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ABSTRACT

Nowadays, quite a few embedded processors have not only caches but also a scratch-pad
memory (SPM). For these processors, it is essential to explore and develop a scheme to make
good use of the SPM. There is no successful SPM allocation scheme proposed previously that
can adjust SPM allocation exactly according to variations in the program behavior all the time
throughout program execution. Furthermore, due. to the widening speed gap between cache
and main memory, stall cycles resulting frominstruction cache misses have become a
considerable part in the program execution time.-For Java applications, we observed that over
half of the instruction cache misses are caused by JIT-compiled code. Therefore, we proposed
a novel dynamic SPM allocation scheme. for JIT-compiled code to reduce instruction cache
misses, in which the SPM allocation is adjustable according to variations in the program
behavior.

In our design, every method is allocated to the SPM when it is compiled by the JIT
compiler. Once the SPM lacks free space, certain methods in the SPM will be reallocated to
the main memory. Throughout program execution, the information about instruction cache
misses caused by JIT-compiled code is gathered, and certain JIT-compiled methods in the
main memory would be reallocated to the SPM according to the gathered information.

The experimental results demonstrate that not only does our design make effective use of
the SPM to reduce instruction cache misses and thus improve the program execution
performance for the processors that have an instruction cache and an SPM, but it also has
better performance than the processors only containing caches whose costs are higher than or

the same as our design.
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Chapter 1 Introduction

In recent years, electronic communication devices, such as mobile phones, information
appliances (1As), personal digital assistants (PDAs), and so on, have attracted much attention
and continue growing rapidly year by year. Java is a programming language of good
portability, security, reliability, and compatibility. These properties make Java widely used for
the development of applications for electronic communication devices.

SRAM and DRAM are the two most common memories adopted in embedded systems.
SRAM is typically faster (by a factor of 10 to 100) but more expensive (by a factor of 20 or
more) than DRAM [1], and the difference in speed still keeps increasing nowadays. The rise
in the SRAM speed is averagely 50% a year at a similar rate to that in the processor speed [2]
versus only 7% a year for DRAM [3].

Cache is one of the most widespread SRAMSs in-processors while main memory is
usually a DRAM. Due to the widening-gap-between SRAM and DRAM speeds, the stall
cycles resulting from cache misses have become a considerable part in the program execution
time. For example, consider a processor with an 8KB direct-mapped instruction cache and an
8KB direct-mapped data cache, there is 30.85% of execution time spent on instruction cache
miss stall cycles in our experiments. Obviously, reducing the number of instruction cache
misses is an effective way to improve the execution performance.

There are quite a few embedded processors containing not only caches but also a kind of
SRAM called scratch-pad memory (SPM) or local memory. In this work, we propose a
method of utilizing the scratch-pad memory to reduce instruction cache misses arising during
program execution. At runtime, every JIT-compiled method is allocated to the SPM first and
may be dynamically reallocated to the main memory or to the SPM according to variations in

the program behavior. The experimental results demonstrate that our design can significantly



reduce instruction cache misses, thus decrease the program execution time, and improve the

execution performance.

1.1 Java Technology

Java technology was introduced by Sun Microsystems in 1991 and gets more and more
prevalent in numerous application fields. In order to meet various demands of different
application fields, Sun Microsystems has divided Java technology into the following three
editions:

e Java Platform, Enterprise Edition

Java EE targets transactional, scalable, and database-centered applications on servers and
enterprise computers.

e Java Platform, Standard Edition

Java SE provides plenty of “APIs for creating applications running on servers and
personal computers.

e Java Platform, Micro Edition

Java ME provides an environment for applications running on small devices with limited
memory, display, and power capacity, such as mobile phones, personal digital assistants
(PDAs), TV set-top boxes, and printers.

Figure 1-1 shows the components of Java technology and the respective targeted
products of different Java platform editions.

In this research, we chiefly aim our design at small devices, targeted by Java Platform,
Micro Edition, whose cache capacities are generally not large. Java ME contains many
technologies and specifications for constructing a platform that can meet the specific
requirements of a small device. Java ME is composed of three elements [4]:

e Configuration



A configuration provides the most basic set of libraries and virtual machine capabilities.
To fit a wide range of devices with diverse hardware capabilities, Java ME is divided into two
configurations, Connected Device Configuration (CDC) and Connected Limited Device
Configuration (CLDC). CDC targets larger devices with more capacity and with a network
connection, such as smart phones, high-end PDAs, and TV set-top boxes, whereas CLDC fits
resource-constrained devices, like mobile phones and low-end PDAs.
*  Profile

Aprofile is a set of APIs that support a narrower range of devices.
*  Optional Package

An optional package is a set of technology-specific APIs.

Servers & Enterprise
Computers Servers &
Personal Computers

\_ | Basic Profile |

ﬁ E Smart Cards
TE e

Java Platform, Micro Edition

Figure 1-1 Components of Java Technology and Targeted Products [4]

1.2 Execution of Java Programs

Java programs are first compiled into an intermediate representation, referred to as

bytecode, by a Java compiler at static time. When the compilation is finished, the bytecode is



saved in one or more class files, which are to be fed into a Java virtual machine (JVM) for
execution. The class loader in a JVM is responsible for loading a class file into the memory
heap on demand throughout program execution. In the course of execution, the class loader
loads class files into the memory heap for the interpreter in the JVM to interpret the bytecode.
Although it is easy to implement an interpreter, its slow performance makes it unsuitable for
those environments where the performance is an essential consideration. In order to overcome
this problem, an approach that a Just-In-Time (JIT) compiler is integrated into a JVM has
been proposed.

For a JVM that comprises an interpreter and a JIT compiler, Java programs may be
executed in a mixed mode, the mixture of the aforementioned interpretation mode and the
JIT-compilation mode, as illustrated in Figure 1-2. Likewise, Java programs have to be
compiled into bytecode by a Java compiler first. When a program begins running, the JVM
executes it by directly interpreting the bytecode of the pregram. At the same time, the number
of invocations and backward branches of.each method are counted to calculate the popularity
value of each method. Once the popularity-value of @ method reaches the popularity threshold,
meaning that the method is executed frequently enough, the JIT compiler is triggered to
translate the bytecode of the method into native machine code, and a free space is allocated
from the code buffer in the main memory to store the compiled code. When the method is
executed afterwards, it need not be compiled again since the compiled code has been stored in
the code buffer, and the compiled code can be fetched immediately for execution.

The JIT compilation is performed during execution of a Java program, and therefore it
must bring additional runtime overhead. However, because execution of native machine code
is far faster than interpretation of bytecode, mixed-mode execution still speeds up

Java-program execution a great deal.
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Java Compiler

Java Bytecode
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Buffer Compiled Code
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Figure 1-2 Mixed-Mode Execution of Java Programs

1.3 Code Buffer for Storing JIT-Compiled Code

As mentioned above, when the popularity value of a method reaches the popularity
threshold, the bytecode of the method is compiled into native machine code by the JIT
compiler, and a free space needs to be allocated from the code buffer in the main memory to
store the compiled code for future utilization. From the perspective of a processor, emitting
JIT-compiled code is the same as writing data into the main memory. In the case of a data
cache with the write-allocate policy, JIT-compiled code is first written into the data cache and
then written into the code buffer in the main memory. The process of writing JIT-compiled
code into the code buffer is described in Figure 1-3.

Any JIT-compiled code must be first loaded into the instruction cache and then can be
executed by a processor. If the compiled code that is going to be executed has been in the
instruction cache, the processor can execute it straight out of the instruction cache. Otherwise,
an instruction cache miss will occur and cause the processor pipeline to stall for a number of
cycles, referred to as cache miss penalty, until the compiled code is loaded from the code

buffer in the main memory into the instruction cache. The cache miss penalty is considerable,



perhaps several dozen cycles to several hundred cycles. After the compiled code is loaded into
the instruction cache, the processor can proceed with executing it out of the instruction cache.

The process of reading compiled code from the code buffer is illustrated in Figure 1-4.

[ Main Memory Code Buffer ]

-1 ~TCompiled
eeeeeee—__|Instruction ___________ Datal; Code ____
H L 2 ¥l :
1
! [ Instruction Cache ]4——»[ Data Cache ] |
1
' > F 7 !
' - Address P _ !
| Instruction Data |!COmpiled '
i I Code '
| |
! 1
! 1
! 1

1
—b[ Core ]!_—_ 1
' Processor

Figure 1-3 Writing JIT-Compiled Code into Code Buffer

[ Main Memory Code Buffer ]

I A

Compiled), A
_____ Code insthuetion ¥ - W ZDatal
: w h 4 :
1
! [ Instruction Cache ]4——»[ Data Cache ] |
! - —~+ 7 |
1 1
: _ P Address P :
] Compiled | |Instruction Data '
H Code | !
! '_—‘g'_ Core |<— !
1
-LProcessor '

Figure 1-4 Reading JIT-Compiled Code from Code Buffer

1.4 Observation on Instruction Cache Misses for Java

In our experiments on Java applications, we found that instruction cache miss stall cycles
constitute a considerable part of the program execution time (30.85% for the environment that
has an 8KB direct-mapped instruction cache and an 8KB direct-mapped data cache without
L2 caches), and over half (50.57%) of the instruction cache miss stall cycles are caused by
JIT-compiled code, as shown in Figure 1-5. To decrease the instruction cache misses, we may
make use of a scratch-pad memory to place the JIT-compiled code that frequently incurs

instruction cache misses in it.
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Figure 1-5 Breakdown of Execution Time for the Environment Containing an 8KB Direct-Mapped Instruction
Cache and an 8KB Direct-Mapped Data Cache

