eI AR B [ok
The Study of Software-defined Phase-locked Loop

— s s

[ey
BT | PR 9

i gl e { = 5o)]

A SH B [PER

The Study of Software-defined Phase-locked Loop

i P I | Student : Chang-ying Chuang
?ﬁﬁi‘&a&; =1 Advisor : Terng-Yin Hsu

RN
I -G
_{EA
[

A Thesis
Submitted to Institute.of Computer'Science and Engineering
College of Computer.Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science
July 2008

Hsinchu, Taiwan, Republic of China

ERTIREE S

k!

. lﬁ%ﬁﬁ%ﬂ@} F;/I_Ehl], AL R[S T R e

AL ‘[‘i%?ﬁjﬁ&?fﬁf%ﬁ”j Fi Tl {0

AR IR fjﬁl@:;{ iR = Bt OPEENRISC A1 ¢
A - i 1 b 5 P AT I, o ML 1 it
B SRS R) o 7 LR) 1 R T
@ S - A ;:[:T\;[Iz»%[i,&gdm’ . h.,,FF lf:l ﬁﬂﬁﬁﬁﬁﬂ@’ o)
A5 s [IUIGH AL OB L I oy i (2
e [QUL AR R b S B S R T .
(R ™ T T 7 PR ':L?EdF TRRE T o Elﬁ#ﬂd{' - prT R
A AR O BT 2 UL

" IIF”[EL Fi AR @%%Eﬂﬁ LR LI ﬂgfi’,fj iSPELE e

, Jlfﬁwﬂﬂﬁﬁﬁﬂ_kpgggi B :/_PH@E'I‘EE_P%]K—EJ U ,I\ PIJ_B [EFGEEE

I%47~—:‘I’[E{j‘//\ IEx - - _"IE s EFL, IIIJJ}?;WET\(JE&%JE .

H Fliii‘qu%Z]EUﬁj, “ Farada AR =R

y 90nm A >

Abstract

This paper is proposed to the platform of software defined phase locked loop. The
platform is combined of OPENRISC and the all-digital phase locked loop. There are three
major issues in this platform: the interface, the intellectual property (IP) based design and
the software algorithm. First, the interface is used for synchronization, communication and
controlling. Second, the time-to-digit converter is one of IP in the all-digital phase locked
loop. We propose the time-to-digit converter which resolution is 1ps without the parasitical
capacitance and parasitical resistance. Finally, the topic of software algorithm is the cycle
count. The platform needs 5 cycles to lock the frequency and the phase.

This platform has good performance at the reusability, the process portability, and
flexibility. The platform can reduce the design cost, especially at time. We implement this
platform on Faraday 90nm process.

Acknowledgement

There are many people who | want to thank. First and foremost | would like to thank my
advisors, Dr. Terng-Yin Hsu for advice and guidance. Without the Integration System and
Intellectual Property (ISIP) Lab members, I can not finish this work. 1 would like to thank all
ISIP Lab members. Finally, I want to thanks my parents for your support and your love.

Sincerely, Chang-Ying Chuang
August 2008

Table of Contents

BB B s [
N 0] 1 - (o TSP ORTPR ii
ACKNOWIBAGEMENT ...t ii
TabIe OF CONTENTS ..ottt sbe e 1\
LEST OF FIQUIES....e ettt sttt be et sbe e be et vi
LIST OF TABIES ... e vii
Chapter L INTRODUCTIONooiiiiiiiicce sttt 1
Chapter 2 Overview of Software-defined Phase-locked LOOPccccovvveveriiiiennns 2
2.1 Basic Concept Software-defined Phase-locked LOOP........cccccoevveviveieiiinnnnnn, 2

2.2 OPENRISC ...ttt bbb 2

2.3 ALL-Digital Phase-10cked LOOP.......ccvciveiieiiiieieece e 2
Chapter 3 The Proposed SDPLL ArchiteCture..........ccooviiiiieieiienieie e 4
3.1 SDPLL ArchiteCture OVEIVIEWccueiierierieiieiiesie s 4

3.2 Semi ASYNChronouSs CIOCK ACCESS.....c.eiveieerieiiesieesieaseeseeseeseesraesseaneesseesaens 6

3.3 Memory Controllerooveee s b b diii s 7

3.4 EITON DEIECTON ... b 8 8 o0 et e e e e 8
3.4.1 Phase DeteClOr i .. i ik e obeabes ittt 9

3.4.2 FrequenCy DIVIUET ... e siteataas e i initneeniesieesieeseessaesseseessaeseeeneenns 9

3.4.3 Pulse Amplifier with-One PUISELOCK...iei...ocveeeeceee e, 9

3.5 Time-t0-Digit CONVEITE 0 e cees e cisiiem e eie e e eee e sre e seeneeseesnees 9
3.5.1 Gate delay TDC ..o 10

3.5.2 Differential delay TDCccocoiieieiieieee e 11

BB CPU BUS ... 14

3.7 Digital Control Oscillator INterfacecccvvveveiieneeieie e 14

3.8 Digital Control OSCIHIALOrc.cccveiiiiieiiee e 15
Chapter 4 The proposed SDPLL SOftWareccccvoeiieiinienieese e 16
4.1 OPENRISC ISA OVEIVIEW ..ottt st 16

