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摘要 
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應用於三維繪圖系統之 

可重組式深度緩衝區壓縮演算法設計與實作 

 

學生：鍾宗融                   指導教授：范倫達 博士 

 

國立交通大學 

資訊科學與工程研究所 

摘    要 

在本論文中，我們針對三維繪圖處理器中的深度緩衝區提出具減少頻寬需求

與可重組式的壓縮演算法；根據不同的場景，從十一種壓縮模式中選擇出最適合

的壓縮模式，而這十一種模式是由 2-bit DDPCM、1-bit HA、7-bit DDPCM 三種壓

縮演算法所組合而成。此外，我們所提出的演算法亦支援單平面與雙平面兩種型

態方塊，並能支援四種差值組合方式。在 8x8 大小方塊而且深度值長度為 16-bit

的 Teapot 場景模擬環境下，我們提出的演算法其平均壓縮比可達 1.75，而且相較

於 HA 與 DDPCM 壓縮方法能夠分別改善 13.6%與 31.6%；在 8x8 大小方塊而且深

度值長度為 16-bit 的 Stereoscopic polygons 場景模擬環境下，我們提出的演算法其

平均壓縮比可達 1.74，而且相較於 HA 與 DDPCM 壓縮方法能夠分別改善 21.7%

與 38.1%。 

 深度緩衝區壓縮演算法其架構具可重組式與可調式功耗之特色，使用的製程

為 TSMC 0.18-um CMOS process，其晶片所佔面積為 1.13 mm
2；在操作頻率為 100 

MHz 與操作電壓為 1.8 伏特的情況下，未壓縮模式的最大功率消耗為 38.63 mW，

單平面模式下的最大功率消耗為 22.75 mW，雙平面模式中(僅包含 rising, vertical, 

and horizontal cases)的最大功率消耗分別為 51.76/56.25/71.9 mW，雙平面模式中(僅
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包含 falling cases)的最大功率消耗為 57.63 mW。 
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Reconfigurable Depth Buffer Compression Design and 

Implementation for 3D Graphics System 

 

Student：Tzung-Rung Jung    Advisor：Dr. Lan-Da Van 

 

Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

ABSTRACT 

A less-bandwidth-required reconfigurable depth buffer compression algorithm and 

the corresponding power-efficient architecture have been developed for 3D graphics 

system. The proposed algorithm is able to adaptively compress the depth buffer data 

according to different-scene changes by employing 11 compression modes generated 

from three compression algorithms including Differential Differential Pulse Code 

Modulation (2-bit DDPCM), Hasselgren and Akenine-Möller’s (1-bit HA), and 7-bit 

DDPCM schemes. Furthermore, this reconfigurable algorithm supports one-plane and 

two-plane type and four kinds of combination cases. For 8x8 tile size with 16-bit depth 

values under the teapot benchmark, the proposed reconfigurable algorithm can achieve 

CR of 1.75 on average and improve 13.6% and 31.6% compared with the HA and 

DDPCM compression methods, respectively. For 8x8 tile size with 16-bit depth values 

under the Stereoscopic polygons benchmark, the proposed reconfigurable algorithm can 

achieve CR of 1.74 on average and improve 21.7% and 38.1% compared with the HA 

and DDPCM compression methods, respectively.  
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The proposed reconfigurable power-efficient depth buffer compression architecture 

has been verified and implemented in TSMC 0.18-um CMOS process. The core area is 

of 1.13 mm
2
. The maximum power consumption of 38.63 mW in uncompression mode, 

22.75 mW in one-plane type, 51.76/56.25/71.9 mW in two-plane type, including rising, 

vertical, and horizontal cases, and 57.63 mW in two-plane type, including falling cases, 

can be achieved at 100 MHz and with the supply voltage of 1.8V. 
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Chapter 1  

          Introduction 
 

Recently, the 3D computer graphics are widely used in many applications such 

as mobile phones, GPS (Global Positioning System), digital TV [1] , games, 

biomedical applications [2] , where these applications usually use complex GUI 

(graphical user interface) to generate better 3D images. There have been much 

research and development on the 3D graphics algorithms and systems for mobile 

devices [3] [4] [5] [6] [7] [8] [9] [10] [11] . It is manifest that 3D computer graphics 

system requires extremely high memory bandwidth to process. On the other hand, 

with the growth of complexity of 3D scenes, the amount of data computation 

increases substantially. Therefore, in the bandwidth-limited system, how to efficiently 

compress the depth buffer data to save bandwidth becomes a significant research issue. 

Fast z-clears compression algorithm [15] uses a dedicated flag to indicate whether a 

tile is cleared. The DDPCM scheme [16] , Anchor encoding [17] , HA compression 

scheme [21] are effective compression algorithms to exploit the continuity of 

interpolated depth values. The plane encoding scheme presented in [19] applies the 

concept of indexing to compress tiles. The depth offset compression [20] saves the 

differentials based on the Z-max value (maximum depth value) and Z-min value 

(minimum depth value) in a tile. Morein [22] presented an overview of Z-buffer 

architecture for reducing memory bandwidth and number of pixels drawn. Chen and 

Lee [23] proposed two-level hierarchical Z-buffer for saving memory bandwidth and 
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compression management. Yu and Kim [24] addressed an algorithm of depth filter for 

early depth test in a 3D rendering engine by adding extra hardware in the front of the 

per-pixel pipeline in a rasterizer and an adaptive block into the conventional depth test 

block.  

1.1 Motivation  

Since the compression performance of these existing algorithms is limited and they 

cannot adaptively compress according to different 3D scenes, we are motivated to 

propose a reconfigurable depth buffer compression algorithm. On the other hand, how 

to design the power-efficient depth buffer compression architecture is also an important 

issue.   

1.2 Thesis Organization 

The rest of the thesis is organized as follows. A brief review of 3D graphics 

rendering pipeline and existing depth buffer compression algorithms are described in 

Chapter 2. In Chapter 3, the proposed reconfigurable algorithm and architecture have 

been presented. The simulation results and chip implementation are addressed in 

Chapter 4. Last, brief statements conclude the presentation of this thesis.
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Chapter 2  

3D Graphics Rendering Pipeline and 

Depth Buffer Compression Schemes 
 

In this chapter, we will introduce the fundamental 3D graphics pipeline and 

existing depth buffer compression algorithms 

2.1 3D Graphics Rendering Pipeline 

In this section, a brief overview of 3D graphics rendering pipeline is introduced. 