1.5 Scratch-Pad Memory (SPM)

A scratch-pad memory is a memory array, VW’hich cdhsists of SRAM memory cells, with
decoding circuitry and column circuirtry as depicted in Figure 1-6. A scratch-pad memory is
commonly an on-chip memory. A study [5] 'had been made to compare the area cost and the
energy consumption between scratch-pad memory and cache, and the results indicate that a
scratch-pad memory has 34% smaller area and 40% less energy consumption than a two-way
set-associative cache of the same capacity. Additionally, through our conversion using CACTI
4.1 [6], the area of a scratch-pad memory is 31% smaller than that of a direct-mapped cache
of the same capacity. However, unlike a cache, which is invisible to software, the allocation of
instructions or data in a scratch-pad memory relies on software’s control and hence is visible
to software. To strike a balance between scratch-pad memory and cache, a good few
embedded processors, such as ARM10E, PXA270, ColdFire MCF5, IXP, and PowerPC 405,
have a scratch-pad memory as well as one or more caches. A brief comparison between

scratch-pad memory and cache is summarized in Table 1-1.
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Figure 1-6 Scratch-Pad Memory Organization

Table 1-1 Comparison between Cache and Scratch-Pad Memory

Cache Scratch-Pad Memory
Loading Time At Runtime Before or At Runtime
Controlled by Hardware Software
Allocation Visibility Invisible to Software Visible to Software
Area Cost Ratio [5] 1 (Direct-Mapped) 0.69

1.6 Research Motivation

Owing to the great gap between cache and*main memory speeds, when a cache miss
occurs, it takes a large number of cycles (perhaps several dozen cycles to several hundred
cycles) to load instructions or data into the cache, making cache miss stall cycles play an
important role in the program execution performance. We observed that instruction cache
miss stall cycles occupy a considerable part of the program execution time, and over half of
the instruction cache miss stall cycles are caused by JIT-compiled code. In other words, a
large portion of the execution time is spent on instruction cache miss stall cycles caused by
JIT-compiled code. If we place the JIT-compiled code in the SPM that frequently incurs
instruction cache misses, a lot of instruction cache misses will be eliminated, and thus the
execution time may be decreased significantly.

Besides, an SPM has the advantages of lower area cost and less energy consumption than



a cache of the equal capacity but introduces the overhead of software maintenance for SPM
allocation. Hence, quite a few embedded processors, such as ARMI10E, PXA270, ColdFire
MCEF5, IXP, and PowerPC 405, contain an SPM along with one or more caches to strike a
balance between SPM and cache. For these processors, it is essential to develop an efficient
SPM allocation scheme to make good use of the SPM.

So far, no successful SPM allocation scheme can always dynamically adjust SPM
allocation exactly according to variations in the program behavior throughout program
execution. As a result, if the behavior of a program (e.g. an interactive application) varies
during the course of program execution, the SPM allocation may be unable to fit the program
behavior anymore, leading to diminishing benefits from using the SPM. However, we can
move the JIT-compiled methods to the SPM whenever they cause numerous instruction cache
misses during program execution. In consequence, we.may devise a dynamic SPM allocation
scheme that has the capability of regulating the selection of JIT-compiled methods in the SPM

with variations in the dynamic program behavior,

1.7 Research Objective

This research aims to reduce instruction cache misses that arise during execution of Java
applications by identifying the JIT-compiled methods that incur more instruction cache misses
at runtime and allocating them to the SPM dynamically. Furthermore, the JIT-compiled
methods allocated to the SPM need to be adjustable according to variations in the program
behavior throughout program execution. Besides, because the dynamic allocation method
works at runtime, it must be low-overhead sufficiently to prevent the gain from being offset
by the runtime overhead. In a word, the goal of this research is to design a low-overhead
dynamic SPM allocation approach for JIT-compiled code to reduce instruction cache misses,

thereby decrease the execution time of Java applications, and improve the execution



performance.

1.8 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 introduces the background
knowledge and the related work in reference to our research. Chapter 3 presents the memory
hierarchy and the components of the execution environment in the design of dynamic SPM
allocation for JIT-compiled code. Chapter 4 describes our experimental process and gives the
experimental results and some analyses. Chapter 5 presents the conclusion and the future

work.
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Chapter 2 Background and Related Work

In this chapter, the required background knowledge for this thesis and the related work to
our research are introduced. Section 2.1 describes the method table in a JVM used for keeping
some necessary information on methods. Section 2.2 introduces the Java stack in a JVM for
storing the runtime data of invoked methods. Section 2.3 introduces the six most common
replacement policies for code buffer management. Section 2.4 describes the sample-based
profiling technique, which is adopted as the profiling scheme in our design. Section 2.5

introduces the related work, proposed SPM allocation schemes to date.

2.1 Method Table in JVM

The method table in a JVM is used to keep.the necessary information on methods. Every
class in a Java program has its own method. table, and each method in a class has a method
block, which is a C structure, in the method table. Each method block contains the following
information, a method name, a signature, exceptions, and pointers to more specific
information on a Java method or a native method.

For a Java method, its method block in the method table has a pointer to its method
descriptor. The method descriptor holds the bytecode of the method, a method exception table,
and debugging information like the line number table if applicable. The method descriptor is
immutable after being initialized. Additionally, when a method gets compiled by the JIT
compiler, a pointer to the start of the compiled code in the code buffer is stored into the
method block. Figure 2-1 is an instance of a method table, where method A and method C are
JIT-compiled methods, and their method blocks contain pointers to their respective starts of
the compiled code.

For a native method, its method block in the method table has a pointer to its first
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instruction.

Code Buffer
Method Table
/ Compiled Method A
Method A
Method B Compiled Method E
Method C Compiled Method G
Method
shoax Compiled Method C

Figure 2-1 An Instance of a Method Table in JVM

2.2 Java Stack in JVM

Every Java thread has a Java stack in the JVM for keeping the runtime data of invoked
methods. A Java stack is allocated as a:linked list, as-depicted in Figure 2-2. When a method
gets invoked, a new stack frame for-this method will be pushed onto the Java stack. Once the

method returns, the stack frame WiVII be, popped. out and discarded. Therefore, whenever a

method is being executed, its stack frame must be the‘top one in the Java stack.

Thread 1

Thread 2

Thread 3

Method B

Method G

Method A

Method Z

Local Variables

State Variables

Local Variables|
State Variables |

Local Variables |

State Variables | -

Local Variables
State Variables

Operand Stack Operand Stack Operand Stack Operand Stack
Method E Method J

Local Variables Local Variables

State Variables State Variables

Operand Stack Operand Stack
Method | Method Q MethodY

Local Variables

State Variables
Operand Stack

Local Variables |
State Variables | -

Operand Stack

Local Variables

State Variables
Operand Stack

Figure 2-2 Java Stacks in JVM

Each stack frame holds the useful data for an invoked method, including the method’s

local variables, state variables such as a program counter, and an operand stack. A pointer to
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the class of the method and a pointer to the method descriptor of the method can as well be

found in the stack frame.

2.3 Replacement Policies for Code Buffer Management

When a method gets compiled by the JIT compiler, the JIT-compiled code is stored into
the code buffer for future utilization. If the code buffer doesn’t have enough free space for a
newly compiled method, one or several compiled methods in the code buffer must be replaced
to make room for the newly compiled method. The replacement policy for deciding which
method(s) to evict from the code buffer is of crucial importance since evicting frequently
executed methods may result in performance degradation.

Besides, the fragmentation problem and_the maintenance overhead of the replacement
policy also have influences on the: program=execution performance. The fragmentation
problem means that even if the total capacity of the free space in the code buffer is adequate
for an incoming method, the method still.cannot-be inserted into the code buffer because the
free space is fragmented. For an example‘of a fragmented code buffer, see Figure 2-3, where
the white blocks indicate free space. Although the total size of the free space is larger than the
size of the incoming method, each segment of contiguous free space is too small to fit the
method. The defragmentation operation may be employed to deal with this problem, but the
overheads of most defragmentation techniques are too high to be applicable to Java
environments. Such a cause necessitates a replacement policy for code buffer management

that scarcely brings about the fragmentation problem.
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Figure 2-3 An Example of a Fragmented Code Buffer

The following are the six most common ways to decide which method(s) to evict from
the code buffer:

e Least-Recently Accessed (LRA)

When the code buffer doesn’t have sufficient free space for a newly compiled method,
the JIT-compiled method in the code buffer that hadn’t been accessed for the longest time is
the first candidate for replacement.In_case removing.only this JIT-compiled method cannot
free an adequately large space to placesthe_incoming ‘method, the subsequent one or more
methods in the code buffer are also remaved until-the space freed is larger than the incoming
method. This policy has the benefit of exploiting the temporal locality, yet it has the drawback
of deleting innocent victim methods in order to make a contiguous space large sufficiently for
the incoming method. This policy would suffer from the effect of fragmentation.

e Least-Frequently Accessed (LFA)

In the event that there isn’t adequate room in the code buffer for an incoming method,
the JIT-compiled method accessed the fewest times among all the methods in the code buffer
is the first candidate for replacement. Like the LRA policy, if evicting the method doesn’t
generate enough free space, the subsequent one or more methods are evicted as well. Even
though this policy can identify hot methods effectively, it has the possibility of deleting a
method compiled just lately, whose access count has not been high yet. Additionally, this

policy also has the disadvantage of giving rise to the fragmentation problem.
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e Least-Recently Created (LRC)

This policy treats the code buffer as a circular buffer, and the compiled methods are
replaced in the same order as they were inserted. In the event that replacing a method does not
produce adequate free space for the incoming method, the subsequent one or more methods
are also replaced till the space freed is enough. If the space freed is larger than needed by the
incoming method, the remainder free space can be used by the next method inserted into the
code buffer. This policy completely avoids the generation of fragmentation, and the overhead
is rather low because it merely needs a pointer to be updated when a method is inserted.

e Largest Element (LE)

When a JIT-compiled method cannot be put into the code buffer owing to lack of free
space, the method of the largest size in the code buffer is selected as the first victim to discard.
Likewise, if discarding the method cannot free adequate space, the subsequent one or more
methods are also discarded. The -purpose of this palicy is to minimize the number of
replacements that occur within the code buffer, but-no attention is paid to the temporal locality.
This policy would lead to the fragmentation problem as well.

