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在數量極大的程式碼中解決測試覆蓋度的最佳化問題 

 

 

學生: 周其衡                  指導教授: 林盈達 

國立交通大學資訊科學與工程研究所 

 

摘要 

迴歸測試經常執行在主要、次要以及甚至僅更正臭蟲的軟體或韌體的新版本

發行。舉例來說，在思科 IOS的一部份原始碼中，總共有 2,320個測試用例用來

檢查 57,758 個函式，若在任一次的新版本發行中，將所有的測試用例執行過，

則需要 36天。在以前的減少測試演算法的研究中，基於聲明程度的條件/分歧的

測試覆蓋度資訊並無法適用於較大的程式，因此難以套用於真實的產品系統中。

在本文裡，我們將根據某測試用例測到某函式的覆蓋度資訊，致力於開發真實測

試方法。當測試資訊的詳細度從條件/分歧減少為函式時，可降低很多複雜度並

且能夠有好的延展性。首先，我們定義一個測試用例的函式可達度（一個測試用

例可以測到多少百分比的函式）以及一個函式的測試強度（百分之多少的測試用

例可以測到特定函式）。透過這兩個標準，覆蓋度的資訊就可被特徵化。然後我

們透過或不透過安全模式來應用貪婪演算法去選取測試用例，所謂安全模式是

指，凡是含有修改過函式的測試例都會被選取出來。在不使用安全模式的情形

中，從部份 IOS的平均結果看來，我們能夠減少測試成本（時間）為原本的 1/91。

透過安全模式，降低的比例隨著修改過的函式以及它們的測試強度增加而降低。

大多數的更正臭蟲的新版本發行僅修改一個或很少的函式並且它們的測試強度

很低，在此我們的方法能夠應用的更安全及更有效率。 

 
關鍵字: 迴歸測試，軟體工程，減少測試，測試覆蓋度 
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Abstract 
Regression testing is conducted frequently on major, minor, and even bug-fix 

software or firmware releases. For example, as a part of Cisco IOS source codes with 

57,758 functions checked by 2,320 test cases, it requires 36 days if all test cases are 

run on a release. Previous research works on test reduction algorithms select test cases 

based on the test coverage information of statement-level conditions/branches and 

could not scale to larger programs, and thus are difficult to apply in real production 

systems. In this work, we aim to develop a practical test reduction approach based on 

the coverage information of which test cases "touch" which functions. Since the 

granularity of coverage information is reduced from condition/branch to function, the 

complexity is much reduced and could scale well. We first define function 

reachability of a test (the percentage of functions that a specific test could touch) and 

test intensity of a function (the percentage of tests that touch a specific function). With 

these two metrics, the coverage information is characterized. We then apply greedy 

algorithms to select test cases, with or without a safe mode that selects all test cases 

touching modified functions. The results from instrumenting parts of IOS show that 

we could reduce the test cost (time) to 1/91, on the average, without a safe mode. 

With a safe mode, the reduction ratio drops as the number of modified functions and 

their test intensities increase. Numerous bug-fix releases modify only one or very few 

functions with low test intensity, where our approach can be applied safely and 

effectively. 

 

Keywords: Regression test, software engineering, test reduction, test coverage. 
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1 Introduction 

1.1 Motivation 

During the lifecycle of a large industrial software product, the number of test 

cases and their complexity increase significantly as new versions of software are 

constantly released. The developers tend to skip some insignificant test cases and 

forgo the fault detection opportunities due to the cost of reproducing all the 

accumulated test cases. The test cases are selected according to their cost and the fault 

detection opportunities. An array of selection algorithms have been designed based on 

a variety of models on the relations between the code coverage and fault detection 

opportunities of test cases. However, these algorithms still demand a large space of 

database and the long execution time due to the huge number of test cases and 

functions. 

The relationships between test cases and functions are like an interlaced net. The 

selection of the function involves some test cases, and vice versa. We define the test 

intensity of a function and the function reachability to explain the relationships 

between test cases and functions, where the former is the percentage of test cases that 

cover or invoke the functions, and the latter is the percentage of functions covered by 

test cases. Through the relationships and different selection requirements, we could 

find several practical problems with test reduction and solve them. 

1.2 Related works 

This section discusses the method of choosing suitable test cases to effectively 

reduce the testing time and the loss of fault detection capability, as well as existing 

study in reducing the number of test cases. The trade-offs of the number of selected 
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test cases and fault detection capability are somewhat controversial. For example, 

Wong et al. [1] concludes that test cases without adding coverage to a test set are 

likely to have small impact on fault detection capability. However, minimizing test 

cases is reported to severely compromise the fault detection capability in [2]. Hence, 

these two papers illustrated that selecting effective test cases with the fault detection 

capability is important. 

Regression testing is conducted frequently on major, minor, and even bug-fix 

software or firmware releases. It always focuses on the newly modified portion of the 

source codes, implying that a test case that does not cover any function having been 

modified since the last regression test will not reveal any new fault, so skipping the 

test case will not lose the fault detection capability of a new regression round. Hence, 

each regression testing can detect every fault by test cases. In other words, the new 

faults should be generated by functions newly introduced or modified since the last 

regression test. It also means regression testing will not find less new faults by not 

running the test cases which do not cover modified functions. This assumption is held 

throughout this thesis. 

