Power Efficient Geometry Engine Using
Low-Complexity Subdivision Algorithm for 3D
Graphics System

AR &) e
MAFRERE P LFE 283 Rk SR EF R
A Power Efficient Geometry Engine Using Low-Complexity

Subdivision Algorithm for 3D Graphics System

o4 i EgRR Student : Ten-Yao Sheu
ERR T FREE L Advisor : Dr. Lan-Da Van
Bz o2+ F

TP & fRFT g A
L wm o

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in
Computer Science

Oct 2009

Hsinchu, Taiwan, Republic of China

PEAR 4 L+ - & = 3

Bt 2z aB W .
MAFRR7HFTEZARRFRF B RIFR

L

-y

B4 TEE S SR TN

BAREmYY O APRNT - BEGRAESZ A HRLFEZELT R
wRR R S R A H A o TR BUR K 2 8 F A R R T 005 R G g
Bl& o P"’"F%ﬁ%ﬁ‘?’ AEUEEET G AN FERST O F e d o
Pme L= A7 R E s B o

A e B RS ERE Y O B B R SO 0T 6
RBREEREL o G ¥ R FH e LA BB C EEZFoL =
A5 B TR BRI RAL 3 BT g R o B PR T RE Y o SLHAf S
FHER O APRI T LT HRAFEIR HTERELE S TS
KB AFREL L o d WL RFRFR AP AHAPWLEFT IR HEEL K PG
FEX AL R FoRAE D c BBAD NIRRT E A 0 AN KBS
Kot 2a g EE > APR DD ET LRSS RGBSk 44.44% &
68.88% I p¥ & e 4k 3 EF 5 £ 4 i A B0 50% 7 80%- pt ke i@ * UMC

FAEAATR S ESH PREEESE APk AP FY nET 16.978

MVertices/(ssmW)z_ & it i 3c s o

Abstract

A Power Efficient Geometry Engine Using
Low-Complexity Subdivision Algorithm for 3D

Graphics System

Student : Ten-Yao Sheu Advisor : Dr. Lan-Da Van

Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University

ABSTRACT

In this thesis, a power efficient geometry engine (GE) using a low complexity
three-level subdivision algorithm is presented. The proposed subdivision algorithm and
architecture is capable of providing low power, scalable and near-Phong shading quality.
The forward difference, edge function recovery, dual space subdivision, triangle
filtering schemes and post-TnL vertex are employed to alleviate the redundant
computation for transforming and lighting of the proposed algorithm and architecture.
Due to the three-level subdivision algorithm, one reconfigurable datapth is proposed to
reduce the area since the same set of processing elements (PEs) is reused for different
operations for the GE. Compared with the conventional subdivision algorithm, the
reduction of the number of memory accesses can be attained by 44.44% and 68.88% for
level-1 and level-2, respectively. The reduction of the number of multiplications for
transforms can be attained by 50% and 80% for level-1 and level-2, respectively. From

the implementation results in UMC 90nm, the proposed geometry engine can achieve

Contents

the power efficiency of 16.978 Mvertices/(ssmW).

Sl

=1 =R
S H
Bt ERpmhE £ - AMIFISRPR R ET N E S G apbes o

S EVRIBEEE AN Y oL Y e

A
e
p=
At

!
A
AtS
b2
!l
NS
)
4
=
J
By
AtH
b3
o

TET RN T BT ER F B AEd RE B B

)

EMFRERFE -MEARR Pl ikptrFL i8I HRDFELL -

:1*1

%o AL RRPVIPLaD e F R SR RS S e L
BEEAEDAFHMBARIFIRM NI RFTRRE - ZY FRCFREFIT L
By P8 AT aER o B iﬁ»{?éﬁ?%?ﬁ%fﬁ“fﬁ%‘,‘Li’ﬁ‘f}:}—ﬁ/ﬁ.‘iﬂf%;‘
P FL R R RE B AR BRI AT RE A RS
WELF e

Bt ABRHA A MBFAR > BPIACF AL hid o P
ERSE S SR RS R S RN E S IERTE &S L & R

P

Contents

Contents

OSSOSO P PR TOP PPN I
ABSTRACT et 1
B ettt et v
CONTENT S e e e e b e n e e nneeaneesnne s \Y
LIST OF TABLESo VIl
LIST OF FIGURES ... s i
Chapter 1 INIrOAUCTIONoiuiiiiieieee e 1
1.1 MOTIVATION ...ttt 2
1.2 Thesis OrganiZation...........cccccueieeieiiie it 3
Chapter 2 Proposed Low Complexity Subdivision Algorithmcccv.e. 4
2.1 Subdivision Using Forward Differencecccccooveveiieieeie e 4
2.2 Edge Function ReCOVEry SChemEccooeiiiiiiiiiiiee e 8
2.3 Dual Space Subdivision SCheme..........ccccvviiiiiiiccc e 13
2.4 Triangle Filtering SChemE ..o s 18
2.5 Triangle Filtering SChemeccvoiiiii e 19

Contents

Chapter 3 Proposed Geometry Engine Architecture..........ccoccoovveviviieviernennnn 23
3.1 Primitive Input Control (PIC)ccoiveiiieceee e 24
3.2 Primitive QUEUE (PQ)....iiiiiieiieeieiie ettt 25
3.3 Dispatch QueUe (DQ).....covviieieeieiie e 25
3.4 Vertex Cache Management Unit (VCMU).......cccoocviieiinieniienece e 26
3.5 Primitive Processing Unit (PPU)cccccooiiieiiiie e 27
3.6 Vertex Processing Unit (VPU) ..o 28

3.6.1 Processing Element (PE)........cccoveiiiiiiieceese e 31
3.6.2 Special Function Unit (SFU)........coeiiiiiiiiieieceee e 37
BLB.3 FIFO o s 38
3.6.4 Special Function Unit (SFU).......ccoeiiiiiiiinieceee e 39

Chapter 4 Comparison Results and Chip Implementation..............cc.ccoceveee. 45
4.1 Complexity Comparison RESUILS............coeiiiiniiiiiiceeeee e 45
4.2 Chip Implementation and Comparison Resultsccccovveviiivciiveinenenn, 48

Chapter 5 CONCIUSION.........ccuiiiee e 52

BIDIIOGrapNY ... 53

PUBIICALION LISt ... e 57

BIOGIAPNY ... 58

Vi

List of Tables

List of Tables

Chapter 2
Table 2.1

Table 2.2

Chapter 3
Table 3.1
Chapter 4

Table 4.1

Complexity analysis of the eye space subdivisionc.cccceeveenenn. 16

Complexity analysis of the perspective correct dual space subdivision

Configuration modes for RDP..........cccccccveveiiciieie e 31

Complexity comparison results in general representation between

conventional subdivision algorithm and proposed subdivision algorithm.... 46

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Complexity comparison results for level-1 case (Ns =2, Ng = 3, Na = 5).

Complexity comparison for level-2 case (Ns =4, Ng =12, Nao =5). ... 47
Chip characteristics of the proposed GE architecture..............c.ccc....... 48

Comparison results among the existing Workccccevvviveeiieeinnns 51

Vil

List of Figures

List of Figures

Chapter 2
Fig. 2.1 Hlustration for subdivision using forward differencec.ccccooveivennene 5

Fig. 2.2 Examples of rasterization anomaly: (a) Teapot, (b) Pawn, (c) Venus, (d)

COUCN. et 7
Fig. 2.3 Illustration of the rasterization anomalycccoviiiieiinieniee, 8
Fig. 2.4 Illustration of the rasterization anomalyccccovevveieiieiieeve e, 9
Fig. 2.5 Illustration of computing the edge functions for small triangles. 11

Fig. 2.6 Rendering results with the proposed edge function recovery scheme: (a)

Teapot, (b) Pawn, () Venus, (d) COUCN.ccceiviieiieiee e 12
Fig. 2.7 Flow chart of the transforms in the geometry engine.c..cccccveneee. 13
Fig. 2.8 Data flow of eye space SUDAIVISIONcccoviriiiiinicienec e 14
Fig. 2.9 Data flow of dual space subdivision...............ccccevveveiiieiieii i 15
Fig. 2.10 Data flow of the triangle filtering schemecccccoveiiinniiii 19
Fig. 2.11 Illustration of the triangle setup variable sharingcccccoeeieenins 22

Chapter 3

Fig. 3.1 Overall architecture of proposed GE architecture.ccccocvevveiiinnnnns 24

VI

Contents

Fig. 3.2 Illustration of the disSpatch QUEUE.............coeeiiiiiiiiecce e 25
Fig. 3.3 Illlustration of the vertex cache management unit...........c..ccccccoeeverveenene. 27
Fig. 3.4 Block diagram of the primitive processing Unitccccceeerenvnvnnnnn. 28
Fig. 3.5 Block diagram of the vertex processing Unit...........ccccceevvevviirereerieennenn 30
Fig. 3.6 Block diagram of the processing element...........c.ccoovvieieneniinenene. 33
Fig. 3.7 Ilustration of multiplication Operation............cccccceeveveiiverieieceese e 34
Fig. 3.8 Illustration of square OPErationccocerererineniineeiesese s 35
Fig. 3.9 Hlustration of MAC Operationccceveevieiiieieerie e 36
Fig. 3.10 Illustration of addition/subtraction Operationcccoceeerercrvrinnnn. 37
Fig. 3.11 Block diagram of the special function unit.............ccccoveviiiieiieinenenn, 39
Fig. 3.12 Interconnection of the transform dp configuration mode. 41
Fig. 3.13 Interconnection of the light dp configuration mode.ccccoc...... 41
Fig. 3.14 Interconnection of the vector normalization configuration mode 43
Fig. 3.15 Interconnection of the perspective division configuration mode.......... 43
Fig. 3.16 Interconnection of the vector subtraction configuration mode............. 44
Chapter 4
Fig. 4.1 Chip layout 0f the GE.ccooiiiiiiicee s 49

Fig. 4.2 Rendering result of different subdivision levels: (a) level-0, (b) level-1,

(C) TBVRI-2.. .o 50

Fig. 4.3 Power profiling of different subdivision levels...c.c.cccooviviiiiinnnns 51

Chapter 1 Introduction

Chapter

Introduction

Nowadays, 3D graphics functions are integrated into the wireless- and
wired-multimedia terminals such as mobile devices and 3D TV systems [1]. 3D
graphics system is composed of geometry engine (GE) and rasterization engine [2]. In
GE, Gouraud shading [3] with per-vertex lighting is widely used because it only applies
reflection model [4] on the vertices of the polygons and uses bilinear interpolation to
obtain the intensities for the pixels inside the polygons. Although Gouraud shading has
less computation complexity than other approaches, it suffers from Mach band effects
and produces polygonal highlights on the rendered objects. Phong shading [5] uses
bilinear interpolation to obtain the normal vectors for the internal pixels and applies the
reflection model on each pixel. Phong shading can produce more smooth and accurate
highlights than Gouraud shading. However, it needs to re-normalize the normal vector
and computes the light intensity for every pixel inside the polygon. Phong shading
possesses high shading quality, but consumes much more power because of the huge
computation requirement.