*  Best-Fit Element (BFE)

In case the free space in the code buffer is not sufficient to store a newly compiled
method, the entire code buffer is scanned in search of the method of the smallest size that is
larger or equal to the size of the incoming method. If there is no method in the code buffer
large enough for the incoming method, all the methods and their next ones are grouped into
pairs of two, and the best-fit search resumes. Although this policy attempts to minimize the
number of times the fragmentation problem arises, it incurs very high overhead from the
search for the best-fit element.

*  Full Cache Flush
As soon as a JIT-compiled method cannot be inserted into the code buffer, all compiled

methods in the code buffer are flushed, and the incoming method becomes the first element
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placed in the code buffer. Although this is a replacement policy with very low overhead and
no fragmentation problem, it has the adverse side effect of evicting frequently executed
methods from the code buffer and thus potentially degrades the program execution
performance.

The above six replacement policies for code buffer management have been evaluated in a
previous study [7]. The experimental result reveals that the LRA policy outperforms the other
policies across various code buffer sizes in terms of the code buffer miss rate as shown in
Figure 2-4. The code buffer miss rate of the LRC policy is also fairly low, although it is a little

higher than that of the LRA policy.
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Figure 2-4 Code Buffer Miss Rate of Each Code Buffer Replacement Policy [7]

In addition to the code buffer miss rate, the fragmentation problem and the maintenance
overhead should also be taken into account for the evaluation of these policies. As
summarized in Table 2-1, only two policies, LRC and Flush, do not suffer from the
fragmentation problem at all, and each of them simply needs a pointer for management,
incurring the lowest overhead among all the policies. After combining the factors of code
buffer miss rate, fragmentation problem, and overhead, the LRC policy, with a low code
buffer miss rate, no fragmentation problem, and the lowest maintenance overhead, appears to

be the most desirable replacement policy for code buffer management.
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Table 2-1 Summary of Code Buffer Replacement Policies [7]

Policy Fragmentation Code Buffer Miss Rate Management
Flush None 4.61% Pointer

LRA Yes 2.48% Priority Queue
LFA Yes 9.11% Priority Queue
LE Yes 13.91% Priority Queue
BFE Minimal 20.77% Multiple Sorted Lists
LRC None 2.88% Pointer

2.4 Sample-Based Profiling

Profiling is used to analyze a program’s behavior by gathering information on program

execution. Sample-based profiling is a kind of profiling technique with fairly low overhead. It

does not specifically collect all required information at runtime but collects information only

while certain regular events occur (e.g..the number of cache misses reaches a certain value)

using operating system or hardware interrupts-as, illustrated in Figure 2-5. Sample-based

profiling is typically less accurate and-less.specific but allows the target program to run at

nearly full speed. This technique is employed as the profiling scheme in our design.

Sample

Time I

Sample Sample Sample
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Sample Sample

2.5 Relate Work
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Regular events occur.

Figure 2-5 Sample-Based Profiling

There have been plenty of previous studies on SPM allocation schemes, the majority of

which are for executed languages like C and C++, and few are for interpreted languages like

Java. They can be grouped into static approach, statically decided dynamic approach,
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partial-runtime dynamic approach, and runtime dynamic approach.

The static approach [5][8][9][10][11][12][13][14][15][16][17][18][19] and the statically
decided dynamic approach [20][21][22][23][24][25][26] need a static compiler to analyze
program behavior at static compile time for the decision on SPM allocation. The static
approach does not change SPM contents during program execution, so objects placed in the
SPM do not alter across distinct portions of a program. On the contrary, the statically decided
dynamic approach may change SPM contents during program execution. Nevertheless,
because the SPM allocation is decided at static compile time, these approaches cannot exactly
adjust SPM contents according to dynamic program behavior. Consequently, as long as the
program behavior varies with inputs at runtime, the benefits from use of the SPM are likely to
diminish. Heretofore, the mass of the proposed SPM allocation schemes belonging to the two
approaches are applied to executed languages, and few [18][19] are applied to interpreted
languages. Executed languages are those whose program-binaries need to be executed directly
on hardware, such as C and C++; while“interpreted  languages are those whose program
machine-independent representations are interpreted by a runtime system, such as Java.

The partial-runtime dynamic approach decides SPM allocation by profiling a program
for a period of execution time after the start of program execution till a method is detected as
a hot method. Like the statically decided dynamic approach, this approach may change SPM
contents in the course of program execution. Even though this approach decides SPM
allocation at runtime, it cannot always adjust the SPM allocation exactly according to
dynamic program behavior throughout program execution as well because it gathers program
information only during the beginning period of execution time. Only one SPM allocation
scheme [1] belongs to this approach at present, which is applied to an interpreted language,
Java.

So far, there is only one scheme belonging to the runtime dynamic approach, which is

software caching. Software caching uses software to emulate a cache in SRAM, and the valid

18



bits, tags, and data of the cache are handled by compiler-inserted code on every memory
access. Even if this method is capable of regulating SPM contents with variations in the
dynamic program behavior, it introduces significant overheads in runtime, code size, data size,
and energy consumption for the management of the fields of a cache. For this reason, software
caching is extensively regarded as a failure, and almost all recent studies focused on the static
approach and the statically decided dynamic approach.

All current SPM allocation schemes for Java belong to either the static approach or the

partial-runtime dynamic approach, and they are introduced in the following subsections.

2.5.1 Static Approach for Java

The SPM allocation scheme for Java [18][19] proposed by Tomar et al. belongs to the
static approach, meaning that SPM allocationyjis.decided at static time and objects placed in
the SPM do not change at runtime:. In their method, theé candidates for SPM allocation are
heap objects (data) in a program and profiling-is‘fun at static time to acquire the number of
references to each object. Afterwards, the'Java compiler inserts annotations into the bytecode
to specify which objects are to be allocated to the SPM. In order to realize this method, the
JVM needs to be modified to have the capability of recognizing those annotations. During
program execution, the JVM preferentially allocates the annotated objects to the SPM till the
SPM is full.

Although this method has the merit of low runtime overhead since the decision on SPM
allocation is made at static time, it has at least the following shortcomings. First, this method
considers the number of references to each object for SPM allocation but pays no attention to
cache misses. In the case of an environment containing a cache, the objects that give rise to
more cache misses probably are not the ones referenced more times because the objects

referenced more times may stay in the cache during most of the execution time. Second, this
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method can only apply to the bytecode produced by their specialized Java compiler. Third,
since Java applications may run on a great variety of platforms, the absence of hardware
information like the SPM capacity at static time makes the SPM allocation possibly unable to
serve the practical execution environment. Last, this method is incapable of regulating SPM

contents with variations in the dynamic program behavior.

2.5.2 Partial-Runtime Dynamic Approach for Java

In addition to the above static approach, an SPM allocation scheme for Java [1]
belonging to the partial-runtime dynamic approach was proposed lately by Nguyen et al. The
candidates for SPM allocation in their method are bytecode, static class variables, Java stacks,
and heap objects (data). The SPM allocation,is, decided according to the program behavior
during a period of execution time after the start.of program execution. At the beginning of
program execution, profiling is run-tocount the number-of times each candidate is accessed
until the first time a method is detécted-as a hot-method. After the profiling is terminated,
SPM allocation is performed according to'the collected profile information. The candidates
are allocated to the SPM in the descending order of their LFPB values till the SPM is full. The

LFPB equation is given below.

(Latencyy oy memory — LAtENCY,p ) x ACcess Frequency
Size(Byte)

LFPB =

Even though this method doesn’t need a specialized Java compiler to support and just
needs the JVM to be modified, it doesn’t allow for cache misses for SPM allocation as well.
Moreover, it cannot always adjust SPM allocation exactly according to dynamic program
behavior throughout program execution because it gathers program information only during
the beginning period of execution time. Besides, this method incurs rather high runtime

overhead from profiling.
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2.5.3 Comparison between Related Work for Java and Our Design

The aforementioned SPM allocation schemes for Java are Tomar’s method (static

approach) and Nguyen’s method (partial-runtime dynamic approach). They are compared with

our design (runtime dynamic approach), and the comparison result is listed in Table 2-2.

Table 2-2 Comparison between Related Work for Java and Our Design

Nguyen’s Method Our Design
Tomar’s Method ) _ )
) (Partial-Runtime (Runtime
(Static Approach) ) )
Dynamic Approach) | Dynamic Approach)
Candidate for
. Data Data Code
SPM Allocation
Taking Cache
Misses into No No Yes
Account
Need for
Specialized Yes No No
Java Compiler
Runtime : i
Low High Medium
Overhead
Dynamic
Adjustment of No No Yes

SPM Allocation
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Chapter 3 Design of Dynamic SPM Allocation

Our design of dynamic SPM allocation for JIT-compiled code is elaborated in this
chapter. Section 3.1 describes the memory hierarchy utilized in our design, which consists of
SPM, cache, and main memory. Section 3.2 introduces the components related to our design
in the original execution environment. Section 3.3 presents in detail the components in our
design that are modified from or added to the original execution environment and their

respective functions.

3.1 Memory Hierarchy Overview

The memory hierarchy utilized in our’design consists of SPM, cache, and main memory
as depicted in Figure 3-1. The SPM and the main memaory occupy the different address ranges
of the address space, signifying that the address range of'the SPM is disjoint from that of the
main memory. Any instruction or data whose address is mapped to the main memory’s
address range is read from or written to the main memory. Similarly, any instruction or data

whose address is mapped to the SPM’s address range is read from or written to the SPM.
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Figure 3-1 Memory Hierarchy Consisting of SPM, Cache, and Main Memory
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Instructions and data in the main memory are all cacheable. It means that any instruction
must be first loaded into the instruction cache before it can be executed by the processor, or an
instruction cache miss will occur to get instructions loaded from the main memory to the
instruction cache. Similarly, any data read from or written to the main memory must pass
through the data cache (write-allocate policy). In contrast with the main memory, neither
instruction nor data in the SPM is cacheable. Hence, all instructions and data are read from or

written to the SPM directly, and no cache miss will occur at all.