4.2 The PropoSed ISAoo ettt 16
4.2.1 INPUL INSEFUCTIONS ...t 17

4.2.2 BIoCK JUMP INSEIUCLIONvveieeiecie e 18

4.2.3 OULPUL INSEIUCTIONevveeeeie e 19

4.3 Proposed SDPLL AIGOrithmccvoieiieiice e 19

4.4 SIMUIAtION RESUIT ..o 20
Chapter 5 Conclusion and Future WOrk ... 22
5.1 CONCIUSION ...ttt bbb bbb 22

5.2 FUTUIE WOTK ...ttt 22

References

List of Figures

Fig. 2.1 The basic block diagram of ADPLLcccccoiiiiiii e 1
Fig. 3.1 The proposed SDPLL architeCturecccoocvvieiieie e 5
Fig. 3.2(a) The relation of transition tuning the cycle count in 134MHz frequency6
Fig. 3.2(b) The relation of transition tuning the frequency at 10 cycles 6
Fig. 3.3 The hardware architecture Semi Asynchronous CIocKcccccevervennnn. 7
Fig. 3.4 The flow of the memory controllercccoovovi i, 7
Fig. 3.5 The pin assignment of the MeMOIYcccccoveii i 8
Fig. 3.6 The block architecture of Error Detectorcccccveveiieiicieieece e 8
Fig. 3.7 The hardware architecture of Pulse Amplifier with One Pulse Lock........ 9
Fig. 3.8 The functional blocks of the proposed TDCccccocvvviiieveiiieie e 10
Fig. 3.9 The functional blocks of Gate delay TDCccccovevviiivieieccceece e 10
Fig. 3.10 The hardware architecture of Gate delay TDC..........c.cccevvivieivevrcienne. 11
Fig. 3.11 The function blocks of differential delay TDC............ccccoevviviiievrcnenn. 12
Fig. 3.12 The hardware architecture of the delay pulse module.................c.......... 12
Fig. 3.13 The hardware architecture of EVEN'GROUPcccoovveviiiievrciee. 13
Fig. 3.14 The hardware architecture 0of ODD.GROUPc.ccoevvivviieincnenn. 13
Fig. 3.15 The hardware architecture of differential decoderc.ccevvennee. 14
Fig. 3.16 The finite state machine:of Digital Control Oscillator Interface............ 15
Fig. 3.17 Pins of Digital Control Oscillator Interface................cccocevveveiivevecnene. 15
Fig. 4.1 OPENRISC inStruction Set. i e oottt 16
Fig. 4.2(a) The input instruction of lower 16DItS...........ccccooviviiiivicic e, 17
Fig. 4.2(b) The input instruction of higher 16bitS...........ccccceviviiiicic e, 17
Fig. 4.3 The input instruction working flowccccocoveiieii i, 17
Fig. 4.4 The block jJump iNSTrUCTIONcccveiieiiic e 18
Fig. 4.5 The working flow of the block jump instruciton.............cccccoeoeievvene. 18
Fig. 4.6 The output iNSTrUCTIONcooiiieiicc e 19
Fig. 4.7(a) When Div_CIk is lead to Ref ClK........c.cccceoviiiiiieiiii e 20
Fig. 4.7(b) When Div_Clk islag to Ref CIKccccooviviiiiiieiicc e 20
Fig. 4.8 The cycle count of platform to 1ocKccooviiiciici e, 20
Fig. 4.9(a)The period of Ref ClK is 6.3MHzZ............cccooeiiiiiiii e 20
Fig. 4.9(b)The period of Ref CIK iS 50KHZ.........cccovviiiiiiiciececc e 20

Vi

List of Tables

Table 2.1 The OPENRISC Specification...........c.cccevueiieiiiie i 3
Table 3.1 The system SPecifiCationcccccvevieii e 5
Table 4.1 Lists of RISC INStrUCtION SEL...........ccoviiiiiieiiieiesieseeeee e 16
Table 4.2 The pin assignment of the state controllerccccceeviiiiiiciciciie, 19
Table 4.3 Comparison with other phase lock 100pS..........cccccoevieiiiiciiccccecee 21

vii

Chapter 1
Introduction

1.1. Thesis Background

The phase locked loop is primarily used in communication applications, such as: the
frequency synthesizer, the clock multiplier, the clock recovery circuit, the data recovery
circuit, and clock de-skew applications. However, in different applications, the phase locked
loop may not be reusable. The phase locked need to redesign for a variety of purposes. It is a
challenge to design a flexible phase locked loop.

In modern SoC design, the reusability and the process portability are very important.
Because of time-to-market issue, the design cycle can be decreased. Therefore, how to design
the circuit efficiently becomes more and more central. The design integrated with the CPU
and IP designs is current trend.

1.2. Thesis Motivation

There are different kinds of phase-laocked loops such as analog phase-locked loop, digital
phase-locked loop, and all-digital phase-locked loop (ADPLL). Especially, the ADPLL is
flexible in process migration. However, the ADPLL and the CPU can be the hardware system
of software-defined phase-locked loop (SDPLL). The SDPLL inherits both the flexibility of
the ADPLL and the software control of the CPU. Therefore, the SDPLL do not need other
calculational circuit because the CPU is powerful enough to deal with most calculation.
However, how to integrate the ADPLL and the CPU to the SDPLL is a challenge.

1.3. Thesis Organization

The organization of this thesis is as follows:

In chapter 1, we introduce the phase locked loop and the importance of the flexibility.

In chapter 2, we give the basic concept of SDPLL, ADPLL and OPENRISC.

In chapter 3, the proposed system hardware architecture is introduced.

In chapter 4, the proposed system software architecture is introduced.

In chapter 5, some concluding remarks will be derived from this research. Finally, we
describe some design issues that needed be further explored in the near future.

