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動態配置即時編譯程式碼至草稿記憶體以利高效率爪哇執行 

 

學生：郭泰毅                               指導教授：單智君 博士 

 

國立交通大學資訊工程學系﹙研究所﹚碩士班 

 

摘 要 

 

現今不少嵌入式處理器除了配有快取記憶體 (cache)外，也包含了草稿記憶體

(scratch-pad memory)。對於這些處理器，有必要研究和開發一個機制來有效地利用草稿

記憶體。目前沒有一個成功的草稿記憶體配置機制，能夠確實地在整個程式執行過程

中，根據程式行為的變化來調整草稿記憶體的配置。此外，由於快取記憶體和主記憶體

(main memory)之間的速度差異愈來愈大，指令快取誤失(instruction cache miss)所造成的

停滯週期(stall cycles)已經成為程式執行時間裡相當大的一部分。對於爪哇(Java)程式，

我們觀察到超過一半的停滯週期是即時編譯程式碼(JIT-compiled code)所引起的。為了減

少指令快取誤失，我們提出了一個新的動態草稿記憶體配置機制來配置即時編譯程式碼

至草稿記憶體，在此機制中草稿記憶體的配置可以隨著程式行為的變化而有所調整。 

在我們的設計中，每個方法(method)被即時編譯器(JIT compiler)編譯時，都會先被

配置到草稿記憶體。一旦草稿記憶體缺少空間，某些在草稿記憶體內的方法(method)會

被重新配置至主記憶體。在程式執行過程中，即時編譯程式碼所造成的指令快取誤失的

資訊會被蒐集，根據所蒐集的資訊，某些在主記憶體內的方法(method)會被重新配置至

草稿記憶體。 

實驗結果證實，對於配有快取記憶體和草稿記憶體的處理器，我們的設計能夠有效

地利用草稿記憶體來減少指令快取誤失，進而改善程式執行效能；此設計的效能甚至比

只配有快取記憶體且成本更高或相等的處理器還要好。 



ii 

 

Dynamically Allocating JIT-Compiled Code 

to Scratch-Pad Memory for Efficient Java Execution 
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Institute of Computer Science and Engineering 
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ABSTRACT 

 

Nowadays, quite a few embedded processors have not only caches but also a scratch-pad 

memory (SPM). For these processors, it is essential to explore and develop a scheme to make 

good use of the SPM. There is no successful SPM allocation scheme proposed previously that 

can adjust SPM allocation exactly according to variations in the program behavior all the time 

throughout program execution. Furthermore, due to the widening speed gap between cache 

and main memory, stall cycles resulting from instruction cache misses have become a 

considerable part in the program execution time. For Java applications, we observed that over 

half of the instruction cache misses are caused by JIT-compiled code. Therefore, we proposed 

a novel dynamic SPM allocation scheme for JIT-compiled code to reduce instruction cache 

misses, in which the SPM allocation is adjustable according to variations in the program 

behavior. 

In our design, every method is allocated to the SPM when it is compiled by the JIT 

compiler. Once the SPM lacks free space, certain methods in the SPM will be reallocated to 

the main memory. Throughout program execution, the information about instruction cache 

misses caused by JIT-compiled code is gathered, and certain JIT-compiled methods in the 

main memory would be reallocated to the SPM according to the gathered information. 

The experimental results demonstrate that not only does our design make effective use of 

the SPM to reduce instruction cache misses and thus improve the program execution 

performance for the processors that have an instruction cache and an SPM, but it also has 

better performance than the processors only containing caches whose costs are higher than or 

the same as our design. 
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Chapter 1 Introduction 

In recent years, electronic communication devices, such as mobile phones, information 

appliances (IAs), personal digital assistants (PDAs), and so on, have attracted much attention 

and continue growing rapidly year by year. Java is a programming language of good 

portability, security, reliability, and compatibility. These properties make Java widely used for 

the development of applications for electronic communication devices. 

SRAM and DRAM are the two most common memories adopted in embedded systems. 

SRAM is typically faster (by a factor of 10 to 100) but more expensive (by a factor of 20 or 

more) than DRAM [1], and the difference in speed still keeps increasing nowadays. The rise 

in the SRAM speed is averagely 50% a year at a similar rate to that in the processor speed [2] 

versus only 7% a year for DRAM [3]. 

Cache is one of the most widespread SRAMs in processors while main memory is 

usually a DRAM. Due to the widening gap between SRAM and DRAM speeds, the stall 

cycles resulting from cache misses have become a considerable part in the program execution 

time. For example, consider a processor with an 8KB direct-mapped instruction cache and an 

8KB direct-mapped data cache, there is 30.85% of execution time spent on instruction cache 

miss stall cycles in our experiments. Obviously, reducing the number of instruction cache 

misses is an effective way to improve the execution performance. 

There are quite a few embedded processors containing not only caches but also a kind of 

SRAM called scratch-pad memory (SPM) or local memory. In this work, we propose a 

method of utilizing the scratch-pad memory to reduce instruction cache misses arising during 

program execution. At runtime, every JIT-compiled method is allocated to the SPM first and 

may be dynamically reallocated to the main memory or to the SPM according to variations in 

the program behavior. The experimental results demonstrate that our design can significantly 
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reduce instruction cache misses, thus decrease the program execution time, and improve the 

execution performance. 

1.1 Java Technology 

Java technology was introduced by Sun Microsystems in 1991 and gets more and more 

prevalent in numerous application fields. In order to meet various demands of different 

application fields, Sun Microsystems has divided Java technology into the following three 

editions: 

 Java Platform, Enterprise Edition 

Java EE targets transactional, scalable, and database-centered applications on servers and 

enterprise computers. 

 Java Platform, Standard Edition 

Java SE provides plenty of APIs for creating applications running on servers and 

personal computers. 

 Java Platform, Micro Edition 

Java ME provides an environment for applications running on small devices with limited 

memory, display, and power capacity, such as mobile phones, personal digital assistants 

(PDAs), TV set-top boxes, and printers.  

Figure 1-1 shows the components of Java technology and the respective targeted 

products of different Java platform editions. 

In this research, we chiefly aim our design at small devices, targeted by Java Platform, 

Micro Edition, whose cache capacities are generally not large. Java ME contains many 

technologies and specifications for constructing a platform that can meet the specific 

requirements of a small device. Java ME is composed of three elements [4]: 

 Configuration 
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A configuration provides the most basic set of libraries and virtual machine capabilities. 

To fit a wide range of devices with diverse hardware capabilities, Java ME is divided into two 

configurations, Connected Device Configuration (CDC) and Connected Limited Device 

Configuration (CLDC). CDC targets larger devices with more capacity and with a network 

connection, such as smart phones, high-end PDAs, and TV set-top boxes, whereas CLDC fits 

resource-constrained devices, like mobile phones and low-end PDAs. 

 Profile 

A profile is a set of APIs that support a narrower range of devices. 

 Optional Package 

An optional package is a set of technology-specific APIs. 

 

Figure 1-1 Components of Java Technology and Targeted Products [4] 

1.2 Execution of Java Programs 

Java programs are first compiled into an intermediate representation, referred to as 

bytecode, by a Java compiler at static time. When the compilation is finished, the bytecode is 
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saved in one or more class files, which are to be fed into a Java virtual machine (JVM) for 

execution. The class loader in a JVM is responsible for loading a class file into the memory 

heap on demand throughout program execution. In the course of execution, the class loader 

loads class files into the memory heap for the interpreter in the JVM to interpret the bytecode. 

Although it is easy to implement an interpreter, its slow performance makes it unsuitable for 

those environments where the performance is an essential consideration. In order to overcome 

this problem, an approach that a Just-In-Time (JIT) compiler is integrated into a JVM has 

been proposed. 

For a JVM that comprises an interpreter and a JIT compiler, Java programs may be 

executed in a mixed mode, the mixture of the aforementioned interpretation mode and the 

JIT-compilation mode, as illustrated in Figure 1-2. Likewise, Java programs have to be 

compiled into bytecode by a Java compiler first. When a program begins running, the JVM 

executes it by directly interpreting the bytecode of the program. At the same time, the number 

of invocations and backward branches of each method are counted to calculate the popularity 

value of each method. Once the popularity value of a method reaches the popularity threshold, 

meaning that the method is executed frequently enough, the JIT compiler is triggered to 

translate the bytecode of the method into native machine code, and a free space is allocated 

from the code buffer in the main memory to store the compiled code. When the method is 

executed afterwards, it need not be compiled again since the compiled code has been stored in 

the code buffer, and the compiled code can be fetched immediately for execution. 

The JIT compilation is performed during execution of a Java program, and therefore it 

must bring additional runtime overhead. However, because execution of native machine code 

is far faster than interpretation of bytecode, mixed-mode execution still speeds up 

Java-program execution a great deal. 
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Figure 1-2 Mixed-Mode Execution of Java Programs 

1.3 Code Buffer for Storing JIT-Compiled Code 

As mentioned above, when the popularity value of a method reaches the popularity 

threshold, the bytecode of the method is compiled into native machine code by the JIT 

compiler, and a free space needs to be allocated from the code buffer in the main memory to 

store the compiled code for future utilization. From the perspective of a processor, emitting 

JIT-compiled code is the same as writing data into the main memory. In the case of a data 

cache with the write-allocate policy, JIT-compiled code is first written into the data cache and 

then written into the code buffer in the main memory. The process of writing JIT-compiled 

code into the code buffer is described in Figure 1-3. 

Any JIT-compiled code must be first loaded into the instruction cache and then can be 

executed by a processor. If the compiled code that is going to be executed has been in the 

instruction cache, the processor can execute it straight out of the instruction cache. Otherwise, 

an instruction cache miss will occur and cause the processor pipeline to stall for a number of 

cycles, referred to as cache miss penalty, until the compiled code is loaded from the code 

buffer in the main memory into the instruction cache. The cache miss penalty is considerable, 
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perhaps several dozen cycles to several hundred cycles. After the compiled code is loaded into 

the instruction cache, the processor can proceed with executing it out of the instruction cache. 

The process of reading compiled code from the code buffer is illustrated in Figure 1-4. 