3.2 Components of Original Execution Environment

Figure 3-2 shows the components related to our design in the original execution
environment. The JVM contains a JIT compiler. used to compile frequently executed methods
on the fly as mentioned in section 1.2, and the:JIT.compiler has a method allocator, which is
responsible for allocating the method to the main memory when a method gets compiled. Any

JIT-compiled method is stored in the'code bufferin-the main memory for future utilization.

JIT Compiler

Method
Allocator

Compiled Method
A 4

Main Memory

v
Instruction
Cache

Y

[ Processor ]

Figure 3-2 Components of Original Execution Environment

When a JIT-compiled method is executed, the processor will check whether the

JIT-compiled code that is about to be executed is in the instruction cache. If so, the processor
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can execute it instantly out of the instruction cache. Otherwise, an instruction cache miss will
occur, and the JIT-compiled code will be loaded into the instruction cache. Then, the

processor can proceed with executing it out of the instruction cache.

3.3 Components of Execution Environment in Our Design

Figure 3-3 depicts the components in our design that are modified from or added to the
original execution environment (depicted in red) and the invocation relationship among them.

These components are briefed as follows:

JIT Compiler Allocation
ofa Method
Method | to the SPM SPM
Allocator| | 77T g e
Manager

Compiled Eviction Reallocation
Method ofaMethod | 1 ofaMethod
fromthe SPM “ ' tothe SPM

Method
Reallocator

Main Memory

N Method Information
i Profiler Decides to
: Reallocate a Method

Instruction ! to the SPIV.
Cache Method
Information
Profiler

[ Processor ]

Figure 3-3 Components of Execution Environment in Our Design

*  Method Allocator

The method allocator is modified from the method allocator in the original execution
environment, and its function is to allocate the JIT-compiled method to the SPM as a method
gets compiled by the JIT compiler. It has to call the SPM space manager (mentioned below) to
allocate an SPM free space to store the JIT-compiled method and has to set some necessary

information in the JVM that is associated with the JIT-compiled method.
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*  SPM Space Manager

The function of the SPM space manager is to allocate a free space from the SPM for the
JIT-compiled method that is about to be inserted into the SPM during the process of allocation
or reallocation (mentioned after). In case of lack of free space in the SPM for an inserted
method, the SPM space manager needs to perform replacement to evict some method(s) from
the SPM and needs to call the method reallocator (mentioned after) to reallocate the evicted
method(s) to the main memory:.
e Method Information Profiler

The method information profiler is responsible for gathering instruction cache miss
information on JIT-compiled methods and converting the gathered information on each
JIT-compiled method into a value for estimating the benefit of storing a JIT-compiled method
in the SPM instead of the main memory. Moreover; the method information profiler needs to
make a decision on whether a JIT-compiled method in.the main memory is to be reallocated to
the SPM according to the value so that the selection. of JFT-compiled methods in the SPM can
be dynamically adjusted with variations in.the program behavior. If the method information
profiler decides to reallocate a JIT-compiled method to the SPM, it will call the method
reallocator (mentioned below) to perform this operation.
*  Method Reallocator

The method reallocator is responsible for reallocating a JIT-compiled method to the main
memory or to the SPM. When a JIT-compiled method is selected to evict from the SPM by the
SPM space manager, the method reallocator needs to reallocate the method to the main
memory. When the method information profiler decides to reallocate a JIT-compiled method
from the main memory to the SPM, the method reallocator needs to call the SPM space
manager to allocate an SPM free space and then reallocate the method to the SPM.
Furthermore, the method reallocator has to modify certain information kept in the JVM during

the process of reallocation in order to maintain the accuracy of program execution.
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3.3.1 Method Allocator

The method allocator in our design is adapted from the method allocator in the original
execution environment. The original method allocator allocates all methods getting compiled
by the JIT compiler to the code buffer in the main memory, whereas the adapted method
allocator allocates all methods getting compiled to the SPM rather than to the main memory.

There are two reasons for allocating a JIT-compiled method to the SPM instead of the
main memory on method compilation. First, in the original environment, the compiled code
has to be first written into the data cache and then can be written into the main memory. This
probably results in the occurrence of data cache misses, which may eject some useful data
from the data cache. Yet in our design, the compiled code is written into the SPM directly.
This way no longer incurs data cache misses and:avoids ejecting useful data from the data
cache.

Second, JIT-compiled methods are those in a program that were executed frequently, so
they are selected to be compiled by the JIT compiler. In general, a JIT-compiled method will
continue being executed rather frequently after being compiled. Therefore, the way of directly
allocating JIT-compiled methods to the SPM can immediately avoid the occurrence of some
instruction cache misses.

In the process of allocating a JIT-compiled method to the SPM, the method allocator
needs to invoke the SPM space manager to allocate a free space from the SPM for the
JIT-compiled method and then stores the JIT-compiled method into the SPM. In addition, the
method allocator has to store a pointer to the start of the compiled code into the method block

of the JIT-compiled method in the method table.

3.3.2 SPM Space Manager

The task of the SPM space manager is to allocate a free space from the SPM for the
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JIT-compiled method that is about to be inserted into the SPM. There are two cases in which
the SPM space manager is invoked. The first is that the method allocator calls the SPM space
manager to allocate an SPM free space for the method that is getting compiled by the JIT
compiler. The second is that the method reallocator calls the SPM space manager to allocate
an SPM free space for the JIT-compiled method that is to be reallocated to the SPM. If the
SPM lacks free space, the SPM space manager has to perform replacement to make room for
the inserted method.

As indicated by the previous study [7] introduced in section 2.3, the least-recently
created (LRC) replacement policy, with a low code buffer miss rate, no fragmentation
problem, and the lowest overhead, is the most desirable replacement policy among all the
policies that were investigated in the study. For this reason, the LRC policy is adopted as the
replacement policy for SPM space management in our-design.

The SPM is treated as a circular.'buffer, ‘and JIT-compiled methods in the SPM are
replaced in the same order as they-were. inserted.into the SPM. The way to implement the
LRC policy is to make use of a pointer; referred.to as entry pointer in this thesis, to indicate
which method in the SPM is the first victim to evict. In case evicting a victim method does
not generate enough free space, one or more methods subsequent to the first victim will also
be evicted until the space freed is large adequately for the incoming method. If the space freed
is larger than needed by the incoming method, the remainder free space can be used by the
next incoming method. After replacement, the pointer will point to the victim method for the
next replacement.

Figure 3-4 is a case of the LRC replacement policy. Method n+1 is the method that is
about to be inserted into the SPM. The entry pointer indicates that Method 2 is the first victim
method for replacement. Since Method n+1 is larger than Method 2, Method 3 also needs to
be replaced to produce a sufficiently large free space. After evicting Method 2 and Method 3,

the space freed is large enough to hold Method n+1, and even there is a remainder free space
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because the total size of Method 2 and Method 3 is larger than that of Method n+1. At last, the

entry pointer points to the remainder free space, which can be used by the next incoming

method.
SPM SPM
Methodn+1 | =>
Head Pointer Methodn Head Pointer
v
Method2 |€— Entry Pointer Method n+1
) —
Method 3 Entry Pointer
Methodn-1 |€— Tail Pointer Methodn-1 |e€— Tail Pointer

Figure 3-4 A Case of LRC Replacement Policy

3.3.3 Method Information Profiler.

The three functions of the method.information profiler are collecting information about
instruction cache misses caused by-JIT-compiled._code, -calculating the profit from storing a
JIT-compiled method in the SPM rather than in.the-main memory, and deciding whether a
JIT-compiled method is to be reallocated to the SPM or not.

Figure 3-5 is the work flowchart for the method information profiler. After the start of
program execution, the method information profiler begins to collect information about
instruction cache misses caused by JIT-compiled code. Once the condition of profit
calculation is reached, the method information profiler will start to calculate a JIT-compiled
method’s profit. After finishing calculating a method’s profit, the method information profiler
will check the method’s location and the profit to decide whether to reallocate the method to
the SPM or not. If yes, it will call the method reallocator to reallocate the method to the SPM.
Afterwards, it continues to process another JIT-compiled method until all method’s profits

have been calculated and then resumes gathering instruction cache miss information.
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Figure 3-5 Work Flowchart for Method Information Profiler

The method information profiler holds a method information table to keep track of some
required information on JIT-compiled methods for,our design as shown in Table 3-1. Each

method has the following four kinds-of information kept-in the method information table:

Table 3-1 Method Information=Table

: Pointer to
Cache Miss i )
Method Profit Location Method
Frequency .
Descriptor
1 15 0.02 Main Memory | OxE135C128
2 0 2297.63 SPM OXE13A1D5C
3 0 7612.50 SPM OxE1300A04
n 1 0 Main Memory | 0XE1392B50

*  Cache Miss Frequency
The cache miss frequency represents the occurrence status of instruction cache misses of

a JIT-compiled method.
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*  Profit

The profit is a value used for estimating the benefit that would be gained from storing a

JIT-compiled method in the SPM rather in the main memory.
*  Location

The location indicates a JIT-compiled method is in the SPM or in the main memory.
*  Pointer to Method Descriptor

This information is a pointer to the method descriptor of a JIT-compiled method.

If there is any JIT-compiled method evicted from the SPM to the main memory,
instruction cache misses caused by JIT-compiled code will likely begin arising. The method
information profiler is responsible for gathering the instruction cache miss information. It
employs the sample-based profiling technique as the profiling scheme to collect instruction
cache miss information on JIT-compiled methods. It does not keep track of every instruction
cache miss but every sample of instruction cache miss-instead. Every time the number of
instruction cache misses reaches- a fixed. value called Sampling-Triggered Threshold
(determined in chapter 4), the method-information profiler will sample the occurring
instruction cache miss and use the current program counter to find out which JIT-compiled
method causes this instruction cache miss.

