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Test Coverage Optimization Problemswith Large Code Size

Sudent: Chi-Heng Chou Advisor: Dr. Ying-Dar Lin
I nstitutes of Computer Science and Engineering
National Chiao Tung University

Abstract

Regression testing is conducted frequently on major, minor, and even bug-fix
software or firmware releases. For example, as a part of Cisco 10S source codes with
57,758 functions checked by 2,320 test cases, it requires 36 days if all test cases are
run on arelease. Previous research works on test reduction algorithms select test cases
based on the test coverage information of statement-level conditions/branches and
could not scale to larger programs, and,thus are difficult to apply in real production
systems. In this work, we aim to develop.a practical test reduction approach based on
the coverage information of which test™ cases “touch” which functions. Since the
granularity of coverage information is reduced from condition/branch to function, the
complexity is much reduced “and"‘could scale -well. We first define function
reachability of atest (the percentage of functions that a specific test could touch) and
test intensity of a function (the percentage of tests that touch a specific function). With
these two metrics, the coverage information is characterized. We then apply greedy
algorithms to select test cases, with or without a safe mode that selects all test cases
touching modified functions. The results from instrumenting parts of 10OS show that
we could reduce the test cost (time) to 1/91, on the average, without a safe mode.
With a safe mode, the reduction ratio drops as the number of modified functions and
their test intensities increase. Numerous bug-fix releases modify only one or very few
functions with low test intensity, where our approach can be applied safely and
effectively.

Keywords. Regression test, software engineering, test reduction, test coverage.
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1 Introduction

1.1 Motivation

During the lifecycle of a large industrial software product, the number of test
cases and their complexity increase significantly as new versions of software are
constantly released. The developers tend to skip some insignificant test cases and
forgo the fault detection opportunities due to the cost of reproducing all the
accumulated test cases. The test cases are selected according to their cost and the fault
detection opportunities. An array of selection algorithms have been designed based on
a variety of models on the relations between the code coverage and fault detection
opportunities of test cases. However, these algorithms still demand a large space of
database and the long execution time:due to. the: huge number of test cases and
functions.

The relationships between test cases and funetions are like an interlaced net. The
selection of the function involves some'test cases, and vice versa. We define the test
intensity of a function and the function reachability to explain the relationships
between test cases and functions, where the former is the percentage of test cases that
cover or invoke the functions, and the latter is the percentage of functions covered by
test cases. Through the relationships and different selection requirements, we could

find several practical problems with test reduction and solve them.

1.2 Related works

This section discusses the method of choosing suitable test cases to effectively
reduce the testing time and the loss of fault detection capability, as well as existing

study in reducing the number of test cases. The trade-offs of the number of selected



test cases and fault detection capability are somewhat controversial. For example,
Wong et al. [1] concludes that test cases without adding coverage to a test set are
likely to have small impact on fault detection capability. However, minimizing test
cases is reported to severely compromise the fault detection capability in [2]. Hence,
these two papers illustrated that selecting effective test cases with the fault detection
capability is important.

Regression testing is conducted frequently on major, minor, and even bug-fix
software or firmware releases. It always focuses on the newly modified portion of the
source codes, implying that atest case that does not cover any function having been
modified since the last regression test will not reveal any new fault, so skipping the
test case will not lose the fault detection capability of a new regression round. Hence,
each regression testing can detect.every fault by ‘test cases. In other words, the new
faults should be generated by functions newly introduced or modified since the last
regression test. It also means regression.testing will not find less new faults by not
running the test cases which do not cover modified functions. This assumption is held
throughout thisthesis.

Reducing the regression testing is a well-known minimal set-cover problem,
which is an NP complete problem [1],[3],[4]. According to [3], the reduction includes
the test selection problem and the test plan update problem. Since our experiments
work on the practical circumstances of the existing automated regression test system
and do not have the information of the test plan, here we only investigate the test
selection problem that is also called test case reduction problem. The test case
reduction problem is clearly defined as follows:

Given: A test suite T, a set of testing requirements {ri,r»,...,rn}, that must be
satisfied to provide the desired test coverage of the program, and subsets {T1,T»,..., T}

of T, one associated with each of the ri's such that any one of the test cases ft;
2



belonging to T; coversr;.

Problem: Find a representative set of test casest; that will satisfy all of ther;'s

A number of methods can solve the test case reduction problem in polynomial
time, e.g., the greedy heuristic methods [5]-[8], the generic algorithm methods
[9],[10][11] and the integer linear programming methods [12]. The greedy heuristic
methods are generally better than others [13][14], so our algorithms adopt a greedy
heuristic method. The related research about reduction of regression testing also
includes prioritizing test cases for regression testing [15], modeling the cost-benefits
for regression testing [16] and impact of test case reduction on fault detection
capability [1][2][17][18]. We focus only on greedy heuristic methods, which have
some different applications. The focus on fault detection capability, especially with
the branch coverage, can be seen in[5][6][7]. Thehitting set algorithm [5] categorizes
test cases in the test suite according to the degree of “essentialness” and selects test
cases in the order from most “essential 1o least “essential”. The G/GE/GRE
algorithms [8] are based on three strategies. essential, 1-to-1 redundant and greedy
strategies. However, the previous algorithms do not match our needs exactly. The G
algorithms [8] are adapted to new applications to solve the problems we face in the

next chapter and the algorithms for these problems in Chapter 3.

1.3 Contribution

This thesis describes the implementation of a database driven test case selection
service in an automated regression test production system capable of providing
information of code coverage trace and execution time of each test case. The service
also imports code modification history from the source control system with the
intention to focus on the opportunity of detecting faults caused by newly modified

codes. We define two metrics to characterize the coverage information: function
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reachability of a test and test intensity of a function. Then we adopt algorithms from
previous works to the practical circumstances of the existing automated regression
test system, and devise some test case selection strategies for different concerns.

The organization of this paper is as follows. Chapter 2 first defines the notation
of selection algorithms and describes the six problems. Next, Chapter 3 describes our
designed test case selection strategies adapted to the circumstances of the real life
system. Chapter 4 states the implementation of our practical database-driven test case
selection services and Chapter 5 provides the experiment environment and results.