Recently, low computation, satisfactory quality, and power efficiency are the
important research issues for hardware design. In order to have near-Phong shading
quality with low computation, several approximate Phong shading schemes have been
proposed as follows. The Taylor expansion [6] is used to approximate Phong reflection

model. The average computation cost is high for the scenes with small polygons or

1

Chapter 1 Introduction

multi-light sources. Spherical interpolation algorithms [7][8] aim to avoid
re-normalizing the normal vectors, but the setup must be performed for each scan line
and for each light source. Thus, the setup cost is expensive for thin polygons and the
multi-light source scenes. The mixed shading [9][10] combines two shading methods.
When the highlight covers the polygon, it is rendered using Phong shading. Otherwise,
Gouraud shading is employed. Although deferred shading [2] removes the lighting
operations on the hidden pixels, the lighting equation is still applied to the visible pixels.
To completely eliminate per-pixel lighting quadratic interpolation, the work in [11][12]
uses a quadratic function to interpolate light intensities between six points. The
quadratic scheme would incur Mach band effect on the edge if the triangle is too large.
Therefore, an error control scheme is proposed in [11] to solve this problem.
Subdivision scheme [10][13][14][15][16] is another approach to approximate Phong
shading. It subdivides a triangle into smaller ones and renders them individually with
Gouraud shading. Compared with other per-pixel lighting approximate schemes, only
vertices are lit. One attractive feature of subdivision scheme is its ability to scale
shading quality dynamically. If higher shading quality is demanded, more small
triangles are generated. Otherwise, fewer triangles are generated to reduce the
processing time and power consumption. From another point of view, the power can be

used more efficiently if the shading quality is scalable.

1.1 Motivation

Although the conventional subdivision algorithm inherently provides scalable and
near-Phong shading quality, the computational complexity and power consumption are
still large for GE. Thus, we are motivated to propose a low complexity subdivision
algorithm and the corresponding power efficient and scalable-quality geometry engine

in the thesis.

Chapter 1 Introduction

1.2 Thesis Organization

The rest of the thesis is organized as follows. The proposed subdivision algorithm
and the corresponding complexity analysis are described in Chapter 2. In Chapter 3, the
proposed GE architecture is presented. The comparison results and chip implementation
are addressed in Chapter 4. Last, a brief statement concludes the presentation of this

thesis.

Chapter 2 Proposed Low Complexity Subdivision Algorithm

Chapter

Proposed Low Complexity Subdivision
Algorithm

In this chapter, a low complexity subdivision algorithm to approximate Phong
shading is proposed. To reduce the redundant memory accesses, the forward difference
technique is used to subdivide triangles in the proposed algorithm. Since the forward
difference technique is numerical instable, there may be rasterization anomalies on the
rendered objects. Hence, an edge function recovery scheme is proposed to remove the
rasterization anomalies. In the subdivision-based approximate Phong shading algorithm,
the increased number of triangles becomes a potential problem to the computation and
power consumption. In order to reduce the complexity of the proposed algorithm, the
dual space subdivision scheme, triangle filtering scheme and the triangle setup variable
sharing scheme are also presented. The proposed algorithm and schemes are described

in detail in the following subsections.

2.1 Subdivision Using Forward Difference

Forward difference [13] method is widely used to evaluate the polynomial function.
Herein, use it to reduce the memory accesses for triangle subdivision. An example is
illustrated in Fig. 2.1. To subdivide the triangle A V,VpV. in Fig. 2.1 (a), the

intermediate vertices: Vap, Ve, Vea are computed. Then these new vertices together with

Chapter 2 Proposed Low Complexity Subdivision Algorithm

the original vertices will be packed and new triangles are generated as: A VaVapVea,
A VapVpcVea, A VapVpVe and A VeaVicVe. These new triangles will be output for

next-stage processing. The forward difference method is used to compute the

intermediate vertices. The first step is to compute the difference vectors d, and d, in

horizontal and vertical direction using Eq. (2.1) and Eq. (2.2).
d, =V, -V,)/Ng (2.1)
d, =V, -V,)/ N, (2.2)

, where Ns = 2" denotes the number of the segments on each edge of the original triangle

and L is a non-negative integer. Without loss of the generality, we set the Ns = 2 as

shown in Fig. 2.1(a).

Va
Vab Vca
\
AV/ Ve
(a) Subdivided four triangle (b) Subdivision using forward

difference

Fig. 2.1. lllustration for subdivision using forward difference.

Once the difference vectors are computed, the intermediate vertices can be

generated by Eqgs. (2.3), (2.4) and (2.5) as shown in Fig. 2.1 (b).

V, =V, +d (2.3)

Chapter 2 Proposed Low Complexity Subdivision Algorithm

V, =V, +d, (2.4)

V. =V, +d, (2.5)

Computing the intermediate vertices using the forward difference method is more
efficient than other methods because generating one intermediate only needs one
memory access to store the vertex. Compared with the conventional recursive-based
subdivision algorithms [10][13][14][15][16], the forward difference method is stack free
and hence the number of memory accesses can be reduced. In other words, the power
can be alleviated. However, the subdivision algorithm using forward difference would
result in the rasterization anomaly where pixels are lost on the rendered object. As
shown in Fig. 2.2(a), (b), (c), (d), the empty pixels on the teapot, pawn, Venus, and
couch are the lost pixels. The cause of the anomaly is the numerical instability of
subdividing the triangle using the forward difference scheme. An example is illustrated
in Fig. 2.3, where two adjacent triangles are subdivided using forward difference. In Fig.
2.3 (a), Vin denotes one intermediate vertex on the sharing edge of two triangles. It can
be obtained from subdividing either the left triangle or the right triangle if the
calculation has no error. In Fig. 2.3 (a), the vertex V.is the intermediate vertex in the
subdivided left triangle and is computed from the vertex Vy using the difference vector
d, twice. The vertex V. has the same coordinate as the vertex Vy, if the calculation has
no error. However, the calculation has the quantization error such that the vertex V. has

different coordinate from the vertex V.. For the same reason, in the right triangle of Fig.

2.3 (a), the vertex Vg computed from vertex V, with forward difference vector d, has

different coordinate from the vertex Vp. As a result, the small triangles defined by

vertex V. and Vy respectively are not adjacent to each other. Fig. 2.3 (b) shows the

Chapter 2 Proposed Low Complexity Subdivision Algorithm

rasterization result of the sharing edge. Since the pixels are lost on the sharing edge after

rasterization, the rasterization anomaly occurs.

(a) Teapot (b) Pawn

(c) Venus (d) Couch

Fig. 2.2. Examples of rasterization anomaly.

Chapter 2 Proposed Low Complexity Subdivision Algorithm

[[[[[[[[]
¢ Py Y § a
yal - n\la ff?*fff Il HEEEEEN
/I\ / O \ |
V1 / /NI Ty V[/ \
_ T / \/ \ _ / \
A\ / c/ N / \)»(l
Vi e BL. mmar A
1\ / IX A\ / 1\ /
\ A/\A \ \
Ji7/ 1T\ [[T\ \
/ / / / /
\ \ \
)% ¥} \l)% \Y
/4 / /
\ 1474\ \ J/ '\ \ \ / 1\
/o \
N\ D+ \ i
b T11 1 i EEE 1
(a) After subdivision (b) Rasterization result

Fig. 2.3. lllustration of the rasterization anomaly.

2.2 Edge Function Recovery Scheme

In order to remove the rasterization anomaly, a recovery scheme based on the edge
function method is proposed. The edge function method [16] is used in some raster
engine to decide whether a pixel is in the triangle. The edge function is a line equation
through the two vertices of the triangle edge. For example, in Fig. 2.4 (a), the edge
function Egp, of the left triangle defined by vertices V, and V,, is expressed in Eq. (2.6),

where (Xa, Ya) and (Xy, Yb) are the coordinates of vertex V, and Vp.
En(XY): ApX+Byuy+C,, =0 (2.6)

where Aab = (ya_yb)) Bab = (Xb_Xa) and Cab =Xa Yo X Ya -

The other two edge functions Ep; and Ec, can also be similarly derived as follows.

Ebc(x1y): Abcx + Bbcy + Cbc = O (27)

where Abc = (yb_yc)1 Bbc = (Xc_Xb) and Cbc =X Ye XYy -

Chapter 2 Proposed Low Complexity Subdivision Algorithm

Eca(X’y): A\:ax + Bca y + Cca = O (2'8)

where A, =(.Y,), B, =KX,X) and C_, =X Y, "X, Y,-

Ebc(X.Y) Ean(X,Y) /

/£ | Va:(Xa, Ya) Vg
// II Bty Eagixy)
Eca(X, /
(X y) Ead(xvy)
(a) Before recovery (b) After recovery

Fig. 2.4. lllustration of edge functions.

To test whether a pixel is in a triangle, the coordinate of the pixel is substituted to
three edge functions. If the signs of the three calculation result are all positive, the pixel
Is regarded as an internal point in the triangle. For example, in Fig. 2.4 (a), the pixel Py
inside the blue triangle has three positive signs of all the edge functions Egp, Epc and Ec,.

As demonstrated in Fig. 2.3 (a), the intermediate vertices V. and Vy4 of the two
triangles have different coordinates. Therefore, they define two different edge functions
Ecaand Eqq, respectively. The different edge functions Ec, and Eq4 are shown in Fig. 2.4
(a). During rasterization, the pixel, for example, P; is regarded as an internal pixel of the
left triangle because it locates in the blue region which is the positive region for all the
edge functions E,p, Epc and Ec,. Therefore, Py will be rendered correctly. The pixel, for
example, P, in the green region has negative value for both the edge functions E,and
Eaq and is regarded as outside of both the triangles. As a result, the pixels in the green

region will be discarded from the pipeline and not be rendered. Therefore, the

Chapter 2 Proposed Low Complexity Subdivision Algorithm

rasterization anomaly occurs. To eliminate the anomaly, the edge function E., derived
from the left triangle and the E,q derived from the right triangle must be the same. As
illustrated in Fig. 2.4 (b), the pixels inside the green region in Fig. 2.5(a) are located at
one of the triangles because E s, and E 54 are the same.