Fig. 2.1 shows the conventional rendering pipeline. Polygon-based rendering is one of 

the mainstream methods to generate 3D graphics [19] . Generally, the pipeline can be 

divided into two subsystems including the geometry subsystem and raster subsystem. 

 

Fig. 2.1. 3D graphics rendering pipeline. 
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2.1.1 Geometry Subsystem 

Generally, the geometry subsystem can be subdivided into five stages, including 

triangle decompression, viewing transform, culling and clipping, perspective transform, 

and lighting. Before viewing transform, the geometry subsystem receives a triangle 

mesh composed of triangles. After triangle decompression, the geometry subsystem 

transforms 3D objects from the world space to the viewing space, that is called viewing 

transformation. Because some triangles are of invisible triangles, such as back-faced 

triangles and too small triangles, or outside of the viewing volume, they can be culled 

and clipped as soon as possible for reducing the unnecessary data computation. This 

stage is referred to as culling and clipping. Perspective transformation will transform 3D 

objects from the viewing space to the projection space, i.e. 3D coordinate of an object 

will be mapped into 2D coordinate. The lighting operation in the geometry subsystem 

performs lighting equations on vertices. Generally, these equations are complex for 

simulating lighting effect in the real world. 

2.1.2 Raster Subsystem 

The raster subsystem renders the transformed polygons generated from the 

geometry subsystem to the monitor pixel-by-pixel. The first stage of the raster 

subsystem is triangle setup for preparing data about triangular shape, bounding 

rectangle, texture coordinates, color, and etc. After triangle setup, the raster subsystem 

will interpolate all attributes of each pixel inside a triangle. These operations are called 

scan conversion. Visibility comparison in the raster subsystem is used to detect whether 

a pixel is covered by other pixels. If the pixel A is covered by the pixel B, the pixel A 

will be dropped immediately for eliminating unnecessary operations. The Z-buffer saves 

the depth values corresponding to the pixels not covered by other pixels at that time. 
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The final stage of the raster subsystem is shading and texturing. At this stage, besides 

the flat shading and Gouraud shading, some advanced and complex lighting algorithms, 

such as Phong shading, may be applied to every pixel. Lighting is used to calculate the 

colors of vertices or pixel related to the lighting source in the 3D space. Therefore, the 

lighting model is used to describe the relationship between vertices or pixels and the 

lighting source. One of the popular lighting models is Phong model expressed in the 

following equation. 

nsHNksIsLNkdIdkaIaI )()(            (2.1) 

where Ia denotes the intensity of the ambient light, Is, L, N denote the intensity of the 

light source, the unit vector from pixel to the light source, and the normal vector of the 

pixel, respectively. H equals (L+V)/2, V denotes the vector from the pixel to the view, ns 

describes the gloss to model the highlight, and ka,kd, and ks are the coefficients to model 

the characteristic of the material.  

Texture mapping needs to access texture buffer with huge memory bandwidth and 

apply mapping equations. However, texture mapping provides an effective way to 

mimic the realistic of real world on the display. Some algorithms and architectures are 

presented about the texture filter [12] and texture compression [13] [14] . The output of 

the raster subsystem will be transferred to the frame buffer for displaying on the 

monitor. 

2.1.3 Depth Buffer 

In this section, the depth buffer is introduced. The depth buffer, i.e. Z buffer, 

saves the depth values corresponding to the pixels at that time. In order to determine 

whether a pixel is covered by other pixels, the depth test will be performed. The depth 

test reads and writes the depth buffer many times whenever a pixel has to be tested. 
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Thus, the depth test results in the heavy bandwidth traffic on memory bus. To reduce the 

heavy memory accesses, more efficient compression will be highly demanded. In this 

thesis, a 4x4 or 8x8 pixels called a tile will be access from the depth buffer.  

There are some schemes depending on the depth buffer for reducing memory 

access, such as hierarchical Z buffer [27] , Z-max culling, Z-min culling [26] , and 

depth filter [28] [29] . Besides the filter-based memory-accessing reduction techniques, 

the offset-based data compression schemes are investigated to reduce memory bus 

traffic. The next section will briefly introduce this kind of techniques. 

2.2 Existing Depth Buffer Compression Schemes 

In this section, we give an overview of the state-of-the-art compression schemes. 

Generally, these schemes can be divided into three categories, fast z-clears, differential 

differential pulse code modulation (DDPCM), anchor encoding, HA compression 

scheme, plane encoding, and depth offset compression scheme. The descriptions are as 

follows. 

2.2.1 Fast Z-Clears 

Fast z-clears [15] is a simple compression algorithm and easy to be implemented. 

A dedicated bit is used to indicate whether the tile is cleared. If the tile is cleared, we 

can only write back the latest depth values to depth buffer without reading the depth 

buffer to update the depth values. 
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2.2.2 Differential Differential Pulse Code Modulation 

The Differential Differential Pulse Code Modulation (DDPCM) [16] scheme is 

widely applied to the data compression since the depth values are obtained by linearly 

interpolation in the screen space. DeRoo et al. [16]  proposed a depth buffer 

compression algorithm as illustrated in Fig. 2.2., where the notations are defined in the 

following equations describe the notations in Fig. 2.2. 

△z4 = z4 – z0   (2.2a) 

△z8 = z8 – z4   (2.2b) 

△z12 = z12 – z8   (2.2c) 

△z
2
8 = △z8 – △z4   (2.2d) 

△z
2
12 = △z12 –△z8   (2.2e) 

△z
2
2 = z2 – z1 – △z1   (2.2f) 

△z
2
3 = z3 – z2 – △z2   (2.2g) 

△z
2
5 = △z5 – △z4   (2.2h) 

△z
2
6 = △z6 – △z5   (2.2i) 

△z
2
7 = △z7 – △z6   (2.2j) 

The DDPCM scheme can achieve the high compression ratio (CR) on 8x8 tile size, 

where CR is defined as follows. 

bits compressed

bits eduncompress
CR   (2.3) 

DeRoo et al. also proposed an extended depth buffer compression scheme, called 

two-plane mode, in order to handle specific cases that tile can be separated into two 

planes. 
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(a) Original tile
(b) Compute 1st order column 

differentials

(c) Compute 2nd order column 
differentials

(d) Compute 2nd order row 
differentials
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∆
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∆
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z13 ∆

2
z14 ∆

2
z15

 

Fig. 2.2. Illustration of DDPCM scheme. 