Finally, Chapter 6 discusses the lessons learned from this exercise and future work.



2 Notation definition and problems

2.1 Notation Definition

Some definitions of variables and functions are tabulated in Figure 1 and Figure
2, respectively. From Figure 1, there are two test cases {T1, T»} and four functions
SFa={ f1, f2, f3, fa}, with two modified functions, SFmog = {f1 , f3}. When we need to
choose a test case to cover modified functions, the reasonable selection is T1, which
covers f; and fs. Thus, ST={T1}. Next, five parameters that are constraints of our
algorithms, such as fcost, fcov, rt, tit and ecl, will be explained further in each

algorithm.

Variable

The total number of functions in RFC database
The total number of test cases in RFC database
A function in RFC database, where 1= j=m

Function coverage of test case i. i=1...n, T, = {1 < j =m}

I BI

ST, Set of total test cases, ST, = {T}|i=1...n}
ST Set of selected functions SF={fufo0f3 ot
SF.;i Set of total functions, SF,, ={f i =1...m} SFmod={fl} fs}
:imd :et oi m(lndlﬁzd flﬁj;llnc.tlons T:L:{fl/ fz; f3}
et of selecte ctions —

= T={fufafa}
fcost Cost factor (Default: fcost=0.5), fcost + feov =1 ST ={T,T,}
fcov Coverage factor (Default: fcov=0.5), fcost + feov = 1 ol 1 "2

T ST, AT}

rt Restriction time in minutes
tit Test intensity threshold, 0% ~ 100% (Default: tit=100%)
ecl Effective-confidence level, 0% ~ 100% (Default: ec/=100%)

Figure 1 Definitions of variables



COST(T,) Return the execution time of a test case in minutes, where 1</ <n
TC(f) Test Case Count

Return the number of test cases to coverf;
FC(T;) Function Count

Return the number of functions could be covered by a test case, where L =i = 71
TFC(ST ;) Total Function Count

ReturnFC(U, T
FCC(SF 5T} Function Coverage Count

Return the number of functions to be covered by a test case with modified functions, wherel <i <n
EFCC(SF,,+T) Extra Function Coverage Count

ReturnFC(T;)—FCC(SF,,2T;) .wherel =i =h
TEFCC (SF,,5T.0) Total EFCC

Return FCUE, B- U T3 SF mad)
WEIGHT(SF,,4.T;) Return FCC(5Fma T3) awherel <7 =g

’ COST(T)

PARAW(SF, 4T, Return WEIGHT(SF,,,,. T) wherel<i<n

> WEIGHT(SE,,,.T;)
(Normalizing weight into percentage in each test case)

PARAC(SF 500 ST a1, 1) Retumn  EFCC(SE, . 73) where 1<{<n
%EFCC (SF,pq. STett)

(Normalizing extra function coverage countin each test cases intopercentage)

CV(SF . ST . T feost frov)  Comprehensive Value
Return PARAW(SF,,. T¥ffeast + PARAC (3F, 3T, Tiffeov where 1=i=n
(The optimal balance value between cost and coverage)

Figure 2 Definitions of functions

Figure 2 shows the definition of, functions, ‘which are basic components in our
algorithms. COST(T;) returns théexecution ti‘r‘he of- test case T;. Test case count TC(f;)
returns the number of test cases which cover f; function count FC(T;) and function
coverage count FCC(SFmog, Ti) both return the number of functions to be covered by
the test case T;, but FCC(SFmog, Ti) puts special attention on modified functions. Extra
function coverage count EFCC(SFmoq, Ti) returns total function count minus function
coverage count. Finally, TFC(STa) and TEFCC(SFmod,STai) return total function
count and total extra function coverage count, respectively. In the CostCovB problem,
the cost or extra coverage factor used to decide cost is meaningful or extra coverage.
The algorithm of this problem uses CV(SFmod, STai, Ti,fcost,fcov) to choose the most
balancing test case. The detailled definitions of functions are listed in Figure 2.
Because CV() is used to select best balancing test case, it should be composed by two

parts, cost and coverage, where the former is PARAW(SFo4, Ti) * fcost and the latter is
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PARAC(SFmoa,STan, Ti) * fcov. fcost and fcov are factors of cost and extra coverage,
respectively. PARAW() returns the percentage of WEIGHT(SFmeq, Ti)) among total
WEIGHT(SFmog, Ti) and  PARAC(SFmod,STai, Ti) returns  the percentage  of
EFCC(SFmod, Ti) among TEFCC(SFmod, STal)-

We define function reachability of a test (FC(T;)/|SFai|) as the percentage of
functions that a specific test could touch, and test intensity of a function (TC(f;)/|STail),
as the percentage of tests that touch a specific function. The coverage information is

characterized by these two metrics.

2.2 Six Problems

The empirical study we made is on the prevailing Cisco Internetwork Operating
System (10S) which has very huge code size and test cases. Our study is confined to
about 50,000 functions and 2,300 test cases that are only a portion of whole system.
Each test case operates a series of configuration and testing steps. The runtime of a
test case varies from 10 minutes'to. 100 minutes, ‘Conducting a complete regression
testing of 2,300 test cases on a single test platform takes a few weeks, so selecting a
small and proper subset of test cases in regression testing can save a lot of time. From
the previous assumption, we focus on test cases that cover modified functions. How
do we get the minimal number of test cases or minimal cost of test cases with the
knowledge of which functions have been modified since the last regression round, or
even balance between cost and coverage? Furthermore, with a given limited testing
time, how do we get maximal coverage? With a given required level of coverage, how
do we get the minimal cost of test cases? How to reduce selecting time of selection

algorithms? We summarize the problemsin Table 1.