Chapter 2
Overview of Software-defined Phase-locked
Loop

2.1. Basic Concept Software-defined Phase-locked Loop

Software-defined Phase-locked loop (SDPLL) is flexible to the hardware architecture
and the software operation. At the software level, SDPLL only needs to modify the
instructions so as to supply different functions. At the hardware level, SDPLL integrates the
ALL-Digital Phase-locked Loop with CPU. Therefore, the core of SDPLL is CPU. The core
of proposed SDPLL is OPENRISC which will be described in section 2.2.

2.2. OPENRISC

OPENRISC which is the open [source' is' a 32-bit scalar RISC with Harvard
microarchitecture, 5 stage integer pipeling, virtual memory support (MMU) and basic DSP
capabilities. Default caches are +~1-way- direct-mapped 8KB data cache and 1-way
direct-mapped 8KB instruction cache, eaeh with 16-<lyte line size. Both caches are physically
tagged. By default MMUSs are implemented and they are constructed of 64-entry hash based
1-way direct-mapped data TLB and 64-entry hash based 1-way direct-mapped instruction
TLB. Supplemental facilities include debug unit for real-time debugging, high resolution tick
timer, programmable interrupt controller and power management support. Instruction and
Data host interface is WISHBONE SoC Interconnection. The OPENRISC Specification
shows in Table 2.1

2.3. ALL-Digital Phase-locked Loop

The all-digital phase-locked loop (ADPLL) consists of the phase detector, the
time-to-digit converter (TDC), the controller, the loop filter, the digital controlled oscillator
(DCO), and the frequency divider. The basic block diagram is shown in Fig. 2.1. The working
flow is as following:

Step 1: The phase detector detects the phase error between the reference clock and the
divided clock and outputs the phase error to TDC.

Step 2 : TDC converts the phase error to digits and output the value to controller.

Step 3 : The controller calculates the proper the DCO control word and passes the DCO
control word through the loop filter to DCO.

Step 4 : DCO use the DCO control word to oscillate proper clock frequency.

Step 5 : The frequency divider divides the frequency of DCO clock cycle.

Reference Phase E . L. TDC value
clok ——» Phase ase trror Time-to-Digit > C 1
» Detector Converter ontroller
Divided
Clock
_ DCO
Frequency DCO Clock Dlgltal Control word LOOp
Divider ™ Controlled — Filt
Oscillator LUCE

Fig. 2.1 The basic block diagram of ADPLL

OPENRISC

Instruction length 32bits
Register length 32bits
Number of general purpose registers 32

Support multiplication Yes

Support division INo

Cycle count of multiplication instruction |4

Cycle count of store instruction 4

Gate count 88000

Host interface WISHBONE

Table 2.1 The OPENRISC Specification

Chapter 3
The Proposed SDPLL Architecture

3.1. SDPLL Architecture Overview

The proposed SDPLL architecture is shown in Fig. 3.1. There are nine basic modules in
the proposed SDPLL. The first is Semi Asynchronous Clock Access. Semi Asynchronous
Clock Access applies the entire architecture clock access. The second is Memory Controller.
Memory Controller controls Memory and communicates with CPU BUS, Memory and Error
Detector. The third is Error Detector. Error Detector includes Time-to-Digit Converter, Phase
Detector, Frequency Divider and Pulse Amplifier. The fourth CPU BUS is the bridge of
OPENRISC. The fifth is Digital Control Oscillator Interface. Digital Control Oscillator
Interface controls DCO and synchronizes the DCO control words and DCO_CLK. The sixth
is State controller. State Controller decodes.the ' CPU output message to change states of other
modules. The seventh is Digital Control Oscillator. The eighth is 256X32 bits-Memory. The
last is OPENRISC, which is described in chapter 2. The details of modules will be illustrated
in next section and the system Specification shows in Table 3.1.

| M_CYCLE, N_MODE

Semi
\ Ref clk Asynchronous
Clock Access
g ‘ EMBEDDED_CLK
2 | |
Load ; Instruction %
Py
|8
= Memory K — = =
ﬂ] (=
— 18— 1
ﬁ> = H S
Error || || & =
\ Div_value) @ S =
Detector = o | =
= (—]
i &
= | OPENRISC
State]
Address
g | Controller
o =
JL <L
=
L ® = S
DCO |[(ctw| = €o(Data_| =
8 &
o
@ —\
Fig. 3.1 The proposed SDPLL architecture
System Spec
DCO base frequency 333MHz
DCO resolution 10fs
TDC resolution 1ps
TDC detecting max pulse 4ms
TDC detecting min pulse 2.358ns
Memory 256 X32bits
SACA max frequency 263 MHz
SACA min frequency 67 MHz
Reference clock max frequency 6.3 MHz
Reference clock min frequency 50KHz

Table 3.1 The system Specification

3.2. Semi Asynchronous Clock Access

Semi Asynchronous Clock Access can apply the better performance in circuit noise
environment and power consumption. By means of modifying two parameter, it can perform
low noise and low power environment. One parameter is operating frequency and the other is
operating cycle count. The parameters affect the circuit transition. Controlling circuit
transition results in low power environment. Fig. 3.2(a) and Fig. 3.2(b) illustrate the relation
of transition tuning parameter. As the clock signal is idle, the clock signal is maintained high
because of construct low noise environment.