 

Figure 1-3 Writing JIT-Compiled Code into Code Buffer 

 

Figure 1-4 Reading JIT-Compiled Code from Code Buffer 

1.4 Observation on Instruction Cache Misses for Java 

In our experiments on Java applications, we found that instruction cache miss stall cycles 

constitute a considerable part of the program execution time (30.85% for the environment that 

has an 8KB direct-mapped instruction cache and an 8KB direct-mapped data cache without 

L2 caches), and over half (50.57%) of the instruction cache miss stall cycles are caused by 

JIT-compiled code, as shown in Figure 1-5. To decrease the instruction cache misses, we may 

make use of a scratch-pad memory to place the JIT-compiled code that frequently incurs 

instruction cache misses in it. 
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Figure 1-5 Breakdown of Execution Time for the Environment Containing an 8KB Direct-Mapped Instruction 

Cache and an 8KB Direct-Mapped Data Cache 

1.5 Scratch-Pad Memory (SPM) 

A scratch-pad memory is a memory array, which consists of SRAM memory cells, with 

decoding circuitry and column circuitry as depicted in Figure 1-6. A scratch-pad memory is 

commonly an on-chip memory. A study [5] had been made to compare the area cost and the 

energy consumption between scratch-pad memory and cache, and the results indicate that a 

scratch-pad memory has 34% smaller area and 40% less energy consumption than a two-way 

set-associative cache of the same capacity. Additionally, through our conversion using CACTI 

4.1 [6], the area of a scratch-pad memory is 31% smaller than that of a direct-mapped cache 

of the same capacity. However, unlike a cache, which is invisible to software, the allocation of 

instructions or data in a scratch-pad memory relies on software’s control and hence is visible 

to software. To strike a balance between scratch-pad memory and cache, a good few 

embedded processors, such as ARM10E, PXA270, ColdFire MCF5, IXP, and PowerPC 405, 

have a scratch-pad memory as well as one or more caches. A brief comparison between 

scratch-pad memory and cache is summarized in Table 1-1. 
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Figure 1-6 Scratch-Pad Memory Organization 

Table 1-1 Comparison between Cache and Scratch-Pad Memory 

 
Cache Scratch-Pad Memory 

Loading Time At Runtime Before or At Runtime 

Controlled by Hardware Software 

Allocation Visibility Invisible to Software Visible to Software 

Area Cost Ratio [5] 1 (Direct-Mapped) 0.69 

1.6 Research Motivation 

Owing to the great gap between cache and main memory speeds, when a cache miss 

occurs, it takes a large number of cycles (perhaps several dozen cycles to several hundred 

cycles) to load instructions or data into the cache, making cache miss stall cycles play an 

important role in the program execution performance. We observed that instruction cache 

miss stall cycles occupy a considerable part of the program execution time, and over half of 

the instruction cache miss stall cycles are caused by JIT-compiled code. In other words, a 

large portion of the execution time is spent on instruction cache miss stall cycles caused by 

JIT-compiled code. If we place the JIT-compiled code in the SPM that frequently incurs 

instruction cache misses, a lot of instruction cache misses will be eliminated, and thus the 

execution time may be decreased significantly. 

Besides, an SPM has the advantages of lower area cost and less energy consumption than 
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a cache of the equal capacity but introduces the overhead of software maintenance for SPM 

allocation. Hence, quite a few embedded processors, such as ARM10E, PXA270, ColdFire 

MCF5, IXP, and PowerPC 405, contain an SPM along with one or more caches to strike a 

balance between SPM and cache. For these processors, it is essential to develop an efficient 

SPM allocation scheme to make good use of the SPM. 

So far, no successful SPM allocation scheme can always dynamically adjust SPM 

allocation exactly according to variations in the program behavior throughout program 

execution. As a result, if the behavior of a program (e.g. an interactive application) varies 

during the course of program execution, the SPM allocation may be unable to fit the program 

behavior anymore, leading to diminishing benefits from using the SPM. However, we can 

move the JIT-compiled methods to the SPM whenever they cause numerous instruction cache 

misses during program execution. In consequence, we may devise a dynamic SPM allocation 

scheme that has the capability of regulating the selection of JIT-compiled methods in the SPM 

with variations in the dynamic program behavior. 

1.7 Research Objective 

This research aims to reduce instruction cache misses that arise during execution of Java 

applications by identifying the JIT-compiled methods that incur more instruction cache misses 

at runtime and allocating them to the SPM dynamically. Furthermore, the JIT-compiled 

methods allocated to the SPM need to be adjustable according to variations in the program 

behavior throughout program execution. Besides, because the dynamic allocation method 

works at runtime, it must be low-overhead sufficiently to prevent the gain from being offset 

by the runtime overhead. In a word, the goal of this research is to design a low-overhead 

dynamic SPM allocation approach for JIT-compiled code to reduce instruction cache misses, 

thereby decrease the execution time of Java applications, and improve the execution 
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performance. 

1.8 Thesis Organization 

The rest of this thesis is organized as follows. Chapter 2 introduces the background 

knowledge and the related work in reference to our research. Chapter 3 presents the memory 

hierarchy and the components of the execution environment in the design of dynamic SPM 

allocation for JIT-compiled code. Chapter 4 describes our experimental process and gives the 

experimental results and some analyses. Chapter 5 presents the conclusion and the future 

work. 
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Chapter 2 Background and Related Work 

In this chapter, the required background knowledge for this thesis and the related work to 

our research are introduced. Section 2.1 describes the method table in a JVM used for keeping 

some necessary information on methods. Section 2.2 introduces the Java stack in a JVM for 

storing the runtime data of invoked methods. Section 2.3 introduces the six most common 

replacement policies for code buffer management. Section 2.4 describes the sample-based 

profiling technique, which is adopted as the profiling scheme in our design. Section 2.5 

introduces the related work, proposed SPM allocation schemes to date. 

2.1 Method Table in JVM 

The method table in a JVM is used to keep the necessary information on methods. Every 

class in a Java program has its own method table, and each method in a class has a method 

block, which is a C structure, in the method table. Each method block contains the following 

information, a method name, a signature, exceptions, and pointers to more specific 

information on a Java method or a native method. 

For a Java method, its method block in the method table has a pointer to its method 

descriptor. The method descriptor holds the bytecode of the method, a method exception table, 

and debugging information like the line number table if applicable. The method descriptor is 

immutable after being initialized. Additionally, when a method gets compiled by the JIT 

compiler, a pointer to the start of the compiled code in the code buffer is stored into the 

method block. Figure 2-1 is an instance of a method table, where method A and method C are 

JIT-compiled methods, and their method blocks contain pointers to their respective starts of 

the compiled code. 

For a native method, its method block in the method table has a pointer to its first 
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instruction. 

 
Figure 2-1 An Instance of a Method Table in JVM 

2.2 Java Stack in JVM 

Every Java thread has a Java stack in the JVM for keeping the runtime data of invoked 

methods. A Java stack is allocated as a linked list, as depicted in Figure 2-2. When a method 

gets invoked, a new stack frame for this method will be pushed onto the Java stack. Once the 

method returns, the stack frame will be popped out and discarded. Therefore, whenever a 

method is being executed, its stack frame must be the top one in the Java stack. 

 

Figure 2-2 Java Stacks in JVM 

Each stack frame holds the useful data for an invoked method, including the method’s 

local variables, state variables such as a program counter, and an operand stack. A pointer to 
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the class of the method and a pointer to the method descriptor of the method can as well be 

found in the stack frame. 

2.3 Replacement Policies for Code Buffer Management 

When a method gets compiled by the JIT compiler, the JIT-compiled code is stored into 

the code buffer for future utilization. If the code buffer doesn’t have enough free space for a 

newly compiled method, one or several compiled methods in the code buffer must be replaced 

to make room for the newly compiled method. The replacement policy for deciding which 

method(s) to evict from the code buffer is of crucial importance since evicting frequently 

executed methods may result in performance degradation. 

Besides, the fragmentation problem and the maintenance overhead of the replacement 

policy also have influences on the program execution performance. The fragmentation 

problem means that even if the total capacity of the free space in the code buffer is adequate 

for an incoming method, the method still cannot be inserted into the code buffer because the 

free space is fragmented. For an example of a fragmented code buffer, see Figure 2-3, where 

the white blocks indicate free space. Although the total size of the free space is larger than the 

size of the incoming method, each segment of contiguous free space is too small to fit the 

method. The defragmentation operation may be employed to deal with this problem, but the 

overheads of most defragmentation techniques are too high to be applicable to Java 

environments. Such a cause necessitates a replacement policy for code buffer management 

that scarcely brings about the fragmentation problem. 
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Figure 2-3 An Example of a Fragmented Code Buffer 

The following are the six most common ways to decide which method(s) to evict from 

the code buffer: 

 Least-Recently Accessed (LRA) 

When the code buffer doesn’t have sufficient free space for a newly compiled method, 

the JIT-compiled method in the code buffer that hadn’t been accessed for the longest time is 

the first candidate for replacement. In case removing only this JIT-compiled method cannot 

free an adequately large space to place the incoming method, the subsequent one or more 

methods in the code buffer are also removed until the space freed is larger than the incoming 

method. This policy has the benefit of exploiting the temporal locality, yet it has the drawback 

of deleting innocent victim methods in order to make a contiguous space large sufficiently for 

the incoming method. This policy would suffer from the effect of fragmentation. 

 Least-Frequently Accessed (LFA) 

In the event that there isn’t adequate room in the code buffer for an incoming method, 

the JIT-compiled method accessed the fewest times among all the methods in the code buffer 

is the first candidate for replacement. Like the LRA policy, if evicting the method doesn’t 

generate enough free space, the subsequent one or more methods are evicted as well. Even 

though this policy can identify hot methods effectively, it has the possibility of deleting a 

method compiled just lately, whose access count has not been high yet. Additionally, this 

policy also has the disadvantage of giving rise to the fragmentation problem. 
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 Least-Recently Created (LRC) 

This policy treats the code buffer as a circular buffer, and the compiled methods are 

replaced in the same order as they were inserted. In the event that replacing a method does not 

produce adequate free space for the incoming method, the subsequent one or more methods 

are also replaced till the space freed is enough. If the space freed is larger than needed by the 

incoming method, the remainder free space can be used by the next method inserted into the 

code buffer. This policy completely avoids the generation of fragmentation, and the overhead 

is rather low because it merely needs a pointer to be updated when a method is inserted. 