To obtain the same edge function derived, it is improper to use the coordinate of
the vertex V. and Vy for the calculation in Fig. 2.3 (a). Therefore, an edge function
recovery scheme is applied to correct edge function calculation. The proposed scheme
takes the advantage of linear property of line equation and computes the edge functions
for the generated triangles. In Fig. 2.5 (a), a triangle is subdivided into four triangles.
After subdivision, the edge functions of the small triangles can be computed in the

following steps.

Step 1: Compute the edge functions: Egp, Epc, and E¢, of the original triangle using
Egs. (2.6), (2.7) and (2.8).

Step 2: Compute the constant difference values: AC,,, ACpc and ACgqin EQs. (2.9),
(2.10), and (2.11). The slopes of the three edge functions are expressed in the following.

ACL, =5 (% = X)(¥s =¥2) + (Y = ¥0)(X, ~%,)
2.9)

=%(BabAbc o AabBbc)

AC =5 (% = X)(Ye = ¥o) + (¥ ~ Yo)(%, ~X.)
(2.10)

= % (BabAbc o AabBbc)

AC, =2 (0% =X)(Ya =)+ (% = Yo (X, ~X,)
(2.11)

1
= E(BcaAab - Aca Bab)

Step 3: Compute the edge functions including Eai, Eik, Exa, Eib, Ebj, Eji, Ekj, ch, Ecx

10

Chapter 2 Proposed Low Complexity Subdivision Algorithm

of small triangles in Fig. 2.5 with the use of the computed original edge functions and

the difference values. For example, Ey; can be computed using Eq. (2.12).

Vai (Xa, Ya)

Vb (Xos Vo) Vi Vei(Xe Vo)V, Vj V.
Ebc

Fig. 2.5. lllustration of computing the edge functions for small triangles.

E,

i -

Ajx+Byy+Cy =0 (2.12)

, where A =A,, B;=B,, C;=C, +AC,. The constant term Cy; can be derived

from the constant term C,,, of the edge function E,, by adding the difference value ACyp
in Eq. (2.9). The other edge functions can be computed in the similar behavior. Finally,
the small triangles can be rendered with these edge functions. By the proposed method,
the derived edge functions on the sharing edge of any adjacent triangles are the same.
Therefore, the rasterization anomaly can be eliminated. The rendering results using the

proposed edge function recovery scheme are shown in Fig. 2.6 (a), (b), (c), (d).

11

Chapter 2 Proposed Low Complexity Subdivision Algorithm

(a) Teapot (b) Pawn

(c) Venus (b) Couch

Fig. 2.6. Rendering results with the proposed edge function recovery scheme.

In Eqg. (2.6), evaluating one edge function requires three subtractions and two
multiplications. For a subdivided triangle with Nssegments on each edge, there are total
3Ns edge functions to be computed and computation requires 3Ns(2 muls + 3 subs) =
6Ns muls + 9Nssubs = 6Ns muls + 9Nsadds (subtraction is regarded as addition). The
proposed recovery scheme computes each edge function for the subdivided triangle by
adding one difference values. Therefore the computation complexity can be reduced to
3(2 muls + 3 adds) + 3(2 muls + 1 add) + (3Ns - 3)(1 add) = 12 muls + (3Ns + 9) adds.

Thus, the edge function recovery scheme implies an efficient method for computing the

12

Chapter 2 Proposed Low Complexity Subdivision Algorithm

edge functions of subdivided triangles.

2.3 Dual Space Subdivision Scheme

In the geometry engine, a sequence of transforms is applied to the vertices. A flow

chart of the transforms is shown in Fig. 2.7.

Modelview Transform

Projection Transform

(Obj->Eye) ’ (Eye-> Clip)
Viewport Transform Perspective Division
(NDC-> Window) ¢ (Clip-> NDC)

Fig. 2.7. Flow chart of the transforms in the geometry engine.
The modelview transform transforms the vertex from object space to eye space by

multiplying a 4x4 modelview matrix below.

Xeye m, m m, my| Xy
Yeye _ m, mg Mg My | Yop (2.13)
Zeye mg My My My Zobj
Weye M, Mg My Mg W bj

In the projection transform, the eye space coordinate is transformed to clip space

by multiplying a 4x4 projection matrix below.

Xeip Po P P2 Ps| Xee
Yaip _ Ps Ps Ps Pr | Yepe (2.14)
Zy ip Ps Ps P P Zeye
Weiip P Pz P Pis || Weye

After clipping, the vertices in the clip space will be projected to the projection
plane by dividing the w component below. After the perspective division, the

13

Chapter 2 Proposed Low Complexity Subdivision Algorithm

normalized device coordinate (NDC) of each component in the range of [-1, 1] can be

expressed in Eq. (2.15).

XNDC Xclip /Wclip
Ynoc | = Yeip /Wclip (2.15)
ZNDC chip /Wclip

Finally, through the viewport transform (viewport mapping), the NDC will be

transformed to the window (screen) coordinate.

Xwindow Xscale : XNDC + Xoffset
ywindow = yscale ’ yNDC + yoffset (216)
Zwindow Zscale ’ ZNDC + Zoffset

The conventional subdivision-based algorithm subdivides the triangles in the
object space or the eye space. As illustrated in Fig. 2.8, the subdivision is performed at
the early stage of the pipeline. Because the subdivision generates a large number of
vertices, theses vertices bring overhead to the computation and the power consumption

to the later stages of pipeline. To reduce the complexity, the dual space subdivision is

proposed.
Eye-space coordinate
Eye-space normal
ModelView E— Eye-space ! Projective Perspective Viewport S
- Transform _>: Subdivision 1 Transform d Division > Transform Lighting =
Eye-space coordinate Eye-space coordinate o

Eye-space normal Eye-space normal Screen-space coordinate

Fig. 2.8. Data flow of eye space subdivision.

14

Chapter 2 Proposed Low Complexity Subdivision Algorithm

Eye-space coordinate
Eye-space normal

i\ Eye-space !
- — - - ' . i Lightin >
— ModelView [, | Projective Perspective | | Viewport _>; Subdivision 1 ghiing
Transform Transform Division Transform :rscreen-space ! _
i Subdivision

lececessesceses & Screen-space coordinate

Fig. 2.9. Data flow of dual space subdivision.

As illustrated in Fig. 2.9, the subdivision of the proposed scheme is performed
after the viewport transform of the pipeline. It subdivides both the coordinates in eye
space and window space. The eye space coordinate is required for point-light
calculation and the screen space coordinate is used for edge function calculation and
other geometry operations. By skipping these transforms including projection transform,
perspective division and viewport transform, the computational complexity is
remarkably reduced.

The complexity analysis of the eye space subdivision of a single triangle is given
in Table 2.1. The left column lists the operations of subdivision and the corresponding
complexity is listed in the right column. Ngis defined as the number of the generated
intermediate vertices during subdivision. After the triangle is subdivided, there are
(Ne+3) vertices including the original three vertices. First, the triangle is subdivided in
eye space. Each step of the subdivision algorithm involves two vector-additions for eye
coordinate (Xg, Ve, ze) and normal vectors (Xn, Y, Zn) With total six additions. Therefore,
the addition complexity of subdivision is 6(Ng+2) additions where two is the number of
steps to calculate the difference vectors. After subdivision, all (Ng+3) vertices will be
transformed by projection transform, perspective division and viewport transform. As
described in this subsection, the projection matrix is a 4x4 matrix and the computational
complexity of the projection transform is equal to 16(Ng+3) muls + 12(Ng+3) adds. The
perspective division for a vertex requires three multiplications and one inverse and

therefore the total computational complexity is 3(Ng+3) muls + (Ng+3) invs for (Ng+3)

15

Chapter 2 Proposed Low Complexity Subdivision Algorithm

vertices. The viewport transform requires three multiplications and three additions for
each vertex. The computational complexity is 3(Ng+3) muls + 3(Ng+3) adds for (Ng+3)

vertices.

Table 2.1: Complexity analysis of the eye space subdivision

Operations

Computational Complexity

Subdivision for 6 components :

Eye coordinate: (Xg, Ye, Zg)
Normal: (Xn, Yn, ZN)

6(Ng+2) adds

Projection transform for Ng+3
vertices

16(Ng+3) muls + 12(Ng+3)
adds

Perspective division for Ng+3

3(Ng+3) muls + (Ng+3) invs
vertices (Ne+3) (Ne+3)

Viewport transform for Ng +3
P ™2 | 3(NG+3) muls + 3(Na+3) adds

vertices
(22Ng+66) muls
Total (21Ng+57) adds
(NG+3) invs

Compared to the eye space subdivision, the dual space subdivision subdivides
triangles after the viewport transform. Thus, the projective transform, perspective
division and viewport transform are performed for the three vertices. The complexity is
listed in Table. 2.2. After the viewport transform, the eye coordinates, normal vector and
the window coordinate will be subdivided. To have perspective correct eye coordinates
and normal vectors for the intermediate vertices, a setup for perspective correction is
performed by dividing the eye coordinates and normal vectors by the wgj, term. The
computational complexity of the setup is six multiplications for each vertex. After setup,
the subdivision is performed for the coordinates in two spaces and the normal vector
and the computational complexity is 10(Ng+2) additions. The final step is perspective

correction which divides the eye coordinates and normal vectors by the 1/wg, term of

16

Chapter 2 Proposed Low Complexity Subdivision Algorithm

intermediate vertices. Since there are Ng intermediate vertices and six divisions are

required for each perspective correction, the computational complexity is 6Ng muls +

Ng invs.

Table 2.2: Complexity analysis of the perspective correct dual space subdivision

Operations

Computational Complexity

Projective transform for 3 vertices

3x16 muls + 3x12 adds

Perspective division for 3 vertices

3x3 muls + 3 invs

Viewport transform for 3 vertices

3x3 muls + 3x3 adds

Setup for perspective correctly

3x6 muls
subdivision
Subdivision for 10 components:
Eye coordinate : (Xe : Ve : Ze)
VVclip Wclip Wclip
Normal: (XN I) 10(Ne+2) adds

W W

Wclip clip clip

, 1
Screen coordinate: (X,,, Yy, 2y ——)
clip

Perspective correction 6Ng muls + Ng invs
(6Ng+84) muls
(10Ng+65) adds

(NG+3) invs

Total

The dual space subdivision is able to provide the perspective correct eye
coordinates and normal vectors for light intensity calculation. The computation can be
further reduced while the perspective incorrectly subdivision is used and the setup and
correction can be skipped. This perspective incorrectness of the intensity on the
rendered object can be neglected because human eye is not sensitive to the light
intensity of small difference. The complexity of the proposed perspective incorrectly

dual space subdivision scheme is listed in Table. 2.3.

