macroblock YCBCR

data must accesses the previously decoded frame (called the reference frame) since

the motion compensation module need the reference frame to construct the current

macroblock predictor. The inter frame decoding flow chart is shown in Fig. 11.

Texture

Bitstream VLD

Inverse
Quantization IDCT

Motion Vector Motion
Compensation

Previous
Frame Buffer

♁ YCBCR

Texture

Bitstream VLD

Inverse
Quantization IDCT

Motion Vector Motion
Compensation

Previous
Frame Buffer

♁ YCBCR

Fig. 11. Inter frame decoding flow chart

In the proposed architecture, the previous frame buffer in Fig. 11 is the IRMB.

The size of the IRMB is only large enough to store 3×8 macroblocks since we must

limit the usage of the on-chip memory. However, this size limit assumes that the

 21

f_code in the video bitstream shall be 1 (we will explain the constraint shortly), which

conforms to the 3GPP specification for Simple Profile video support. The inter

macroblock decoding diagram is shown in Fig. 12.

Decode
Inter-Macroblock

External Ref. Frame

move
Reference

External Cur. Frame

move

ICMB

IRMB

16
16

Fig. 12. Inter-macroblock decoding

If the f_code is set to 1, when decoding a macroblock, the decoder would only

refer to the 3×3 macroblocks in the reference frame around the co-located macroblock

of current macroblock. Before the decoding of a new macroblock (except for the

boundary ones), 3×1 reference macroblocks will be transferred from the external

reference frame buffer into the IRMB. In order to improve the overall decoding

performance, we use the DSP DMA for macroblock transfer. The detail analysis about

using DSP DMA for macroblock transfer is shown in 3.2.5.

3.2. Detail Optimization Techniques for DSP Architecture

In this section, we discuss the techniques used to optimize the decoding

performance on the DSP core. In summary, the techniques used including C-level

code optimizations, using IMGLIB functions, using intrinsic functions, and using DSP

 22

DMA to pipeline decoding operations and data transfer operations.

3.2.1. C-code Level Optimization

The original C model of the video decoder was designed for general purpose

applications without any architecture dependent optimization. Before the

DSP-specific optimizations can be applied, coding styles that are not efficient for

embedded processor cores must be modified first. For example, conditional branches,

which stall the decoding pipeline should be removed as much as possible.

3.2.1.1. Using Function Pointer Array to Replace Switch Statement

Switch statement contains many comparison operations and conditional jumps.

For better efficiency, it can be replaced by function pointer array indexed by the

conditional variable of the switch statement. After using function pointer array to

replace switch statements in one of the motion compensation function,

interpolate8x8_switch(), the function gains 6% improvement by itself.

3.2.1.2. Using Clipping Table to Replace if Statement

Saturation operation is common to signal processing algorithms, including video

decoding. There are many modules in MPEG-4 video decoders that clip the out to a

range, say 0 ~ 255. If a clipping table is used to implement saturation operation, the

computation time improved 64.16% by itself.

3.2.2. Using TI C55x IMGLIB

The C5510 DSP in OMAP 5912 has some hardware acceleration support for

image and video processing routines. The routines can be invoked through the TI

C55x IMGLIB library API [15]. TI C55x IMGLIB is an optimized image/video

processing functions library for C programmers using TMS320C55x DSP. The library

 23

is a collection of 31 high-level optimized DSP functions for the TMS320C55x DSP. It

includes many C-callable, assembly-optimized, general-purpose image/video

processing routines. The library is implemented using C55x hardware extension

instructions, and the source code of the library is available. For video decoding, we

used the IMGLIB routines to support IDCT and interpolation functions.

3.2.2.1. IDCT Routine

 The TI C55x IMGLIB provides 2-D inverse discrete cosine transform for 8x8

IDCT coefficients. Table 2 shows the specification of the IMGLIB IDCT routine [15].

Table 2. Specification of the IMGLIB IDCT routine

IDCT for an 8x8 Image Block Using Built-In Hardware Extensions
Syntax void IMG_idct_8x8(short *idct_data, short *inter_buffer);

Inputs:
 idct_data: Points to a short format array [0...63]

containing an 8x8 macroblock row by row. Data format is
Q13.3.

 inter_buffer: Points to a short format array [0...71] used as
a temporary buffer that contains intermediate results in the
transform.

Outputs:

Arguments

 idct_data: Points to a short format array [0...63]
containing an 8x8 macro-block row by row. Data format
is Q16.0

Description
 The routine IMG_idct_8x8 implements the IDCT using built-in
hardware extensions for an 8x8 image block. Input terms are
expected to be signed Q13.3 values, producing signed Q16.0 results.

To use this IMGLIB IDCT routine for IDCT, one must use Q13.3 as the input

data format. However, most integer IDCT routine uses the input data format Q16.0

[16]. Thus, we need to shift left by 3 bits for each input coefficient. The left-shift

operation can be done using intrinsic function _shl(). The IMGLIB IDCT routine is

about 12 times faster than the original integer IDCT routine in our C model. Table 3

 24

shows the execution time of three IDCT routine.

Table 3. Execution time of each IDCT routine

Idct routine DSP cycles
Execution
time ratio

(%)
Our IDCT routine 5578 1204.75
IMG_idct_8x8() 581 125.48

IMG_idct_8x8() with Intrinsic shift 463 100.00

3.2.2.2. Interpolation Routine

 The TI C55x IMGLIB provides 16×16 block pixel interpolations which uses

built-in hardware extensions. Table 4 shows the specification of the IMGLIB

interpolation routine [15]. The IMGLIB interpolation has some difference to the

original 8×8 interpolation routine in our C model. First, the input pixel width is 16-bit

in the C model, but the IMGLIB interpolation expects the input to be 8-bit per pixel.

Second, the IMGLIB interpolation routine processes a 16×16 block, instead of an 8×8

block as the interpolation routine in our C model does. Third, the IMGLIB

interpolation routine processes pixel interpolations in the vertical, horizontal, and

diagonal directions simultaneously. But for video decoding, we only need

interpolation in one of these three directions. Finally, vertical pixel interpolation is a

little bit different between the IMGLIB routine and the one in our C model, as shown

in Fig. 13.

As a result, we need to do some adjustments to each 8×8 input block. The flow

chart is shown in Fig. 14. Simply put, we must pack the input data to fit the IMGLIB

interpolation format first, and then shift the position of each pixel to the right by 1

pixel. In addition, we also modified the assembly code of the IMGLIB interpolation

routine, because we only need 8×8 block interpolation instead of 16×16.