Reducing the regression testing is a well-known minimal set-cover problem, 

which is an NP complete problem [1],[3],[4]. According to [3], the reduction includes 

the test selection problem and the test plan update problem. Since our experiments 

work on the practical circumstances of the existing automated regression test system 

and do not have the information of the test plan, here we only investigate the test 

selection problem that is also called test case reduction problem. The test case 

reduction problem is clearly defined as follows:  

Given: A test suite T, a set of testing requirements {r1,r2,...,rn}, that must be 

satisfied to provide the desired test coverage of the program, and subsets {T1,T2,...,Tn} 

of T, one associated with each of the ri's such that any one of the test cases tj 
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belonging to Ti covers ri. 

Problem: Find a representative set of test cases tj that will satisfy all of the ri's 

A number of methods can solve the test case reduction problem in polynomial 

time, e.g., the greedy heuristic methods [5]-[8], the generic algorithm methods 

[9],[10][11] and the integer linear programming methods [12]. The greedy heuristic 

methods are generally better than others [13][14], so our algorithms adopt a greedy 

heuristic method. The related research about reduction of regression testing also 

includes prioritizing test cases for regression testing [15], modeling the cost-benefits 

for regression testing [16] and impact of test case reduction on fault detection 

capability [1][2][17][18]. We focus only on greedy heuristic methods, which have 

some different applications. The focus on fault detection capability, especially with 

the branch coverage, can be seen in [5][6][7]. The hitting set algorithm [5] categorizes 

test cases in the test suite according to the degree of “essentialness” and selects test 

cases in the order from most “essential” to least “essential”. The G/GE/GRE 

algorithms [8] are based on three strategies: essential, 1-to-1 redundant and greedy 

strategies. However, the previous algorithms do not match our needs exactly. The G 

algorithms [8] are adapted to new applications to solve the problems we face in the 

next chapter and the algorithms for these problems in Chapter 3. 

1.3 Contribution 

This thesis describes the implementation of a database driven test case selection 

service in an automated regression test production system capable of providing 

information of code coverage trace and execution time of each test case. The service 

also imports code modification history from the source control system with the 

intention to focus on the opportunity of detecting faults caused by newly modified 

codes. We define two metrics to characterize the coverage information: function 
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reachability of a test and test intensity of a function. Then we adopt algorithms from 

previous works to the practical circumstances of the existing automated regression 

test system, and devise some test case selection strategies for different concerns. 

The organization of this paper is as follows. Chapter 2 first defines the notation 

of selection algorithms and describes the six problems. Next, Chapter 3 describes our 

designed test case selection strategies adapted to the circumstances of the real life 

system. Chapter 4 states the implementation of our practical database-driven test case 

selection services and Chapter 5 provides the experiment environment and results. 

Finally, Chapter 6 discusses the lessons learned from this exercise and future work.  
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2 Notation definition and problems 

2.1 Notation Definition 

Some definitions of variables and functions are tabulated in Figure 1 and Figure 

2, respectively. From Figure 1, there are two test cases {T1, T2 } and four functions 

SFall={ f1, f2, f3, f4}, with two modified functions, SFmod = {f1 , f3}. When we need to 

choose a test case to cover modified functions, the reasonable selection is T1, which 

covers f1 and f3. Thus, STsel={T1}. Next, five parameters that are constraints of our 

algorithms, such as fcost, fcov, rt, tit and ecl, will be explained further in each 

algorithm. 

 
Figure 1 Definitions of variables 
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Figure 2 Definitions of functions 

Figure 2 shows the definition of functions, which are basic components in our 

algorithms. COST(Ti) returns the execution time of test case Ti. Test case count TC(fi) 

returns the number of test cases which cover fi function count FC(Ti) and function 

coverage count FCC(SFmod,Ti) both return the number of functions to be covered by 

the test case Ti, but FCC(SFmod,Ti) puts special attention on modified functions. Extra 

function coverage count EFCC(SFmod,Ti) returns total function count minus function 

coverage count. Finally, TFC(STall) and TEFCC(SFmod,STall) return total function 

count and total extra function coverage count, respectively. In the CostCovB problem, 

the cost or extra coverage factor used to decide cost is meaningful or extra coverage. 

The algorithm of this problem uses CV(SFmod,STall,Ti,fcost,fcov) to choose the most 

balancing test case. The detailed definitions of functions are listed in Figure 2. 

Because CV() is used to select best balancing test case, it should be composed by two 

parts, cost and coverage, where the former is PARAW(SFmod,Ti) * fcost and the latter is 
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PARAC(SFmod,STall,Ti) * fcov. fcost and fcov are factors of cost and extra coverage, 

respectively. PARAW() returns the percentage of WEIGHT(SFmod,Ti) among total 

WEIGHT(SFmod,Ti) and PARAC(SFmod,STall,Ti) returns the percentage of 

EFCC(SFmod,Ti) among TEFCC(SFmod,STall). 

We define function reachability of a test (FC(Ti)/|SFall|) as the percentage of 

functions that a specific test could touch, and test intensity of a function (TC(fi)/|STall|), 

as the percentage of tests that touch a specific function. The coverage information is 

characterized by these two metrics. 

2.2 Six Problems 

The empirical study we made is on the prevailing Cisco Internetwork Operating 

System (IOS) which has very huge code size and test cases. Our study is confined to 

about 50,000 functions and 2,300 test cases that are only a portion of whole system. 