The way to find out which JIT-compiled method causes this instruction cache miss is to
compare the current program counter with the program counter recorded in the top stack
frame of each Java stack. If the program counter recorded in a certain top stack frame matches
the current program counter, it means the method that owns the stack frame is executing the
instruction that incurs this instruction cache miss, and thus the method causing this instruction
cache miss can be identified. In case that this instruction cache miss is not caused by a
JIT-compiled method, this sample will be thrown away. Otherwise, the cache miss frequency
of the JIT-compiled method causing this instruction cache miss kept in the method

information table will be increased by one.
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The address of a JIT-compiled method’s method descriptor is utilized as the hashing key
for locating the method’s entry in the method information table, and the address can be found
in the method’s stack frame in the Java stack. If the JIT-compiled method whose cache miss
frequency needs to be increased by one hasn’t had an entry in the method information table
(there hasn’t been any sampled instruction cache miss incurred by this method), a new entry
belonging to this method will be inserted. Initially, the cache miss frequency is set as 1, the
profit is set as 0, the location is “main memory” (any method causing an instruction cache
miss is definitely in the main memory), and the pointer to its method descriptor is stored.

In addition to collecting instruction cache miss information, the method information
profiler has to calculate the profit of each JIT-compiled method, which is an estimate of the
benefit gained from storing a JIT-compiled method in the SPM instead of the main memory.
As often as (Nsampe * Sampling-Triggered Threshold) reaches a fixed value called
Promotion-Triggered Threshold (determined in chapter-4), the method information profiler
will start to calculate the profit, as illustrated-in_Figure 3-6. Nsampie denotes the number of
samples of instruction cache misses »causedby JIT-compiled code, SO (Nsample X
Sampling-Triggered Threshold) means the approximate number of instruction cache misses
caused by JIT-compiled code. As long as the profit calculation is finished, Nsampie iS reset to 0

and re-accumulated.

Time n-2 n-1 n n+1 n+2 n+3

0 Ny N v oov ¥
Promotion-Triggered Threshold is reached.

Figure 3-6 Timing for Profit Calculation

Each method that has an entry in the method information table has its own profit. The

profit equation is a weighted average as follows:

N Cache Miss Frequency, x Sampling-Triggered Threshold
Method Size(KB)

Profit, = Profit, , xa x(l-a)
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Profit,.; denotes a method’s previous profit, currently stored in the method information table.
a is a fixed number larger than or equal to 0, and smaller than 1 (determined in chapter 4).
Cache Miss Frequency, denotes a method’s present cache miss frequency, currently recorded
in the method information table. Hence, the profit implies the number of instruction cache
misses caused by a JIT-compiled method per kilobyte per time interval between every time
profit calculation is launched. Apparently, the higher the profit is, the more benefit storing the
method in the SPM would bring. The reason for adopting the weighted average is to prevent a
sharp variation in the number of instruction cache misses from leading to a great change in the
profit value.

After finishing the calculation of a method’s profit, the old profit stored in the method
information table will be replaced with the newly calculated profit, and the cache miss
frequency of the method will be reset:to 0, as shown in Table 3-2, where method 1°s new
profit has been stored, and method 1’s_cache miss.frequency has been reset to 0. And then the
method information profiler begins'to decide-whether to-reallocate the method to the SPM or
not. It first checks the location of the ‘method recorded in the method information table and
then checks the profit of the method. If the method is in the main memory, and the profit
exceeds Promotion Threshold (determined in chapter 4), the method information profiler will
invoke the method reallocator to reallocate the method to the SPM.

After completing processing a JIT-compiled method, the method information profiler
continues to process the next method until every JIT-compiled method that has an entry in the
method information table has been processed. And then the method information profiler

resumes collecting instruction cache miss information.
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Table 3-2 New Profits are Stored, and Cache Miss Frequencies are Reset to 0, after Profit Calculation

i Pointer to
Cache Miss i .
Method Profit Location Method
Frequency .
Descriptor
1 0 2217.07 Main Memory | O0XE135C128
2 0 2297.63 SPM OXE13A1D5C
3 0 7612.50 SPM OxE1300A04
n 8 0 Main Memory | 0xE1392B50

3.3.4 Method Reallocator

The method reallocator is responsible for the reallocation of a JIT-compiled method to
the main memory or to the SPM. When a JIiT-compiled-method is selected to evict from the
SPM by the SPM space manager, the method reallocator needs to reallocate the method to the
main memory. When it is decided that a JIT-compiled method is to be reallocated to the SPM
by the method information profiler, the method reallocator has to reallocate the method to the
SPM.

Reallocation of JIT-compiled methods can be divided into promotion and demotion as
depicted in Figure 3-7. Promotion represents reallocation of a JIT-compiled method from the
main memory to the SPM. On the contrary, demotion represents reallocation of a
JIT-compiled method from the SPM to the main memory.

The process of promoting a JIT-compiled method from the main memory to the SPM
chiefly involves the following four steps:

i. The SPM space manager is invoked to allocate an SPM free space for the promoted

method.
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ii. The JIT-compiled code of the promoted method is copied from the code buffer in the
main memory to the SPM.

iii. The pointer to the start of the compiled code kept in the promoted method’s method
block in the method table is fixed up in order to maintain the accuracy of program
execution. The way to locate the pointer to the start of the compiled code stored in the
method block is to utilize the pointer to the promoted method’s method descriptor
kept in the method information table and thus the pointer can be located.

iv. The location of the promoted method recorded in the method information table is

modified to “SPM”.

SPM

Pramotion Demdétion

Main
Memory

Figure 3-7 Promotion and Demotion

The process of demoting a JIT-compiled method from the SPM to the main memory

mainly involves the following three steps:

i. The JIT-compiled code of the demoted method is copied from the SPM to the code
buffer in the main memory.

ii. The pointer to the start of the compiled code stored in the demoted method’s method
block in the method table is fixed up in order to maintain the accuracy of program
execution. The pointer to the demoted method’s method descriptor kept in the method
information table is used to locate the pointer to the start of the compiled code stored
in the method block in the method table.

iii. The location of the demoted method recorded in the method information table is
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modified to “main memory”.

Due to the copying of JIT-compiled code in the processes of promotion and demotion,
promotion or demotion of a JIT-compiled method must bring additional runtime overhead. We
have devised an approach in order to reduce the overall demotion overhead incurred by
copying demoted methods’ compiled code from the SPM to the main memory throughout
program execution. The essence of this approach is that as long as it can be guaranteed that
the code buffer space occupied by a promoted method is able to be freed up when the code
buffer lacks free space, the JIT-compiled code of a promoted method may remain in the code
buffer after promotion. As a result, a demoted method’s JIT-compiled code probably needn’t
be copied from the SPM to the main memory during demotion, and thus the overall demotion
overhead can be reduced.

To this end, the decompilation mechanism in the original execution environment merely
requires slight modification, and the code buffer space occupied by a promoted method will
be able to be freed up when decompilation-is-performed. Besides, a new piece of information
is added to the method information table:for keeping track of the starting address of each
promoted method’s compiled code in the main memory, as shown in Table 3-3. If a
JIT-compiled method in the main memory gets decompiled, the starting address of the
method’s compiled code in the main memory recorded in the method information table will be
changed to 0. For an example, see Table 3-3, where method 3’s starting address of the
compiled code in the main memory is 0, signifying that method 3 has been decompiled, and
its JIT-compiled code has not existed in the code buffer in the main memory.

During demotion of a JIT-compiled method from the SPM to the main memory, the
method reallocator will check the starting address of the demoted method’s compiled code in
the main memory recorded in the method information table. If it is O, indicating the
JIT-compiled code of the demoted method hasn’t existed in the code buffer in the main

memory, the method reallocator still has to copy the JIT-compiled code from the SPM to the
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main memory. If it is not 0, indicating the JIT-compiled code of the demoted method still
stays in the code buffer in the main memory, the method reallocator need not copy the
JIT-compiled code from the SPM to the main memory and simply needs to make use of the
starting address of the demoted method’s compiled code in the main memory recorded in the
method information table to fix up the pointer to the start of the compiled code stored in the
method block in the method table. And thus the overhead incurred by copying the

JIT-compiled code from the SPM to the main memory can be altogether eliminated.

Table 3-3 Method 3 has been Decompiled, and Its “Starting Address of Compiled Code in Main Memory” is 0

i Starting Address Pointer to
Cache Miss . . .
Method Profit Location | of Compiled Code Method
Frequency i . .
in Main Memory Descriptor
Main
1 15 0.02 OxF716EB8C OxE135C128
Memory
2 0 2297.63 SPM OxF7171B90 OxE13A1D5C
3 0 7612.50 SPM 0 OxE1300A04
Main
n 1 0 OxF7172BCC 0xE1392B50
Memory
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Chapter 4 Experiments and Results

This chapter describes the conducted experiments and presents the experimental results.
Section 4.1 introduces the experimental environment, including the utilized tools and the
employed Java benchmarks. Section 4.2 shows the analyses of instruction cache miss rate and
execution time on the benchmarks. Section 4.3 describes the conducted experiments on our
design, including the resolution of the parameters in our design, and presents the experimental
results. Section 4.4 shows the performance comparison between our design and the execution

environment including only a 16KB instruction cache (no SPM).

4.1 Experimental Environment

In our experiments, Pin 2.4 [27] lis utilized 'as the simulator and is responsible for
collecting the required experimental data. Pin-is a dynamic binary instrumentation tool. When
a program begins running, Pin intercepts the execution of the first instruction and generates
new code for the code sequence starting at this instruction. The generated code sequence is
nearly the same as the original one and is stored in memory for future use. After generating
the new code, the control is transferred to the generated code, and the code sequence begins to
be executed. Once a branch jumps out of the code sequence, the control will be returned to
Pin, and Pin will generate more code for the code sequence starting at the branch target and
carry on execution. Such an execution mode of Pin gives users an opportunity to insert their
own code into a program executable for analysis on program behavior. A tool used to simulate
cache behavior is provided in Pin 2.4, and we further added new code to it for the simulation
of our design.

