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Abstract

Reconfigurable Depth Buffer Compression Design and

Implementation for 3D Graphics System

Student : Tzung-Rung Jung Advisor : Dr. Lan-Da Van

Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University

ABSTRACT

A less-bandwidth-required reconfigurable-depth buffer compression algorithm and
the corresponding power-efficient' architecture have been developed for 3D graphics
system. The proposed algorithm®is. able ‘to"adaptively compress the depth buffer data
according to different-scene changes by employing 11 compression modes generated
from three compression algorithms including Differential Differential Pulse Code
Modulation (2-bit DDPCM), Hasselgren and Akenine-Moller’s (1-bit HA), and 7-bit
DDPCM schemes. Furthermore, this reconfigurable algorithm supports one-plane and
two-plane type and four kinds of combination cases. For 8x8 tile size with 16-bit depth
values under the teapot benchmark, the proposed reconfigurable algorithm can achieve
CR of 1.75 on average and improve 13.6% and 31.6% compared with the HA and
DDPCM compression methods, respectively. For 8x8 tile size with 16-bit depth values
under the Stereoscopic polygons benchmark, the proposed reconfigurable algorithm can
achieve CR of 1.74 on average and improve 21.7% and 38.1% compared with the HA

and DDPCM compression methods, respectively.



Abstract

The proposed reconfigurable power-efficient depth buffer compression architecture
has been verified and implemented in TSMC 0.18-um CMOS process. The core area is
of 1.13 mm? The maximum power consumption of 38.63 mW in uncompression mode,
22.75 mW in one-plane type, 51.76/56.25/71.9 mW in two-plane type, including rising,
vertical, and horizontal cases, and 57.63 mW in two-plane type, including falling cases,

can be achieved at 100 MHz and with the supply voltage of 1.8V.
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Chapter

Introduction

Recently, the 3D computer graphics are widely used in many applications such
as mobile phones, GPS (Global Positioning System), digital TV [1] , games,
biomedical applications [2] , where these applications usually use complex GUI
(graphical user interface) to generate better 3D images. There have been much
research and development on the 3DIgraphicsalgorithms and systems for mobile
devices [3] [4] [5] [6] [7] [8] [9]:10] [11]-} It 1s manifest that 3D computer graphics
system requires extremely highimemory.bandwidth to process. On the other hand,
with the growth of complexity of 3D scenes, the amount of data computation
increases substantially. Therefore, in the bandwidth-limited system, how to efficiently
compress the depth buffer data to save bandwidth becomes a significant research issue.
Fast z-clears compression algorithm [15] uses a dedicated flag to indicate whether a
tile is cleared. The DDPCM scheme [16] , Anchor encoding [17] , HA compression
scheme [21] are effective compression algorithms to exploit the continuity of
interpolated depth values. The plane encoding scheme presented in [19] applies the
concept of indexing to compress tiles. The depth offset compression [20] saves the
differentials based on the Z-max value (maximum depth value) and Z-min value
(minimum depth value) in a tile. Morein [22] presented an overview of Z-buffer
architecture for reducing memory bandwidth and number of pixels drawn. Chen and

Lee [23] proposed two-level hierarchical Z-buffer for saving memory bandwidth and
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compression management. Yu and Kim [24] addressed an algorithm of depth filter for
early depth test in a 3D rendering engine by adding extra hardware in the front of the
per-pixel pipeline in a rasterizer and an adaptive block into the conventional depth test

block.

1.1 Motivation

Since the compression performance of these existing algorithms is limited and they
cannot adaptively compress according to different 3D scenes, we are motivated to
propose a reconfigurable depth buffer compression algorithm. On the other hand, how
to design the power-efficient depth buffer compression architecture is also an important

issue.

1.2 Thesis Organization

The rest of the thesis is organizedias follows. A brief review of 3D graphics
rendering pipeline and existing depth buffer compression algorithms are described in
Chapter 2. In Chapter 3, the proposed reconfigurable algorithm and architecture have
been presented. The simulation results and chip implementation are addressed in

Chapter 4. Last, brief statements conclude the presentation of this thesis.
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Chapter

3D Graphics Rendering Pipeline and
Depth Buffer Compression Schemes

In this chapter, we will introduce the fundamental 3D graphics pipeline and

existing depth buffer compression algorithms

2.1 3D Graphics Rendering Pipeline

In this section, a brief overview of 3D graphics:rendering pipeline is introduced.

Fig. 2.1 shows the conventional réndering pipeline.-Polygon-based rendering is one of

the mainstream methods to generate 3D graphics [19] . Generally, the pipeline can be

divided into two subsystems including the geometry subsystem and raster subsystem.

Geometry Subsystem

Triangle Wiewing Culling &
Decompression—* Transform [—* Clipping

—|

Perspective
Transform

|| Lighting

Triangle Scan Visibility
Setup [ *| Conversion [~ *| Comparison [~ *| Texturing

Shading &

: Z Buffer
= | Compression

Raster Subsystem -

e
Z-buffer

Texture
buffer

.

Fig. 2.1. 3D graphics rendering pipeline.
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2.1.1 Geometry Subsystem

Generally, the geometry subsystem can be subdivided into five stages, including
triangle decompression, viewing transform, culling and clipping, perspective transform,
and lighting. Before viewing transform, the geometry subsystem receives a triangle
mesh composed of triangles. After triangle decompression, the geometry subsystem
transforms 3D objects from the world space to the viewing space, that is called viewing
transformation. Because some triangles are of invisible triangles, such as back-faced
triangles and too small triangles, or outside of the viewing volume, they can be culled
and clipped as soon as possible for reducing the unnecessary data computation. This
stage is referred to as culling and clipping. Perspective transformation will transform 3D
objects from the viewing space to the.projection.space, i.e. 3D coordinate of an object
will be mapped into 2D coordinate. The lighting.operation in the geometry subsystem
performs lighting equations on-+vertices...Generally, these equations are complex for

simulating lighting effect in the real.world.

2.1.2 Raster Subsystem

The raster subsystem renders the transformed polygons generated from the
geometry subsystem to the monitor pixel-by-pixel. The first stage of the raster
subsystem is triangle setup for preparing data about triangular shape, bounding
rectangle, texture coordinates, color, and etc. After triangle setup, the raster subsystem
will interpolate all attributes of each pixel inside a triangle. These operations are called
scan conversion. Visibility comparison in the raster subsystem is used to detect whether
a pixel is covered by other pixels. If the pixel A is covered by the pixel B, the pixel A
will be dropped immediately for eliminating unnecessary operations. The Z-buffer saves
the depth values corresponding to the pixels not covered by other pixels at that time.

