

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

鎖相迴路軟體化之研究

The Study of Software-defined Phase-locked Loop

研 究 生：莊承穎

指導教授：許騰尹 教授

中 華 民 國 九 十 七 年 七 月

鎖 相 迴 路 軟 體 化 之 研 究

The Study of Software-defined Phase-locked Loop

研 究 生：莊承穎 Student：Chang-ying Chuang

指導教授：許騰尹 Advisor：Terng-Yin Hsu

國 立 交 通 大 學
網 路 工 程 研 究 所

碩 士 論 文

A Thesis
Submitted to Institute of Computer Science and Engineering

College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer Science

July 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年七月

 i

摘要
 這篇論文主要實作軟體鎖相迴路的平台，在此平台中結合了 OPEENRISC 和全數位

鎖相迴路的特性與功能。實作此平台總共有三個主要設計議題，分別是溝通介面的建

築、以智財（ＩＰ）為基礎的電路設計和軟體演算法的開發。在介面上特別用於同步、

通訊和控制。在智財（ＩＰ）為基礎的電路裡，本論文著重於開發時間數值轉換器（全

數位鎖相迴路中的模組），在不需要寄生電容跟寄生電阻的效應的情況下，設計出精準

度高達 1ps 的時間數值轉換器。在軟體演算法的執行上，主要是在演算法執行的週期數

目作出最佳化，在此平台上所執行的演算法，鎖定頻率跟相位，共需５個週期。
 這個平台在重複利用上、製程轉移上和彈性上都有很好的表現，可以去縮減設計成

本，特別是時間上的成本。最後，這個平台是完整的建立在 Faraday 90nm 製程下，可

以完整運作。

 ii

Abstract
This paper is proposed to the platform of software defined phase locked loop. The

platform is combined of OPENRISC and the all-digital phase locked loop. There are three
major issues in this platform: the interface, the intellectual property (IP) based design and
the software algorithm. First, the interface is used for synchronization, communication and
controlling. Second, the time-to-digit converter is one of IP in the all-digital phase locked
loop. We propose the time-to-digit converter which resolution is 1ps without the parasitical
capacitance and parasitical resistance. Finally, the topic of software algorithm is the cycle
count. The platform needs 5 cycles to lock the frequency and the phase.

This platform has good performance at the reusability, the process portability, and
flexibility. The platform can reduce the design cost, especially at time. We implement this
platform on Faraday 90nm process.

 iii

Acknowledgement
There are many people who I want to thank. First and foremost I would like to thank my

advisors, Dr. Terng-Yin Hsu for advice and guidance. Without the Integration System and
Intellectual Property (ISIP) Lab members, I can not finish this work. I would like to thank all
ISIP Lab members. Finally, I want to thanks my parents for your support and your love.

Sincerely, Chang-Ying Chuang
August 2008

 iv

Table of Contents
摘要...i
Abstract...ii
Acknowledgement .. iii
Table of Contents ..iv
List of Figures..vi
List of Tables...vii
Chapter 1 INTRODUCTION ...1
Chapter 2 Overview of Software-defined Phase-locked Loop2

2.1 Basic Concept Software-defined Phase-locked Loop.....................................2
2.2 OPENRISC ...2
2.3 ALL-Digital Phase-locked Loop...2

Chapter 3 The Proposed SDPLL Architecture..4
3.1 SDPLL Architecture Overview...4
3.2 Semi Asynchronous Clock Access..6
3.3 Memory Controller ...7
3.4 Error Detector ...8

3.4.1 Phase Detector ..9
3.4.2 Frequency Divider ..9
3.4.3 Pulse Amplifier with One Pulse Lock...9

3.5 Time-to-Digit Converter ...9
3.5.1 Gate delay TDC ..10
3.5.2 Differential delay TDC ...11

3.6 CPU BUS..14
3.7 Digital Control Oscillator Interface ..14
3.8 Digital Control Oscillator ...15

Chapter 4 The proposed SDPLL Software ..16
4.1 OPENRISC ISA Overview ...16
4.2 The Proposed ISA ...16