17

Chapter 2 Proposed Low Complexity Subdivision Algorithm

Table 2.3: Complexity analysis of the perspective incorrect dual space subdivision

Computational

Operations)
Complexity
Projective transform for 3 vertices | 3x16 muls + 3x12 adds
Perspective division for 3 vertices 3x3 muls + 3 invs
Viewport transform for 3 vertices 3x3 muls + 3x3 adds

Subdivision for 10 components:
Eye coordinate: (X, Ye, Zg)
Normal: (Xn, YN, Zn)

i 10(Ng+2) adds

Screen coordinate:

1
(Xw’ yw’ Zw’_)

clip

66 muls
Total (10Ng +65) adds
3invs

2.4 Triangle Filtering Scheme

To reduce the computation for primitive-level operations, the filtering scheme as
shown in Fig. 2.10 is added to the proposed algorithm. The filtering scheme is a hybrid
scheme that combines culling/clipping before subdivision and highlight test.

The backface culling in the graphics pipeline is used to test whether a triangle is a
backface to the eye direction by the sign of the inner product of the face normal vector
and eye direction vector. If a triangle is a backface, it will be discarded and not rendered.
In the subdivision algorithm, a triangle will be subdivided into small ones. Performing
culling test for these triangles individually brings significant overhead to the
computation and power consumption. Because the generated triangles and the original
triangle are on the same plane, the face normal vectors are parallel to each other.
Therefore, the inner products of these face normal vectors and the eye direction vector
will be the same. The statement implies that there is no need to perform backface

culling test for each generated triangle since the results will be the same. Hence, in the

18

Chapter 2 Proposed Low Complexity Subdivision Algorithm

proposed algorithm, the subdivision is performed after culling test. If the original
triangle is culled, the subdivision is unnecessary. Otherwise, all generated triangles are
rendered without culling test. Clipping is another primitive level operation in the
pipeline. Since the subdivision is performed after clipping, the generated triangles of the
clipped original triangle are guaranteed to be inside the view frustum. Therefore, it is
not necessary to re-clip these triangles.

To reduce the redundant subdivision, the subdivision-based algorithm usually
includes the highlight test scheme. In the proposed algorithm, the mixed-shading [9][10]
for the highlight test is adopted. The scheme tests the H -V term of the original three
vertices. While one of the H -V term is greater than the threshold value, the triangle
will be subdivided. If all H -V terms are smaller than the threshold value, we bypass

the subdivision and render the triangle with Grouaud shading. Thus, the redundant

/\

1

Clipping

& Cilling A

Htest

Pass
AY) A Subdivider

No pass

primitive operations can be reduced.

I

Gouraud
shading

(a) H test passed region i gz

Rasterizer

v
(b) Triangle filtering data
flow

Fig. 2.10. Data flow of the triangle filtering scheme.

2.5 Triangle Setup Variable Sharing Scheme

To reduce the triangle setup and the unnecessary subdivision for vertex attributes, a

19

Chapter 2 Proposed Low Complexity Subdivision Algorithm

triangle setup variable sharing scheme is exposed in this section. The concept of the
setup reusing result has been shown in [15]; however, the detailed description is not
given. During rasterization, the vertex attributes are linearly interpolated for each pixel.
These attributes include screen coordinates, texture coordinates, depth values, fog
factors, light intensities and etc. The interpolation usually makes the use of the plane
equation [17]. An example is given in Fig. 2.11, where (x;, i) is the window coordinates
of the triangle and u; is the attribute to be interpolated. The attribute plane defined by u;

Is obtained by solving Eq. (2.17).

Up =A% +Bi- Yo +C
u=A-x+B, -y, +C, (2.17)
Uy =A% +B -y, +C

After solving the plane coefficients A;, Bj and C;, the attribute u; for any pixel in the
triangle can be obtained by substituting the coordinate into Eq. (2.17). Generally, Eq.

(2.17) can be recast in Eq. (2.18) and Eq. (2.19).

Xo X X
[uo u, uz]:[Ai Bi Ci] Yo Y1 Y2 (2-18)
1 1 1
-1
Xo X X
[Ai Bi Ci]:[uo U, uz] Yo Y1 Y2 (2-19)
1 1 1

In Eq. (2.19), the coefficients [A; ,Bi, Ci] of any attribute plane can be computed by
multiplying a 3x3 inverse matrix, where the inverse matrix is composed of the

coordinates [x;, yi, 1] of the triangle. Therefore, once the inverse matrix is available, it

20

Chapter 2 Proposed Low Complexity Subdivision Algorithm

can be used to compute any coefficient for interpolating the attributes of the same
triangle. Thus, the cost for setup one attribute is generally a 3x3 matrix multiplication.
The generated triangles of the subdivision algorithm increase the complexity for
triangle setup. Because the generated triangles are on the same plane, they define the
same attribute plane for each attribute. The coefficients of the attribute planes can be
shared by the generated triangles without re-computing these coefficients. As illustrated
in Fig. 2.11, the triangle is subdivided into four small triangles and therefore the original
setup cost for one vertex attribute of these triangles are four 3x3 matrix inversions and
four 3x3 matrix multiplications. With the setup variables sharing scheme, the setup only
requires one 3x3 matrix inversion and one 3x3 matrix multiplication because the
pre-computed variables are shared by the small triangles. Reusing these coefficients
eliminates the subdividing and the setting up vertex attributes for the small triangles.
Most rasterization algorithms start rasterization from a pixel with initial attribute values
and evaluate the attribute values of next pixel in an incremental manner. It is necessary
to compute the initial attribute values for each generated triangles in Eq. (2.20). It takes
three multiplications to re-setup for each generated triangle in tile-based traversal

scheme [16].

AX
u=A-Ax+B-Ay+C,=[A B, C.]JAy (2.20)
1

21

Chapter 2 Proposed Low Complexity Subdivision Algorithm

(XOl YOa U())

Initial Point 3

(X2, Y2, U2)
(X1, Y1, U1)

Initial Point1 AX

iAy Initial Point 2
»

Fig. 2.11. lllustration of the triangle setup variable sharing.

22

Chapter 3 Proposed Geometry Engine Architecture

Chapter

Proposed Geometry Engine Architecture

In this chapter, a power efficient geometry engine (GE) architecture for 3D
graphics pipeline architecture is proposed. Several kernel blocks including the primitive
input control (PIC), the primitive processing unit (PPU), vertex processing unit (VPU)
and vertex cache management unit (VCMU) are proposed to optimize the power
consumption and to support the scalable quality mechanism via the proposed
subdivision algorithms. The proposed GE supports the scalable quality mechanism via
the proposed subdivision algorithm. The users can choose the most efficient
configuration for the graphics processing according to the requirements of the shading
quality and the power budget. The supported scalable quality levels are level-0, level-1
and level-2. The overall architecture of the proposed GE is depicted in Fig. 3.1 and the

detailed descriptions of each block are given in the following subsections.

23

Chapter 3 Proposed Geometry Engine Architecture

To
Vertex Cache s:;‘r?e
Manage Unit |« »| Output Control | 24
(VCMU) 1280

A
Y

A A A

Primitive Queue
Dispatch Queuel

Index FIFO| Primitive Input i
“ ™ Control (PIC) o

A

Subdivision [

Control (SC) :I Dispatch Queue2 l—

~_Host IF Parameter | | O I .
- " Registers ; :
Yy VYV YYVY
From Pre-TnL Cache PPU VPU
A A
A'128b A '128b A '128b 4128p
\ J \ J Y \

Post-TnL Vertex Cache

Fig. 3.1. Overall architecture of proposed GE architecture.

3.1 Primitive Input Control (PIC)

The primitive input control (PIC) processes the input primitive information from
the host. The PIC reads one index from index FIFO at a time and accesses cache tag to
check whether the vertex with the index exists in the vertex cache. Once the cache
misses, the PIC requests fetching the vertex data (object coordinate and normal vectors)
from the pre-TnL cache. The vertex data returned from the pre-TnL cache will be stored
in the post-TnL cache. If the cache hits, the vertex data are not fetched because it is
already in the post-TnL cache. The triangles defined by the indices are assembled in PIC
and then the backface culling test is issued for the assembled triangles. If the triangle is
backface, it will be discarded from PIC. Otherwise, the triangle is pushed to the
primitive queue (PQ) and the vertices that belong to the triangle are push the dispatch
queue 1 (DQ1) for further processing.

24

Chapter 3 Proposed Geometry Engine Architecture

3.2 Primitive Queue (PQ)

The primitive queue (PQ) is a FIFO that buffers the triangles for processing. Each
entry of PQ stores the cache entries of three vertices of a triangle. The triangle that
passed the culling test is pushed to PQ by PIC. After all vertices of the triangle are
transformed and lit, the output control pops the triangle from PQ and read the vertex
data (window coordinate and light intensity) of the triangle from vertex cache memory

and then output to the setup engine.

3.3 Dispatch Queue (DQ)

The dispatch queue (DQ) is used to keep the vertices under processing. As
illustrated in Fig. 3.2, the dispatch queue contains two vertex-cache-entry buffers. The
vertex-cache-entry buffer contains the entry addresses of the vertices in the cache. The
VPU can access the vertex data with this information. When the vertices in buffer 1 in
Fig. 3.2 are processed in VPU, the PIC is able to continue pushing unprocessed vertices
into buffer 2 in Fig. 3.2. After all vertices of buffer 1 are processed and buffer 2 is full,
the buffers swap. Then, the VPU processes the vertices in buffer 2 and the PIC pushes
the unprocessed vertices to buffer 1. With the ping-pong buffer architecture, the PIC and
VPU can operate concurrently and thus the performance is increased. In DQ, the size of

each buffer is six which is the optimized size for the three-level subdivision algorithm.

Vertex cache entry buffer 1
From —Ap Vs Vs V. V3 V, V,

PIC/SC 5b 5b To VPU
Vertex cache entries buffer 2
5b 5b
—~<»| Vi, Vi V1o Vo Vs V7
5b 5b

Fig. 3.2. lllustration of the dispatch queue.