4
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The final stage of the raster subsystem is shading and texturing. At this stage, besides
the flat shading and Gouraud shading, some advanced and complex lighting algorithms,
such as Phong shading, may be applied to every pixel. Lighting is used to calculate the
colors of vertices or pixel related to the lighting source in the 3D space. Therefore, the
lighting model is used to describe the relationship between vertices or pixels and the
lighting source. One of the popular lighting models is Phong model expressed in the
following equation.

| =kala+kdId(N - L) +ksls(N - H)™® (2.1)
where |, denotes the intensity of the ambient light, Is, L, N denote the intensity of the
light source, the unit vector from pixel to the light source, and the normal vector of the
pixel, respectively. H equals (L+V)/2, V denotes the vector from the pixel to the view, ng
describes the gloss to model the highlight,-and ks, kg, and ks are the coefficients to model
the characteristic of the material.

Texture mapping needs to access-texture-buffer with huge memory bandwidth and
apply mapping equations. However, texture: mapping provides an effective way to
mimic the realistic of real world on the display. Some algorithms and architectures are
presented about the texture filter [12] and texture compression [13] [14] . The output of
the raster subsystem will be transferred to the frame buffer for displaying on the

monitor.

2.1.3 Depth Buffer

In this section, the depth buffer is introduced. The depth buffer, i.e. Z buffer,
saves the depth values corresponding to the pixels at that time. In order to determine
whether a pixel is covered by other pixels, the depth test will be performed. The depth

test reads and writes the depth buffer many times whenever a pixel has to be tested.
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Thus, the depth test results in the heavy bandwidth traffic on memory bus. To reduce the
heavy memory accesses, more efficient compression will be highly demanded. In this
thesis, a 4x4 or 8x8 pixels called a tile will be access from the depth buffer.

There are some schemes depending on the depth buffer for reducing memory
access, such as hierarchical Z buffer [27] , Z-max culling, Z-min culling [26] , and
depth filter [28] [29] . Besides the filter-based memory-accessing reduction techniques,
the offset-based data compression schemes are investigated to reduce memory bus

traffic. The next section will briefly introduce this kind of techniques.

2.2 Existing Depth Buffer Compression Schemes

In this section, we give an overview of the state-of-the-art compression schemes.
Generally, these schemes can be divided into three categories, fast z-clears, differential
differential pulse code modulation (DDPCM), ‘anchor encoding, HA compression
scheme, plane encoding, and depth.offset compression scheme. The descriptions are as

follows.

2.2.1 Fast Z-Clears

Fast z-clears [15] is a simple compression algorithm and easy to be implemented.
A dedicated bit is used to indicate whether the tile is cleared. If the tile is cleared, we
can only write back the latest depth values to depth buffer without reading the depth

buffer to update the depth values.
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2.2.2 Differential Differential Pulse Code Modulation

The Differential Differential Pulse Code Modulation (DDPCM) [16] scheme is
widely applied to the data compression since the depth values are obtained by linearly
interpolation in the screen space. DeRoo et al. [16] proposed a depth buffer
compression algorithm as illustrated in Fig. 2.2., where the notations are defined in the

following equations describe the notations in Fig. 2.2.

/N\Z4=124— 29 (2.2a)
/N\Zg =128 —74 (2.2b)
VAVAVERAVEY L (2.2c)
NZ%= Nzs— 24 (2.2d)
NP = A2 —/\2g (2.2¢)
N2 =2,—-21— A7y (2.2f)
ANZ5=23—2— A\2» (2.29)
NZ%5= Nzs— A\z4 (2.2h)
NZ%5= Nzo— Azs (2.2i)
NZP7= Nz7— Az (2.2))

The DDPCM scheme can achieve the high compression ratio (CR) on 8x8 tile size,

where CR is defined as follows.

__uncompressed bits
compressed bits

CR (2.3)

DeRoo et al. also proposed an extended depth buffer compression scheme, called
two-plane mode, in order to handle specific cases that tile can be separated into two

planes.
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Zy Zq Zo Z3 Z Z; Z Z3

Zy Zs Zg Z7 Azy Azs AZg AZ;
Zg Zg Zyp Zy, Azg Azq Az AzZy;
Z1o Z13 Z14 215 Az;, AVALS AZy4 AVATS

(b) Compute 1%t order column

(2) Original tile differentials
2o Z 2 3 Zo Az A%z, | A’z
Az, AZs AZg AZ; Az, A%z | A’z | Az,
Azg I| A%z | A%zy |5A%2) A%zg 7| A’z9 | A’z | A%y
Nz | A%z | A%zir | A%2is Nz | Nz | A%z, | A%z
(c) Compute 2 order column (d) Compute 24 order row
differentials differentials

Fig. 2.2. lllustration of DDPCM scheme.

2.2.3 Anchor Encoding

Van Dyke and Margeson [17] proposed a compression scheme similar to the
DDPCM scheme. Instead of setting upper left pixel as a reference point, this
compression algorithm selects a fixed anchor point, z, from other positions in a tile as
shown in the Fig. 2.3. All we have to save are 16-bit anchor point, 7-bit x differential,
7-bit y differential and 5-bit 2" order differentials.

In fact, we cannot obtain better compression ratio by anchor encoding than that of

the DDPCM scheme [21] .
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Fig. 2.3. lllustration of anchor encoding.

2.2.4 HA Compression Scheme

Hasselgren and Akenine-Mdller proposed a state-of-the-art depth buffer
compression scheme, which can achieve high  CR by exploiting the continuity of
interpolated depth values in the screen space [21] .

The plane mode means how many.reference points will be used to compute
differentials. In HA compression scheme, one-plane and two-plane modes are included.
In one-plane mode, only one reference point is used to achieve compression; in
two-plane mode, two reference points are used. The operations of the one-plane mode
are illustrated in the Fig. 2.4. The two 1% order differentials are /\z; and A\z4. Except
Zo, /\Z1 ,and /\z4, the remaining values are called 2" order differentials. The example
of the one-plane mode is illustrated in Fig. 2.5. From the one-plane mode example, the
2" order differentials are saved in only 1 bit that is the reason why this algorithm can
achieve better CR than other compression schemes. In two-plane mode, two
one-plane-mode operations will be applied according to two different reference points.
Fig. 2.6 depicts an example of two-plane mode. Furthermore, there are two kinds of
combination cases, as shown in Fig. 2.7, including rising and falling cases in the
two-plane mode, where R means the reference point. In the rising case, the slope of

9
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break points is rising. That is why this condition called rising case. Similarly, the slope
of falling case is falling. These two kinds of combination cases can increase the
compression flexibility to achieve higher compression ratio.