 

2.2.3 Anchor Encoding 

Van Dyke and Margeson [17] proposed a compression scheme similar to the 

DDPCM scheme. Instead of setting upper left pixel as a reference point, this 

compression algorithm selects a fixed anchor point, z0, from other positions in a tile as 

shown in the Fig. 2.3. All we have to save are 16-bit anchor point, 7-bit x differential, 

7-bit y differential and 5-bit 2
nd

 order differentials. 

In fact, we cannot obtain better compression ratio by anchor encoding than that of 

the DDPCM scheme [21] . 
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p p p p

p z0 p

p p p

p p p p

∆x

∆y

 

Fig. 2.3. Illustration of anchor encoding. 

 

2.2.4 HA Compression Scheme 

Hasselgren and Akenine-Möller proposed a state-of-the-art depth buffer 

compression scheme, which can achieve high CR by exploiting the continuity of 

interpolated depth values in the screen space [21] .  

The plane mode means how many reference points will be used to compute 

differentials. In HA compression scheme, one-plane and two-plane modes are included. 

In one-plane mode, only one reference point is used to achieve compression; in 

two-plane mode, two reference points are used. The operations of the one-plane mode 

are illustrated in the Fig. 2.4. The two 1
st
 order differentials are △z1 and △z4. Except 

z0, △z1 ,and △z4, the remaining values are called 2
nd

 order differentials. The example 

of the one-plane mode is illustrated in Fig. 2.5. From the one-plane mode example, the 

2
nd

 order differentials are saved in only 1 bit that is the reason why this algorithm can 

achieve better CR than other compression schemes. In two-plane mode, two 

one-plane-mode operations will be applied according to two different reference points. 

Fig. 2.6 depicts an example of two-plane mode. Furthermore, there are two kinds of 

combination cases, as shown in Fig. 2.7, including rising and falling cases in the 

two-plane mode, where R means the reference point. In the rising case, the slope of 
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break points is rising. That is why this condition called rising case. Similarly, the slope 

of falling case is falling. These two kinds of combination cases can increase the 

compression flexibility to achieve higher compression ratio.  

The two-plane mode has break-point information which is composed of 0’s and 1’s. 

Because we have to combine two sets of differentials with two different reference points, 

break points indicate which differential set should be chosen for combination. The 

positions of break points indicate that the value of the 2
nd

 order differentials is larger 

than that of HA compression scheme. Additionally, this scheme as shown in the Fig. 2.6 

can handle two-plane mode cases rather than a fixed-position-reference-point scheme of 

the extended DDPCM scheme.

z0 z1 z2 z3

z4 z5 z6 z7

z8 z9 z10 z11

z12 z13 z14 z15

z0 ∆z1 ∆
2
z2 ∆

2
z3

∆z4 ∆
2
z5 ∆

2
z6 ∆

2
z7

∆
2
z8 ∆

2
z9 ∆

2
z10 ∆

2
z11

∆
2
z12 ∆

2
z13 ∆

2
z14 ∆

2
z15














15 14, 13, 11, 10, 9, 7, 6, 5, 3, 2,   ,1)1(

8,12   ,4)4(2

410

iΔziziz

iΔziziz

izΔ

,  , iziziΔz

 

Fig. 2.4. Illustration of one-plane mode compression. 
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(b) Compute 1
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Fig. 2.5. Example of one-plane mode using HA compression scheme. 
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Fig. 2.6. Example of two-plane mode using HA compression scheme. 
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Fig. 2.7. Two kinds of cases supported by HA compression scheme and corresponding 

break-point maps. 

 

2.2.5 Plane Encoding 

Different from the compression algorithms with the use of the continuity of 

interpolated depth values in the screen space, plane encoding labels triangles in a range 
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of tiles and saves these index numbers eventually. When a pixel is rendered, the depth 

value corresponding to the coordinate has to be computed. Van Hook [18] and Liang et 

al. [19] both presented compression schemes similar to the plane encoding. Fig. 2.8 

shows the abstract concept of the plane encoding. The plane encoding can handle 

several overlapping triangles in a single tile, which is suitable for large tile size. The 

drawback is that it must store indices and the corresponding counter value in depth tile 

cache [21] . 
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Fig. 2.8. Example of plane encoding. 

 

2.2.6 Depth Offset Compression 

Morein and Natale [20] presented depth offset compression as illustrated in Fig. 2.9. 

For tile-based rendering, assume that we save the Z-max (maximum depth value) value 

and Z-min value (minimum depth value) of a tile. The depth values of a tile will be 

categorized into to the representable and unrepresentable ranges. The representable 

ranges consist of two regions based on Z-max value and Z-min value. 

Hasselgren and Akenine-Möller [21] also have presented a modified scheme 

consisting of two kinds of representable ranges in depth offset compression, one with 12 
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bits per pixel used to store the offsets, and one with 16 bits per pixel. If the minimum 

and maximum values are already stored in the tile table, this scheme uses 12 or 16 bits 

per pixel, and results in a higher CR [25] . 

If we stored the Z-max and Z-min values of the compressed tile, this scheme can be 

applied without extra cost. It cannot work well for high CR value, but obtains excellent 

compression probabilities for low CR value [21] . 

Z-min value Z-max value

Representable Range Representable RangeUnrepresentable Range
 

Fig. 2.9. Illustration of depth offset compression. 
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Chapter 3  

Proposed Reconfigurable Compression 

Algorithm and Architecture 
 

In this chapter, we propose a reconfigurable algorithm and architecture for depth 

buffer compression. According to the different scene changes, the proposed algorithm is 

capable of adaptively employing three compression schemes including the 2-bit 

DDPCM [16] , 1-bit HA [21] , and 7-bit DDPCM schemes to generate 11 compression 

modes. The presented 7-bit DDPCM scheme similar to the 2-bit DDPCM scheme 

makes use of 7 bits to save each 2
nd

 order differential. The data flow graph of the 

proposed algorithm demonstrates the difference among different mode compressions. 