Table 1 The

description of problems

Problem Short name) Description

The Number-Minimization A Given the modified functions to get the minimal
Problem number of test cases
The Cost-Minimization ~|Given the modified functions to get the minimal cost of
Problem CostMin test cases
The Cost and Coverage CostCovB Given the modified functions to get the test cases
Balance Problem which can balance cost and extra coverage
The Coverage-Maximization ) S

CovMax |Given the restriction time to get the max coverage
Problem
The Cost-Minimization with R Given the effective-confidence leve to get the minimal
Confidence Level Problem cost of test cases
The Selection Acceleration Find the infrastructure functions to reduce the
Problems A functional space

Moreover, executing the test case selection algorithms also takes time, which isa
large codt, if requirement is frequently asked. Functions with test intensity over a
preset threshold (e.g., 90%) are designated infrastructure functions (TC(f;)/|STan| = tit).
Removing these functions improves.the speed- of algorithms. The constraints of the

six typical problems and the benefits derived from their respective solutions are

tabulated in Table 2.

Table 2 Test Coverage Optimizing Problems

Test Coverage Optimizing Problems
# | Problems Algorithms Objectives Constraints Capabilities
1| NumMin CW-NumMin gﬂa;résnumba of test Modified function | Decreasing testing time
2 | CostMin CW-CostMin Min cost of test cases | Modified Function | Decreasing testing time
Balance min cost of Modified Function | Providing Cost-driven test
3| CostCovB | CW-CostCovB | test case and max extra | A cost factor Providing Coverage-driven
coverage A coverage factor | test
Restricted time Providing Cost-driven test
4 | CovMax CW-CovMax Max coverage (minutes) Increasing coverage rate
Min cost where test - .
5| costMin-c | cw-costmin-c | coverage> Effective-confidenc ng'd' ng Coverage-driven
leg/eelctlveconfl dence eleve Decreasing testing time
Removing —infrastructure
6lsa PDE-SA Infrastructure functions | Test intensity functions
Redundant test case threshold Speed up performing
agorithm




In the NumMin and CostMin problems, given a set of modified functions, we
need to find the minimal number or cost of test cases, subject to the constraint that
each modified function in the set must be called at least once. After solving these two
problems, testing time of regression testing could be reduced.

In the CostCovB problem, in order to balance cost and coverage, we judge which
factor, cost or coverage, is more important with the set of modified functions. The
solution provides a guide between cost-driven and coverage-driven tests.

In the CovMax problem, given a constant total test time restriction, the test cases
with maximal coverage and the cheapest cost is chosen to provide a cost-driven test
strategy.

In the CogMin-C problem, an effective-confidence level as an alternative
measure of coverage is adapted. The coverage over only the functions registered in
RFC database, as in contrast. to coverage over al functions is called
effective-confidence level. Due to large code size, the' mapping of the functions, which
is unreachable by any test case, and-test.casesis so large that performing an algorithm
for these useless mapping only increases cost without improving accuracy. Thus, RFC
database only stores the mapping of reachable functions and test cases, and this is
why effective-confidence level is instead of coverage level. Solution of this problem
could provide a coverage-driven test strategy which also decreases testing time.

In the SA problem, owing to speed up other algorithms, execution of the
selection algorithms do consider the infrastructure functions with different test
intensity criteria. For example, with the 100% test intensity threshold, the functions
covered by every test case can be skipped. Hence, when performing algorithms, the
considered functions in selection algorithms becomes small and each algorithm
becomes faster. By controlling the size of the infrastructure function set, the

algorithms can speed up their testing.



3 Designing Six Algorithms

The six practical problems and designed strategies are shown in Table 2. There
are two categories of algorithms: the PDF-SA algorithm and the prefix of the CW

algorithms.
3.1 PDF-SA algorithm

In order to reduce the number of function concerned in selection algorithms, the
number of test cases to cover each function will be calculated. The tit is the test
intensity threshold, a kind of metric; to describe a degree of how many percentages of
test cases can cover each function. For example, if tit=100%, we remove the functions
which covered by all test cases. As we, can.seen in Figure 3, TC(f;) / |STai| means the
function can be covered by how many percentage of. test cases. If it is larger than tit, f;
this function is selected into SFs “which is‘used to downsize the functional space to

speed up other algorithms,

PDF-SA algorithm
01 Input #it, SF;

02 Output SF
03 Begin

04 for vf <sF,

05 if |(T(“(7fi)

el

(57,02
06 SF, ;vef =SF’ Sef +j 1‘

07 end-1f

11 end-tor

12 return SF ;.

13 End

Figure 3 PDF-SA algorithm

3.2 CW-NumMin, CW-CostMin and CW-CostCovB algorithms

The second category of algorithms focuses on different characteristic weight

10



(CW). The CW-NumMin, CW-CostMin and CW-CostCovB agorithms have similar
structure except the mechanism of selecting the CW value, as listed in Figure 4. The
CW-NumMin algorithm uses FCC(SFmoa,Ti) a CW value because larger
FCC(SFmod, Ti) means a larger coverage in the test cases. After selecting one test case
into ST, it’s necessary to update STy Next, using UpdateT() to remove the test
cases which do not cover any functions. Because when a test case does not have any
extra coverage, it should be removed from ST;. And then continue to perform this
loop until STy = null. The CW-CostMin algorithm uses WEIGHT(S g, Ti) @ CW
value. Larger WEIGHT(SFmog, Ti) means more coverage under the same cost. In the
other words, larger WEIGHT(SFiog, Ti) means cheaper, so the WEIGHT(SFmoq, Ti) IS
token as CW value by the CW-CostMin algorithm. In the CW-CostCovB algorithm
uses CV(SFmod, STa, Ti,fcost,fcov) as CW value. In. chapter 2.1, we have showed that
the larger CV(SFmod,STai, Ti,fcost,fcov) means this test case can have better balance

result between cost and extra coverage:

1



CW-NumMlin algorithm
01 Input SF,,,, 7,57,

mod

02 Output ST,
03 Declare SEL: a test case which 1s selected
04 [.{pdareT(): torv T,0 =i = n,whereT, ST,
T, =T -T,~SEL
if(L ==
05 Begin STy =51, =T,
06 while( ST(‘H =) _
07 SEL= arg max FCC(SE,., 1))
08 ST,,=ST,, +SEL:
09 ST,=8T,-SEL,
10 Updatel().