The two-plane mode has break-point information which is composed of 0’s and 1°s.
Because we have to combine two sets of differentials with two different reference points,
break points indicate which differential set should be chosen for combination. The
positions of break points indicate that the value of the 2" order differentials is larger
than that of HA compression scheme. Additionally, this scheme as shown in the Fig. 2.6
can handle two-plane mode cases rather than a fixed-position-reference-point scheme of

the extended DDPCM scheme.

20 Z1 Zs Z3 Zo AZy Nz, | A%z

Zs Zs Zs Z7 Az, Nzs | A5 | A%z,
—

Zs Zg Z10 Z11 ANzg |7 A2y | A%zy | A%y

Z1 Z13 Z14 Z15 AZi, | A%zis | A%z | A%zis

AZiZZi—Zo,iZ 1,4

AZZ__ Zi—Z(i_4)—AZ4,i=8,12
| 72— 2 _q)-471,1=2,3,5,6,7,9,10,11,13,14,15

Fig. 2.4. lllustration of one-plane mode compression.

0 1 1 2 Ref. pt.=0 1 0 1 Ref. pt.=0 0 -1 0 Ref. pt.=0 1 0 1

Az;=1 Az;=1 Az;=0

2 3 4 5 | we | 2 1 1 1 | = | O 0 0 0 | et | 12 1 1 1

4 5 6 6 2 1 1 0 0 0 0 -1 1 1 1 0
5 6 6 7 1 1 0 1 -1 0 -1 0 0 1 0 1
- . (b) Compute 1% order (c) Compute 2" order (d) Add one to 2" order
(2) Original tile differentials differentials differentials

Fig. 2.5. Example of one-plane mode using HA compression scheme.

10
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0 1 1 5 Ref. pt.= 0 1 0 4 Ref. pt.= 0 0 -1 3
Az=1 Az=1
1 2 6 6 Az=1 1 1 4 0 Az=1 0 0 3 -1
1 7 7 7 0 6 0 0 -1 5 -1 -1
9 8 8 8 8 -1 0 0 7 -2 -1 -1
. . (c) Compute 2™ order differentials based
(a) Original tile (b) Compute 1% order dlfffarenhals based on upper-left pixel and add one to 22
on upper-left pixel order differentials above the red line
Ref. pt.=8 l Az;=0 Az=-1 Ref. pt.= Ol Az;=0  Az,=0
-1 0 -4 -1 |Ref.pt=8| -1 0 -4 0 Ref. pt.=8 1 0 0
Az;=0 Az;=0
-1 -4 0 -1 Az=-1 -1 -4 0 0 Aze=-1 1 1 0 0
-6 0 0 -1 -6 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0
(d) Compute 1% order differentials based (e) Compute 2 order differentials based

on lower-right pixel on lower-nght pixel (f) Combine two sets of differentials

Fig. 2.6. Example of two-plane mode using HA compression scheme.

R 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
1 0 0 0 R 0 0 1

(a) Rising case (b) Falling case

Fig. 2.7. Two kinds of cases supported by HA compression scheme and corresponding

break-point maps.

2.2.5 Plane Encoding

Different from the compression algorithms with the use of the continuity of

interpolated depth values in the screen space, plane encoding labels triangles in a range

11
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of tiles and saves these index numbers eventually. When a pixel is rendered, the depth
value corresponding to the coordinate has to be computed. Van Hook [18] and Liang et
al. [19] both presented compression schemes similar to the plane encoding. Fig. 2.8
shows the abstract concept of the plane encoding. The plane encoding can handle
several overlapping triangles in a single tile, which is suitable for large tile size. The
drawback is that it must store indices and the corresponding counter value in depth tile

cache [21] .

THEBERABRRPZ
tfafalala]a|f|2
1f1]1f2]2 2|2
Ssd1l1]alm]2]2]2
3INI|142]2]2]2
3|3 3&@]2]2]2]>
3|3|3]3pNe]2]2]>2
3|33 )8 8 rl2]>

Fig. 2.8. Example of plane encoding.

2.2.6 Depth Offset Compression

Morein and Natale [20] presented depth offset compression as illustrated in Fig. 2.9.
For tile-based rendering, assume that we save the Z-max (maximum depth value) value
and Z-min value (minimum depth value) of a tile. The depth values of a tile will be
categorized into to the representable and unrepresentable ranges. The representable
ranges consist of two regions based on Z-max value and Z-min value.

Hasselgren and Akenine-Moller [21] also have presented a modified scheme

consisting of two kinds of representable ranges in depth offset compression, one with 12
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bits per pixel used to store the offsets, and one with 16 bits per pixel. If the minimum
and maximum values are already stored in the tile table, this scheme uses 12 or 16 bits
per pixel, and results in a higher CR [25] .

If we stored the Z-max and Z-min values of the compressed tile, this scheme can be
applied without extra cost. It cannot work well for high CR value, but obtains excellent

compression probabilities for low CR value [21] .

7-min value Z-max value

& e »a- »
< ><¢ >4 >

Representable Range  Unrepresentable Range  Representable Range

Fig. 2.9. lllustration of depth offset compression.
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Chapter

Proposed Reconfigurable Compression
Algorithm and Architecture

In this chapter, we propose a reconfigurable algorithm and architecture for depth
buffer compression. According to the different scene changes, the proposed algorithm is
capable of adaptively employing three compression schemes including the 2-bit
DDPCM [16] , 1-bit HA [21] , and 7-bit- DDPCM. schemes to generate 11 compression
modes. The presented 7-bit DDPCM scheme similar to the 2-bit DDPCM scheme
makes use of 7 bits to save each 2™ order differential. The data flow graph of the
proposed algorithm demonstrates ‘the difference among different mode compressions.
The corresponding reconfigurable architecture consisting of three stages will be issued

at the end of this chapter.

3.1 Proposed Reconfigurable Algorithm

In this session, the proposed algorithm will be discussed in detail by data flow

graph.

3.1.1 Plane Type and Combination Case

In the proposed algorithm, the plane type also referred as to the plane mode in the

1-bit HA compression scheme is also concerned. Different from the HA scheme [21] ,
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in the proposed algorithm, the compression scheme selection (CSS), which will be
discussed later, in the proposed algorithm is performed after two-plane differential
combination for hardware-oriented design. Fig. 3.1 illustrates how to compute two sets
of differentials according to two different reference points and how to combine the two
planes. Furthermore, we extend original two combination cases into four combination
cases, as shown in Fig. 3.2, including rising, falling, vertical and horizontal cases in the
two-plane type. These four kinds of combination cases can increase the compression

flexibility to achieve higher compression ratio.