 Largest Element (LE) 

When a JIT-compiled method cannot be put into the code buffer owing to lack of free 

space, the method of the largest size in the code buffer is selected as the first victim to discard. 

Likewise, if discarding the method cannot free adequate space, the subsequent one or more 

methods are also discarded. The purpose of this policy is to minimize the number of 

replacements that occur within the code buffer, but no attention is paid to the temporal locality. 

This policy would lead to the fragmentation problem as well. 

 Best-Fit Element (BFE) 

In case the free space in the code buffer is not sufficient to store a newly compiled 

method, the entire code buffer is scanned in search of the method of the smallest size that is 

larger or equal to the size of the incoming method. If there is no method in the code buffer 

large enough for the incoming method, all the methods and their next ones are grouped into 

pairs of two, and the best-fit search resumes. Although this policy attempts to minimize the 

number of times the fragmentation problem arises, it incurs very high overhead from the 

search for the best-fit element. 

 Full Cache Flush 

As soon as a JIT-compiled method cannot be inserted into the code buffer, all compiled 

methods in the code buffer are flushed, and the incoming method becomes the first element 
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placed in the code buffer. Although this is a replacement policy with very low overhead and 

no fragmentation problem, it has the adverse side effect of evicting frequently executed 

methods from the code buffer and thus potentially degrades the program execution 

performance. 

The above six replacement policies for code buffer management have been evaluated in a 

previous study [7]. The experimental result reveals that the LRA policy outperforms the other 

policies across various code buffer sizes in terms of the code buffer miss rate as shown in 

Figure 2-4. The code buffer miss rate of the LRC policy is also fairly low, although it is a little 

higher than that of the LRA policy. 

 

Figure 2-4 Code Buffer Miss Rate of Each Code Buffer Replacement Policy [7] 

In addition to the code buffer miss rate, the fragmentation problem and the maintenance 

overhead should also be taken into account for the evaluation of these policies. As 

summarized in Table 2-1, only two policies, LRC and Flush, do not suffer from the 

fragmentation problem at all, and each of them simply needs a pointer for management, 

incurring the lowest overhead among all the policies. After combining the factors of code 

buffer miss rate, fragmentation problem, and overhead, the LRC policy, with a low code 

buffer miss rate, no fragmentation problem, and the lowest maintenance overhead, appears to 

be the most desirable replacement policy for code buffer management. 
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Table 2-1 Summary of Code Buffer Replacement Policies [7] 

Policy Fragmentation Code Buffer Miss Rate Management 

Flush None 4.61% Pointer 

LRA Yes 2.48% Priority Queue 

LFA Yes 9.11% Priority Queue 

LE Yes 13.91% Priority Queue 

BFE Minimal 20.77% Multiple Sorted Lists 

LRC None 2.88% Pointer 

2.4 Sample-Based Profiling 

Profiling is used to analyze a program’s behavior by gathering information on program 

execution. Sample-based profiling is a kind of profiling technique with fairly low overhead. It 

does not specifically collect all required information at runtime but collects information only 

while certain regular events occur (e.g. the number of cache misses reaches a certain value) 

using operating system or hardware interrupts as illustrated in Figure 2-5. Sample-based 

profiling is typically less accurate and less specific but allows the target program to run at 

nearly full speed. This technique is employed as the profiling scheme in our design. 

 

Figure 2-5 Sample-Based Profiling 

2.5 Relate Work 

There have been plenty of previous studies on SPM allocation schemes, the majority of 

which are for executed languages like C and C++, and few are for interpreted languages like 

Java. They can be grouped into static approach, statically decided dynamic approach, 
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partial-runtime dynamic approach, and runtime dynamic approach. 

The static approach [5][8][9][10][11][12][13][14][15][16][17][18][19] and the statically 

decided dynamic approach [20][21][22][23][24][25][26] need a static compiler to analyze 

program behavior at static compile time for the decision on SPM allocation. The static 

approach does not change SPM contents during program execution, so objects placed in the 

SPM do not alter across distinct portions of a program. On the contrary, the statically decided 

dynamic approach may change SPM contents during program execution. Nevertheless, 

because the SPM allocation is decided at static compile time, these approaches cannot exactly 

adjust SPM contents according to dynamic program behavior. Consequently, as long as the 

program behavior varies with inputs at runtime, the benefits from use of the SPM are likely to 

diminish. Heretofore, the mass of the proposed SPM allocation schemes belonging to the two 

approaches are applied to executed languages, and few [18][19] are applied to interpreted 

languages. Executed languages are those whose program binaries need to be executed directly 

on hardware, such as C and C++, while interpreted languages are those whose program 

machine-independent representations are interpreted by a runtime system, such as Java. 

The partial-runtime dynamic approach decides SPM allocation by profiling a program 

for a period of execution time after the start of program execution till a method is detected as 

a hot method. Like the statically decided dynamic approach, this approach may change SPM 

contents in the course of program execution. Even though this approach decides SPM 

allocation at runtime, it cannot always adjust the SPM allocation exactly according to 

dynamic program behavior throughout program execution as well because it gathers program 

information only during the beginning period of execution time. Only one SPM allocation 

scheme [1] belongs to this approach at present, which is applied to an interpreted language, 

Java. 

So far, there is only one scheme belonging to the runtime dynamic approach, which is 

software caching. Software caching uses software to emulate a cache in SRAM, and the valid 
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bits, tags, and data of the cache are handled by compiler-inserted code on every memory 

access. Even if this method is capable of regulating SPM contents with variations in the 

dynamic program behavior, it introduces significant overheads in runtime, code size, data size, 

and energy consumption for the management of the fields of a cache. For this reason, software 

caching is extensively regarded as a failure, and almost all recent studies focused on the static 

approach and the statically decided dynamic approach. 

All current SPM allocation schemes for Java belong to either the static approach or the 

partial-runtime dynamic approach, and they are introduced in the following subsections. 

2.5.1 Static Approach for Java 

The SPM allocation scheme for Java [18][19] proposed by Tomar et al. belongs to the 

static approach, meaning that SPM allocation is decided at static time and objects placed in 

the SPM do not change at runtime. In their method, the candidates for SPM allocation are 

heap objects (data) in a program and profiling is run at static time to acquire the number of 

references to each object. Afterwards, the Java compiler inserts annotations into the bytecode 

to specify which objects are to be allocated to the SPM. In order to realize this method, the 

JVM needs to be modified to have the capability of recognizing those annotations. During 

program execution, the JVM preferentially allocates the annotated objects to the SPM till the 

SPM is full. 

Although this method has the merit of low runtime overhead since the decision on SPM 

allocation is made at static time, it has at least the following shortcomings. First, this method 

considers the number of references to each object for SPM allocation but pays no attention to 

cache misses. In the case of an environment containing a cache, the objects that give rise to 

more cache misses probably are not the ones referenced more times because the objects 

referenced more times may stay in the cache during most of the execution time. Second, this 
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method can only apply to the bytecode produced by their specialized Java compiler. Third, 

since Java applications may run on a great variety of platforms, the absence of hardware 

information like the SPM capacity at static time makes the SPM allocation possibly unable to 

serve the practical execution environment. Last, this method is incapable of regulating SPM 

contents with variations in the dynamic program behavior. 

2.5.2 Partial-Runtime Dynamic Approach for Java 

In addition to the above static approach, an SPM allocation scheme for Java [1] 

belonging to the partial-runtime dynamic approach was proposed lately by Nguyen et al. The 

candidates for SPM allocation in their method are bytecode, static class variables, Java stacks, 

and heap objects (data). The SPM allocation is decided according to the program behavior 

during a period of execution time after the start of program execution. At the beginning of 

program execution, profiling is run to count the number of times each candidate is accessed 

until the first time a method is detected as a hot method. After the profiling is terminated, 

SPM allocation is performed according to the collected profile information. The candidates 

are allocated to the SPM in the descending order of their LFPB values till the SPM is full. The 

LFPB equation is given below. 

)(

)(

ByteSize

Frequency AccessLatencyLatency
LFPB

SPMmemory  slow 
  

Even though this method doesn’t need a specialized Java compiler to support and just 

needs the JVM to be modified, it doesn’t allow for cache misses for SPM allocation as well. 

Moreover, it cannot always adjust SPM allocation exactly according to dynamic program 

behavior throughout program execution because it gathers program information only during 

the beginning period of execution time. Besides, this method incurs rather high runtime 

overhead from profiling. 
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2.5.3 Comparison between Related Work for Java and Our Design 

The aforementioned SPM allocation schemes for Java are Tomar’s method (static 

approach) and Nguyen’s method (partial-runtime dynamic approach). They are compared with 

our design (runtime dynamic approach), and the comparison result is listed in Table 2-2. 

Table 2-2 Comparison between Related Work for Java and Our Design 

 
Tomar’s Method 

(Static Approach) 

Nguyen’s Method 

(Partial-Runtime 

Dynamic Approach) 

Our Design 

(Runtime 

Dynamic Approach) 

Candidate for 

SPM Allocation 
Data Data Code 

Taking Cache 

Misses into 

Account 

No No Yes 

Need for  

Specialized 

Java Compiler 

Yes No No 

Runtime 

Overhead 
Low High Medium 

Dynamic 

Adjustment of 

SPM Allocation 

No No Yes 
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Chapter 3 Design of Dynamic SPM Allocation 

Our design of dynamic SPM allocation for JIT-compiled code is elaborated in this 

chapter. Section 3.1 describes the memory hierarchy utilized in our design, which consists of 

SPM, cache, and main memory. Section 3.2 introduces the components related to our design 

in the original execution environment. Section 3.3 presents in detail the components in our 

design that are modified from or added to the original execution environment and their 

respective functions. 