M_CYCLE[4:0] g | 10 | 15 ! 20
N _MODE[1:0] 1
POk [11 1 T 1 T
EXBED_CLR T 1011111011111 1
Cycle count 5 10 15 20
Fig. 3.2(a) The relation of transition tuning the cycle count in 134MHz frequency
M _CYCLE[4:0] 0
F_MODE[1:0] I i 1 i Z i 3
mEOk [| [1 [[[] T
EMEED_CLK [T N~ T DU Ul
Frequency 263MHz 134MHz 90MHz 67MHz

Fig. 3.2(b) The relation of transition tuning'the frequeney at 10 cycles

Fig. 3.3 shows Semi Asynchronous Clock Access which includes four major parts
depend on application. The first is the clock signal synchronizer. The synchronizer is
combined with two D flip-flops with the clear pin. If Ref_clk rise, the synchronizer sends the
pulse to counters to reset the counter so that EMBED_CLK begins to oscillate. The second is
the switch of delay matrix. The basic idea of the switch is a NAND gate. If one input of the
NAND gate is high, the NAND gate has the same function as inverter. On the other hand, if
one input is low, the output of the NAND gate maintain high. Accordingly, the switch decides
EMBED_CLK oscillated or idle based on the two states of the NAND gate. The third is delay
matrix to provide the variable clock period. The last is counter combined with comparator to
control the operating cycle count. As the counter number equals to M_CYCLE comparator
sends a signal to the counter and the switch of delay matrix in order to disable counter and
make EMBED_CLK idle.

A

Initial_Signal

Delay _. q
modulel Gj‘

Burst_Mode

REF_CLK

M_CYCLE

o Delay Delay Delay
modlue2 modlue2 module2

MUX

Y

N_MODE

Counter

— comparator DFF

RB

= G:%:@

Y
5]

DFF

Fig. 3.3 The hardware architecture Semi Asynchronous Clock

3.3. Memory Controller

Memory Controller which plays an.important role in the
proposed SDPLL is shown in Fig. 3.5. CPU.BUS, Memory and
Error Detector communicate with- different protocols through
Memory Controller. Memory Controller.-also ‘has- strong
connection with the proposed instruction set-architecture. The
proposed instruction set architecture (1SA) will be discussed in
chapter 4.

The flow chart of the propose state of Memory Controller is
shown in Fig. 3.4. When the system resets, Memory Controller is
in the initial state. In the meantime, Memory Controller
initializes the address counter. As the load signal high, Memory
Controller changes the state to the load state. In this state,
Memory Controller loads executing instructions to Memory until
load signal falls. After that, Memory Controller changes the state
to the transition state. In the transition state, Memory Controller
receives the error value as Error Valid is high. After that,
Memory Controller changes the state to the algorithm state. In
order to send this instruction to CPU BUS, Memory Controller
reads instruction from memory and combines the error value to
instruction in the algorithm state. After sending instructions,
Memory controller changes the state back to the transition state.
Subsequently, memory controller repeats the above flow again.

No

Yes

Resei

Initial state

Load state

Loading
finish?
Yes

Transition
state

rror value
valid?
Yes

Algorithm
state

Fig. 3.4 The flow of the
memory controller

No

No

No

Load

Load_Instruction[31:0]

Error_Set

E r ro r ErrcL>cr]C\|£aIid

Lead

Detector Lag

Error_Value[31:0]

A

CPU_Instruction[31:0]

VVVVV

13[]0J13U0)D

iwb_ack
iwb_err
iwb_rty

SNg NdD

we
oe
ce

Memory iofl\/lemilnstruction[Sl:O]'
(256X32) To_Mem_Address[7:0]

Form_Mem_| nstructlon[S‘O]

AowaN

Fig. 3.5 The pin assignment of the memory

3.4. Error Detector

Error Detector which is shown in Fig. 3.6 has four functional blocks such as
Time-to-Digit Converter (TDC), Phase Detector; Frequency Divider and Pulse Amplifier with
One Pulse Lock. The core of Error Detector is TDC: The objects which are measured by TDC
are Ref_Clk and the phase error between Ref Clk and the Div_CIk. TDC will be described in
section 3.5. However, Error Detector can not only detect the error but also divide the
frequency of clock cycle. The details of functional blocks will be illustrated in next section.

[Detect_Mode {L

[Ref_Clk >
MUK |(seectaes) OPL_PA | Fise) TDG

Ph
) v e [_—

Fig. 3.6 The block architecture of Error Detector

SRR

3.4.1. Phase Detector

Phase Detector converts the difference of Ref_Clk and Div_CIk to the pulse and judges
which clock signal is lead to another.

3.4.2. Frequency Divider

Frequency Divider also divides the frequency of DCO clock cycle. The core of
Frequency Divider is the counter which driven by DCO clock cycle.

3.4.3. Pulse Amplifier with One Pulse Lock

There are two serious problems in the input of TDC such as the pulse account and the
pulse width. First, Pulse Amplifier which is showed in Fig. 3.7 with One Pulse Lock modifies
the narrow pulse to meet the circuit requirement so as to prevent the input width violation of
TDC. If the pulse is wide enough to the circuit requirement, Pulse Amplifier with One Pulse
Lock keeps the pulse in the original width:'Second, Pulse Amplifier with One Pulse Lock
filters the pulse after the first pulse has come., The.reason is that TDC accumulates all pulses
width until Error_set rises.

