32 (= % 0. GrEeniBs BILE 1P it

A Flexible Dual-rail 32-bit ALU Design

R 19

BEFE B A R

fr & X Joe o = F A

32 A FiE B {EF Y H AP 0¥

A Flexible Dual-rail 32-bit ALU Design

A A A% = Student : Chiou-Ching Fang
hERR e A Advisor : Chang-Jiu Chen
B2+ F
AL ol S R S AP
ML w2
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer-Science
National Chiao Tung University
in partial Fulfillmentof'the Requirements
for the Degree of
Master

In

Computer Science
June 2008

Hsinchu, Taiwan, Republic of China

30 fb 7 EE ﬁriﬂ Jﬁﬁ%_%{ﬂfﬁf{”

[FRARFTE | RE R

iife!

iﬁjﬁﬁ'*%ALU’?ﬁ?%%'é S PSS RS BT | S0 E A ALUPYIS R S0
APPSR AR F - EPVRI e SN R R BRI £ R R
T FRRHCL « (R 2 HE R Ry T TRl R R g i

- AT EFITRR - A RSO R eﬁz[ﬁv?ﬁa‘%lﬁﬁ FITPIRIR T R R
s] 1 o PRIPISRE P s S i 7 e = s]

FORLTE A g RIS ZHp AR Rt PO 205 PHEA ALUOESgE -
FEABURL S | 1 DSPHEEIA 11 HG P ZIAYMACH 4 MACK AL ek F Ry e o
N (IR R) o 25 DR IAERE Sl PRI R lﬁtﬂf [P FEYALU « I
s FY R e R AR RSB] RS g

A Flexible Dual-rail 32-bit ALU Design

Student : Chiou-Ching Fang Advisor : Dr. Chang-Jiu Chen

Department of Computer Science and Information Engineering

National Chiao-Tung University

Abstract

Because ALU usually is the bottleneck of the processor performance, improving the
processing time of ALU is also the chance to improve overall performance. In synchronous
circuit design, the performance is determined by the slowest component. However, in an
asynchronous circuit design, the next computation step can be started immediately after
previous step has been completed.

Thus in this thesis we introduce the concepts of asynchronous circuit design to improve
performance of ALU. The original idea of our design is derived from MAC related instruction
supported by almost all DSP processors. Then we extend this idea to design our ALU
composed of stages. The advantage of this kind of design is its flexibility on instruction types

and delays.

Acknowledgment

Aghe AR F AR B MY A EA & kel o 12 v AR g
EEEERS S S SRR £ 4 RSN R SR E T L L
F 50 1A REE R] T o B R BT A RA R R R

Contents

H%JE[.. |
F AN S S I Y O E TP 1]
ACKNOWLEDGMENT ...ttt ettt e ettt e e s et s s s e e e e s sa b e e e s ssbae s e sabaaeessabeessasbbesesbeeessssbesessbbeseins 1
(OO TVl I =\ S TR v
LIST OF FIGURES. ...ttt ettt e e st e e s s b e e s et bt e e s bt e e e s sab e e e s esbbe s e sabeeesssbbasesantaesesanens VI
LIST OF TABLES ... oot ettt et e ettt e e e e e s ettt e e s ettt e e sb et e e sebbesesaaseaessabeeessssbesesasseesssabenessbresesas VI
CHAPTER 1. INTRODUCTION.....cii ittt ettt e et s e e s s st b e s s s abta e s s sabasessbbesssabeassssabeeesssbbesesans 1
L1 OVERVIEW ..evviiiiiiieecieeeeeeeeeeeeeeeeeee s T dats e eeeessees s onta e s e e aaeeeeeeeseesssaaeseeeeseesnssasseeessssnssasseeesesssnrssseeeeessnnnnes 1
1.2 MOTIVATIONS ..ooeiieeiiiiieeeeeeeeeeeieeoae e esinnss tdie s s e e et e eee ettt e e e e e et e e e e e eeesataaeeeeeeeeeetbereeeeeeennanes 2
1.3 THE ORGANIZATION OF THIS THESIS ...t boife oottt eee ettt e e e e e et et e e e e e esnraaeeeeesesssnsaeseeeeesannnnes 2
CHAPTER 2. BACKGROUND ... e i s ettt ettt et e e s st be e s s ebe e e s s sabe e e e sbbeeeaans 3
2.1 ASYNCHRONOUS CIRCUITS ...coeeeieiiinueeeieeeeeeeeteeeeeeeeeseesasaeeeeessesssassesesesssssnsssssteessssasssassseesessssssssesseessssssnsrseees 3

