

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

應用於三維繪圖系統之

低複雜度切割演算法與高能源效率幾何引擎設計

Power Efficient Geometry Engine Using

Low-Complexity Subdivision Algorithm for 3D

Graphics System

研 究 生：許籐耀

指導教授：范倫達 博士

中 華 民 國 九 十 七 年 十 月

應用於三維繪圖系統之

低複雜度切割演算法與高能源效率幾何引擎設計

A Power Efficient Geometry Engine Using Low-Complexity

Subdivision Algorithm for 3D Graphics System

研 究 生：許籐耀 Student：Ten-Yao Sheu

指導教授：范倫達博士 Advisor：Dr. Lan-Da Van

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

Oct 2009

Hsinchu, Taiwan, Republic of China

中華民國 九 十 七 年 七 月

摘要

I

應用於三維繪圖系統之

低複雜度切割演算法與高能源效率幾何引擎設計

學生：許籐耀 指導教授：范倫達 博士

國立交通大學

資訊科學與工程研究所

摘 要

在本篇論文中，我們提出了一個低複雜度的三角形切割渲染演算法與具有高

能源效率的幾何引擎架構。所提出的切割演算法與架構能提供近似馮氏渲染的繪

圖品質，同時能藉由調整切割層級達到有動態調整繪圖品質與功率消耗的能力。

目前可支援三種不同層級的切割模式。

本文所提出的幾何引擎架構運用了數項不同的技術來對功率消耗、效能、面

積進行最佳化。例如使用所提出的前向差分切割、邊函數修正、雙空間切割、三

角形濾除與頂點快取記憶體等技術可以有效減少幾何轉換與打光運算。針對複雜

的運算，我們提出了可重組的資料路徑架構並藉由將資料路徑重組成特定的結構

來加速複雜運算的處理。由於重組架構使用相同的硬體進行不同的運算，晶片面

積與成本也能有效的減少。與傳統的切割式渲染演算法相比，分別對於一層與兩

層的切割渲染運算，我們提出的方法可以減少記憶體存取次數達 44.44% 與

68.88%，同時幾何轉換乘法運算量也能分別減少 50% 與 80%。此設計已使用 UMC

90 奈米製程實現，從晶片模擬結果顯示 我們所提出幾何引擎可以達到 16.978

MVertices/(smW)之高能源效率。

Abstract

II

A Power Efficient Geometry Engine Using

Low-Complexity Subdivision Algorithm for 3D

Graphics System

Student：Ten-Yao Sheu Advisor：Dr. Lan-Da Van

Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

ABSTRACT

In this thesis, a power efficient geometry engine (GE) using a low complexity

three-level subdivision algorithm is presented. The proposed subdivision algorithm and

architecture is capable of providing low power, scalable and near-Phong shading quality.

The forward difference, edge function recovery, dual space subdivision, triangle

filtering schemes and post-TnL vertex are employed to alleviate the redundant

computation for transforming and lighting of the proposed algorithm and architecture.

Due to the three-level subdivision algorithm, one reconfigurable datapth is proposed to

reduce the area since the same set of processing elements (PEs) is reused for different

operations for the GE. Compared with the conventional subdivision algorithm, the

reduction of the number of memory accesses can be attained by 44.44% and 68.88% for

level-1 and level-2, respectively. The reduction of the number of multiplications for

transforms can be attained by 50% and 80% for level-1 and level-2, respectively. From

the implementation results in UMC 90nm, the proposed geometry engine can achieve

Contents

III

the power efficiency of 16.978 Mvertices/(smW).

誌謝

IV

誌 謝

感謝指導教授范倫達老師。在碩士班這段時間老師提供了我各方面的協助，

也花了很多時間審查我的論文和思考改進我的研究，使我可以確立並完成我的論

文研究，讓我在研究所的期間收穫豐碩，因此在這邊對老師表達由衷感謝。同時，

亦感謝周懷樸教授、陳紹基教授、簡韶逸教授三位口試委員給予精闢的審查意見。

其次，我也要感謝 VIPLab 的同學、學長姐、學弟妹們，姵妤學姐，特別是旭

昇學長在 EDA 軟體提供了許多協助，以及同窗迪優、宗哲、宗融、晉豪與得安在

研究上給予我很多建議。最後就是可愛的學弟學妹們丞蔚、思翰、庭維、坤隆、

家育、盈里、建勳、曉霜、家榮、睿峻、泊硯，與你們相處的回憶對我來說都是

相當珍貴的。

最後，我要感謝我的父母親還有祖母，你們是我心靈上最大的支柱，你們的

關心和鼓勵都是我最大的動力來源，你們讓我能順利完成學業和此篇論文，非常

感謝你們。

Contents

V

Contents

摘 要 .. I

ABSTRACT .. II

誌 謝 ... IV

CONTENTS .. V

LIST OF TABLES ... VII

LIST OF FIGURES ... VIII

Chapter 1 Introduction ... 1

1.1 Motivation ... 2

1.2 Thesis Organization... 3

Chapter 2 Proposed Low Complexity Subdivision Algorithm 4

2.1 Subdivision Using Forward Difference .. 4

2.2 Edge Function Recovery Scheme ... 8

2.3 Dual Space Subdivision Scheme ... 13

2.4 Triangle Filtering Scheme ... 18

2.5 Triangle Filtering Scheme ... 19

Contents

VI

Chapter 3 Proposed Geometry Engine Architecture ... 23

3.1 Primitive Input Control (PIC) ... 24

3.2 Primitive Queue (PQ) .. 25

3.3 Dispatch Queue (DQ) .. 25

3.4 Vertex Cache Management Unit (VCMU) .. 26

3.5 Primitive Processing Unit (PPU) .. 27

3.6 Vertex Processing Unit (VPU) .. 28

 3.6.1 Processing Element (PE) .. 31

 3.6.2 Special Function Unit (SFU) .. 37

 3.6.3 FIFO ... 38

 3.6.4 Special Function Unit (SFU) .. 39

Chapter 4 Comparison Results and Chip Implementation 45

4.1 Complexity Comparison Results... 45

4.2 Chip Implementation and Comparison Results .. 48

Chapter 5 Conclusion ... 52

Bibliography .. 53

Publication List ... 57

Biography ... 58

List of Tables

VII

List of Tables

Chapter 2

Table 2.1 Complexity analysis of the eye space subdivision 16

Table 2.2 Complexity analysis of the perspective correct dual space subdivision

 ... 17

Table 2.3 Complexity analysis of the perspective incorrect dual space subdivision

 ... 18

Chapter 3

Table 3.1 Configuration modes for RDP .. 31

Chapter 4

Table 4.1 Complexity comparison results in general representation between

conventional subdivision algorithm and proposed subdivision algorithm. ... 46

Table 4.2 Complexity comparison results for level-1 case (NS = 2, NG = 3, NA = 5).

 ... 47

Table 4.3 Complexity comparison for level-2 case (NS = 4, NG = 12, NA = 5). ... 47

Table 4.4 Chip characteristics of the proposed GE architecture 48

Table 4.5 Comparison results among the existing work 51

List of Figures

VIII

List of Figures

Chapter 2

Fig. 2.1 Illustration for subdivision using forward difference 5

Fig. 2.2 Examples of rasterization anomaly: (a) Teapot, (b) Pawn, (c) Venus, (d)

Couch. ... 7

Fig. 2.3 Illustration of the rasterization anomaly ... 8

Fig. 2.4 Illustration of the rasterization anomaly ... 9

Fig. 2.5 Illustration of computing the edge functions for small triangles. 11

Fig. 2.6 Rendering results with the proposed edge function recovery scheme: (a)

Teapot, (b) Pawn, (c) Venus, (d) Couch. ... 12

Fig. 2.7 Flow chart of the transforms in the geometry engine. 13

Fig. 2.8 Data flow of eye space subdivision .. 14

Fig. 2.9 Data flow of dual space subdivision ... 15

Fig. 2.10 Data flow of the triangle filtering scheme .. 19

Fig. 2.11 Illustration of the triangle setup variable sharing 22

Chapter 3

Fig. 3.1 Overall architecture of proposed GE architecture. 24

Contents

IX

Fig. 3.2 Illustration of the dispatch queue .. 25

Fig. 3.3 Illustration of the vertex cache management unit 27

Fig. 3.4 Block diagram of the primitive processing unit 28

Fig. 3.5 Block diagram of the vertex processing unit .. 30

Fig. 3.6 Block diagram of the processing element ... 33

Fig. 3.7 Illustration of multiplication operation ... 34

Fig. 3.8 Illustration of square operation ... 35

Fig. 3.9 Illustration of MAC operation .. 36

Fig. 3.10 Illustration of addition/subtraction operation 37

Fig. 3.11 Block diagram of the special function unit.. ... 39

Fig. 3.12 Interconnection of the transform dp configuration mode. 41

Fig. 3.13 Interconnection of the light dp configuration mode. 41

Fig. 3.14 Interconnection of the vector normalization configuration mode 43

Fig. 3.15 Interconnection of the perspective division configuration mode.......... 43

Fig. 3.16 Interconnection of the vector subtraction configuration mode 44

Chapter 4

Fig. 4.1 Chip layout of the GE. .. 49

Fig. 4.2 Rendering result of different subdivision levels: (a) level-0, (b) level-1,

(c) level-2.. .. 50

Fig. 4.3 Power profiling of different subdivision levels... 51

Chapter 1 Introduction

1

Chapter 1
 Introduction

Nowadays, 3D graphics functions are integrated into the wireless- and

wired-multimedia terminals such as mobile devices and 3D TV systems [1]. 3D

graphics system is composed of geometry engine (GE) and rasterization engine [2]. In

GE, Gouraud shading [3] with per-vertex lighting is widely used because it only applies

reflection model [4] on the vertices of the polygons and uses bilinear interpolation to

obtain the intensities for the pixels inside the polygons. Although Gouraud shading has

less computation complexity than other approaches, it suffers from Mach band effects

and produces polygonal highlights on the rendered objects. Phong shading [5] uses

bilinear interpolation to obtain the normal vectors for the internal pixels and applies the

reflection model on each pixel. Phong shading can produce more smooth and accurate

highlights than Gouraud shading. However, it needs to re-normalize the normal vector

and computes the light intensity for every pixel inside the polygon. Phong shading

possesses high shading quality, but consumes much more power because of the huge

computation requirement.