In addition, phoneME Advanced MR2 build 34 [28] is selected as the JVM to execute

Java benchmarks. phoneME Advanced MR2 is a JVM targeted at small devices, belonging to
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Java ME, CDC [4] (introduced in section 1.1). The cause of selecting phoneME Advanced
MR2 as the JVM to run Java benchmarks is that our design is primarily aimed at small
devices like smart phones, high-end PDAs, TV set-top boxes, and so on.

Two suites of Java benchmarks are employed for the evaluation of our design. One is
Sun’s CLDC HotSpot Implementation Evaluation Kit version 1.0.1 (CLDC HI), which
contains four benchmarks, and the other is EEMBC’s GrinderBench version 1.0 (GB) [29],
which contains five benchmarks. Since one of the five benchmarks in GrinderBench, Parallel,
cannot run correctly on Pin 2.4, we exclude it from our experiments. The benchmarks
employed in our experiments are briefed in Table 4-1 and 4-2.

All in all, the experimental environment is that the benchmarks are executed by
phoneME Advanced MR2 build 34, and phoneME Advanced MR2 build 34 is run on Pin 2.4,
which simulates the cache behavior and our design;.and gathers the required experimental
data. The instruction cache and data cache are configured to be 8KB, direct-mapped, and 32
bytes per line, and there is no L2 cache in the.execution environment. The cache miss penalty

is set as 110 cycles per line. All applications.are run'on an X86 Linux server.

Table 4-1 Description of Sun’s CLDC HotSpot Implementation Evaluation Kit

Name Description
i Richards simulates the task dispatcher in the kernel of an operating
Richards
system.
Delta Blue Delta Blue solves one-way constraint systems.
Image Manipulation reads an image file and performs various
Image transformations on it. After each transformation, it compares the result
Manipulation | with an expected result to confirm that the transformation was done
properly.

Queen is a solver of the n-queen problem, where the objective is to
place n queens in a chess board so that no queen can attack another. It is
a classical problem used to illustrate several techniques such as general
search and backtracking.

Queen
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Table 4-2 Description of EEMBC’s GrinderBench

Name Description
Chess is a game with a predefined set of rules. It has 32 pieces on a
Chess board of 64 squares. This benchmark only performs the logical parts of

a chess game, as no graphical output is available.

Crypto contains multiple encrypt/decrypt engines. A 4KB text string is
Crypto encrypted and then decrypted. The encryption algorithms exercised are
DES, DESede, IDEA, Blowfish, and Twofish.

kXML measures XML parsing and/or DOM tree manipulation. It
kXML processes a command script that specifies XML documents to parse and
DOM tree manipulations to do.

PNG is the standard format for image representation in Java ME
implementations. This benchmark does the decoding of a PNG image,
including decompression, and stores the result internally as header info,
color palette(s), and image data.

PNG

4.2 Analyses on Benchmarks

We analyzed the instruction cache miss rate and the:execution time for each benchmark
prior to applying our design to the execution-environment. Figure 4-1 shows the breakdown
of the instruction cache miss rate for each"benchmark, where each bar stands for the overall
instruction cache miss rate, the red portion represents instruction cache misses caused by
JIT-compiled code, and the blue one represents instruction cache misses caused by the other
code. The average instruction cache miss rate across all the benchmarks is 1.55%, and the
average compiled-code instruction cache miss rate is 0.81%. The benchmark, kXML, has the
highest instruction cache miss rate, 3.67%. Yet there are two benchmarks with extremely low
instruction cache miss rates, which are Image Manaipulation and Queen. Image Manipulation
iS a image processing program, which reads a great amount of data and performs
transformations on it without executing many distinct instructions (see Table 4-3, the size of
compiled code and the number of compiled methods of Image Manipulation are small as

compared to the averages), so the instruction cache miss does not occur frequently throughout
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the execution of Image Manipulation. Queen is a program with not only very few compiled

methods but also an insignificant size of compiled code, as given in Table 4-3, even smaller

than the configured capacity (8KB) of the instruction cache in our experiments. Hence, the

instruction cache miss rate of Queen is also much low.
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Instruction Miss Rate
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0.50% -
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2.50% -
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1.55%

 Other Ins. Miss Rate

H Compiled-Code Ins. Miss Rate

Figure 4-1 Breakdown of Instruction Cache Miss Rate for Each Benchmark

Table 4-3 Number of Compiled-Methods and Size.of Compiled Code for Each Benchmark

Benchmark cLDC Hi GB
Suite

Benchmark | Richards [é?lljt: Maézgi?aetion Queen| Ave. | Chess | Crypto | KXML | PNG | Ave.
Size of

Compiled 89,844 | 81,652 12,493 6,316 | 47,576 | 96,992 | 72,044 [103,976(37,128| 77,535

Code (Bytes)

Number of

Compiled 61 57 19 7 36 55 67 90 29 60
Methods

Average Size

per Method | 1,473 1,432 658 902 | 1,116 | 1,763 | 1,075 | 1,155 (1,280 1,318
(Bytes)

Figure 4-2 shows the breakdown of the execution time for each benchmark, where the

red portion of each bar indicates instruction cache miss stall cycles incurred by JIT-compiled

code, the blue one indicates instruction cache miss stall cycles incurred by the other code, and

the gray one indicates the execution time not including instruction cache miss stall cycles. The

instruction cache miss stall cycles averagely occupy 30.85% of the execution time, and
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50.57% of the instruction cache miss stall cycles are caused by JIT-compiled code,
demonstrating that instruction cache miss stall cycles contribute to a considerable part of the
execution time, and over half are caused by JIT-compiled code. Similarly, the two benchmarks,
Image Manipulation and Queen, have few instruction cache miss stall cycles due to their

program properties.
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Figure 4-2 Breakdown of Execttion Time.for Each Benchmark

If the two benchmarks with few instruction cache miss stall cycles are excluded, the
average instruction cache miss stall cycles are up to 42.17% of the execution time, and
53.85% of the instruction cache miss stall cycles are incurred by JIT-compiled code.
Additionally, since all the benchmarks of GrinderBench are to run for a constant period of
time rather than to execute a constant number of instructions, and using an instrumentation
tool to run a program is inherently far slower than running a program directly, the instructions
executed for each benchmark of GrinderBench in our experiments are much fewer than in a
usual execution environment, leading to fewer methods compiled for each benchmark of
GrinderBench in our experiments. If in a usual execution environment, the ratio of instruction
cache miss stall cycles caused by JIT-compiled code to all ones for every benchmark of

GrinderBench would be much higher than in our experiments. Thus, without the limitation
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from the benchmarks of GrinderBench, the actual effect of our design should be better than

the experimental results given below in this thesis.

4.3 Experiments on Dynamic SPM Allocation and Results

In order to thoroughly work out the effect of our design, we divided our design into basic
design and further design. Basic design means that once a JIT-compiled method is demoted
from the SPM to the main memory, it will never return to the SPM, namely no sampling and
promotion involved in basic design. There is only one overhead in basic design, which is
SPM-space-management overhead.

In contrast, further design means that if a JIT-compiled method is demoted from the SPM
to the main memory, it may return to the SPM. by promotion, which is to say that sampling
and promotion are both involved in further design::There are five overheads in further design,
which are SPM-space-management 'overhead, sampling overhead, profit-calculation-and-
promotion-judgment overhead, promaotion overhead, and demotion overhead. Further design
has the following four parameters that need to beiresolved:

e Sampling-Triggered Threshold

Every time the number of instruction cache misses reaches this value, the method
information profiler will be triggered to sample the occurring instruction cache miss and
identify the JIT-compiled method that incurs this instruction cache miss.

e Promotion-Triggered Threshold

As often as (Nsample X Sampling-Triggered Threshold) reaches this value, the method
information profiler will start to calculate the profit of each JIT-compiled method that has an
entry in the method information table. Nsampie Signifies the number of samples of instruction
cache misses caused by JIT-compiled code.

. Promotion Threshold
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When the method information profiler completes calculating the profit of a JIT-compiled
method, it will judge whether the JIT-compiled method has to be promoted to the SPM or not.
As long as the method is in the main memory and its profit is greater than this value, it will be
promoted to the SPM.

* «a
a is the proportion of the previous profit (Profit,;) in the profit equation as follows,

which is a number larger than or equal to 0, and smaller than 1.

N Cache Miss Frequency, x Sampling-Triggered Threshold

Profit, = Profit, , xa :
Method Size(KB)

x(1-a)

Besides, two SPM sizes are adopted in our experiments for the evaluation of our design,
which are 8KB and 11.6KB. 8KB is the configured size of the instruction cache in our
experiments and thus is selected as the SPM size so that the SPM has the same size as the
instruction cache. Furthermore, in order to ensuresa fair, comparison of performance between
our design and the execution environment containing only a 16KB instruction cache (no
SPM), the total area cost of the 8KB instruction-cache and the SPM should equal that of the
16KB instruction cache. As introduced insection 1.5, the area cost ratio of an SPM to a
direct-mapped instruction cache of the same size is 0.69 to 1. Therefore, the SPM size should
be 11.6KB (8KB / 0.69) so that the area cost of the SPM is equal to that of the 8KB
instruction cache, and further, the total area cost of the 8KB instruction cache and the 11.6KB
SPM is equal to that of the 16KB instruction cache. For the two SPM sizes, 8KB and 11.6KB,

we conducted the same experiments on both basic design and further design.