Each test case operates a series of configuration and testing steps. The runtime of a 

test case varies from 10 minutes to 100 minutes. Conducting a complete regression 

testing of 2,300 test cases on a single test platform takes a few weeks, so selecting a 

small and proper subset of test cases in regression testing can save a lot of time. From 

the previous assumption, we focus on test cases that cover modified functions. How 

do we get the minimal number of test cases or minimal cost of test cases with the 

knowledge of which functions have been modified since the last regression round, or 

even balance between cost and coverage? Furthermore, with a given limited testing 

time, how do we get maximal coverage? With a given required level of coverage, how 

do we get the minimal cost of test cases? How to reduce selecting time of selection 

algorithms? We summarize the problems in Table 1. 
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Table 1 The description of problems 

Problem  Short name Description  

The Number-Minimization 

Problem  
NumMin  

Given the modified functions to get the minimal 

number of test cases  

The Cost-Minimization 

Problem  
CostMin  

Given the modified functions to get the minimal cost of 

test cases  

The Cost and Coverage 

Balance Problem  
CostCovB 

Given the modified functions to get the test cases 

which can balance cost and extra coverage  

The Coverage-Maximization 

Problem  
CovMax  Given the restriction time to get the max coverage  

The Cost-Minimization with 

Confidence Level Problem  
CostMin-C 

Given the effective-confidence level to get the minimal 

cost of test cases  

The Selection Acceleration 

Problems  
SA  

Find the infrastructure functions to reduce the 

functional space  

Moreover, executing the test case selection algorithms also takes time, which is a 

large cost, if requirement is frequently asked. Functions with test intensity over a 

preset threshold (e.g., 90%) are designated infrastructure functions (TC(fi)/|STall|≧tit). 

Removing these functions improves the speed of algorithms. The constraints of the 

six typical problems and the benefits derived from their respective solutions are 

tabulated in Table 2.  

Table 2 Test Coverage Optimizing Problems 

Test Coverage Optimizing Problems 

# Problems  Algorithms  Objectives  Constraints  Capabilities  

1 NumMin  CW-NumMin  Min number of test 
cases  Modified function  Decreasing testing time  

2 CostMin  CW-CostMin  Min cost of test cases  Modified Function  Decreasing testing time  

3 CostCovB  CW-CostCovB  
Balance min cost of 
test case and max extra 
coverage  

Modified Function  
A cost factor  
A coverage factor  

Providing Cost-driven test  
Providing Coverage-driven 
test  

4 CovMax  CW-CovMax  Max coverage  Restricted time 
(minutes)  

Providing Cost-driven test  
Increasing coverage rate  

5 CostMin-C  CW-CostMin-C  
Min cost where test 
coverage > 
effective-confidence 
level  

Effective-confidenc
e level  

Providing Coverage-driven 
test  
Decreasing testing time  

6 SA  PDF-SA  Infrastructure functions  
Redundant test case  

Test intensity 
threshold  

Removing —infrastructure 
functions  
Speed up performing 
algorithm  
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In the NumMin and CostMin problems, given a set of modified functions, we 

need to find the minimal number or cost of test cases, subject to the constraint that 

each modified function in the set must be called at least once. After solving these two 

problems, testing time of regression testing could be reduced.  

In the CostCovB problem, in order to balance cost and coverage, we judge which 

factor, cost or coverage, is more important with the set of modified functions. The 

solution provides a guide between cost-driven and coverage-driven tests.  

In the CovMax problem, given a constant total test time restriction, the test cases 

with maximal coverage and the cheapest cost is chosen to provide a cost-driven test 

strategy.  

In the CostMin-C problem, an effective-confidence level as an alternative 

measure of coverage is adapted. The coverage over only the functions registered in 

RFC database, as in contrast to coverage over all functions is called 

effective-confidence level. Due to large code size, the mapping of the functions, which 

is unreachable by any test case, and test cases is so large that performing an algorithm 

for these useless mapping only increases cost without improving accuracy. Thus, RFC 

database only stores the mapping of reachable functions and test cases, and this is 

why effective-confidence level is instead of coverage level. Solution of this problem 

could provide a coverage-driven test strategy which also decreases testing time.  

In the SA problem, owing to speed up other algorithms, execution of the 

selection algorithms do consider the infrastructure functions with different test 

intensity criteria. For example, with the 100% test intensity threshold, the functions 

covered by every test case can be skipped. Hence, when performing algorithms, the 

considered functions in selection algorithms becomes small and each algorithm 

becomes faster. By controlling the size of the infrastructure function set, the 

algorithms can speed up their testing. 
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3 Designing Six Algorithms 

The six practical problems and designed strategies are shown in Table 2. There 

are two categories of algorithms: the PDF-SA algorithm and the prefix of the CW 

algorithms. 

3.1 PDF-SA algorithm 

In order to reduce the number of function concerned in selection algorithms, the 

number of test cases to cover each function will be calculated. The tit is the test 

intensity threshold, a kind of metric; to describe a degree of how many percentages of 

test cases can cover each function. For example, if tit=100%, we remove the functions 

which covered by all test cases. As we can seen in Figure 3, TC(fi) / |STall| means the 

function can be covered by how many percentage of test cases. If it is larger than tit, fi 

this function is selected into SFsel which is used to downsize the functional space to 

speed up other algorithms. 

