

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

應用於三維繪圖系統之

可重組式深度緩衝區壓縮演算法設計與實作

Reconfigurable Depth Buffer Compression Design

and Implementation for 3D Graphics System

研 究 生：鍾宗融

指導教授：范倫達 博士

中 華 民 國 九 十 七 年 九 月

應用於三維繪圖系統之

可重組式深度緩衝區壓縮演算法設計與實作

Reconfigurable Depth Buffer Compression Design and

Implementation for 3D Graphics System

研 究 生：鍾宗融 Student：Tzung-Rung Jung

指導教授：范倫達博士 Advisor：Dr. Lan-Da Van

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

September 2008

Hsinchu, Taiwan, Republic of China

中華民國 九 十 七 年 九 月

摘要

I

應用於三維繪圖系統之

可重組式深度緩衝區壓縮演算法設計與實作

學生：鍾宗融 指導教授：范倫達 博士

國立交通大學

資訊科學與工程研究所

摘 要

在本論文中，我們針對三維繪圖處理器中的深度緩衝區提出具減少頻寬需求

與可重組式的壓縮演算法；根據不同的場景，從十一種壓縮模式中選擇出最適合

的壓縮模式，而這十一種模式是由 2-bit DDPCM、1-bit HA、7-bit DDPCM 三種壓

縮演算法所組合而成。此外，我們所提出的演算法亦支援單平面與雙平面兩種型

態方塊，並能支援四種差值組合方式。在 8x8 大小方塊而且深度值長度為 16-bit

的 Teapot 場景模擬環境下，我們提出的演算法其平均壓縮比可達 1.75，而且相較

於 HA 與 DDPCM 壓縮方法能夠分別改善 13.6%與 31.6%；在 8x8 大小方塊而且深

度值長度為 16-bit 的 Stereoscopic polygons 場景模擬環境下，我們提出的演算法其

平均壓縮比可達 1.74，而且相較於 HA 與 DDPCM 壓縮方法能夠分別改善 21.7%

與 38.1%。

 深度緩衝區壓縮演算法其架構具可重組式與可調式功耗之特色，使用的製程

為 TSMC 0.18-um CMOS process，其晶片所佔面積為 1.13 mm
2；在操作頻率為 100

MHz 與操作電壓為 1.8 伏特的情況下，未壓縮模式的最大功率消耗為 38.63 mW，

單平面模式下的最大功率消耗為 22.75 mW，雙平面模式中(僅包含 rising, vertical,

and horizontal cases)的最大功率消耗分別為 51.76/56.25/71.9 mW，雙平面模式中(僅

摘要

II

包含 falling cases)的最大功率消耗為 57.63 mW。

Abstract

III

Reconfigurable Depth Buffer Compression Design and

Implementation for 3D Graphics System

Student：Tzung-Rung Jung Advisor：Dr. Lan-Da Van

Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

ABSTRACT

A less-bandwidth-required reconfigurable depth buffer compression algorithm and

the corresponding power-efficient architecture have been developed for 3D graphics

system. The proposed algorithm is able to adaptively compress the depth buffer data

according to different-scene changes by employing 11 compression modes generated

from three compression algorithms including Differential Differential Pulse Code

Modulation (2-bit DDPCM), Hasselgren and Akenine-Möller’s (1-bit HA), and 7-bit

DDPCM schemes. Furthermore, this reconfigurable algorithm supports one-plane and

two-plane type and four kinds of combination cases. For 8x8 tile size with 16-bit depth

values under the teapot benchmark, the proposed reconfigurable algorithm can achieve

CR of 1.75 on average and improve 13.6% and 31.6% compared with the HA and

DDPCM compression methods, respectively. For 8x8 tile size with 16-bit depth values

under the Stereoscopic polygons benchmark, the proposed reconfigurable algorithm can

achieve CR of 1.74 on average and improve 21.7% and 38.1% compared with the HA

and DDPCM compression methods, respectively.

Abstract

IV

The proposed reconfigurable power-efficient depth buffer compression architecture

has been verified and implemented in TSMC 0.18-um CMOS process. The core area is

of 1.13 mm
2
. The maximum power consumption of 38.63 mW in uncompression mode,

22.75 mW in one-plane type, 51.76/56.25/71.9 mW in two-plane type, including rising,

vertical, and horizontal cases, and 57.63 mW in two-plane type, including falling cases,

can be achieved at 100 MHz and with the supply voltage of 1.8V.

Contents

V

Contents

摘 要 .. I

ABSTRACT ... III

CONTENTS .. V

LIST OF TABLES ... VII

LIST OF FIGURES ... VIII

Chapter 1 Introduction ... 1

1.1 Motivation ... 2

1.2 Thesis Organization... 2

Chapter 2 3D Graphics Rendering Pipeline and Depth Buffer Compression

Schemes .. 3

2.1 3D Graphics Rendering Pipeline ... 3

2.1.1 Geometry Subsystem ... 4

2.1.2 Raster Subsystem ... 4

2.1.3 Depth Buffer ... 5

2.2 Exsisting Depth Buffer Compression Schemes .. 6

2.2.1 Fast Z-Clears .. 6

2.2.2 Differential Differntial Pulse Code Modulation 7

List of Tables

VI

2.2.3 Anchor Encoding .. 8

2.2.4 HA Compression Scheme .. 9

2.2.5 Plane Encoding.. 11

2.2.6 Depth Offset Compression ... 12

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

 ... 14

3.1 Proposed Reconfiguable Algorithm .. 14

 3.1.1 Plane Type and Combination Case... 14

 3.1.2 Compression Schemes ... 16

 3.1.3 Data Flow ... 19

 3.1.4 Control-Code .. 25

 3.1.5 Decompression ... 25

3.2 Proposed Reconfigurable Achitecture ... 27

 3.2.1 First Stage ... 27

 3.2.2 Second Stage .. 31

 3.2.3 Third Stage ... 33

Chapter 4 Simulation Results and Chip Implementation 38

4.1 Simulation Results .. 38

4.2 Chip Implementation ... 42

Chapter 5 Conclusion and Future Work ... 45

Bibliography .. 47

List of Tables

VII

List of Tables

Chapter 3

3.1: Proposed compression modes .. 18

3.2: Analysis of redundant computation cycles with different number of differential

computation blocks. .. 30

3.3: Summary of number of clock cycles needed for each

compression/uncompression mode. .. 37

Chapter 4

4.1: Bit width of compressed/uncompressed tile in proposed algorithm. 39

4.2: Average compression ratio with 8x8 tile size. .. 42

4.3: Chip characteristics of the proposed architecture. ... 43

List of Figures

VIII

List of Figures

Chapter 2

2.1: 3D graphics rendering pipeline. ... 3

2.2: Illustration of DDPCM scheme. .. 8

2.3: Illustration of anchor encoding. ... 9

2.4: Illustration of one-plane type compression. ... 10

2.5: Example of one-plane mode using HA compression scheme. 10

2.6: Example of two-plane mode using HA compression scheme. 11

2.7: Two kinds of combination cases supported by HA compression scheme and

corresponding break-point maps. ... 11

2.8: Example of plane encoding. ... 12

2.9: Illustration of depth offset compression. .. 13

Chapter 3

3.1: Two-plane type of the proposed reconfigurable algorithm. 15

3.2: Four kinds of combination cases supported by the proposed algorithm and

corresponding break-point maps. .. 16

3.3: (a) Data flow illustration of the proposed reconfigurable depth buffer

compression in one-plane type. ... 20

List of Figures

IX

3.3: (b) Data flow illustration of the proposed reconfigurable depth buffer

compression in two-plane type for rising/vertical/horizontal cases. 20

3.3: (c) Data flow illustration of the proposed reconfigurable depth buffer

compression in two-plane type for falling cases. .. 21

3.3: (d) Data flow illustration of the proposed reconfigurable depth buffer

compression in uncompression mode for case 1. .. 21

3.3: (e) Data flow illustration of the proposed reconfigurable depth buffer

compression in uncompression mode for case 2. .. 22

3.3: (f) Data flow illustration of the proposed reconfigurable depth buffer

compression in uncompression mode for case 3. .. 22

3.4: Example of uncompressio mode for case 2. .. 23

3.5: Control-code and break point. .. 25

3.6: Data flow illustration of decompression. ... 26

3.7: Block diagram of the reconfigurable compression architecture. 29

3.8: Block diagram of folded differential computation ... 30

3.9: Block diagram of data reorder architecture.. 31

3.10: Block diagram of break-point map generation .. 31

3.11: Block diagram of break-point check for determining uncompression mode. 32

3.12: Block diagram of break-point check. ... 32

3.13: Block diagram of two-plane differential combination. 34

3.14: Block diagram of the compression scheme selection. 34

3.15: Packing format. .. 35

List of Figures

X

Chapter 4

4.1: (a) Teapot and (b) stereoscopic polygons. .. 40

4.2: Proposed algorithm vs. the 1-bit HA compression scheme for teapot scenario.