The corresponding reconfigurable architecture consisting of three stages will be issued 

at the end of this chapter. 

3.1 Proposed Reconfigurable Algorithm 

In this session, the proposed algorithm will be discussed in detail by data flow 

graph. 

3.1.1 Plane Type and Combination Case 

In the proposed algorithm, the plane type also referred as to the plane mode in the 

1-bit HA compression scheme is also concerned. Different from the HA scheme [21] , 
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in the proposed algorithm, the compression scheme selection (CSS), which will be 

discussed later, in the proposed algorithm is performed after two-plane differential 

combination for hardware-oriented design. Fig. 3.1 illustrates how to compute two sets 

of differentials according to two different reference points and how to combine the two 

planes. Furthermore, we extend original two combination cases into four combination 

cases, as shown in Fig. 3.2, including rising, falling, vertical and horizontal cases in the 

two-plane type. These four kinds of combination cases can increase the compression 

flexibility to achieve higher compression ratio. 
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Fig. 3.1. Two-plane type of the proposed reconfigurable algorithm. 
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(a) Rising case (b) Falling case (c) Vertical case (d) Horizontal case
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Fig. 3.2. Four kinds of combination cases supported by the proposed algorithm and 

corresponding break-point maps. 

3.1.2 Compression Schemes 

So as to increase the higher CR of the depth buffer compression, we employ three 

kinds of compression schemes in the proposed algorithm. These schemes including 

1-bit HA [21] , 2-bit DDPCM [16] , and 7-bit DDPCM schemes can be adaptively 

chosen with the aim of the highest compression ratio. 

The difference among these three algorithms is the bit length for storing each value 

of differential. Through the 1-bit HA and 2-bit DDPCM schemes, we can use only one 

bit and two bits to store each differential, respectively. Although the 1-bit HA and 2-bit 

DDPCM schemes are useful to save differentials, these two compression schemes still 

limit CR for more complex 3D scenes. Concerning more stable CR, we decide to use 

7-bit DDPCM in this thesis.  

The following attributes summarize the conditions for each compression scheme. 

The ranges of each compression scheme can be addressed as follows. The 1-bit HA 

scheme covers the differential set of }1,0{  and 2-bit DDPCM scheme covers the 

differential set of }1,0,1{ , and the differential set of the 7-bit DDPCM scheme covers 

the differential set of }63,62,61,-64,-63,{  . Additionally, the HA scheme can be 

divided into two types. The type 1 HA scheme means all the 2
nd

 order differentials are 

the elements of the set {-1,0}. These 2
nd

 order differentials will be added by one and the 

1
st
 order differentials will be subtracted by one such that all the differentials are the 
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elements of the set of {1,0}. Therefore, each differential can be saved in only one bit. 

On the other hand, the type 2 HA scheme means all the differentials are already the 

elements of the set of {1,0} without addition and subtraction. 

All compression schemes can be applied to one-plane and two-plane types. In 

addition, we divide a tile into two parts including vertical and horizontal parts. The 

horizontal part stands for the positions, z2, z3, z5, z6, z7, z9, z10, z11, z13, z14, and z15, in 

Fig. 2.4. The vertical part stands for the positions, z8 and z12, in Fig. 2.4. In these two 

parts, different compression schemes can be applied. For example, the vertical part 

applies the 1-bit HA scheme and the horizontal part applies the 2-bit DDPCM scheme. 

According to the combination of plane type and schemes used, the 11 compression 

modes can be obtained in Table 3.1. Consequently, owing to two-plane types by five 

schemes (i.e., ten modes are generated) and one uncompression mode, the number of 

modes is 11.  
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Table 3.1. Proposed compression modes. 

Compression Mode 

Name 

Mode Description 

OP-HA-HA 1-bit HA scheme applied in both of the vertical and 

horizontal parts under one-plane type 

OP-2bDDPCM-HA 2-bit DDPCM and 1-bit HA schemes are applied in vertical 

and horizontal parts, respectively, under one-plane type 

OP-7bDDPCM-HA 7-bit DDPCM and 1-bit HA schemes are applied in the 

vertical and horizontal parts, respectively, under one-plane 

type 

OP-7bDDPCM-2bDDP

CM 

7-bit DDPCM and 2-bit DDPCM schemes are applied in the 

vertical and horizontal parts, respectively, under one-plane 

type 

OP-7bDDPCM 

-7bDDPCM 

7-bit DDPCM scheme is applied in both of the vertical and 

horizontal parts under one-plane type 

TP-HA-HA 1-bit HA scheme is applied in both of the vertical and 

horizontal parts under two-plane type 

TP-2bDDPCM-HA 2-bit DDPCM and 1-bit HA schemes are applied in the 

vertical and horizontal parts, respectively, under two-plane 

type 

TP-7bDDPCM-HA 7-bit DDPCM and 1-bit HA schemes are applied in the 

vertical and horizontal parts, respectively, under two-plane 

type 

TP-7bDDPCM-2bDDP

CM 

7-bit DDPCM and 2-bit DDPCM schemes are applied in the 

vertical and horizontal parts, respectively, under two-plane 

type 

TP-7bDDPCM 

-7bDDPCM 

7-bit DDPCM scheme is applied in both of the vertical and 

horizontal parts under two-plane type 

Uncompression Unsupported combination cases in two-plane type 
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3.1.3 Data Flow 

The data flows of the proposed algorithm as depicted in Fig. 3.3 (a)-(f) are 

described in the following, where the coarse-solid lines in Fig. 3.3 (a)-(f) indicate the 

flows according to different cases. Fig. 3.3 (a) shows one-plane type; Fig. 3.3 (b) shows 

two-plane type including rising, vertical, and horizontal cases; Fig. 3.3 (c) shows  

two-plane type, including falling cases; Fig. 3.3 (d)-(f) show the data flow in 

uncompression mode.  