 

Figure 3 PDF-SA algorithm 

3.2 CW-NumMin, CW-CostMin and CW-CostCovB algorithms 

The second category of algorithms focuses on different characteristic weight 
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(CW). The CW-NumMin, CW-CostMin and CW-CostCovB algorithms have similar 

structure except the mechanism of selecting the CW value, as listed in Figure 4. The 

CW-NumMin algorithm uses FCC(SFmod,Ti) as CW value because larger 

FCC(SFmod,Ti) means a larger coverage in the test cases. After selecting one test case 

into STsel, it’s necessary to update STall. Next, using UpdateT() to remove the test 

cases which do not cover any functions. Because when a test case does not have any 

extra coverage, it should be removed from STall. And then continue to perform this 

loop until STall = null. The CW-CostMin algorithm uses WEIGHT(SFmod,Ti) as CW 

value. Larger WEIGHT(SFmod,Ti) means more coverage under the same cost. In the 

other words, larger WEIGHT(SFmod,Ti) means cheaper, so the WEIGHT(SFmod,Ti) is 

token as CW value by the CW-CostMin algorithm. In the CW-CostCovB algorithm 

uses CV(SFmod,STall,Ti,fcost,fcov) as CW value. In chapter 2.1, we have showed that 

the larger CV(SFmod,STall,Ti,fcost,fcov) means this test case can have better balance 

result between cost and extra coverage.  
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Figure 4 CW-NumMin, CW-CostMin and CW-CostCovB algorithms 

We illustrate the procedure of these similar algorithms using the more 

complicated CW-CostCovB as an example. 

As tabulated in Table 3(a), there are five test cases. The IDs of test cases are 

from 1 to 5 and execution times are 2, 3, 4, 5 and 4 minutes, respectively. These test 

cases could cover the number of 500, 300, 700, 1,000 and 500 modified functions and 

also cover the extra functions with the number of 500, 700, 500, 2,000 and 1,000, 

respectively. The factors for the cost and the extra coverage are fcov=0.4 and 

fcost=0.6. 

At the beginning, we get the value of WEIGHT(), FCC()/COST(), from each test 

case. For example, WEIGHT() of test case 1 is 500/2=250. The other four test cases 

get the value of WEIGHT() in the same way. Then we sum the value of WEIGHT() 

and the value of EFCC() for five test cases, separately. The total value of WEIGHT() 

is 850 and the total value of EFCC() is 4,700. Next, we get the value of PARAC() and 

PARAW() from each test case. For example, in test case 1, PARAC() = EFCC() / Total 
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EFCC() = 500/4,700 = 10.64% and PARAW() = WEIGHT() / Total WEIGHT() = 

250/850 = 29.41%. That means the percentage of the extra coverage and the 

percentage of cost of test case 1 is 10.64% and 29.41% among all test cases, 

respectively. Therefore, the value of CV() can be calculated by PARAC()*fcov + 

PARAW()*fcost = 10.64%*0.4 + 29.41%*0.6 = 21.90%. As illustrated in Table 3(a), 

the test case 4 has the largest value of CV(). Hence, the test case 4 is chosen as the 

selected test case and then the values of FCC() and EFCC() are updated by 

recalculating them after removing the functions covered by test case 4. The above 

steps are repeated until the selected test cases can cover all modified functions. 

Table 3 CW-CostCovB Example 

(a) 

CW-CostCovB (fcov=0.4, fcost=0.6)  

T  COST( ) FCC( ) EFCC( ) WEIGHT( )  PARAC( ) PARAW( ) CV( )  
1  2  500  500  250  10.64%  29.41%  21.90% 

2  3  300  700  100  14.89%  11.76%  13.02% 
3  4  700  500  175  10.64%  20.59%  16.61% 

4  5  1000  2000  200  42.55%  23.53%  31.14% 
5  4  500  1000  125  21.28%  14.71%  17.33% 

Total       4700  850           
(b) 

CW-CostCovB (fcov=0.4, fcost=0.6)  

T  COST( ) FCC( )  EFCC( ) WEIGHT( ) PARAC( )  PARAW( ) CV( )  
1  2  100  200  50  16.67%  23.08%  20.51%  

2  3  200  300  66.67  25.00%  30.77%  28.46%  
3  4  300  400  75  33.33%  34.62%  34.10%  

                       
5  4  100  300  25  25.00%  11.54%  16.92%  

Total       1200  216.67           
 

3.3 CW-CovMax algorithm 
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In the CW-CovMax algorithm, as listed in Figure 5, cost is the constraint. The 

idea is the same as the CW-CostMin, but the target is all functions, rather than 

modified functions. Hence, FC(Ti)/COST(Ti) is used as CW value. Because the test 

time of Ti is larger than the restriction time, Ti has no change to be selected test case. 

Hence, we use UpdateT2() to remove test cases, which testing time are greater than 

the restriction time, before selecting the test cases. 

 
Figure 5 CW-CovMax algorithm 

3.4 CW-CostMin-C algorithm 

CW-CostMin-C algorithm extends from the CW-CostMin algorithm, as listed in 

Figure 6. FC()/COST() is used as CW value. The loop terminates when STall is null or 

coverage is greater than effective-confidence level. 
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Figure 6 CW-CostMin-C algorithm 
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4 System Design and Implementation 

In the implementation, we designed a Regression Function Coverage 

Architecture (RFCA) illustrated in the right portion of Figure 7 to solve these 

problems. There are four components: RFC Converter, RFC Importer, RFC Database 

and RFC Viewer. After performing regression test, there are test reports generated by 

testing tools in the testing server. RFCA imports these test reports into the RFC 

database, configures to run test case selection algorithms, and then replies a list of 

selected test cases to test the server through the RFC Viewer. The input of RFCA is 

the output of the testing server. Therefore, we first introduce the testing server. 