 25

Table 4. Specification of the IMGLIB interpolation routine

Pixel Interpolation for 16x16 Image block using built-in hardware
extensions
Syntax IMG_pix_inter_16x16(short *reference_window, short

*pixel_inter_block, int offset, short *align_variable);
Inputs:

 reference_window: Points to a packed integer format
buffer [0...1152] that contains a 48x48 image block row
by row. Must be doubleword aligned. Every four pixels
are packed into one 32-bit doubleword. Data format
Q16.0.

 offset: Specifies the top-left corner index of the 18×18
MBE (MBE=16×16 macroblock + extension) in
reference_window. Offset is even because of the
doubleword alignment.

 align_variable: Configures four alignment cases of the
MBE in the reference_window.

Outputs:

Arguments

 pixel_inter_block: Points to a packed integer format
buffer [0...612] that contains the 36×34 interpolated
result. Only the lower 33×33 part that corresponds to
the whole 36×34 interpolated zone is usually used.
Every four pixels are packed into one 32-bit
doubleword.

Description The routine IMG_pix_inter_16x16 implements pixel
interpolation for a 16×16 source block located in
reference_window using built-in hardware extensions and it is
useful in video compression. To implement full interpolation for
the 16×16 source block, the 18x18 MBE (MBE=16×16
macroblock + extension) is needed. The full interpolated zone is
composed of 36×34 pixels, but only the lower 33×33 part
corresponding to the full interpolated zone is usually interested.
The original pixels and interpolated pixels in the full interpolated
zone are organized in different 16 bits to adapt to the related
motion estimation technique.

 26

A B

C D

x

Y

Z

A B

C D

x

Y

Z

Our interpolation

A B

C D

x

Y

Z

A B

C D

x

Y

Z

IMGLIB’s interpolation

Fig. 13. IMGLIB interpolation

Source macro block

9

9
Pixels in 16-bit width unit 48

489
9

1

Specific input buffer

Pixels in 8-bit width unit

Format adjustment
Interpolation

in IMGLIB
Interpolated

Macro blocks

Rounding Alignment

Fig. 14. IMGLIB interpolation flow chart

Table 5 shows the improvement between two interpolation routines on decoding

300 frames of a 64 kbps QCIF foreman sequence.

Table 5. Improvement of using IMGLIB Interpolation routine

Interpolation routine Timer ticks
Execution

time ratio(%)
Original C-model interpolation 17325066 295.31
IMGLIB-based interpolation 5866564 100.00

3.2.3. Using Intrinsics

 The C55x CCS compiler provides intrinsic functions, which maps directly to

C55x instructions (similar to inline assembly). Those intrinsic functions include lots

of basic arithmetic instructions like addition, subtraction, and multiplication. Also

included are the saturation operation (but only supports 1- or 2-word size), the

rounding operation, shift operation, and the absolute value operation.

In the original C-model of the MEPG-4 decoder, we used some #define to define

some simple arithmetic operations, like #define MIN(X,Y) ((X)<(Y)?(X):(Y)).

 27

However, we can use intrinsic functions to replace them. For example, we can use

_min(X, Y) to replace the MIN(X, Y).

3.2.4. Using MUST_ITERATE Pragma

 The MUST_ITERATE pragma is used to convey programmer’s knowledge about

loops to the compiler. It should be used as much as possible to aid the compiler in the

optimization of loops. The format of the pragma is:

#pragma MUST_ITERATE(min, max, mult)

All fields are optional, min is the minimal number of iterations of the loop, max is

the maximal number of iterations of the loop, and mult tells the compiler that the loop

always executes a multiple of mult times. If some of these values are not known until

runtime, do not include them in the pragma. The MUST_ITERATE pragma must

appear immediately before the loop.

We can use this technique in our c code program, for example, if a loop must

iterate 64 times. We can use a MUST_ITERATE pragma to make the compiler

generates an efficient hardware loop by the following statement.

#pragma MUST_ITERATE(64,64)

However, according to our experiments, using the MUST_ITERATE pragma in

the C model does not gain much improvement at all. The reason is probably because

the loop iterations in the C model are usually fixed at compiler time. With level-three

optimization and fixed loop iterations, the compiler can achieve the same performance

as if the MUST_ITERATE pragma is used.

3.2.5. Using DMA

TI C5510 DSP core includes a DMA(Direct Memory Access) logics for data

transfer. DMA can move data without CPU involvement, and allows burst mode

 28

transfer that may not be supported by the processor cores. While the processor core is

busy processing data internally, the DMA controller can use the system bus to transfer

data simultaneously.

The C5510 DMA [17] has 6 channels where each channel has independent

source/destination addresses, priority selection, channel enable control, and interrupt

selection. The source/destination memory space for a DMA data transfer can be the

external memory interface, SARAM, DARAM, and peripherals (like the serial ports).

Besides, DSP DMA support four addressing modes including constant addressing,

post-incremented addressing, index addressing, and double-indexed addressing. Those

four addressing modes can help us to move data flexibly.

3.2.5.1. DMA Throughput Analysis

Although, DMA can help us to get better performance, we have to determine a

reasonable transfer block size for video decoding applications. We conducted two

experiments to solve this issue. First, we use the DMA to move n macroblock data

from SARAM to SDRAM that simulate the data transfer from ICMB to the external

current frame buffer. The experimental result is shown in Table 6. According to the

experiment, we can easily see that when n becomes larger, the average moving time

per macroblock is decreasing. On the other hand, the ICMB occupies more on-chip

memory when n is large. In our design, we set the number of macroblocks to 6 for

ICMB to balance between the on-chip memory space used and DMA data transfer

performance.

 29

Table 6. DMA transfer performance from SARAM to SDRAM

Unit : DSP cycles

of macroblock

Total transfer
 time Transfer time per MB

1 979 979.0

2 1483 741.5

3 2023 674.3

4 2511 627.7

5 3037 607.4

6 3583 597.1

7 4086 583.7

8 4580 572.5

9 5133 570.3

Second, we use the DMA to transfer n 3×1 macroblocks from SDRAM to

DARAM to simulate the transfer from external reference frame to IRMB. The

experimental result is shown in Table 7. According to the experiments, we also know

that when n becomes larger, the average moving time per 3×1 macroblock is

decreasing. On the other hand, one must take into account the overlap between DMA

transfer time and DSP decoding time for pipeline operation. The average time for

decoding an inter macroblock is approximately 6612 DSP cycles (see Table 9). As a

result, we need to restrict each burst of DMA data transfer time to 6612 cycles in

order to arrange for maximal overlap of DSP decoding operation and DMA transfer

operation for parallel execution. Finally, in our design, we select n to 1 here that

means we move one group of 3×1 macroblocks to internal memory space per inter

macroblock decoding.