b N PV g 1o] T U TN o (] (0ot £ 3

2.1.2 Classification of ASYNChron0OUS CIrCUILSccviiiiiieie et sre e 7

2.2 ASYNCHRONOUS PIPELINEcccciiiiiitirieeeeeiieitiereeeeeeeeesiseeeeeeeeeesissereseseeesssseseseseeeessssseseeessensissssseeessensssrenees 8
A R O] 1= 11 1-Y o | R SRRRTRRR 8

2.2.2 4-phase dual-rail PIpelineo e 9
CHAPTER 3. ANALYSIS AND IMPLEMENTATION L..oviiiiiie ettt ettt et e e st saaaa e s earene s 12
BT OVERVIEW ...outiitveiee ettt e eee ettt eeeeeeta et e e e e eeeataaa e e e e eeesataaseeeeeeeaataaaeeeeeeeeasaaaaeeeseseeesasaseseseseennsarereeeeens 12
3.2 RESULT OF ANALYSIS ..uutttitiiieeiieitetteeeeeeeeiisseeeteessessissassseessssassassseeesssssnsasssessesssssassseesessesssssssseessssmssssssseesens 13
3.3 INTERNAL STRUCTURE OF PROPOSED ALUcooiiiiiiiiiiiiiieeieeeee et eeeeetae e eeeaaae e e e e eeaanaaeeeeeean 19
R Y13 950 23 VN 4 (0] [P RT 23

3.4.1 Completion DEteCtion CIFCUILciiiiiieieieeitc ettt ettt sbe bt snesbesbenne 23

R Moo [or=1 o] 1<) = 14 [0 F STV USSP UTTPRR 24
3.4.3 AFITNMELIC OPEIALION ...ttt bbbt bt b et sb e bt s be bt et e et enbeneenbesbenneas 25
B4 A BAITEl SNITIEE ... ittt bbbt 32
CHAPTER 4. SIMULATION RESULTS ..ottt 38
CHAPTER 5. CONCLUSION.......octiiitiiieieisee ettt b et b et nn bbbt anas 41
REFERENCE ..ottt bbb e bt bbb b8 h bt b s bt e h bttt b bbb bt e s 42

List of Figures

Figure 2-1: Categories of asynchronous handshake protocol..............cccccoeveiiiieiieieccennn, 3

Figure 2-2: Bundled Data channel (a); 4-phase bundled-data protocol (b); 2-phase

bundled-data ProtoCOl (C).......cueiiiiiiieii et 4
Figure 2-3: (a) 4-phase dual-rail channel. (b) 4-phase dual-rail protocol.cc....... 6
Figure 2-4: lllustration of the handshaking on a 2-phase dual-rail channel....................... 7
Figure 2-6: C-element: (a) symbol; (b) possible implementation; (c) truth-table 9
Figure 2-7: A simple 3-stage 1-bit wide 4-phase dual-rail pipeline.........c..cc.ccccovevvinennnn, 10