Recently, low computation, satisfactory quality, and power efficiency are the

important research issues for hardware design. In order to have near-Phong shading

quality with low computation, several approximate Phong shading schemes have been

proposed as follows. The Taylor expansion [6] is used to approximate Phong reflection

model. The average computation cost is high for the scenes with small polygons or

Chapter 1 Introduction

2

multi-light sources. Spherical interpolation algorithms [7][8] aim to avoid

re-normalizing the normal vectors, but the setup must be performed for each scan line

and for each light source. Thus, the setup cost is expensive for thin polygons and the

multi-light source scenes. The mixed shading [9][10] combines two shading methods.

When the highlight covers the polygon, it is rendered using Phong shading. Otherwise,

Gouraud shading is employed. Although deferred shading [2] removes the lighting

operations on the hidden pixels, the lighting equation is still applied to the visible pixels.

To completely eliminate per-pixel lighting quadratic interpolation, the work in [11][12]

uses a quadratic function to interpolate light intensities between six points. The

quadratic scheme would incur Mach band effect on the edge if the triangle is too large.

Therefore, an error control scheme is proposed in [11] to solve this problem.

Subdivision scheme [10][13][14][15][16] is another approach to approximate Phong

shading. It subdivides a triangle into smaller ones and renders them individually with

Gouraud shading. Compared with other per-pixel lighting approximate schemes, only

vertices are lit. One attractive feature of subdivision scheme is its ability to scale

shading quality dynamically. If higher shading quality is demanded, more small

triangles are generated. Otherwise, fewer triangles are generated to reduce the

processing time and power consumption. From another point of view, the power can be

used more efficiently if the shading quality is scalable.

1.1 Motivation

Although the conventional subdivision algorithm inherently provides scalable and

near-Phong shading quality, the computational complexity and power consumption are

still large for GE. Thus, we are motivated to propose a low complexity subdivision

algorithm and the corresponding power efficient and scalable-quality geometry engine

in the thesis.

Chapter 1 Introduction

3

1.2 Thesis Organization

The rest of the thesis is organized as follows. The proposed subdivision algorithm

and the corresponding complexity analysis are described in Chapter 2. In Chapter 3, the

proposed GE architecture is presented. The comparison results and chip implementation

are addressed in Chapter 4. Last, a brief statement concludes the presentation of this

thesis.

Chapter 2 Proposed Low Complexity Subdivision Algorithm

4

Chapter 2
Proposed Low Complexity Subdivision

Algorithm

In this chapter, a low complexity subdivision algorithm to approximate Phong

shading is proposed. To reduce the redundant memory accesses, the forward difference

technique is used to subdivide triangles in the proposed algorithm. Since the forward

difference technique is numerical instable, there may be rasterization anomalies on the

rendered objects. Hence, an edge function recovery scheme is proposed to remove the

rasterization anomalies. In the subdivision-based approximate Phong shading algorithm,

the increased number of triangles becomes a potential problem to the computation and

power consumption. In order to reduce the complexity of the proposed algorithm, the

dual space subdivision scheme, triangle filtering scheme and the triangle setup variable

sharing scheme are also presented. The proposed algorithm and schemes are described

in detail in the following subsections.

2.1 Subdivision Using Forward Difference

Forward difference [13] method is widely used to evaluate the polynomial function.

Herein, use it to reduce the memory accesses for triangle subdivision. An example is

illustrated in Fig. 2.1. To subdivide the triangle Δ VaVbVc in Fig. 2.1 (a), the

intermediate vertices: Vab, Vbc, Vca are computed. Then these new vertices together with

Chapter 2 Proposed Low Complexity Subdivision Algorithm

5

the original vertices will be packed and new triangles are generated as: Δ VaVabVca,

Δ VabVbcVca, Δ VabVbVbc and Δ VcaVbcVc. These new triangles will be output for

next-stage processing. The forward difference method is used to compute the

intermediate vertices. The first step is to compute the difference vectors xd

 and yd

 in

horizontal and vertical direction using Eq. (2.1) and Eq. (2.2).

Sbcx NVVd /)-(

 (2.1)

Saby NVVd /)-(

 (2.2)

, where NS

= 2

L
 denotes the number of the segments on each edge of the original triangle

and L is a non-negative integer. Without loss of the generality, we set the NS = 2 as

shown in Fig. 2.1(a).

(b) Subdivision using forward

difference

Va

Vb Vc

(a) Subdivided four triangle

Va

Vb Vc

Vab

Vbc

Vca Vab

Vbc

Vca

yd

xd

xd

Fig. 2.1. Illustration for subdivision using forward difference.

Once the difference vectors are computed, the intermediate vertices can be

generated by Eqs. (2.3), (2.4) and (2.5) as shown in Fig. 2.1 (b).

yaab dVV

 (2.3)

Chapter 2 Proposed Low Complexity Subdivision Algorithm

6

xabca dVV

 (2.4)

xbbc dVV

 (2.5)

Computing the intermediate vertices using the forward difference method is more

efficient than other methods because generating one intermediate only needs one

memory access to store the vertex. Compared with the conventional recursive-based

subdivision algorithms [10][13][14][15][16], the forward difference method is stack free

and hence the number of memory accesses can be reduced. In other words, the power

can be alleviated. However, the subdivision algorithm using forward difference would

result in the rasterization anomaly where pixels are lost on the rendered object. As

shown in Fig. 2.2(a), (b), (c), (d), the empty pixels on the teapot, pawn, Venus, and

couch are the lost pixels. The cause of the anomaly is the numerical instability of

subdividing the triangle using the forward difference scheme. An example is illustrated

in Fig. 2.3, where two adjacent triangles are subdivided using forward difference. In Fig.

2.3 (a), Vm denotes one intermediate vertex on the sharing edge of two triangles. It can

be obtained from subdividing either the left triangle or the right triangle if the

calculation has no error. In Fig. 2.3 (a), the vertex Vc is the intermediate vertex in the

subdivided left triangle and is computed from the vertex Vb using the difference vector

xd

 twice. The vertex Vc has the same coordinate as the vertex Vm if the calculation has

no error. However, the calculation has the quantization error such that the vertex Vc has

different coordinate from the vertex Vm. For the same reason, in the right triangle of Fig.

2.3 (a), the vertex Vd computed from vertex Va with forward difference vector yd

 has

different coordinate from the vertex Vm. As a result, the small triangles defined by

vertex Vc and Vd respectively are not adjacent to each other. Fig. 2.3 (b) shows the

Chapter 2 Proposed Low Complexity Subdivision Algorithm

7

rasterization result of the sharing edge. Since the pixels are lost on the sharing edge after

rasterization, the rasterization anomaly occurs.

(a) Teapot (b) Pawn

(c) Venus (d) Couch

Fig. 2.2. Examples of rasterization anomaly.

Chapter 2 Proposed Low Complexity Subdivision Algorithm

8

Fig. 2.3. Illustration of the rasterization anomaly.

2.2 Edge Function Recovery Scheme

In order to remove the rasterization anomaly, a recovery scheme based on the edge

function method is proposed. The edge function method [16] is used in some raster

engine to decide whether a pixel is in the triangle. The edge function is a line equation

through the two vertices of the triangle edge. For example, in Fig. 2.4 (a), the edge

function Eab of the left triangle defined by vertices Va and Vb is expressed in Eq. (2.6),

where (xa, ya) and (xb, yb) are the coordinates of vertex Va and Vb.

0 abababab CyBx(x,y): AE (2.6)

where)-y(yA baab ,)-x(xB abab and abbaab y-xyxC .

The other two edge functions Ebc and Eca can also be similarly derived as follows.

0 bcbcbcbc CyBx(x,y): AE (2.7)

where)-y(yA cbbc ,)-x(xB bcbc and bccbbc y-xyxC .

(b) Rasterization result(a) After subdivision

xd
 yd

 aV

bV

mV

'aVcV

Chapter 2 Proposed Low Complexity Subdivision Algorithm

9

0 cacacaca CyBx(x,y): AE (2.8)

where)-y(yA acca ,)-x(xB caca and caacca y-xyxC .

+,+,+

+,+,-

+,+,+

+,+,+

+,+,+

P1

P2

(a) Before recovery (b) After recovery

Va:(xa, ya)

Ve

Vb:(xb, yb)

Vc:(xc, yc)

Vd:(xd, yd)

Eab(x,y)Ebc(x,y)

Eca(x,y)
Ead(x,y)

E'ca(x,y) E'ad(x,y)

Vc

Vd

Fig. 2.4. Illustration of edge functions.

To test whether a pixel is in a triangle, the coordinate of the pixel is substituted to

three edge functions. If the signs of the three calculation result are all positive, the pixel

is regarded as an internal point in the triangle. For example, in Fig. 2.4 (a), the pixel P1

inside the blue triangle has three positive signs of all the edge functions Eab, Ebc and Eca.

As demonstrated in Fig. 2.3 (a), the intermediate vertices Vc and Vd of the two

triangles have different coordinates. Therefore, they define two different edge functions

Eca and Ead, respectively. The different edge functions Eca and Ead are shown in Fig. 2.4

(a). During rasterization, the pixel, for example, P1 is regarded as an internal pixel of the

left triangle because it locates in the blue region which is the positive region for all the

edge functions Eab, Ebc and Eca. Therefore, P1 will be rendered correctly. The pixel, for

example, P2 in the green region has negative value for both the edge functions Eca and

Ead and is regarded as outside of both the triangles. As a result, the pixels in the green

region will be discarded from the pipeline and not be rendered. Therefore, the

Chapter 2 Proposed Low Complexity Subdivision Algorithm

10

rasterization anomaly occurs. To eliminate the anomaly, the edge function Eca derived

from the left triangle and the Ead derived from the right triangle must be the same. As

illustrated in Fig. 2.4 (b), the pixels inside the green region in Fig. 2.5(a) are located at

one of the triangles because E’ab and E’ad are the same.