 30

Table 7. DMA moves n 3×1 macroblocks from SDRAM to DARAM

Unit : DSP cycles

of 3×1 macroblock groups Total transfer time Transfer time per group

1 2571 2571.0

2 4702 2351.0

3 6809 2269.6

4 8966 2241.5

5 11151 2230.2

6 13232 2205.3

7 15337 2191.0

8 17413 2176.6

9 19535 2170.5

3.2.5.2. Data Transfer for Boundary Pixel Extension

For inter frame decoding, the motion compensation module will reference the

previous frame. The motion vector may indicates that compensation from outside the

frame boundary is required. Therefore, we need to perform boundary extension from

previous frame. In the proposed design, boundary extension is performed on-the-fly

when reference data is transferred by the DMA from the external reference frame

buffer to the IRMB.

The decoding pipeline is set up so that when the DMA is transferring reference

data of macroblock i+1 to on-chip IRMB, the DSP core is decoding macroblock i in

parallel. In the next two sections, we perform some analysis on the overlapping

operation of the inter frame decoding pipeline. First, in section 3.2.5.3, the case of

decoding top/bottom rows of macroblocks are investigated. Then, in section 3.2.5.4,

the case of decoding the middle rows of macroblocks is analyzed.

 31

3.2.5.3. Decoding Pipeline Analysis for Top/Bottom Rows of Macroblocks

For top or bottom rows of macroblock decoding, boundary extensions will be

performed. The first and the last macroblocks in the top row require boundary

extension in three directions. The others macroblocks in the top row only need

boundary extension in one direction, as shown in Fig. 15 (the frame size is 176×144

in this example).

16

16

208

176

176

144

Decoding

12 13 14 15 16 17 18 19 20 2111

1 2 3 4 5 6 7 8 9 100 B14

B16

B13

B15

B2 B3 B4 B5 B6 B7 B8 B9 B10 B11B1B0 B12

B17 23 24 25 26 27 28 29 30 31 3222 B18

16

16

208

176

176

144

Decoding

12 13 14 15 16 17 18 19 20 2111 12 13 14 15 16 17 18 19 20 2111

1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 9 100 B14

B16

B13

B15

B2 B3 B4 B5 B6 B7 B8 B9 B10 B11B1B0 B12B2 B3 B4 B5 B6 B7 B8 B9 B10 B11B1B0 B12

B17 23 24 25 26 27 28 29 30 31 3222 23 24 25 26 27 28 29 30 31 3222 B18

Fig. 15. Decoding of top row of macroblocks for QCIF video

When decoding macroblock 0, the decoder must transfer macroblock number 0, 1,

11, 12 from the previous frame buffer to the IRMB first, and then apply boundary

extension to create macroblocks B0, B1, B2, B13, and B15 in the IRMB. But when

decoding macroblock 1, the decoder just needs to transfer macroblock 2 and 13, and

use boundary extension to create macroblock B3 in the IRMB. The timing diagram of

the pipeline operation is shown in Fig. 16. The definitions of some symbols in Fig. 16

are explained in Table 8.

 32

 Fig. 16 (A) shows sequential operation of the decoding process, while Fig. 16 (B)

shows pipeline operation of the decoding process. Obviously, for top/bottom rows of

macroblocks, there is not much overlap of execution time between DMA operations

and DSP operations. The reason is that we need to make sure the reference data is in

the internal buffer first, before we can start the boundary extension process. The

measured time of each operation is show in Table 9.

Table 8. Definition of M., B. and D.

Definition Description Example

M. Use DMA to move data
M.(1,2) : Use DMA to move macroblock 1 and

macroblock 2

B.
Use DMA to do

boundary extension

B.(B0,B1) : Use DMA to do boundary extension

for macroblock B0 and macroblock B1

D. Decode an macroblock D.(1) : Decode macroblock 1

…
M.(0,1,11,12)

B. (B0, B1, B2,
B13, and B15)

M.(2, 13)
B.(B3)

D.
(0)

M.(3, 14)
B.(B4)

D.
(1)

M.(4, 15)
B.(B5)

D.
(2)

M.(5, 16)
B.(B6)

D.
(3)

M.(6,17)
B.(B7)

D.
(4)

M.(5,6,7,16,17,18)
B.(B6,B7,B8)

D.
(5)

1000 2000 3000 4000 5000 6000
(A) Sequential execution of macroblock decoding and DMA data transfer

M.(5,6
7,16,17,18)

M (0,1,11,12)
B. (B0, B13
, and B15)

M.
(2, 13)

D.
(0)

M.
(3, 14)

D.
(1)

M.
(4, 15)

D.
(2)

M.
(5,16)

D.
(3)

M.
(6,17)

D.
(4)

D.
(5)

M.
(8, 19)

B.
(B3)

B.
(B4)

B.
(B5)

B.
(B6)

B.
(B7)

B.
(B6,B7,B8)

…

B.
(B1,B2)

1000 2000 3000 4000 5000 6000

(B) Overlapped execution of macroblock decoding and DMA data transfer

Fig. 16. Timing diagram of decoding of top/bottom rows of macroblocks

 33

Table 9. Execution time of decoding of top/bottom rows of macroblocks

Sequential execution

(timer ticks)
Overlapped execution

(timer ticks)
DMA

Overlapped %
 D.(x), x=0, 1, 2, …

 (Decode a macroblock)
412.27 427.51

DSP side: 770.72 M.(0,1,11,12) and
B.(B0,B1,B2,B13,and B15)

840.36
DMA side: 72.34

8 %†

DSP side: 611.54 M.(5,6,7,16,17,and 18) and
B.(B6,B7,and B8)

755.78
DMA side: 149.56

19%†

DSP side: 284.66 M.(x, x+11) and B.(Bx+1)
(x=2, 3, 4, 5, …)

343.29
DMA side: 60.14

17%†

†：The overlapped execution percentage is approximation

3.2.5.4. Decoding Pipeline Analysis for Middle Rows of Macroblocks

For each middle row of macroblocks, only the left most and right most

macroblocks have to perform boundary extension before decoding. Take the non-top

row of macroblocks of frame for example, and the diagram is shown in Fig. 17. We

only perform boundary extension for macroblock number B13, B14, B15, B16, B17,

and B18 in the previous frame. The timing diagram is shown in Fig. 18. As one can

see, the decoding pipeline has much higher degree of overlapping operations in this

case.