Figure 2-8: (a) A 3-bit latch with completion detection. (b) Alternative

COMPIELION AELECTON ...t re e 11
Figure 3-1: Compilation stages of GNWIC/Ct COMPIEr......ccvviiiiiiiiieiieeeeee, 12
Figure 3-2: The percentages of each/inStFUCLION CAtEQOIIES.........ccvevveiieiveriecie e, 14
Figure 3-3: The execution sequence of MLA INStrUCtioNcccceiiveieneninenieeeeee, 15
Figure 3-4: The idea which extends from MLARStruction...........ccccccevveve e veese e, 16
Figure 3-5: The process we transfer our idea to concrete design..........ccoceovvvreiiieienienen, 18
Figure 3-6: Block diagram of internal structure of ALU..........c..coe i, 19
Figure 3-7: 1-bit-select Demux-Merge pair and its implementation..............cc.ccecvevvennennen. 20
Figure 3-8: 1-bit-select Demux-Demux pair and its implementationccccoeeveenene 21
Figure 3-9: Self-timed component with completion detection CIrCuit............cc.cceevevveiennen. 24
Figure 3-10: The 2-input dual-rail AND gate...........ccccceiiiiiieiiiic e, 25
Figure 3-11: The work flow of conventional asynchronous multiplier...........c.cccccocenneee. 26
Figure 3-12: An 8*8 bits right-to-left array multipliercccoovevi i, 27
Figure 3-13: A conventional single partial product generator scheme..............cccccoeeneee. 28
Figure 3-14: A dual-rail symbol of a DI full addercccccoo i, 29
Figure 3-15: An 8*8 Dits DICLA SCHEMEciiiiiiiie e 30

vi

FIQUIe 3-16: C-MOAUIEoouiiiiieee bbb 31

FIgUre 3-17: D-MOAUIEcoeiieieee ettt e nae e ene e 32
Figure 3-18: The block diagram of an 8-bits logical right shifter.............c.ccoooviiienenen. 35
Figure 3-19: An 8-bitS Fight rOtatorcccveiieii i 36
Figure 3-20: 1-bit-select multiplexer and its implementation.............cc.ccocovniriiiiicnenen, 36
Figure 3-21: An 8-bits right Shifter/rotator............cccooe i, 37
Figure 4-1: A 16*16 bits right-to-left multiplier ..., 38
Figure 4-2: The waveform of instruction MLA ..o 39

vii

List of Tables

Table 2-1: 1-bit dual-rail eNCOAINGcoiiiiieiiee e 5
Table 3-1: All possible combinations that appear in each benchmarkc..cccceoveen 17
Table 3-2: The arrangement of FNCOUEccooveiiiie e 22
Table 3-3: Shift and rotate example for A = a;asasasazaaidpand B =3cccccvevvvvennne 33
Table 3-4: Operation CONTrol DItScciiiiiicc e 34
Table 4-1: Other delays of possible cOmbINALIONScccveiiiieiii e 39

viii

Chapter 1. Introduction

1.1 Overview

Most high performance processors are based on synchronous design method, because it has
a complete design flow and tools. There are many advantages in synchronous design
methodology. For example, it is easier to design because all signals are controlled by a global
clock. All we have to do is to ensure that all works must be done during a clock period.
Furthermore, the CAD tools are plentiful for us to choose. From high level modeling to
back-end testing, it is easy to find relative tools for use. However, as long as systems become
larger and more complex, some serious!problems appear. First, the system clock may cause
problems in designing a large high clock frequeney chip. Second, the clock period is bounded
by the critical path delay time. It causes-the worst case delay time. With system becoming
more complex, it is more difficult te balance each pipeline stage; therefore the performance is
harder to improve.

Asynchronous circuit design, alternatively, is a good choice for designing a large and
complex processor. Instead of the global clock, the synchronization is done via handshaking
protocols. The power consumption is lower than synchronous circuits inherently because it
almost attains zero power dissipation when there is no useful work to do. On the other hand,
its working delay to finish one operation is no longer bounded by the worst-case clock period,
and each pipeline stage only communicates with its adjacent stages, regardless of the other
stages. Besides these advantages, asynchronous circuit design still has other advantages,

including no clock skew problems, low EMI, and more robustness for environment [1].