To obtain the same edge function derived, it is improper to use the coordinate of

the vertex Vc and Vd for the calculation in Fig. 2.3 (a). Therefore, an edge function

recovery scheme is applied to correct edge function calculation. The proposed scheme

takes the advantage of linear property of line equation and computes the edge functions

for the generated triangles. In Fig. 2.5 (a), a triangle is subdivided into four triangles.

After subdivision, the edge functions of the small triangles can be computed in the

following steps.

Step 1: Compute the edge functions: Eab, Ebc, and Eca of the original triangle using

Eqs. (2.6), (2.7) and (2.8).

Step 2: Compute the constant difference values: ∆Cab, ∆Cbc and ∆Cca in Eqs. (2.9),

(2.10), and (2.11). The slopes of the three edge functions are expressed in the following.

)(
2

1

)))(())(((
2

1

bcabbcab

babcabbcab

BAAB

xxyyyyxxC

 (2.9)

)(
2

1

)))(())(((
2

1

bcabbcab

cbbabcbabc

BAAB

xxyyyyxxC

 (2.10)

)(
2

1

)))(())(((
2

1

abcaabca

acabcaabca

BAAB

xxyyyyxxC

 (2.11)

Step 3: Compute the edge functions including Eai, Eik, Eka, Eib, Ebj, Eji, Ekj, Ejc, Eck

Chapter 2 Proposed Low Complexity Subdivision Algorithm

11

of small triangles in Fig. 2.5 with the use of the computed original edge functions and

the difference values. For example, Ekj can be computed using Eq. (2.12).

Va

Vb Vc

Vi Vk

Vj

Eai

Ekj

Vi Vk

Vj

Eai

Ekj

Ebj

Eka

Eik

Eji

Ejc

Eck
Eib

Eab Eca

Ebc

Va: (xa, ya)

Vc:(xc, yc)Vb: (xb, yb)

Fig. 2.5. Illustration of computing the edge functions for small triangles.

0: kjkjkjkj CyBx AE (2.12)

, where abkj AA , abkj BB , ababkj CCC . The constant term Ckj can be derived

from the constant term Cab of the edge function Eab by adding the difference value ∆Cab

in Eq. (2.9). The other edge functions can be computed in the similar behavior. Finally,

the small triangles can be rendered with these edge functions. By the proposed method,

the derived edge functions on the sharing edge of any adjacent triangles are the same.

Therefore, the rasterization anomaly can be eliminated. The rendering results using the

proposed edge function recovery scheme are shown in Fig. 2.6 (a), (b), (c), (d).

Chapter 2 Proposed Low Complexity Subdivision Algorithm

12

(a) Teapot (b) Pawn

(c) Venus (b) Couch

Fig. 2.6. Rendering results with the proposed edge function recovery scheme.

In Eq. (2.6), evaluating one edge function requires three subtractions and two

multiplications. For a subdivided triangle with Ns segments on each edge, there are total

3NS edge functions to be computed and computation requires 3NS(2 muls + 3 subs) =

6NS muls + 9NS

subs = 6NS muls + 9NS

adds (subtraction is regarded as addition). The

proposed recovery scheme computes each edge function for the subdivided triangle by

adding one difference values. Therefore the computation complexity can be reduced to

3(2 muls + 3 adds) + 3(2 muls + 1 add) + (3NS - 3)(1 add) = 12 muls + (3NS + 9) adds.

Thus, the edge function recovery scheme implies an efficient method for computing the

Chapter 2 Proposed Low Complexity Subdivision Algorithm

13

edge functions of subdivided triangles.

2.3 Dual Space Subdivision Scheme

In the geometry engine, a sequence of transforms is applied to the vertices. A flow

chart of the transforms is shown in Fig. 2.7.

Modelview Transform

(Obj->Eye)

Projection Transform

(Eye-> Clip)

Perspective Division

(Clip-> NDC)

Viewport Transform

(NDC-> Window)

Fig. 2.7. Flow chart of the transforms in the geometry engine.

The modelview transform transforms the vertex from object space to eye space by

multiplying a 4x4 modelview matrix below.

obj

obj

obj

obj

eye

eye

eye

eye

w

z

y

x

mmmm

mmmm

mmmm

mmmm

w

z

y

x

15141312

111098

7654

3210

 (2.13)

In the projection transform, the eye space coordinate is transformed to clip space

by multiplying a 4x4 projection matrix below.

eye

eye

eye

eye

clip

clip

clip

clip

w

z

y

x

pppp

pppp

pppp

pppp

w

z

y

x

15141312

111098

7654

3210

 (2.14)

After clipping, the vertices in the clip space will be projected to the projection

plane by dividing the w component below. After the perspective division, the

Chapter 2 Proposed Low Complexity Subdivision Algorithm

14

normalized device coordinate (NDC) of each component in the range of [-1, 1] can be

expressed in Eq. (2.15).

clipclip

clipclip

clipclip

NDC

NDC

NDC

wz

wy

wx

z

y

x

/

/

/

 (2.15)

Finally, through the viewport transform (viewport mapping), the NDC will be

transformed to the window (screen) coordinate.

offsetNDCscale

offsetNDCscale

offsetNDCscale

window

window

window

zzz

yyy

xxx

z

y

x

 (2.16)

The conventional subdivision-based algorithm subdivides the triangles in the

object space or the eye space. As illustrated in Fig. 2.8, the subdivision is performed at

the early stage of the pipeline. Because the subdivision generates a large number of

vertices, theses vertices bring overhead to the computation and the power consumption

to the later stages of pipeline. To reduce the complexity, the dual space subdivision is

proposed.

ModelView

Transform

Eye-space coordinate

Eye-space normal

Perspective

Division

Viewport

Transform

Projective

Transform
Lighting

Eye-space coordinate

Eye-space normal

Eye-space coordinate

Eye-space normal

Screen-space coordinate

Eye-space

Subdivision

Fig. 2.8. Data flow of eye space subdivision.

Chapter 2 Proposed Low Complexity Subdivision Algorithm

15

ModelView

Transform
Projective

Transform

Perspective

Division

Viewport

Transform

Lighting

Screen-space coordinate

Eye-space coordinate

Eye-space normal

Eye-space

Subdivision

Screen-space

Subdivision

Fig. 2.9. Data flow of dual space subdivision.

As illustrated in Fig. 2.9, the subdivision of the proposed scheme is performed

after the viewport transform of the pipeline. It subdivides both the coordinates in eye

space and window space. The eye space coordinate is required for point-light

calculation and the screen space coordinate is used for edge function calculation and

other geometry operations. By skipping these transforms including projection transform,

perspective division and viewport transform, the computational complexity is

remarkably reduced.

The complexity analysis of the eye space subdivision of a single triangle is given

in Table 2.1. The left column lists the operations of subdivision and the corresponding

complexity is listed in the right column. NG is defined as the number of the generated

intermediate vertices during subdivision. After the triangle is subdivided, there are

(NG+3) vertices including the original three vertices. First, the triangle is subdivided in

eye space. Each step of the subdivision algorithm involves two vector-additions for eye

coordinate (xE, yE, zE) and normal vectors (xN, yN, zN) with total six additions. Therefore,

the addition complexity of subdivision is 6(NG+2) additions where two is the number of

steps to calculate the difference vectors. After subdivision, all (NG+3) vertices will be

transformed by projection transform, perspective division and viewport transform. As

described in this subsection, the projection matrix is a 4x4 matrix and the computational

complexity of the projection transform is equal to 16(NG+3) muls + 12(NG+3) adds. The

perspective division for a vertex requires three multiplications and one inverse and

therefore the total computational complexity is 3(NG+3) muls + (NG+3) invs for (NG+3)

Chapter 2 Proposed Low Complexity Subdivision Algorithm

16

vertices. The viewport transform requires three multiplications and three additions for

each vertex. The computational complexity is 3(NG+3) muls + 3(NG+3) adds for (NG+3)

vertices.

Table 2.1: Complexity analysis of the eye space subdivision

Operations Computational Complexity

Subdivision for 6 components :

Eye coordinate: (xE, yE, zE)

Normal: (xN, yN, zN)

6(NG+2) adds

Projection transform for NG+3

vertices

16(NG+3) muls + 12(NG+3)

adds

Perspective division for NG+3

vertices
3(NG+3) muls + (NG+3) invs

Viewport transform for NG +3

vertices
3(NG+3) muls + 3(NG+3) adds

Total

(22NG+66) muls

(21NG+57) adds

(NG+3) invs

Compared to the eye space subdivision, the dual space subdivision subdivides

triangles after the viewport transform. Thus, the projective transform, perspective

division and viewport transform are performed for the three vertices. The complexity is

listed in Table. 2.2. After the viewport transform, the eye coordinates, normal vector and

the window coordinate will be subdivided. To have perspective correct eye coordinates

and normal vectors for the intermediate vertices, a setup for perspective correction is

performed by dividing the eye coordinates and normal vectors by the wclip term. The

computational complexity of the setup is six multiplications for each vertex. After setup,

the subdivision is performed for the coordinates in two spaces and the normal vector

and the computational complexity is 10(NG+2) additions. The final step is perspective

correction which divides the eye coordinates and normal vectors by the 1/wclip term of

Chapter 2 Proposed Low Complexity Subdivision Algorithm

17

intermediate vertices. Since there are NG intermediate vertices and six divisions are

required for each perspective correction, the computational complexity is 6NG muls +

NG invs.