25

Chapter 3 Proposed Geometry Engine Architecture

3.4 Vertex Cache Management Unit (VCMU)

The vertex cache manage unit (VCMU) is a vertex cache tag unit for the post-TnL
vertex cache. The post-TnL cache contains 16-tag entries and each entry has seven
fields as illustrated in the first entry in Fig. 3.3. Compare with other works [19], the tag
entry contains a reference count field to trace the number of references to the vertex in
the tag entry. The primitive processing unit (PPU), VPU, and PIC can operate
concurrently. The reference count field is necessary to prevent the data of the vertices
which are under processing from being replaced by the incoming vertices. When the
PIC requests the VCMU to check whether a vertex exists in the cache, the searched
vertex index is compared with the index field of each tag entry. When the index matches
one of the valid tag entries, the Entry_hit signal of the tag entry asserts and the VCMU
returns hit signal. Since one more vertex enters the pipeline and refers to the data in the
cache entry, the value of the reference count field of the tag entry is added by one. The
entry address of the vertex is obtained by encoding the hit_vector in Fig. 3.3 and
returned to PIC. If the index does not match any tag entry, the VCMU returns miss
signal. Before PIC requests fetching the vertex data, the VCMU searches for one free
tag entry and allocates it to the vertex. A tag entry is available to be allocated when the
valid field is O or the reference is 0. When these conditions are met, the Entry free
signal asserts. The allocated entry address for the vertex is obtained by encoding the
free_vector in Fig. 3.3 and returned to PIC. In Fig. 3.3, the reference count in the tag
entry subtracts by one when a vertex referring to it exits the pipeline. When the cache
hits, the in_pipe and lit fields indicate that the vertex is processed in the pipeline and lit,
respectively. When one of the two fields is set to 1, the vertex is not pushed into DQ
since it is already been transformed and lit. The window coordinate and intensity can be

read from the cache directly. The Htest_result field stores the result of the highlight test

26

Chapter 3 Proposed Geometry Engine Architecture

for the subdivision algorithm. With this field, the power can be reduced because the
highlight test for the stored vertex is only performed once and the result can be reused

by the triangles the vertex.

Index to search
£ 10b
| In_pipe | Lit | Htest_result|
| Valid |Zero_ref| Index | Ref_countl
f :
__ Entry hit 0 0|0 Yy 4fiu
- 1 4—@:
% Tag
Of=1
< Entry free_0 D) Entry O
\ — ‘1b
17
- Entry hit 1
< Entry free_1 Tag Entl‘y 1
Entry free_vector
[] []
16b ° °
Entry hit_vector . .
- ° °
{Gb . .
[] []
_ Entry hit 15
. Entry free 15 Tag Entry 15

Fig. 3.3. lllustration of the vertex cache management unit.

3.5 Primitive Processing Unit (PPU)

The primitive processing unit (PPU) performs primitive-level operations including
backface culling and subdivision algorithm. The backface culling is performed in object
space [20] to remove the unnecessary transforms for the vertices of the culled triangles.
The subdivision algorithm makes the use of the forward difference to subdivide the
triangles. These operations are similar such that the datapath architecture can reused for
area efficiency. The block diagram of the proposed PPU architecture is depicted in Fig.
3.4, where the bit with of each node has been marked for clear representation. As

illustrated in Fig. 3.4, before culling or subdivision starts, the controller loads the data

27

Chapter 3 Proposed Geometry Engine Architecture

of the three vertices of the triangle in the cache into the input buffers. The eye position
in the object space is stored in the eye position buffer which is set by the host when the
eye position is updated. The PPU is able to write the data into the vertex cache because
the subdivision algorithm generates intermediate vertices. These vertices are written

back to the cache and be read by the VPU for further processing.

From primitive input ctrl/
subdivision ctrl

Control Unit
A 128b v l
-
To vertex cache read Vertex0 input buffer (128b) Eye position buffer (96b)
channel
1;8b Vertex1 input buffer (128b)
7 > . A 96b
From vertex cache read Vertex2 input buffer (128b)
channel
A1280 A1280 A 128b
\ / \/ \/
SUB1 SUB2 SUB3 ADD_SU MUL
(32b) (32b) (32b) B(32b) | |(16bx16b)

Datapath

| Htmp (128b) |Vtmp (128b) | Vdiff (128b) | Hdiff (128b) |R1 (32b) |R0 (32b)|

Intermediate value registers

128b
To vertex cache write channel

Fig. 3.4. Block diagram of the primitive processing unit.

3.6 Vertex Processing Unit (VPU)

The vertex processing unit (VPU) performs vertex-level operations including
vertex transformation and lighting operation. The operations covers modelview
transform, projection transform, perspective division, normal transform, viewport

transform, vector normalization and Blinn-Phong reflection model. The Blinn-Phong

28

Chapter 3 Proposed Geometry Engine Architecture

reflection model [4] can be formulated in Eq. (3.1).
I=1_+(N-D)I, +(N-H)"I, (3.1)

Where 1, lg, I, N ,L,H denote the ambient intensity, diffuse intensity, specular

intensity, normalized normal vector, normalized light vector, and normalized halfway
. - L+V . .
vector, respectively. The halfway vector H == is the vector between the light

direction vector L and the viewing vector V. In Fig. 3.1, so as to maximize the
performance, the VPU is designed to process a batch of vertices in DQ at the same time.
The block diagram of VVPU architecture is depicted in Fig. 3.5, where the bit width of
each node has been marked for clear representation. The vertex data are read from the
read channel of the vertex cache. Then, they are transformed and lit in the reconfigure
datapath (RDP). The register file stores the intermediate values for the vertices under
processing. The constant memory stores the matrix parameters and the light parameters
for transforms and lighting, respectively. The content of the constant memory is set by
the host before the GE starts. Finally, the vertices are read from the register file and

written back to vertex cache when all vertices in the batch are transformed and lit.

29

Chapter 3 Proposed Geometry Engine Architecture

l From dispatch queue

Control Unit
To vertex cachgwrite
h |
i y i i ——
To vertex cache read C Confi i
n n nrigurati . .
channel onstant onfiguratio Register file _
Memory n Rom (48x128) <
From vertex cache read | (16x128) (6x90)
channel
128b
4 y 4 4 4 L -
A 128b /[1280 / 92b /1280 A 1280 To veftex cache write
\ 4 \ 4 \ \ \ i channe
FIFO SFU PE3 PE2 PE1
Reconfigurable Datapath
A4 32 A 32b A 32 A 320
\ Y Y Y
Output data buffer
Write back path
2z

7 128p
Fig. 3.5. Block diagram of the vertex processing unit.

Considering the trade-off for the power, area and vertex processing performance of
the GE architecture, the operations listed in Chapter 3 are disassembled into the simpler
atomic operations. For example, the modelview transform involves a 4x4 matrix
multiplication which can be achieved by four dot product operations. The
un-disassembled operations and the atomic operations define the minimum set of
operations supported by the RDP. The RDP can be configured to different modes to
achieve these operations. These configuration modes are summarized in Table 3.1. The
RDP is a pipelined SIMD datapath architecture for high performance vertex processing.
The RDP is composed of three processing elements (PEs), one special function unit
(SFU) and one FIFO as shown in Fig. 3.5. By reconfiguring three PEs, the SFU and the
interconnection between these PEs, the RDP can realize all the transform and lighting

operations listed in Table 3.1. For a complicated operation such as the vector

30

Chapter 3 Proposed Geometry Engine Architecture

normalization, the RDP is configured to be an efficient pipelined datapath. By
processing a batch of vertices at the same time and filling the pipeline, the average cycle
for the operation is reduced compared with other architectures that process one vertex
one at one time. The detailed descriptions about the RDP are given in the following

subsections.

Table 3.1: Configuration modes for RDP

Configuration) .
Mode Function Description
trans_dp Dot product for transform
light_dp Dot product for lighting
vec_norm \ector normalization
Pd Perspective division
Pow Powering
vec_sub Vector subtraction

3.6.1 Processing Element (PE)

The architecture of the processing element (PE) is illustrated in Fig. 3.6, where the
PE is a three-stage pipeline. At the first stage, the 32-bit fixed-width Booth multiplier
multiplies two numbers and generates two partial products. The 32-bit fixed-width
Booth-based squarer [21] is used to perform squaring operation. A dedicated squarer
consumes less power dissipation than that of a general-purpose multiplier. The outputs
of the squarer are two partial products. At the second stage, the 32-bit 4-2 compressor is
used to add four inputs and generates two partial products. Finally, at the last stage, the
adder-subtractor unit adds or subtracts two numbers and produces the final output. The
function of the adder-subtractor is controlled by the MODE signal in Fig. 3.6. The
multiplexers in PE control the data flow for different operations. The PE can be

configured to perform multiplication (MUL), square (SQR),

31

Chapter 3 Proposed Geometry Engine Architecture

multiplication-accumulation (MAC), addition (ADD) and subtraction (SUB) as shown
in Figs. 3.7, 3.8, 3.9, and 3.10, respectively.

The datapath of multiplication (MUL) operation is illustrated in Fig. 3.7 and
marked with dashed lines. The first stage of MUL generates the partial products by
multiplying two numbers of the input registers REG_B and REG_C. The partial product
outputs are registered in the pipeline registers REG_F and REG_G and then are
summed up in the adder-subtractor unit. The datapath of square (SQR) operation is
illustrated in Fig. 3.8. The squarer squares the number in the input register REG_D and
generates two partial products. The partial products are registered in the pipeline
register REG_H and REG_I and then are summed up in the adder-subtractor unit. The
datapath of the multiplication-accumulation (MAC) operation is illustrated in Fig. 3.9.
For the MAC operation, the number in the input register REG_B is multiplied by the
number in the input register REG_C and the result is added to the number in the input
register REG_A to produce a result of MAC. At the first stage, the numbers in REG_B
and REG_C are multiplied and the partial products are registered in the pipeline register
REG_F and REG_G. The number in the register REG_A is directly passed to the
pipeline register REG_E. At the second stage, the partial products in REG_F and
REG_G and the number in REG_E are added with the 4-2 compressor and the resulting
partial products are registered in the REG_J and REG_K. At the last stage, the partial
products in register REG_J and REG_K are summed up in the adder-subtractor unit to
produce the result. The datapath of addition (ADD) and subtraction (SUB) operations
are illustrated in Fig. 3.10. The pipeline registers REG_J and REG_K are configured to
be the input registers for the ADD and SUB operations. The numbers in REG_J and

REG_K are added or subtracted according to the target operations.

32

Chapter 3 Proposed Geometry Engine Architecture

In. A port 32b In. B port 32b In. C port 32b In. D port 32b
[REGA | | REGB | | REG C |
32x32 Fixed-width . .
S Fixed-width sgrarer
Booth multiplier
\
REGE | | REGF | | REGG || REGH | [REGI |
1
|
__Out. F port 32b
- 32b
In. G port , 32b 2 In. E port
In. H port ',32b 0 0 A In. F port
7 * * 32b
* Yy v Yy VY Yy VY Y
NMx/ N Mx_ 7 N Mix_~ N _Mux_~
A32b J32b 32b b 32b
\ Y y
i | 4-2 compressor
n. | port ~ 32b ,32b Out. D port
InJport , 32 " ,32%b Out.E port_
Yy,] v 1] i -
Out. B port = N Mux 7~ N M~
-t S 32b X320
32b X A J
N
REG_J REG_K
/ —
Out. C port z
o
x
32b \
Y + A } Yy Vv
N Mux_~ NMux__~
320 {'3%
/ / In. MODE
| Add-Sub
1b

Out. A port &32b

Fig. 3.6. Block diagram of the processing element.