 ... 40

4.3: Proposed algorithm vs. the 2-bit DDPCM compression scheme for teapot

scenario. .. 41

4.4: Proposed algorithm vs. the 1-bit HA compression scheme for stereoscopic

polygons scenario. ... 41

4.5: Proposed algorithm vs. the 2-bit DDPCM compression scheme for

stereoscopic polygons scenario. .. 42

4.6: Chip layout of the proposed architecture. .. 44

Chapter 1 Introduction

1

Chapter 1

 Introduction

Recently, the 3D computer graphics are widely used in many applications such

as mobile phones, GPS (Global Positioning System), digital TV [1] , games,

biomedical applications [2] , where these applications usually use complex GUI

(graphical user interface) to generate better 3D images. There have been much

research and development on the 3D graphics algorithms and systems for mobile

devices [3] [4] [5] [6] [7] [8] [9] [10] [11] . It is manifest that 3D computer graphics

system requires extremely high memory bandwidth to process. On the other hand,

with the growth of complexity of 3D scenes, the amount of data computation

increases substantially. Therefore, in the bandwidth-limited system, how to efficiently

compress the depth buffer data to save bandwidth becomes a significant research issue.

Fast z-clears compression algorithm [15] uses a dedicated flag to indicate whether a

tile is cleared. The DDPCM scheme [16] , Anchor encoding [17] , HA compression

scheme [21] are effective compression algorithms to exploit the continuity of

interpolated depth values. The plane encoding scheme presented in [19] applies the

concept of indexing to compress tiles. The depth offset compression [20] saves the

differentials based on the Z-max value (maximum depth value) and Z-min value

(minimum depth value) in a tile. Morein [22] presented an overview of Z-buffer

architecture for reducing memory bandwidth and number of pixels drawn. Chen and

Lee [23] proposed two-level hierarchical Z-buffer for saving memory bandwidth and

Chapter 1 Introduction

2

compression management. Yu and Kim [24] addressed an algorithm of depth filter for

early depth test in a 3D rendering engine by adding extra hardware in the front of the

per-pixel pipeline in a rasterizer and an adaptive block into the conventional depth test

block.

1.1 Motivation

Since the compression performance of these existing algorithms is limited and they

cannot adaptively compress according to different 3D scenes, we are motivated to

propose a reconfigurable depth buffer compression algorithm. On the other hand, how

to design the power-efficient depth buffer compression architecture is also an important

issue.

1.2 Thesis Organization

The rest of the thesis is organized as follows. A brief review of 3D graphics

rendering pipeline and existing depth buffer compression algorithms are described in

Chapter 2. In Chapter 3, the proposed reconfigurable algorithm and architecture have

been presented. The simulation results and chip implementation are addressed in

Chapter 4. Last, brief statements conclude the presentation of this thesis.

Chapter 2 3D Graphics Rendering pipeline and

Depth Buffer Compression Schemes

3

Chapter 2

3D Graphics Rendering Pipeline and

Depth Buffer Compression Schemes

In this chapter, we will introduce the fundamental 3D graphics pipeline and

existing depth buffer compression algorithms

2.1 3D Graphics Rendering Pipeline

In this section, a brief overview of 3D graphics rendering pipeline is introduced.

Fig. 2.1 shows the conventional rendering pipeline. Polygon-based rendering is one of

the mainstream methods to generate 3D graphics [19] . Generally, the pipeline can be

divided into two subsystems including the geometry subsystem and raster subsystem.

Fig. 2.1. 3D graphics rendering pipeline.

Chapter 2 3D Graphics Rendering pipeline and

Depth Buffer Compression Schemes

4

2.1.1 Geometry Subsystem

Generally, the geometry subsystem can be subdivided into five stages, including

triangle decompression, viewing transform, culling and clipping, perspective transform,

and lighting. Before viewing transform, the geometry subsystem receives a triangle

mesh composed of triangles. After triangle decompression, the geometry subsystem

transforms 3D objects from the world space to the viewing space, that is called viewing

transformation. Because some triangles are of invisible triangles, such as back-faced

triangles and too small triangles, or outside of the viewing volume, they can be culled

and clipped as soon as possible for reducing the unnecessary data computation. This

stage is referred to as culling and clipping. Perspective transformation will transform 3D

objects from the viewing space to the projection space, i.e. 3D coordinate of an object

will be mapped into 2D coordinate. The lighting operation in the geometry subsystem

performs lighting equations on vertices. Generally, these equations are complex for

simulating lighting effect in the real world.

2.1.2 Raster Subsystem

The raster subsystem renders the transformed polygons generated from the

geometry subsystem to the monitor pixel-by-pixel. The first stage of the raster

subsystem is triangle setup for preparing data about triangular shape, bounding

rectangle, texture coordinates, color, and etc. After triangle setup, the raster subsystem

will interpolate all attributes of each pixel inside a triangle. These operations are called

scan conversion. Visibility comparison in the raster subsystem is used to detect whether

a pixel is covered by other pixels. If the pixel A is covered by the pixel B, the pixel A

will be dropped immediately for eliminating unnecessary operations. The Z-buffer saves

the depth values corresponding to the pixels not covered by other pixels at that time.

Chapter 2 3D Graphics Rendering pipeline and

Depth Buffer Compression Schemes

5

The final stage of the raster subsystem is shading and texturing. At this stage, besides

the flat shading and Gouraud shading, some advanced and complex lighting algorithms,

such as Phong shading, may be applied to every pixel. Lighting is used to calculate the

colors of vertices or pixel related to the lighting source in the 3D space. Therefore, the

lighting model is used to describe the relationship between vertices or pixels and the

lighting source. One of the popular lighting models is Phong model expressed in the

following equation.

nsHNksIsLNkdIdkaIaI)()( (2.1)

where Ia denotes the intensity of the ambient light, Is, L, N denote the intensity of the

light source, the unit vector from pixel to the light source, and the normal vector of the

pixel, respectively. H equals (L+V)/2, V denotes the vector from the pixel to the view, ns

describes the gloss to model the highlight, and ka,kd, and ks are the coefficients to model

the characteristic of the material.

Texture mapping needs to access texture buffer with huge memory bandwidth and

apply mapping equations. However, texture mapping provides an effective way to

mimic the realistic of real world on the display. Some algorithms and architectures are

presented about the texture filter [12] and texture compression [13] [14] . The output of

the raster subsystem will be transferred to the frame buffer for displaying on the

monitor.

2.1.3 Depth Buffer

In this section, the depth buffer is introduced. The depth buffer, i.e. Z buffer,

saves the depth values corresponding to the pixels at that time. In order to determine

whether a pixel is covered by other pixels, the depth test will be performed. The depth

test reads and writes the depth buffer many times whenever a pixel has to be tested.

Chapter 2 3D Graphics Rendering pipeline and

Depth Buffer Compression Schemes

6

Thus, the depth test results in the heavy bandwidth traffic on memory bus. To reduce the

heavy memory accesses, more efficient compression will be highly demanded. In this

thesis, a 4x4 or 8x8 pixels called a tile will be access from the depth buffer.

There are some schemes depending on the depth buffer for reducing memory

access, such as hierarchical Z buffer [27] , Z-max culling, Z-min culling [26] , and

depth filter [28] [29] . Besides the filter-based memory-accessing reduction techniques,

the offset-based data compression schemes are investigated to reduce memory bus

traffic. The next section will briefly introduce this kind of techniques.

2.2 Existing Depth Buffer Compression Schemes

In this section, we give an overview of the state-of-the-art compression schemes.

Generally, these schemes can be divided into three categories, fast z-clears, differential

differential pulse code modulation (DDPCM), anchor encoding, HA compression

scheme, plane encoding, and depth offset compression scheme. The descriptions are as

follows.

2.2.1 Fast Z-Clears

Fast z-clears [15] is a simple compression algorithm and easy to be implemented.

A dedicated bit is used to indicate whether the tile is cleared. If the tile is cleared, we

can only write back the latest depth values to depth buffer without reading the depth

buffer to update the depth values.

Chapter 2 3D Graphics Rendering pipeline and

Depth Buffer Compression Schemes

7

2.2.2 Differential Differential Pulse Code Modulation

The Differential Differential Pulse Code Modulation (DDPCM) [16] scheme is

widely applied to the data compression since the depth values are obtained by linearly

interpolation in the screen space. DeRoo et al. [16] proposed a depth buffer

compression algorithm as illustrated in Fig. 2.2., where the notations are defined in the

following equations describe the notations in Fig. 2.2.

△z4 = z4 – z0 (2.2a)

△z8 = z8 – z4 (2.2b)

△z12 = z12 – z8 (2.2c)

△z
2
8 = △z8 – △z4 (2.2d)

△z
2
12 = △z12 –△z8 (2.2e)

△z
2
2 = z2 – z1 – △z1 (2.2f)

△z
2
3 = z3 – z2 – △z2 (2.2g)

△z
2
5 = △z5 – △z4 (2.2h)

△z
2
6 = △z6 – △z5 (2.2i)

△z
2
7 = △z7 – △z6 (2.2j)

The DDPCM scheme can achieve the high compression ratio (CR) on 8x8 tile size,

where CR is defined as follows.

bits compressed

bits eduncompress
CR (2.3)

DeRoo et al. also proposed an extended depth buffer compression scheme, called

two-plane mode, in order to handle specific cases that tile can be separated into two

planes.