INPUT PULSE

OUTPUT PULSE

=

Error_set

Delay Path

Fig. 3.7 The hardware architecture of Pulse Amplifier with One Pulse Lock

3.5. Time-to-Digit Converter

The proposed Time-to-Digit Converter (TDC) which is shown in Fig. 3.8 consists of two
major modules, Gate delay TDC and Differential delay TDC. Gate delay TDC has different
resolution form Differential delay TDC. The resolution of Gate delay TDC is 10ps but the
resolution of Differential delay TDC. Although Differential delay TDC has higher resolution

than Gate delay TDC, Differential delay TDC needs ten times gate counts to Gate delay TDC.
Therefore, the proposed TDC combine Gate delay TDC and Differential delay TDC to
minimize the total gate count. The resolution of the proposed TDC is 1ps but the gate count
of the proposed TDC is double gate count to Gate delay TDC. Differential delay TDC decides
the least digit of TDC _OUT and Gate delay TDC decides the other digits. Thus, the
resolution of proposed TDC is 1ps.

10

PULSE

e
Lt GatTe Ddélay) ®‘ >@) TDC_OUT[31:0]

Differential ‘
delay TDC

Fig. 3.8 The functional blocks of the proposed TDC

3.5.1. Gate delay TDC

Gated delay TDC which is shown in Fig.: 3.9 is comprised of four functional blocks. The
four functional blocks are TDC_CHAIN, Latch Chain Buffer, Counter and TDC Decoder.

JL
PULSE TDC

|_| C —/ CHAIN [—) Counter TDC_OUTI[31:9]

> TDC_OUTI[8]

Latch h
ﬁ Chain ek ﬁmc_om[m]

Buffer Decoder

Fig. 3.9 The functional blocks of Gate delay TDC

First, TDC_CAHIN which is shown in Fig. 3.10 is composed of 255 inverters and 1 and
gate. Each inverter connects another inverter. Thus, the inverters constitute a delay chain. One
input of the and gate connects the end of the delay chain and the output of the and gate
connects to the start of the delay. The delay path and the and gate make up the delay ring. The
purpose of the and gate is a switch to control the delay ring. When the other input of the
switch is high, the switch does the same function as the buffer. On the other hand, the switch

10

clears the delay ring. The propagate delay of the inverter is 10ps on Faraday 90nm process.
Therefore, the resolution Gate delay TDC is 10ps.

Second, Latch Chain Buffer which is shown in Fig. 3.10 is composed of the D latches.
As the pulse is high, Latch Chain Buffer stores the state of TDC CHAIN. On the other hand,
Latch Chain Buffer keeps the storing information until Error_Set rises. We choose the D latch
to be the unit of Latch Chain Buffer due to the issue of the latching time.

Third, Fig. 3.10 illustrates TDC Decoder. The basic idea of TDC Decoder is finding out
the position of the transition in the TDC Chain. Thus, we choose the prienc decoder at
Deignware library to accomplish TDC Decoder.

Last, Fig. 3.10 illustrates the counter. The output of the last inverter of TDC CHAIN
triggers the counter. The counter combines the multiplexer inside because of the dead zone.
Since the pulse goes down, TDC CHAIN will not be clear immediately. Thus, counter
operates at expected case. The situation results in wrong value of TDC_OUT. Therefore, the
counter which combines the multiplexer inside can prevent this situation.

As a result, Gate delay TDC has 10-ps resolution because of the inverter. As the process
upgrades, the resolution of Gate delay TDC gets more higher.

PULSE

e

- Latch Chain Buffer - TDC_OUT [31:9]
Middle [>-—TDC_ouT [8]

Odd bits|prienc decoder

bits add 1
T R R

APB—Tmox TDC_OUT [7:0]

Bitwise
inverter

Even bits prienc decoder

Bitwise

inverter
Half total
bits add 1

Fig. 3.10 The hardware architecture of Gate delay TDC

3.5.2. Differential delay TDC

Fig. 3.11 shows the functional blocks of Differential delay TDC. The functional blocks
are DELAY PULSE, EVEN GROUP, ODD GROUP and Differential Decoder. Some parts of
Differential delay TDC are similar to Gate delay TDC. Differential delay TDC uses the

11

different delay pulse to decode the value of the different delay pulse. Because of the ten
values, we can convert least digit of TDC_OUT. Therefore, the resolution of Differential
delay TDC is 1ps.

Ops | > Value 0
o EVEN | e
Hps - GROUP > Value:6 . .
PULSE DELAY:ZPs i -vawe s D1fferential
— ps > - I .
PULSEips| - Jvae 1 Decoder Value[3:0]
33ps > ODD » Value 3
55ps > > Value 5
77ps > GROUP » Value 7
99ps - = Value 9

Fig. 3.11 The function blocks of differential delay TDC

First, the DELAY PULSE produces ten different delay pulses. Fig. 3.12 shows that
different delays are 11ps, 22ps, 33ps, 44ps, 55ps, 66ps, 77ps, 88ps and 99ps. The delay are
11ps, 33ps, 55ps, 77ps, and 99ps belong. ta ODD: GROUP. On the other hand, The delay are
Ops, 22ps, 44ps, 66ps, and 88ps belong to EVEN GROUP. DELAY PULSE has nine inverters
which have 11-ps resolution. The purpose of ‘choosing:11-ps resolution is that 11ps minus
10ps leaves 1ps. Therefore, Differential delay TDC uses the 10-ps resolution inverter and the
11-ps resolution inverter to reach the 1-ps resolution.