 
Figure 7 Regression Function Coverage Architecture 

4.1 Testing Server 

Before performing regression testing, we should instrument the target platform 

by the Testwell CTC++[19] first, owing to display which portion of source is covered. 

Test cases are executed on the test sever to test the target platform. When the target 

platform is tested, the testing server will generate raw test reports, which only contain 

coverage information of all functions, including reachable and unreachable functions 

by a test case, in the instrumented target platform. Because the information of 

unreachable function cannot give any help in the selection algorithms, it should be 
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removed from test reports. After the simple transformation of test reports by the 

testing server, the refined test reports are generated without the information of 

unreachable functions. After that, the testing server outputs the refined test reports to 

RFC Converter. It also outputs the file-list and status files, where the former records 

each test case belonging to which test area1, and the latter records the execution time 

of test cases. These files are used to construct the schema of test cases in RFC 

database. 

4.2 RFC Converter and Importer 

RFC Converter combines the file-list, status files and test reports into complete 

test reports, called test summary files. Each test summary file contains complete 

function coverage information and the information of testing environment. Next, RFC 

Importer reads these test summary files, parses these and records the corresponding 

field in RFC database. 

4.3 RFC Database 

RFC Database has 14 schema, which categorized as four categories from type 1 

to type 4, as listed in Figure 8. The type 1 schema stores information of functions, 

including file name, file path and function name. The type 2 schema stores the 

relationships between functions and test cases by only two IDs, the function id and the 

test case id. Because the size of type 2 schema grows fast and is very large. In type 3 

schema, it stores the relationship between each test report and the corresponding 

testing environment. The type 4 schema records the related information about testing 

environment. These schemas could help to reduce the number of test cases by filtering 

the testing environment. For example, when target platform is version A and image 

                                                
1 Test area includes MPLS, VPN and etc. in Automated Test Center (ATC) which is a central Cisco test 
team 
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type B, only the corresponding test cases under these two constraints is selected to 

perform selection algorithm.  

 
Figure 8 RFC Database 

4.4 RFC Viewer 

RFC Viewer has two steps to generate a list of selected test cases. First, a client 

inputs the modified function list and the parameters of selection algorithms from 

clients including fcost, fcov, rt, tit and ecl. At same time, RFC Database generates the 

execution time file, the list of test intensity of functions and test case files. The 

execution time file records the execution time of each test case. The list of test 

intensity of functions used to remove infrastructure functions from certain test 

intensity threshold. The test case files contain the mapping from test case ID to 

function ID. The reason of using temporary files instead of exporting data from RFC 

Database is to speed up the process of RFC Viewer. If someone is trying to read data 

from RFC Database and the other plans to execute algorithms from RFC Database, 

RFC database becomes slow. Finally, the list of selected test cases is generated by the 

selection algorithms discussed above. 
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5 Experimental Results 

5.1 Characteristics of the Test-Function Mappings 

Our experiment platform uses a personal computer, which has AMD Athlon 64 

Processor 3800+ 2.41GHz with 3GB RAM and Microsoft Windows XP Professional 

SP2. The experiments are executing on this platform. 

We choose MPLS test area as our experiment target because it has more test 

cases than other test areas. As tabulated in Figure 9(a), there are 391 test cases in 

MPLS test area. They cover 23,308 functions and their total execution time is 7,746 

minutes. The function reachability of 391 test cases is depicted in Figure 9(b). 

Because the test cases execute a series of procedures, they have really high function 

reachability. Most test cases can cover about 40% to 60% functions, meaning that 

most test cases have the 40% to 60% function reachability and also implying that a 

few selected test cases may cover total functions. The test intensity of 23,308 

functions can be seen in Figure 9(c). There are over 25% functions can be covered by 

all test cases. The distribution of test intensity of functions is average.  
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Figure 9 Function Reachability and Test Intensity 

 

There are five releases and each release contains several DDTSs2, which are bug 

tracking records, in this experiment. There are total 127 DDTSs which contain 302 

modified functions. However, MPLS only covers 67 DDTSs which have 129 

modified functions, as illustrated in Figure 9(a). Next, we try to explain the 

information of DDTS in detail. 

As illustrated in Figure 10(a), five releases, which are 124-13.12, 124-13.13, 

124-13.14, 124-13.15, 124-13.16, contain 13, 16, 24, 3 and 11 DDTSs, respectively. 

That means the distributions of bug tracking records in each release is nonuniform. At 

same time, over 65% DDTSs only modify 1 function which is shown in Figure 10(b). 

Furthermore, the test intensity of three types, which are percentage of DDTS with 

FC=1, percentage of functions and percentage of DDTS, range from 0% to 100% and 

100% test intensity of theirs are 25%~30% as listed in Figure 10(c). It implies that 

                                                
2 DDTS: We use DDTS to represent a report from Distributed Defect Tracking System 
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25%~30% DDTSs are covered by all test cases. We will use the information of 

distributions of DDTSs to explain why safe method is not enough. 