Chapter 2 3D Graphics Rendering pipeline and

Depth Buffer Compression Schemes

8

(a) Original tile
(b) Compute 1st order column

differentials

(c) Compute 2nd order column
differentials

(d) Compute 2nd order row
differentials

z0 z1 z2 z3

∆z4 ∆z5 ∆z6 ∆z7

∆z8 ∆z9 ∆z10 ∆z11

∆z12 ∆z13 ∆z14 ∆z15

z0 z1 z2 z3

z4 z5 z6 z7

z8 z9 z10 z11

z12 z13 z14 z15

z0 z1 z2 z3

∆z4 ∆z5 ∆z6 ∆z7

∆
2
z8 ∆

2
z9 ∆

2
z10 ∆

2
z11

∆
2
z12 ∆

2
z13 ∆

2
z14 ∆

2
z15

z0 ∆z1 ∆
2
z2 ∆

2
z3

∆z4 ∆
2
z5 ∆

2
z6 ∆

2
z7

∆
2
z8 ∆

2
z9 ∆

2
z10 ∆

2
z11

∆
2
z12 ∆

2
z13 ∆

2
z14 ∆

2
z15

Fig. 2.2. Illustration of DDPCM scheme.

2.2.3 Anchor Encoding

Van Dyke and Margeson [17] proposed a compression scheme similar to the

DDPCM scheme. Instead of setting upper left pixel as a reference point, this

compression algorithm selects a fixed anchor point, z0, from other positions in a tile as

shown in the Fig. 2.3. All we have to save are 16-bit anchor point, 7-bit x differential,

7-bit y differential and 5-bit 2
nd

 order differentials.

In fact, we cannot obtain better compression ratio by anchor encoding than that of

the DDPCM scheme [21] .

Chapter 2 3D Graphics Rendering pipeline and

Depth Buffer Compression Schemes

9

p p p p

p z0 p

p p p

p p p p

∆x

∆y

Fig. 2.3. Illustration of anchor encoding.

2.2.4 HA Compression Scheme

Hasselgren and Akenine-Möller proposed a state-of-the-art depth buffer

compression scheme, which can achieve high CR by exploiting the continuity of

interpolated depth values in the screen space [21] .

The plane mode means how many reference points will be used to compute

differentials. In HA compression scheme, one-plane and two-plane modes are included.

In one-plane mode, only one reference point is used to achieve compression; in

two-plane mode, two reference points are used. The operations of the one-plane mode

are illustrated in the Fig. 2.4. The two 1
st
 order differentials are △z1 and △z4. Except

z0, △z1 ,and △z4, the remaining values are called 2
nd

 order differentials. The example

of the one-plane mode is illustrated in Fig. 2.5. From the one-plane mode example, the

2
nd

 order differentials are saved in only 1 bit that is the reason why this algorithm can

achieve better CR than other compression schemes. In two-plane mode, two

one-plane-mode operations will be applied according to two different reference points.

Fig. 2.6 depicts an example of two-plane mode. Furthermore, there are two kinds of

combination cases, as shown in Fig. 2.7, including rising and falling cases in the

two-plane mode, where R means the reference point. In the rising case, the slope of

Chapter 2 3D Graphics Rendering pipeline and

Depth Buffer Compression Schemes

10

break points is rising. That is why this condition called rising case. Similarly, the slope

of falling case is falling. These two kinds of combination cases can increase the

compression flexibility to achieve higher compression ratio.

The two-plane mode has break-point information which is composed of 0’s and 1’s.

Because we have to combine two sets of differentials with two different reference points,

break points indicate which differential set should be chosen for combination. The

positions of break points indicate that the value of the 2
nd

 order differentials is larger

than that of HA compression scheme. Additionally, this scheme as shown in the Fig. 2.6

can handle two-plane mode cases rather than a fixed-position-reference-point scheme of

the extended DDPCM scheme.

z0 z1 z2 z3

z4 z5 z6 z7

z8 z9 z10 z11

z12 z13 z14 z15

z0 ∆z1 ∆
2
z2 ∆

2
z3

∆z4 ∆
2
z5 ∆

2
z6 ∆

2
z7

∆
2
z8 ∆

2
z9 ∆

2
z10 ∆

2
z11

∆
2
z12 ∆

2
z13 ∆

2
z14 ∆

2
z15














15 14, 13, 11, 10, 9, 7, 6, 5, 3, 2, ,1)1(

8,12 ,4)4(2

410

iΔziziz

iΔziziz

izΔ

, , iziziΔz

Fig. 2.4. Illustration of one-plane mode compression.

0 1 1 2

2 3 4 5

4 5 6 6

5 6 6 7

0 -1 0

0 0 0 0

0 0 0 -1

-1 0 -1 0

1 0 1

1 1 1 1

1 1 1 0

0 1 0 1

(a) Original tile
(c) Compute 2

nd
 order

differentials

(d) Add one to 2
nd

 order

differentials

Ref. pt.=0

∆z1=1

∆z4=2

Ref. pt.=0

∆z1=0

∆z4=1

1 0 1

2 1 1 1

2 1 1 0

1 1 0 1

(b) Compute 1
st
 order

differentials

Ref. pt.=0

∆z1=1

∆z4=2

Fig. 2.5. Example of one-plane mode using HA compression scheme.

Chapter 2 3D Graphics Rendering pipeline and

Depth Buffer Compression Schemes

11

0 1 1 5

1 2 6 6

1 7 7 7

9 8 8 8

0 -1 3

0 0 3 -1

-1 5 -1 -1

7 -2 -1 -1

001

-100-6

-10-4-1

-1-40-1 1 0 0

1 1 0

0 0

1 00

00

0

(d) Compute 1st order differentials based
on lower-right pixel

(f) Combine two sets of differentials

(a) Original tile
(c) Compute 2nd order differentials based

on upper-left pixel and add one to 2nd
order differentials above the red line

Ref. pt.= 0

∆z1= 1

∆z4= 1

Ref. pt.= 8

∆z1= 0

∆z4= -1

1 0 4

1 1 4 0

0 6 0 0

8 -1 0 0

(b) Compute 1st order differentials based
on upper-left pixel

Ref. pt.= 0

∆z1= 1

∆z4= 1

-1 0 -4 0

-1 -4 0

-6 0

1 00

00

0

(e) Compute 2nd order differentials based
on lower-right pixel

Ref. pt.= 8 ∆z1= 0 ∆z4= -1 Ref. pt.= 0 ∆z1= 0 ∆z4= 0

Ref. pt.= 8

∆z1= 0

∆z4= -1

Fig. 2.6. Example of two-plane mode using HA compression scheme.

(a) Rising case (b) Falling case

0

0R

0

0

0

0

0

0

0

R

0

0 01

1

1

1 0

0 0

00

1

1

1

1

0 0

0 0

0

Fig. 2.7. Two kinds of cases supported by HA compression scheme and corresponding

break-point maps.

2.2.5 Plane Encoding

Different from the compression algorithms with the use of the continuity of

interpolated depth values in the screen space, plane encoding labels triangles in a range

Chapter 2 3D Graphics Rendering pipeline and

Depth Buffer Compression Schemes

12

of tiles and saves these index numbers eventually. When a pixel is rendered, the depth

value corresponding to the coordinate has to be computed. Van Hook [18] and Liang et

al. [19] both presented compression schemes similar to the plane encoding. Fig. 2.8

shows the abstract concept of the plane encoding. The plane encoding can handle

several overlapping triangles in a single tile, which is suitable for large tile size. The

drawback is that it must store indices and the corresponding counter value in depth tile

cache [21] .

1

1

1

3

3

3

3

3

1

1

1

1

3

3

3

3

1

1

1

1

1

3

3

3

1

1

1

1

1

2

3

3

1

1

1

1

2

2

2

3

1

1

2

2

2

2

2

2

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Fig. 2.8. Example of plane encoding.

2.2.6 Depth Offset Compression

Morein and Natale [20] presented depth offset compression as illustrated in Fig. 2.9.

For tile-based rendering, assume that we save the Z-max (maximum depth value) value

and Z-min value (minimum depth value) of a tile. The depth values of a tile will be

categorized into to the representable and unrepresentable ranges. The representable

ranges consist of two regions based on Z-max value and Z-min value.

Hasselgren and Akenine-Möller [21] also have presented a modified scheme

consisting of two kinds of representable ranges in depth offset compression, one with 12

Chapter 2 3D Graphics Rendering pipeline and

Depth Buffer Compression Schemes

13

bits per pixel used to store the offsets, and one with 16 bits per pixel. If the minimum

and maximum values are already stored in the tile table, this scheme uses 12 or 16 bits

per pixel, and results in a higher CR [25] .

If we stored the Z-max and Z-min values of the compressed tile, this scheme can be

applied without extra cost. It cannot work well for high CR value, but obtains excellent

compression probabilities for low CR value [21] .

Z-min value Z-max value

Representable Range Representable RangeUnrepresentable Range

Fig. 2.9. Illustration of depth offset compression.

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

14

Chapter 3

Proposed Reconfigurable Compression

Algorithm and Architecture

In this chapter, we propose a reconfigurable algorithm and architecture for depth

buffer compression. According to the different scene changes, the proposed algorithm is

capable of adaptively employing three compression schemes including the 2-bit

DDPCM [16] , 1-bit HA [21] , and 7-bit DDPCM schemes to generate 11 compression

modes. The presented 7-bit DDPCM scheme similar to the 2-bit DDPCM scheme

makes use of 7 bits to save each 2
nd

 order differential. The data flow graph of the

proposed algorithm demonstrates the difference among different mode compressions.

The corresponding reconfigurable architecture consisting of three stages will be issued

at the end of this chapter.

3.1 Proposed Reconfigurable Algorithm

In this session, the proposed algorithm will be discussed in detail by data flow

graph.