Pulse | - e
Ops 1llps 22ps 33ps 44ps SJps 6Jps 7Jps 88ps 99ps

Fig. 3.12 The hardware architecture of the delay pulse module

Second, Fig. 3.13 and Fig. 3.14 illustrate EVEN GROUP and ODD GROUP. EVEN
GROUP has five EVEN SUB TDC (ESTDC). ODD GROUP has five ODD SUB TDC
(OSTDC). The difference between ESTDC and OSTDC is the switch. One is the and gate;
the other is the and gate with one inverse pin. ESTDC and OSTDC are similar with Gate
delay. TDC .CHAIN of ESTDC and OSTDC is the chain with twenty 10-ps resolution
inverter. Latch Chain Buffer is the latch which stores the chain information. When Pulse is
high, Latch Chain Buffer stores the information. On the other hand, Latch Chain Buffer
maintains the storing information. Each output pin of Latch Chain Buffer connects to the nor
gate with the next to output pin. The output of the nor gate is the input the prienc decoder.
Finally, the prienc decoder outputs the value.

12

However, ESTDC and OSTDC have one difference from Gate delay TDC. At Gate delay
TDC, the same pulse supplies the chain and buffer. At ESTDC and OSTDC, the original
pulse supplies the buffer and the delayed pulse supplies the chain. In this action, ESTDC and
OSTDC output the value the diminished pulse. For example, if the 22ps-delayed pulse is the
input of ESTDC, ESTDC outputs the value of 22ps-diminished pulse. Similarly, if the
11ps-delayed pulse is the input of OSTDC, OSTDC outputs the value of 11ps-diminished
pulse.

Finally, the ten values form EVEN GROUP and ODD GROUP has regular patterns. We
use the regular patterns to decide the TDC_OUT [3:0] by the differential decoder shown in
Fig. 3.15.

Work
— PULSE
Latch
PULSE_delay Ops — PULSE CHAIN
PULSE delay 22ps

PULSE_delay_Ops

PULSE_delay_44ps

PULSE _delay_66ps t

Latch Chain Buffer
| (for PULSE high latch)

SO0

prienc decoder TDC_OUTIH

PULSE_delay_88ps

TDC_Value_0[4:0]

TDC_Value_2[4:0]

EVEN 0
- TDC_Value_4[4:0]

EVEN 1 \

ot TDC_Value_6[4:0]
EVEN 2|
AN}

TDC Value 8[4:0]

EVEN 3 ‘

EVEN}U

Fig. 3.13 The hardware architecture of EVEN GROUP

Work
PULSE_delay_11ps | ULHE
o Latch
PULSE_delay_Ops — PULSE CHAIN
PULSE_delay_33ps
PULSE_delay_55ps
PULSE_delay_77ps B
Latch Chain Buffer
PULSE delay 9%ps (for PULSE high latch)
prienc decoder TDC_OUTH0]) TDC_Value 1[4:0]
TDC_Value_3[4:0]
ODD 0
; TDC_Value_5[4:0]
oo 1|
ot TDC_Value_7[4:0]
ODD 2
ot TDC Value 9[4:0]
ODD73‘
ODD74U

Fig. 3.14 The hardware architecture of ODD GROUP

13

Value 0 —

comparator

Value 1 #fj : (2 or19) [") °
COlTlpal'atOr 1
Value 2 ¢ (2 or 19)
COlnpal‘atOl‘
Value 3 #ﬂ (2 or 19) > 2
Colnparator 3
Value 4 | (2D
COlnpal‘atOl‘ L w4
Value 5 | (2 or 19)
decoder —> Value[3:0]

comparator | |
(2 or 19)

Value 6 —
comparator 6
2or19) ["
Value 7 —— (2 or 19)
comparator | | -
Value_8 #i} (2 or 19)
comparator 8
Value 9 _| (2 or 19)
comparator
(2 or 19) =11 ¢

Fig. 3.15 The hardware architecture of differential decoder

3.6. CPUBus

The connection of CPU is the instruction pins, the data pin and the WISHBONE control
signals.

3.7. Digital Control Oscillator Interface

Fig. 3.16 and Fig 3.17 show the state diagram of Digital Control Oscillator Interface
and pins of Digital Control Oscillator Interface. At the Coarse Frequency state, Digital
Control Oscillator Interface outputs the control word to DCO so as to lock the frequency. At
the Coarse Phase state, the control word is for phase locking. At the Coarse Transition state,
the control word is the same as the coarse Frequency state.

14

DCO_OP_SIGNAL

Coarse
Phase

Coarse
Frequency

Coarse

Transition

Fig. 3.16 The finite state machine of Digital Control Oscillator Interface

@)
)
detect mode | =t CPU_ADDRESS[31:0]
ﬂ
Detector] Dpco_mode | @)
—_— O
M
(o IC
— CPU-DATA[31:0] wy)
- dwb_ack . (-
FDI- dwb_err > U)
DCO CTW[31:0] | = dwhb_rty >
&h dwb_cyc
O dwb we
dwb_stb
m —

Fig. 3.17 Pins of Digital Control Oscillator Interface

The DCO interface has two different the clock system. One is the CPU clock. The CPU
clock supplies blocks which communicate with CPU. The other is the DCO clock. The DCO
clock supplies the finite state machine of the DCO interface because the control word needs
to synchronize with the DCO clock.

3.8. Digital Control Oscillator

The proposed DCO is a behavior model. The basis frequency is 333 MHz. Each step of
DCO is 10fs.