11 end-while CW-CostMin algorithm
12 return S];ei.' 07 SEL= arg ;Eg? WEIGHT( SEnod’Ti)
13 End

CW-CostCovB algorithm

01 InputSFE,,, T, ST, feov, fcost

07 SEL- rgmax CV(SFE, q-5T, . T, fcost, fcov)

Figure 4 CW-NumMin; CW-CostMin and CW-CostCovB algorithms

We illustrate the procedure. of these: similar algorithms using the more
complicated CW-CostCovB as an example;

As tabulated in Table 3(a), there are five test cases. The IDs of test cases are
from 1 to 5 and execution times are 2, 3, 4, 5 and 4 minutes, respectively. These test
cases could cover the number of 500, 300, 700, 1,000 and 500 modified functions and
also cover the extra functions with the number of 500, 700, 500, 2,000 and 1,000,
respectively. The factors for the cost and the extra coverage are fcov=0.4 and
fcost=0.6.

At the beginning, we get the value of WEIGHT(), FCC()/COST(), from each test
case. For example, WEIGHT() of test case 1 is 500/2=250. The other four test cases
get the value of WEIGHT() in the same way. Then we sum the value of WEIGHT()
and the value of EFCC() for five test cases, separately. The total value of WEIGHT()
is 850 and the total value of EFCC() is 4,700. Next, we get the value of PARAC() and

PARAW() from each test case. For example, in test case 1, PARAC() = EFCC() / Total
12



EFCC() = 500/4,700 = 10.64% and PARAW() = WEIGHT() / Total WEIGHT() =
250/850 = 29.41%. That means the percentage of the extra coverage and the
percentage of cost of test case 1 is 10.64% and 29.41% among all test cases,
respectively. Therefore, the value of CV() can be calculated by PARAC()*fcov +
PARAW()*fcost = 10.64%*0.4 + 29.41%*0.6 = 21.90%. As illustrated in Table 3(a),
the test case 4 has the largest value of CV(). Hence, the test case 4 is chosen as the
selected test case and then the values of FCC() and EFCC() are updated by
recalculating them after removing the functions covered by test case 4. The above

steps are repeated until the selected test cases can cover all modified functions.

Table 3 CW-CostCovB Example
(a)

CW-CostCovB (fcov=0.4, fcost=0.6)

T COST() FCC() EFCC() WEIGHT() PARAC() PARAW() CV()
1 2 500 500 250 10.64%  29.41%  21.90%
2 3 300 700 100 14.89%  11.76%  13.02%
3 4 700 500 175 10.64%  2059%  16.61%
4 5 1000 2000 200 4255%  2353%  31.14%
5 4 500 1000 125 21.28%  14.71%  17.33%
Total 4700 850

CW-CostCovB (fcov=0.4, fcost=0.6)

T COST() FCC() EFCC() WEIGHT() PARAC() PARAW() CV()
1 2 100 200 50 16.67%  23.08%  20.51%
2 3 200 300 66.67 2500%  30.77%  28.46%
3 4 300 400 75 33.33%  34.62% 34.10%
5 4 100 300 25 2500%  11.54%  16.92%
Total 1200  216.67

3.3 CW-CovMax algorithm



In the CW-CovMax algorithm, as listed in Figure 5, cost is the constraint. The
idea is the same as the CW-CostMin, but the target is all functions, rather than
modified functions. Hence, FC(T;)/COST(T;) is used as CW value. Because the test
time of T; is larger than the restriction time, T; has no change to be selected test case.
Hence, we use UpdateT2() to remove test cases, which testing time are greater than
the restriction time, before selecting the test cases.

CW-CovMax algorithm
Ol Input rt, T, ST,
02 Output ST,

03 Declare SEL: a test case which i1s selected

04 Tpdaf(BT() forv 7,0 < i < nywherel = ST,
T, =T =T ~SEL
il ==
STy =5Ty -T,
05 UpdateT2(): forv 7,0 i < nwherel, € ST,
iH(COST(T,) = 1t)
06 Begin SToy =51y =T,
07 while( ST, #¢ )
08 UpdateT2().
091 (ST, =¢) bwaL
10 SEL = aig un\( T%OST(TK))
1187, =S8T,, +SEL
1287,,=ST,,—SEL:
13 Updatel().
14 end-while
15 return ST,
16 End

Figure 5 CW-CovMax algorithm

3.4 CW-CostMin-C algorithm

CW-CostMin-C algorithm extends from the CW-CostMin algorithm, as listed in
Figure 6. FC()/COST() is used as CW value. The loop terminates when ST is null or

coverage is greater than effective-confidence level.
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CW-CostMin-C algorithm
0l Inputecl, T, ST,
02 Output ST,
03 Declare SEL: a test case which 1s selected
04 Updatel(); tor7 LO=i=nwherel < ST,
T =T-T~SEL
ifiT =0
05 Begin STy =81 - T,
06 while( ST, # ¢ or FC(ST,,)/FC(ST,,) < ecl)
07 SEL =arg max ( e )C'OST(TI )
08 8T,,=S1,,, +SEL:
0987, = ST, — SEL.
10 UpdateT().
11 end-while
12 return ST,
13 End

Figure 6 CW-CostMin-C algorithm
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4 System Design and | mplementation

In the implementation, we designed a Regression Function Coverage
Architecture (RFCA) illustrated in the right portion of Figure 7 to solve these
problems. There are four components: RFC Converter, RFC Importer, RFC Database
and RFC Viewer. After performing regression test, there are test reports generated by
testing tools in the testing server. RFCA imports these test reports into the RFC
database, configures to run test case selection algorithms, and then replies a list of
selected test cases to test the server through the RFC Viewer. The input of RFCA is

the output of the testing server. Therefore, we first introduce the testing server.

Target
Platform

v 1

[Testing Server ]<—-—- RFC Viewer [ i RFC
Database

J_ i rrc M Rrec
Test Reports Converter Importer

Figure 7 Regression Function Coverage Architecture

4.1 Testing Server

Before performing regression testing, we should instrument the target platform
by the Testwell CTC++[19] first, owing to display which portion of source is covered.
Test cases are executed on the test sever to test the target platform. When the target
platform is tested, the testing server will generate raw test reports, which only contain
coverage information of all functions, including reachable and unreachable functions
by a test case, in the instrumented target platform. Because the information of
unreachable function cannot give any help in the selection algorithms, it should be
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removed from test reports. After the simple transformation of test reports by the
testing server, the refined test reports are generated without the information of
unreachable functions. After that, the testing server outputs the refined test reports to
RFC Converter. It also outputs the file-list and status files, where the former records
each test case belonging to which test area’, and the latter records the execution time
of test cases. These files are used to construct the schema of test cases in RFC

database.