3.1.1 Plane Type and Combination Case

In the proposed algorithm, the plane type also referred as to the plane mode in the

1-bit HA compression scheme is also concerned. Different from the HA scheme [21] ,

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

15

in the proposed algorithm, the compression scheme selection (CSS), which will be

discussed later, in the proposed algorithm is performed after two-plane differential

combination for hardware-oriented design. Fig. 3.1 illustrates how to compute two sets

of differentials according to two different reference points and how to combine the two

planes. Furthermore, we extend original two combination cases into four combination

cases, as shown in Fig. 3.2, including rising, falling, vertical and horizontal cases in the

two-plane type. These four kinds of combination cases can increase the compression

flexibility to achieve higher compression ratio.

z0 z1 z2 z3

z4 z5 z6 z7

z8 z9 z10 z11

z12 z13 z14 z15

z0 ∆z1 ∆
2
z2 ∆

2
z3

∆z4 ∆
2
z5 ∆

2
z6 ∆

2
z7

∆
2
z8 ∆

2
z9 ∆

2
z10 ∆

2
z11

∆
2
z12 ∆

2
z13 ∆

2
z14 ∆

2
z15

z15∆z*14∆
2
z*13∆

2
z*12

∆z*11∆
2
z*10∆

2
z*9∆

2
z*8

∆
2
z*7∆

2
z*6∆

2
z*5∆

2
z*4

∆
2
z*3∆

2
z*2∆

2
z*1∆

2
z*0 z0 ∆z1 ∆

2
z2 ∆

2
z3

∆z4 ∆
2
z5 ∆

2
z6

∆
2
z8 ∆

2
z9

∆
2
z12 z15∆z*14∆

2
z*13

∆z*11∆
2
z*10

∆
2
z*7

(c) Compute 2nd order differentials
based on z15

(d) Combine two differentials plane
based on z0 and z15, respectively

(a) Original tile with depth values
(b) Compute 2nd order differentials

based on z0

Fig. 3.1. Two-plane type of the proposed reconfigurable algorithm.

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

16

(a) Rising case (b) Falling case (c) Vertical case (d) Horizontal case

0

0 R RR

0

0

0

0

0

0

0

R

0

0 0

1

1

1

1

1

0 0

0 0

0

0

01

1

1

1 0

0 0

00

1

1

1

1

0 0

0 0

0

0

0

0

00

0

0

0

0

0

0

0

0

0 0

0 0

0

Fig. 3.2. Four kinds of combination cases supported by the proposed algorithm and

corresponding break-point maps.

3.1.2 Compression Schemes

So as to increase the higher CR of the depth buffer compression, we employ three

kinds of compression schemes in the proposed algorithm. These schemes including

1-bit HA [21] , 2-bit DDPCM [16] , and 7-bit DDPCM schemes can be adaptively

chosen with the aim of the highest compression ratio.

The difference among these three algorithms is the bit length for storing each value

of differential. Through the 1-bit HA and 2-bit DDPCM schemes, we can use only one

bit and two bits to store each differential, respectively. Although the 1-bit HA and 2-bit

DDPCM schemes are useful to save differentials, these two compression schemes still

limit CR for more complex 3D scenes. Concerning more stable CR, we decide to use

7-bit DDPCM in this thesis.

The following attributes summarize the conditions for each compression scheme.

The ranges of each compression scheme can be addressed as follows. The 1-bit HA

scheme covers the differential set of }1,0{ and 2-bit DDPCM scheme covers the

differential set of }1,0,1{ , and the differential set of the 7-bit DDPCM scheme covers

the differential set of }63,62,61,-64,-63,{  . Additionally, the HA scheme can be

divided into two types. The type 1 HA scheme means all the 2
nd

 order differentials are

the elements of the set {-1,0}. These 2
nd

 order differentials will be added by one and the

1
st
 order differentials will be subtracted by one such that all the differentials are the

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

17

elements of the set of {1,0}. Therefore, each differential can be saved in only one bit.

On the other hand, the type 2 HA scheme means all the differentials are already the

elements of the set of {1,0} without addition and subtraction.

All compression schemes can be applied to one-plane and two-plane types. In

addition, we divide a tile into two parts including vertical and horizontal parts. The

horizontal part stands for the positions, z2, z3, z5, z6, z7, z9, z10, z11, z13, z14, and z15, in

Fig. 2.4. The vertical part stands for the positions, z8 and z12, in Fig. 2.4. In these two

parts, different compression schemes can be applied. For example, the vertical part

applies the 1-bit HA scheme and the horizontal part applies the 2-bit DDPCM scheme.

According to the combination of plane type and schemes used, the 11 compression

modes can be obtained in Table 3.1. Consequently, owing to two-plane types by five

schemes (i.e., ten modes are generated) and one uncompression mode, the number of

modes is 11.

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

18

Table 3.1. Proposed compression modes.

Compression Mode

Name

Mode Description

OP-HA-HA 1-bit HA scheme applied in both of the vertical and

horizontal parts under one-plane type

OP-2bDDPCM-HA 2-bit DDPCM and 1-bit HA schemes are applied in vertical

and horizontal parts, respectively, under one-plane type

OP-7bDDPCM-HA 7-bit DDPCM and 1-bit HA schemes are applied in the

vertical and horizontal parts, respectively, under one-plane

type

OP-7bDDPCM-2bDDP

CM

7-bit DDPCM and 2-bit DDPCM schemes are applied in the

vertical and horizontal parts, respectively, under one-plane

type

OP-7bDDPCM

-7bDDPCM

7-bit DDPCM scheme is applied in both of the vertical and

horizontal parts under one-plane type

TP-HA-HA 1-bit HA scheme is applied in both of the vertical and

horizontal parts under two-plane type

TP-2bDDPCM-HA 2-bit DDPCM and 1-bit HA schemes are applied in the

vertical and horizontal parts, respectively, under two-plane

type

TP-7bDDPCM-HA 7-bit DDPCM and 1-bit HA schemes are applied in the

vertical and horizontal parts, respectively, under two-plane

type

TP-7bDDPCM-2bDDP

CM

7-bit DDPCM and 2-bit DDPCM schemes are applied in the

vertical and horizontal parts, respectively, under two-plane

type

TP-7bDDPCM

-7bDDPCM

7-bit DDPCM scheme is applied in both of the vertical and

horizontal parts under two-plane type

Uncompression Unsupported combination cases in two-plane type

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

19

3.1.3 Data Flow

The data flows of the proposed algorithm as depicted in Fig. 3.3 (a)-(f) are

described in the following, where the coarse-solid lines in Fig. 3.3 (a)-(f) indicate the

flows according to different cases. Fig. 3.3 (a) shows one-plane type; Fig. 3.3 (b) shows

two-plane type including rising, vertical, and horizontal cases; Fig. 3.3 (c) shows

two-plane type, including falling cases; Fig. 3.3 (d)-(f) show the data flow in

uncompression mode.

In details, Fig. 3.3 (d) illustrates the two sets of break points according to the

upper-left and lower-left pixels are unsupported. Fig. 3.3 (e) and (f) show the set of

differentials according to the 2
nd

 reference point in two-plane type including rising,

vertical, horizontal, and falling cases does not pass break-point-match. Fig. 3.4 shows

an example of uncomoression mode for case 2. Furthermore, assume that only 2-bit

DDPCM scheme is applied in Fig. 3.4. In Fig. 3.4, the break points of differentials

according to the upper-left pixel are determined as a rising case. However, the break

points of differentials according to the lower-right pixel are determined as an

uncompressed case. Because the two sets of break points are determined as different

cases, this kind of tile finally is classified into the uncompression mode.

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

20

Compute 2nd order
differentials according to

upper-left pixel

Combination

Pack differentials/original
depth values and ctrl-code

Yes

Yes

No

Check range
of

differentials

Compressed/uncom
pressed

depth values

No

Yes

No

An 8x8
depth values

Compute 2nd
order differentials

according to
lower-left pixel

Yes

Yes

Compute 2nd order
differentials
according to

lower-right pixel

Compute 2nd order
differentials
according to

upper-right pixel

The last
one ref. point?

Yes

No

Break-point generation and
one-plane mode check

Break-point
generation

Break-point map
check

Break-point-match

Compression
scheme

selection

Break-point map check and
two-plane mode check

Compute 2nd order
differentials according to

upper-left pixel

Combination

Pack differentials/original
depth values and ctrl-code

Yes

Yes

No

Check range
of

differentials

Compressed/uncom
pressed

depth values

No

Yes

No

An 8x8
depth values

Compute 2nd
order differentials

according to
lower-left pixel

Yes

Yes

Compute 2nd order
differentials
according to

lower-right pixel

Compute 2nd order
differentials
according to

upper-right pixel

The last
one ref. point?

Yes

No

Break-point generation and
one-plane mode check

Break-point
generation

Break-point map
check

Break-point-match

Compression
scheme

selection

Break-point map check and
two-plane mode check

 (a) (b)

Fig. 3.3. (a) Data flow illustration of the proposed reconfigurable depth buffer

compression in one-plane type. (b) Data flow illustration of the proposed reconfigurable

depth buffer compression in two-plane type for rising/vertical/horizontal cases.