3.1 Memory Hierarchy Overview 

The memory hierarchy utilized in our design consists of SPM, cache, and main memory 

as depicted in Figure 3-1. The SPM and the main memory occupy the different address ranges 

of the address space, signifying that the address range of the SPM is disjoint from that of the 

main memory. Any instruction or data whose address is mapped to the main memory’s 

address range is read from or written to the main memory. Similarly, any instruction or data 

whose address is mapped to the SPM’s address range is read from or written to the SPM. 

 

Figure 3-1 Memory Hierarchy Consisting of SPM, Cache, and Main Memory 
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Instructions and data in the main memory are all cacheable. It means that any instruction 

must be first loaded into the instruction cache before it can be executed by the processor, or an 

instruction cache miss will occur to get instructions loaded from the main memory to the 

instruction cache. Similarly, any data read from or written to the main memory must pass 

through the data cache (write-allocate policy). In contrast with the main memory, neither 

instruction nor data in the SPM is cacheable. Hence, all instructions and data are read from or 

written to the SPM directly, and no cache miss will occur at all. 

3.2 Components of Original Execution Environment 

Figure 3-2 shows the components related to our design in the original execution 

environment. The JVM contains a JIT compiler used to compile frequently executed methods 

on the fly as mentioned in section 1.2, and the JIT compiler has a method allocator, which is 

responsible for allocating the method to the main memory when a method gets compiled. Any 

JIT-compiled method is stored in the code buffer in the main memory for future utilization. 

 
Figure 3-2 Components of Original Execution Environment 

When a JIT-compiled method is executed, the processor will check whether the 

JIT-compiled code that is about to be executed is in the instruction cache. If so, the processor 
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can execute it instantly out of the instruction cache. Otherwise, an instruction cache miss will 

occur, and the JIT-compiled code will be loaded into the instruction cache. Then, the 

processor can proceed with executing it out of the instruction cache. 

3.3 Components of Execution Environment in Our Design 

Figure 3-3 depicts the components in our design that are modified from or added to the 

original execution environment (depicted in red) and the invocation relationship among them. 

These components are briefed as follows: 

 

Figure 3-3 Components of Execution Environment in Our Design 

 Method Allocator 

The method allocator is modified from the method allocator in the original execution 

environment, and its function is to allocate the JIT-compiled method to the SPM as a method 

gets compiled by the JIT compiler. It has to call the SPM space manager (mentioned below) to 

allocate an SPM free space to store the JIT-compiled method and has to set some necessary 

information in the JVM that is associated with the JIT-compiled method. 
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 SPM Space Manager 

The function of the SPM space manager is to allocate a free space from the SPM for the 

JIT-compiled method that is about to be inserted into the SPM during the process of allocation 

or reallocation (mentioned after). In case of lack of free space in the SPM for an inserted 

method, the SPM space manager needs to perform replacement to evict some method(s) from 

the SPM and needs to call the method reallocator (mentioned after) to reallocate the evicted 

method(s) to the main memory. 

 Method Information Profiler 

The method information profiler is responsible for gathering instruction cache miss 

information on JIT-compiled methods and converting the gathered information on each 

JIT-compiled method into a value for estimating the benefit of storing a JIT-compiled method 

in the SPM instead of the main memory. Moreover, the method information profiler needs to 

make a decision on whether a JIT-compiled method in the main memory is to be reallocated to 

the SPM according to the value so that the selection of JIT-compiled methods in the SPM can 

be dynamically adjusted with variations in the program behavior. If the method information 

profiler decides to reallocate a JIT-compiled method to the SPM, it will call the method 

reallocator (mentioned below) to perform this operation. 

 Method Reallocator 

The method reallocator is responsible for reallocating a JIT-compiled method to the main 

memory or to the SPM. When a JIT-compiled method is selected to evict from the SPM by the 

SPM space manager, the method reallocator needs to reallocate the method to the main 

memory. When the method information profiler decides to reallocate a JIT-compiled method 

from the main memory to the SPM, the method reallocator needs to call the SPM space 

manager to allocate an SPM free space and then reallocate the method to the SPM. 

Furthermore, the method reallocator has to modify certain information kept in the JVM during 

the process of reallocation in order to maintain the accuracy of program execution. 
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3.3.1 Method Allocator 

The method allocator in our design is adapted from the method allocator in the original 

execution environment. The original method allocator allocates all methods getting compiled 

by the JIT compiler to the code buffer in the main memory, whereas the adapted method 

allocator allocates all methods getting compiled to the SPM rather than to the main memory. 

There are two reasons for allocating a JIT-compiled method to the SPM instead of the 

main memory on method compilation. First, in the original environment, the compiled code 

has to be first written into the data cache and then can be written into the main memory. This 

probably results in the occurrence of data cache misses, which may eject some useful data 

from the data cache. Yet in our design, the compiled code is written into the SPM directly. 

This way no longer incurs data cache misses and avoids ejecting useful data from the data 

cache. 

Second, JIT-compiled methods are those in a program that were executed frequently, so 

they are selected to be compiled by the JIT compiler. In general, a JIT-compiled method will 

continue being executed rather frequently after being compiled. Therefore, the way of directly 

allocating JIT-compiled methods to the SPM can immediately avoid the occurrence of some 

instruction cache misses. 

In the process of allocating a JIT-compiled method to the SPM, the method allocator 

needs to invoke the SPM space manager to allocate a free space from the SPM for the 

JIT-compiled method and then stores the JIT-compiled method into the SPM. In addition, the 

method allocator has to store a pointer to the start of the compiled code into the method block 

of the JIT-compiled method in the method table. 

3.3.2 SPM Space Manager 

The task of the SPM space manager is to allocate a free space from the SPM for the 
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JIT-compiled method that is about to be inserted into the SPM. There are two cases in which 

the SPM space manager is invoked. The first is that the method allocator calls the SPM space 

manager to allocate an SPM free space for the method that is getting compiled by the JIT 

compiler. The second is that the method reallocator calls the SPM space manager to allocate 

an SPM free space for the JIT-compiled method that is to be reallocated to the SPM. If the 

SPM lacks free space, the SPM space manager has to perform replacement to make room for 

the inserted method. 

As indicated by the previous study [7] introduced in section 2.3, the least-recently 

created (LRC) replacement policy, with a low code buffer miss rate, no fragmentation 

problem, and the lowest overhead, is the most desirable replacement policy among all the 

policies that were investigated in the study. For this reason, the LRC policy is adopted as the 

replacement policy for SPM space management in our design. 

The SPM is treated as a circular buffer, and JIT-compiled methods in the SPM are 

replaced in the same order as they were inserted into the SPM. The way to implement the 

LRC policy is to make use of a pointer, referred to as entry pointer in this thesis, to indicate 

which method in the SPM is the first victim to evict. In case evicting a victim method does 

not generate enough free space, one or more methods subsequent to the first victim will also 

be evicted until the space freed is large adequately for the incoming method. If the space freed 

is larger than needed by the incoming method, the remainder free space can be used by the 

next incoming method. After replacement, the pointer will point to the victim method for the 

next replacement. 

Figure 3-4 is a case of the LRC replacement policy. Method n+1 is the method that is 

about to be inserted into the SPM. The entry pointer indicates that Method 2 is the first victim 

method for replacement. Since Method n+1 is larger than Method 2, Method 3 also needs to 

be replaced to produce a sufficiently large free space. After evicting Method 2 and Method 3, 

the space freed is large enough to hold Method n+1, and even there is a remainder free space 
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because the total size of Method 2 and Method 3 is larger than that of Method n+1. At last, the 

entry pointer points to the remainder free space, which can be used by the next incoming 

method. 

 

Figure 3-4 A Case of LRC Replacement Policy 

3.3.3 Method Information Profiler 

The three functions of the method information profiler are collecting information about 

instruction cache misses caused by JIT-compiled code, calculating the profit from storing a 

JIT-compiled method in the SPM rather than in the main memory, and deciding whether a 

JIT-compiled method is to be reallocated to the SPM or not. 

Figure 3-5 is the work flowchart for the method information profiler. After the start of 

program execution, the method information profiler begins to collect information about 

instruction cache misses caused by JIT-compiled code. Once the condition of profit 

calculation is reached, the method information profiler will start to calculate a JIT-compiled 

method’s profit. After finishing calculating a method’s profit, the method information profiler 

will check the method’s location and the profit to decide whether to reallocate the method to 

the SPM or not. If yes, it will call the method reallocator to reallocate the method to the SPM. 

Afterwards, it continues to process another JIT-compiled method until all method’s profits 

have been calculated and then resumes gathering instruction cache miss information. 
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Figure 3-5 Work Flowchart for Method Information Profiler 

The method information profiler holds a method information table to keep track of some 

required information on JIT-compiled methods for our design as shown in Table 3-1. Each 

method has the following four kinds of information kept in the method information table: 

Table 3-1 Method Information Table 

Method 
Cache Miss 

Frequency 
Profit Location 

Pointer to 

Method 

Descriptor 

1 15 0.02 Main Memory 0xE135C128 

2 0 2297.63 SPM 0xE13A1D5C 

3 0 7612.50 SPM 0xE1300A04 

. 
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n 1 0 Main Memory 0xE1392B50 

 Cache Miss Frequency 

The cache miss frequency represents the occurrence status of instruction cache misses of 

a JIT-compiled method. 
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 Profit 

The profit is a value used for estimating the benefit that would be gained from storing a 

JIT-compiled method in the SPM rather in the main memory. 

 Location 

The location indicates a JIT-compiled method is in the SPM or in the main memory. 

 Pointer to Method Descriptor 

This information is a pointer to the method descriptor of a JIT-compiled method. 

If there is any JIT-compiled method evicted from the SPM to the main memory, 

instruction cache misses caused by JIT-compiled code will likely begin arising. The method 

information profiler is responsible for gathering the instruction cache miss information. It 

employs the sample-based profiling technique as the profiling scheme to collect instruction 

cache miss information on JIT-compiled methods. It does not keep track of every instruction 

cache miss but every sample of instruction cache miss instead. Every time the number of 

instruction cache misses reaches a fixed value called Sampling-Triggered Threshold 

(determined in chapter 4), the method information profiler will sample the occurring 

instruction cache miss and use the current program counter to find out which JIT-compiled 

method causes this instruction cache miss. 