Zy Z1 Z Z3 Zy Az, A%z, A%z,
Zy Zsg Zg Z7 Az A%zs A%zg A%z,
-

Zg Zg Z1o 11 Nzg Nzg | Az | Azi
Z1 Z13 Z14 Z15 Nzyp | Nzys | Nzi | Az

(2) Original tile with depth values (b) Compute 2" order differentials

based on zg
Azxy | A%z | A%ZS, | A%z 4 Az, A%z, | A%z
Az*, | A% | AP | A2 AzZ4 Azs | Azs | A%
Az*g | A%y | A%ry | A%y Azg | A2y | A2%y | AZ*y
Nz*p | A2 | A% 215 Nz1p | Nz | Az%y, Z15
(c) Compute 20 order differentials (d) Combine two differentials plane
based on zis based on zg and z;s, respectively

Fig. 3.1. Two-plane type of the proposed reconfigurable algorithm.
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R 0 0 1 1 0 0 0 R 0 0 1 R 0 0 0
0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
1 0 0 0 R 0 0 1 0 0 0 1 0 0 0 0
(a) Rising case (b) Falling case (c) Vertical case (d) Horizontal case

Fig. 3.2. Four kinds of combination cases supported by the proposed algorithm and
corresponding break-point maps.

3.1.2 Compression Schemes

So as to increase the higher CR of the depth buffer compression, we employ three
kinds of compression schemes in the proposed algorithm. These schemes including
1-bit HA [21] , 2-bit DDPCM [16] , and 7-bit DDPCM schemes can be adaptively
chosen with the aim of the highest compression ratio.

The difference among these three algorithms.is the bit length for storing each value
of differential. Through the 1-bit HA and.2-bit DDPCM schemes, we can use only one
bit and two bits to store each differential, respectively. Although the 1-bit HA and 2-bit
DDPCM schemes are useful to save differentials, these two compression schemes still
limit CR for more complex 3D scenes. Concerning more stable CR, we decide to use
7-bit DDPCM in this thesis.

The following attributes summarize the conditions for each compression scheme.
The ranges of each compression scheme can be addressed as follows. The 1-bit HA
scheme covers the differential set of {01} and 2-bit DDPCM scheme covers the
differential set of {—1,0,1}, and the differential set of the 7-bit DDPCM scheme covers
the differential set of {-64,-63, ...,61,62,63}. Additionally, the HA scheme can be
divided into two types. The type 1 HA scheme means all the 2" order differentials are
the elements of the set {-1,0}. These 2™ order differentials will be added by one and the

1% order differentials will be subtracted by one such that all the differentials are the
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elements of the set of {1,0}. Therefore, each differential can be saved in only one bit.
On the other hand, the type 2 HA scheme means all the differentials are already the
elements of the set of {1,0} without addition and subtraction.

All compression schemes can be applied to one-plane and two-plane types. In
addition, we divide a tile into two parts including vertical and horizontal parts. The
horizontal part stands for the positions, z,, zs, zs, Zs, Z7, Z9, Z10, Z11, Z13, Z14, @nd 235, IN
Fig. 2.4. The vertical part stands for the positions, zg and z,, in Fig. 2.4. In these two
parts, different compression schemes can be applied. For example, the vertical part
applies the 1-bit HA scheme and the horizontal part applies the 2-bit DDPCM scheme.
According to the combination of plane type and schemes used, the 11 compression
modes can be obtained in Table 3.1. Consequently, owing to two-plane types by five
schemes (i.e., ten modes are generated) and one uncompression mode, the number of

modes is 11.
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Table 3.1. Proposed compression modes.

Compression Mode

Name

Mode Description

OP-HA-HA

1-bit HA scheme applied in both of the vertical and

horizontal parts under one-plane type

OP-2bDDPCM-HA

2-bit DDPCM and 1-bit HA schemes are applied in vertical

and horizontal parts, respectively, under one-plane type

OP-7TbDDPCM-HA

7-bit DDPCM and 1-bit HA schemes are applied in the
vertical and horizontal parts, respectively, under one-plane

type

OP-7bDDPCM-2bDDP

7-bit DDPCM and 2-bit DDPCM schemes are applied in the

CM vertical and horizontal parts, respectively, under one-plane
type
OP-7bDDPCM 7-bit DDPCM scheme is applied in both of the vertical and
-7TbDDPCM horizontal parts under one-plane type
TP-HA-HA 1-bit HA scheme is-applied in both of the vertical and

horizontal parts-under two-plane type

TP-2bDDPCM-HA

2-bit DDPCM-and 1-bit HA schemes are applied in the

vertical and horizontal parts, respectively, under two-plane

type

TP-70DDPCM-HA

7-bit DDPCM and 1-bit HA schemes are applied in the

vertical and horizontal parts, respectively, under two-plane

type

TP-7bDDPCM-2bDDP

7-bit DDPCM and 2-bit DDPCM schemes are applied in the

CM vertical and horizontal parts, respectively, under two-plane
type
TP-7bDDPCM 7-bit DDPCM scheme is applied in both of the vertical and
-7TbDDPCM horizontal parts under two-plane type

Uncompression

Unsupported combination cases in two-plane type

18
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3.1.3 Data Flow

The data flows of the proposed algorithm as depicted in Fig. 3.3 (a)-(f) are
described in the following, where the coarse-solid lines in Fig. 3.3 (a)-(f) indicate the
flows according to different cases. Fig. 3.3 (a) shows one-plane type; Fig. 3.3 (b) shows
two-plane type including rising, vertical, and horizontal cases; Fig. 3.3 (c) shows
two-plane type, including falling cases; Fig. 3.3 (d)-(f) show the data flow in
uncompression mode.

In details, Fig. 3.3 (d) illustrates the two sets of break points according to the
upper-left and lower-left pixels are unsupported. Fig. 3.3 (¢) and (f) show the set of
differentials according to the 2" reference point in two-plane type including rising,
vertical, horizontal, and falling cases .does ‘not pass break-point-match. Fig. 3.4 shows
an example of uncomoression made for €ase 2. Furthermore, assume that only 2-bit
DDPCM scheme is applied in Fig. 3.4. In Fig. 3.4, the break points of differentials
according to the upper-left pixel are determined as‘a rising case. However, the break
points of differentials according to the lower-right pixel are determined as an
uncompressed case. Because the two sets of break points are determined as different

cases, this kind of tile finally is classified into the uncompression mode.
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An 8x8
depth values

depth values and ctrl-code |

(@)

An 8x8

depth values

Compute 2™ order Compute 2™ order
differentials according to differentials according to
upper-left pixel upper-left pixel
Compute 21 Compute 20d
Break-point generation and order differentials Break-point generation and order differentials
one-plane mode check according to one-plane mode check according to
lower-left pixel lower-left pixel
No No
Break-point map check and Break-point map check and
two-plane mode check two-plane mode check
Yes Yes
L]
Compute 28 order| |Compute 22 order Compute 21 order
differentials differentials differentials
according to according to according to
lower-right pixel upper-right pixel upper-right pixel
A
Break-point Break-point
generation generation
I I
Yes Yes
Break-point map Yes Break-point map Yes
check check
[
Yes
Yes Yes
Yes Yes
Combination Combination
No Check range No Check range
of of
differentials differentials
Compression Compression
scheme  |ef— scheme |
selection selection
Pack differentials/original | _ Pack differentials/original |

depth values and ctrl-code |

Compressed/uncom
pressed
depth values

(b)

Fig. 3.3. (a) Data flow illustration of the proposed reconfigurable depth buffer
compression in one-plane type. (b) Data flow illustration of the proposed reconfigurable
depth buffer compression in two-plane type for rising/vertical/horizontal cases.