4.2.1 Input Instructions ..17
4.2.2 Block Jump Instruction...18
4.2.3 Output Instruction ...19

4.3 Proposed SDPLL Algorithm ...19
4.4 Simulation Result..20

Chapter 5 Conclusion and Future Work ...22
5.1 Conclusion ..22
5.2 Future Work ..22

 v

References...23

 vi

List of Figures
Fig. 2.1 The basic block diagram of ADPLL ...1
Fig. 3.1 The proposed SDPLL architecture ...5
Fig. 3.2(a) The relation of transition tuning the cycle count in 134MHz frequency6
Fig. 3.2(b) The relation of transition tuning the frequency at 10 cycles6
Fig. 3.3 The hardware architecture Semi Asynchronous Clock7
Fig. 3.4 The flow of the memory controller ...7
Fig. 3.5 The pin assignment of the memory...8
Fig. 3.6 The block architecture of Error Detector ..8
Fig. 3.7 The hardware architecture of Pulse Amplifier with One Pulse Lock........9
Fig. 3.8 The functional blocks of the proposed TDC ..10
Fig. 3.9 The functional blocks of Gate delay TDC ..10
Fig. 3.10 The hardware architecture of Gate delay TDC11
Fig. 3.11 The function blocks of differential delay TDC...12
Fig. 3.12 The hardware architecture of the delay pulse module............................12
Fig. 3.13 The hardware architecture of EVEN GROUP ..13
Fig. 3.14 The hardware architecture of ODD GROUP ..13
Fig. 3.15 The hardware architecture of differential decoder14
Fig. 3.16 The finite state machine of Digital Control Oscillator Interface............15
Fig. 3.17 Pins of Digital Control Oscillator Interface ...15
Fig. 4.1 OPENRISC instruction set ..16
Fig. 4.2(a) The input instruction of lower 16bits...17
Fig. 4.2(b) The input instruction of higher 16bits ...17
Fig. 4.3 The input instruction working flow ..17
Fig. 4.4 The block jump instruction ...18
Fig. 4.5 The working flow of the block jump instruciton18
Fig. 4.6 The output instruction ...19
Fig. 4.7(a) When Div_Clk is lead to Ref_Clk...20
Fig. 4.7(b) When Div_Clk is lag to Ref_Clk ..20
Fig. 4.8 The cycle count of platform to lock ..20
Fig. 4.9(a)The period of Ref_Clk is 6.3MHz..20
Fig. 4.9(b)The period of Ref_Clk is 50KHz ...20

 vii

List of Tables
Table 2.1 The OPENRISC Specification..3
Table 3.1 The system Specification...5
Table 4.1 Lists of RISC instruction set...16
Table 4.2 The pin assignment of the state controller ..19
Table 4.3 Comparison with other phase lock loops...21

 1

Chapter 1
Introduction

1.1. Thesis Background
The phase locked loop is primarily used in communication applications, such as: the

frequency synthesizer, the clock multiplier, the clock recovery circuit, the data recovery
circuit, and clock de-skew applications. However, in different applications, the phase locked
loop may not be reusable. The phase locked need to redesign for a variety of purposes. It is a
challenge to design a flexible phase locked loop.

In modern SoC design, the reusability and the process portability are very important.
Because of time-to-market issue, the design cycle can be decreased. Therefore, how to design
the circuit efficiently becomes more and more central. The design integrated with the CPU
and IP designs is current trend.

1.2. Thesis Motivation
There are different kinds of phase-locked loops such as analog phase-locked loop, digital

phase-locked loop, and all-digital phase-locked loop (ADPLL). Especially, the ADPLL is
flexible in process migration. However, the ADPLL and the CPU can be the hardware system
of software-defined phase-locked loop (SDPLL). The SDPLL inherits both the flexibility of
the ADPLL and the software control of the CPU. Therefore, the SDPLL do not need other
calculational circuit because the CPU is powerful enough to deal with most calculation.
However, how to integrate the ADPLL and the CPU to the SDPLL is a challenge.

1.3. Thesis Organization

The organization of this thesis is as follows:
In chapter 1, we introduce the phase locked loop and the importance of the flexibility.
In chapter 2, we give the basic concept of SDPLL, ADPLL and OPENRISC.
In chapter 3, the proposed system hardware architecture is introduced.
In chapter 4, the proposed system software architecture is introduced.
In chapter 5, some concluding remarks will be derived from this research. Finally, we

describe some design issues that needed be further explored in the near future.