The way to find out which JIT-compiled method causes this instruction cache miss is to 

compare the current program counter with the program counter recorded in the top stack 

frame of each Java stack. If the program counter recorded in a certain top stack frame matches 

the current program counter, it means the method that owns the stack frame is executing the 

instruction that incurs this instruction cache miss, and thus the method causing this instruction 

cache miss can be identified. In case that this instruction cache miss is not caused by a 

JIT-compiled method, this sample will be thrown away. Otherwise, the cache miss frequency 

of the JIT-compiled method causing this instruction cache miss kept in the method 

information table will be increased by one. 
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The address of a JIT-compiled method’s method descriptor is utilized as the hashing key 

for locating the method’s entry in the method information table, and the address can be found 

in the method’s stack frame in the Java stack. If the JIT-compiled method whose cache miss 

frequency needs to be increased by one hasn’t had an entry in the method information table 

(there hasn’t been any sampled instruction cache miss incurred by this method), a new entry 

belonging to this method will be inserted. Initially, the cache miss frequency is set as 1, the 

profit is set as 0, the location is “main memory” (any method causing an instruction cache 

miss is definitely in the main memory), and the pointer to its method descriptor is stored. 

In addition to collecting instruction cache miss information, the method information 

profiler has to calculate the profit of each JIT-compiled method, which is an estimate of the 

benefit gained from storing a JIT-compiled method in the SPM instead of the main memory. 

As often as (Nsample × Sampling-Triggered Threshold) reaches a fixed value called 

Promotion-Triggered Threshold (determined in chapter 4), the method information profiler 

will start to calculate the profit, as illustrated in Figure 3-6. Nsample denotes the number of 

samples of instruction cache misses caused by JIT-compiled code, so (Nsample × 

Sampling-Triggered Threshold) means the approximate number of instruction cache misses 

caused by JIT-compiled code. As long as the profit calculation is finished, Nsample is reset to 0 

and re-accumulated. 

 

Figure 3-6 Timing for Profit Calculation 

Each method that has an entry in the method information table has its own profit. The 

profit equation is a weighted average as follows: 
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Profitn-1 denotes a method’s previous profit, currently stored in the method information table. 

α is a fixed number larger than or equal to 0, and smaller than 1 (determined in chapter 4). 

Cache Miss Frequencyn denotes a method’s present cache miss frequency, currently recorded 

in the method information table. Hence, the profit implies the number of instruction cache 

misses caused by a JIT-compiled method per kilobyte per time interval between every time 

profit calculation is launched. Apparently, the higher the profit is, the more benefit storing the 

method in the SPM would bring. The reason for adopting the weighted average is to prevent a 

sharp variation in the number of instruction cache misses from leading to a great change in the 

profit value. 

After finishing the calculation of a method’s profit, the old profit stored in the method 

information table will be replaced with the newly calculated profit, and the cache miss 

frequency of the method will be reset to 0, as shown in Table 3-2, where method 1’s new 

profit has been stored, and method 1’s cache miss frequency has been reset to 0. And then the 

method information profiler begins to decide whether to reallocate the method to the SPM or 

not. It first checks the location of the method recorded in the method information table and 

then checks the profit of the method. If the method is in the main memory, and the profit 

exceeds Promotion Threshold (determined in chapter 4), the method information profiler will 

invoke the method reallocator to reallocate the method to the SPM. 

After completing processing a JIT-compiled method, the method information profiler 

continues to process the next method until every JIT-compiled method that has an entry in the 

method information table has been processed. And then the method information profiler 

resumes collecting instruction cache miss information. 
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Table 3-2 New Profits are Stored, and Cache Miss Frequencies are Reset to 0, after Profit Calculation 

Method 
Cache Miss 

Frequency 
Profit Location 

Pointer to 

Method 

Descriptor 

1 0 2217.07 Main Memory 0xE135C128 

2 0 2297.63 SPM 0xE13A1D5C 

3 0 7612.50 SPM 0xE1300A04 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

n 8 0 Main Memory 0xE1392B50 

3.3.4 Method Reallocator 

The method reallocator is responsible for the reallocation of a JIT-compiled method to 

the main memory or to the SPM. When a JIT-compiled method is selected to evict from the 

SPM by the SPM space manager, the method reallocator needs to reallocate the method to the 

main memory. When it is decided that a JIT-compiled method is to be reallocated to the SPM 

by the method information profiler, the method reallocator has to reallocate the method to the 

SPM. 

Reallocation of JIT-compiled methods can be divided into promotion and demotion as 

depicted in Figure 3-7. Promotion represents reallocation of a JIT-compiled method from the 

main memory to the SPM. On the contrary, demotion represents reallocation of a 

JIT-compiled method from the SPM to the main memory. 

The process of promoting a JIT-compiled method from the main memory to the SPM 

chiefly involves the following four steps: 

i. The SPM space manager is invoked to allocate an SPM free space for the promoted 

method. 
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ii. The JIT-compiled code of the promoted method is copied from the code buffer in the 

main memory to the SPM. 

iii. The pointer to the start of the compiled code kept in the promoted method’s method 

block in the method table is fixed up in order to maintain the accuracy of program 

execution. The way to locate the pointer to the start of the compiled code stored in the 

method block is to utilize the pointer to the promoted method’s method descriptor 

kept in the method information table and thus the pointer can be located. 

iv. The location of the promoted method recorded in the method information table is 

modified to “SPM”. 

 

Figure 3-7 Promotion and Demotion 

The process of demoting a JIT-compiled method from the SPM to the main memory 

mainly involves the following three steps: 

i. The JIT-compiled code of the demoted method is copied from the SPM to the code 

buffer in the main memory. 

ii. The pointer to the start of the compiled code stored in the demoted method’s method 

block in the method table is fixed up in order to maintain the accuracy of program 

execution. The pointer to the demoted method’s method descriptor kept in the method 

information table is used to locate the pointer to the start of the compiled code stored 

in the method block in the method table. 

iii. The location of the demoted method recorded in the method information table is 



35 

 

modified to “main memory”. 

Due to the copying of JIT-compiled code in the processes of promotion and demotion, 

promotion or demotion of a JIT-compiled method must bring additional runtime overhead. We 

have devised an approach in order to reduce the overall demotion overhead incurred by 

copying demoted methods’ compiled code from the SPM to the main memory throughout 

program execution. The essence of this approach is that as long as it can be guaranteed that 

the code buffer space occupied by a promoted method is able to be freed up when the code 

buffer lacks free space, the JIT-compiled code of a promoted method may remain in the code 

buffer after promotion. As a result, a demoted method’s JIT-compiled code probably needn’t 

be copied from the SPM to the main memory during demotion, and thus the overall demotion 

overhead can be reduced. 

To this end, the decompilation mechanism in the original execution environment merely 

requires slight modification, and the code buffer space occupied by a promoted method will 

be able to be freed up when decompilation is performed. Besides, a new piece of information 

is added to the method information table for keeping track of the starting address of each 

promoted method’s compiled code in the main memory, as shown in Table 3-3. If a 

JIT-compiled method in the main memory gets decompiled, the starting address of the 

method’s compiled code in the main memory recorded in the method information table will be 

changed to 0. For an example, see Table 3-3, where method 3’s starting address of the 

compiled code in the main memory is 0, signifying that method 3 has been decompiled, and 

its JIT-compiled code has not existed in the code buffer in the main memory. 

During demotion of a JIT-compiled method from the SPM to the main memory, the 

method reallocator will check the starting address of the demoted method’s compiled code in 

the main memory recorded in the method information table. If it is 0, indicating the 

JIT-compiled code of the demoted method hasn’t existed in the code buffer in the main 

memory, the method reallocator still has to copy the JIT-compiled code from the SPM to the 
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main memory. If it is not 0, indicating the JIT-compiled code of the demoted method still 

stays in the code buffer in the main memory, the method reallocator need not copy the 

JIT-compiled code from the SPM to the main memory and simply needs to make use of the 

starting address of the demoted method’s compiled code in the main memory recorded in the 

method information table to fix up the pointer to the start of the compiled code stored in the 

method block in the method table. And thus the overhead incurred by copying the 

JIT-compiled code from the SPM to the main memory can be altogether eliminated. 

Table 3-3 Method 3 has been Decompiled, and Its “Starting Address of Compiled Code in Main Memory” is 0 

Method 
Cache Miss 

Frequency 
Profit Location 

Starting Address 

of Compiled Code 

in Main Memory 

Pointer to 

Method 

Descriptor 

1 15 0.02 
Main 

Memory 
0xF716EB8C 0xE135C128 

2 0 2297.63 SPM 0xF7171B90 0xE13A1D5C 

3 0 7612.50 SPM 0 0xE1300A04 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

n 1 0 
Main 

Memory 
0xF7172BCC 0xE1392B50 



37 

 

Chapter 4 Experiments and Results 

This chapter describes the conducted experiments and presents the experimental results. 

Section 4.1 introduces the experimental environment, including the utilized tools and the 

employed Java benchmarks. Section 4.2 shows the analyses of instruction cache miss rate and 

execution time on the benchmarks. Section 4.3 describes the conducted experiments on our 

design, including the resolution of the parameters in our design, and presents the experimental 

results. Section 4.4 shows the performance comparison between our design and the execution 

environment including only a 16KB instruction cache (no SPM). 

4.1 Experimental Environment 

In our experiments, Pin 2.4 [27] is utilized as the simulator and is responsible for 

collecting the required experimental data. Pin is a dynamic binary instrumentation tool. When 

a program begins running, Pin intercepts the execution of the first instruction and generates 

new code for the code sequence starting at this instruction. The generated code sequence is 

nearly the same as the original one and is stored in memory for future use. After generating 

the new code, the control is transferred to the generated code, and the code sequence begins to 

be executed. Once a branch jumps out of the code sequence, the control will be returned to 

Pin, and Pin will generate more code for the code sequence starting at the branch target and 

carry on execution. Such an execution mode of Pin gives users an opportunity to insert their 

own code into a program executable for analysis on program behavior. A tool used to simulate 

cache behavior is provided in Pin 2.4, and we further added new code to it for the simulation 

of our design. 