33

Chapter 3 Proposed Geometry Engine Architecture

In.C porti

In. B port E ! 30

In. A port L 32

32b

SR
-

®

[Reon] [recs]

-
-

32x32 Fixed-width

Booth multiplier Fixed-width sqrarer

Y A
REGE | | REGF | | REGG || REGH | [REGI |
1 &
&)
~_Out. F port 32b
- 32b
In. G port , 32b 2 In. E port
In. H port ,, 32b 0 0 S tn T pert
7 ‘ 32b
* Yy v YyYvy Yy vy
N N R
A32b A 32b 32b ¥ 32b
\ i \/ /

S | 4-2 compressor
n. | por , 32b ,32b Out. D port

7
InJport , 32 :/ 32 Out. E port
v

y
N Mux__~ N Mwx__~

Yy

\ Y

/]
:OEE'BPOH = ¥ 320 4320
32b < y
| REGJ || REGK |
/ A
Out. C port Z|
c
3
32b \
Yy VY } ;¥
¥_/ N 7
4 32b A 32b
y y In. MODE

| Add_Sub

. 1b
out. Aport & 32b
\j

Fig. 3.7. lllustration of multiplication operation.

34

Chapter 3 Proposed Geometry Engine Architecture

L]
In. D port i

In. A port 32 In. B port 32b In. C port 32b *3%
[REGA | | REGB | | REG C | REG_D
v

32x32 Fixed-width

Booth multiplier Fixed-width sgrarer

v ¥) ¥)
REGE | | REGF | | REGG || REGH | [REG_

t

é--

__Out. F port 32b

3,2b In. E port

7
,_In. F port
7

In. G port , 32b

7
In.Hport , 32b 0

32b
* * R/ * Y VY Yy VY
N SN N\ S~

o

J32b } 3 = F 320
Y A i i

A | 4-2 compressor

n. | pori , 32b ,32b Out. D port

Yy

K
InJport , 32 " ,32b Out. E port

* y \ \ J

4
AN L P

/]
out.B
- I,JE port = 32b Y 320
32b < |
| REGJ || REGK |
/ |
Out. C port z
&
32b \
y + i } Yy v
N ~_ -~
A 32b A 320
/ Y In. MODE
| Add_Sub
' 1b

L]
Out. Aport A& 32b
\j

Fig. 3.8. lllustration of square operation.

35

Chapter 3 Proposed Geometry Engine Architecture

In.Aport/E?32b In.Bportj, 32b In.Cportj,32b In. D port 32b
v y y
[REGA | | REGB | | REG_C
v v
Sé)é?(’)fhlzr::(ﬁﬂ-i\;’)vlligf’h Fixed-width sqrarer
| Y
| REGE | | REGF | | REGG || REGH | [REGI |
1
¢
~_Out. F port 32b
- 32b
In. G port , 32b 2 In. E port
In. H t ’ 32b 0 0 A In. F port
n por ’, * 32b
y v Yy vy Yy VY
N NG N\ S
P E J 320 b 32b 32b
v Y /
| 4-2 compressor
In. | port ~ 32b ,32b Out.Dport
InJport , 32 " ,32%b Out.E port_
y [Y ¥ ’ -
Out. B port [N = N R
-—r = 32b Y 32b
32b < i
| REGJ || REG K
___________ T
Out. C port é
32b (::
BN Yy VY
oo e N 7
A 32 X 32
Y In. MODE
| Add_Sub
H 1b

L]
Out. Aport A& 32b
\j

Fig. 3.9. lllustration of MAC operation.

36

Chapter 3 Proposed Geometry Engine Architecture

In. A port 32b In. B port 32b In. C port 32b In. D port 32b
[REGA | | REGB | | REG C |
32x32 Fixed-width Fixed-width sqrarer
Booth multiplier
y
REGE | | REGF | | REGG || REGH | [REGI |
1
¢
__Out. F port 32b
- 32b
In. G port , 32b 2 In. E port
In. H port ',32b 0 0 A In. F port
7 * 32b
* Yy Yy VvYY Yy VYV
N N B N\ S
A320 } 320 b 32h b 32b
\ A / y
i | 4-2 compressor
n. | port /. 32b ,32b Out. D port
In.Jport . 32 \ " ,32%b Out.E port_
Yy, | A | Y _ v ’ -
Out. B port (= N N
-t ES X 32b X320
32b < | i
| REGJ || REGK |
Out. C port é -----------
32b (::
/ + \ * \ A
N Mux NMux__~
A 32b 32
/ Y In. MODE

| Add_Sub

L] 1b
Out. Aport A& 32b
\j

Fig. 3.10. Illustration of addition/subtraction operation.

3.6.2 Special Function Unit (SFU)

The special function unit (SFU) provides various arithmetic operations including
the inverse (INV), inverse-square-root (InvSqgrt) and power (POW) operations. These
operations are used for vertex processing. To achieve low-power arithmetic operations,
the SFU adopts the logarithmic number system (LNS) [22-24] where the complicated
arithmetic operations are replaced by the simple arithmetic.

The architecture of SFU is depicted in Fig. 3.11, where the bit width of each node
has been marked for clear representation. For the INV and the InvSqrt operations, the

37

Chapter 3 Proposed Geometry Engine Architecture

logarithmic convertor as shown in the top gray region of Fig. 3.11 converts the input
number m to its logarithmic number M. Then, the number M is inversed through the Inv
block to produce the result ~M. In the shift block, the number ~M is shifted right one bit
to obtain (~M)>>1 for InvSqrt operation or directly bypassed for Inv operation. The
behavior of the shift block controlled by the Config[1] port. The output logarithmic

number (~M)>>1 or ~M of the shift block is then converted to their ordinary fixed-point

1 : N .
number 1 or — by the antilogarithmic convertor as shown in the bottom gray

m Jm
region of Fig. 3.11.

For the POW operation m", the number m is converted to its logarithmic number
M. To compute nM , the multiplier is required for multiplication. However, the real
multiplier is not included in SFU to achieve area and power-efficient feature. Because
the processing element (PE) in the RDP shown in Fig. 3.6 can be configured to be a
multiplier to compute nM . In Fig. 3.11, the logarithmic number M is outputted to a PE
which is configured as a multiplier and multiplies to the number n. The result nM is
then returned from the PE and converted to its ordinary numberm". The Config[2]

controls the source for the antilogarithmic convertor.

3.6.3 FIFO

As mentioned above, the RDP constructs an efficient pipeline datapath for
complicated operations. In some configuration modes, some of the input data are used
in the later stage of the pipeline. However, bypassing these data with pipeline registers
stage by stage is not efficient for power consumption. To avoid the unnecessary data

transfers between the pipeline registers, the FIFO is included in the RDP.

38

Chapter 3 Proposed Geometry Engine Architecture

i 32b

| Input Register |

Config[2] -a---
ol2] 1 } 310
H sign Y
neg |
neg 1b 4 31b
\4
1b | Normalize |
exp horm
4 5b 1 16b
Y \4
| Pipeline Register |
4 16b
\4
X1ib 450 Log Converter
£ 16b
\4 \4 \4
| Pipeline Register]| Output Register |

4 5b ;' *
| Inv I To
multiplier
Y
Config[1] =-=-=-===}---=- itttk Il >| Shift I
y

From -
multiplier A
16b \ 4 A
Underflow 3= Mux
- .
Detection] Yi6b
= B L
E 4 / CAntllotg
Config[0] ==---- SR S~y . onverter
£ 5b 4 17p
\ 4 \ 4 A 4

| Pipeline Register |

neg |
> neg |
417b
4 5b A\ J
Ash |
432b
A
| Output register |
32b

Fig. 3.11. Block diagram of the special function unit.

3.6.4 Interconnection of Configuration Modes

In this section, the interconnections between the building blocks for different
configuration modes are described. For clearly explanation, the block diagram of the
processing element (PE) is simplified. The geometry transforms in Eq. (2.13) and Eq.
(2.14) multiply a 4x4 matrix by a 4x1 column vector. The matrix-vector multiplication

39

Chapter 3 Proposed Geometry Engine Architecture

can be replaced by four 4-component inner product operations. In Eg. (3.2), the
4-component inner product calculation employs four multiplications and therefore

requires four multipliers.

=X Xo+Y, Y, +Z 2, + W W, (32)

Because the term wqy; in the column vector in Eq. (2.14) is always one and the
projection matrix in Eq. (2.15) is a sparse matrix, these transforms can be achieved by
the 3-component inner products and the additions as expressed in Eg. (3.3). The
datapath for the operation in Eq. (3.3) is composed of three processing elements (PE)
and the interconnections between PEs are illustrated in Fig. 3.12. At the first stage, the
three multiplications are performed using the partial-product multiplier in the PEs,
respectively. The addend w is directly passed to the next stage. At the second stage, the
partial products and the addend w are compressed by the 4-2 compressor. Finally, the
resulting partial products are summed up in the adder-subtractor unit of the central PE to

produce the result.

X v, 2z w =X Xy Y, Y, 2y, AW, (3.3)

40

Chapter 3 Proposed Geometry Engine Architecture

Wy L 2 Y Y1 X2 X1
- 4
|REG A |REG B[REG C| |REGD| | ReG_ A|REG B|REG C| [REGD| |REG A|REG B[REG C| [REGD|
) T
: Y v
[}
E MUL SQOR MUL SQOR MUL SQR
Y Y
| ReG_E | REG_F[REG G |REG_H| REG_I' | || REG_E | REG F[REG G| REG_ H| REG_I | | | REG_E | REG_F [REG G [REG H| REG I |
R . . v e | beseeeceeen ,
i lececsconen . : ! . R : | . ,. :
-------- [} [}
07T Cod feeesiialy UL AL b .
t v v v vy vy o vt vy
| 4-2 compressor | HH | 4-2 compressor | il | 4-2 compressor |
H ' 0 H ‘ ih 1 q
[} beccccscses L]] ' lbesesscsncnasne L] i
leccceccccnconccanna J L] ! : :
V
| ADD_SUB | | ADD_SUB | | ADD_SUB |
i Out

Fig. 3.12. Interconnection of the transform dp configuration mode.

b2 7 Y2 Y1 X3 X1
4 + ¥ 4 ¥ 4
Y Y Y Y Y Y
| REG A|REG B|REG C| [REGD]| |ReEG A|REG B|REG C| |REGD| | REG A|REG B|REG C| |REGD]|
[] [] T
y v vV Y
MUL SOR MUL SOR MUL SOR
| REG_E | REG_F[REG G [REG H| REG I | || REG E | REG F[REG G [REG H| REG I | || REG E | REG_F |REG_G | REG H| REG I |
1 . ' H cee H [S -
LSRR . L] : : v bocccacnans L) !
: : peseenaccences L] pesccsesscsce) ! :. : :
0 0 H) freamecee '] 1 poeseces W[b) '
Y ¥ vy vy vy Vv vy
| 4-2 compressor | n | 4-2 compressor | iH | 4-2 compressor |
1 ‘ O H i J '
1 Lecencnnand L] ’ lbocnenoacnacnen '
Lececcaccancccnccans J L] :.- e :
| ADD_SUB | | ADD_SUB | | ADD_SUB |
i Out

Fig. 3.13. Interconnection of the light dp configuration mode.