20



Chapter 3

Proposed Reconfigurable Compression Algorithm and Architecture

An 8x8
depth values

An 8x8
depth values

Compute 2" order Compute 2™ order
differentials according to differentials according to
upper-left pixel upper-left pixel
|
Compute 20d Compute 21
Break-point generation and order differentials Break-point generation and order differentials
one-plane mode check according to one-plane mode check according to
lower-left pixel lower-left pixel
No No No
Break-point map check and NopM The last Break-point map check and
two-plane mode check 9 e ref. point? two-plane mode check
Yes Yes
Y
Compute 21 order| |Compute 24 order Compute 28 order| |Compute 22 order
differentials differentials differentials differentials
according to according to according to according to
lower-right pixel upper-right pixel lower-right pixel upper-right pixel
A\
Break-point Break-point
generation generation
I I
Yes Yes
Break-point map Yes Break-point map No
check check
|
Yes
4
Yes Yes
Yes Yes
Combination Combination
No Check range No Check range
of of
differentials differentials
Compression Compression
scheme - scheme |
selection selection
Ly Pack differentials/original | Ly Pack differentials/original <
depth values and ctrl-code | depth values and ctrl-code
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pressed
depth values

(©)

(d)

Fig. 3.3. (c) Data flow illustration of the proposed reconfigurable depth buffer
compression in two-plane type for falling cases. (d) Data flow illustration of the
proposed reconfigurable depth buffer compression in uncompression mode for case 1.

21



Chapter 3 Proposed Reconfigurable Compression Algorithm and Architecture

An 8x8
depth values

An 8x8
depth values

Compute 2 order Compute 22 order
differentials according to differentials according to
upper—ltleft pixel upper-left pixel
\A |
Compute 20 Compute 20
Break-point generation and order differentials Break-point generation and order differentials
one-plane mode check according to one-plane mode check according to
lower-left pixel lower-left pixel

No No No

Break-point map check and
two-plane mode check

Break-point map check and
two-plane mode check

Yes Yes

Compute 22¢order| |Compute 2™ order Compute 2% order| |Compute 224 order
differentials differentials differentials differentials
according to according to according to i

lower-right pixel upper-right pixel lower-right pixel

Break-point Break-point
generation generation
[
Yes Yes
Y ¥
Break-point map Yes Yes
check Break-point check

Yes Yes
4
Yes Yes
Yes Yes
v
Combination Combination
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Compression Compression
scheme |« scheme | @———
selection selection
b Pack differentials/original | - Pack differentials/original |
depth values and ctrl-code | depth values and ctrl-code |

(€) ()

Fig. 3.3. (e) Data flow illustration of the proposed reconfigurable depth buffer
compression in uncompression mode for case 2. (f) Data flow illustration of the
proposed reconfigurable depth buffer compression in uncompression mode for case 3.
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0 1 2 3 Ref. pt.= 0 0 0 0 0
Az;=1

5 5 6 7 Az=5 0 -1 0 0

9 11 13 16 -1 1 1 2

13 13 16 16 -1 -1 2 -1

(2) Original tile (b) Compute 21 order differentials

based on upper-left pixel

Ref. pt.= 16 l Az;=0 Az,=0 l

oloJo]o

-1 -1 -1 A ofo]ofo
olojo]1

0 '1 '1 '9 0 0 1 0

21 2| 3]0 0]0]0]1
olojo]1

o | 3| o [as 1{1/1]0
of1]0]0

(¢) Compute 2nd order differentials {d) Break-point match fails

based on lower-right pixel

Fig. 3.4. Example of uncompression mode for case 2.

In the first step, we compute the 1% and 2" order differentials according to the 1%
reference point. In the proposed algorithm, the 1% reference point is the upper-left pixel.
In the second step, we check the range of these 2™ order differentials. If all differentials
are inside the restricted range that the 7-bit DDPCM scheme can serve, this tile will be
determined as one-plane type.

If any differential is larger than the maximum number or less than the minimum
number that the 7-bit DDPCM scheme can serve, we will check the break points to
determine which combination case is satisfied. If the tile does not pass the

break-point-match step, this tile will be categorized into uncompression-mode case.
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However, if the tile passes the break-point-check, we have to compute another set of
differentials according to the 2" reference point. In this proposed algorithm, the 2™
reference point in rising, vertical and horizontal case is the lower-right pixel, and in
falling case the 2" reference point is the upper-right pixel. Additionally, if a tile is
categorized into the falling case, the differentials according to the 1% reference point at
upper-left pixel have to be updated, and the updated differentials will depend on the
lower-left pixel referred as the 1% reference point in the falling case.

When we combine two sets of differentials in the two-plane type, we do the
following operations for each row of the tile. In each row, we scan from the first column
to the eighth column. If the break point is 0 and the combination case is not a falling
case, the differentials according to the upper-left pixel will be chosen. If the
combination case is a falling case, the differentials-according to the lower-left pixel will
be chosen. On the other hand, if-the break point is.1 and the combination case is not a
falling case, the differentials according-to-the_lower-right pixel will chosen. If the
combination mode is a falling case, the.differentials according to the upper-right pixel
will be selected. There is an exception that in each row scanning when we have scanned
a break point with 1 and then all the break points of the remainder columns will be
viewed as 1, no matter what the original values of these break points are. Compression
scheme selection determines which compression scheme will be adopted according the
range of differentials. Notice that a tile is divided into two parts and these two parts can
apply different compression schemes, independently.

Finally, we will pack reference points, differentials and control-code, including

compression flag, compression schemes, break points, and etc., together.
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3.1.4 Control-Code

The format of the control-code and the saving format of break points are depicted in
Fig. 3.5. The first bit of the control-code represents whether the tile is compressed. The
second bit of the control-code indicates whether the tile is one-plane or two-plane type.
The third and the fourth bits represent what kind of compression schemes is applied in
the horizontal part. The fifth and the sixth bits represent what kind of compression

schemes is applied in vertical part.