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

21

Compute 2nd order
differentials according to

upper-left pixel

Combination

Pack differentials/original
depth values and ctrl-code

Yes

Yes

No

Check range
of

differentials

Compressed/uncom
pressed

depth values

No

Yes

No

An 8x8
depth values

Compute 2nd
order differentials

according to
lower-left pixel

Yes

Yes

Compute 2nd order
differentials
according to

lower-right pixel

Compute 2nd order
differentials
according to

upper-right pixel

The last
one ref. point?

Yes

No

Break-point generation and
one-plane mode check

Break-point
generation

Break-point map
check

Break-point-match

Compression
scheme

selection

Break-point map check and
two-plane mode check

Compute 2nd order
differentials according to

upper-left pixel

Combination

Pack differentials/original
depth values and ctrl-code

Yes

No

No

Check range
of

differentials

Compressed/uncom
pressed

depth values

No

Yes

No

An 8x8
depth values

Compute 2nd
order differentials

according to
lower-left pixel

Yes

Yes

Compute 2nd order
differentials
according to

lower-right pixel

Compute 2nd order
differentials
according to

upper-right pixel

The last
one ref. point?

Yes

No

Break-point generation and
one-plane mode check

Break-point
generation

Break-point map
check

Break-point-match

Compression
scheme

selection

Break-point map check and
two-plane mode check

 (c) (d)

Fig. 3.3. (c) Data flow illustration of the proposed reconfigurable depth buffer

compression in two-plane type for falling cases. (d) Data flow illustration of the

proposed reconfigurable depth buffer compression in uncompression mode for case 1.

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

22

Compute 2nd order
differentials according to

upper-left pixel

Break-point generation and
one-plane mode check

Break-point map check and
two-plane mode check

Combination

Compression
scheme

selection

Pack differentials/original
depth values and ctrl-code

Yes

Yes

No

Check range
of

differentials

Compressed/uncom
pressed

depth values

No

Break-point-match

Yes

An 8x8
depth values

Compute 2nd
order differentials

according to
lower-left pixel

Yes

Yes

Compute 2nd order
differentials
according to

lower-right pixel

Compute 2nd order
differentials
according to

upper-right pixel

The last
one ref. point?

Yes

No

No

Break-point
generation

Break-point map
check

Compute 2nd order
differentials according to

upper-left pixel

Combination

Pack differentials/original
depth values and ctrl-code

Yes

Yes

No

Check range
of

differentials

Compressed/uncom
pressed

depth values

No

Yes

An 8x8
depth values

Compute 2nd
order differentials

according to
lower-left pixel

Yes

Yes

Compute 2nd order
differentials
according to

lower-right pixel

Compute 2nd order
differentials
according to

upper-right pixel

The last
one ref. point?

Yes

No

No

Break-point generation and
one-plane mode check

Break-point
generation

Break-point check

Break-point-match

Compression
scheme

selection

Break-point map check and
two-plane mode check

 (e) (f)

Fig. 3.3. (e) Data flow illustration of the proposed reconfigurable depth buffer

compression in uncompression mode for case 2. (f) Data flow illustration of the

proposed reconfigurable depth buffer compression in uncompression mode for case 3.

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

23

0 1 2 3

5 5 6 7

9 11 13 16

13 13 16 16

0 0 0 0

0 -1 0 0

-1 1 1 2

-1 -1 2 -1

160-30

0-3-2-2

-9-1-10

-4-1-1-1
0 0 0 0

0 0 0

0 0

0 010

10

0

(c) Compute 2nd order differentials
based on lower-right pixel

(a) Original tile (b) Compute 2nd order differentials
based on upper-left pixel

Ref. pt.= 0

∆z1= 1

∆z4= 5

Ref. pt.= 16 ∆z1= 0 ∆z4= 0

0 0 0 1

0 0 0

1 1

0 001

01

1

(d) Break-point match fails

Fig. 3.4. Example of uncompression mode for case 2.

In the first step, we compute the 1
st
 and 2

nd
 order differentials according to the 1

st

reference point. In the proposed algorithm, the 1
st
 reference point is the upper-left pixel.

In the second step, we check the range of these 2
nd

 order differentials. If all differentials

are inside the restricted range that the 7-bit DDPCM scheme can serve, this tile will be

determined as one-plane type.

If any differential is larger than the maximum number or less than the minimum

number that the 7-bit DDPCM scheme can serve, we will check the break points to

determine which combination case is satisfied. If the tile does not pass the

break-point-match step, this tile will be categorized into uncompression-mode case.

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

24

However, if the tile passes the break-point-check, we have to compute another set of

differentials according to the 2
nd

 reference point. In this proposed algorithm, the 2
nd

reference point in rising, vertical and horizontal case is the lower-right pixel, and in

falling case the 2
nd

 reference point is the upper-right pixel. Additionally, if a tile is

categorized into the falling case, the differentials according to the 1
st
 reference point at

upper-left pixel have to be updated, and the updated differentials will depend on the

lower-left pixel referred as the 1
st
 reference point in the falling case.

When we combine two sets of differentials in the two-plane type, we do the

following operations for each row of the tile. In each row, we scan from the first column

to the eighth column. If the break point is 0 and the combination case is not a falling

case, the differentials according to the upper-left pixel will be chosen. If the

combination case is a falling case, the differentials according to the lower-left pixel will

be chosen. On the other hand, if the break point is 1 and the combination case is not a

falling case, the differentials according to the lower-right pixel will chosen. If the

combination mode is a falling case, the differentials according to the upper-right pixel

will be selected. There is an exception that in each row scanning when we have scanned

a break point with 1 and then all the break points of the remainder columns will be

viewed as 1, no matter what the original values of these break points are. Compression

scheme selection determines which compression scheme will be adopted according the

range of differentials. Notice that a tile is divided into two parts and these two parts can

apply different compression schemes, independently.

Finally, we will pack reference points, differentials and control-code, including

compression flag, compression schemes, break points, and etc., together.

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

25

3.1.4 Control-Code

The format of the control-code and the saving format of break points are depicted in

Fig. 3.5. The first bit of the control-code represents whether the tile is compressed. The

second bit of the control-code indicates whether the tile is one-plane or two-plane type.

The third and the fourth bits represent what kind of compression schemes is applied in

the horizontal part. The fifth and the sixth bits represent what kind of compression

schemes is applied in vertical part.

Uncompression Plane type
Compression
scheme (H)

Compression
scheme (H)

Compression
scheme (V)

Compression
scheme (V)

Combination
case [1]

Combination
case [0]

Row# [2] Row# [1] Row# [0] Col# [2] Col# [1] Col# [0]

(a) Control-code

(b) Break point

Fig. 3.5. Control-code and break point.

In the format of break point, the first and the second bits indicate what kind of

combination cases, such as rising case, is applied to the break points. Third, the fourth

and the fifth bits mean the row number of the top break point. The sixth, the seventh and

the eighth bits mean the column number of the top break point. Notice that the break

points will be saved only when the tile is two-plane type. Additionally, if the tile is

uncompressed, only the first bit of the control-code will be packed with the tile.

3.1.5 Decompression

The data flow of decoding is illustrated in Fig. 3.6. First, according to the

control-code, a tile can be adaptively processed by OP-HA-HA, OP-2bDDPCM-HA,

OP-7bDDPCM-HA, OP-7bDDPCM-2bDDPCM, OP-7bDDPCM-7bDDPCM,

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

26

TP-HA-HA, TP-7bDDPCM-HA, OP-2bDDPCM-HA, TP-7bDDPCM-2bDDPCM,

TP-7bDDPCM-7bDDPCM, and uncompressed schemes. In addition, in the two-plane

type, a tile can be determined as rising, vertical, horizontal or falling cases. If a tile

belongs to the one-plane type, the operation in the decoding is just to retrieve original

depth values according to the reference point, the 1
st
 order differentials and the 2

nd
 order

differentials. If a two-plane type is available and recognized as rising, vertical,

horizontal, or falling case, the next step is to retrieve depth values according to the two

reference points, the 1
st
 order differentials and the 2

nd
 order differentials. After

retrieving depth values, the next step is to combine these two set of differentials. Note

that the falling case takes the different reference points from the rising, vertical, and

horizontal cases. Finally, the original depth values are retrieved.

Compressed/uncompressed
depth values

An 8x8
depth values

Uncompressed?

Two-plane mode?

No

Yes

Retrieve depth
values according to

upper-left pixel

No

Retrieve depth
values according to
lower-right pixel

Falling cases?

Yes

Retrieve depth
values according to

lower-left pixel

Retrieve depth
values according to
upper-right pixel

No

Differentials
Combination

Yes

Fig. 3.6. Data flow illustration of decompression.

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

27

3.2 Proposed Reconfigurable Architecture

In this section, the corresponding VLSI architecture of the proposed reconfigurable

algorithm is described. The presented reconfigurable architecture as shown in Fig. 3.7

owns the features of high compression ratio and power-efficiency. The proposed

architecture consists of three stages, where the first stage covers differential

computation and corresponding break-point map generation, the second stage represents

the break-point map checking for determining what kind of supported cases, the upper

part of the third stage represents combination of two sets of differential, and the lower

part of the third stage denotes the compression scheme selection and packing.

3.2.1 First Stage

In order to reduce the redundant computation cycles and power consumption, the

analysis of number of differential computations (DC) will be necessary. Table 3.2 shows

the analysis of redundant computation cycles under the assumptions related to different

reference points. We can find out that it will take less computation cycles if we use one

DC block. The four DC blocks will result in lower latency, but it will take more

redundant computation cycles. For less hardware cost and redundant computation cycles

we adopt one DC block as shown in Fig. 3.7 for all the essential differentials. In Fig. 3.7,

in order to achieve power efficiency, a folded architecture as sketched in Fig. 3.8 is

applied to the DC. Compared with the conventional structure, about 50% number of

subtractors can be reduced. Therefore, the low power consumption can be obtained. Fig.