The light dp is a general 3-component inner product operation and is used for
lighting calculations, for instance normal vector transform, dot product of two vectors.
The datpath illustrated in Fig.3.13 is similar to the datapath of transform dp as
illustrated in Fig. 3.12 but only the partial products from the multiplier are summed up
at the second stage. The unused inputs of the 4-2 compressor in the left PE are forced to

be zero.

41

Chapter 3 Proposed Geometry Engine Architecture

In the lighting equation, the normal vector, light vector and halfway vector are
required to have unit length before computing inner products. The equation of vector
normalization is expressed in the Eq. (3.4). The RDP can be configured to accelerate the

normalization operation.

Xl yl Zl]
Length ' Length ' Length (3.4)

where Length=/x* +y,” +z,°

norm([x,, y;,;]) =1

As illustrated in Fig. 3.14, the solid-line datapath evaluates the length of input
vector. The square operations are performed in the dedicated squarer in the PEs and the
output partial products are added with the 4-2 compressor. Because all add-subtractors
in the PEs are occupied by the dashed line datapath, additional adder is included to sum
up the two outputs of the compressor in the central PE. The produced length value is
passed to the SFU to evaluate its reciprocal value. Then, the input vector is multiplied
by the inverse of the length value to obtain the normalized vector. The datapath of the
scale-vector multiplication is the dashed-line datapath illustrated in Fig. 3.14.

In the perspective division in Eq. (2.15), the clip space coordinate Xciip, Yciip @nd Zeiip
are divided by the term wej,. The perspective division can be simplified by computing
the inverse of the wgi, and then multiplying the clip coordinate Xciip, Yciip and Ziip to the
1/weip. The datapath of perspective division is depicted in Fig. 3.15. At the first stage,
the w component of the input vector is passed to the SFU to compute the inverse 1/w.
After obtaining 1/w, the x, y and z components of the input vector are multiplied by 1/w.
The multiplications can be achieved by configuring the processing elements to perform

multiplication MUL operation.

42

Chapter 3 Proposed Geometry Engine Architecture

1/Length zy(FIFO) zy(Input)
¥

1/Length y(FIFO) yy(Input)

1Length xy(FIFO) x,(Input)

))
Y

¥ + ¥
Y

¥ ¥ ¥
Y

Y Y Y Y Y Y
|ReG A|REG B|REG C| |REGD | |REG A|REG B|REG C| |REGD]| | REG_A|REG_B|REG C| |REGD |
Yy v Y
MUL SQR MUL SQR MUL SQR
| ReG_E [REG F|REG G [REG H| REG I | | [REG_E | REG_F| REG G |REG H| REG I | || REG_E | REG F [REG G |REG H| REG I |
L) L) L) L} T

o=

f

[

Y

| 4-2 compressor |

—

[rec] [reck]

RN

-
(1
1
R
0!
1]
1
R
1
1

| 4-2 compressor |::
0!
R
1
1]
1
R
1
1

)
1

]

Y

| ADD_SUB |

& Out.x

[Rec] [Rec K]
______________ : ; REG_D | REG_D peememee et
Y Y Y Y
| ADD_SUB | | ADD_SUB |
§ Outz ADD ' Outy
t ¥Length]

1W(SFU) z,(FIFO)

Uw(SFU) y,(FIFO)

Fig. 3.14. Interconnection of the vector normalization configuration mode.

UW(SFU) x,(FIFO)

— i i
|ReG A|REG B|REG C| |REGD]| |REG A|REG B|REG C| |REGD]| |REG A|REG B|REG C| |REGD]|
T v '
MUL SQR MUL SQR MUL SQR

| REG_E | REG_F | REG G| REG_H | REG I |
L) v

| ReG_E [REG F|REG G [REG H| REG I |
L) L)

| ReG E [ReG F [REG G [REG H| REG I |
LJ T

| 4-2 compressor |

L T R L T T

| 4-2 compressor |

; """" ", 5 """" ",
| ADD_SUB | | ADD_SUB | | ADD_SUB |
i Out.z ' Outy ' Outx

Fig. 3.15. Interconnection of the perspective division configuration mode.

The vector subtraction is used to compute the vector of two points in the 3D space,
for example the light direction vector. The equation of vector subtraction is expressed in
Eqg. (3.4). The datapath is illustrated in Fig. 3.16. The REG_J and REG_K in each PE
are configured to be the input registers and the add-subtractor unit is configured to

43

Chapter 3 Proposed

Geometry Engine Architecture

perform subtraction operation.

[Xll yl’zl]_[le y2122] :[Xl —X

~N
)

2’y1_Ylel_22]

Ly

y'z¥1

S

(3.5)

|ReG A|REG B|REG C| |REGD |

|REG A|REG B|REG C| |REGD]|

MUL SQR

MUL SQR

E| REG A|REG B|REG C| |REGD|
)

MUL SQR

| REG_E | REG_F | REG_G | REG_H | REG I

REG_E | REG F[REG G| REG_H| REG I |

REG_E | REG_F |REG G [REG H| REG I |

4-2 compressor

I Ty y Yy xS J

ADD_SUB
i Out.z

4-2 compressor

ADD_SUB
i Outy

4-2 compressor

cccccccccccccccccccccccccccccccccacanaal

ADD_SUB
& Out.x

ceececsesececcssescecsresceereseseesses e ee <

©

44

Fig. 3.16. Interconnection of the vector subtraction configuration mode.

Chapter 4 Comparison Results and Chip Implementation

Chapter

Comparison Results and Chip
Implementation

In this chapter, the comprehensive comparison results in terms of complexity for
subdivision algorithm and power-efficient index among different state-of-the-art chips

for geometry engines are addressed.

4.1 Complexity Comparison Results

The complexity comparison to the conventional subdivision algorithm is listed in
Table. 4.1 in terms of number of memory accesses, computation for edge functions,
computation for transforms, number of clipping/culling test operations, and number of
3x3 matrix multiplications of setup operation for rasterizaiton. In Table. 4.1, Nt is
defined the number of triangles in the scene and Na denotes the number of vertex
attributes of each vertex. For level-1 case and level-2 case, the quantitative comparison
is listed in Tables 4.2 and 4.3. The reduction of the number of memory accesses can be
attained by 44.44% and 68.88% for level-1 and level-2, respectively. In terms of
multiplications for the edge function calculation, the computation can be alleviated by
0% and 50% for level-1 and level-2, respectively. The reduction of the number of
multiplications for transforms can be attained by 50% and 80% for level-1 and level-2,
respectively. In terms of clipping/culling test operations, the computation can be

alleviated by 75% and 93.75% for level-1 and level-2, respectively. The reduction of the

45

Chapter 4 Comparison Results and Chip Implementation

number of 3x3 matrix multiplications of setup operation for rasterizaiton can be attained

by 40% and 60% for level-1 and level-2, respectively.

Table 4.1: Complexity comparison results in general representation between

conventional subdivision algorithm and proposed subdivision algorithm.

Conventional

Proposed

- o Used
subdivision subdivision
)) schemes
algorithm algorithm
Number of memory Forward
(Ng+2)Nt .
accesses difference
Computation for | Muls 6NsNt 12Nt Edge
edge function Adds 9NsNT (3Ns+9)N recovery
Muls | (22Ng+66)N+ 66N
Computation for Dual space
Adds | (2INg+57)Nt | (10Ng+65)Nt o
transforms subdivision
Invs (N6+3) Nt 3NT
Number of clipping/cullin Triangle
IOIO_ g g N<2Ny N _ _9
test operations filtering
Number of 3x3 matrix 1 5 Setup
e e . 2 ((_)NANS .
multiplications of setup NaNs“Nt 3 variable
operation for rasterization +Na)Nt sharing

46

Chapter 4 Comparison Results and Chip Implementation

Table 4.2: Complexity comparison results for level-1 case (Ns =2, Ng = 3, Na = 5).

Conventional Proposed Complexity
subdivision subdivision reduction
algorithm algorithm percentage
Number of memory
ONt 5Nt 44.44%
accesses
Computation for | Muls 12N+ 12N+ 0%
edge function Adds 18N+t 15N+ 16.66%
Muls 132N+ 66Nt 50%
Computation for
Adds 120N+ 95N+ 20.83%
transforms
Invs 6N 3Nt 50%
Number of clipping/cullin
pp_ g 9 4Nt INT 75.00%
test operations
Number of 3x3 matrix
multiplications of setup 20N 12N+ 40.00%

operation for rasterization

Table 4.3: Complexity comparison for level-2 case (Ns =4, Ng = 12, Np = 5).

Conventional Proposed Complexity
subdivision subdivision reduction
algorithm algorithm percentage
Number of memory
45N+ 14N+t 68.88%
accesses
Computation for | Muls 24Nt 12Nt 50.00%
edge function Adds 36Nt 21Nt 41.66%
_ Muls 330N7 66N 80.00%
Computation for
Adds 309N 185N+ 40.12%
transforms
Invs 15Nt 3N~ 80.00%
Number of clipping/cullin
pp_ J J 16Nt INT 93.75%
test operations
Number of 3x3 matrix
multiplications of setup 80Nt 32Nt 60.00%

operation for rasterization

47

Chapter 4 Comparison Results and Chip Implementation

4.2 Chip Implementation and Comparison Results

Concerning the chip implementation of the proposed GE architecture, the
cell-based design flow with Faraday standard cell library in UMC 90-nm CMOS
process is adopted. The Synopsys Design-Compiler is used to synthesize the RTL
design of the proposed architecture and the Cadence SOC-Encounter is adopted for
automatic placement and routing (APR) and the Synopsys Prime-Power is used to
measure the power consumption for the post-layout simulation.