 
Figure 10 Distributions of DDTSs 

The safe method selects all test cases that can cover modified functions. And 

then it is performed to explain the cost of selected test cases from the above 

distribution of DDTSs. At first, the percentage of TCsel/TC, FC/TFC and 

COSTsel/COST of each DDTS with the safe method are sorted by percentage of 

TCsel/TC. As listed in Figure 11, the average cost of DDTSs is still high. The cost in 

almost DDTSs is greater than 40%. Only 4 DDTSs can get smaller cost. In other 

words, 94% DDTS do not have good cost down with safe method. Because 94% 

DDTSs are covered by too many test cases or covered by the test cases which cost 

high. Hence, the safe selection method is not enough. We need to further reduce the 

cost.  
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Figure 11 Safe selection 

Because the selection algorithms will use different test intensity of functions to 

compare the effective of speedup, the PDF-SA experiment is first conducted to 

understand the distribution of infrastructure functions in different test intensity of 

functions. The scenario of each experiment can be seen in Table 4. We choose the test 

intensity threshold with NA, 80, 90 and 100, to see the effect of different test intensity 

of functions to each selection algorithm. With different test intensity of functions, we 

can prove that the selection algorithms without considering the infrastructure 

functions are faster. Next, each selection algorithm is performed. In the CW-NumMin 

and the CW-CostMin algorithms, we want to observe that how many selected test 

cases and cost can be reduced. In the CW-CostCovB algorithm, the effects of fcov and 

fcost are investigated. In the CW-CovMax algorithm, 500 and 1,000 minutes are 

selected as restriction time due to the execution time of each test case is between 10 to 

100 minutes. Finally, the speedup of the different test intensity thresholds will be 

compared in the PDF-SA algorithm. 
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Table 4 Summarization of Scenarios 

Steps Algorithms  
Test Intensity 

Threshold  
Other Parameters  

1  PDF-SA  0, 5, …, 100   
2  CW-NumMin  NA, 80, 90, 100   
3  CW-CostMin  NA, 80, 90, 100   
4  CW-CostCovB  NA, 80, 90, 100  fcov = {0, 0.1, …, 1}  
5  CW-CovMax  NA, 80, 90, 100  rt = {500, 1000}  
6  CW-CostMin-C  NA, 80, 90, 100  ecl = {10, 20, …, 100}  

 

5.2 Result Analysis 

5.2.1 The impact of different test intensity threshold 

In the following testing, we choose a symbol of CW to represent the situation of 

consider all functional space and tit to represent test intensity threshold. For example, 

CWtit100 is a case which does not consider 100% test intensity of functions. 

The goals of the CW-NumMin and the CW-CostMin algorithm choose the 

minimal test cases and the minimal cost, respectively. At the beginning, we have to 

analyze does different tit have different impact to cost and coverage in the 

experiments, as illustrated in Figure 12 (a). In the CWtit100, CWtit90, CWtit80 and CW of 

the CW-NumMin, the difference only appears in EFCC/TFC value. Because the effect 

of without considering infrastructure functions has less impact. We only explain the 

experiment results in CWtit100 scenario in the following selection algorithm. However, 

why the value of EFCC/TFC has difference with 27.59% (92.41%-64.82%) in the 

CWtit100 and CW of the CW-NumMin? We have to explain the significance in these 

values first.  
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Figure 12 TS vs. CW-NumMin, CW-CostMin results 

5.2.2 Inside the results 

In Figure 13, in order to explain how many types of function exist in a complete 

functional space, we take CW and CWtit100 in the CW-NumMin algorithm as an 

example. First, the total coverage can be divided as two parts, one is FC/TFC and the 

other one is (TFC-FC)/TFC. FC/TFC means the degree of coverage. In contrary, the 

(TFC-FC)/TFC means the degree of non-coverage. The FC/TFC has 92.96% in the 

CW. Furthermore, FC/TFC is composed of three parts: EFCC/TFC, Infrastructure 

functions / TFC and Modified functions / TFC. The corresponding percentage is 

92.41%, 0% and 0.55% respectively. However, the modified functions have 302 

numbers and account for 1.295% of all functions. But it only has 0.55% in Figure 13. 

Because not every modified function can be covered in MPLS test area. There are 129 

modified functions real in MPLS test area and account for 0.55% only.  

The percentage of FC/TFC is 92.62% in CWtit100. EFCC/TFC, Infrastructure 

functions / TFC and Modified functions / TFC account for 64.82%, 27.59% and 

0.55%, respectively. However, the percentage of infrastructure functions is not equal 

to 27.73% where we discussed above. Because there is 0.14% functions are 

infrastructure functions and modified functions at the same time. Whatever the 
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functions belong to infrastructure functions or not in our selection algorithms, we 

should consider the modified functions into algorithms. That’s why the infrastructure 

functions only reduce 27.5% functional space. 

 
Figure 13 Explanation of the types of functions in CW-NumMin 

5.2.3 CW-NumMin and CW-CostMin results 

Next, we observe the CWtit100 in the CW-NumMin algorithm as illustrated in 

Figure 12(a). If we select 2.56% of all test cases, all the modified functions can be 

covered. And it also provides 64.82% extra function coverage count and cost 2.32% 

of original tests. As illustrated in Figure 12(b), the CWtit100 only needs to select 2.56% 

test cases to cover all modified functions in the CW-CostMin algorithm. It also 

provides 62.3% extra function coverage count and cost 1.10% of original tests. We 

pick up TCsel/TC and COSTsel/COST from Figure 12(a) and normalize as traditional 

selection (TS) in Figure 12(b). In the CWtit100 of the CW-NumMin and the 

CW-CostMin algorithms, it only need 1/39 and 1/39 test case of TS, and 1/43 and 

1/91 cost of TS, respectively. Our selection algorithms can reduce a lot of test cases 

and costs, obviously. Furthermore, because the CW-CostMin always selects the 

cheapest test case and the CW-NumMin always selects the test case with largest 

coverage, the cost of the CW-CostMin is less than the one of the CW-NumMin.  