 2

Chapter 2
Overview of Software-defined Phase-locked
Loop

2.1. Basic Concept Software-defined Phase-locked Loop
Software-defined Phase-locked loop (SDPLL) is flexible to the hardware architecture

and the software operation. At the software level, SDPLL only needs to modify the
instructions so as to supply different functions. At the hardware level, SDPLL integrates the
ALL-Digital Phase-locked Loop with CPU. Therefore, the core of SDPLL is CPU. The core
of proposed SDPLL is OPENRISC which will be described in section 2.2.

2.2. OPENRISC
OPENRISC which is the open source is a 32-bit scalar RISC with Harvard

microarchitecture, 5 stage integer pipeline, virtual memory support (MMU) and basic DSP
capabilities. Default caches are 1-way direct-mapped 8KB data cache and 1-way
direct-mapped 8KB instruction cache, each with 16-byte line size. Both caches are physically
tagged. By default MMUs are implemented and they are constructed of 64-entry hash based
1-way direct-mapped data TLB and 64-entry hash based 1-way direct-mapped instruction
TLB. Supplemental facilities include debug unit for real-time debugging, high resolution tick
timer, programmable interrupt controller and power management support. Instruction and
Data host interface is WISHBONE SoC Interconnection. The OPENRISC Specification
shows in Table 2.1

2.3. ALL-Digital Phase-locked Loop

The all-digital phase-locked loop (ADPLL) consists of the phase detector, the
time-to-digit converter (TDC), the controller, the loop filter, the digital controlled oscillator
(DCO), and the frequency divider. The basic block diagram is shown in Fig. 2.1. The working
flow is as following:

Step 1: The phase detector detects the phase error between the reference clock and the
divided clock and outputs the phase error to TDC.

 3

Step 2 : TDC converts the phase error to digits and output the value to controller.
Step 3 : The controller calculates the proper the DCO control word and passes the DCO

control word through the loop filter to DCO.
Step 4 : DCO use the DCO control word to oscillate proper clock frequency.
Step 5 : The frequency divider divides the frequency of DCO clock cycle.

Fig. 2.1 The basic block diagram of ADPLL

OPENRISC
Instruction length 32bits
Register length 32bits
Number of general purpose registers 32
Support multiplication Yes
Support division No
Cycle count of multiplication instruction 4

Cycle count of store instruction 4
Gate count 88000
Host interface WISHBONE
Table 2.1 The OPENRISC Specification

 4

Chapter 3
The Proposed SDPLL Architecture

3.1. SDPLL Architecture Overview
The proposed SDPLL architecture is shown in Fig. 3.1. There are nine basic modules in

the proposed SDPLL. The first is Semi Asynchronous Clock Access. Semi Asynchronous
Clock Access applies the entire architecture clock access. The second is Memory Controller.
Memory Controller controls Memory and communicates with CPU BUS, Memory and Error
Detector. The third is Error Detector. Error Detector includes Time-to-Digit Converter, Phase
Detector, Frequency Divider and Pulse Amplifier. The fourth CPU BUS is the bridge of
OPENRISC. The fifth is Digital Control Oscillator Interface. Digital Control Oscillator
Interface controls DCO and synchronizes the DCO control words and DCO_CLK. The sixth
is State controller. State Controller decodes the CPU output message to change states of other
modules. The seventh is Digital Control Oscillator. The eighth is 256X32 bits-Memory. The
last is OPENRISC, which is described in chapter 2. The details of modules will be illustrated
in next section and the system Specification shows in Table 3.1.

 5

Ref_clk

Semi
Asynchronous
Clock Access

EMBEDDED_CLK

Error
Detector

DCO

OPENRISC

CTW

Load ; Instruction

Div_value

Memory

Data

State
Controller

Address

 M_CYCLE, N_MODE

Fig. 3.1 The proposed SDPLL architecture
System Spec
DCO base frequency 333MHz
DCO resolution 10fs
TDC resolution 1ps
TDC detecting max pulse 4ms
TDC detecting min pulse 2.358ns
Memory 256X32bits
SACA max frequency 263 MHz
SACA min frequency 67 MHz
Reference clock max frequency 6.3 MHz
Reference clock min frequency 50KHz
Table 3.1 The system Specification

 6

3.2. Semi Asynchronous Clock Access
Semi Asynchronous Clock Access can apply the better performance in circuit noise

environment and power consumption. By means of modifying two parameter, it can perform
low noise and low power environment. One parameter is operating frequency and the other is
operating cycle count. The parameters affect the circuit transition. Controlling circuit
transition results in low power environment. Fig. 3.2(a) and Fig. 3.2(b) illustrate the relation
of transition tuning parameter. As the clock signal is idle, the clock signal is maintained high
because of construct low noise environment.