4.3.1 Result of Basic Design (8KB ICache + 8KB SPM)

We first experimented on the execution environment containing an 8KB instruction
cache and an 8KB SPM. Figure 4-3 is the experimental result of basic design, where the

baseline is the original execution environment, which doesn’t contain an SPM. The execution
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time is averagely decreased by 4.59% by basic design (the overhead has been taken into
account), and the overhead is 0.001%. If the two benchmarks whose original instruction cache
miss stall cycles are few, Image Manipulation and Queen, are excluded, the decreased

execution time is averagely 5.85%.
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Figure 4-3 Reduction in Execution Time by Basic Design (8KB ICache + 8KB SPM)

4.3.2 Results of Further Design (8KB ICache + 8KB SPM)

For further design, we performed the experiment of parameter resolution to discover the
best values of the four parameters, Sampling-Triggered Threshold, Promotion-Triggered
Threshold, Promotion Threshold, and . Sampling-Triggered Threshold was first set as a small
number, which is 50, so that the sample-based profiling can be rather precise, and the value of
a was changed from 0 to 0.9 for discovering the best values of Promotion-Triggered
Threshold and Promotion Threshold for each o value. The sampling overhead was temporarily
disregarded while all of the other overheads were taken into account. Figure 4-4 to Figure
4-13 are the experimental results for « from 0 to 0.9, each figure showing the percentages of

execution time reduced for various combinations of Promotion-Triggered Threshold and
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Promotion Threshold. According to these results, we can find out the best combination of
Promotion-Triggered Threshold and Promotion Threshold for each a value and then can select
the combination from them that performs best among all the o values. It’s derived that the
combination of a is 0.5, Promotion-Triggered Threshold is 30000, and Promotion Threshold is

2000 has the best performance (15.54% reduction in execution time) in all the parameter
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Figure 4-6 Resolution of Promotion-Triggered Threshold and Promotion Threshold when o is 0.2
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Figure 4-7 Resolution of Promotion-Triggered Threshold and Promotion Threshold when o is 0.3
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Figure 4-8 Resolution of Promotion-Triggered Threshold and Promotion Threshold when o is 0.4



16.00%

14.00% -

o oo Promotion-Triggered
g Threshold
2
2 10.00% —+— 10000
H —— 20000
=
s 800% —4— 30000
£ —— 40000
E coox - —— 50000
s —8— 60000
W
[
& 70000
£ 4.00% 7
W
=
[
&
2.00% | /
0.00% - T T T T T Promotion Threshold

0 250 500 1000 2000 3000 4000 5000 6000 7000

-2.00%
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After determining the values of Promotion-Triggered Threshold, Promotion Threshold,
and «, we fixed the three resolved parameters and altered the value of Sampling-Triggered
Threshold from 50 to 10000 to discover the best value of Sampling-Triggered Threshold. The
sampling overhead as well as the other overheads was taken into consideration in this
resolution. Figure 4-14 is the experimental result and reveals that when Sampling-Triggered
Threshold is 1000, the performance is the best (14.95% reduction in execution time).
Therefore, the determined values of Sampling-Triggered Threshold, Promotion-Triggered

Threshold, Promotion Threshold, and « are 1000, 30000, 2000, and 0.5 respectively.
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Figure 4-15 shows the improvement in execution time over the original execution
environment (no SPM) by further design (8KB ICache + 8KB SPM). On average, 47.07% of

instruction cache miss stall cycles are eliminated, and the execution time is decreased by

14.95% (all of the overheads have beé:fi "téken_rf'nto‘écc-'cﬁ'iunt), with 0.17% total overhead. If the
two benchmarks with few original_"i'hstruction_ cache miss stall cycles, Image Manipulation

and Queen, are excluded, the average.“de'c;é?a_s'ed 'execut_ibn time is 20.86%. The performance

of the benchmark, Richards, is improved Hiost, its execution time being decreased by 29.19%.
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Figure 4-15 Reduction in Execution Time by Further Design (8KB ICache + 8KB SPM)
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4.3.3 Basic Design vs. Further Design (8KB ICache + 8KB SPM)

Figure 4-16 shows the performance comparison between basic design and further design
with respect to the reduction in execution time, and the baseline is the original execution
environment, which only contains an 8KB instruction cache (no SPM). On average, basic
design can reduce the execution time by 4.59%, and further design can reduce the execution
time by 14.95%. If the two benchmarks whose original instruction cache miss stall cycles are
few, Image Manipulation and Queen, are not included, basic design averagely reduces the
execution time by 5.85% while further design reduces the execution time by 20.86%. The

execution time of Richards is reduced most by further design, by 29.19%.
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ICache + 8KB SPM)

Figure 4-17 is the performance comparison between basic design and further design with
reference to the reduction in instruction cache miss rate, and the baseline is likewise the
original execution environment, which includes an 8KB instruction cache only (no SPM).
Basic design can averagely lower the instruction cache miss rate by 0.25%, from 1.55% to

1.3%, while further design can lower the instruction cache miss rate by 0.76%, from 1.55% to
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0.79%. Similarly, if the two benchmarks, Image Manipulation and Queen, are excluded, the
reduction in instruction cache miss rate by basic design is 0.32% averagely, and the reduction

by further design is 1.09%.
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4.3.4 Result of Basic Design (8KB [Cache + 11.6KB SPM)

After conducting the experiments on the execution environment containing an 8KB
instruction cache and an 8KB SPM, we then experimented on the execution environment
containing an 8KB instruction cache and an 11.6KB SPM. The experimental result of basic
design is presented in Figure 4-18, where the baseline is the original execution environment,
which only contains an 8KB instruction cache (no SPM). The execution time is averagely
decreased by 6.57% by basic design (the overhead has been taken into account), with 0.002%
overhead. If the two benchmarks whose original instruction cache miss stall cycles are few,

Image Manipulation and Queen, are excluded, the average decreased execution time is 9.12%.
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4.3.5 Results of Further Design (8KB 1Cache + 11.6KB SPM)

]
cle
|

In order to determine the best values of the four ﬁarameters in further design for the

execution environment including an. 8KB instruction cache and an 11.6KB SPM, we

performed the same experiment of péfameter resolﬁtion as for the execution environment
including an 8KB instruction cache and an 8KB SPM. Similarly, Sampling-Triggered
Threshold was first set as a small number, which is 50, so that the sample-based profiling can
be fairly precise, and a was varied from 0 to 0.9 for discovering the best values of
Promotion-Triggered Threshold and Promotion Threshold for each a value. The sampling
overhead was temporarily ignored while the other overheads were all taken into consideration.
From Figure 4-19 to Figure 4-28, we can derive that the combination of o is 0.3,

Promotion-Triggered Threshold is 30000, and Promotion Threshold is 2000 performs best

(16.58% reduction in execution time) among all the parameter combinations.
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After determining the values of the three parameters, Promotion-Triggered Threshold,
Promotion Threshold, and a, we fixed these three resolved parameters and changed the value
of Sampling-Triggered Threshold from 50, to, 10000 to resolve the parameter. All the
overheads, including the sampling overhead, were takén‘ into account in this resolution. From
Figure 4-29, it can be derived that when Sampling-Triggered Threshold is 1000, the
performance is the best of all (16.46% reduction in éxecution time). In conclusion, the
resolution outcome of the four parameters is that Sampling-Triggered Threshold is 1000,
Promotion-Triggered Threshold is 30000, Promotion Threshold is 2000, and « is 0.3.
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Figure 4-30 presents the final result of further design (8KB ICache + 11.6KB SPM),
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where the baseline is the original execution environment (no SPM). Further design averagely
eliminates 53.03% of instruction cache miss stall cycles and decreases the execution time by
16.46% (all the overheads have been taken into account), with 0.17% total overhead. If the
two benchmarks, Image Manipulation and Queen, are not included, the average decreased
execution time is 23.26%. The decreased execution time of Richards is the most, which is

32.31%.
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Figure 4-30 Reduction in Execution Time by Further Design (8KB ICache + 11.6KB SPM)

4.3.6 Basic Design vs. Further Design (8KB ICache + 11.6KB SPM)

Figure 4-31 shows the performance comparison between basic design and further design
with regard to the decrease in execution time, and the baseline is the original execution
environment, which only has an 8KB instruction cache (no SPM). Basic design is able to
decrease the execution time by 6.57% averagely while further design can decrease the
execution time by 16.46%. If the two benchmarks with original instruction cache miss stall
cycles being few, Image Manipulation and Queen, are not included, the execution time

decreased by basic design is averagely 9.12%, and the one decreased by further design is
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23.26%. The execution time of Richards is decreased most by further design, by 32.31%.
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| |

Figure 4-32 presents the perf}}rfnance iA-(l‘q:_r'_np’};:t'ris'olrn};l between basic design and further
design in connection with the decre'ea__s"e in,‘i:n_s’tfggggn ca}ch:e miss rate. Similarly, the baseline is
the original execution environment, v(/h'i‘ch-‘contains an vSKB instruction cache only (no SPM).
On average, basic design is able to lower the instruction cache miss rate by 0.35%, from
1.55% to 1.2%, while further design can lower the instruction cache miss rate by 0.84%, from
1.55% to 0.71%. Likewise, if the two benchmarks, Image Manipulation and Queen, are
excluded, the instruction cache miss rate lowered by basic design is averagely 0.49%, and the

one lowered by further design is 1.21%.
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Figure 4-32 Comparison of Reduction in Instruction Cache Miss Rate between Basic Design and Further Design
(8KB ICache + 11.6KB SPM)

4.4 Comparison with 16KB 1Cache’Only Environment

In the end, our further design' 7i‘s compared.with thé execution environment containing
only a 16KB instruction cache (no SPM). At first, further design (8KB ICache + 8KB SPM) is
compared. Although the total capacity of the 8KB instruction cache and the 8KB SPM equals
the capacity of the 16KB instruction cache, the total area cost of the 8KB instruction cache
and the 8KB SPM is merely 84.5% of the area cost of the 16KB instruction cache. The
comparison result is presented in Figure 4-33, where the baseline is the execution
environment containing only a 16KB instruction cache. From this figure, we can derive that
the average execution time with further design for CLDC HlI is 3.3% less than with the 16KB
instruction cache only environment, and the average execution time with further design for
GB is 0.94% more than with the 16KB instruction cache only environment. Altogether,
instruction cache miss stall cycles and the execution time with further design are averagely
7.64% fewer and 1.18% less than with the 16KB instruction cache only environment. In short,

our further design (8KB ICache + 8KB SPM), with 15.5% less cost, performs better (1.18%
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less execution time) than the 16KB instruction cache only environment. If the two
benchmarks with few original instruction cache miss stall cycles, Image Manipulation and
Queen, are excluded, the execution time with further design is averagely 3.05% less than with
the 16KB instruction cache only environment. For the benchmark that performs best with
further design, Richards, the execution time is 11.54% less than with the 16KB instruction

cache only environment.
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Figure 4-33 Comparison of Execution Time between Further Design (8KB ICache + 8KB SPM) and 16KB