5.2.4 CW-CostCovB Results 

In the CW-CostCovB algorithm, we provide a cost-driven and coverage-driven 

algorithm. We judge which factor, cost or coverage, is more important. The parameter 
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fcov and fcost is the factor of extra coverage and cost, respectively. When fcov is 

higher than fcost, it means that extra coverage is emphasized. We analyze every kind 

of parameters where fcov from 0, 0.1, … 1, in other words, fcost from 1, 0.9, … 0. In 

the curve of EFCC/TFC as illustrated in Figure 14(a), fcov=0 and fcost=1 means we 

emphasize cost most. When we use fcost=1, the CW-CostCovB becomes the 

CW-CostMin. The selected test cases can provide 62.3% extra coverage. However, 

from fcov=0 to fcov=1, the extra coverage only falls in 62% to 69% coverage. The 

extra coverage is hard to have over 69% coverage because the coverage of 

infrastructure functions have about 27% coverage. In additional, the curve of 

COSTsel/COST grows a lot when fcov from 0.3 to 0.4 and spends 1% cost more. The 

cost only locates on 1% to 3% whatever the selection of fcov. The cost is small but 

still has large extra coverage, because these selected test cases have large function 

reachability and have small cost at same time. To compare the difference of emphasis 

in extra coverage and cost, we choose the extreme result which is fcov=0 and fcov=1, 

as illustrated in Figure 14 (b). Based on fcov=0, to normalize these two results. For an 

extra 6% coverage (96.25%-90.44%), we pay a cost of 2.6 times (1.097%→2.853%) 

and select the test cases of 1.2 times. Hence, we recommend the fcov=0 is better 

choice in the MPLS test area. 

 
Figure 14 CW-CostCovB results 

5.2.5 CW-CovMax Results 
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In the CW-CovMax algorithm, we provide a cost-driven method. The client can 

perform different selection policies by different restriction time. We use 500 and 

1,000 minutes here. As illustrated in Figure 15 (a), there is 99.63% coverage in rt=500 

and 100% coverage in rt=1,000. We can see that in order to improve a little bit 

coverage would pay a lot of cost. Based on rt=500, we normalize rt=1,000 as depicted 

in Figure 15 (b). The coverage only improves 0.37% in rt=1,000, but it needs to select 

1.44 times test cases and 1.98 times cost. It means that only few parts of functions are 

covered by a certain test case. In order to improve the coverage from 99% to 100%, 

we need to select many test cases. It concluded that choosing appropriated restriction 

time is important. In additional in Figure 15 (a), the 15.58% test cases can reach 100% 

coverage. In other words, the functions which are covered by all test cases can also be 

covered by other 15.58% test cases. There are two possibilities to explain this. First, 

there are old version test cases. We add new test cases without deleting old test cases. 

The functions which can be covered by old version test cases also can be covered by 

new version test cases. Next, the granularity of coverage is big. When a function is 

covered by a certain test case, we mark this function as covered. In actually, some test 

cases may use to test the different parts of the function. Because the testing resource is 

limited and the reason of easy to manage, we use the function coverage as coverage 

criteria. The fault detection capability may be decreased if choosing a bigger 

granularity. We only provide a case study. The real impact of reducing test cases on 

fault detection capability in our system with large code size would be future works. 
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Figure 15 CW-CovMax results 

5.2.6 CW-CostMin-C results 

In the CW-CostMin-C algorithm, we provide a coverage-driven method. The 

client can get the minimal cost according to the sufficient coverage. This algorithm 

extends from CW-CostMin algorithm. We select the cheapest test cases in each step 

until the sufficient coverage is reached. Each step uses the CW-CostMin algorithm. 

Obviously, when the test cases in n={0,10,…,90} and ecl=n+10, they must contains 

test cases in ecl=n. We perform the algorithm from ecl=10 to ecl=100. In Figure 16 

(a), the coverage is 68.82% from ecl=10 to ecl=60. Because when we select a test 

case in ecl=10, it already provides 68.82% coverage. Until ecl=70, it just selects new 

test cases. Because the huge changes of cost from ecl=90 to ecl=100, we focus on this 

division. We need to select 1.79% test cases and cost 0.529% in ecl=90. We also need 

to select 15.85% test cases and cost 12.74% in ecl=100. Based on ecl=90, we 

normalize ecl=100, as illustrated in Figure 16 (b). Increasing the 8.85 times test cases 

and 24.08 times cost from coverage 90% to 100%. It also means that there is only few 

functions are covered by certain test cases. Hence, the cost grows a lot when coverage 

from 90% to 100%. It is important to choose appropriate ecl. 
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Figure 16 CW-CostMin-C results 

5.2.7 PDF-SA Results 

After explaining the results of all algorithms, we focus on the PDF-SA algorithm 

to see the improvement in each algorithm. The Probability Density Function (PDF) 

and Cumulative Density Function (CDF) of test intensity of functions are shown in 

Figure 17 (a). In order to analyze and draw figure easily, different values of test 

intensity of functions are aggregated into a separate division. For example, 20% 

means the test intensity of functions is from greater than or equal to 20% to less than 

25%. Observed from Figure 17 (a), the distribution of PDF is irregular. 0% and 100% 

test intensity of functions are larger than others, meaning that two large portions of 

functions are covered by many test cases due to the initial procedures and special 

features. For the distribution of CDF, its value grows slowly except 100%. Hence, we 

let the functions be infrastructure functions when tit=100. There are 6,463 functions 

are infrastructure functions that do not need to be considered in selection algorithms. 