. Compression | Compression | Compression | Compression
Uncompression. [[LAEIES scheme (H) scheme (H) scheme (V) scheme (V)
(a) Control-code
Combination | Combination
— case [0] Row# [2] Row# [1] Row# [0] Col# [2] Col# [1] Col# [0]
(b) Break point

Fig. 3.5.-Control-code. and break point.

In the format of break point, the first and the second bits indicate what kind of
combination cases, such as rising case, is applied to the break points. Third, the fourth
and the fifth bits mean the row number of the top break point. The sixth, the seventh and
the eighth bits mean the column number of the top break point. Notice that the break
points will be saved only when the tile is two-plane type. Additionally, if the tile is

uncompressed, only the first bit of the control-code will be packed with the tile.

3.1.5 Decompression

The data flow of decoding is illustrated in Fig. 3.6. First, according to the
control-code, a tile can be adaptively processed by OP-HA-HA, OP-2bDDPCM-HA,
OP-7bDDPCM-HA,

OP-7bDDPCM-2bDDPCM, OP-7bDDPCM-7bDDPCM,
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TP-HA-HA, TP-7bDDPCM-HA, OP-2bDDPCM-HA, TP-7bDDPCM-2bDDPCM,
TP-7bDDPCM-7bDDPCM, and uncompressed schemes. In addition, in the two-plane
type, a tile can be determined as rising, vertical, horizontal or falling cases. If a tile
belongs to the one-plane type, the operation in the decoding is just to retrieve original
depth values according to the reference point, the 1% order differentials and the 2" order
differentials. If a two-plane type is available and recognized as rising, vertical,
horizontal, or falling case, the next step is to retrieve depth values according to the two
reference points, the 1% order differentials and the 2™ order differentials. After
retrieving depth values, the next step is to combine these two set of differentials. Note

that the falling case takes the different reference points from the rising, vertical, and

horizontal cases. Finally, the original depth values are retrieved.

Compressed/uncompressed
depth values

\

Retrieve depth Retrieve depth Retrieve depth Retrieve depth
values according to values according to values according to | | values according to
upper-left pixel lower-right pixel lower-left pixel upper-right pixel
[ |
Differentials
Combination
A
| An8x® |
| depth values |

Fig. 3.6. Data flow illustration of decompression.
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3.2 Proposed Reconfigurable Architecture

In this section, the corresponding VLSI architecture of the proposed reconfigurable
algorithm is described. The presented reconfigurable architecture as shown in Fig. 3.7
owns the features of high compression ratio and power-efficiency. The proposed
architecture consists of three stages, where the first stage covers differential
computation and corresponding break-point map generation, the second stage represents
the break-point map checking for determining what kind of supported cases, the upper
part of the third stage represents combination of two sets of differential, and the lower

part of the third stage denotes the compression scheme selection and packing.

3.2.1 First Stage

In order to reduce the redundant computation cycles and power consumption, the
analysis of number of differential‘computations(DC)-will be necessary. Table 3.2 shows
the analysis of redundant computation cycles under the assumptions related to different
reference points. We can find out that it will take less computation cycles if we use one
DC block. The four DC blocks will result in lower latency, but it will take more
redundant computation cycles. For less hardware cost and redundant computation cycles
we adopt one DC block as shown in Fig. 3.7 for all the essential differentials. In Fig. 3.7,
in order to achieve power efficiency, a folded architecture as sketched in Fig. 3.8 is
applied to the DC. Compared with the conventional structure, about 50% number of
subtractors can be reduced. Therefore, the low power consumption can be obtained. Fig.
3.8 illustrates the implementation of DC related to rising, vertical, and horizontal cases.
The MUXs are used to select the correct inputs to compute differentials according to the

reference points. Fig. 3.9 shows the data reorder procedure through data shift registers
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instead of MUXSs. The DC block generates a half set of differentials every clock period.
In order to compute other set of differentials without using MUXs for the input source
selection, data shift registers is used. The gated clock technique is used for prevention
from high signal transitions in registers such that the power and area saving can be
attained.

The break-point map generation is used to generate the corresponding break-point
map for checking the range of differentials at the second stage. Fig. 3.10 shows the
block diagram of the break-point map generation. Threshold value as shown in Fig. 3.10
denotes the max/min values that the 7-bit DDPCM scheme can serve. Every 2" order
differential has to be checked whether any other differential is out of the range
supported by the 7-bit DDPCM scheme. If all the differentials are in the supported
range, this tile is classified into one=plane type. Otherwise, if any differential is out of
the supported range, this coming.tile is possibly- classified to the two-plane or
uncompression mode. Furthermore, the positions corresponding to the depth values
7-bit DDPCM scheme cannot server‘indicate the positions of break points.

Due to different reference points, different range of differentials is checked to
generate break points. In order to reduce hardware area and power consumption of the

break-point generation, the hardware-reused technique is considered.
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Fig. 3.7. Block diagram of the reconfigurable compression architecture.
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Table 3.2. Analysis of redundant computation cycles with different number of

differential computation blocks.
One-plane Two-plane type Uncompression
type Rising/vertical/horizontal | Falling mode
One DC 0 0 1 2
Two DCs 11" 2107 21272 2472
Three DCs 2732 1732 271 373"
Four DCs 3 2 2 4

*1. Assume that one block compute differentials based on the upper-left pixel and the other based on the lower-left pixel.

*2. Assume that one block compute differentials based on the upper-left pixel and the other based on the lower-right pixel.

*3. Assume that one block compute differentials based on the upper-left pixel. Another block compute differentials based on the
lower-right pixel and the other based on the lower-left pixel.

*4. Assume that one block compute differentials based 'on‘the upper-left:pixel. Another block compute differentials based on the

upper-right pixel and the other based on the lower-left pixel.

Zy Z3 Zy 7, Z, Z4 Zs Z0 Zo Z3 Zy Z7 Zg Zyy VAT WAL
' ' Ak S TR TR I T IR
n__/ S \ / n__/ _/
Y Y Y Y
Azy ’ ’

{g -
\J Y Yy
? \T/ (? | \T/
Azzl 2 &) AZZ4 A228 Azzlz

Fig. 3.8. Block diagram of folded differential computation.
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Fig. 3.9. Block diagram of data reorder architecture.

Threshold

Two-plane type

Fig. 3.10. Block diagram of break-point map generation.