Instruction Cache Only Environment

Figure 4-34 shows the comparison of instruction cache miss rate between further design
(8KB ICache + 8KB SPM) and the 16KB instruction cache only environment. For CLDC HlI,
the instruction cache miss rate with further design is averagely 0.14% lower than with the
16KB instruction cache only environment. For GB, the instruction cache miss rate with
further design is averagely 0.02% higher than with the 16KB instruction cache only
environment. Overall, the average instruction cache miss rate with further design is 0.06%

lower than with the 16KB instruction cache only environment.
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Figure 4-34 Comparison of Instruction Cache Miss Rate between Further Design (8KB 1Cache + 8KB SPM) and

16KB Instruction Cache Only Environment

Next, our further design (8KB ICdché + 1i.6KB SPM) is compared with the execution
environment containing only a 16KB instrU¢fion} caChe;. The total area cost of the 8KB
instruction cache and the 11.6KB SPM is‘equalqz;g{che areé cost of the 16KB instruction cache.
Figure 4-35 is the comparison resuli, whgre ther bas’e’l‘ine is likewise the 16KB instruction
cache only environment. It is revealed that the execution time with further design for CLDC
HI is averagely 5.5% less than with the 16KB instruction cache only environment, and the
execution time with further design for GB is averagely 0.5% less than with the 16KB
instruction cache only environment. Overall, instruction cache miss stall cycles and the
execution time with further design are averagely 18.04% fewer and 3% less than with the
16KB instruction cache only environment. In a word, our further design (8KB ICache +
11.6KB SPM), with the same cost, outperforms (3% less execution time) the 16KB instruction
cache only environment. Similarly, if the two benchmarks, Image Manipulation and Queen,
are excluded, the average execution time with further design is 5.96% less than with the
16KB instruction cache only environment. The execution time of the benchmark that

performs best with further design, Richards, is 15.44% less than with the 16KB instruction
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cache only environment.
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Figure 4-35 Comparison of Execution Time between Further Design (8KB ICache + 11.6KB SPM) and 16KB

Instruction Cache Only Environment

m

Figure 4-36 is the comparisod. bf instt{[ﬂg.tfior‘i‘ ‘cat:rhg miss rate between further design
(8KB ICache + 11.6KB SPM) and ft_lé 16I‘<I_3'fi'nrs_1;gl;_17(;tio_r1,c‘:31che only environment. The average
instruction cache miss rate with furthef d-erign fqr CILDC HI is 0.24% lower than with the
16KB instruction cache only environment. The average instruction cache miss rate with
further design for GB is 0.03% lower than with the 16 KB instruction cache only environment.
Altogether, the instruction cache miss rate with further design (8KB ICache + 11.6KB SPM)

is 0.14% lower than with the 16KB instruction cache only environment on average.
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Figure 4-36 Comparison of Instruction Cache Miss Rate between Further Design (8KB ICache + 11.6KB SPM)

and 16KB Instruction Cache Only Environment

In principle, as long as the original"insfructi;)n ‘c":ache miss stall cycles of a benchmark are
not small, the performance with our‘,f‘urther' deéigri (8KI3 ICache + 11.6KB SPM) would be
better than with the 16KB instructiqn cacheror}%environjment. For example, Richards, Delta
Blue, and Chess with our further désigngll haye b'eﬁer performance than with the 16KB
instruction cache only environment. Yet there is only one benchmark violating this principle,
which is KXML. Instead, its performance with our further design is worse than with the 16KB
instruction cache only environment. The cause is that the capacity of the instruction cache in
our design is only 8KB, which is too small to well serve the other code (not JIT-compiled
code) of kXML, and the candidate for SPM allocation in our design, which chiefly aims to
reduce instruction cache misses caused by JIT-compiled code, is only JIT-compiled code, so
instruction cache miss stall cycles caused by the other code (not JIT-compiled code) with our
further design are much more than with the 16KB instruction cache only environment.
Nevertheless, our further design still effectively reduces instruction cache miss stall cycles
caused by JIT-compiled code for kXML, and the stall cycles caused by JIT-compiled code are

much fewer than with the 16KB instruction cache only environment.
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4.5 Summary of Experimental Results

The experimental results are summed up in Table 4-4.

Table 4-4 Summary of Experimental Results

Our Design

8KB Instruction Cache
+ 8KB SPM

8KB Instruction Cache
+ 11.6KB SPM

Cost: 69%T
Instruction Cache Miss Stall Cycles:

Cost: 100%T
Instruction Cache Miss Stall Cycles:

8KB
_ 47.07% 53.03%\
Instruction . . ] .
Cach Execution Time: 14.95%- Execution Time: 16.46%<
ache . )
Instruction Cache Miss Rate: Instruction Cache Miss Rate:
0.79%4 0.84%4
Cost: 15.5%4 Cost: equivalent
16KB Instruction Cache Miss Stall Cycles: | Instruction Cache Miss Stall Cycles:
_ 7.64% 18.04%1
Instruction ) ) . .
Cache Execution Time: 1.18%% Execution Time: 3%4

Instruction Cache Miss Rate:
0.06%

Instruction Cache Miss Rate:
0:14%4
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Chapter 5 Conclusion and Future Work

This chapter presents the conclusion and the future work. Section 5.1 is the conclusion,

and section 5.2 is the future work.

5.1 Conclusion

Nowadays, there are quite a few embedded processors containing not only caches but
also an SPM. For these processors, it is essential to develop an efficient SPM allocation
scheme to make good use of the SPM. There is no successful SPM allocation scheme
proposed previously that can dynamically adjust SPM allocation exactly according to
variations in the program behavior all the:time throughout program execution. Moreover, we
made an observation on instruction cache-misses for Java applications and found that
instruction cache miss stall cycles constitute a considerable portion of the execution time, and
most are caused by JIT-compiled code. To reduce the instruction cache misses and thereby
improve the performance of Java applications, we devised a novel dynamic SPM allocation
approach for JIT-compiled code that is able to adjust SPM allocation with variations in the
program behavior.

Our design is able to significantly reduce instruction cache misses, thus decrease the
execution time, and improve the performance of Java applications. Our design (8 KB ICache +
8KB SPM) can eliminate 47.07% of instruction cache miss stall cycles and decrease the
execution time by 14.95% (compared to the 8KB ICache only environment), and if the two
benchmarks with few original instruction cache miss stall cycles are excluded, the decreased
execution time is 20.86%. The execution time of the benchmark, Richards, is decreased most,
by up to 29.19%. Moreover, our design (8KB ICache + 11.6KB SPM) is able to eliminate

53.03% of instruction cache miss stall cycles and reduce the execution time by 16.46%
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(compared to the 8KB ICache only environment), and similarly, if the two benchmarks with
few original instruction cache miss stall cycles are excluded, the reduced execution time is
23.26%. The execution time of the benchmark, Richards, is reduced most, by up to 32.31%.
Additionally, the runtime overhead of our design is rather low, below 1% of the execution
time.

Not only does our design make effective use of the SPM to reduce instruction cache
misses and thereby improve the program execution performance for the processors that have
an instruction cache and an SPM, but it also has better performance than the processors
containing only caches whose costs are more than or the same as our design. As compared to
the 16KB instruction cache only environment, our design (8KB ICache + 8KB SPM), with
15.5% less cost, performs better (1.18%) than the 16KB instruction cache only environment,
and instruction cache miss stall cycles with our-design are 7.64% fewer. If the two
benchmarks whose original instruction.cache miss stall cycles are few are not included, the
execution time with our design is+3.05%less.than with the 16KB instruction cache only
environment. The execution time of ‘the-benchmark that performs best with our design,
Richards, is up to 11.54% less than with the 16KB instruction cache only environment.
Furthermore, our design (8KB ICache + 11.6KB SPM), with the same cost, outperforms (3%)
the 16KB instruction cache only environment, and instruction cache miss stall cycles with our
design are 18.04% fewer. If the two benchmarks with few original instruction cache miss stall
cycles are not included, the execution time with our design is 5.96% less than with the 16KB
instruction cache only environment. The benchmark that performs best with our design,
Richards, has up to 15.44% less execution time than with the 16KB instruction cache only

environment.

66



5.2 Future Work

There are four directions for our future work. Firstly, the candidate for SPM allocation in
our present design is only JIT-compiled code. Although most instruction cache miss stall
cycles result from the JIT-compiled code, the JVM code may be also considered for SPM
allocation. In the future work, we will study whether adding certain parts of the JVM code to
the candidates for SPM allocation can bring more benefits of using the SPM and explore
which parts of the JVM code are worthy of being allocated to the SPM. Secondly, our current
approach allocates a whole JIT-compiled method to the SPM but not partial code regions
within a JIT-compiled method. We will attempt to partition a JIT-compiled method into
smaller code regions so that our design is capable of selecting the most beneficial segments of
a JIT-compiled method to allocate tosthe SPM. Thirdly, in our present design, every
JIT-compiled method is allocated to;the SPM as:it gets compiled by the JIT compiler. We will
investigate whether it may have a better effect to allocate every JIT-compiled method to the
main memory as it gets compiled. Lastly, the replacement policy for SPM space management
employed in our current design is the LRC policy, which is a simple but efficient policy:.
However, we will devise a more sophisticated replacement policy for SPM space

management.
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