Table 2.2: Complexity analysis of the perspective correct dual space subdivision

Operations Computational Complexity

Projective transform for 3 vertices 3x16 muls + 3x12 adds

Perspective division for 3 vertices 3x3 muls + 3 invs

Viewport transform for 3 vertices 3x3 muls + 3x3 adds

Setup for perspective correctly

subdivision
3x6 muls

Subdivision for 10 components:

Eye coordinate :),,(
clip

E

clip

E

clip

E

w

z

w

y

w

x

Normal:),,(
clip

N

clip

N

clip

N

w

z

w

y

w

x

Screen coordinate:)
1

,,,(
clip

www
w

zyx

10(NG+2) adds

Perspective correction 6NG muls + NG invs

Total

(6NG+84) muls

(10NG+65) adds

(NG+3) invs

The dual space subdivision is able to provide the perspective correct eye

coordinates and normal vectors for light intensity calculation. The computation can be

further reduced while the perspective incorrectly subdivision is used and the setup and

correction can be skipped. This perspective incorrectness of the intensity on the

rendered object can be neglected because human eye is not sensitive to the light

intensity of small difference. The complexity of the proposed perspective incorrectly

dual space subdivision scheme is listed in Table. 2.3.

Chapter 2 Proposed Low Complexity Subdivision Algorithm

18

Table 2.3: Complexity analysis of the perspective incorrect dual space subdivision

Operations
Computational

Complexity

Projective transform for 3 vertices 3x16 muls + 3x12 adds

Perspective division for 3 vertices 3x3 muls + 3 invs

Viewport transform for 3 vertices 3x3 muls + 3x3 adds

Subdivision for 10 components:

Eye coordinate: (xE, yE, zE)

Normal: (xN, yN, zN)

Screen coordinate:

)
1

,,,(
clip

www
w

zyx

10(NG+2) adds

Total

66 muls

(10NG +65) adds

3 invs

2.4 Triangle Filtering Scheme

To reduce the computation for primitive-level operations, the filtering scheme as

shown in Fig. 2.10 is added to the proposed algorithm. The filtering scheme is a hybrid

scheme that combines culling/clipping before subdivision and highlight test.

The backface culling in the graphics pipeline is used to test whether a triangle is a

backface to the eye direction by the sign of the inner product of the face normal vector

and eye direction vector. If a triangle is a backface, it will be discarded and not rendered.

In the subdivision algorithm, a triangle will be subdivided into small ones. Performing

culling test for these triangles individually brings significant overhead to the

computation and power consumption. Because the generated triangles and the original

triangle are on the same plane, the face normal vectors are parallel to each other.

Therefore, the inner products of these face normal vectors and the eye direction vector

will be the same. The statement implies that there is no need to perform backface

culling test for each generated triangle since the results will be the same. Hence, in the

Chapter 2 Proposed Low Complexity Subdivision Algorithm

19

proposed algorithm, the subdivision is performed after culling test. If the original

triangle is culled, the subdivision is unnecessary. Otherwise, all generated triangles are

rendered without culling test. Clipping is another primitive level operation in the

pipeline. Since the subdivision is performed after clipping, the generated triangles of the

clipped original triangle are guaranteed to be inside the view frustum. Therefore, it is

not necessary to re-clip these triangles.

To reduce the redundant subdivision, the subdivision-based algorithm usually

includes the highlight test scheme. In the proposed algorithm, the mixed-shading [9][10]

for the highlight test is adopted. The scheme tests the VH

 term of the original three

vertices. While one of the VH

 term is greater than the threshold value, the triangle

will be subdivided. If all VH

 terms are smaller than the threshold value, we bypass

the subdivision and render the triangle with Grouaud shading. Thus, the redundant

primitive operations can be reduced.

Htest

Clipping

& Culling

Gouraud

shading

Subdivider

Pass

Rasterizer

(a) H test passed region

(b) Triangle filtering data

flow

No pass
VH

Fig. 2.10. Data flow of the triangle filtering scheme.

2.5 Triangle Setup Variable Sharing Scheme

To reduce the triangle setup and the unnecessary subdivision for vertex attributes, a

Chapter 2 Proposed Low Complexity Subdivision Algorithm

20

triangle setup variable sharing scheme is exposed in this section. The concept of the

setup reusing result has been shown in [15]; however, the detailed description is not

given. During rasterization, the vertex attributes are linearly interpolated for each pixel.

These attributes include screen coordinates, texture coordinates, depth values, fog

factors, light intensities and etc. The interpolation usually makes the use of the plane

equation [17]. An example is given in Fig. 2.11, where (xi, yi) is the window coordinates

of the triangle and ui is the attribute to be interpolated. The attribute plane defined by ui

is obtained by solving Eq. (2.17).

iii

iii

iii

CyBxAu

CyBxAu

CyBxAu

222

111

000

 (2.17)

After solving the plane coefficients Ai, Bi and Ci, the attribute ui for any pixel in the

triangle can be obtained by substituting the coordinate into Eq. (2.17). Generally, Eq.

(2.17) can be recast in Eq. (2.18) and Eq. (2.19).

111

][][210

210

210 yyy

xxx

CBAuuu
iii (2.18)

-1

210

210

210

111

][][

 yyy

xxx

uuuCBA
iii (2.19)

In Eq. (2.19), the coefficients [Ai ,Bi, Ci] of any attribute plane can be computed by

multiplying a 3x3 inverse matrix, where the inverse matrix is composed of the

coordinates [xi, yi, 1] of the triangle. Therefore, once the inverse matrix is available, it

Chapter 2 Proposed Low Complexity Subdivision Algorithm

21

can be used to compute any coefficient for interpolating the attributes of the same

triangle. Thus, the cost for setup one attribute is generally a 3x3 matrix multiplication.

The generated triangles of the subdivision algorithm increase the complexity for

triangle setup. Because the generated triangles are on the same plane, they define the

same attribute plane for each attribute. The coefficients of the attribute planes can be

shared by the generated triangles without re-computing these coefficients. As illustrated

in Fig. 2.11, the triangle is subdivided into four small triangles and therefore the original

setup cost for one vertex attribute of these triangles are four 3x3 matrix inversions and

four 3x3 matrix multiplications. With the setup variables sharing scheme, the setup only

requires one 3x3 matrix inversion and one 3x3 matrix multiplication because the

pre-computed variables are shared by the small triangles. Reusing these coefficients

eliminates the subdividing and the setting up vertex attributes for the small triangles.

Most rasterization algorithms start rasterization from a pixel with initial attribute values

and evaluate the attribute values of next pixel in an incremental manner. It is necessary

to compute the initial attribute values for each generated triangles in Eq. (2.20). It takes

three multiplications to re-setup for each generated triangle in tile-based traversal

scheme [16].

1

][y

x

CBACyBxAu
iiiiii (2.20)

Chapter 2 Proposed Low Complexity Subdivision Algorithm

22

(x0, y0, u0)

(x1, y1, u1)

(x2, y2, u2)

Initial Point 1

Initial Point 2

Initial Point 3

x

y

Fig. 2.11. Illustration of the triangle setup variable sharing.

Chapter 3 Proposed Geometry Engine Architecture

23

Chapter 3
Proposed Geometry Engine Architecture

In this chapter, a power efficient geometry engine (GE) architecture for 3D

graphics pipeline architecture is proposed. Several kernel blocks including the primitive

input control (PIC), the primitive processing unit (PPU), vertex processing unit (VPU)

and vertex cache management unit (VCMU) are proposed to optimize the power

consumption and to support the scalable quality mechanism via the proposed

subdivision algorithms. The proposed GE supports the scalable quality mechanism via

the proposed subdivision algorithm. The users can choose the most efficient

configuration for the graphics processing according to the requirements of the shading

quality and the power budget. The supported scalable quality levels are level-0, level-1

and level-2. The overall architecture of the proposed GE is depicted in Fig. 3.1 and the

detailed descriptions of each block are given in the following subsections.

Chapter 3 Proposed Geometry Engine Architecture

24

Post-TnL Vertex Cache

Dispatch Queue1

128b 128b

128b

To

Setup

Engine

From Pre-TnL Cache

Host IF

Index FIFO

128b

Primitive Input

Control (PIC)

Vertex Cache

Manage Unit

(VCMU)

128b

Subdivision

Control (SC)

Parameter

Registers

Primitive Queue

PPU VPU

Output Control

Dispatch Queue2

Fig. 3.1. Overall architecture of proposed GE architecture.

3.1 Primitive Input Control (PIC)

The primitive input control (PIC) processes the input primitive information from

the host. The PIC reads one index from index FIFO at a time and accesses cache tag to

check whether the vertex with the index exists in the vertex cache. Once the cache

misses, the PIC requests fetching the vertex data (object coordinate and normal vectors)

from the pre-TnL cache. The vertex data returned from the pre-TnL cache will be stored

in the post-TnL cache. If the cache hits, the vertex data are not fetched because it is

already in the post-TnL cache. The triangles defined by the indices are assembled in PIC

and then the backface culling test is issued for the assembled triangles. If the triangle is

backface, it will be discarded from PIC. Otherwise, the triangle is pushed to the

primitive queue (PQ) and the vertices that belong to the triangle are push the dispatch

queue 1 (DQ1) for further processing.

Chapter 3 Proposed Geometry Engine Architecture

25

3.2 Primitive Queue (PQ)

The primitive queue (PQ) is a FIFO that buffers the triangles for processing. Each

entry of PQ stores the cache entries of three vertices of a triangle. The triangle that

passed the culling test is pushed to PQ by PIC. After all vertices of the triangle are

transformed and lit, the output control pops the triangle from PQ and read the vertex

data (window coordinate and light intensity) of the triangle from vertex cache memory

and then output to the setup engine.

3.3 Dispatch Queue (DQ)

The dispatch queue (DQ) is used to keep the vertices under processing. As

illustrated in Fig. 3.2, the dispatch queue contains two vertex-cache-entry buffers. The

vertex-cache-entry buffer contains the entry addresses of the vertices in the cache. The

VPU can access the vertex data with this information. When the vertices in buffer 1 in

Fig. 3.2 are processed in VPU, the PIC is able to continue pushing unprocessed vertices

into buffer 2 in Fig. 3.2. After all vertices of buffer 1 are processed and buffer 2 is full,

the buffers swap. Then, the VPU processes the vertices in buffer 2 and the PIC pushes

the unprocessed vertices to buffer 1. With the ping-pong buffer architecture, the PIC and

VPU can operate concurrently and thus the performance is increased. In DQ, the size of

each buffer is six which is the optimized size for the three-level subdivision algorithm.