Table 4.4 summarizes the chip characteristics of the proposed GE architecture and

the corresponding chip layout is shown in Fig. 4.1.

Table 4.4: Chip characteristics of the proposed GE architecture

Power Supply 1.0V
Process Technology UMC 90 nm CMOS
Max. Clock 200 MHz
Max. Power 5.89 mW
Gate Count 195K
Core Area 0.58 mm?

48

Chapter 4 Comparison Results and Chip Implementation

Fig. 4.1. Chip layout of the GE.

The same teapot benchmark is rendered with different subdivision levels including
level-0, level-1, and level-2 as shown in Figs. 4.3 (a), (b) and (c), respectively. The

power consumption for each subdivision level are measured and illustrated in Fig. 4.4.

49

Chapter 4 Comparison Results and Chip Implementation

(@) level-0 (b) level-1

(c) level-2

Fig. 4.2: Rendering result of different subdivision levels.

50

Chapter 4 Comparison Results and Chip Implementation

100%
9.44%
67.62%
8.71 mw
6.92 mw
5.89 mw
level-2 level-1 level-0

Fig. 4.3: Power profiling of different subdivision levels.

The comparison results between prior work and our work are summarized in Table
4.5. Compared with [25][26][27][28][29], the proposed GE has better power efficient
index with 16.978 Muvertices/(ssmW). Moreover, using the proposed subdivision

algorithm, the proposed GE can provide near-Phong shading quality.

Table 4.5: Comparison results among the existing work

ISSCC’04] JSSC’06 | JSSC’07 | ISSCC’07 | JSSC 08

251 | 1261 | 1271 | [28 [29] | ThisWork
Process (nm) 130 180 180 180 180 90
Frequency (MHZz) 400 200 100 200 50 200
E’&'ggﬁ[‘cg"j‘g 36 50 120 141 |25™%12.5| 1007%/50
Power (mW) 250 155 157 86 8.6 5.89
Core Area (mm°) - 23 16 9.7 6.05 0.58

Power Efficiency
Mvertices/(s-mwW) 0.144 0.323 0.764 1.64 2.907 16.978

Graphics
with
Graphics, |Graphics,| scalable
Feature DSP Graphics|Graphics| Graphics DSP quality
hardware
support.

*1: Assume hit rate is 50%.

*2: The core area is 2.164mmx2.797mm

51

Chapter 5 Conclusion

Chapter

Conclusion

In this work, a low complexity subdivision algorithm and a power efficient GE are
presented. Five low complexity techniques including the triangle filtering scheme, the
dual space subdivision, the setup variable sharing and the edge function recover scheme
are proposed to reduce the computational complexity of the subdivision algorithm. The
proposed geometry engine employs several techniques to optimize the power, area and
shading quality. With the post-TnL vertex cache and the object space culling scheme,
the redundant computation for transforming and lighting can be eliminated. With the
proposed RDP, the area is reduced since the same set of PEs can be reconfigured for
different mode operations. The dedicated hardware supports the scalable and
near-Phong shading quality. Three different subdivision levels including level-0, level-1
and level-2 are supported. From the chip implementation results, the proposed geometry

engine can achieve the power-efficiency of 16.978 Mvertices/mW.

52

Bibliography

Bibliography

[1] P. Cesar, P. Vuorimaa, and J. Vierinen, “A graphics architecture for high-end
interactive television terminals,” ACM Trans. Multimedia Comput. Commun.
and Appil., vol. 2, no. 4, pp.343-357, Nov. 2006.

[2] B.-S. Liang, Y.-C. Lee, W.-C. Yeh, C.-W. Jen, "Index rendering:
hardware-efficient architecture for 3-D graphics in multimedia system,” IEEE
Trans. Multimedia, vol.4, no.3, pp. 343-360, Sep. 2002.

[3] H. Gouraud, “Continuous shading of curved surfaces,” IEEE Trans. Compt.,
pp.623-628, June 1971.

[4] A. Watt, “3D computer graphics,” 3™ Edition, Addison Wesley, 2000.

[5] A.T. Phong, “Illumination for computer generated pictures,” Communications of
the ACM, vol. 18, no. 6, pp.311-317, June 1975.

[6] G. Bishop, and D. M. Weimer, “Fast Phong Shading,” Proc. Computer Graphics
and interactive Technique, 1986, pp.103-106.

[7] A. A. Mohamed, L. S. Kalos, and T. Horvéth, “Hardware implementation of
Phong shading using spherical interpolation,” Periodica Polytechnica, vol. 44,
Nos 3-4, 2000.

[8] T. Barrera, A. Hast, and E. Bengtsson, “Faster shading by equal angle
interpolation of vectors,” IEEE Trans. Visualization and Computer Graphics,
pp.217-223, Mar. 2004.

[9] K. Harrison, D. A. P. Mitchell, and A. H. Watt., “The H-test: a method of high

speed interpolative shading,” Proc. New Trends in CG., 1988, pp.106-166.

53

Bibliography

[10] J. Popsel, and Ch. Homung, “Highlight shading lighting and shading in a
PHIGS+PEX environment,” EUROGRAPHICS, 1989, pp.317-332.

[11] A. A. Mohamed, L. S. Kalos, G. Szijartd, T. Horvéth, and T. Foris, “Quadratic
interpolation in hardware Phong shading and texture mapping,” SCCG 01,
April, 2001, pp.181-188.

[12] T. Barrera, A. Hast, and E. Bengtsson, “Fast near Phong-quality software
shading,” WSCG 06, January, 2006, pp.109-115.

[13] S. Bischoff, L.P. Kobbelt, and H.P. Seidel, “Toward hardware implementation
of Loop subdivision,” Proc. SIGGRAPH/EUROGRAPHICS Workshop on
Graphics Hardware, 2000, pp.41-50.

[14] Y. Cho, U. Neumann, and J. Woo, “Improved specular highlights with adaptive
shading,” Proc. of CG. International, June, 1996, pp.38-46

[15] Y. Kamen, and L. Shirman, “Triangle rendering using adaptive subdivision,”
IEEE Comput. Graph. Applal., Mar. 1998.

[16] T. Y. Sheu, L. D. Van, T. R. Jung, C. W. Lin, and T. W. Chang, "Low
complexity subdivision algorithm to approximate Phong shading using forward
difference," ISCAS 2009, pp. 2373-2376.

[17] J. McCormack and R. McNamara, “Tiled polygon traversal using half-plane
edge functions,” Proc. SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware, 2000, pp.15-21.

[18] M. Olano, and T. Greer, “Triangle scan conversion using 2D homogeneous
coordinates,” Proc. SIGGRAPH/EUROGRAPHICS workshop on Graphics
Hardware, August, 1997, pp.89-95.

[19] K.-C., C.-H. Yu and L.-S. Kim, "Vertex cache of programmable geometry
processor for mobile multimedia application,” ISCAS 2006.

[20] C.-Y. Han, Y.-H. Im and L.-S. Kim, "Geometry engine architecture with early

54

Bibliography

backface culling hardware,” Computers & Graphics, pp.415-425, 2005.

[21] Antonio G.M. Strollo and Davide De Caro, "Booth Folding Encoding for High
Performance Squarer Circuits,” IEEE Trans. CAS II: Analog and Digital Signal
Processing, vol.50, no.5, pp.250-254, May 2003.

[22] K. H. Abed and R. E. Siferd, “CMOS VLSI implementation of a low-power
logarithmic converter,” IEEE Trans. Computers, vol. 52, no. 11, pp. 1421-1433,
Nov. 2003.

[23] K. H. Abed and R. E. Siferd, “CMOS VLSI implementation of a low-power
antilogarithmic converter,” IEEE Trans. Computers, vol. 52, no. 9, pp.
1221-1228, Nov. 2003.

[24] B.-G. Nam, H.-Kim and H.-J. Yoo, “A low-power unified arithmetic unit for
programmable handheld 3-D Graphics Systems,” IEEE J. Solid-State Circuits,
vol. 42, no. 8, Aug. 2007.

[25] F. Arakawa et al., “An embedded processor core for consumer applications
with 2.8 GFLOPS and 36 Mpolygons/s FPU,” IEEE ISSCC, Feb. 2004, pp.
334-335.

[26] J. Sohn et al., “A 155-mW 50-Mvertices/s graphics processor with fixed-point
programmable vertex shader for mobile applications,” IEEE J. Solid-State
Circuits, vol. 41, no. 5, pp. 1081-1091, May 2006.

[27] C. H. Yu, K. Chung, D. Kim and L.-S. Kim, "An energy-efficient mobil vertex
processor with multithread expanded VLIW architecture and vertex caches,"”
IEEE J. Solid-State Circuits, vol. 42, no. 10, Oct. 2007.

[28] B.-G. Nam, J. Lee, K. Kim, S.-J. Lee, and H.-J. Yoo, “A 52.4 mW 3-D graphics
processor with 141 Mvertices/s vertex shader and 3 power domains of dynamic
voltage and frequency scaling,” ISSCC 2007, pp. 278-603.

[29] S.-Y. Chien, Y.-M. Tsao, C.-H. Chang and Y.-C. Lin, “An 8.6 mW 25

55

Bibliography

Mvertices/s 400-MFLOPS 800-MOPS 8.91 mm? multimedia stream processor
core for mobile applications,” IEEE J. Solid-State Circuit, vol. 43, issue. 9, pp.

2025-2035, Sept. 2008.

56

Publication List

Publication List

International Conference Papers

[1] T.Y.Sheu, L.D. Van, T. R. Jung, C. W. Lin, and T. W. Chang, ”Low complexity
subdivision algorithm to approximate Phong shading using forward difference,”
in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May. 2009, pp. 2373-2376,
Taipei, Taiwan.

[2] T.R.Jung, L.D.Van, T.Y. Sheu, C. W. Lin, W. C. Fang, “Design of multi-mode
depth buffer compression for 3D graphics system,” in Proc. IEEE Int. Conf.
Multimedia and Expo. (ICME), July 2008, pp. 789-792, Hannover, Germany.

[3] T.R.Jung, L. D. Van, W. C. Fang, T. Y. Sheu, "Reconfigurable depth buffer
compression design for 3D graphics system,” in Proc. Int. Conf. MUE., Apr.

2008, pp. 470-474, Busan, Korea.

57

Biography

Biography

Ten-Yao Sheu was born in Changhua, Taiwan, R.O.C, in 1983. He received the
B.S. degree from National Pingtung University of Education (NPUE), Pingtung,
Taiwan, in 2006, and the M.S degree from National Chiao Tung University (NCTU),
Hsinchu, Taiwan, in 2009, all in computer science. His research interests are VLSI

information processing algorithm and architecture for 3D graphics.

58