4.2 RFC Converter and Importer

RFC Converter combines the file-list, status files and test reports into complete
test reports, caled test summary files. Each test summary file contains complete
function coverage information and the information of testing environment. Next, RFC
Importer reads these test summary files,:parses:these and records the corresponding

field in RFC database.

4.3 RFC Database

RFC Database has 14 schema, which categorized as four categories from type 1
to type 4, as listed in Figure 8. The type 1 schema stores information of functions,
including file name, file path and function name. The type 2 schema stores the
relationships between functions and test cases by only two 1Ds, the function id and the
test case id. Because the size of type 2 schema grows fast and is very large. In type 3
schema, it stores the relationship between each test report and the corresponding
testing environment. The type 4 schema records the related information about testing
environment. These schemas could help to reduce the number of test cases by filtering

the testing environment. For example, when target platform is version A and image

! Test areaincludes MPLS, VPN and etc. in Automated Test Center (ATC) which isa central Cisco test

team
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type B, only the corresponding test cases under these two constraints is selected to

perform selection algorithm.

File List Table TYPE1

TYPE2

] ]
[ Suite Line Info Mapping Table ] [ BAT Line Mapping Table ]

t L Y

[ Suite Line InformationTable ] TYPE3
r
BAT Line Table
TYPE4

¥ v —
[Test Bed Table ] [ Image Type Table ] [ BAT Table ] Script Info Table

y N y !
[TestArea Table ] [Versicm ControlTable ] [ P\atformTab\e] [ Script File Table ]

Figure 8 RFC Database

4.4 RFC Viewer

RFC Viewer has two steps to generate a list of selected test cases. First, a client
inputs the modified function list and.the-parameters of selection algorithms from
clients including fcogt, fcov, rt, tit and ecl./At 'same time, RFC Database generates the
execution time file, the list of test intensity of functions and test case files. The
execution time file records the execution time of each test case. The list of test
intensity of functions used to remove infrastructure functions from certain test
intensity threshold. The test case files contain the mapping from test case ID to
function ID. The reason of using temporary files instead of exporting data from RFC
Database is to speed up the process of RFC Viewer. If someone is trying to read data
from RFC Database and the other plans to execute algorithms from RFC Database,
RFC database becomes slow. Finally, the list of selected test cases is generated by the

selection algorithms discussed above.
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5 Experimental Results

5.1 Characteristics of the Test-Function M appings

Our experiment platform uses a personal computer, which has AMD Athlon 64
Processor 3800+ 2.41GHz with 3GB RAM and Microsoft Windows XP Professional
SP2. The experiments are executing on this platform.

We choose MPLS test area as our experiment target because it has more test
cases than other test areas. As tabulated in Figure 9(a), there are 391 test cases in
MPLS test area. They cover 23,308 functions and their total execution time is 7,746
minutes. The function reachability of 391 test cases is depicted in Figure 9(b).
Because the test cases execute a series of spracedures, they have really high function
reachability. Most test cases can cover about 40%: to 60% functions, meaning that
most test cases have the 40% to 60% function reachability and also implying that a
few selected test cases may cover total functions. The test intensity of 23,308
functions can be seen in Figure 9(c). Thereare over 25% functions can be covered by

all test cases. The distribution of test intensity of functionsis average.

19



(a)

Number of test cases 391
Number of functions 23308
Total Execution Time (mins) 7746
. Number of releases 5
B 5 < Number of DDTS 127
= .G . e
g g E Number of modified functions 302
= &< Number of reachable DDTS 67
Number of reachable modified functions 129
(b) (©)
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Figure 9 Function Reachability and Test Intensity

,IJ”“"

There are five releases and each release éontainé: several DDTSS?, which are bug
tracking records, in this experiFn_ent.‘.'_Fh;ar%i”ejtotal 1127 DDTSs which contain 302
modified functions. However, M"PI”‘_S only Co';/ers 67 DDTSs which have 129
modified functions, as illustrated in Figure 9(a). Next, we try to explain the
information of DDTS in detail.

As illustrated in Figure 10(a), five releases, which are 124-13.12, 124-13.13,
124-13.14, 124-13.15, 124-13.16, contain 13, 16, 24, 3 and 11 DDTSs, respectively.
That means the distributions of bug tracking records in each release is nonuniform. At
same time, over 65% DDTSs only modify 1 function which is shown in Figure 10(b).
Furthermore, the test intensity of three types, which are percentage of DDTS with

FC=1, percentage of functions and percentage of DDTS, range from 0% to 100% and

100% test intensity of theirs are 25%~30% as listed in Figure 10(c). It implies that

2 DDTS: We use DDTSto represent areport from Distributed Defect Tracking System
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25%~30% DDTSs are covered by all test cases. We will use the information of
distributions of DDTSs to explain why safe method is not enough.

(a) (b)

70%

40%
35% w 80%
30% 50%
25%
20%
15%
10%
5% -
0% -

40%
30%

Percentage of DDTS'
Percentages of DDTS'

20%

10%

0%

124-13.12 124-13.13 124-13.14 124-13.15 124-13.16

Release Function Count

(C) = Percentange of DDTS's with FC=1 = Percentage of Functions =~ =eceeee Percentage of DDTS's
35.0%

30.0%

25.0%

20.0%

Percentage

15.0%
10.0%

5.0% 5

0.0%

0 10 20 30 40 50 60 70 80 90 100

Test Intensity (%)