 34

16

16

208

176

176

144

12 13 14 15 16 17 18 19 20 2111

1 2 3 4 5 6 7 8 9 100 B14

B16

B13

B15

B2 B3 B4 B5 B6 B7 B8 B9 B10 B11B1B0 B12

B17 23 24 25 26 27 28 29 30 31 3222 B18

Decoding

16

16

208

176

176

144

12 13 14 15 16 17 18 19 20 2111

1 2 3 4 5 6 7 8 9 100 B14

B16

B13

B15

B2 B3 B4 B5 B6 B7 B8 B9 B10 B11B1B0 B12

B17 23 24 25 26 27 28 29 30 31 3222 B18

16

16

208

176

176

144

12 13 14 15 16 17 18 19 20 2111 12 13 14 15 16 17 18 19 20 2111

1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 9 100 B14

B16

B13

B15

B2 B3 B4 B5 B6 B7 B8 B9 B10 B11B1B0 B12B2 B3 B4 B5 B6 B7 B8 B9 B10 B11B1B0 B12

B17 23 24 25 26 27 28 29 30 31 3222 23 24 25 26 27 28 29 30 31 3222 B18

Decoding

Fig. 17. Decoding of middle rows of macroblocks for QCIF video

Generally speaking, we can set three DMA channels to transfer the macroblock

reference data of Y, CB, and CR components independently. However, according to our

experiments, using three DMA channels to access the external memory via EMIF

(external memory interface) at the same time causes serious degradation of

performance. Therefore, we only use one DMA channel to transfer CB, CR, and Y

components sequentially. The measured time of each operation is show in Table 10.

With this pipelined design, we have achieved 35% performance improvement

compared to the original sequential, un-pipelined decoder C model.

 35

M.(0,1,11,
,12,22,23)

B.(B13,B15,B17)

M.
(2,13
,24)

D.(11) …
M.

(3,14
,25)

D.(12)
M.

(4,15
,26)

D.(13)
M.

(5,16
,27)

D.(14)
M.

(6,17
,28)

D.(15) M.(5,6,7,16,17,18,
27,28,29)D.(16)

1000 2000 3000 4000 5000 6000

(A) Sequential execution of macroblock decoding and DMA data transfer

M.(0,1,11
,12,22,23)

M.
(2,13
,24)

…

D.(11)
M.

(3,14,
25)

D.(12)
M.

(4,15,
26)

D.(13)
M.

(5,16
,27)

D.(14)
M.

(6,17,
28)

D.(15) D.(16)
M.

(8,19,
30)

B.
(B13,
B15,
B17)

M.
(2,13
,24)

M.
(3,14,

25)

M.
(4,15,

26)

M.
(5,16
,27)

M.
(6,17,
28)

M.(5,6,7,
16,17,18
27,28,29)

Waiting
For

DMA

1000 2000 3000 4000 5000 6000

M.(5,6,7,
16,17,18,
27,28,29)

(B) Overlapped execution of macroblock decoding and DMA data transfer

Fig. 18. Timing diagram of decoding of middle rows of macroblocks

Table 10. Execution time of decoding of middle rows of macroblocks

Sequential execution

(timer ticks)
Overlapped execution

(timer ticks)
DMA

Overlapped %
D.(x), x=11,12, 13, …

 (Decode a macroblock)
412.27 427.51

DSP side: 621.66 M.(0,1,11,12,22.23) and
B.(B13,B15,and B17)

799.37
DMA side: 188.32

23%†

DSP side: 210.31 M.(5,6,7,16,17,18,27,28,
and 29)

829.26
DMA side: 661.65

24%†

DSP side: 190.59 M(x, x’)
(x=13, 14, 15, …)

327.57
DMA side: 141.93

42%†

†：The overlapped execution percentage is approximation

3.2.6. Performance Improvement Summary

The performance improvements of each of the techniques we have used to

optimize the DSP decoder is summarized in Table 11. The target sequence is the

300-frame QCIF version of FOREMAN sequence at 64 kbps. The optimized DSP

decoder will be used as the baseline reference to compare against the proposed

 36

approach in Chapter 4.

Table 11. Performance improvement of DSP video decoder

State Item CPU cycles Second FPS

Performance
improve

from
previous

state

1
Initial MEPG-4 decoder C
model on DSP

2762695282 28.78 10.42

2
Compiler using –o3 and –pm
option

2075085682 21.62 13.88 33.14 %

3
Code section (.text) into
SDRAM

5652045923 58.88 5.10 -63.29 %

4 Enable instruction cache 2173584906 22.64 13.25 260.03%

5
Using intrinsic function in
Quantization module for
saturation

1677344205 17.47 17.17 29.58 %

6
Using IMGLIB for IDCT
module

1415540100 14.75 20.35 18.49 %

7
Using IMGLIB for interpolation
module

1052574420 10.96 27.36 34.48 %

8
Using ICMB to cache output
data

948365118 9.88 30.36 10.99 %

9
Using IRMB to cache reference
data and using DMA for
boundary extension

582313481 6.07 49.45 62.86 %

10
Using DMA for data transfer
and boundary extension

492146185 5.13 58.51 18.32 %

11 Adopt pipeline design 363756454 3.79 79.17 35.30 %

12
Using clipping table for
saturation

329840944 3.44 87.31 10.28 %

 37

Chapter 4. Dynamic Task Partition

Framework

Generally speaking, if we want to port a single-core application into the dual-core

platforms, we need to partition original application into several sub-tasks. The

partitioning methodologies for heterogeneous dual-core platforms typically use static

partitioning at development time, and assign each sub-task to either the RISC core or

the DSP core, but not both. We proposed a dynamically partitioning approach, and

implemented an MPEG-4 decoder on the OSK 5912 platform to demonstrate the

efficiency of the proposed approached. The details of the dynamically partitioned

MPEG-4 decoder are present in this chapter.

4.1. Design Issues for Dual-Core Processing

Current heterogeneous dual-core systems have some architectural issues that

hinder the performance of the dynamic task portioning computation model. These

issues are discussed in the next few subsections.

4.1.1. Data Accessing Unit Size

Generally, most common processor use byte as data accessing unit. But some

application specific processor may have optimal data accessing unit size. For example,

on OMAP 5912, the RISC core is a 32-bit ARM that allows byte addressing while the

DSP core is a 16-bit processor that allows only 16-bit word addressing.

Therefore it is not possible to design a single data structure that is optimized for

both cores. Since the computation results of one task may become the input of a task

that is assigned to a different processor in a dynamic task partitioning system, a

 38

simple (non-optimal) solution to this problem is to set the data access unit size to the

least common multiple of the optimal word sizes of the cores. However, for optimal

performance, we should either use two heterogeneous cores with same optimal data

accessing unit size or design some programmable on-the-fly data conversion (or

packing/unpacking) circuitry for shared data structures.

4.1.2. Endian Issue

In the mix-endian systems, endian conversion may be required if a processor

accesses a memory region containing data stored in a different endianness format. For

example, if a big-endian processor accessing data stored in little-endian format, then

the endianness conversion may be required. Special circuitry should be available to

take care of the endian issue in mix-endian heterogeneous multi-core systems.

Within the OMAP5912 device, the ARM operates in little-endian mode, DSP uses

the big-endian data format. However, in the OMAP5912 device, it has endianness

conversion circuitry. When DSP or DSP DMA accesses to external memory regions,

there is an endianness conversion unit inside the DSP MMU. On the other hand, when

the MPUI accesses to the DSP resources, there is an endianness conversion within the

MPU interface.