Cycle count 5 10 15 20
Fig. 3.2(a) The relation of transition tuning the cycle count in 134MHz frequency

Frequency 263MHz 134MHz 90MHz 67MHz
Fig. 3.2(b) The relation of transition tuning the frequency at 10 cycles

 Fig. 3.3 shows Semi Asynchronous Clock Access which includes four major parts
depend on application. The first is the clock signal synchronizer. The synchronizer is
combined with two D flip-flops with the clear pin. If Ref_clk rise, the synchronizer sends the
pulse to counters to reset the counter so that EMBED_CLK begins to oscillate. The second is
the switch of delay matrix. The basic idea of the switch is a NAND gate. If one input of the
NAND gate is high, the NAND gate has the same function as inverter. On the other hand, if
one input is low, the output of the NAND gate maintain high. Accordingly, the switch decides
EMBED_CLK oscillated or idle based on the two states of the NAND gate. The third is delay
matrix to provide the variable clock period. The last is counter combined with comparator to
control the operating cycle count. As the counter number equals to M_CYCLE comparator
sends a signal to the counter and the switch of delay matrix in order to disable counter and
make EMBED_CLK idle.

 7

Delay
module1

Delay
modlue2

Delay
modlue2

Delay
module2

MUX

Counter

RB EB

DFF

RB

comparator

M_CYCLE

N_MODE

D Q
DFF

RB

D Q

Initial_Signal

Burst_Mode

REF_CLK

1

Fig. 3.3 The hardware architecture Semi Asynchronous Clock

3.3. Memory Controller
Memory Controller which plays an important role in the

proposed SDPLL is shown in Fig. 3.5. CPU BUS, Memory and
Error Detector communicate with different protocols through
Memory Controller. Memory Controller also has strong
connection with the proposed instruction set architecture. The
proposed instruction set architecture (ISA) will be discussed in
chapter 4.

The flow chart of the propose state of Memory Controller is
shown in Fig. 3.4. When the system resets, Memory Controller is
in the initial state. In the meantime, Memory Controller
initializes the address counter. As the load signal high, Memory
Controller changes the state to the load state. In this state,
Memory Controller loads executing instructions to Memory until
load signal falls. After that, Memory Controller changes the state
to the transition state. In the transition state, Memory Controller
receives the error value as Error Valid is high. After that,
Memory Controller changes the state to the algorithm state. In
order to send this instruction to CPU BUS, Memory Controller
reads instruction from memory and combines the error value to
instruction in the algorithm state. After sending instructions,
Memory controller changes the state back to the transition state.
Subsequently, memory controller repeats the above flow again.

Initial state

Load signal
high?

Reset

No

Yes

Load state

Loading
finish?

No

Yes

Transition
state

Error value
valid?

No

Algorithm
state

Yes

Algorithm
finish?

Yes

No

Fig. 3.4 The flow of the
memory controller

 8

Memory
(256x32)

M
em

ory
Controller

Load

Load_Instruction[31:0]

Error_Valid
Lock
Lead
Lag

Error_Value[31:0]

 Error_Set

we
oe
ce

To_Mem_Instruction[31:0]

To_Mem_Address[7:0]

Form_Mem_Instruction[31:0]

CPU_Instruction[31:0]

iwb_ack
iwb_err
iwb_rty

Error
Detector

CPU
_BU

S

Fig. 3.5 The pin assignment of the memory

3.4. Error Detector
Error Detector which is shown in Fig. 3.6 has four functional blocks such as

Time-to-Digit Converter (TDC), Phase Detector, Frequency Divider and Pulse Amplifier with
One Pulse Lock. The core of Error Detector is TDC. The objects which are measured by TDC
are Ref_Clk and the phase error between Ref_Clk and the Div_Clk. TDC will be described in
section 3.5. However, Error Detector can not only detect the error but also divide the
frequency of clock cycle. The details of functional blocks will be illustrated in next section.

R
ef_clk

Fig. 3.6 The block architecture of Error Detector

 9

3.4.1. Phase Detector
Phase Detector converts the difference of Ref_Clk and Div_Clk to the pulse and judges

which clock signal is lead to another.