V6 V5 V4 V3 V2 V1

V12 V11 V10 V9 V8 V7

5b

5b

5b

To VPU
5b

5b

From

PIC/SC

5b

Vertex cache entry buffer 1

Vertex cache entries buffer 2

Fig. 3.2. Illustration of the dispatch queue.

Chapter 3 Proposed Geometry Engine Architecture

26

3.4 Vertex Cache Management Unit (VCMU)

The vertex cache manage unit (VCMU) is a vertex cache tag unit for the post-TnL

vertex cache. The post-TnL cache contains 16-tag entries and each entry has seven

fields as illustrated in the first entry in Fig. 3.3. Compare with other works [19], the tag

entry contains a reference count field to trace the number of references to the vertex in

the tag entry. The primitive processing unit (PPU), VPU, and PIC can operate

concurrently. The reference count field is necessary to prevent the data of the vertices

which are under processing from being replaced by the incoming vertices. When the

PIC requests the VCMU to check whether a vertex exists in the cache, the searched

vertex index is compared with the index field of each tag entry. When the index matches

one of the valid tag entries, the Entry_hit signal of the tag entry asserts and the VCMU

returns hit signal. Since one more vertex enters the pipeline and refers to the data in the

cache entry, the value of the reference count field of the tag entry is added by one. The

entry address of the vertex is obtained by encoding the hit_vector in Fig. 3.3 and

returned to PIC. If the index does not match any tag entry, the VCMU returns miss

signal. Before PIC requests fetching the vertex data, the VCMU searches for one free

tag entry and allocates it to the vertex. A tag entry is available to be allocated when the

valid field is 0 or the reference is 0. When these conditions are met, the Entry_free

signal asserts. The allocated entry address for the vertex is obtained by encoding the

free_vector in Fig. 3.3 and returned to PIC. In Fig. 3.3, the reference count in the tag

entry subtracts by one when a vertex referring to it exits the pipeline. When the cache

hits, the in_pipe and lit fields indicate that the vertex is processed in the pipeline and lit,

respectively. When one of the two fields is set to 1, the vertex is not pushed into DQ

since it is already been transformed and lit. The window coordinate and intensity can be

read from the cache directly. The Htest_result field stores the result of the highlight test

Chapter 3 Proposed Geometry Engine Architecture

27

for the subdivision algorithm. With this field, the power can be reduced because the

highlight test for the stored vertex is only performed once and the result can be reused

by the triangles the vertex.

Tag Entry 1

Entry hit_0

Entry free_0

Entry hit_1

Entry free_1

…
…

Tag Entry 15
Entry hit_15

Entry free_15

Entry free_vector

Entry hit_vector

16b

16b

Index to search

10b

IndexZero_ref

In_pipe Lit Htest_result

Ref_count

=
0

1

Valid

10b1b

1b

1b

0

1

0

1

Tag

Entry 0

…
…

Fig. 3.3. Illustration of the vertex cache management unit.

3.5 Primitive Processing Unit (PPU)

The primitive processing unit (PPU) performs primitive-level operations including

backface culling and subdivision algorithm. The backface culling is performed in object

space [20] to remove the unnecessary transforms for the vertices of the culled triangles.

The subdivision algorithm makes the use of the forward difference to subdivide the

triangles. These operations are similar such that the datapath architecture can reused for

area efficiency. The block diagram of the proposed PPU architecture is depicted in Fig.

3.4, where the bit with of each node has been marked for clear representation. As

illustrated in Fig. 3.4, before culling or subdivision starts, the controller loads the data

Chapter 3 Proposed Geometry Engine Architecture

28

of the three vertices of the triangle in the cache into the input buffers. The eye position

in the object space is stored in the eye position buffer which is set by the host when the

eye position is updated. The PPU is able to write the data into the vertex cache because

the subdivision algorithm generates intermediate vertices. These vertices are written

back to the cache and be read by the VPU for further processing.

Control Unit

To vertex cache read

channel

From vertex cache read

channel

From primitive input ctrl/

subdivision ctrl

Vertex0 input buffer (128b)

Vertex1 input buffer (128b)

Vertex2 input buffer (128b)

128b

Datapath

128b 128b 128b

Eye position buffer (96b)

128b
To vertex cache write channel

96b

128b

MUL

(16bx16b)

ADD_SU

B(32b)

SUB3

(32b)

SUB2

(32b)

SUB1

(32b)

Hdiff (128b) R0 (32b)

Intermediate value registers

Vdiff (128b)Vtmp (128b)Htmp (128b) R1 (32b)

Fig. 3.4. Block diagram of the primitive processing unit.

3.6 Vertex Processing Unit (VPU)

The vertex processing unit (VPU) performs vertex-level operations including

vertex transformation and lighting operation. The operations covers modelview

transform, projection transform, perspective division, normal transform, viewport

transform, vector normalization and Blinn-Phong reflection model. The Blinn-Phong

Chapter 3 Proposed Geometry Engine Architecture

29

reflection model [4] can be formulated in Eq. (3.1).

s

n

da IHNILNII)()(

 (3.1)

Where Ia, Id, Is, N

, L

, H

 denote the ambient intensity, diffuse intensity, specular

intensity, normalized normal vector, normalized light vector, and normalized halfway

vector, respectively. The halfway vector
2

VL
H

 is the vector between the light

direction vector L

 and the viewing vector V

. In Fig. 3.1, so as to maximize the

performance, the VPU is designed to process a batch of vertices in DQ at the same time.

The block diagram of VPU architecture is depicted in Fig. 3.5, where the bit width of

each node has been marked for clear representation. The vertex data are read from the

read channel of the vertex cache. Then, they are transformed and lit in the reconfigure

datapath (RDP). The register file stores the intermediate values for the vertices under

processing. The constant memory stores the matrix parameters and the light parameters

for transforms and lighting, respectively. The content of the constant memory is set by

the host before the GE starts. Finally, the vertices are read from the register file and

written back to vertex cache when all vertices in the batch are transformed and lit.

Chapter 3 Proposed Geometry Engine Architecture

30

Control Unit

To vertex cache read

channel
Constant

Memory

(16x128)

Register file

(48x128)

Reconfigurable Datapath

From vertex cache read

channel

Output data buffer

32b 32b32b32b

Configuratio

n Rom

(6x90)

92b128b128b 128b 128b

128b

To vertex cache write

channel

To vertex cache write

channel

128b

From dispatch queue

PE1PE2PE3SFUFIFO

Write back path

Fig. 3.5. Block diagram of the vertex processing unit.

Considering the trade-off for the power, area and vertex processing performance of

the GE architecture, the operations listed in Chapter 3 are disassembled into the simpler

atomic operations. For example, the modelview transform involves a 4x4 matrix

multiplication which can be achieved by four dot product operations. The

un-disassembled operations and the atomic operations define the minimum set of

operations supported by the RDP. The RDP can be configured to different modes to

achieve these operations. These configuration modes are summarized in Table 3.1. The

RDP is a pipelined SIMD datapath architecture for high performance vertex processing.

The RDP is composed of three processing elements (PEs), one special function unit

(SFU) and one FIFO as shown in Fig. 3.5. By reconfiguring three PEs, the SFU and the

interconnection between these PEs, the RDP can realize all the transform and lighting

operations listed in Table 3.1. For a complicated operation such as the vector

Chapter 3 Proposed Geometry Engine Architecture

31

normalization, the RDP is configured to be an efficient pipelined datapath. By

processing a batch of vertices at the same time and filling the pipeline, the average cycle

for the operation is reduced compared with other architectures that process one vertex

one at one time. The detailed descriptions about the RDP are given in the following

subsections.

Table 3.1: Configuration modes for RDP

Configuration

Mode
Function Description

trans_dp Dot product for transform

light_dp Dot product for lighting

vec_norm Vector normalization

Pd Perspective division

Pow Powering

vec_sub Vector subtraction

3.6.1 Processing Element (PE)

The architecture of the processing element (PE) is illustrated in Fig. 3.6, where the

PE is a three-stage pipeline. At the first stage, the 32-bit fixed-width Booth multiplier

multiplies two numbers and generates two partial products. The 32-bit fixed-width

Booth-based squarer [21] is used to perform squaring operation. A dedicated squarer

consumes less power dissipation than that of a general-purpose multiplier. The outputs

of the squarer are two partial products. At the second stage, the 32-bit 4-2 compressor is

used to add four inputs and generates two partial products. Finally, at the last stage, the

adder-subtractor unit adds or subtracts two numbers and produces the final output. The

function of the adder-subtractor is controlled by the MODE signal in Fig. 3.6. The

multiplexers in PE control the data flow for different operations. The PE can be

configured to perform multiplication (MUL), square (SQR),

Chapter 3 Proposed Geometry Engine Architecture

32

multiplication-accumulation (MAC), addition (ADD) and subtraction (SUB) as shown

in Figs. 3.7, 3.8, 3.9, and 3.10, respectively.

The datapath of multiplication (MUL) operation is illustrated in Fig. 3.7 and

marked with dashed lines. The first stage of MUL generates the partial products by

multiplying two numbers of the input registers REG_B and REG_C. The partial product

outputs are registered in the pipeline registers REG_F and REG_G and then are

summed up in the adder-subtractor unit. The datapath of square (SQR) operation is

illustrated in Fig. 3.8. The squarer squares the number in the input register REG_D and

generates two partial products. The partial products are registered in the pipeline

register REG_H and REG_I and then are summed up in the adder-subtractor unit. The

datapath of the multiplication-accumulation (MAC) operation is illustrated in Fig. 3.9.