In the bitstream parsing of MPEG-4 decoder, it has a byte and word swap

computation. However, DSP core will get input bitstream from the SDRAM via DSP

MMU. As a result, we do not need to perform byte and word swap if we enable the

endianness conversion unit inside the DSP MMU.

According to our experiment, the endianness conversion circuitry only can be set

on the booting time. In the DSP core of dual-core decoding, if we enable the

endianness conversion, it will affect not only the input bitstream but also the output

 39

decoded frame. According to our experiment, disable the endian conversion circuitry

will gain better performance than enable it. This is we do the software endianness

conversion on input bitstream is less computation than on the output decoded frame.

4.1.3. Cache Coherency Problem

Most high performance processors core today have data cache. In a dynamic task

partitioning system, this may cause serious issue since the shared data processed by a

sequence of tasks may be cached differently on different processor cores. Consider a

situation as following. When a processing core accesses to a memory location and

saves the data inside its cache. Later, the other processing core is processing and

writing data to this same location. However, since this memory location is kept in the

cache of first core, the first processing core may read the old data instead of new data.

The problem is cache coherency problem.

A trivial solution is to disable caching of the shared data. However, this affects

the performance of many processor cores. Therefore, scratch pad memory should be

used wisely to alleviate the performance hit due to disabling of data cache. For

example, on OMAP 5912, there are two in-core memories (SARAM and DARAM)

that should be used properly.

On the dual-core processing MPEG-4 decoder, the ARM core and the DSP core

share the current decoded frame and reference frame on SDRAM. We can disable

those memory regions, but the performance of the decoding will decrease obviously.

In the proposed design, we still enable the data cache of the ARM core, because the

cache coherency problem does not happen exactly. The DSP core write decoded slice

to the share memory region and ARM core refer to those data in next decode slice.

However, the size of the data cache of ARM core is 8k byte. When the ARM core

refers to those data, it must be not in the cache. As a result, we still enable the data

 40

cache of the memory region that contains reference frame and current frame because

of the performance consideration.

4.2. Inter-Processor Communication of Dual-core Decoding

As we mentioned in section 1.2.2, there are three mechanisms for communication

between the ARM core and the DSP core. In our proposed dynamically partitioned

dual-core decoding, we use those mechanisms for communication between the ARM

core and the DSP core.

First of all, large amount of shared video data is placed in SDRAM so that both

cores can access these data directly. A module, refer to as the Task Partitioner, in the

proposed architecture is in charge of dynamic assignment of task to either ARM core

or the DSP core. The Task Partitioner is running on the ARM side and therefore it

requires inter-processor communication mechanism to communicate with the DSP as

well. Mailbox mechanism is used by the Task Partitioner to communicate with the

DSP core.

4.3. Global Memory Map of Dynamically Partitioned

MPEG-4 Decoder

The global memory map of the dynamically partitioned MPEG-4 decoder is

shown in Fig. 19. For the DSP core, the memory map is the same as the optimized

DSP decoder described in Chapter 3. For the ARM core, all the data are located in the

SDRAM. The ARM cache is turned on to improve data access performance.

 41

DARAM
(64K bytes)

SARAM
(96K bytes)

Memory map on DSP
0×00 0000

0×01 0000
SDRAM

(32M bytes)

Memory map on ARM

0×1000 0000

MPUI

DSP MMU

0×08 0000

Code section

Data section

Input bitstream

Reference frame

QVGA
Frame buffer

Current frame

IRMB

IMGLIB Buffer

Data section

Internal Bitstream
Buffer (IBB)

ICMB

Clipping table

Macroblock Info.

: DSP access only

: ARM access only

: Both ARM / DSP access

Code section

0×E000 0000

Fig. 19. Global memory map of the dynamically partitioned MPEG-4 decoder

There are five boot modes for the DSP bootloader. The MPU core can select any

of these boot modes by writing to the DSP_BOOT_CONFIG register. The address

0x80000 is the boot address of the external memory boot mode [18]. The code section

of DSP is stored in SDRAM and is mapped to 0x80000 in the DSP virtual memory

space by the DSP MMU. The DSP instruction cache is also enabled to accelerate

instruction fetch performance.

4.4. Dual-core Decoding Architecture

In the proposed dynamic task partitioning framework, the task is dynamically

partitioned according to runtime loading of each core. A system control module called

the Task Partitioner, which is responsible for dynamic task assignment, is running on

the ARM core, and communicates with the DSP core via mailboxes. On the other

hand, there is a Task Interface running on the DSP core which is waiting to receive the

tasks assigned by the Task Partitioner. The dual-core decoding architecture is shown

in Fig. 20.

 42

Initialization
(I-cache enable, Global interrupt)

Task
Partitioner

DSP core

Assign task

Response

Task Interface

Processing Task

Finish

Waiting

Finish

Decoding

ARM core

Initialization
(DSP MMU, Global interrupt, Timer)

Get input bitstream

Fig. 20. Dual-core decoding architecture

4.4.1. Task Granularity

The experimental results in [11] show that dynamic partitioning could increase

the overall performance. However, the experiments also show that the inter-processor

communication overhead is a crucial factor for such systems. Therefore, the choice of

task granularity is crucial for the performance of a dynamic task partitioning system.

If the task granularity is too small, the communication overhead between two cores

may out-weight the performance gain from parallel execution of the tasks. On the

other hand, if the task granularity is too large, then the computation model would falls

back to the static task partition model.

The task granularity is defined at the slice-level for the proposed MPEG-4 video

decoder. In a video bitstream, each slice includes a start code followed by a sequence

of coded macroblocks, and there is no dependency between two different slices. Thus,

a video decoder application can quickly locate the bitstream data required by a task

(i.e. decoding of a slice) and dynamically assign the task either to the ARM core or

the DSP core. Parallel execution is achieved automatically if both cores are available.

 43

4.4.2. Mailbox Command API

The ARM core (Task Partitioner) and DSP core (Task Interface) communicate

with each other via mailbox interrupt mechanism. In our proposed design, there are

four mailbox command APIs from Task Partitioner to Task Interface, and shown in

Table 12. Each mailbox command API including command register field and data

register field. On the other hand, there are five mailbox command APIs from Task

Interface to Task Partitioner, and shown in Table 13. The Task Partitioner and Task

Interface share those commands, and when a core invoke a mailbox command

interrupt, the interrupt service routine of the other core will do the corresponding

work according to the mailbox command register field.