3.4.2. Frequency Divider
Frequency Divider also divides the frequency of DCO clock cycle. The core of

Frequency Divider is the counter which driven by DCO clock cycle.

3.4.3. Pulse Amplifier with One Pulse Lock
There are two serious problems in the input of TDC such as the pulse account and the

pulse width. First, Pulse Amplifier which is showed in Fig. 3.7 with One Pulse Lock modifies
the narrow pulse to meet the circuit requirement so as to prevent the input width violation of
TDC. If the pulse is wide enough to the circuit requirement, Pulse Amplifier with One Pulse
Lock keeps the pulse in the original width. Second, Pulse Amplifier with One Pulse Lock
filters the pulse after the first pulse has come. The reason is that TDC accumulates all pulses
width until Error_set rises.

Fig. 3.7 The hardware architecture of Pulse Amplifier with One Pulse Lock

3.5. Time-to-Digit Converter
The proposed Time-to-Digit Converter (TDC) which is shown in Fig. 3.8 consists of two

major modules, Gate delay TDC and Differential delay TDC. Gate delay TDC has different
resolution form Differential delay TDC. The resolution of Gate delay TDC is 10ps but the
resolution of Differential delay TDC. Although Differential delay TDC has higher resolution

 10

than Gate delay TDC, Differential delay TDC needs ten times gate counts to Gate delay TDC.
Therefore, the proposed TDC combine Gate delay TDC and Differential delay TDC to
minimize the total gate count. The resolution of the proposed TDC is 1ps but the gate count
of the proposed TDC is double gate count to Gate delay TDC. Differential delay TDC decides
the least digit of TDC_OUT and Gate delay TDC decides the other digits. Thus, the
resolution of proposed TDC is 1ps.

Fig. 3.8 The functional blocks of the proposed TDC

3.5.1. Gate delay TDC
Gated delay TDC which is shown in Fig. 3.9 is comprised of four functional blocks. The

four functional blocks are TDC_CHAIN, Latch Chain Buffer, Counter and TDC Decoder.

TDC
CHAIN

Latch
Chain
Buffer

Counter

TDC
Decoder

TDC_OUT[31:9]

PULSE

TDC_OUT[7:0]

TDC_OUT[8]

Fig. 3.9 The functional blocks of Gate delay TDC

First, TDC_CAHIN which is shown in Fig. 3.10 is composed of 255 inverters and 1 and

gate. Each inverter connects another inverter. Thus, the inverters constitute a delay chain. One
input of the and gate connects the end of the delay chain and the output of the and gate
connects to the start of the delay. The delay path and the and gate make up the delay ring. The
purpose of the and gate is a switch to control the delay ring. When the other input of the
switch is high, the switch does the same function as the buffer. On the other hand, the switch

 11

clears the delay ring. The propagate delay of the inverter is 10ps on Faraday 90nm process.
Therefore, the resolution Gate delay TDC is 10ps.

Second, Latch Chain Buffer which is shown in Fig. 3.10 is composed of the D latches.
As the pulse is high, Latch Chain Buffer stores the state of TDC CHAIN. On the other hand,
Latch Chain Buffer keeps the storing information until Error_Set rises. We choose the D latch
to be the unit of Latch Chain Buffer due to the issue of the latching time.

Third, Fig. 3.10 illustrates TDC Decoder. The basic idea of TDC Decoder is finding out
the position of the transition in the TDC Chain. Thus, we choose the prienc decoder at
Deignware library to accomplish TDC Decoder.

Last, Fig. 3.10 illustrates the counter. The output of the last inverter of TDC CHAIN
triggers the counter. The counter combines the multiplexer inside because of the dead zone.
Since the pulse goes down, TDC CHAIN will not be clear immediately. Thus, counter
operates at expected case. The situation results in wrong value of TDC_OUT. Therefore, the
counter which combines the multiplexer inside can prevent this situation.

As a result, Gate delay TDC has 10-ps resolution because of the inverter. As the process
upgrades, the resolution of Gate delay TDC gets more higher.

......