3.2.2 Second Stage

Break-point map check at the second stage will determine whether this tile buffer
belongs to one-plane type, two-plane type, or uncompression mode. With the
break-point map check, the combination case and the position of break points are
determined of a two-plane-type tile. Fig. 3.11 shows how to determine a tile buffer is
uncompression mode when the reference point is the upper-left pixel. Once the
two-plane-mode and coordinate signals are pulled up and down, respectively, the

uncompression signal will be pulled up, i.e. this tile is determined into the
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uncompression mode. Besides, if the reference point is the lower-left pixel, the
uncompression will not be compared with 0, but 56. Fig. 3.12 depicts the lookup table
for finding the corresponding combination case and the coordinate of the top of break
points. At this stage, we can determine information, such as compression, plane type,
combination case, and coordinate of the top break point, for a tile. Furthermore, the
ready signal in the Fig. 3.7 is pulled up, when the information of a tile is determined and
then the next tile can be input at the next cycle. Moreover, the clock gating technique is

also applied at this stage to reduce transitions in registers.

1 1—»1
Uncompression
0 —»0
Two-plane type ©
Coordinate © .
0

Fig. 3.11. Block diagram of break-point check for determining uncompression mode.
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[ 15'b001_0010_0100_1000 | [ 4boo_11 |
Break-point map —»| || 15'b000_0001_0010_0100 | [ 460111 |
[ d (4 [ 4
[ [ (3
[ [ [ ]
| Falling cases |[2'bor ][ coordinates |
| Vertical cases |[2'b20 ][ Coordinates |
| Horizontal cases [[ 2b11 || coordinates |

ro

Combination Coordinate
cases

Fig. 3.12. Block diagram of break-point check.
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3.2.3 Third Stage

At the third stage, there are two-plane differential combination, compression
scheme selection, and packing blocks. Fig. 3.13 illustrate the implementation of
two-plane differential combination which will choose the desired differentials from two
sets of differentials for compression in the two-plane type. Because once a tile is
determined into the two-plane type, at most seven lower bits of every differential will be
saved at the packing block. Therefore, in the two-plane differential combination, just
seven lower bits of each differential are used to the combination operation. It results in
less hardware resources and power consumption.

Fig. 3.14 illustrates the implementation of compression scheme selection.
According to the range of differentials, thisshloek will, choose the adequate bit length for
storing these differentials. If a tile ‘applies the type-1"HA scheme, the constant one is
added to each 2" order differential and, at the same time, the constant one is subtracted
from the 1% order differential. Without'adding circuit, we use some inverters at the end
of packing block. Because a tile applies the type-1 HA scheme, the least significant bit
of each differential will be selected for packing, i.e. only one bit will be used for
compression. Since these differentials are the elements of the set {-1,0} and after adding
constant one to these differentials are the elements of the set {0,1}, the least significant
bit of each differential changes from 1 to 0 or from 0 to 1. Eventually, packing block
packs necessary information, for example control-code, for a compressed or
uncompressed tile. At the next cycle, the signal, out_valid, will be pull up to notice that

an output is available.
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Fig. 3.13. Block diagram of two-plane differential combination.
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Fig. 3.14. Block diagram of the compression scheme selection.

In accordance with the compression/uncompression mode and one/two-plane types,
different packing formats can be obtained. The most significant bit, flag, in each mode
indicates whether a tile is compressed. In uncompression mode, the remaining bits are
composed of the original depth values. In one-plane type, except for the flag,
control-code indication bits, and the reference point, the first part of remainder bits, /\z
(V) and A%z (V), belongs to the vertical part; Az (H) and A%z (H) belong to the
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horizontal part in a tile. In the two-plane type, the first part of remaining bits, excluding
flag, control-code, 1% reference, and 2™ reference bits, belongs to the vertical part. The
second part belongs to the horizontal part in a tile. Besides, the break-point is included
in the control-code in the two-plane type. Additionally, the clock gating technique is
applied at this stage as well. Table 3.3 shows the summary of the number of clock

cycles needed for each compression/uncompression mode.

Flag Original depth values

(a) Uncompression mode

Flag C‘é’c‘)gg"' 1Ref. | Az (V) | A%Z) | az(m) A’Z (H)
(b) One-plane.type
Flag C?:';fjr;" 1 Ref. | Az (V) {EAZ () [29Ref. | Az(H) | A%Z(H)

(c) Two-plane type

Fig. 3.15. Packing format.

When a tile is input, the first step is to compute differentials. Because there is no
information for a tile, i.e. we do not know what kind of plane type a tile belongs to, we
set the upper-left pixel as the default reference point. Additionally, in each cycle, there is
a half set of differentials computed so that for a whole set of differentials it will take two
cycles. After computing differentials, the corresponding break-point map is checked for
whether this tile is classified into uncompression mode, one-plane type, or two-plane
type.

In uncompression mode, a tile will be checked twice with two sets of differentials
according to two reference points, the upper-left and lower-left pixels. Then this tile
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classified into uncompression mode exactly will bypass the two-plane differential
combination block and just pass the packing block.

In one-plane type, after computing the 1% set of differentials according to the
upper-left pixel, the break-point map will be checked. Then this tile will bypass the
two-plane differential combination and pass through the choosing compression scheme
and packing blocks.

In two-plane type, excluding falling cases, after computing the 1% set of
differentials according to the upper-left pixel, the 2" set of differentials according to the
lower-right pixel will be computed. Besides checking these two sets of break points for
determining what kind of combination cases these two tiles belong to, the two sets of
break points will also be checked for making sure these two sets of differentials are
recognized as the same combination:case, such as rising cases. After stage 3, the tile will
be passed through the two-plane-differential combination block to combine these two
sets of differentials. The break points according-to the-1*' reference point indicate which
differential will be chosen in the two=-plane differential combination. Eventually, this
combined tile passes through the choosing compression scheme and packing blocks.

In two-plane type, including falling cases, the 1% set of differentials according to
the upper-left pixel is classified into the uncompression mode. The 2™ and 3™ sets of
differentials according to the lower-left and upper-right pixels, respectively, are
classified into the two-plane type and the combination case is falling. Then this tile
passes through the two-plane differential combination, choosing compression scheme,

and packing blocks.
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Table 3.3. Summary of number of clock cycles needed for each

compression/uncompression mode.