For the MAC operation, the number in the input register REG_B is multiplied by the

number in the input register REG_C and the result is added to the number in the input

register REG_A to produce a result of MAC. At the first stage, the numbers in REG_B

and REG_C are multiplied and the partial products are registered in the pipeline register

REG_F and REG_G. The number in the register REG_A is directly passed to the

pipeline register REG_E. At the second stage, the partial products in REG_F and

REG_G and the number in REG_E are added with the 4-2 compressor and the resulting

partial products are registered in the REG_J and REG_K. At the last stage, the partial

products in register REG_J and REG_K are summed up in the adder-subtractor unit to

produce the result. The datapath of addition (ADD) and subtraction (SUB) operations

are illustrated in Fig. 3.10. The pipeline registers REG_J and REG_K are configured to

be the input registers for the ADD and SUB operations. The numbers in REG_J and

REG_K are added or subtracted according to the target operations.

Chapter 3 Proposed Geometry Engine Architecture

33

32x32 Fixed-width

Booth multiplier
Fixed-width sqrarer

REG_HREG_G REG_IREG_F

REG_DREG_CREG_BREG_A

REG_E

4-2 compressor

00

In. E port

In. F port

In. G port

In. H port

REG_KREG_J

In. I port

In. J port

Add-Sub
In. MODE

In. D portIn. C portIn. B portIn. A port

Out. A port

Out. B port

Out. C port

Out. D port

Out. E port

Out. F port

32b 32b 32b 32b

32b

32b

32b

32b

32b

32b

32b

32b 32b

32b
1b

32b 32b

32b

32b

32b 32b 32b 32b

32b

32b

Mux Mux

MuxMux

Mux Mux Mux Mux

M
u
x

M
u

x

Fig. 3.6. Block diagram of the processing element.

Chapter 3 Proposed Geometry Engine Architecture

34

32x32 Fixed-width

Booth multiplier
Fixed-width sqrarer

REG_HREG_G REG_IREG_F

REG_DREG_CREG_BREG_A

REG_E

4-2 compressor

00

In. E port

In. F port

In. G port

In. H port

REG_KREG_J

In. I port

In. J port

Add_Sub
In. MODE

In. D portIn. C portIn. B portIn. A port

Out. A port

Out. B port

Out. C port

Out. D port

Out. E port

Out. F port

32b 32b 32b 32b

32b

32b

32b

32b

32b

32b

32b

32b 32b

32b
1b

32b 32b

32b

32b

32b 32b 32b 32b

32b

32b

MuxMuxM
u
x

M
u

x

Fig. 3.7. Illustration of multiplication operation.

Chapter 3 Proposed Geometry Engine Architecture

35

32x32 Fixed-width

Booth multiplier
Fixed-width sqrarer

REG_HREG_G REG_IREG_F

REG_DREG_CREG_BREG_A

REG_E

4-2 compressor

00

In. E port

In. F port

In. G port

In. H port

REG_KREG_J

In. I port

In. J port

Add_Sub
In. MODE

In. D portIn. C portIn. B portIn. A port

Out. A port

Out. B port

Out. C port

Out. D port

Out. E port

Out. F port

32b 32b 32b 32b

32b

32b

32b

32b

32b

32b

32b

32b 32b

32b
1b

32b 32b

32b

32b

32b 32b 32b 32b

32b

32b

M
u
x

M
u

x

Fig. 3.8. Illustration of square operation.

Chapter 3 Proposed Geometry Engine Architecture

36

32x32 Fixed-width

Booth multiplier
Fixed-width sqrarer

REG_HREG_G REG_IREG_F

REG_DREG_CREG_BREG_A

REG_E

4-2 compressor

00

In. E port

In. F port

In. G port

In. H port

REG_KREG_J

In. I port

In. J port

Add_Sub
In. MODE

In. D portIn. C portIn. B portIn. A port

Out. A port

Out. B port

Out. C port

Out. D port

Out. E port

Out. F port

32b 32b 32b 32b

32b

32b

32b

32b

32b

32b

32b

32b 32b

32b
1b

32b 32b

32b

32b

32b 32b 32b 32b

32b

32b

M
u
x

M
u

x

Fig. 3.9. Illustration of MAC operation.

Chapter 3 Proposed Geometry Engine Architecture

37

32x32 Fixed-width

Booth multiplier
Fixed-width sqrarer

REG_HREG_G REG_IREG_F

REG_DREG_CREG_BREG_A

REG_E

4-2 compressor

00

In. E port

In. F port

In. G port

In. H port

REG_KREG_J

In. I port

In. J port

Add_Sub
In. MODE

In. D portIn. C portIn. B portIn. A port

Out. A port

Out. B port

Out. C port

Out. D port

Out. E port

Out. F port

32b 32b 32b 32b

32b

32b

32b

32b

32b

32b

32b

32b 32b

32b
1b

32b 32b

32b

32b

32b 32b 32b 32b

32b

32b

Mux Mux

M
u
x

M
u

x

Fig. 3.10. Illustration of addition/subtraction operation.

3.6.2 Special Function Unit (SFU)

The special function unit (SFU) provides various arithmetic operations including

the inverse (INV), inverse-square-root (InvSqrt) and power (POW) operations. These

operations are used for vertex processing. To achieve low-power arithmetic operations,

the SFU adopts the logarithmic number system (LNS) [22-24] where the complicated

arithmetic operations are replaced by the simple arithmetic.

The architecture of SFU is depicted in Fig. 3.11, where the bit width of each node

has been marked for clear representation. For the INV and the InvSqrt operations, the

Chapter 3 Proposed Geometry Engine Architecture

38

logarithmic convertor as shown in the top gray region of Fig. 3.11 converts the input

number m to its logarithmic number M. Then, the number M is inversed through the Inv

block to produce the result ~M. In the shift block, the number ~M is shifted right one bit

to obtain (~M)>>1 for InvSqrt operation or directly bypassed for Inv operation. The

behavior of the shift block controlled by the Config[1] port. The output logarithmic

number (~M)>>1 or ~M of the shift block is then converted to their ordinary fixed-point

number
m

1
 or

m

1

by the antilogarithmic convertor as shown in the bottom gray

region of Fig. 3.11.

For the POW operation nm , the number m is converted to its logarithmic number

M. To compute Mn , the multiplier is required for multiplication. However, the real

multiplier is not included in SFU to achieve area and power-efficient feature. Because

the processing element (PE) in the RDP shown in Fig. 3.6 can be configured to be a

multiplier to compute Mn . In Fig. 3.11, the logarithmic number M is outputted to a PE

which is configured as a multiplier and multiplies to the number n. The result Mn is

then returned from the PE and converted to its ordinary number
nm . The Config[2]

controls the source for the antilogarithmic convertor.

3.6.3 FIFO

As mentioned above, the RDP constructs an efficient pipeline datapath for

complicated operations. In some configuration modes, some of the input data are used

in the later stage of the pipeline. However, bypassing these data with pipeline registers

stage by stage is not efficient for power consumption. To avoid the unnecessary data

transfers between the pipeline registers, the FIFO is included in the RDP.

Chapter 3 Proposed Geometry Engine Architecture

39

Input Register

Normalize

neg

sign

Log Converter

Pipeline Register

Shift

Pipeline Register

Antilog

Converter

Pipeline Register

Underflow

Detection

Output register

neg

Ash

32b

31b

31b

exp norm

5b 16b

neg

1b

1b 5b

16b

16b

16b

16b

17b

17b

17b

32b

32b

5b

5b

5b

neg

Config[2]

Config[1]

Config[0]

To

multiplier

From

multiplier

5b

16b

Output Register

Inv

1b

Mux

Fig. 3.11. Block diagram of the special function unit.

3.6.4 Interconnection of Configuration Modes

In this section, the interconnections between the building blocks for different

configuration modes are described. For clearly explanation, the block diagram of the

processing element (PE) is simplified. The geometry transforms in Eq. (2.13) and Eq.

(2.14) multiply a 4x4 matrix by a 4x1 column vector. The matrix-vector multiplication

Chapter 3 Proposed Geometry Engine Architecture

40

can be replaced by four 4-component inner product operations. In Eq. (3.2), the

4-component inner product calculation employs four multiplications and therefore

requires four multipliers.

 21212121

2

2

2

2

1111 wwzzyyxx

w

z

y

x

wzyx

 (3.2)

Because the term wobj in the column vector in Eq. (2.14) is always one and the

projection matrix in Eq. (2.15) is a sparse matrix, these transforms can be achieved by

the 3-component inner products and the additions as expressed in Eq. (3.3). The

datapath for the operation in Eq. (3.3) is composed of three processing elements (PE)

and the interconnections between PEs are illustrated in Fig. 3.12. At the first stage, the

three multiplications are performed using the partial-product multiplier in the PEs,

respectively. The addend w is directly passed to the next stage. At the second stage, the

partial products and the addend w are compressed by the 4-2 compressor. Finally, the

resulting partial products are summed up in the adder-subtractor unit of the central PE to

produce the result.

 1212121

2

2

2

1111

1

wzzyyxx
z

y

x

wzyx

 (3.3)

Chapter 3 Proposed Geometry Engine Architecture

41

REG_A

ADD_SUB

SQR

REG_D

REG_J REG_K

ADD_SUB

SQR

REG_D

REG_J REG_K

REG_A

SQR

REG_D

x1x2y1y2z1z2w1

0

Out

REG_FREG_E REG_G REG_IREG_H

MUL

REG_BREG_A REG_C

ADD_SUB

REG_J REG_K

REG_FREG_E REG_G REG_IREG_H

MUL

REG_B REG_C REG_B REG_C

MUL

REG_E REG_G REG_IREG_HREG_F

4-2 compressor 4-2 compressor4-2 compressor

Fig. 3.12. Interconnection of the transform dp configuration mode.

REG_A

ADD_SUB

SQR

REG_D

REG_J REG_K

ADD_SUB

SQR

REG_D

REG_J REG_K

REG_A

SQR

REG_D

x1x2y1y2z1z2

0

Out

REG_FREG_E REG_G REG_IREG_H

MUL

REG_BREG_A REG_C

ADD_SUB

REG_J REG_K

REG_FREG_E REG_G REG_IREG_H

MUL

REG_B REG_C REG_B REG_C

MUL

REG_E REG_G REG_IREG_HREG_F

4-2 compressor 4-2 compressor4-2 compressor

0

Fig. 3.13. Interconnection of the light dp configuration mode.