Even bits prienc decoder

Half total
bits add 1

PULSE

Q

QSET

CLR

D

Bitwise
inverter

COUNTER

TDC_OUT [8]
Middle

TDC CHAIN

Latch Chain Buffer
 (for PULSE high latch)

Odd bits prienc decoder

ADD
MUX

ADD TDC_OUT [7:0]

TDC_OUT [31:9]

Bitwise
inverter

ADD

Half total
bits add 1

MUX

1

Flip
Flops

Fig. 3.10 The hardware architecture of Gate delay TDC

3.5.2. Differential delay TDC
Fig. 3.11 shows the functional blocks of Differential delay TDC. The functional blocks

are DELAY PULSE, EVEN GROUP, ODD GROUP and Differential Decoder. Some parts of
Differential delay TDC are similar to Gate delay TDC. Differential delay TDC uses the

 12

different delay pulse to decode the value of the different delay pulse. Because of the ten
values, we can convert least digit of TDC_OUT. Therefore, the resolution of Differential
delay TDC is 1ps.

Fig. 3.11 The function blocks of differential delay TDC

First, the DELAY PULSE produces ten different delay pulses. Fig. 3.12 shows that

different delays are 11ps, 22ps, 33ps, 44ps, 55ps, 66ps, 77ps, 88ps and 99ps. The delay are
11ps, 33ps, 55ps, 77ps, and 99ps belong to ODD GROUP. On the other hand, The delay are
0ps, 22ps, 44ps, 66ps, and 88ps belong to EVEN GROUP. DELAY PULSE has nine inverters
which have 11-ps resolution. The purpose of choosing 11-ps resolution is that 11ps minus
10ps leaves 1ps. Therefore, Differential delay TDC uses the 10-ps resolution inverter and the
11-ps resolution inverter to reach the 1-ps resolution.

Fig. 3.12 The hardware architecture of the delay pulse module

Second, Fig. 3.13 and Fig. 3.14 illustrate EVEN GROUP and ODD GROUP. EVEN

GROUP has five EVEN SUB TDC (ESTDC). ODD GROUP has five ODD SUB TDC
(OSTDC). The difference between ESTDC and OSTDC is the switch. One is the and gate;
the other is the and gate with one inverse pin. ESTDC and OSTDC are similar with Gate
delay. TDC .CHAIN of ESTDC and OSTDC is the chain with twenty 10-ps resolution
inverter. Latch Chain Buffer is the latch which stores the chain information. When Pulse is
high, Latch Chain Buffer stores the information. On the other hand, Latch Chain Buffer
maintains the storing information. Each output pin of Latch Chain Buffer connects to the nor
gate with the next to output pin. The output of the nor gate is the input the prienc decoder.
Finally, the prienc decoder outputs the value.

 13

However, ESTDC and OSTDC have one difference from Gate delay TDC. At Gate delay
TDC, the same pulse supplies the chain and buffer. At ESTDC and OSTDC, the original
pulse supplies the buffer and the delayed pulse supplies the chain. In this action, ESTDC and
OSTDC output the value the diminished pulse. For example, if the 22ps-delayed pulse is the
input of ESTDC, ESTDC outputs the value of 22ps-diminished pulse. Similarly, if the
11ps-delayed pulse is the input of OSTDC, OSTDC outputs the value of 11ps-diminished
pulse.

Finally, the ten values form EVEN GROUP and ODD GROUP has regular patterns. We
use the regular patterns to decide the TDC_OUT [3:0] by the differential decoder shown in
Fig. 3.15.

Fig. 3.13 The hardware architecture of EVEN GROUP

Fig. 3.14 The hardware architecture of ODD GROUP

 14

Fig. 3.15 The hardware architecture of differential decoder

3.6. CPU Bus
The connection of CPU is the instruction pins, the data pin and the WISHBONE control

signals.

3.7. Digital Control Oscillator Interface
 Fig. 3.16 and Fig 3.17 show the state diagram of Digital Control Oscillator Interface

and pins of Digital Control Oscillator Interface. At the Coarse Frequency state, Digital
Control Oscillator Interface outputs the control word to DCO so as to lock the frequency. At
the Coarse Phase state, the control word is for phase locking. At the Coarse Transition state,
the control word is the same as the coarse Frequency state.

 15

Fig. 3.16 The finite state machine of Digital Control Oscillator Interface

Fig. 3.17 Pins of Digital Control Oscillator Interface

The DCO interface has two different the clock system. One is the CPU clock. The CPU
clock supplies blocks which communicate with CPU. The other is the DCO clock. The DCO
clock supplies the finite state machine of the DCO interface because the control word needs
to synchronize with the DCO clock.