Table 12. Mailbox command from Task Partitioner to Task Interface

Command register field Data register field Description

A2D_INITIALIZE_DEOCDER Bitstream size Initialize decoder

A2D_PARSE_SLICE Bitstream size Parse slice information

A2D_DECODE_SLICE Slice number Decode a slice

A2D_RELEASE_DECODER 0 Release decoder

Table 13. Mailbox command from Task Interface to Task Partitioner

Command register field Data register field Description

D2A_READY 0 Indicate DSP core is ready

D2A_INITIALIZATION_DONE 0 Initialization done

D2A_PARSIGN_DONE 0 Parsing slice information

 44

4.4.3. Task Partitioner and Task Interface

The Task Partitioner and the Task Interface is the control module of dynamic task

partitioning system. The diagram of Task Partitioner and Task Interface is shown in

Fig. 21. On the ARM core, there are three local variables inside the Task Partitioner

(described in Table 14). Those variables record important information about decoding.

The decoder begins its life cycle on the ARM core. It will enter the decoding stage

after global initialization (by ARM). The decoder will communicate with the Task

Partitioner and get the next decoding slice number. The next decoding slice number is

calculated as follows:

Slice Number = MAX (ARM_SLICE_NUM, DSP_SLICE_NUM) + 1 ;

During the decoding stage, slice decoding tasks are continuously dispatched to

either core until the FINISH_DECODE_FRAME_FLAG is raised (means all the

slices in a frame has been decoded). The control then returns to the ARM side to

finish up decoding of current frame and initialize the next frame for decoding again.

done

D2A_DECODING_SLICE_DONE Slice number Decoding slice done

D2A_RELEASING_DONE 0 Releasing done

 45

Task
Partitioner

Task InterfaceARM to DSP
Mailbox

ARM core DSP core

command,

data

Initialize decoder

Parse slice

DSP to ARM
Mailbox

Decode a slice

Release decoder

Decoding
a slice

ARM_SLICE_NUM

DSP_SLICE_NUM

FINISH_DECODE_
FRAME_FLAG

Waiting

SLICE_NUM

DECODE_SLICE_FLAG

DECODE_FINISH_FLAG

Finish

Fig. 21. The Task Partitioner and the Task Interface diagram

Table 14. The local variables inside the Task Partitioner

Variables Description Value

ARM_SLICE_NUM Recode the slice number ARM decoding
0 ~

(slice numver-1)

DSP_SLICE_NUM Recode the slice number DSP decoding
0 ~

(slice numver-1)

FINISH_DECODE_

FRAME_FLAG

A flag which represent finish decoding a

frame
0 or 1

On the other hand, the Task Partitioner assigns a task to the DSP core via a

mailbox command API to the DSP Task Interface module. There are three local

variables inside the Task Interface module (shown in Table 15).

The interrupt service routine of mailbox will change some local variables inside

 46

the Task Interface module. Take the command A2D_PARES_SLICE for example, the

SLICE_NUM will be assigned to a number and the DECODE_SLICE_FLAG will be

assigned to 1. After change those local variable inside the Task Interface module, the

Task Interface module will choose a task for execution. After the execution of a task,

the DSP core will issue a mailbox interrupt to inform the ARM core that the task is

finished. The communication sequences between the Task Partition and the Task

Interface module is shown in Fig. 22.

Table 15. The local variables inside the Task Interface

Variables Description Value

SLICE_NUM
The decoding slice number which assign by

Task Partitioner

0 ~

(slice numver-1)

DECODE_SLICE_F
LAG

A flag represent can jump to decode a slice 0 or 1

DECODE_FINISH_
FLAG

A flag represent finish decoding 0 or 1

 47

Task
Partitioner

Task
Interface

A2D_INITIALIZE_DEOCDER

D2A_INITIALIZATION_DONE

D2A_READY

A2D_PARES_SLICE

D2A_PARSIGN_DONE

A2D_DECODE_SLICE

D2A_DECODING_SLICE_DONE

…
A2D_DECODE_SLICE

D2A_DECODING_SLICE_DONE

…

A2D_Release_DECODER

D2A_RELEASING_DONE

Initialization

Parsing Slice
Information

Decoding Slice

Release

Decoder

Procedure

Per frame

Fig. 22. Task Partitioner and Task Interface communication sequence diagram

4.5. Communication Overhead

As we mentioned before, the Task Partitioner and the Task Interface communicate

with each other via mailbox interrupt mechanism. A pair of mailbox interrupts

between Task Partitioner and Task Interface is described in Table 16. According to our

experiments, the turn-around time of mailbox interrupt communication cost about

2188 CPU cycles (from stage 1 to stage 7 described in Table 16).

However, the QVGA dual-core decoding will invoke 1202 times of mailbox

interrupt which includes one A2D_INITIALIZE_DEOCDER command, 300 times

A2D_PARSE_SLICE commands, 900 times A2D_DECODE_SLICE commands, and

one A2D_RELEASE_DECODER command. As a result, the mailbox interrupt

communication overhead cost about 0.43% of QVGA dual-core decoding time.

 48

Besides, the communication overhead will be decreased when the resolution of

decoding frame becomes larger.

Table 16. The execution stage of communication via mailbox interrupt

Stage Description

1 ARM core invokes a mailbox interrupt to DSP core

2 DSP core jumps into a ISR of mailbox interrupt

3 DSP core is execute ISR of mailbox interrupt

4 DSP core invokes a mailbox interrupt to ARM core

5
DSP core is exits ISR of mailbox interrupt, and ARM core jumps into a ISR

of mailbox interrupt at the same time

6 ARM core is execute ISR of mailbox interrupt

7 ARM core is exits ISR of mailbox interrupt

 49

Chapter 5. Experimental Results

This chapter will show some experimental results. DSP-only decoding

experiments are presented in section5.1, and dual-core dynamic task partitioning

decoding performance is presented in 5.2. Table 17 shows some system parameters

used in the experiments. Although the maximal clock rate of the OMAP 5912

processor is 192 MHz, we only set the system clock to 96 MHz for the experiments.

Table 17. Processor parameters used for the experiments

Processor Parameters

Clock rate: 96 MHz
ARM core

I-cache, D-cache: enable

Clock rate: 96 MHz
DSP core

I-cache: enable

Traffic Controller Clock rate: 96 MHz

DSP DMA Burst mode, 16-bit width

5.1. Experiment of QCIF Decoding Performance

We have used five 300-frame QCIF (176×144) test sequences including Akiyo,

Carphone, Clair, Foreman, and Mother-and-Daughter to test the proposed system. The

target bitstreams are coded at both 64kbps and 128kbps. The decoding performance of

64kbps and 128kbps is shown in Table 18 and Table 19, respectively. The test

sequences and coding parameters (QCIF resolution and 64kbps) are selected in order

to compare our performance against the optimized DSP decoder published by TI [19].