In addition, phoneME Advanced MR2 build 34 [28] is selected as the JVM to execute 

Java benchmarks. phoneME Advanced MR2 is a JVM targeted at small devices, belonging to 
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Java ME, CDC [4] (introduced in section 1.1). The cause of selecting phoneME Advanced 

MR2 as the JVM to run Java benchmarks is that our design is primarily aimed at small 

devices like smart phones, high-end PDAs, TV set-top boxes, and so on. 

Two suites of Java benchmarks are employed for the evaluation of our design. One is 

Sun’s CLDC HotSpot Implementation Evaluation Kit version 1.0.1 (CLDC HI), which 

contains four benchmarks, and the other is EEMBC’s GrinderBench version 1.0 (GB) [29], 

which contains five benchmarks. Since one of the five benchmarks in GrinderBench, Parallel, 

cannot run correctly on Pin 2.4, we exclude it from our experiments. The benchmarks 

employed in our experiments are briefed in Table 4-1 and 4-2. 

All in all, the experimental environment is that the benchmarks are executed by 

phoneME Advanced MR2 build 34, and phoneME Advanced MR2 build 34 is run on Pin 2.4, 

which simulates the cache behavior and our design, and gathers the required experimental 

data. The instruction cache and data cache are configured to be 8KB, direct-mapped, and 32 

bytes per line, and there is no L2 cache in the execution environment. The cache miss penalty 

is set as 110 cycles per line. All applications are run on an X86 Linux server. 

Table 4-1 Description of Sun’s CLDC HotSpot Implementation Evaluation Kit 

Name Description 

Richards 
Richards simulates the task dispatcher in the kernel of an operating 

system. 

Delta Blue Delta Blue solves one-way constraint systems. 

Image 

Manipulation 

Image Manipulation reads an image file and performs various 

transformations on it. After each transformation, it compares the result 

with an expected result to confirm that the transformation was done 

properly. 

Queen 

Queen is a solver of the n-queen problem, where the objective is to 

place n queens in a chess board so that no queen can attack another. It is 

a classical problem used to illustrate several techniques such as general 

search and backtracking. 
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Table 4-2 Description of EEMBC’s GrinderBench 

Name Description 

Chess 

Chess is a game with a predefined set of rules. It has 32 pieces on a 

board of 64 squares. This benchmark only performs the logical parts of 

a chess game, as no graphical output is available. 

Crypto 

Crypto contains multiple encrypt/decrypt engines. A 4KB text string is 

encrypted and then decrypted. The encryption algorithms exercised are 

DES, DESede, IDEA, Blowfish, and Twofish. 

kXML 

kXML measures XML parsing and/or DOM tree manipulation. It 

processes a command script that specifies XML documents to parse and 

DOM tree manipulations to do. 

PNG 

PNG is the standard format for image representation in Java ME 

implementations. This benchmark does the decoding of a PNG image, 

including decompression, and stores the result internally as header info, 

color palette(s), and image data. 

4.2 Analyses on Benchmarks 

We analyzed the instruction cache miss rate and the execution time for each benchmark 

prior to applying our design to the execution environment. Figure 4-1 shows the breakdown 

of the instruction cache miss rate for each benchmark, where each bar stands for the overall 

instruction cache miss rate, the red portion represents instruction cache misses caused by 

JIT-compiled code, and the blue one represents instruction cache misses caused by the other 

code. The average instruction cache miss rate across all the benchmarks is 1.55%, and the 

average compiled-code instruction cache miss rate is 0.81%. The benchmark, kXML, has the 

highest instruction cache miss rate, 3.67%. Yet there are two benchmarks with extremely low 

instruction cache miss rates, which are Image Manaipulation and Queen. Image Manipulation 

is a image processing program, which reads a great amount of data and performs 

transformations on it without executing many distinct instructions (see Table 4-3, the size of 

compiled code and the number of compiled methods of Image Manipulation are small as 

compared to the averages), so the instruction cache miss does not occur frequently throughout 
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the execution of Image Manipulation. Queen is a program with not only very few compiled 

methods but also an insignificant size of compiled code, as given in Table 4-3, even smaller 

than the configured capacity (8KB) of the instruction cache in our experiments. Hence, the 

instruction cache miss rate of Queen is also much low. 

 
Figure 4-1 Breakdown of Instruction Cache Miss Rate for Each Benchmark 

Table 4-3 Number of Compiled Methods and Size of Compiled Code for Each Benchmark 

Benchmark 

Suite 
CLDC HI GB 

Benchmark Richards 
Delta 

Blue 

Image 

Manipulation 
Queen Ave. Chess Crypto kXML PNG Ave. 

Size of 

Compiled 

Code (Bytes) 

89,844  81,652  12,493  6,316  47,576  96,992  72,044  103,976  37,128  77,535  

Number of 

Compiled 

Methods 

61  57  19 7 36  55  67  90  29  60  

Average Size 

per Method 

(Bytes) 

1,473  1,432  658  902  1,116  1,763  1,075  1,155  1,280  1,318  

Figure 4-2 shows the breakdown of the execution time for each benchmark, where the 

red portion of each bar indicates instruction cache miss stall cycles incurred by JIT-compiled 

code, the blue one indicates instruction cache miss stall cycles incurred by the other code, and 

the gray one indicates the execution time not including instruction cache miss stall cycles. The 

instruction cache miss stall cycles averagely occupy 30.85% of the execution time, and 
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50.57% of the instruction cache miss stall cycles are caused by JIT-compiled code, 

demonstrating that instruction cache miss stall cycles contribute to a considerable part of the 

execution time, and over half are caused by JIT-compiled code. Similarly, the two benchmarks, 

Image Manipulation and Queen, have few instruction cache miss stall cycles due to their 

program properties. 

 
Figure 4-2 Breakdown of Execution Time for Each Benchmark 

If the two benchmarks with few instruction cache miss stall cycles are excluded, the 

average instruction cache miss stall cycles are up to 42.17% of the execution time, and 

53.85% of the instruction cache miss stall cycles are incurred by JIT-compiled code. 

Additionally, since all the benchmarks of GrinderBench are to run for a constant period of 

time rather than to execute a constant number of instructions, and using an instrumentation 

tool to run a program is inherently far slower than running a program directly, the instructions 

executed for each benchmark of GrinderBench in our experiments are much fewer than in a 

usual execution environment, leading to fewer methods compiled for each benchmark of 

GrinderBench in our experiments. If in a usual execution environment, the ratio of instruction 

cache miss stall cycles caused by JIT-compiled code to all ones for every benchmark of 

GrinderBench would be much higher than in our experiments. Thus, without the limitation 
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from the benchmarks of GrinderBench, the actual effect of our design should be better than 

the experimental results given below in this thesis. 

4.3 Experiments on Dynamic SPM Allocation and Results 

In order to thoroughly work out the effect of our design, we divided our design into basic 

design and further design. Basic design means that once a JIT-compiled method is demoted 

from the SPM to the main memory, it will never return to the SPM, namely no sampling and 

promotion involved in basic design. There is only one overhead in basic design, which is 

SPM-space-management overhead. 

In contrast, further design means that if a JIT-compiled method is demoted from the SPM 

to the main memory, it may return to the SPM by promotion, which is to say that sampling 

and promotion are both involved in further design. There are five overheads in further design, 

which are SPM-space-management overhead, sampling overhead, profit-calculation-and- 

promotion-judgment overhead, promotion overhead, and demotion overhead. Further design 

has the following four parameters that need to be resolved: 

 Sampling-Triggered Threshold 

Every time the number of instruction cache misses reaches this value, the method 

information profiler will be triggered to sample the occurring instruction cache miss and 

identify the JIT-compiled method that incurs this instruction cache miss. 

 Promotion-Triggered Threshold 

As often as (Nsample × Sampling-Triggered Threshold) reaches this value, the method 

information profiler will start to calculate the profit of each JIT-compiled method that has an 

entry in the method information table. Nsample signifies the number of samples of instruction 

cache misses caused by JIT-compiled code. 

 Promotion Threshold 
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When the method information profiler completes calculating the profit of a JIT-compiled 

method, it will judge whether the JIT-compiled method has to be promoted to the SPM or not. 

As long as the method is in the main memory and its profit is greater than this value, it will be 

promoted to the SPM. 

 α 

α is the proportion of the previous profit (Profitn-1) in the profit equation as follows, 

which is a number larger than or equal to 0, and smaller than 1. 

)1(
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
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Besides, two SPM sizes are adopted in our experiments for the evaluation of our design, 

which are 8KB and 11.6KB. 8KB is the configured size of the instruction cache in our 

experiments and thus is selected as the SPM size so that the SPM has the same size as the 

instruction cache. Furthermore, in order to ensure a fair comparison of performance between 

our design and the execution environment containing only a 16KB instruction cache (no 

SPM), the total area cost of the 8KB instruction cache and the SPM should equal that of the 

16KB instruction cache. As introduced in section 1.5, the area cost ratio of an SPM to a 

direct-mapped instruction cache of the same size is 0.69 to 1. Therefore, the SPM size should 

be 11.6KB (8KB / 0.69) so that the area cost of the SPM is equal to that of the 8KB 

instruction cache, and further, the total area cost of the 8KB instruction cache and the 11.6KB 

SPM is equal to that of the 16KB instruction cache. For the two SPM sizes, 8KB and 11.6KB, 

we conducted the same experiments on both basic design and further design. 

4.3.1 Result of Basic Design (8KB ICache + 8KB SPM) 

We first experimented on the execution environment containing an 8KB instruction 

cache and an 8KB SPM. Figure 4-3 is the experimental result of basic design, where the 

baseline is the original execution environment, which doesn’t contain an SPM. The execution 
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time is averagely decreased by 4.59% by basic design (the overhead has been taken into 

account), and the overhead is 0.001%. If the two benchmarks whose original instruction cache 

miss stall cycles are few, Image Manipulation and Queen, are excluded, the decreased 

execution time is averagely 5.85%. 