15

Chapter 4
The proposed SDPL L Software

4.1. OPENRISC ISA Overview

The OPENRISC instruction set which shows in Fig. 4.1 includes the following principal
features. First, Simple and uniform-length instruction formats featuring five Instruction
Subsets. Second, OPENRISC Basic Instruction Set (ORBIS32/64) with 32-bit wide
instructions aligned on 32-bit boundaries in memory and operating on 32-bit and 64-bit data.
Third, OPENRISC Vector/DSP eXtension (ORVDX64) with 32-bit wide instructions aligned
on 32-bit boundaries in memory and operating on 8-, 16-, 32- and 64-bit data. Last,
OPENRISC loating-Point eXtension (ORFPX32/64) with 32-bit wide instructions aligned on
32-bit boundaries in memory and operating on 32-bit and 64-bit data. The Table 4.1 shows
difference between subsets. The proposed.of SDPLL uses ORBIS32 to be instruction set.

ORVDX64
ORBIS32
Instruction Set
ORBIS64 ORFPX64

Fig. 4.1 OPENRISC instruction set

ORBIS32 32-bit instructions

ORBIS64 64-bit instructions

ORFPX32 Single-precision floating instruction
ORFPX64 Double-precision floating instruction
ORVDX64 \ector instruction

Table 4.1 Lists of RISC instruction set

4.2. The Proposed ISA

The proposed ISA has three major ideas: the input instructions, the block jump
instruction and the output instructions.

16

4.2.1. Input Instructions

The purpose of the input instructions is to pass the value to OPENRISC. We choose the
ori instruction (Format: ori rD,rA,K. The immediate value is zero-extended and combined
with the contents of general-purpose register rA in a bit-wise logical OR operation. The result
is placed into general-purpose register rD) and the movi instruction (Format: movhi rD,K.
The 16-bit immediate value is zero-extended, shifted left by 16 bits, and placed into
general-purpose register rD.) to be input instruction.

Fig_4.2(a) and Fig. 4.2(b) show the machine code and the assembly code of the
instruction. The memory stores the input instructions whose machine code are 0x198004d2
and 0xa98c162f. As the memory controller which is described in the section 3.3 reads
instructions from memory, the memory controller detect the instruction whether the
instruction is 0x198004d2 or 0xa98cl162f. or not. If the instruction is 0x198004d2, the
memory controller replaces the lower 16-bit part of the instruction to the higher 16-bit part of
the instruction. Similarly, if the instruction is 0xa98c162f, the memory controller replaces the
high 16-bit part of the instruction to the lower 16-bit part of the instruction. The above
description shows in Fig. 4.3.

Assembly code |movi, Input_rf, Al_code‘ Al code =-16h04d2 Assembly code ori, input_rf, A2 code ‘ A2 code= 16'h162f
Machine code ‘ 0x198004d2 ‘ Inpug_tf=R12 Machine code ‘ 0xa98c162f ‘ Input_rf=RI12
Fig. 4.2(a) Fig. 4:2(b)
The input instruction of lower 16bits The input instruction of higher 16bits
TDC_OUT
31 0
movi, Input_rf, Al_code ‘ i ‘ ori, Input rf, A2 code
l Al | A2 l
1980 | 04d2 3 1615 ~— 0 a98c | 162f
l r's) ™ 'S i
Converter Converter
1980 | Al a%98c | A2
v v
movi, Input rf, Al ‘ ‘ ori, Input_rf, A2

Fig. 4.3 The input instruction working flow

17

4.2.2. Block Jump Instruction

The instruction memory which is 256 x 32 bits is distributed into 16 blocks which
consists of 16 32-bit instructions. We use the block to be a algorithm operation because most

algorithm operation need less than 16 instructions.

The block jump instruction especially focuses on the clock phase issue whether
REF_CLK is lead to DIV_CLK or not. Because the different issue has the different operation,
we use the block jump instruction which shows in Fig. 4.4. If REF_CLK is lead to DIV_CLK
and the memory controller reads the block jump instruction, the reading address is changed to
the begin address of the num_block read block. On the other hand, if REF_CLK is lag to
DIV_CLK and the memory controller reads the block jump instruction, the reading address is
changed to the begin address of the num_block lag block. Fig. 4.5 shows the jumping

process.

Instruction
format

Jump_block, num_block_lag, num_block_lead

A

Y

machine
code

1c 0

num_block_lag num_block_lead

31

BLOCK 0

BLOCK 1

Memory
(256X32/

BLOCK 2

BLOCK 3

BLOCK 4

BLOCK 5

BLOCK 6

BLOCK 7

BLOCK 8

BLOCK 9

BLOCK 10

BLOCK 11

BLOCK 12

BLOCK 13

BLOCK 14

BLOCK 15

26 25

87

43

Fig.4.4 The block jump:instruction

N\

2. Memory controller

ADDI R11, R0, Al
NOP

ADDI R12, R0, A2
NOP

SLLI R11,R11,15

NOP

ADD R13,R11,R12

Jump block 813
0

receive Lead signal high

¢= 1. read the blcok jump

instruction

/
\

SUB R13, R13,R6
NoP

SLLI, R20, R15,7
SLLIL R21,R15,6
SLLI, R22,R15,3
NOP

ADD, R23, R20, R21
ADD, R14, R23, R22
Jump_block 10 14
0

S o oo oo

= 3, Jump to No.13 block

Fig. 4.5 The working flow of the block jump instruciton

18

0

4.2.3. Output Instruction

The output instruction is the way of outputting the information of OPENRISC such as
the DCO control word and the state control word. We choose the store instruction of
ORBIS32. The store instruction has two parts to be information: data and address. Storing
data is the DCO control word. Storing address is the state control word. Fig. 4.6 shows the
machine code of the store instruction. Target Rf is a register which maintains the value of the
DCO control word. Infor which is shown at Table 4.2 is the input of the state controller.