Figure 10 Distributions of DDTSs
The safe method selects all test| cases that ‘can’ cover modified functions. And

then it is performed to explain:the cost 6f selected test cases from the above
distribution of DDTSs. At firg, the percentage of TCw/TC, FC/TFC and
COST«/COST of each DDTS with the safe method are sorted by percentage of
TCw/TC. As listed in Figure 11, the average cost of DDTSs is still high. The cost in
amost DDTSs is greater than 40%. Only 4 DDTSs can get smaller cost. In other
words, 94% DDTS do not have good cost down with safe method. Because 94%
DDTSs are covered by too many test cases or covered by the test cases which cost

high. Hence, the safe selection method is not enough. We need to further reduce the

COst.
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DDTS ID

Figure 11 Safe selection

Because the selection algorithms will use different test intensity of functions to
compare the effective of speedup, the PDF-SA experiment is first conducted to
understand the distribution of infrastructure functions in different test intensity of
functions. The scenario of each experiment can be.seen in Table 4. We choose the test
intensity threshold with NA, 80;90.and 100, to see the effect of different test intensity
of functions to each selection algorithm-\With-different test intensity of functions, we
can prove that the selection algorithms. without considering the infrastructure
functions are faster. Next, each selection algorithm is performed. In the CW-NumMin
and the CW-CostMin algorithms, we want to observe that how many selected test
cases and cost can be reduced. In the CW-CostCovB algorithm, the effects of fcov and
fcost are investigated. In the CW-CovMax algorithm, 500 and 1,000 minutes are
selected asrestriction time due to the execution time of each test case is between 10 to
100 minutes. Finally, the speedup of the different test intensity thresholds will be

compared in the PDF-SA algorithm.
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Table 4 Summarization of Scenarios
Test Intensity
Threshold

1 PDF-SA 0,5, ..., 100

2 CW-NumMin  NA, 80, 90, 100

3 CW-CostMin  NA, 80, 90, 100

4 CW-CostCovB NA, 80,90,100 fcov={0,0.1, ..., 1}
5

6

Steps  Algorithms Other Parameters

CW-CovMax  NA, 80, 90, 100 rt = {500, 1000}
CW-CostMin-C  NA, 80, 90, 100  ecl = {10, 20, ..., 100}

5.2 Result Analysis
521 Theimpact of different test intensity threshold

In the following testing, we choose a symbol of CW to represent the situation of
consider all functional space and tit to represent: test intensity threshold. For example,
CWiit00 IS @ case which does not-consider-100% test intensity of functions.

The goals of the CW-NumMin and the CW-=CostMin algorithm choose the
minimal test cases and the minimal. cost, respectively. At the beginning, we have to
analyze does different tit have different impact to cost and coverage in the
experiments, asillustrated in Figure 12 (). In the CWiiti00, CWiitgo, CWhitso and CW of
the CW-NumMin, the difference only appears in EFCC/TFC value. Because the effect
of without considering infrastructure functions has less impact. We only explain the
experiment results in CW;inoo Scenario in the following selection algorithm. However,
why the value of EFCC/TFC has difference with 27.59% (92.41%-64.82%) in the
CWiinoo and CW of the CW-NumMin? We have to explain the significance in these

values first.
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(a)

TCo/TC 256%  2.56% @ 256% @ 2.56%
FC/TEC 9296% 9296% 9296% 92.96% (C)
EFCC/TFC 64.82% 6041% 5649% 9241%
COSTW/COST  232%  232% 232% 232% e
(b) TC,u/TC 100 139 1/39
CW-CostMin COST/COST  1.00 1/43 1/91
TG/ TC 256% 256% 256% @ 2.56% /
FC/TEC 9044% 9044% 9044% 90.44%
EFCCITEC 62.30% 57.89% 53.98% 89.89%

COST/COST ~ 1.10% 110% 110% 1.10%
Figure 12 TS vs. CW-NumMin, CW-CostMin results

5.2.2 Insdetheresults

In Figure 13, in order to explain how many types of function exist in a complete
functional space, we take CW and CWijueo in the CW-NumMin algorithm as an
example. Firgt, the total coverage can be‘d;iv‘idgd é$two parts, one is FC/TFC and the
other one is (TFC-FC)/TFC. FC/TFC mééns the deg‘ﬁee of coverage. In contrary, the
(TFC-FC)/TFC means the degr'eé of- hoh‘-coVerége, The FC/TFC has 92.96% in the
CW. Furthermore, FC/TFC is composed: of thr‘ée parts. EFCC/TFC, Infrastructure
functions / TFC and Modified functions / TFC. The corresponding percentage is
92.41%, 0% and 0.55% respectively. However, the modified functions have 302
numbers and account for 1.295% of all functions. But it only has 0.55% in Figure 13.
Because not every modified function can be covered in MPLS test area. There are 129
modified functions real in MPLS test area and account for 0.55% only.

The percentage of FC/TFC is 92.62% in CWsnoo. EFCC/TFC, Infrastructure
functions / TFC and Modified functions / TFC account for 64.82%, 27.59% and
0.55%, respectively. However, the percentage of infrastructure functions is not equal
to 27.73% where we discussed above. Because there is 0.14% functions are

infrastructure functions and modified functions at the same time. Whatever the
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functions belong to infrastructure functions or not in our selection algorithms, we
should consider the modified functions into algorithms. That’s why the infrastructure

functions only reduce 27.5% functional space.

CWiw CW
(TFC-FC)/TFC 7.04%| 7.04%
EFCC/TEC 64.82%| 92.41%
FC/TEC [nfrastructure functions/TFC 27.59%| 0.00%
Modified functions/TEC 055%| 0.55%
Total 92.96%| 92.96%

Modified functions / Total functions = 302 / 23308 = 1.295%

Modified functions in MPLS test area / Total functions = 129/ 23308 = 0.55%

Number of functions in test intensity of functions level 100: 27.73%

Real infrastructure functions: 27.59%

Overlap on infrastructure functions and modified functions = 27.73% - 27.59% = 0.14%