 

Figure 4-3 Reduction in Execution Time by Basic Design (8KB ICache + 8KB SPM) 

4.3.2 Results of Further Design (8KB ICache + 8KB SPM) 

For further design, we performed the experiment of parameter resolution to discover the 

best values of the four parameters, Sampling-Triggered Threshold, Promotion-Triggered 

Threshold, Promotion Threshold, and α. Sampling-Triggered Threshold was first set as a small 

number, which is 50, so that the sample-based profiling can be rather precise, and the value of 

α was changed from 0 to 0.9 for discovering the best values of Promotion-Triggered 

Threshold and Promotion Threshold for each α value. The sampling overhead was temporarily 

disregarded while all of the other overheads were taken into account. Figure 4-4 to Figure 

4-13 are the experimental results for α from 0 to 0.9, each figure showing the percentages of 

execution time reduced for various combinations of Promotion-Triggered Threshold and 
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Promotion Threshold. According to these results, we can find out the best combination of 

Promotion-Triggered Threshold and Promotion Threshold for each α value and then can select 

the combination from them that performs best among all the α values. It’s derived that the 

combination of α is 0.5, Promotion-Triggered Threshold is 30000, and Promotion Threshold is 

2000 has the best performance (15.54% reduction in execution time) in all the parameter 

combinations. 

 
Figure 4-4 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0 

 
Figure 4-5 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0.1 
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Figure 4-6 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0.2 

 
Figure 4-7 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0.3 

 
Figure 4-8 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0.4 
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Figure 4-9 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0.5 

 
Figure 4-10 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0.6 

 
Figure 4-11 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0.7 
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Figure 4-12 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0.8 

 
Figure 4-13 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0.9 

After determining the values of Promotion-Triggered Threshold, Promotion Threshold, 

and α, we fixed the three resolved parameters and altered the value of Sampling-Triggered 

Threshold from 50 to 10000 to discover the best value of Sampling-Triggered Threshold. The 

sampling overhead as well as the other overheads was taken into consideration in this 

resolution. Figure 4-14 is the experimental result and reveals that when Sampling-Triggered 

Threshold is 1000, the performance is the best (14.95% reduction in execution time). 

Therefore, the determined values of Sampling-Triggered Threshold, Promotion-Triggered 

Threshold, Promotion Threshold, and α are 1000, 30000, 2000, and 0.5 respectively. 
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Figure 4-14 Resolution of Sampling-Triggered Threshold 

Figure 4-15 shows the improvement in execution time over the original execution 

environment (no SPM) by further design (8KB ICache + 8KB SPM). On average, 47.07% of 

instruction cache miss stall cycles are eliminated, and the execution time is decreased by 

14.95% (all of the overheads have been taken into account), with 0.17% total overhead. If the 

two benchmarks with few original instruction cache miss stall cycles, Image Manipulation 

and Queen, are excluded, the average decreased execution time is 20.86%. The performance 

of the benchmark, Richards, is improved most, its execution time being decreased by 29.19%. 

 

Figure 4-15 Reduction in Execution Time by Further Design (8KB ICache + 8KB SPM) 
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4.3.3 Basic Design vs. Further Design (8KB ICache + 8KB SPM) 

Figure 4-16 shows the performance comparison between basic design and further design 

with respect to the reduction in execution time, and the baseline is the original execution 

environment, which only contains an 8KB instruction cache (no SPM). On average, basic 

design can reduce the execution time by 4.59%, and further design can reduce the execution 

time by 14.95%. If the two benchmarks whose original instruction cache miss stall cycles are 

few, Image Manipulation and Queen, are not included, basic design averagely reduces the 

execution time by 5.85% while further design reduces the execution time by 20.86%. The 

execution time of Richards is reduced most by further design, by 29.19%. 

 

Figure 4-16 Comparison of Reduction in Execution Time between Basic Design and Further Design (8KB 

ICache + 8KB SPM) 

Figure 4-17 is the performance comparison between basic design and further design with 

reference to the reduction in instruction cache miss rate, and the baseline is likewise the 

original execution environment, which includes an 8KB instruction cache only (no SPM). 

Basic design can averagely lower the instruction cache miss rate by 0.25%, from 1.55% to 

1.3%, while further design can lower the instruction cache miss rate by 0.76%, from 1.55% to 
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0.79%. Similarly, if the two benchmarks, Image Manipulation and Queen, are excluded, the 

reduction in instruction cache miss rate by basic design is 0.32% averagely, and the reduction 

by further design is 1.09%. 

 

Figure 4-17 Comparison of Reduction in Instruction Cache Miss Rate between Basic Design and Further Design 

(8KB ICache + 8KB SPM) 

4.3.4 Result of Basic Design (8KB ICache + 11.6KB SPM) 

After conducting the experiments on the execution environment containing an 8KB 

instruction cache and an 8KB SPM, we then experimented on the execution environment 

containing an 8KB instruction cache and an 11.6KB SPM. The experimental result of basic 

design is presented in Figure 4-18, where the baseline is the original execution environment, 

which only contains an 8KB instruction cache (no SPM). The execution time is averagely 

decreased by 6.57% by basic design (the overhead has been taken into account), with 0.002% 

overhead. If the two benchmarks whose original instruction cache miss stall cycles are few, 

Image Manipulation and Queen, are excluded, the average decreased execution time is 9.12%. 
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Figure 4-18 Reduction in Execution Time by Basic Design (8KB ICache + 11.6KB SPM) 

4.3.5 Results of Further Design (8KB ICache + 11.6KB SPM) 

In order to determine the best values of the four parameters in further design for the 

execution environment including an 8KB instruction cache and an 11.6KB SPM, we 

performed the same experiment of parameter resolution as for the execution environment 

including an 8KB instruction cache and an 8KB SPM. Similarly, Sampling-Triggered 

Threshold was first set as a small number, which is 50, so that the sample-based profiling can 

be fairly precise, and α was varied from 0 to 0.9 for discovering the best values of 

Promotion-Triggered Threshold and Promotion Threshold for each α value. The sampling 

overhead was temporarily ignored while the other overheads were all taken into consideration. 

From Figure 4-19 to Figure 4-28, we can derive that the combination of α is 0.3, 

Promotion-Triggered Threshold is 30000, and Promotion Threshold is 2000 performs best 

(16.58% reduction in execution time) among all the parameter combinations. 
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Figure 4-19 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0 

 
Figure 4-20 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0.1 

 
Figure 4-21 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0.2 
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Figure 4-22 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0.3 

 
Figure 4-23 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0.4 

 
Figure 4-24 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0.5 
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Figure 4-25 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0.6 

 
Figure 4-26 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0.7 

 
Figure 4-27 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0.8 
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Figure 4-28 Resolution of Promotion-Triggered Threshold and Promotion Threshold when α is 0.9 

After determining the values of the three parameters, Promotion-Triggered Threshold, 

Promotion Threshold, and α, we fixed these three resolved parameters and changed the value 

of Sampling-Triggered Threshold from 50 to 10000 to resolve the parameter. All the 

overheads, including the sampling overhead, were taken into account in this resolution. From 

Figure 4-29, it can be derived that when Sampling-Triggered Threshold is 1000, the 

performance is the best of all (16.46% reduction in execution time). In conclusion, the 

resolution outcome of the four parameters is that Sampling-Triggered Threshold is 1000, 

Promotion-Triggered Threshold is 30000, Promotion Threshold is 2000, and α is 0.3. 

 
Figure 4-29 Resolution of Sampling-Triggered Threshold 

Figure 4-30 presents the final result of further design (8KB ICache + 11.6KB SPM), 
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where the baseline is the original execution environment (no SPM). Further design averagely 

eliminates 53.03% of instruction cache miss stall cycles and decreases the execution time by 

16.46% (all the overheads have been taken into account), with 0.17% total overhead. If the 

two benchmarks, Image Manipulation and Queen, are not included, the average decreased 

execution time is 23.26%. The decreased execution time of Richards is the most, which is 

32.31%. 

 

Figure 4-30 Reduction in Execution Time by Further Design (8KB ICache + 11.6KB SPM) 

4.3.6 Basic Design vs. Further Design (8KB ICache + 11.6KB SPM) 

Figure 4-31 shows the performance comparison between basic design and further design 

with regard to the decrease in execution time, and the baseline is the original execution 

environment, which only has an 8KB instruction cache (no SPM). Basic design is able to 

decrease the execution time by 6.57% averagely while further design can decrease the 

execution time by 16.46%. If the two benchmarks with original instruction cache miss stall 

cycles being few, Image Manipulation and Queen, are not included, the execution time 

decreased by basic design is averagely 9.12%, and the one decreased by further design is 
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23.26%. The execution time of Richards is decreased most by further design, by 32.31%. 

 

Figure 4-31 Comparison of Reduction in Execution Time between Basic Design and Further Design (8KB 

ICache + 11.6KB SPM) 

Figure 4-32 presents the performance comparison between basic design and further 

design in connection with the decrease in instruction cache miss rate. Similarly, the baseline is 

the original execution environment, which contains an 8KB instruction cache only (no SPM). 

On average, basic design is able to lower the instruction cache miss rate by 0.35%, from 

1.55% to 1.2%, while further design can lower the instruction cache miss rate by 0.84%, from 

1.55% to 0.71%. Likewise, if the two benchmarks, Image Manipulation and Queen, are 

excluded, the instruction cache miss rate lowered by basic design is averagely 0.49%, and the 

one lowered by further design is 1.21%. 
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Figure 4-32 Comparison of Reduction in Instruction Cache Miss Rate between Basic Design and Further Design 

(8KB ICache + 11.6KB SPM) 

4.4 Comparison with 16KB ICache Only Environment 

In the end, our further design is compared with the execution environment containing 

only a 16KB instruction cache (no SPM). At first, further design (8KB ICache + 8KB SPM) is 

compared. Although the total capacity of the 8KB instruction cache and the 8KB SPM equals 

the capacity of the 16KB instruction cache, the total area cost of the 8KB instruction cache 

and the 8KB SPM is merely 84.5% of the area cost of the 16KB instruction cache. The 

comparison result is presented in Figure 4-33, where the baseline is the execution 

environment containing only a 16KB instruction cache. From this figure, we can derive that 

the average execution time with further design for CLDC HI is 3.3% less than with the 16KB 

instruction cache only environment, and the average execution time with further design for 

GB is 0.94% more than with the 16KB instruction cache only environment. Altogether, 

instruction cache miss stall cycles and the execution time with further design are averagely 

7.64% fewer and 1.18% less than with the 16KB instruction cache only environment. In short, 

our further design (8KB ICache + 8KB SPM), with 15.5% less cost, performs better (1.18% 
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less execution time) than the 16KB instruction cache only environment. If the two 

benchmarks with few original instruction cache miss stall cycles, Image Manipulation and 

Queen, are excluded, the execution time with further design is averagely 3.05% less than with 

the 16KB instruction cache only environment. For the benchmark that performs best with 

further design, Richards, the execution time is 11.54% less than with the 16KB instruction 

cache only environment. 