3.8. Digital Control Oscillator
The proposed DCO is a behavior model. The basis frequency is 333 MHz. Each step of

DCO is 10fs.

 16

Chapter 4
The proposed SDPLL Software

4.1. OPENRISC ISA Overview
The OPENRISC instruction set which shows in Fig. 4.1 includes the following principal

features. First, Simple and uniform-length instruction formats featuring five Instruction
Subsets. Second, OPENRISC Basic Instruction Set (ORBIS32/64) with 32-bit wide
instructions aligned on 32-bit boundaries in memory and operating on 32-bit and 64-bit data.
Third, OPENRISC Vector/DSP eXtension (ORVDX64) with 32-bit wide instructions aligned
on 32-bit boundaries in memory and operating on 8-, 16-, 32- and 64-bit data. Last,
OPENRISC loating-Point eXtension (ORFPX32/64) with 32-bit wide instructions aligned on
32-bit boundaries in memory and operating on 32-bit and 64-bit data. The Table 4.1 shows
difference between subsets. The proposed of SDPLL uses ORBIS32 to be instruction set.

Fig. 4.1 OPENRISC instruction set

ORBIS32 32-bit instructions
ORBIS64 64-bit instructions
ORFPX32 Single-precision floating instruction
ORFPX64 Double-precision floating instruction
ORVDX64 Vector instruction

Table 4.1 Lists of RISC instruction set

4.2. The Proposed ISA
The proposed ISA has three major ideas: the input instructions, the block jump

instruction and the output instructions.

 17

4.2.1. Input Instructions
The purpose of the input instructions is to pass the value to OPENRISC. We choose the

ori instruction (Format: ori rD,rA,K. The immediate value is zero-extended and combined
with the contents of general-purpose register rA in a bit-wise logical OR operation. The result
is placed into general-purpose register rD) and the movi instruction (Format: movhi rD,K.
The 16-bit immediate value is zero-extended, shifted left by 16 bits, and placed into
general-purpose register rD.) to be input instruction.

Fig_4.2(a) and Fig. 4.2(b) show the machine code and the assembly code of the
instruction. The memory stores the input instructions whose machine code are 0x198004d2
and 0xa98c162f. As the memory controller which is described in the section 3.3 reads
instructions from memory, the memory controller detect the instruction whether the
instruction is 0x198004d2 or 0xa98c162f. or not. If the instruction is 0x198004d2, the
memory controller replaces the lower 16-bit part of the instruction to the higher 16-bit part of
the instruction. Similarly, if the instruction is 0xa98c162f, the memory controller replaces the
high 16-bit part of the instruction to the lower 16-bit part of the instruction. The above
description shows in Fig. 4.3.

Fig. 4.2(a)
The input instruction of lower 16bits

Fig. 4.2(b)
The input instruction of higher 16bits

Fig. 4.3 The input instruction working flow

 18

4.2.2. Block Jump Instruction
The instruction memory which is 256 x 32 bits is distributed into 16 blocks which

consists of 16 32-bit instructions. We use the block to be a algorithm operation because most
algorithm operation need less than 16 instructions.

The block jump instruction especially focuses on the clock phase issue whether
REF_CLK is lead to DIV_CLK or not. Because the different issue has the different operation,
we use the block jump instruction which shows in Fig. 4.4. If REF_CLK is lead to DIV_CLK
and the memory controller reads the block jump instruction, the reading address is changed to
the begin address of the num_block_read block. On the other hand, if REF_CLK is lag to
DIV_CLK and the memory controller reads the block jump instruction, the reading address is
changed to the begin address of the num_block_lag block. Fig. 4.5 shows the jumping
process.

Jump_block, num_block_lag, num_block_lead

01c num_block_lag num_block_lead
31 26 25 8 7 4 3 0

Instruction
format

machine
code

Fig.4.4 The block jump instruction

Fig. 4.5 The working flow of the block jump instruciton

 19

4.2.3. Output Instruction
The output instruction is the way of outputting the information of OPENRISC such as

the DCO control word and the state control word. We choose the store instruction of
ORBIS32. The store instruction has two parts to be information: data and address. Storing
data is the DCO control word. Storing address is the state control word. Fig. 4.6 shows the
machine code of the store instruction. Target Rf is a register which maintains the value of the
DCO control word. Infor which is shown at Table 4.2 is the input of the state controller.