In details, Fig. 3.3 (d) illustrates the two sets of break points according to the 

upper-left and lower-left pixels are unsupported. Fig. 3.3 (e) and (f) show the set of 

differentials according to the 2
nd

 reference point in two-plane type including rising, 

vertical, horizontal, and falling cases does not pass break-point-match. Fig. 3.4 shows 

an example of uncomoression mode for case 2. Furthermore, assume that only 2-bit 

DDPCM scheme is applied in Fig. 3.4. In Fig. 3.4, the break points of differentials 

according to the upper-left pixel are determined as a rising case. However, the break 

points of differentials according to the lower-right pixel are determined as an 

uncompressed case. Because the two sets of break points are determined as different 

cases, this kind of tile finally is classified into the uncompression mode. 
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                 (a)                               (b) 

Fig. 3.3. (a) Data flow illustration of the proposed reconfigurable depth buffer 

compression in one-plane type. (b) Data flow illustration of the proposed reconfigurable 

depth buffer compression in two-plane type for rising/vertical/horizontal cases. 
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               (c)                                (d) 

Fig. 3.3. (c) Data flow illustration of the proposed reconfigurable depth buffer 

compression in two-plane type for falling cases. (d) Data flow illustration of the 

proposed reconfigurable depth buffer compression in uncompression mode for case 1. 
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                (e)                                 (f) 

Fig. 3.3. (e) Data flow illustration of the proposed reconfigurable depth buffer 

compression in uncompression mode for case 2. (f) Data flow illustration of the 

proposed reconfigurable depth buffer compression in uncompression mode for case 3. 
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Fig. 3.4. Example of uncompression mode for case 2. 

 

In the first step, we compute the 1
st
 and 2

nd
 order differentials according to the 1

st
 

reference point. In the proposed algorithm, the 1
st
 reference point is the upper-left pixel. 

In the second step, we check the range of these 2
nd

 order differentials. If all differentials 

are inside the restricted range that the 7-bit DDPCM scheme can serve, this tile will be 

determined as one-plane type.  

If any differential is larger than the maximum number or less than the minimum 

number that the 7-bit DDPCM scheme can serve, we will check the break points to 

determine which combination case is satisfied. If the tile does not pass the 

break-point-match step, this tile will be categorized into uncompression-mode case. 
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However, if the tile passes the break-point-check, we have to compute another set of 

differentials according to the 2
nd

 reference point. In this proposed algorithm, the 2
nd

 

reference point in rising, vertical and horizontal case is the lower-right pixel, and in 

falling case the 2
nd

 reference point is the upper-right pixel. Additionally, if a tile is 

categorized into the falling case, the differentials according to the 1
st
 reference point at 

upper-left pixel have to be updated, and the updated differentials will depend on the 

lower-left pixel referred as the 1
st
 reference point in the falling case. 

When we combine two sets of differentials in the two-plane type, we do the 

following operations for each row of the tile. In each row, we scan from the first column 

to the eighth column. If the break point is 0 and the combination case is not a falling 

case, the differentials according to the upper-left pixel will be chosen. If the 

combination case is a falling case, the differentials according to the lower-left pixel will 

be chosen. On the other hand, if the break point is 1 and the combination case is not a 

falling case, the differentials according to the lower-right pixel will chosen. If the 

combination mode is a falling case, the differentials according to the upper-right pixel 

will be selected. There is an exception that in each row scanning when we have scanned 

a break point with 1 and then all the break points of the remainder columns will be 

viewed as 1, no matter what the original values of these break points are. Compression 

scheme selection determines which compression scheme will be adopted according the 

range of differentials. Notice that a tile is divided into two parts and these two parts can 

apply different compression schemes, independently. 

Finally, we will pack reference points, differentials and control-code, including 

compression flag, compression schemes, break points, and etc., together.  

 



Chapter 3  Proposed Reconfigurable Compression Algorithm and Architecture 

25 

3.1.4 Control-Code 

The format of the control-code and the saving format of break points are depicted in 

Fig. 3.5. The first bit of the control-code represents whether the tile is compressed. The 

second bit of the control-code indicates whether the tile is one-plane or two-plane type. 

The third and the fourth bits represent what kind of compression schemes is applied in 

the horizontal part. The fifth and the sixth bits represent what kind of compression 

schemes is applied in vertical part.  
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Fig. 3.5. Control-code and break point. 

 

In the format of break point, the first and the second bits indicate what kind of 

combination cases, such as rising case, is applied to the break points. Third, the fourth 

and the fifth bits mean the row number of the top break point. The sixth, the seventh and 

the eighth bits mean the column number of the top break point. Notice that the break 

points will be saved only when the tile is two-plane type. Additionally, if the tile is 

uncompressed, only the first bit of the control-code will be packed with the tile. 

3.1.5 Decompression 

The data flow of decoding is illustrated in Fig. 3.6. First, according to the 

control-code, a tile can be adaptively processed by OP-HA-HA, OP-2bDDPCM-HA, 

OP-7bDDPCM-HA, OP-7bDDPCM-2bDDPCM, OP-7bDDPCM-7bDDPCM, 
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TP-HA-HA, TP-7bDDPCM-HA, OP-2bDDPCM-HA, TP-7bDDPCM-2bDDPCM, 

TP-7bDDPCM-7bDDPCM, and uncompressed schemes. In addition, in the two-plane 

type, a tile can be determined as rising, vertical, horizontal or falling cases. If a tile 

belongs to the one-plane type, the operation in the decoding is just to retrieve original 

depth values according to the reference point, the 1
st
 order differentials and the 2

nd
 order 

differentials. If a two-plane type is available and recognized as rising, vertical, 

horizontal, or falling case, the next step is to retrieve depth values according to the two 

reference points, the 1
st
 order differentials and the 2

nd
 order differentials. After 

retrieving depth values, the next step is to combine these two set of differentials. Note 

that the falling case takes the different reference points from the rising, vertical, and 

horizontal cases. Finally, the original depth values are retrieved. 
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Fig. 3.6. Data flow illustration of decompression. 
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3.2 Proposed Reconfigurable Architecture 

In this section, the corresponding VLSI architecture of the proposed reconfigurable 

algorithm is described. The presented reconfigurable architecture as shown in Fig. 3.7 

owns the features of high compression ratio and power-efficiency. The proposed 

architecture consists of three stages, where the first stage covers differential 

computation and corresponding break-point map generation, the second stage represents 

the break-point map checking for determining what kind of supported cases, the upper 

part of the third stage represents combination of two sets of differential, and the lower 

part of the third stage denotes the compression scheme selection and packing. 