3.8 illustrates the implementation of DC related to rising, vertical, and horizontal cases.

The MUXs are used to select the correct inputs to compute differentials according to the

reference points. Fig. 3.9 shows the data reorder procedure through data shift registers

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

28

instead of MUXs. The DC block generates a half set of differentials every clock period.

In order to compute other set of differentials without using MUXs for the input source

selection, data shift registers is used. The gated clock technique is used for prevention

from high signal transitions in registers such that the power and area saving can be

attained.

The break-point map generation is used to generate the corresponding break-point

map for checking the range of differentials at the second stage. Fig. 3.10 shows the

block diagram of the break-point map generation. Threshold value as shown in Fig. 3.10

denotes the max/min values that the 7-bit DDPCM scheme can serve. Every 2
nd

 order

differential has to be checked whether any other differential is out of the range

supported by the 7-bit DDPCM scheme. If all the differentials are in the supported

range, this tile is classified into one-plane type. Otherwise, if any differential is out of

the supported range, this coming tile is possibly classified to the two-plane or

uncompression mode. Furthermore, the positions corresponding to the depth values

7-bit DDPCM scheme cannot server indicate the positions of break points.

Due to different reference points, different range of differentials is checked to

generate break points. In order to reduce hardware area and power consumption of the

break-point generation, the hardware-reused technique is considered.

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

29

D
ep

th

B
u
ff

er

E
n
ab

le

D
if

fe
re

n
ti

al

C
o
m

p
u
ta

ti
o
n

fa
ll

in
g

2
n
d
 r

ef
.
p
o
in

t

2
n

d
 re

f.
 p

o
in

t

fa
ll

in
g

B
re

ak
-

p
o
in

t-

m
at

ch

re
ad

y
?

P
la

n
e

m
o
d
e

C
o
m

b
in

at
io

n
 c

as
e

u
n
co

m
p
re

ss
io

n

C
o
o
rd

in
at

e
o
f

th
e

to
p
 o

f
b
re

ak
 p

o
in

t

A
 s

et
 o

f
d
if

f.
A

 s
et

 o
f

d
if

f.

T
w

o
-p

la
n
e

d
if

fe
re

n
ti

al

co
m

b
in

at
io

n

R
o
w

 #
1

R
o
w

 #
2

R
o
w

 #
3

R
o
w

 #
4

R
o
w

 #
5

R
o
w

 #
N

-1

R
o
w

 #
N

C
o
m

p
re

ss
io

n

S
ch

em
e

se
le

ct
io

n

H
o
ri

zo
n
ta

l

V
er

ti
ca

l

P
ac

k

H
o
ri

zo
n
ta

l

V
er

ti
ca

l

U
n

co
m

p
re

ss
io

n

B
re

ak
 p

o
in

t
m

ap

E
x
t.

1
'b

0

0 1

0 1

R
ea

d
y

B
re

ak
-p

o
in

t
m

ap

ch
ec

k

f

R
ef

.
1

R
ef

.
2

r/
h
/v

R
ef

.
1

R
ef

.
2

B
re

ak
-p

o
in

t

m
ap

 g
en

er
at

io
n

R
es

u
lt

O
u
t

v
al

id

S
ta

ge
 1

S
ta

ge
 2

S
ta

ge
 3

Fig. 3.7. Block diagram of the reconfigurable compression architecture.

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

30

Table 3.2. Analysis of redundant computation cycles with different number of

differential computation blocks.

 One-plane

type

Two-plane type Uncompression

mode Rising/vertical/horizontal Falling

One DC 0 0 1 2

Two DCs 1
*1

/1
*2

 2
*1

/0
*2

 2
*1

/2
*2

 2
*1

/4
*2

Three DCs 2
*3

/2
*4

 1
*3

/2
*4

 2
*3

/1
*4

 3
*3

/3
*4

Four DCs 3 2 2 4

*1. Assume that one block compute differentials based on the upper-left pixel and the other based on the lower-left pixel.

*2. Assume that one block compute differentials based on the upper-left pixel and the other based on the lower-right pixel.

*3. Assume that one block compute differentials based on the upper-left pixel. Another block compute differentials based on the

lower-right pixel and the other based on the lower-left pixel.

*4. Assume that one block compute differentials based on the upper-left pixel. Another block compute differentials based on the

upper-right pixel and the other based on the lower-left pixel.

Z0 Z3 Z1 Z2 Z2 Z1

∆z1

∆
2
z3

Z3 Z0 Z0 Z3 Z4 Z7 Z8 Z11

∆z4

Z12 Z15

∆
2
z2∆

2
z1 ∆

2
z12∆

2
z8∆

2
z4

Fig. 3.8. Block diagram of folded differential computation.

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

31

Differential
Computation

Fig. 3.9. Block diagram of data reorder architecture.

>

>

>

>

>

Threshold

1

0
Two-plane type

1

0

∆
2
z2

∆
2
z12

∆
2
z13

∆
2
z14

∆
2
z15

Fig. 3.10. Block diagram of break-point map generation.

3.2.2 Second Stage

Break-point map check at the second stage will determine whether this tile buffer

belongs to one-plane type, two-plane type, or uncompression mode. With the

break-point map check, the combination case and the position of break points are

determined of a two-plane-type tile. Fig. 3.11 shows how to determine a tile buffer is

uncompression mode when the reference point is the upper-left pixel. Once the

two-plane-mode and coordinate signals are pulled up and down, respectively, the

uncompression signal will be pulled up, i.e. this tile is determined into the

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

32

uncompression mode. Besides, if the reference point is the lower-left pixel, the

uncompression will not be compared with 0, but 56. Fig. 3.12 depicts the lookup table

for finding the corresponding combination case and the coordinate of the top of break

points. At this stage, we can determine information, such as compression, plane type,

combination case, and coordinate of the top break point, for a tile. Furthermore, the

ready signal in the Fig. 3.7 is pulled up, when the information of a tile is determined and

then the next tile can be input at the next cycle. Moreover, the clock gating technique is

also applied at this stage to reduce transitions in registers.

=

=

1

Two-plane type

Coordinate

1

0
Uncompression

1

0

0

Fig. 3.11. Block diagram of break-point check for determining uncompression mode.

15'b010_0100_1000_0000

15'b100_1000_0000_0000

15'b001_0010_0100_1000

15'b000_0001_0010_0100

Rising cases

Falling cases

Vertical cases

Horizontal cases

4'b00_10

4'b00_01

4'b00_11

4'b01_11

Combination

cases

2'b00

2'b01

2'b10

2'b11

Coordinates

Coordinates

Coordinates

Coordinates

Break-point map

Combination

cases

Coordinate

Fig. 3.12. Block diagram of break-point check.

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

33

3.2.3 Third Stage

At the third stage, there are two-plane differential combination, compression

scheme selection, and packing blocks. Fig. 3.13 illustrate the implementation of

two-plane differential combination which will choose the desired differentials from two

sets of differentials for compression in the two-plane type. Because once a tile is

determined into the two-plane type, at most seven lower bits of every differential will be

saved at the packing block. Therefore, in the two-plane differential combination, just

seven lower bits of each differential are used to the combination operation. It results in

less hardware resources and power consumption.

Fig. 3.14 illustrates the implementation of compression scheme selection.

According to the range of differentials, this block will choose the adequate bit length for

storing these differentials. If a tile applies the type-1 HA scheme, the constant one is

added to each 2
nd

 order differential and, at the same time, the constant one is subtracted

from the 1
st
 order differential. Without adding circuit, we use some inverters at the end

of packing block. Because a tile applies the type-1 HA scheme, the least significant bit

of each differential will be selected for packing, i.e. only one bit will be used for

compression. Since these differentials are the elements of the set {-1,0} and after adding

constant one to these differentials are the elements of the set {0,1}, the least significant

bit of each differential changes from 1 to 0 or from 0 to 1. Eventually, packing block

packs necessary information, for example control-code, for a compressed or

uncompressed tile. At the next cycle, the signal, out_valid, will be pull up to notice that

an output is available.

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

34

0 1 0 0

1

0

Diff1 (0)

Diff0 (0)
Diff0 (0)

1

0

Diff1 (1)

Diff0 (1)
Diff1 (1)

1

0

Diff1 (2)

Diff0 (2)
Diff1 (2)

1

0

Diff1 (3)

Diff0 (3)
Diff1 (3)

Fig. 3.13. Block diagram of two-plane differential combination.

-1

0

1

=

=

=

∆
2
z

Decode
Compression

scheme

Fig. 3.14. Block diagram of the compression scheme selection.

In accordance with the compression/uncompression mode and one/two-plane types,

different packing formats can be obtained. The most significant bit, flag, in each mode

indicates whether a tile is compressed. In uncompression mode, the remaining bits are

composed of the original depth values. In one-plane type, except for the flag,

control-code indication bits, and the reference point, the first part of remainder bits, △z

(V) and △2
z (V), belongs to the vertical part; △z (H) and △2

z (H) belong to the

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

35

horizontal part in a tile. In the two-plane type, the first part of remaining bits, excluding

flag, control-code, 1
st
 reference, and 2

nd
 reference bits, belongs to the vertical part. The

second part belongs to the horizontal part in a tile. Besides, the break-point is included

in the control-code in the two-plane type. Additionally, the clock gating technique is

applied at this stage as well. Table 3.3 shows the summary of the number of clock

cycles needed for each compression/uncompression mode.