 50

Table 18. QCIF decoding performance of 64kbps input bitstream

Sequence CPU cycles Second FPS
Performance

Ratio

Akiyo 344323868 3.59 83.64

Carphone 436522868 4.55 65.98

Clair 423607960 4.41 67.99

Foreman 427053984 4.45 67.44

Mother and
daughter

410506380 4.28 70.16

 ARM-only

Average 408403012 4.25 70.52 74.6%

Akiyo 251409616 2.62 114.55

Carphone 319894240 3.33 90.03

Clair 314714144 3.28 91.51

Foreman 329840944 3.44 87.31

Mother and
daughter

308166704 3.21 93.46

DSP-only

Average 304805129.6 3.18 94.49 100.0%

Akiyo 230459136 2.40 124.97

Carphone 256430638 2.67 112.31

Clair 246616494 2.57 116.78

Foreman 259608406 2.70 110.94

Mother and
daughter

243840726 2.54 118.11

Dual-core

Average 247391080 2.58 116.41 123.2%

As Table 18 and Table 19 shown, we found that the decoding performance of the

DSP-only solution is outperforming the ARM-only solution in both bitrates. The

results also meet our expectation that a DSP core can achieve better performance than

a general purpose RISC core for multimedia processing. The dynamic task

partitioning dual-core decoding implementation is about 23.2% and 27.8% faster on

average than the DSP-only implementation at 64kbps and 128kbps respectively.

 51

Table 19. QCIF decoding performance of 128kbps input bitstream

Sequence CPU cycles Second FPS
Performance

Ratio

Akiyo 463978876 4.83 62.07

Carphone 603838112 6.29 47.69

Claire 549179806 5.72 52.44

Foreman 621109950 6.47 46.37

Mother and
daughter

570463228 5.94 50.49

ARM-only

Average 561713994.4 5.85 51.27 67.1%

Akiyo 298865728 3.11 96.36

Carphone 399806496 4.16 72.03

Claire 383056864 3.99 75.18

Foreman 420334896 4.38 68.52

Mother and
daughter

383495136 3.99 75.10

DSP-only

Average 377111824 3.93 76.37 100.0%

Akiyo 248332388 2.59 115.97

Carphone 320172226 3.34 89.95

Claire 287964328 3.00 100.01

Foreman 316912026 3.30 90.88

Mother and
daughter

301094812 3.14 95.65

Dual-core

Average 294895156 3.07 97.66 127.8%

According to [19], the DSP-only decoding performance published by TI is about

120FPS at 64kbps QCIF resolution for the same five sequences we used in the

experiments. However, the performance number does not include the latency

associated with memory-to-memory transfer. As we described in 3.2.5.3 and 3.2.5.4,

memory transfer occupies a large portion of the decoding time (there is about 30%

pure data transfer overhead, even after DMA are used to pipeline data transfer and

 52

computation). It is obviously that our DSP-only solution achieves better decoding

performance than that published by TI in [19].

5.2. Experiment of QVGA Decoding Performance

In this section, we have used five 300-frame QVGA (320×240) test sequences

including Akiyo, Container, Foreman, Mother-and-Daughter, and Silent to test the

proposed system. The compressed bitstream bitrate is 128kbps. The decoding

performance of the ARM-only, DSP-only, and proposed dual-core approaches are

shown in Table 20. As Table 20 shows, the dynamic task partitioning dual-core

implementation is nearly 40% faster on average than the DSP core. Because of the

middle rows of macroblocks are increased, the dual-core decoding performance is

much higher than DSP-only compare with QCIF resolution. The task ratio assigned to

each core in the dual-core platform is shown in Table 21.

Table 20. QVGA decoding performance

Sequence CPU cycles Second FPS
Performance

Ratio

Akiyo 917365562 9.56 31.39

Container 918535156 9.57 31.35

Foreman 1029947720 10.73 27.96

Mother and
daughter

1061224218 11.05 27.14

Silent 974654142 10.15 29.55

 ARM-only

Average 980345359.6 10.21 29.38 87.0%

Akiyo 792730192 8.26 36.33

Container 793496688 8.27 36.30

Foreman 925548560 9.64 31.12

DSP-only

Mother and
daughter

923119968 9.62 31.20

 53

Silent 832330352 8.67 34.60

Average 853445152 8.89 33.75 100.0%

Akiyo 576888698 6.01 49.92

Container 588884308 6.13 48.91

Foreman 646439190 6.73 44.55

Mother and
daughter

642279328 6.69 44.84

Silent 600200938 6.25 47.98

Dual-core

Average 610938492.4 6.36 47.14 139.7%

Table 21. Partition number decoding slice

 Number of decoding slice Partition Ratio
ARM core 600 0.4
DSP core 900 0.6

Total 1500 1

5.3. Experiment of Adding another Task to DSP Core

For the proposed dynamically partitioned approach, the Task Partitioner will

assign task to the DSP dynamically. When the DSP is loaded with other tasks, more

workload will be assigned to the RISC core instead.

In order to simulate behavior, we add a second task to DSP core. The task is

performs random duration of busy computations continuously. Under this more

realistic application scenario, the decoding performance of ARM-only, DSP-only and

the proposed dual-core are shown in Table 22.

As Table 22 shows, the performance of dual-core decoding is still faster than

ARM-only and DSP-only because of the dynamically partitioned approach. The

execution time of ARM core is as same as Table 20, but the execution time of the

DSP-only and dual-core decoding is longer because of the DSP core is busy with

 54

other tasks.

Table 22. QVGA Decoding performance when DSP is busy

Sequence CPU cycles Second FPS
Performance

Ratio

Akiyo 917365562 9.56 31.39

Container 918535156 9.57 31.35

Foreman 1029947720 10.73 27.96

Mother and
daughter

1061224218 11.05 27.14

Silent 974654142 10.15 29.55

 ARM-only

Average 980345359.6 10.21 29.38 122.4%

Akiyo 1128877660 12.36 24.27

Container 1124318853 11.71 25.62

Foreman 1290751400 14.13 21.23

Mother and
daughter

1281682541 13.35 22.47

Silent 1175175612 12.24 24.51

 DSP-only

Average 1200161213.4 12.50 24.00 100.0%

Akiyo 650413214 6.78 44.28

Container 606766292 6.32 47.46

Foreman 705036440 7.34 40.85

Mother and
daughter

725642676 7.56 39.69

Silent 681919564 7.10 42.23

Dual-core

Average 673955637.2 7.02 42.73 178.0%

In order to provide better insight to the nature of dynamic task partitioning, the

task partition ratio of dual-core decoding of each sequence is shown in Table 23. As

Table 23 shows, we can find that due to another task is added to DSP core, the Task

 55

Partitioner will assign more tasks to ARM core dynamically.

The partition ratio of dual-core decoding without other DSP task and with other

DSP task is shown in Table 24. As Table 24 shows, when loading of DSP core is

increased, ARM core will be assigned more tasks automatically. Task Partitioner will

assign task depending on the runtime computational load of both cores.