3.2.1 First Stage 

In order to reduce the redundant computation cycles and power consumption, the 

analysis of number of differential computations (DC) will be necessary. Table 3.2 shows 

the analysis of redundant computation cycles under the assumptions related to different 

reference points. We can find out that it will take less computation cycles if we use one 

DC block. The four DC blocks will result in lower latency, but it will take more 

redundant computation cycles. For less hardware cost and redundant computation cycles 

we adopt one DC block as shown in Fig. 3.7 for all the essential differentials. In Fig. 3.7, 

in order to achieve power efficiency, a folded architecture as sketched in Fig. 3.8 is 

applied to the DC. Compared with the conventional structure, about 50% number of 

subtractors can be reduced. Therefore, the low power consumption can be obtained. Fig. 

3.8 illustrates the implementation of DC related to rising, vertical, and horizontal cases. 

The MUXs are used to select the correct inputs to compute differentials according to the 

reference points. Fig. 3.9 shows the data reorder procedure through data shift registers 
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instead of MUXs. The DC block generates a half set of differentials every clock period. 

In order to compute other set of differentials without using MUXs for the input source 

selection, data shift registers is used. The gated clock technique is used for prevention 

from high signal transitions in registers such that the power and area saving can be 

attained. 

The break-point map generation is used to generate the corresponding break-point 

map for checking the range of differentials at the second stage. Fig. 3.10 shows the 

block diagram of the break-point map generation. Threshold value as shown in Fig. 3.10 

denotes the max/min values that the 7-bit DDPCM scheme can serve. Every 2
nd

 order 

differential has to be checked whether any other differential is out of the range 

supported by the 7-bit DDPCM scheme. If all the differentials are in the supported 

range, this tile is classified into one-plane type. Otherwise, if any differential is out of 

the supported range, this coming tile is possibly classified to the two-plane or 

uncompression mode. Furthermore, the positions corresponding to the depth values 

7-bit DDPCM scheme cannot server indicate the positions of break points. 

Due to different reference points, different range of differentials is checked to 

generate break points. In order to reduce hardware area and power consumption of the 

break-point generation, the hardware-reused technique is considered.
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Fig. 3.7. Block diagram of the reconfigurable compression architecture. 
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Table 3.2. Analysis of redundant computation cycles with different number of 

differential computation blocks. 

 One-plane  

type 

Two-plane type Uncompression  

mode Rising/vertical/horizontal Falling 

One DC 0 0 1 2 

Two DCs 1
*1

/1
*2

 2
*1

/0
*2

 2
*1

/2
*2

 2
*1

/4
*2

 

Three DCs 2
*3

/2
*4

 1
*3

/2
*4

 2
*3

/1
*4

 3
*3

/3
*4

 

Four DCs 3 2 2 4 

*1. Assume that one block compute differentials based on the upper-left pixel and the other based on the lower-left pixel. 

*2. Assume that one block compute differentials based on the upper-left pixel and the other based on the lower-right pixel. 

*3. Assume that one block compute differentials based on the upper-left pixel. Another block compute differentials based on the 

lower-right pixel and the other based on the lower-left pixel. 

*4. Assume that one block compute differentials based on the upper-left pixel. Another block compute differentials based on the 

upper-right pixel and the other based on the lower-left pixel. 

 

Z0 Z3 Z1 Z2 Z2 Z1

∆z1

∆
2
z3

Z3 Z0 Z0 Z3 Z4 Z7 Z8 Z11

∆z4

Z12 Z15

∆
2
z2∆

2
z1 ∆

2
z12∆

2
z8∆

2
z4  

Fig. 3.8. Block diagram of folded differential computation. 
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Differential 
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Fig. 3.9. Block diagram of data reorder architecture. 
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Fig. 3.10. Block diagram of break-point map generation. 

3.2.2 Second Stage 

Break-point map check at the second stage will determine whether this tile buffer 

belongs to one-plane type, two-plane type, or uncompression mode. With the 

break-point map check, the combination case and the position of break points are 

determined of a two-plane-type tile. Fig. 3.11 shows how to determine a tile buffer is 

uncompression mode when the reference point is the upper-left pixel. Once the 

two-plane-mode and coordinate signals are pulled up and down, respectively, the 

uncompression signal will be pulled up, i.e. this tile is determined into the 
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uncompression mode. Besides, if the reference point is the lower-left pixel, the 

uncompression will not be compared with 0, but 56. Fig. 3.12 depicts the lookup table 

for finding the corresponding combination case and the coordinate of the top of break 

points. At this stage, we can determine information, such as compression, plane type, 

combination case, and coordinate of the top break point, for a tile. Furthermore, the 

ready signal in the Fig. 3.7 is pulled up, when the information of a tile is determined and 

then the next tile can be input at the next cycle. Moreover, the clock gating technique is 

also applied at this stage to reduce transitions in registers. 

 

=

=

1

Two-plane type

Coordinate

1

0
Uncompression

1

0

0
 

Fig. 3.11. Block diagram of break-point check for determining uncompression mode. 
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2'b11

Coordinates
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Break-point map

Combination 
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Fig. 3.12. Block diagram of break-point check. 
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3.2.3 Third Stage 

At the third stage, there are two-plane differential combination, compression 

scheme selection, and packing blocks. Fig. 3.13 illustrate the implementation of 

two-plane differential combination which will choose the desired differentials from two 

sets of differentials for compression in the two-plane type. Because once a tile is 

determined into the two-plane type, at most seven lower bits of every differential will be 

saved at the packing block. Therefore, in the two-plane differential combination, just 

seven lower bits of each differential are used to the combination operation. It results in 

less hardware resources and power consumption.  

Fig. 3.14 illustrates the implementation of compression scheme selection. 