Fig. 4.6 The output instruction

Infor Pin assignment State

0 Frequency Lock operation [0] DCO_mode
1 Phase Lock operation
0 Frequency detection [1] detect_mode
1 Phase Error detection
0 coarse tracking [2] Tracking_mode
1 fine tracking

Table 4.2 The pin assignment of the state controller

4.3. Proposed SDPLL Algorithm
The proposed SDPLL has two basic states: the coarse frequency state and the coarse

phase state. At the coarse frequency state, we use the TDC to get the half value of the period
of Ref_Clk. OPENRISC converts the proper value because of the different resolution
between TDC and DCO. At the coarse phase state, the action shows in Fig. 4.7(a) and Fig.
4.7(b). We use the TDC to get the value of the phase error between Ref_Clk and Div_Clk .
The memory controller jumps to the proper block according to lead and lag signal. We
assumes the period of Ref_clk as A and the phase error is E. In the lead case which is shown
in Fig. 4.7(a), DCO changes the period of Div_clk to A+E in order to lock the phase. On
other hand, in the lead case which is shown in Fig. 4.7(b), DCO changes the period of
Div_clk to A-E.

 20

Fig. 4.7(a)
When Div_Clk is lead to Ref_Clk

Fig. 4.7(b)
When Div_Clk is lag to Ref_Clk

4.4. Simulation Result
Fig. 4.8 shows that the platform needs how many cycles to lock. The platform needs 3

cycles to lock frequency and 2.5 cycles to lock phase. Total cycle count to lock is 6. Fig. 4.9
(a) and Fig. 4.9 (b) show the waves of different clock period. Finally, we show comparison
with other phase lock loops in Table 4.3.

Fig. 4.8 The cycle count of platform to lock

Fig. 4.9(a)The period of Ref_Clk is 6.3MHz

Fig. 4.9(b)The period of Ref_Clk is 50KHz

 21

Performance
 Parameter

This work 06[2] ISSCC’04[3] JSSC’05[4]

Process 90nm CMOS 90nm CMOS 90nm CMOS 0.18um CMOS

Input Range 50KHz~6.3MHz 200KHz
~33MHz

30 KHz ~65
MHz

1KHz ~ 50MHz

Flexibility Yes No No No

Max Lock time 6 6 >150 <50
Table 4.3 Comparison with other phase lock loops

 22

Chapter 5
Conclusion and Future Work

5.1. Conclusion
The proposed SDPLL has two levels for development. One is hardware system level

which is comprised with ADPLL and OPENRISC. The other is the software level. The
proposed SDPLL is flexible not only on the software level but also on hardware level. As the
hardware upgrades, the proposed SDPLL just need to modify the software code. As a result,
the proposed SDPLL can supply the flexible environment.

5.2. Future Work
The following topics to extend the work can be proposed.

I. The proposed SDPLL will combine the G.C.D (Greatest common divisor)

application to recover NRZ (none return zero) clock signal.
II. The proposed SDPLL will lock the frequency-divided clock by more

complicated instructions.
III. Enhancing the resolution of DCO and TDC is important issue.

 23

References
[1] Terng-Yin Hsu, Bai-Jue Shieh, Chen-Yi Lee” An all-digital phase-locked

loop(ADPLL)-based clock recovery circuit” Solid-State Circuits, IEEE Journal of Volume
34, Issue 8, Aug. 1999 Page(s):1063-1073

[2]. Li Jyun-Rong, Hsu Terng-Yin” The Study of All Digital Phase-Locked Loop (ADPLL)
and its Applications” Thesis CS, NCTU 2006.

[3]. J. Lin, B. Haroun, T. Foo, J.-S. Wang, b. Helmick, S. Randall, T. Mayhugh, C. Barr and J.
Kirkpartick, “A PVT Tolerant 0.18 MHz to 600 MHz Self-Calibrated Digital PLL in 90
nm CMOS Process, “ in Dig. Tech. Papers ISSCC＇04, Feb. 2004, pp. 488-489.

[4] Ching-Che Chung, Chen-Yi Lee, “An all-digital phase-locked loop for high-speed clock
generation＂ IEEE Journal of Solid-State Circuits, Vol38,pp.347-351, Feb.2003

[6] “OpenRISC 1200 IP Core Specification” Rev. 0.7, Sep 6, 2001

[7] “OpenRISC 1000 Architecture Manual “July 13, 2004