Figure 13 Explanation of the types of functions in CW-NumMin

5.2.3 CW-NumMin and CW-CostMin results

Next, we observe the CWitio in the CW-NumMin algorithm as illustrated in
Figure 12(a). If we select 2.56% of -all test cases, al the modified functions can be
covered. And it also provides 64.82% extra function coverage count and cost 2.32%
of original tests. Asillustrated in Figure 12(b), the CW;inoo only needs to select 2.56%
test cases to cover al modified:functions in_the CW-CostMin algorithm. It also
provides 62.3% extra function coverage count and cost 1.10% of original tests. We
pick up TCw/TC and COSTs/COST from Figure 12(a) and normalize as traditional
selection (TS) in Figure 12(b). In the CWiueo of the CW-NumMin and the
CW-CostMin algorithms, it only need 1/39 and 1/39 test case of TS, and 1/43 and
1/91 cost of TS, respectively. Our selection algorithms can reduce a lot of test cases
and costs, obviously. Furthermore, because the CW-CostMin aways selects the
cheapest test case and the CW-NumMin always selects the test case with largest

coverage, the cost of the CW-CostMin is less than the one of the CW-NumMin.
5.2.4 CW-CostCovB Results

In the CW-CostCovB algorithm, we provide a cost-driven and coverage-driven

algorithm. We judge which factor, cost or coverage, is more important. The parameter
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fcov and fcost is the factor of extra coverage and cost, respectively. When fcov is
higher than fcogt, it means that extra coverage is emphasized. We analyze every kind
of parameters where fcov from 0, 0.1, ... 1, in other words, fcost from 1, 0.9, ... 0. In
the curve of EFCC/TFC as illustrated in Figure 14(a), fcov=0 and fcost=1 means we
emphasize cost most. When we use fcost=1, the CW-CostCovB becomes the
CW-CostMin. The selected test cases can provide 62.3% extra coverage. However,
from fcov=0 to fcov=1, the extra coverage only falls in 62% to 69% coverage. The
extra coverage is hard to have over 69% coverage because the coverage of
infrastructure functions have about 27% coverage. In additional, the curve of
COST«/COST grows a lot when fcov from 0.3 to 0.4 and spends 1% cost more. The
cost only locates on 1% to 3% whatever the selection of fcov. The cost is small but
still has large extra coverage, becalse these selected test cases have large function
reachability and have small cost at.same time: To.compare the difference of emphasis
in extra coverage and cost, we choose the extreme result which is fcov=0 and fcov=1,
asillustrated in Figure 14 (b). Based on.fcov=0, to normalize these two results. For an
extra 6% coverage (96.25%-90.44%), we pay a cost of 2.6 times (1.097%— 2.853%)
and select the test cases of 1.2 times. Hence, we recommend the fcov=0 is better

choice inthe MPLS test area.

Effectiveness of Fcov

( a ) = (COSTsel/COST EFCC/TFC

3.000% 69.000%

% -
28005 L~ | 68.000% (b)
2.600%
o / - 67.000%
/ f
g 2.200% / - 66.000%
3 2.000% 5
- L o]
'g 1.800% // 65.000% 2 TC./TC 1 120
jul o, —
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12005 ] - 63.000% EFCC/TEC 1 [ 109
5
1.000% | 62.000% OST/COST 1 2,60
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Fecov

Figure 14 CW-CostCovB results

5.25 CW-CovM ax Results
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In the CW-CovMax algorithm, we provide a cost-driven method. The client can
perform different selection policies by different restriction time. We use 500 and
1,000 minutes here. Asillustrated in Figure 15 (a), there is 99.63% coverage in rt=500
and 100% coverage in rt=1,000. We can see that in order to improve a little bit
coverage would pay alot of cost. Based on rt=500, we normalize rt=1,000 as depicted
in Figure 15 (b). The coverage only improves 0.37% in rt=1,000, but it needsto select
1.44 times test cases and 1.98 times cost. It means that only few parts of functions are
covered by a certain test case. In order to improve the coverage from 99% to 100%,
we need to select many test cases. It concluded that choosing appropriated restriction
time isimportant. In additional in Figure 15 (a), the 15.58% test cases can reach 100%
coverage. In other words, the functions which are covered by all test cases can also be
covered by other 15.58% test cases. There aretwo possibilities to explain this. First,
there are old version test cases.-\We .add new test cases without deleting old test cases.
The functions which can be coverediby-old-version test cases also can be covered by
new version test cases. Next, the granularity-of coverage is big. When a function is
covered by a certain test case, we mark this function as covered. In actually, some test
cases may use to test the different parts of the function. Because the testing resource is
limited and the reason of easy to manage, we use the function coverage as coverage
criteria. The fault detection capability may be decreased if choosing a bigger
granularity. We only provide a case study. The real impact of reducing test cases on

fault detection capability in our system with large code size would be future works.
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(a) (b)

TCe/Total TC 10990%  15.850% =2  TC../Total TC 1.00 144

FC/TFC 99.630%  100.000% FC/TFC 100 1.00

COST./COST ~ 6.442%  12.740% COST../COST 1.00 198
Figure 15 CW-CovMax results

5.2.6 CW-CostMin-C results

In the CW-CostMin-C algorithm, we provide a coverage-driven method. The
client can get the minimal cost according to the sufficient coverage. This algorithm
extends from CW-CostMin algorithm. We select the cheapest test cases in each step
until the sufficient coverage is reached. Each step uses the CW-CostMin algorithm.
Obviously, when the test cases in n={0,10,...,90} and ecl=n+10, they must contains
test cases in ecl=n. We perform the algorithm from ecl=10 to ecl=100. In Figure 16
(a), the coverage is 68.82% frem ecl=10 to ‘e‘cI:60‘. Because when we select a test
case in ecl=10, it already providGS 68.82% coverage. “Until ecl=70, it just selects new
test cases. Because the huge charigas of cost from ecl=90 to ecl=100, we focus on this
division. We need to select 1.79% test cases and cost 0.529% in ecl=90. We also need
to select 15.85% test cases and cost 12.74% in ecl=100. Based on ecl=90, we
normalize ecl=100, as illustrated in Figure 16 (b). Increasing the 8.85 times test cases
and 24.08 times cost from coverage 90% to 100%. It also means that there is only few
functions are covered by certain test cases. Hence, the cost grows a lot when coverage

from 90% to 100%. It is important to choose appropriate ecl.
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Figure 16 CW-CostMin-C results