According to the range of differentials, this block will choose the adequate bit length for 

storing these differentials. If a tile applies the type-1 HA scheme, the constant one is 

added to each 2
nd

 order differential and, at the same time, the constant one is subtracted 

from the 1
st
 order differential. Without adding circuit, we use some inverters at the end 

of packing block. Because a tile applies the type-1 HA scheme, the least significant bit 

of each differential will be selected for packing, i.e. only one bit will be used for 

compression. Since these differentials are the elements of the set {-1,0} and after adding 

constant one to these differentials are the elements of the set {0,1}, the least significant 

bit of each differential changes from 1 to 0 or from 0 to 1. Eventually, packing block 

packs necessary information, for example control-code, for a compressed or 

uncompressed tile. At the next cycle, the signal, out_valid, will be pull up to notice that 

an output is available. 
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Fig. 3.13. Block diagram of two-plane differential combination. 
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Fig. 3.14. Block diagram of the compression scheme selection. 

 

In accordance with the compression/uncompression mode and one/two-plane types, 

different packing formats can be obtained. The most significant bit, flag, in each mode 

indicates whether a tile is compressed. In uncompression mode, the remaining bits are 

composed of the original depth values. In one-plane type, except for the flag, 

control-code indication bits, and the reference point, the first part of remainder bits, △z 

(V) and △2
z (V), belongs to the vertical part; △z (H) and △2

z (H) belong to the 
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horizontal part in a tile. In the two-plane type, the first part of remaining bits, excluding 

flag, control-code, 1
st
 reference, and 2

nd
 reference bits, belongs to the vertical part. The 

second part belongs to the horizontal part in a tile. Besides, the break-point is included 

in the control-code in the two-plane type. Additionally, the clock gating technique is 

applied at this stage as well. Table 3.3 shows the summary of the number of clock 

cycles needed for each compression/uncompression mode. 

 

Original depth valuesFlag

Flag 1
st
 Ref.

Control-

code
∆z (V) ∆z (H)∆

2
z (V) ∆

2
z (H)

Flag 1
st
 Ref. ∆z (V) ∆

2
z (V) ∆z (H) ∆

2
z (H)

Control-

code
2

nd
 Ref.

(a) Uncompression mode

(b) One-plane type

(c) Two-plane type
 

Fig. 3.15. Packing format. 

 

When a tile is input, the first step is to compute differentials. Because there is no 

information for a tile, i.e. we do not know what kind of plane type a tile belongs to, we 

set the upper-left pixel as the default reference point. Additionally, in each cycle, there is 

a half set of differentials computed so that for a whole set of differentials it will take two 

cycles. After computing differentials, the corresponding break-point map is checked for 

whether this tile is classified into uncompression mode, one-plane type, or two-plane 

type.  

In uncompression mode, a tile will be checked twice with two sets of differentials 

according to two reference points, the upper-left and lower-left pixels. Then this tile 
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classified into uncompression mode exactly will bypass the two-plane differential 

combination block and just pass the packing block. 

In one-plane type, after computing the 1
st
 set of differentials according to the 

upper-left pixel, the break-point map will be checked. Then this tile will bypass the 

two-plane differential combination and pass through the choosing compression scheme 

and packing blocks. 

In two-plane type, excluding falling cases, after computing the 1
st
 set of 

differentials according to the upper-left pixel, the 2
nd

 set of differentials according to the 

lower-right pixel will be computed. Besides checking these two sets of break points for 

determining what kind of combination cases these two tiles belong to, the two sets of 

break points will also be checked for making sure these two sets of differentials are 

recognized as the same combination case, such as rising cases. After stage 3, the tile will 

be passed through the two-plane differential combination block to combine these two 

sets of differentials. The break points according to the 1
st
 reference point indicate which 

differential will be chosen in the two-plane differential combination. Eventually, this 

combined tile passes through the choosing compression scheme and packing blocks. 

In two-plane type, including falling cases, the 1
st
 set of differentials according to 

the upper-left pixel is classified into the uncompression mode. The 2
nd

 and 3
rd

 sets of 

differentials according to the lower-left and upper-right pixels, respectively, are 

classified into the two-plane type and the combination case is falling. Then this tile 

passes through the two-plane differential combination, choosing compression scheme, 

and packing blocks. 
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Table 3.3. Summary of number of clock cycles needed for each 

compression/uncompression mode. 

 One-plane  

type 

Two-plane type Uncompression 

mode Rising/vertical/horizontal Falling 

# clock cycles 5 9 12 8 

 

For power-efficiency, power-reduced techniques are concerned. Gated clock is 

applied in the proposed architecture. The folded differential computation is used to 

reduce redundant computation and power consumption. Because huge transition among 

registers and MXUs result in high power consumption, the data reorder architecture 

designed for trading off the number of transitions among registers and MUXs 

reschedules the source and destination data of the differential computation. In the 

two-plane differential combination, only seven lower bits of every differential are used, 

because a tile passed to this block has been classified into the two-plane type and each 

differential is saved in 7 bits at most. This kind of architecture uses less number of 

MUXs. Without additions for the type1 of 1-bit HA compression scheme, a 1-bit 

inverters consume less power and area than 16-bit adders. Furthermore, the proposed 

architecture also applies hardware-reused skills in blocks, such as the break-point map 

generation and the compression scheme selection. 
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Chapter 4  

Simulation Results and  

Chip Implementation 
 

4.1 Simulation Results 

In this section, the 11 compression modes are illustrated and the total compressed 

bits of a tile are listed in Table 4.1. In OP-HA-HA as listed in Table 4.1, the vertical and 

horizontal parts both are compressed by the HA scheme,  and the total compressed tile 

size is 16+7+7+61+6=97 bits, including one reference point, two 7-bit 1
st
 order 

differentials, 61-bit 2
nd

 order differentials, and 6-bit control-code. In TP-HA-HA, in the 

same conditions, the total compressed tile size is 16+16+7+7+7+7+58+6+8 =132 bits, 

including two reference points, four 7-bit 1
st
 order differentials, 61-bit 2

nd
 order 

differentials, 6-bit control-code, and break point. Other title sizes using different mode 

schemes can be calculated similarly. Concerning the 7-bit DDPCM scheme, we expect 

that the size of the compressed tile can be smaller than that of half size of the original 

tile.  