In other words, we can reduce 27.73% functional space. For the convenience to 

compare with experiment results, other two controls are selected as depicted in Figure 

17 (b). For 80% and 90% of test intensity of functions, 8,427 and 7,510 functions are 

not required to be considered, and thus 36.20% and 32.2% functional space are 

reduced, respectively. 
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Figure 17 PDF-SA result 

As listed in Figure 18 (a), there are five lines to represent the corresponding five 

algorithms, the CW-NumMin, the CW-CostMin, the CW-CostCovB, the CW-CovMax 

and the CW-CostMin-C. Y-axis means the execution time in each algorithm with 

seconds and X-axis means the degree of infrastructure threshold in the PDF-SA 

algorithm. As illustrated in Figure 18 (a), we can see the different policies of test 

intensity of functions have great difference, especially in CW to CWtit100, because 

from CW to CWtit100 can reduce 27.73% functional space. The speed up is not 

remarkable from CWtit100 to CWtit90 and CWtit90 to CWtit80 because it only remove 

more 4.47% and 4% functional space respectively. 

 
Figure 18 Performance Improving by PDF-SA 

The execution time in the CW-CostCovB algorithm is larger than other 
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algorithms. Because this algorithm needs two parameters, fcov and fcost, and also 

needs to accumulate the cost and EFCC of all test cases to get the CV(). Furthermore, 

we normalize the execution time of the CWtit100, the CWtit90 and the CWtit80 base on 

the execution time of the CW. As illustrated in Figure 18 (b), the execution time of the 

CWtit100, the CWtit90 and the CWtit80 reduce to 10%~70% of original execution time, 

especially in the CW-CovMax and the CW-CostMin-C. Because these two algorithms 

use FC()/COST() as an CW instead FCC()/COST() in other algorithms. The CWtit100, 

the CWtit90 and the CWtit80 can save algorithm runtime to 48.46%, 40.91% and 

33.37% of original in average. Because the selection algorithms use many operations 

such as union, intersection and minus of set, even the infrastructure functions of 

CWtit100 only have 27.73%, the algorithm runtime can be reduced to 48.46%. 

Consequently, if choosing the smaller tit, you can reduce more runtime. In contrary, 

the results of algorithms become unreasonable when too many functions are 

considered as infrastructure functions. 
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6 Conclusions 

Regression testing becomes unmanageable in large code size. Hence, we 

implement the database driven test case selection service and define two metrics to 

characterize the coverage information: function reachability of a test and test intensity 

of a function. Then we adapted algorithms from previous works to the practical 

circumstances of the existing automated regression test system, and devise some test 

case selection strategies for different concerns. 

The CW-NumMin algorithm can reduce the number of selected test cases and 

cost to 1/39 and 1/43 respectively. The CW-CostMin algorithm can reduce the number 

of selected test cases and cost to 1/39 and 1/91 respectively. The CW-CostCovB 

algorithm provides cost-driven and coverage-driven tests. It also concludes that for an 

extra 6% coverage (96.25%-90.44%), we pay a cost of 2.6 times (1.097%→2.853%) 

and select the test cases of 1.2 times. The CW-CovMax algorithm provides 

cost-driven tests. It concludes that rt=1000 has more 0.37% coverage than rt=500 but 

increases 1.44 times test cases and 1.98 times cost and also concludes that choosing 

appropriated restriction time is important. The CW-CostMin-C algorithm provides 

coverage-driven tests. It concludes that from coverage 90% to 100%, it needs to select 

8.85 times test cases and cost 24.08 times and also concludes that choosing 

appropriated effective-confidence level is important. In the PDF-SA algorithm, 

CWtit100, CWtit90 and CWtit80 can reduce execution time to 48.46%, 40.91% and 

33.37% respectively. 

These algorithms use greedy heuristic methods and are applicable in MPLS tests 

of IOS. The experiment results show that the number of test cases and cost are 

reduced to 1/39 and 1/91, respectively. In advance, these algorithms also provide 
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cost-driven and coverage-driven tests. 

In future work, four directions can be improved. First, the impact without 

selecting the test cases, which can cover modified functions, should be concerned. 

Second, we have to analyze the benefit of trade-off between function coverage and 

fault detection capability. Because the current system is based on the large code size, 

to adapt other criteria, such as condition/branch coverage, may degrade the efficiency 

of testing system and increase the algorithm runtime. Next, if we have many test beds 

dedicated to different features such that we can perform regression testing parallel 

with different features. Hence, selecting the test cases to run on the different test beds 

will have complicated hand-off cost. Finally, the test coverage generated by the 

original test cases may have flaws. We can compare the effectiveness of test coverage 

through different traffic, such as attack tools, protocol fuzzier and real traffic. 
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