The light dp is a general 3-component inner product operation and is used for

lighting calculations, for instance normal vector transform, dot product of two vectors.

The datpath illustrated in Fig.3.13 is similar to the datapath of transform dp as

illustrated in Fig. 3.12 but only the partial products from the multiplier are summed up

at the second stage. The unused inputs of the 4-2 compressor in the left PE are forced to

be zero.

Chapter 3 Proposed Geometry Engine Architecture

42

In the lighting equation, the normal vector, light vector and halfway vector are

required to have unit length before computing inner products. The equation of vector

normalization is expressed in the Eq. (3.4). The RDP can be configured to accelerate the

normalization operation.

2

1

2

1

2

1

111
111

 where

],,[]),,([

zyxLength

Length

z

Length

y

Length

x
zyxnorm

 (3.4)

As illustrated in Fig. 3.14, the solid-line datapath evaluates the length of input

vector. The square operations are performed in the dedicated squarer in the PEs and the

output partial products are added with the 4-2 compressor. Because all add-subtractors

in the PEs are occupied by the dashed line datapath, additional adder is included to sum

up the two outputs of the compressor in the central PE. The produced length value is

passed to the SFU to evaluate its reciprocal value. Then, the input vector is multiplied

by the inverse of the length value to obtain the normalized vector. The datapath of the

scale-vector multiplication is the dashed-line datapath illustrated in Fig. 3.14.

In the perspective division in Eq. (2.15), the clip space coordinate xclip, yclip and zclip

are divided by the term wclip. The perspective division can be simplified by computing

the inverse of the wclip and then multiplying the clip coordinate xclip, yclip and zclip to the

1/wclip. The datapath of perspective division is depicted in Fig. 3.15. At the first stage,

the w component of the input vector is passed to the SFU to compute the inverse 1/w.

After obtaining 1/w, the x, y and z components of the input vector are multiplied by 1/w.

The multiplications can be achieved by configuring the processing elements to perform

multiplication MUL operation.

Chapter 3 Proposed Geometry Engine Architecture

43

REG_A

ADD_SUB

SQR

REG_D

REG_J REG_K

ADD_SUB

SQR

REG_D

REG_J REG_K

REG_A

SQR

REG_D

x1(FIFO)1/Length

0

Out.y

REG_FREG_E REG_G REG_IREG_H

MUL

REG_BREG_A REG_C

ADD_SUB

REG_J REG_K

REG_FREG_E REG_G REG_IREG_H

MUL

REG_B REG_C REG_ B REG_C

MUL

REG_E REG_G REG_IREG_HREG_F

4-2 compressor4-2 compressor4-2 compressor

REG_D REG_D

ADD

0

x1(Input)y1(FIFO)1/Length y1(Input)z1(FIFO)1/Length z1(Input)

Out.xOut.z

Length
2

Fig. 3.14. Interconnection of the vector normalization configuration mode.

REG_A

ADD_SUB

SQR

REG_D

REG_J REG_K

ADD_SUB

SQR

REG_D

REG_J REG_K

REG_A

SQR

REG_D

x1(FIFO)1/w(SFU)

Out.y

REG_FREG_E REG_G REG_IREG_H

MUL

REG_BREG_A REG_C

ADD_SUB

REG_J REG_K

REG_FREG_E REG_G REG_IREG_H

MUL

REG_B REG_C REG_B REG_C

MUL

REG_E REG_G REG_IREG_HREG_F

4-2 compressor4-2 compressor4-2 compressor

y1(FIFO)1/w(SFU)z1(FIFO)1/w(SFU)

Out.xOut.z

Fig. 3.15. Interconnection of the perspective division configuration mode.

The vector subtraction is used to compute the vector of two points in the 3D space,

for example the light direction vector. The equation of vector subtraction is expressed in

Eq. (3.4). The datapath is illustrated in Fig. 3.16. The REG_J and REG_K in each PE

are configured to be the input registers and the add-subtractor unit is configured to

Chapter 3 Proposed Geometry Engine Architecture

44

perform subtraction operation.

],,[],,[-],,[212121222111 zzyyxxzyxzyx (3.5)

REG_A

ADD_SUB

SQR

REG_D

REG_J REG_K

ADD_SUB

SQR

REG_D

REG_J REG_K

REG_A

SQR

REG_D

Out.y

REG_FREG_E REG_G REG_IREG_H

MUL

REG_BREG_A REG_C

ADD_SUB

REG_J REG_K

REG_FREG_E REG_G REG_IREG_H

MUL

REG_B REG_C REG_B REG_C

MUL

REG_E REG_G REG_IREG_HREG_F

4-2 compressor4-2 compressor4-2 compressor

z1

Out.xOut.z

z2 y1y2 x1x2

Fig. 3.16. Interconnection of the vector subtraction configuration mode.

Chapter 4 Comparison Results and Chip Implementation

45

Chapter 4
Comparison Results and Chip

Implementation

In this chapter, the comprehensive comparison results in terms of complexity for

subdivision algorithm and power-efficient index among different state-of-the-art chips

for geometry engines are addressed.

4.1 Complexity Comparison Results

The complexity comparison to the conventional subdivision algorithm is listed in

Table. 4.1 in terms of number of memory accesses, computation for edge functions,

computation for transforms, number of clipping/culling test operations, and number of

3x3 matrix multiplications of setup operation for rasterizaiton. In Table. 4.1, NT is

defined the number of triangles in the scene and NA denotes the number of vertex

attributes of each vertex. For level-1 case and level-2 case, the quantitative comparison

is listed in Tables 4.2 and 4.3. The reduction of the number of memory accesses can be

attained by 44.44% and 68.88% for level-1 and level-2, respectively. In terms of

multiplications for the edge function calculation, the computation can be alleviated by

0% and 50% for level-1 and level-2, respectively. The reduction of the number of

multiplications for transforms can be attained by 50% and 80% for level-1 and level-2,

respectively. In terms of clipping/culling test operations, the computation can be

alleviated by 75% and 93.75% for level-1 and level-2, respectively. The reduction of the

Chapter 4 Comparison Results and Chip Implementation

46

number of 3x3 matrix multiplications of setup operation for rasterizaiton can be attained

by 40% and 60% for level-1 and level-2, respectively.

Table 4.1: Complexity comparison results in general representation between

conventional subdivision algorithm and proposed subdivision algorithm.

Conventional

subdivision

algorithm

Proposed

subdivision

algorithm

Used

schemes

Number of memory

accesses
 (NG+2)NT

Forward

difference

Computation for

edge function

Muls 6NSNT 12NT Edge

recovery Adds 9NSNT (3NS+9)NT

Computation for

transforms

Muls (22NG+66)NT 66NT
Dual space

subdivision
Adds (21NG+57)NT (10NG+65)NT

Invs (NG+3) NT 3NT

Number of clipping/culling

test operations
NS

2
NT 1NT

Triangle

filtering

Number of 3x3 matrix

multiplications of setup

operation for rasterization

NANS
2
NT

 (

 2)
3

1
(SANN

+NA)NT

Setup

variable

sharing

Chapter 4 Comparison Results and Chip Implementation

47

Table 4.2: Complexity comparison results for level-1 case (NS = 2, NG = 3, NA = 5).

Conventional

subdivision

algorithm

Proposed

subdivision

algorithm

Complexity

reduction

percentage

Number of memory

accesses
9NT 5NT 44.44%

Computation for

edge function

Muls 12NT 12NT 0%

Adds 18NT 15NT 16.66%

Computation for

transforms

Muls 132NT 66NT 50%

Adds 120NT 95NT 20.83%

Invs 6NT 3NT 50%

Number of clipping/culling

test operations
4NT 1NT 75.00%

Number of 3x3 matrix

multiplications of setup

operation for rasterization

20NT 12NT 40.00%

Table 4.3: Complexity comparison for level-2 case (NS = 4, NG = 12, NA = 5).

Conventional

subdivision

algorithm

Proposed

subdivision

algorithm

Complexity

reduction

percentage

Number of memory

accesses
45NT 14NT 68.88%

Computation for

edge function

Muls 24NT 12NT 50.00%

Adds 36NT 21NT 41.66%

Computation for

transforms

Muls 330NT 66NT 80.00%

Adds 309NT 185NT 40.12%

Invs 15NT 3NT 80.00%

Number of clipping/culling

test operations
16NT 1NT 93.75%

Number of 3x3 matrix

multiplications of setup

operation for rasterization

80NT 32NT 60.00%

Chapter 4 Comparison Results and Chip Implementation

48

4.2 Chip Implementation and Comparison Results

Concerning the chip implementation of the proposed GE architecture, the

cell-based design flow with Faraday standard cell library in UMC 90-nm CMOS

process is adopted. The Synopsys Design-Compiler is used to synthesize the RTL

design of the proposed architecture and the Cadence SOC-Encounter is adopted for

automatic placement and routing (APR) and the Synopsys Prime-Power is used to

measure the power consumption for the post-layout simulation.

Table 4.4 summarizes the chip characteristics of the proposed GE architecture and

the corresponding chip layout is shown in Fig. 4.1.

Table 4.4: Chip characteristics of the proposed GE architecture

Power Supply 1.0V

Process Technology UMC 90 nm CMOS

Max. Clock 200 MHz

Max. Power 5.89 mW

Gate Count 195K

Core Area 0.58 mm
2

Chapter 4 Comparison Results and Chip Implementation

49

Vertex Cache 1

Vertex

Cache 2

PPU

Constant Memory

VPU

Fig. 4.1. Chip layout of the GE.

The same teapot benchmark is rendered with different subdivision levels including

level-0, level-1, and level-2 as shown in Figs. 4.3 (a), (b) and (c), respectively. The

power consumption for each subdivision level are measured and illustrated in Fig. 4.4.