 

Figure 4-33 Comparison of Execution Time between Further Design (8KB ICache + 8KB SPM) and 16KB 

Instruction Cache Only Environment 

Figure 4-34 shows the comparison of instruction cache miss rate between further design 

(8KB ICache + 8KB SPM) and the 16KB instruction cache only environment. For CLDC HI, 

the instruction cache miss rate with further design is averagely 0.14% lower than with the 

16KB instruction cache only environment. For GB, the instruction cache miss rate with 

further design is averagely 0.02% higher than with the 16KB instruction cache only 

environment. Overall, the average instruction cache miss rate with further design is 0.06% 

lower than with the 16KB instruction cache only environment. 
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Figure 4-34 Comparison of Instruction Cache Miss Rate between Further Design (8KB ICache + 8KB SPM) and 

16KB Instruction Cache Only Environment 

Next, our further design (8KB ICache + 11.6KB SPM) is compared with the execution 

environment containing only a 16KB instruction cache. The total area cost of the 8KB 

instruction cache and the 11.6KB SPM is equal to the area cost of the 16KB instruction cache. 

Figure 4-35 is the comparison result, where the baseline is likewise the 16KB instruction 

cache only environment. It is revealed that the execution time with further design for CLDC 

HI is averagely 5.5% less than with the 16KB instruction cache only environment, and the 

execution time with further design for GB is averagely 0.5% less than with the 16KB 

instruction cache only environment. Overall, instruction cache miss stall cycles and the 

execution time with further design are averagely 18.04% fewer and 3% less than with the 

16KB instruction cache only environment. In a word, our further design (8KB ICache + 

11.6KB SPM), with the same cost, outperforms (3% less execution time) the 16KB instruction 

cache only environment. Similarly, if the two benchmarks, Image Manipulation and Queen, 

are excluded, the average execution time with further design is 5.96% less than with the 

16KB instruction cache only environment. The execution time of the benchmark that 

performs best with further design, Richards, is 15.44% less than with the 16KB instruction 
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cache only environment. 

 

Figure 4-35 Comparison of Execution Time between Further Design (8KB ICache + 11.6KB SPM) and 16KB 

Instruction Cache Only Environment 

Figure 4-36 is the comparison of instruction cache miss rate between further design 

(8KB ICache + 11.6KB SPM) and the 16KB instruction cache only environment. The average 

instruction cache miss rate with further design for CLDC HI is 0.24% lower than with the 

16KB instruction cache only environment. The average instruction cache miss rate with 

further design for GB is 0.03% lower than with the 16KB instruction cache only environment. 

Altogether, the instruction cache miss rate with further design (8KB ICache + 11.6KB SPM) 

is 0.14% lower than with the 16KB instruction cache only environment on average. 
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Figure 4-36 Comparison of Instruction Cache Miss Rate between Further Design (8KB ICache + 11.6KB SPM) 

and 16KB Instruction Cache Only Environment 

In principle, as long as the original instruction cache miss stall cycles of a benchmark are 

not small, the performance with our further design (8KB ICache + 11.6KB SPM) would be 

better than with the 16KB instruction cache only environment. For example, Richards, Delta 

Blue, and Chess with our further design all have better performance than with the 16KB 

instruction cache only environment. Yet there is only one benchmark violating this principle, 

which is kXML. Instead, its performance with our further design is worse than with the 16KB 

instruction cache only environment. The cause is that the capacity of the instruction cache in 

our design is only 8KB, which is too small to well serve the other code (not JIT-compiled 

code) of kXML, and the candidate for SPM allocation in our design, which chiefly aims to 

reduce instruction cache misses caused by JIT-compiled code, is only JIT-compiled code, so 

instruction cache miss stall cycles caused by the other code (not JIT-compiled code) with our 

further design are much more than with the 16KB instruction cache only environment. 

Nevertheless, our further design still effectively reduces instruction cache miss stall cycles 

caused by JIT-compiled code for kXML, and the stall cycles caused by JIT-compiled code are 

much fewer than with the 16KB instruction cache only environment. 
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4.5 Summary of Experimental Results 

The experimental results are summed up in Table 4-4. 

Table 4-4 Summary of Experimental Results 

 

Our Design 

8KB Instruction Cache 

+ 8KB SPM 

8KB Instruction Cache 

+ 11.6KB SPM 

8KB 

Instruction 

Cache 

Cost: 69% 

Instruction Cache Miss Stall Cycles: 

47.07% 

Execution Time: 14.95% 

Instruction Cache Miss Rate: 

0.79% 

Cost: 100% 

Instruction Cache Miss Stall Cycles: 

53.03% 

Execution Time: 16.46% 

Instruction Cache Miss Rate: 

0.84% 

16KB 

Instruction 

Cache 

Cost: 15.5% 

Instruction Cache Miss Stall Cycles: 

7.64% 

Execution Time: 1.18% 

Instruction Cache Miss Rate: 

0.06% 

Cost: equivalent 

Instruction Cache Miss Stall Cycles: 

18.04% 

Execution Time: 3% 

Instruction Cache Miss Rate: 

0.14% 
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Chapter 5 Conclusion and Future Work 

This chapter presents the conclusion and the future work. Section 5.1 is the conclusion, 

and section 5.2 is the future work. 

5.1 Conclusion 

Nowadays, there are quite a few embedded processors containing not only caches but 

also an SPM. For these processors, it is essential to develop an efficient SPM allocation 

scheme to make good use of the SPM. There is no successful SPM allocation scheme 

proposed previously that can dynamically adjust SPM allocation exactly according to 

variations in the program behavior all the time throughout program execution. Moreover, we 

made an observation on instruction cache misses for Java applications and found that 

instruction cache miss stall cycles constitute a considerable portion of the execution time, and 

most are caused by JIT-compiled code. To reduce the instruction cache misses and thereby 

improve the performance of Java applications, we devised a novel dynamic SPM allocation 

approach for JIT-compiled code that is able to adjust SPM allocation with variations in the 

program behavior. 

Our design is able to significantly reduce instruction cache misses, thus decrease the 

execution time, and improve the performance of Java applications. Our design (8KB ICache + 

8KB SPM) can eliminate 47.07% of instruction cache miss stall cycles and decrease the 

execution time by 14.95% (compared to the 8KB ICache only environment), and if the two 

benchmarks with few original instruction cache miss stall cycles are excluded, the decreased 

execution time is 20.86%. The execution time of the benchmark, Richards, is decreased most, 

by up to 29.19%. Moreover, our design (8KB ICache + 11.6KB SPM) is able to eliminate 

53.03% of instruction cache miss stall cycles and reduce the execution time by 16.46% 
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(compared to the 8KB ICache only environment), and similarly, if the two benchmarks with 

few original instruction cache miss stall cycles are excluded, the reduced execution time is 

23.26%. The execution time of the benchmark, Richards, is reduced most, by up to 32.31%. 

Additionally, the runtime overhead of our design is rather low, below 1% of the execution 

time. 

Not only does our design make effective use of the SPM to reduce instruction cache 

misses and thereby improve the program execution performance for the processors that have 

an instruction cache and an SPM, but it also has better performance than the processors 

containing only caches whose costs are more than or the same as our design. As compared to 

the 16KB instruction cache only environment, our design (8KB ICache + 8KB SPM), with 

15.5% less cost, performs better (1.18%) than the 16KB instruction cache only environment, 

and instruction cache miss stall cycles with our design are 7.64% fewer. If the two 

benchmarks whose original instruction cache miss stall cycles are few are not included, the 

execution time with our design is 3.05% less than with the 16KB instruction cache only 

environment. The execution time of the benchmark that performs best with our design, 

Richards, is up to 11.54% less than with the 16KB instruction cache only environment. 

Furthermore, our design (8KB ICache + 11.6KB SPM), with the same cost, outperforms (3%) 

the 16KB instruction cache only environment, and instruction cache miss stall cycles with our 

design are 18.04% fewer. If the two benchmarks with few original instruction cache miss stall 

cycles are not included, the execution time with our design is 5.96% less than with the 16KB 

instruction cache only environment. The benchmark that performs best with our design, 

Richards, has up to 15.44% less execution time than with the 16KB instruction cache only 

environment. 



67 

 

5.2 Future Work 

There are four directions for our future work. Firstly, the candidate for SPM allocation in 

our present design is only JIT-compiled code. Although most instruction cache miss stall 

cycles result from the JIT-compiled code, the JVM code may be also considered for SPM 

allocation. In the future work, we will study whether adding certain parts of the JVM code to 

the candidates for SPM allocation can bring more benefits of using the SPM and explore 

which parts of the JVM code are worthy of being allocated to the SPM. Secondly, our current 

approach allocates a whole JIT-compiled method to the SPM but not partial code regions 

within a JIT-compiled method. We will attempt to partition a JIT-compiled method into 

smaller code regions so that our design is capable of selecting the most beneficial segments of 

a JIT-compiled method to allocate to the SPM. Thirdly, in our present design, every 

JIT-compiled method is allocated to the SPM as it gets compiled by the JIT compiler. We will 

investigate whether it may have a better effect to allocate every JIT-compiled method to the 

main memory as it gets compiled. Lastly, the replacement policy for SPM space management 

employed in our current design is the LRC policy, which is a simple but efficient policy. 

However, we will devise a more sophisticated replacement policy for SPM space 

management. 
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