|3| ||||| 1:.!15 || A oaillee LU wsles 1N aolfee JCAE O F O OF 10 0. 1] ©

SW [opcode0x3s | I I A | B 1
| 6 bits [shits [S5bits 5 hits | Ibits
Machi
o 6'h35 5'h0 5h0 | Target Rf | Infor 8'h4

31 2625 21 20 16 15 1110 87 0

Fig. 4.6 The output instruction

[0] DCO_mode Frequency Lock operation
Phase Lock operation
Frequency detection
Phase Error detection
coarse tracking

1 | fine tracking

Table 4.2 The pin assignment of the state controller

[1] detect_mode

O|Lr|O|F|O

[2] Tracking_mode

4.3. Proposed SDPLL Algorithm

The proposed SDPLL has two basic states: the coarse frequency state and the coarse
phase state. At the coarse frequency state, we use the TDC to get the half value of the period
of Ref Clk. OPENRISC converts the proper value because of the different resolution
between TDC and DCO. At the coarse phase state, the action shows in Fig. 4.7(a) and Fig.
4.7(b). We use the TDC to get the value of the phase error between Ref_Clk and Div_CIk .
The memory controller jumps to the proper block according to lead and lag signal. We
assumes the period of Ref _clk as A and the phase error is E. In the lead case which is shown
in Fig. 4.7(a), DCO changes the period of Div_clk to A+E in order to lock the phase. On
other hand, in the lead case which is shown in Fig. 4.7(b), DCO changes the period of
Div_clk to A-E.

19

A A A
Ref Clk Ref_Clk
Div_Clk Div_Clk | |
E A A+E A E A A-E A
Fig. 4.7(a) Fig. 4.7(b)
When Div_CIk is lead to Ref Clk When Div_Clk is lag to Ref_Clk

4.4. Simulation Result

Fig. 4.8 shows that the platform needs how many cycles to lock. The platform needs 3
cycles to lock frequency and 2.5 cycles to lock phase. Total cycle count to lock is 6. Fig. 4.9
() and Fig. 4.9 (b) show the waves of different clock period. Finally, we show comparison
with other phase lock loops in Table 4.3.

Load
CBU_Instruction[31:0] 0 HI 0 mmn 0 JEnn_oo+)):(*m*)j:
ore_ov] L

REF_OLE | [] [1 [] [] [] | l | | | | L
e A 11 11 LI TN MWL UMW MU T
- b > < >
2 cycles 3 cycles 2.5 cycles
Fig. 4.8 The cycle count of platform to lock
Load —|
CPU_Instruction[31:0]] 0 0]
o e N | | [] I -
& S I N A S A S A S N S Y N N O N S
e [L[T] | | | \ |
Fig. 4.9(a)The period of Ref_Clk is 6.3MHz
load] _ﬁ
CPU_Instruction[31:0] 0 I 1] 1] 0 |
orvork [[[L] L[
meoee [1 1 1 1 1 1 1 T T T _:li__
e [T T] | | | | J IR |
Fig. 4.9(b)The period of Ref_Clk is 50KHz

20

Performance [This work 06[2] ISSCC’04[3] |PSSC’05[4]
Parameter
Process 90nm CMOS |[90nm CMOS 90nm CMOS 0.18um CMOS
Input Range [S0KHz~6.3MHZz]200KHz 30 KHz ~65 1KHz ~ 50MHz
~33MHz [MHz
Flexibility [Yes No INo INo
Max Lock timel6 6 >150 <50

Table 4.3 Comparison with other phase lock loops

21

Chapter 5
Conclusion and Future Work

5.1. Conclusion

The proposed SDPLL has two levels for development. One is hardware system level
which is comprised with ADPLL and OPENRISC. The other is the software level. The
proposed SDPLL is flexible not only on the software level but also on hardware level. As the
hardware upgrades, the proposed SDPLL just need to modify the software code. As a result,
the proposed SDPLL can supply the flexible environment.

5.2. Future Work

The following topics to extend the work can.be proposed.

I. The proposed SDPLL will' combine the G.C.D (Greatest common divisor)
application to recover NRZ (nong return zero) clock signal.

Il. The proposed SDPLL “will lock .the frequency-divided clock by more
complicated instructions.

I1l. Enhancing the resolution of DCO and TDC is important issue.

22

References

[1] Terng-Yin Hsu, Bai-Jue Shieh, Chen-Yi Lee” An all-digital phase-locked
loop(ADPLL)-based clock recovery circuit” Solid-State Circuits, IEEE Journal of Volume
34, Issue 8, Aug. 1999 Page(s):1063-1073

[2]. Li Jyun-Rong, Hsu Terng-Yin” The Study of All Digital Phase-Locked Loop (ADPLL)
and its Applications” Thesis CS, NCTU 2006.

[3]. J. Lin, B. Haroun, T. Foo, J.-S. Wang, b. Helmick, S. Randall, T. Mayhugh, C. Barr and J.
Kirkpartick, “APVT Tolerant 0.18 MHz to 600 MHz Self-Calibrated Digital PLL in 90
nm CMOS Process, “ in Dig. Tech. Papers ISSCC’ 04, Feb. 2004, pp. 488-489.

[4] Ching-Che Chung, Chen-Yi Lee, “An all-digital phase-locked loop for high-speed clock
generation” IEEE Journal of Solid-State Circuits, Vol38,pp.347-351, Feb.2003

[6] “OpenRISC 1200 IP Core Specification” Rev. 0.7, Sep 6, 2001

[7] “OpenRISC 1000 Architecture Manual “July 13, 2004

23