Table 23. Task Partition ration of each sequence

Sequence ARM DSP
Task Partition Ratio

ARM : DSP
Akiyo 828 672 1.23 : 1
Container 872 628 1.38 : 1
Foreman 886 614 1.44 : 1
Mother and daughter 845 655 1.29 : 1
Silent 838 662 1.26 : 1
Average of five sequences 853.8 646.2 1.32 : 1

Table 24. Task Partition ratio

 ARM DSP
Task Partition Ratio

ARM : DSP
Without other DSP Task 600 900 1 : 1.5

With other DSP Task 853.8 646.2 1.32 : 1

 56

Chapter 6. Conclusions and Future Works

In this thesis, we proposed a dynamic task partition approach for multimedia

applications on heterogeneous dual-core platforms. An MPEG-4 simple profile video

decoder using the approach has been implemented on TI OMAP 5912 platform to

demonstrate the efficiency of the approach.

We first optimize the MEPG-4 decoder C model for the DSP by adopting various

DSP specific techniques and by using a pipelined design to overlap DMA data transfer

time and DSP decoding time. The experimental results show that overlapping of DSP

decoding job and DMA macroblock transfer job in a pipeline alone give us 35%

performance improvement.

Secondly, we implement the decoder using the dynamic task partitioning

approach [11]. The task granularity is defined at slice-level for the proposed video

decoder. Based on the experiments shown in sections 5.2 and 5.3, the overall

decoding performance of the proposed dual-core dynamic task partitioning approach

outperforms decoding using the ARM core or the DSP core alone. The performance

of dynamic task partitioning is even better when the DSP is loaded with other tasks.

Finally, the experiments show that the dual-core approach can easily fulfill real-time

(30 FPS) decoding of QVGA video at 96 MHz.

Although the MPEG-4 video decoder application is used to demonstrate the

concept, the dynamic task partitioning computation model can be easily generalized to

other applications. In addition, the design effort may not higher than a static task

partitioning approach. None of the embedded OSes support the dynamic task

partitioning approach. However, according to the experimental results, the dynamic

 57

task partitioning is suitable for multimedia application on heterogeneous dual-core

embedded system. Future OS can cover the feature of dynamic task partitioning in

order to achiever better performance.

 58

References

[1] Kyu Ha Lee, Keun-Sup Lee, Tae-Hoon Hwang, Young-Cheol Park and Dae Hee

Youn, “An Architecture and Implementation of MPEG Audio Layer III Decoder

using Dual-Core DSP,” IEEE Transactions on Consumer Electronics , November

2001.

[2] Byeong-Doo Choi, Kang-Sun Choi, Sung-Jea Ko, Aldo W. Morales, “Efficient

Real-Time Implementation of MPEG-4 Audiovisual Decoder Using DSP and

RISC Chips,” IEEE International Conference on Consumer Electronics (ICCE),

2003.

[3] Jamil Chaoui, Ken Cyr, Skbastien de Gregorio, Jean-Pierre Giacalone, Jennifer

Webb, and Yves Masse, “Open multimedia application platform: enabling

multimedia applications in third generation wireless terminals through a

combined RISC/DSP architecture,” IEEE International Conference on ICASSP,

vol 2, pp. 1109-1012, May 2001.

[4] James Song, Thomas Shepherd, Minh Chau, Ayesha Huq, Ikram Syed, Somdipta

Roy, Achuta Thippana, Kaijian Shi, Uming Ko, “A low power open multimedia

application platform for 3G wireless,” SOC Conference,. IEEE International

Conference, 2003.

[5] Marc Peresse, Karim Djafarian, Jamil Chaoui, Daniel Mazzocco,Yves Masse,

“Enabling JPEG2000 on 3G wireless mobiles through OMAP architecture,”

IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), 2002.

[6] Texas Instruments, OMAP5912 Applications Processor Data Manual, TI

Technical Document SPRS231E, Texas Instruments, Dallas, Texas, December

 59

2005.

[7] Texas Instruments,TMS320C55x DSP CPU Reference Guide, TI Technical

Document SPRU371F, Texas Instruments, Dallas, Texas, February 2004.

[8] Texas Instruments, Programming the DSP MMU in the OMAP5910 Device, TI

Application Report SWPA038, Texas Instruments, Dallas, Texas, October 2004.

[9] Rudy Lauwereins, Chun Wong, Paul Marchal, Johan Vounckx, Patrick David,

Stefaan Himpe, Francky Catthoor, Peng Yang, “Managing Dynamic Concurrent

Tasks in Embedded Real-Time Multimedia Systems," pp. 112-119, Proceedings

of the 15th international symposium on System Synthesis, 2002.

[10] Liping Xue, Ozcan ozturk, Feihui Li, Mahmut Kandemir,and I.Kolcu, “ Dynamic

partitioning of processing and memory resources in embedded MPSoC

architectures,” IEEE Proceedings on Design, Automation and Test(DATA),2001

[11] Cheng-Nan Chiu, Chien-Tang Tseng, and Chun-Jen Tsai, “ Tightly-coupled

MPEG-4 video encoder framework on asymmetric dual-core platforms,” Circuits

and Systems, 2005. ISCAS 2005. Vol. 3, Pages: 2132-2135, May 2005.

[12] Paolo Gai, Luca Abeni, G. Guttazzo, “Multiprocessor DSP Scheduling in

System-on-a-chip Architectures,” IEEE Proceedings of the 14th Euromicro

Conference on Real-Time Systems, 2002.

[13] R.Rajkumar, “ Priority Inheritance Protocols: An Approach to Real-Time

Synchronization”, IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 9,

September 1990.

[14] Texas Instruments, TMS320C55x DSP Programmer’s Guide, TI Technical

Document SPRU376A,Texas Instruments, Dallas, Texas, August 2001.

[15] Texas Instruments, TMS320C55x Image/Video Processing Library

Programmer’s Reference, TI Technical Document SPRU037C, Texas Instruments,

 60

Dallas, Texas, January 2004.

[16] Texas Instruments, IQmath Library A Virtual Floating Point Engine, TI Technical

Document, Texas Instruments, Dallas, Texas, June 2002.

[17] Texas Instruments, OMAP5912 Multimedia Processor Direct Memory Access

(DMA) Support Reference Guide, TI Technical Document SPRU755B, Texas

Instruments, Dallas, Texas, October 2004.

[18] Texas Instruments, OMAP5910/5912 Multimedia Processor DSP Subsystem

Reference Guide, TI Technical Document SPRU890A, Texas Instruments, Dallas,

Texas, May 2005.

[19] Thanh Tran, “ OMAP 5910 Video Encoding and Decoding,” TI Application

Report, SPRA985, Dec. 2003.