Original depth valuesFlag

Flag 1
st
 Ref.

Control-

code
∆z (V) ∆z (H)∆

2
z (V) ∆

2
z (H)

Flag 1
st
 Ref. ∆z (V) ∆

2
z (V) ∆z (H) ∆

2
z (H)

Control-

code
2

nd
 Ref.

(a) Uncompression mode

(b) One-plane type

(c) Two-plane type

Fig. 3.15. Packing format.

When a tile is input, the first step is to compute differentials. Because there is no

information for a tile, i.e. we do not know what kind of plane type a tile belongs to, we

set the upper-left pixel as the default reference point. Additionally, in each cycle, there is

a half set of differentials computed so that for a whole set of differentials it will take two

cycles. After computing differentials, the corresponding break-point map is checked for

whether this tile is classified into uncompression mode, one-plane type, or two-plane

type.

In uncompression mode, a tile will be checked twice with two sets of differentials

according to two reference points, the upper-left and lower-left pixels. Then this tile

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

36

classified into uncompression mode exactly will bypass the two-plane differential

combination block and just pass the packing block.

In one-plane type, after computing the 1
st
 set of differentials according to the

upper-left pixel, the break-point map will be checked. Then this tile will bypass the

two-plane differential combination and pass through the choosing compression scheme

and packing blocks.

In two-plane type, excluding falling cases, after computing the 1
st
 set of

differentials according to the upper-left pixel, the 2
nd

 set of differentials according to the

lower-right pixel will be computed. Besides checking these two sets of break points for

determining what kind of combination cases these two tiles belong to, the two sets of

break points will also be checked for making sure these two sets of differentials are

recognized as the same combination case, such as rising cases. After stage 3, the tile will

be passed through the two-plane differential combination block to combine these two

sets of differentials. The break points according to the 1
st
 reference point indicate which

differential will be chosen in the two-plane differential combination. Eventually, this

combined tile passes through the choosing compression scheme and packing blocks.

In two-plane type, including falling cases, the 1
st
 set of differentials according to

the upper-left pixel is classified into the uncompression mode. The 2
nd

 and 3
rd

 sets of

differentials according to the lower-left and upper-right pixels, respectively, are

classified into the two-plane type and the combination case is falling. Then this tile

passes through the two-plane differential combination, choosing compression scheme,

and packing blocks.

Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

37

Table 3.3. Summary of number of clock cycles needed for each

compression/uncompression mode.

 One-plane

type

Two-plane type Uncompression

mode Rising/vertical/horizontal Falling

clock cycles 5 9 12 8

For power-efficiency, power-reduced techniques are concerned. Gated clock is

applied in the proposed architecture. The folded differential computation is used to

reduce redundant computation and power consumption. Because huge transition among

registers and MXUs result in high power consumption, the data reorder architecture

designed for trading off the number of transitions among registers and MUXs

reschedules the source and destination data of the differential computation. In the

two-plane differential combination, only seven lower bits of every differential are used,

because a tile passed to this block has been classified into the two-plane type and each

differential is saved in 7 bits at most. This kind of architecture uses less number of

MUXs. Without additions for the type1 of 1-bit HA compression scheme, a 1-bit

inverters consume less power and area than 16-bit adders. Furthermore, the proposed

architecture also applies hardware-reused skills in blocks, such as the break-point map

generation and the compression scheme selection.

Chapter 4 Simulation Results and Chip Implementation

38

Chapter 4

Simulation Results and

Chip Implementation

4.1 Simulation Results

In this section, the 11 compression modes are illustrated and the total compressed

bits of a tile are listed in Table 4.1. In OP-HA-HA as listed in Table 4.1, the vertical and

horizontal parts both are compressed by the HA scheme, and the total compressed tile

size is 16+7+7+61+6=97 bits, including one reference point, two 7-bit 1
st
 order

differentials, 61-bit 2
nd

 order differentials, and 6-bit control-code. In TP-HA-HA, in the

same conditions, the total compressed tile size is 16+16+7+7+7+7+58+6+8 =132 bits,

including two reference points, four 7-bit 1
st
 order differentials, 61-bit 2

nd
 order

differentials, 6-bit control-code, and break point. Other title sizes using different mode

schemes can be calculated similarly. Concerning the 7-bit DDPCM scheme, we expect

that the size of the compressed tile can be smaller than that of half size of the original

tile.

The teapot and stereoscopic polygons benchmarks are used as reference

simulations as shown in Fig. 4.1 (a) and (b). The average CR as listed in Table 4.2

shows the average compression ratio and the comprehensive comparison with the 1-bit

HA and 2-bit DDPCM schemes related to the two benchmarks. For the teapot, the

Chapter 4 Simulation Results and Chip Implementation

39

proposed reconfigurable algorithm outperforms others by 27.2% and 13.6% compared

with the independent 2-bit DDPCM and 1-bit HA schemes. For the stereoscopic

polygons, the proposed algorithm outperforms others by 33.6% and 21.7% compared

with the 2-bit DDPCM and 1-bit HA schemes.

The sample distribution of the average CR related to the benchmark, Fig. 4.1 (a),

as shown in the Fig. 4.2 and Fig. 4.3 illustrate the usefulness of our proposed algorithm

compared with the 1-bit HA and 2-bit DDCPM schemes, respectively. Moreover, Fig.

4.4 and Fig. 4.5 illustrate the average CR related to the benchmark, Fig. 4.1 (b). A point

in the Fig. 4.2, Fig. 4.3, Fig. 4.4, and Fig. 4.5 indicates an average compression ratio of

five tiles. It is obvious that our proposed reconfigurable algorithm can achieve more

stable average compression ratio than the 1-bit HA and 2-bit DDPCM schemes.

Table 4.1. Bit width of compressed/uncompressed tile in proposed algorithm.

Mode Name Number of bits

OP-HA-HA 97

OP-2bDDPCM-HA 103

OP-7bDDPCM-HA 113

OP-7bDDPCM-2bDDPCM 188

OP-7bDDPCM -7bDDPCM 463

TP-HA-HA 132

TP-2bDDPCM-HA 138

TP-7bDDPCM-HA 168

TP-7bDDPCM-2bDDPCM 220

TP-7bDDPCM -7bDDPCM 480

Uncompression 1025

Chapter 4 Simulation Results and Chip Implementation

40

Fig. 4.1 (a) Teapot, and (b) Stereoscopic polygons.

Fig. 4.2. Proposed algorithm vs. the 1-bit HA compression scheme for teapot scenario.

Chapter 4 Simulation Results and Chip Implementation

41

Fig. 4.3. Proposed algorithm vs. the 2-bit DDPCM scheme for teapot scenario.

Fig. 4.4. Proposed algorithm vs. the 1-bit HA compression scheme for stereoscopic

polygons scenario.

Chapter 4 Simulation Results and Chip Implementation

42

Fig. 4.5. Proposed algorithm vs. the 2-bit DDPCM scheme for stereoscopic polygons

scenario.

Table 4.2. Average compression ratio with 8x8 tile size.

 Teapot Stereoscopic polygons

1-bit HA scheme [21] 1.54 (100%) 1.43 (100%)

2-bit DDPCM scheme [16] 1.33 (86.4%) 1.26 (88.1%)

Proposed algorithm 1.75 (113.6%) 1.74 (121.7%)

4.2 Chip Implementation

Concerning the chip implementation, the cell-based design flow with Artisan

standard cell library is adopted and the proposed architecture has been implemented in

TSMC 0.18-um CMOS process. The Synopsys Design Compiler is used to synthesize

the RTL design of the proposed architecture, the Cadence SOC Encounter is adopted for

Chapter 4 Simulation Results and Chip Implementation

43

placement and routing (P&R) and the Synopsys PrimePower is used to measure the

power consumption for each mode after post-layout simulation. Table 4.3 summarizes

the chip characteristics of the proposed architecture.

Table 4.3. Chip characteristics of the proposed architecture.

Active Chip Area 1.13 x 1.13 mm
2

Gate Count 97, 246

Max Clock Frequency 100 MHz

Process Technology TSMC 0.18-um CMOS

Power Consumption

(mW) @ 100MHz

One-Plane Type 22.75

Two-Plane Type

(rising/vertical/horizontal)

51.76/56.25/71.9

Two-Plane Type (falling) 57.63

Uncompression Mode 38.63

Power Consumption

(mW) @ 66.7MHz

One-Plane Type 15.18

Two-Plane Type

(rising/vertical/horizontal)

34.52/37.51/57.26

Two-Plane Type (falling) 38.43

Uncompression Mode 25.76

Chapter 4 Simulation Results and Chip Implementation

44

Fig. 4.6. Chip layout of the proposed architecture.

Chapter 6 Conclusion and Future Work

45

Chapter 5

Conclusion and Future Work

In this work, the reconfigurable algorithm for depth buffer compression is

presented. This proposed algorithm not only supports the 1-bit HA, 2-bit DDPCM

schemes as well as 7-bit DDPCM scheme, but also handles one-plane and one-plane

type compressions. In addition, different compression schemes can be applied in the

vertical and horizontal parts in a tile. There are totally 11 compression modes adaptively

applied according to different 3D scenes in this proposed compression algorithm. In

two-plane type, there are four kinds of combination cases, including rising, vertical,

horizontal, and falling cases, concerned in the presented algorithm.