The teapot and stereoscopic polygons benchmarks are used as reference 

simulations as shown in Fig. 4.1 (a) and (b). The average CR as listed in Table 4.2 

shows the average compression ratio and the comprehensive comparison with the 1-bit 

HA and 2-bit DDPCM schemes related to the two benchmarks. For the teapot, the 
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proposed reconfigurable algorithm outperforms others by 27.2% and 13.6% compared 

with the independent 2-bit DDPCM and 1-bit HA schemes. For the stereoscopic 

polygons, the proposed algorithm outperforms others by 33.6% and 21.7% compared 

with the 2-bit DDPCM and 1-bit HA schemes. 

The sample distribution of the average CR related to the benchmark, Fig. 4.1 (a), 

as shown in the Fig. 4.2 and Fig. 4.3 illustrate the usefulness of our proposed algorithm 

compared with the 1-bit HA and 2-bit DDCPM schemes, respectively. Moreover, Fig. 

4.4 and Fig. 4.5 illustrate the average CR related to the benchmark, Fig. 4.1 (b). A point 

in the Fig. 4.2, Fig. 4.3, Fig. 4.4, and Fig. 4.5 indicates an average compression ratio of 

five tiles. It is obvious that our proposed reconfigurable algorithm can achieve more 

stable average compression ratio than the 1-bit HA and 2-bit DDPCM schemes. 

 

Table 4.1. Bit width of compressed/uncompressed tile in proposed algorithm. 

Mode Name Number of bits 

OP-HA-HA 97 

OP-2bDDPCM-HA 103 

OP-7bDDPCM-HA 113 

OP-7bDDPCM-2bDDPCM 188 

OP-7bDDPCM -7bDDPCM 463 

TP-HA-HA 132 

TP-2bDDPCM-HA 138 

TP-7bDDPCM-HA 168 

TP-7bDDPCM-2bDDPCM 220 

TP-7bDDPCM -7bDDPCM 480 

Uncompression 1025 
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Fig. 4.1 (a) Teapot, and (b) Stereoscopic polygons. 

 

 

Fig. 4.2. Proposed algorithm vs. the 1-bit HA compression scheme for teapot scenario. 

 



Chapter 4  Simulation Results and Chip Implementation 

41 

 

Fig. 4.3. Proposed algorithm vs. the 2-bit DDPCM scheme for teapot scenario. 

 

 

Fig. 4.4. Proposed algorithm vs. the 1-bit HA compression scheme for stereoscopic 

polygons scenario. 
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Fig. 4.5. Proposed algorithm vs. the 2-bit DDPCM scheme for stereoscopic polygons 

scenario. 

 

Table 4.2. Average compression ratio with 8x8 tile size. 

 Teapot Stereoscopic polygons 

1-bit HA scheme [21]  1.54 (100%) 1.43 (100%) 

2-bit DDPCM scheme [16]  1.33 (86.4%) 1.26 (88.1%) 

Proposed algorithm 1.75 (113.6%) 1.74 (121.7%) 

 

4.2 Chip Implementation 

Concerning the chip implementation, the cell-based design flow with Artisan 

standard cell library is adopted and the proposed architecture has been implemented in 

TSMC 0.18-um CMOS process. The Synopsys Design Compiler is used to synthesize 

the RTL design of the proposed architecture, the Cadence SOC Encounter is adopted for 
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placement and routing (P&R) and the Synopsys PrimePower is used to measure the 

power consumption for each mode after post-layout simulation. Table 4.3 summarizes 

the chip characteristics of the proposed architecture. 

 

Table 4.3. Chip characteristics of the proposed architecture. 

Active Chip Area 1.13 x 1.13 mm
2
 

Gate Count 97, 246 

Max Clock Frequency 100 MHz 

Process Technology TSMC 0.18-um CMOS 

Power Consumption 

(mW) @ 100MHz 

One-Plane Type 22.75 

Two-Plane Type 

(rising/vertical/horizontal) 

51.76/56.25/71.9 

Two-Plane Type (falling) 57.63 

Uncompression Mode 38.63 

Power Consumption 

(mW) @ 66.7MHz 

One-Plane Type 15.18 

Two-Plane Type 

(rising/vertical/horizontal) 

34.52/37.51/57.26 

Two-Plane Type (falling) 38.43 

Uncompression Mode 25.76 
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Fig. 4.6. Chip layout of the proposed architecture.
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Chapter 5  

Conclusion and Future Work 
 

In this work, the reconfigurable algorithm for depth buffer compression is 

presented. This proposed algorithm not only supports the 1-bit HA, 2-bit DDPCM 

schemes as well as 7-bit DDPCM scheme, but also handles one-plane and one-plane 

type compressions. In addition, different compression schemes can be applied in the 

vertical and horizontal parts in a tile. There are totally 11 compression modes adaptively 

applied according to different 3D scenes in this proposed compression algorithm. In 

two-plane type, there are four kinds of combination cases, including rising, vertical, 

horizontal, and falling cases, concerned in the presented algorithm.  

For 8x8 tile size with 16-bit depth values under the teapot benchmark, the 

proposed reconfigurable algorithm can achieve CR of 1.75 on average and improve 

13.6% and 31.6% compared with the HA and DDPCM compression methods, 

respectively. For 8x8 tile size with 16-bit depth values under the Stereoscopic polygons 

benchmark, the proposed reconfigurable algorithm can achieve CR of 1.74 on average 

and improve 21.7% and 38.1% compared with the HA and DDPCM compression 

methods, respectively. 

Furthermore, the proposed reconfigurable and power efficient depth buffer 

compression architecture has been verified and implemented in TSMC 0.18-um CMOS 

process. The core consists of 97,246 transistors, and its area is 1.13 um
2
. It operates at 

100 MHz with maximum power consumption of 38.63 mW in uncompression mode, 
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22.75 mW in one-plane type, 51.76/56.25/71.9 mW in two-plane type, including rising, 

vertical, and horizontal cases, and 57.63 mW in two-plane type, including falling cases, 

at supply voltage of 1.8V. 

For the future work, the ranges of horizontal and vertical parts will be discussed for 

better compression performance. 
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