One-plane Two-plane type Uncompression
type Rising/vertical/horizontal | Falling mode
# clock cycles 5 9 12 8

For power-efficiency, power-reduced techniques are concerned. Gated clock is
applied in the proposed architecture. The folded differential computation is used to
reduce redundant computation and power consumption. Because huge transition among
registers and MXUs result in high power consumption, the data reorder architecture
designed for trading off the number of transitions among registers and MUXs
reschedules the source and destination data of the differential computation. In the
two-plane differential combination,‘only seven‘lower bits of every differential are used,
because a tile passed to this block has been classified into the two-plane type and each
differential is saved in 7 bits at most: This kind of architecture uses less number of
MUXs. Without additions for the typel of 1-bit HA compression scheme, a 1-bit
inverters consume less power and area than 16-bit adders. Furthermore, the proposed
architecture also applies hardware-reused skills in blocks, such as the break-point map

generation and the compression scheme selection.
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Chapter

Simulation Results and
Chip Implementation

4.1 Simulation Results

In this section, the 11 compression modes are illustrated and the total compressed
bits of a tile are listed in Table 4.1. In OP-HA:HA.as listed in Table 4.1, the vertical and
horizontal parts both are compressed by the HA scheme, and the total compressed tile
size is 16+7+7+61+6=97 bits, including one reférence point, two 7-bit 1% order
differentials, 61-bit 2" order differentials, and 6-bit control-code. In TP-HA-HA, in the
same conditions, the total compressed tile size is 16+16+7+7+7+7+58+6+8 =132 bits,
including two reference points, four 7-bit 1% order differentials, 61-bit 2" order
differentials, 6-bit control-code, and break point. Other title sizes using different mode
schemes can be calculated similarly. Concerning the 7-bit DDPCM scheme, we expect
that the size of the compressed tile can be smaller than that of half size of the original
tile.

The teapot and stereoscopic polygons benchmarks are used as reference
simulations as shown in Fig. 4.1 (a) and (b). The average CR as listed in Table 4.2
shows the average compression ratio and the comprehensive comparison with the 1-bit

HA and 2-bit DDPCM schemes related to the two benchmarks. For the teapot, the
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proposed reconfigurable algorithm outperforms others by 27.2% and 13.6% compared
with the independent 2-bit DDPCM and 1-bit HA schemes. For the stereoscopic
polygons, the proposed algorithm outperforms others by 33.6% and 21.7% compared
with the 2-bit DDPCM and 1-bit HA schemes.

The sample distribution of the average CR related to the benchmark, Fig. 4.1 (a),
as shown in the Fig. 4.2 and Fig. 4.3 illustrate the usefulness of our proposed algorithm
compared with the 1-bit HA and 2-bit DDCPM schemes, respectively. Moreover, Fig.
4.4 and Fig. 4.5 illustrate the average CR related to the benchmark, Fig. 4.1 (b). A point
in the Fig. 4.2, Fig. 4.3, Fig. 4.4, and Fig. 4.5 indicates an average compression ratio of
five tiles. It is obvious that our proposed reconfigurable algorithm can achieve more

stable average compression ratio than the 1-bit HA and 2-bit DDPCM schemes.

Table 4.1. Bit width of compressed/uncompressed tile in proposed algorithm.

Mode Name Number of bits
OP-HA-HA 97
OP-2bDDPCM-HA 103
OP-7bDDPCM-HA 113
OP-7bDDPCM-2bDDPCM 188
OP-7bDDPCM -7bDDPCM 463
TP-HA-HA 132
TP-2bDDPCM-HA 138
TP-7bDDPCM-HA 168
TP-7bDDPCM-2bDDPCM 220
TP-7bDDPCM -7bDDPCM 480
Uncompression 1025
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Fig. 4.2. Proposed algorithm vs. the 1-bit HA compression scheme for teapot scenario.
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Fig. 4.3. Proposed algorithm vs. the 2-bit DDPCM scheme for teapot scenario.
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Fig. 4.5. Proposed algorithm vs. the 2-bit DDPCM scheme for stereoscopic polygons

scenario.

Table 4.2. Average compression.ratio with 8x8 tile size.

Teapot Stereoscopic polygons
1-bit HA scheme [21] 1.54 (100%) 1.43 (100%)
2-bit DDPCM scheme [16] 1.33 (86.4%) 1.26 (88.1%)
Proposed algorithm 1.75 (113.6%) 1.74 (121.7%)

4.2 Chip Implementation

Concerning the chip implementation, the cell-based design flow with Artisan
standard cell library is adopted and the proposed architecture has been implemented in
TSMC 0.18-um CMOS process. The Synopsys Design Compiler is used to synthesize

the RTL design of the proposed architecture, the Cadence SOC Encounter is adopted for
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placement and routing (P&R) and the Synopsys PrimePower is used to measure the

power consumption for each mode after post-layout simulation. Table 4.3 summarizes

the chip characteristics of the proposed architecture.

Table 4.3. Chip characteristics of the proposed architecture.

Active Chip Area

1.13 x 1.13 mm?

Gate Count

97, 246

Max Clock Frequency

100 MHz

Process Technology

TSMC 0.18-um CMOS

Power Consumption One-Plane Type 22.75
(mW) @ 100MHz Two-Plane Type 51.76/56.25/71.9
(rising/vertical/horizontal)
Two-Plane Type (falling) 57.63
Uncompression-Mode 38.63
Power Consumption One-Plane Type 15.18
(mW) @ 66.7MHz Two-Plane Type 34.52/37.51/57.26
(rising/vertical/horizontal)
Two-Plane Type (falling) 38.43
Uncompression Mode 25.76
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Fig. 4.6. Chip layout of the proposed architecture.
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Chapter

Conclusion and Future Work

In this work, the reconfigurable algorithm for depth buffer compression is
presented. This proposed algorithm not only supports the 1-bit HA, 2-bit DDPCM
schemes as well as 7-bit DDPCM scheme, but also handles one-plane and one-plane
type compressions. In addition, different compression schemes can be applied in the
vertical and horizontal parts in a tile. Fhere are totally 11 compression modes adaptively
applied according to different 3D scenes -n:this. proposed compression algorithm. In
two-plane type, there are four Kinds of combination:cases, including rising, vertical,
horizontal, and falling cases, concerned in the presented algorithm.

For 8x8 tile size with 16-bit depth values under the teapot benchmark, the
proposed reconfigurable algorithm can achieve CR of 1.75 on average and improve
13.6% and 31.6% compared with the HA and DDPCM compression methods,
respectively. For 8x8 tile size with 16-bit depth values under the Stereoscopic polygons
benchmark, the proposed reconfigurable algorithm can achieve CR of 1.74 on average
and improve 21.7% and 38.1% compared with the HA and DDPCM compression
methods, respectively.

Furthermore, the proposed reconfigurable and power efficient depth buffer
compression architecture has been verified and implemented in TSMC 0.18-um CMOS
process. The core consists of 97,246 transistors, and its area is 1.13 um?. It operates at

100 MHz with maximum power consumption of 38.63 mW in uncompression mode,
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22.75 mW in one-plane type, 51.76/56.25/71.9 mW in two-plane type, including rising,
vertical, and horizontal cases, and 57.63 mW in two-plane type, including falling cases,
at supply voltage of 1.8V.

For the future work, the ranges of horizontal and vertical parts will be discussed for

better compression performance.
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