For 8x8 tile size with 16-bit depth values under the teapot benchmark, the

proposed reconfigurable algorithm can achieve CR of 1.75 on average and improve

13.6% and 31.6% compared with the HA and DDPCM compression methods,

respectively. For 8x8 tile size with 16-bit depth values under the Stereoscopic polygons

benchmark, the proposed reconfigurable algorithm can achieve CR of 1.74 on average

and improve 21.7% and 38.1% compared with the HA and DDPCM compression

methods, respectively.

Furthermore, the proposed reconfigurable and power efficient depth buffer

compression architecture has been verified and implemented in TSMC 0.18-um CMOS

process. The core consists of 97,246 transistors, and its area is 1.13 um
2
. It operates at

100 MHz with maximum power consumption of 38.63 mW in uncompression mode,

Chapter 6 Conclusion and Future Work

46

22.75 mW in one-plane type, 51.76/56.25/71.9 mW in two-plane type, including rising,

vertical, and horizontal cases, and 57.63 mW in two-plane type, including falling cases,

at supply voltage of 1.8V.

For the future work, the ranges of horizontal and vertical parts will be discussed for

better compression performance.

Biliography

47

Bibliography

[1] DVB Multimedia Home Platform (MHP) Specification 1.1, TS 102 812, Nov.

2001.

[2] T. Heinonen, A. Lahtinen and V. Hakkinen, “Implementation of

three-dimensional EEG brain mapping,” Computers and Biomedical

Research, vol.32, pp. 123–131, 1999.

[3] R.-W. Woo, S. Choi, J.-H. Sohn, S.-J. Song Y.-D. Bae, and H.-J. Yoo, “A

Low-Power 3-D Rendering Engine With Two Texture Units and 29-Mb

Embedded DRAM for 3G Multimedia Terminals,” in IEEE Journal of

Solid-State Circuits, vol. 39, no. 7, pp. 1101-1109, July 2004.

[4] R. Woo, S. Choi, J.-H. Sohn, and H.-J. Yoo, “A 210-mW Graphics LSI

Implementation Full 3-D Pipeline With 264 Mtexels/s Texturing for Mobile

Multimedia Applications,” in IEEE Journal of Solid-State Circuits, vol. 39,

no. 2, pp. 358-367, February 2004.

[5] J.-H. Sohn, J.-H. Woo, M.-W. Lee, H.-J. Kim, R. Woo, and H.-J. Yoo, “A

155-mW 50-Mvertices/s Graphics Processor With Fixed-Point Programmable

Vertex Shader for Mobile Applications,” in IEEE Journal of Solid-State

Circuits, vol. 41, no. 5, pp. 1081-1091, May 2006.

[6] C.-W. Yoon, R. Woo, J. Kook, S.-J. Lee and H.-J. Yoo, “An 80/20-MHz

160-mW Multimedia Processor Integrated With Embedded DRAM, MPEG-4

Accelerator, and 3-D Rendering Engine for Mobile Applications,” in IEEE

Journal of Solid-State Circuits, vol. 36, no. 11, pp. 1758-1767, November

Biliography

48

2001.

[7] Y.-H. Park, S.-H. Han, J.-H. Lee, and H.-J. Yoo, “A 7.1-GB/s Low-Power

Rendering Engine in 2-D Array-Embedded Memory Logic CMOS for

Portable Multimedia Sysyem,” in IEEE Journal of Solid-State Circuits, vol.

36, no. 6, pp. 944-955, June 2001.

[8] R. Woo, C.-W. Yoo, J. Kook, S.-J. Lee and H.-J. Yoo, “A 120-mW 3-D

Rendering Engine With 6-Mb Embedded DRAM and 3.2-GB/s Runtime

Reconfigurable Bus for PDA Chip,” in IEEE Journal of Solid-State Circuits,

vol. 37, no. 10, pp. 1352-1355, October 2002.

[9] B.-G. Nam, H. Kim, and H.-J. Yoo, “A Low-Power Unified Architecture Unit

for Programmable Handheld 3-D Graphics Systems,” in IEEE Journal of

Solid-State Circuits, vol. 42, no. 8, pp. 1767-178, August 2007.

[10] D. Kim, K. Chung, C.-H. Yu, C.-H. Kim, I. Lee, J. Bae, Y.-J. Kim, J.-H. Park,

S. Kim, Y.-H. Park, N.-H. Seong, J.-A. Lee, J. Park, S. Oh, S.-W. Jeong, and

L.-S. Kim, “An SoC With 1.3 Gtexels/s 3-D Graphics Full Pipeline for

Consumer Applications,” in IEEE Journal of Solid-State Circuits, vol. 41, no.

1, pp. 71-84, January 2006.

[11] T. Akenine-M öller and Jacob Ström, “Graphics for the masses: a hardware

rasterization architecture for mobile phones,” in ACM Transactions on

Graphics, vol. 22, issue 3, pp. 801-808, July 2003.

[12] H.-C. Shin, J.-A. Lee, and L.-S. Kim, “A Cost-Effective VLSI Architecture

for Anisotropic Texture Filtering in Limited Memory Bandwidth,” in IEEE

Transactions on Very Large Scale Integration(VLSI) Systems, vol. 14, no. 3,

pp. 254-267, March 2002.

[13] S. Fenney, “Texture compression using low-frequency signal modulation,” in

Graphics Hardware, SIGGRAPH/EUROGRAPHICS, pp. 84-91, 2003.

http://portal.acm.org/author_page.cfm?id=81332530208&coll=GUIDE&dl=GUIDE&trk=0&CFID=1381595&CFTOKEN=88483360

Biliography

49

[14] J. Ström and T. Akenine-Möller, “iPACKMAN: high-quality, low-complexity

texture compression for mobile phones,” in Graphics Hardware,

SIGGRAPH/EUROGRAPHICS, pp. 63-70, 2005.

[15] S. Morein., “Method and apparatus for efficient clearing of memory,” U.S.

Patent 6 421 764, July 16, 2002.

[16] J. DeRoo, S. Morein, B. Favela, M. Wright, “Method and apparatus for

compressing parameter values for pixels in a display frame,” U.S. Patent 6

476 811, Nov. 5, 2002.

[17] J. Van Dyke, J. Margeson, “Method and apparatus for managing and

accessing depth data in a computer graphics system,” U.S. Patent 6 961 057,

Nov. 1, 2005.

[18] T. Van Hook, “Method and Apparatus for Compression and Decompression

of Z Data,” U.S. Patent 6 630 933, Oct. 7, 2003.

[19] B.-S. Liang, Y.-C. Lee, W.-C. Yeh, and C.-W. Jen, “Index rendering:

hardware-efficient architecture for 3-D graphics in multimedia system,” in

IEEE Transactions on Multimedia, vol. 4, no. 2, pp. 343-360, June 2002

[20] S. Morein, M. Natale, ”System, method, and apparatus for compression of

video data using offset values,” U.S. Patent 6 762 758, July 13, 2004.

[21] J. Hasselgren, T. Akenine-Möller, “Efficient depth buffer compression,” in

Graphics Hardware, SIGGRAPH/EUROGRAPHICS, pp. 102-110, 2006.

[22] S. Morein, “ATI Radeon HyperZ technology,” in Hot3D Proc. ACM

SlGGRAPH/Eurographics Workshop on Graphics Hardware, Aug. 2000.

[23] C.-H. Chen and C.-Y. Lee, “Two-level hierarchical Z-buffer with

compression technique for 3D graphics hardware,” in The Visual Computer,

Springer, vol. 19, no. 7-8, pp. 467-479, Dec. 2003.

[24] C.-H. Yu and L.-S. Kim, “A hierarchical depth buffer for minimizing

http://portal.acm.org/author_page.cfm?id=81332530208&coll=ACM&dl=GUIDE&trk=0&CFID=2367180&CFTOKEN=34421731

Biliography

50

memory bandwidth in 3D rendering engine: depth filter,” in Proc. ISCAS'03,

May 2003, pp.II-724- II-727.

[25] Per Wennersten, “Depth buffer compression,” M.S. thesis, Dept. Computer

Science and Communication, Royal Institute of Technology, Stockholm,

Sweden, 2007.

[26] M.-H. Choi, W.-C. Park, Francis Neelamkavil, T.-D. Han, and S.-D. Kim,

“An effective visibility culling method based on cache block,” IEEE Trans.

Computers, vol. 55, no. 8, pp. 1024–1032, Aug. 2006.

[27] N. Greene, M. Kass, and G. Miller, “Hierarchical Z-buffer visibility,” in Proc.

of SIGGRAPH‘93, Jul. 1993, pp. 231–238.

[28] C.-H. Yu and L.-S. Kim, “An adaptive spatial filter for early depth test,” in

Proc. IEEE ISCAS’04, May 1994, pp. II-137- II -40.

[29] Y.-M. Tsao, C.-L. Wu, S.-Y. Chien, and L.-G. Chen, “Adaptive tile depth

filter for the depth buffer bandwidth minimization in the low power graphics

systems,” in Proc. IEEE ISCAS’06, May 2006, pp. 5023-5026.