5.2.7 PDF-SA Reaults

After explaining the results of all algorithms, we focus on the PDF-SA algorithm
to see the improvement in each algorithm. The Probability Density Function (PDF)
and Cumulative Density Function (CDF) of test intensity of functions are shown in
Figure 17 (@). In order to analyze and draw figure easily, different values of test
intensity of functions are aggregated Into a separate division. For example, 20%
means the test intensity of functionsiisfrom-greater than or equal to 20% to less than
25%. Observed from Figure 17 (a), the distribution of PDF is irregular. 0% and 100%
test intensity of functions are larger than others, meaning that two large portions of
functions are covered by many test cases due to the initial procedures and special
features. For the distribution of CDF, its value grows slowly except 100%. Hence, we
let the functions be infrastructure functions when tit=100. There are 6,463 functions
are infrastructure functions that do not need to be considered in selection algorithms.
In other words, we can reduce 27.73% functional space. For the convenience to
compare with experiment results, other two controls are selected as depicted in Figure
17 (b). For 80% and 90% of test intensity of functions, 8,427 and 7,510 functions are
not required to be considered, and thus 36.20% and 32.2% functional space are

reduced, respectively.
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Figure 17 PDF-SA result

Aslisted in Figure 18 (@), there are f|ve Imes to represent the corresponding five

algorithms, the CW-NumMin, the CW CosIMm the CW-CostCovB, the CW-CovMax

y B :
and the CW-CostMin-C. Y-ax;sn means the,executlen time in each algorithm with

seconds and X-axis means the degree—ef—l-n#astructure threshold in the PDF-SA
algorithm. As illustrated in Flgure 18 (a) we. cen see the different policies of test
intensity of functions have great difference, especially in CW to CWsuoo0, because
from CW to CWiuoo Can reduce 27.73% functional space. The speed up is not
remarkable from CWiingo t0 CWiigp and CWyigo t0 CWiiigo because it only remove

more 4.47% and 4% functional space respectively.

(a) = = CW-NumMin CW-CostMin CW-CostCovB
CW-CovMax  esswees CW-CostMin-C
350
F 300 (b)
ﬁ 250 \\
£ 200 —— CW-NumMin | 1.00] 69.23% 54.70% 37.61%
E 150 \ —_— CW-CostMin | 1.00] 52.99%| 48.72% 34.19%
g 100 = \: _____ CW-CostCovB | 1.000 69.09% 5296% 47.86%
z %0 e CW-CovMax | 100 37.15% 35.76% 35.42%
0 : : : .| CW-CostMin-C | 1.00] 13.83% 12.42% 11.76%
ow Cwit100 Cwtitoo Cwiitg Average 1.00] 4846%| 4091% 33.37%

The policy of test intensity of functions

Figure 18 Performance Improving by PDF-SA

The execution time in the CW-CostCovB algorithm is larger than other
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algorithms. Because this algorithm needs two parameters, fcov and fcost, and also
needs to accumulate the cost and EFCC of all test cases to get the CV(). Furthermore,
we normalize the execution time of the CWiiti0o, the CWiitgo and the CWijigo base on
the execution time of the CW. Asiillustrated in Figure 18 (b), the execution time of the
CWiit100, the CWitgo and the CWiiigo reduce to 10%~70% of original execution time,
especially in the CW-CovMax and the CW-CostMin-C. Because these two algorithms
use FC()/COST() as an CW instead FCC()/COST() in other algorithms. The CWjt100,
the CWiiwo and the CWiiigp can save algorithm runtime to 48.46%, 40.91% and
33.37% of original in average. Because the selection algorithms use many operations
such as union, intersection and minus of set, even the infrastructure functions of
CWiinoo only have 27.73%, the algorithm runtime can be reduced to 48.46%.
Consequently, if choosing the smaller tit, you €an. reduce more runtime. In contrary,
the results of algorithms become unreasonable when too many functions are

considered as infrastructure functions:
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6 Conclusons

Regression testing becomes unmanageable in large code size. Hence, we
implement the database driven test case selection service and define two metrics to
characterize the coverage information: function reachability of atest and test intensity
of a function. Then we adapted algorithms from previous works to the practical
circumstances of the existing automated regression test system, and devise some test
case selection strategies for different concerns.

The CW-NumMin algorithm can reduce the number of selected test cases and
cost to 1/39 and 1/43 respectively. The CW-CostMin algorithm can reduce the number
of selected test cases and cost to 1/39 and 1/91 respectively. The CW-CostCovB
algorithm provides cost-driven and coverage-driven tests. It also concludes that for an
extra 6% coverage (96.25%-90:44%), we pay-a cost-of 2.6 times (1.097%— 2.853%)
and select the test cases of.1.2 times:=The CW-CovMax algorithm provides
cost-driven tests. It concludes that rt=1000-has more 0.37% coverage than rt=500 but
increases 1.44 times test cases and 1.98 times cost and also concludes that choosing
appropriated restriction time is important. The CW-CostMin-C algorithm provides
coverage-driven tests. It concludes that from coverage 90% to 100%, it needs to select
8.85 times test cases and cost 24.08 times and also concludes that choosing
appropriated effective-confidence level is important. In the PDF-SA algorithm,
CWiitioo, CWiigo and CWiiigo can reduce execution time to 48.46%, 40.91% and
33.37% respectively.

These algorithms use greedy heuristic methods and are applicable in MPLS tests
of 10S. The experiment results show that the number of test cases and cost are

reduced to 1/39 and 1/91, respectively. In advance, these algorithms also provide

32



cost-driven and coverage-driven tests.

In future work, four directions can be improved. First, the impact without
selecting the test cases, which can cover modified functions, should be concerned.
Second, we have to analyze the benefit of trade-off between function coverage and
fault detection capability. Because the current system is based on the large code size,
to adapt other criteria, such as condition/branch coverage, may degrade the efficiency
of testing system and increase the algorithm runtime. Next, if we have many test beds
dedicated to different features such that we can perform regression testing parallel
with different features. Hence, selecting the test cases to run on the different test beds
will have complicated hand-off cost. Finally, the test coverage generated by the
original test cases may have flaws. We can compare the effectiveness of test coverage

through different traffic, such as attack tools, protocol fuzzier and real traffic.
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