Chapter 4 Comparison Results and Chip Implementation

50

(a) level-0 (b) level-1

(c) level-2

Fig. 4.2: Rendering result of different subdivision levels.

Chapter 4 Comparison Results and Chip Implementation

51

8.71 mw

6.92 mw
5.89 mw

100%

9.44%

67.62%

level-2 level-1 level-0

Fig. 4.3: Power profiling of different subdivision levels.

The comparison results between prior work and our work are summarized in Table

4.5. Compared with [25][26][27][28][29], the proposed GE has better power efficient

index with 16.978 Mvertices/(smW). Moreover, using the proposed subdivision

algorithm, the proposed GE can provide near-Phong shading quality.

Table 4.5: Comparison results among the existing work

*
1
: Assume hit rate is 50%.

*
2
: The core area is 2.164mmx2.797mm

ISSCC’04

[25]
JSSC’06

[26]
JSSC’07

[27]
ISSCC’07

[28]
JSSC’08

[29]
This Work

Process (nm) 130 180 180 180 180 90

Frequency (MHz) 400 200 100 200 50 200

Polygon Rate
(Mvertices/s)

36 50 120 141 25
*1

/12.5 100
*1

/50

Power (mW) 250 155 157 86 8.6 5.89

Core Area (mm
2
) - 23 16 9.7 6.05 0.58

Power Efficiency
Mvertices/(smW)

0.144 0.323 0.764 1.64 2.907 16.978

Feature
Graphics,

DSP
Graphics Graphics Graphics

Graphics,
DSP

Graphics
with

scalable
quality

hardware
support.

Chapter 5 Conclusion

52

Chapter 5
Conclusion

In this work, a low complexity subdivision algorithm and a power efficient GE are

presented. Five low complexity techniques including the triangle filtering scheme, the

dual space subdivision, the setup variable sharing and the edge function recover scheme

are proposed to reduce the computational complexity of the subdivision algorithm. The

proposed geometry engine employs several techniques to optimize the power, area and

shading quality. With the post-TnL vertex cache and the object space culling scheme,

the redundant computation for transforming and lighting can be eliminated. With the

proposed RDP, the area is reduced since the same set of PEs can be reconfigured for

different mode operations. The dedicated hardware supports the scalable and

near-Phong shading quality. Three different subdivision levels including level-0, level-1

and level-2 are supported. From the chip implementation results, the proposed geometry

engine can achieve the power-efficiency of 16.978 Mvertices/mW.

Bibliography

53

Bibliography

[1] P. Cesar, P. Vuorimaa, and J. Vierinen, “A graphics architecture for high-end

interactive television terminals,” ACM Trans. Multimedia Comput. Commun.

and Appil., vol. 2, no. 4, pp.343-357, Nov. 2006.

[2] B.-S. Liang, Y.-C. Lee, W.-C. Yeh, C.-W. Jen, "Index rendering:

hardware-efficient architecture for 3-D graphics in multimedia system," IEEE

Trans. Multimedia, vol.4, no.3, pp. 343-360, Sep. 2002.

[3] H. Gouraud, “Continuous shading of curved surfaces,” IEEE Trans. Compt.,

pp.623-628, June 1971.

[4] A. Watt, “3D computer graphics,” 3
rd

 Edition, Addison Wesley, 2000.

[5] A.T. Phong, “Illumination for computer generated pictures,” Communications of

the ACM, vol. 18, no. 6, pp.311-317, June 1975.

[6] G. Bishop, and D. M. Weimer, “Fast Phong Shading,” Proc. Computer Graphics

and interactive Technique, 1986, pp.103-106.

[7] A. A. Mohamed, L. S. Kalos, and T. Horváth, “Hardware implementation of

Phong shading using spherical interpolation,” Periodica Polytechnica, vol. 44,

Nos 3-4, 2000.

[8] T. Barrera, A. Hast, and E. Bengtsson, “Faster shading by equal angle

interpolation of vectors,” IEEE Trans. Visualization and Computer Graphics,

pp.217-223, Mar. 2004.

[9] K. Harrison, D. A. P. Mitchell, and A. H. Watt., “The H-test: a method of high

speed interpolative shading,” Proc. New Trends in CG., 1988, pp.106-166.

Bibliography

54

[10] J. Pöpsel, and Ch. Homung, “Highlight shading lighting and shading in a

PHIGS+PEX environment,” EUROGRAPHICS, 1989, pp.317-332.

[11] A. A. Mohamed, L. S. Kalos, G. Szijártó, T. Horváth, and T. Fóris, “Quadratic

interpolation in hardware Phong shading and texture mapping,” SCCG’01,

April, 2001, pp.181-188.

[12] T. Barrera, A. Hast, and E. Bengtsson, “Fast near Phong-quality software

shading,” WSCG’06, January, 2006, pp.109-115.

[13] S. Bischoff, L.P. Kobbelt, and H.P. Seidel, “Toward hardware implementation

of Loop subdivision,” Proc. SIGGRAPH/EUROGRAPHICS Workshop on

Graphics Hardware, 2000, pp.41-50.

[14] Y. Cho, U. Neumann, and J. Woo, “Improved specular highlights with adaptive

shading,” Proc. of CG. International, June, 1996, pp.38-46

[15] Y. Kamen, and L. Shirman, “Triangle rendering using adaptive subdivision,”

IEEE Comput. Graph. Applal., Mar. 1998.

[16] T. Y. Sheu, L. D. Van, T. R. Jung, C. W. Lin, and T. W. Chang, "Low

complexity subdivision algorithm to approximate Phong shading using forward

difference," ISCAS 2009, pp. 2373-2376.

[17] J. McCormack and R. McNamara, “Tiled polygon traversal using half-plane

edge functions,” Proc. SIGGRAPH/EUROGRAPHICS Workshop on Graphics

Hardware, 2000, pp.15-21.

[18] M. Olano, and T. Greer, “Triangle scan conversion using 2D homogeneous

coordinates,” Proc. SIGGRAPH/EUROGRAPHICS workshop on Graphics

Hardware, August, 1997, pp.89-95.

[19] K.-C., C.-H. Yu and L.-S. Kim, "Vertex cache of programmable geometry

processor for mobile multimedia application," ISCAS 2006.

[20] C.-Y. Han, Y.-H. Im and L.-S. Kim, "Geometry engine architecture with early

Bibliography

55

backface culling hardware," Computers & Graphics, pp.415-425, 2005.

[21] Antonio G.M. Strollo and Davide De Caro, "Booth Folding Encoding for High

Performance Squarer Circuits," IEEE Trans. CAS II: Analog and Digital Signal

Processing, vol.50, no.5, pp.250-254, May 2003.

[22] K. H. Abed and R. E. Siferd, “CMOS VLSI implementation of a low-power

logarithmic converter,” IEEE Trans. Computers, vol. 52, no. 11, pp. 1421-1433,

Nov. 2003.

[23] K. H. Abed and R. E. Siferd, “CMOS VLSI implementation of a low-power

antilogarithmic converter,” IEEE Trans. Computers, vol. 52, no. 9, pp.

1221-1228, Nov. 2003.

[24] B.-G. Nam, H.-Kim and H.-J. Yoo, “A low-power unified arithmetic unit for

programmable handheld 3-D Graphics Systems,” IEEE J. Solid-State Circuits,

vol. 42, no. 8, Aug. 2007.

[25] F. Arakawa et al., “An embedded processor core for consumer applications

with 2.8 GFLOPS and 36 Mpolygons/s FPU,” IEEE ISSCC, Feb. 2004, pp.

334–335.

[26] J. Sohn et al., “A 155-mW 50-Mvertices/s graphics processor with fixed-point

programmable vertex shader for mobile applications,” IEEE J. Solid-State

Circuits, vol. 41, no. 5, pp. 1081–1091, May 2006.

[27] C. H. Yu, K. Chung, D. Kim and L.-S. Kim, "An energy-efficient mobil vertex

processor with multithread expanded VLIW architecture and vertex caches,"

IEEE J. Solid-State Circuits, vol. 42, no. 10, Oct. 2007.

[28] B.-G. Nam, J. Lee, K. Kim, S.-J. Lee, and H.-J. Yoo, “A 52.4 mW 3-D graphics

processor with 141 Mvertices/s vertex shader and 3 power domains of dynamic

voltage and frequency scaling,” ISSCC 2007, pp. 278-603.

[29] S.-Y. Chien, Y.-M. Tsao, C.-H. Chang and Y.-C. Lin, “An 8.6 mW 25

Bibliography

56

Mvertices/s 400-MFLOPS 800-MOPS 8.91 mm
2
 multimedia stream processor

core for mobile applications,“ IEEE J. Solid-State Circuit, vol. 43, issue. 9, pp.

2025-2035, Sept. 2008.

Publication List

57

Publication List

International Conference Papers

[1] T. Y. Sheu, L. D. Van, T. R. Jung, C. W. Lin, and T. W. Chang, ”Low complexity

subdivision algorithm to approximate Phong shading using forward difference,”

in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May. 2009, pp. 2373-2376,

Taipei, Taiwan.

[2] T. R. Jung, L. D. Van, T. Y. Sheu, C. W. Lin, W. C. Fang, “Design of multi-mode

depth buffer compression for 3D graphics system,” in Proc. IEEE Int. Conf.

Multimedia and Expo. (ICME), July 2008, pp. 789-792, Hannover, Germany.

[3] T. R. Jung, L. D. Van, W. C. Fang, T. Y. Sheu, "Reconfigurable depth buffer

compression design for 3D graphics system," in Proc. Int. Conf. MUE., Apr.

2008, pp. 470-474, Busan, Korea.

Biography

58

Biography

Ten-Yao Sheu was born in Changhua, Taiwan, R.O.C, in 1983. He received the

B.S. degree from National Pingtung University of Education (NPUE), Pingtung,

Taiwan, in 2006, and the M.S degree from National Chiao Tung University (NCTU),

Hsinchu, Taiwan, in 2009, all in computer science. His research interests are VLSI

information processing algorithm and architecture for 3D graphics.