1.2 Motivations

The original idea of our design is derived from the MAC related instructions supported
by almost all DSP processors. The instruction multiplies two operands first and then
accumulates the result with another operand. It is an important instruction for almost all DSP
or ARM processors. That’s because this instruction is needed for almost all multimedia
applications. In synchronous circuit, the performance is determined by the slowest block.
Thus other instructions which do not need too much computation time also must be bounded
to the worst case delay. This is not a good thing for performance. In asynchronous circuit
design, stages can work at their own speed, and therefore the operation speed is no longer
constrained by the slowest block in the system as in a clocked system. So in this thesis we
extend this idea to design our ALU composed of two stages. The advantage of this kind of

design is its flexibility on instruction types-and delays.

1.3 The Organization of This Thesis

In chapter 1, the overview and motivation is presented. In chapter 2, the related
background of asynchronous circuit design technologies and concepts will be introduced. In
chapter 3, the analytic result and the way of implementation is introduced. In chapter 4, the

simulation results are showed. Finally, the thesis is concluded in chapter 5.

Chapter 2. Background

2.1 Asynchronous Circuits

In an asynchronous circuit, the clock signal is replaced by some forms of handshaking

protocols between neighboring components.

2.1.1 Handshake Protocols

There are several methodologies to realize the asynchronous protocols. We can roughly
divide the encoding schemes into Bundled-Data and Dual-Rail protocols and each of it can be
combined with 2-phase or 4-phage signaling-protocols. Therefore, we have four kinds of

asynchronous handshaking protocols as figure 2.1 illustrated.

4< 2-Phase or Non Return to Zero (NRTZ))
Bundled Data |
4(4-Phase or Return to Zero (RTZ))
2-Phase or Non Return to Zero (NRTZ))
Dual Rail
4-Phase or Return to Zero (RTZ))

Figure 2-1: Categories of asynchronous handshake protocol

The Bundled Data refers to separate request and acknowledges wires that bundles the
data signals with them (figure 2-2(a)). The data wires carry conventional data signals. Figure
2-2(b) shows the 4-phase bundled-data protocol. The sender places a data value on the data

3

wires and produces an event on one of its control wire called “request” to indicate that the
data are available. After the receiver receiving the request event, the receiver sends an event
called “acknowledge” to the sender to indicate the data have been accepted. After the sender
receives the acknowledge signal, it falls the request signal to indicate for preparing next
transfer. Finally, when the receiver gets the request low signal, it will pull down the

acknowledge signal to low to tell the sender that it can transfer next data.

Request

Acknowledge

Sender Receiver
Data

I

(a)

\

~

(b) (c)

Figure 2-2: Bundled Data channel (a); 4-phase bundled-data protocol (b); 2-phase bundled-data protocol (c)

Another solution is the 2-phase bundled-data methodology shown in figure 2-2(c). The
“2-phase” indicates that only two phases of the operation: the sender’s active phase and
receiver’s active phase. First, the sender places a data on the data wires and then indicates an
event on request wire to tell the receiver that the data is ready. After the receiver has received
the data completely, it generates an acknowledge event to the sender. When the sender

receives the acknowledge signal, it means that the sender can prepare the data for next

transferring.

All the bundled-data protocols rely on the matching delay. That is, the sender must
ensure that the data signals are ready for the receiver before it can send the request event.

Besides the bundled-data protocols, another choice is to use a more sophisticated
protocol that is robust to wire delay. The idea of 4-phase dual-rail protocol will be used in our
design.
The 4-Phase Dual-Rail Handshake Protocols

In dual-rail handshake protocols, data signals and timing information are combined
together by a special encoding mechanism. It can be used to detect whether the signal is ready
or not by judging the encoding signals directly. Therefore this protocol is very robust for
delays, and can be applied to variable environments. To represent 1-bit data in 4-phase
dual-rail protocol, two wires are used. For example, a valid data, D is represented by two
physical data wires, d.t and d.f. The following equation shows this encoding scheme.
D=0;(d.td.f)=(0,1)
D=1;(d.t,d.f) = (1,0).
The signal (d.t, d.f) = (0, 1) or (1, 0) 1s used torepresent a valid 0 or 1 information. The signal
(d.t, d.f) = (0, 0) means that the data is still not ready and this signal is used to separate two

valid data. Table 2-1 shows how a valid bit is represented in dual-rail encoding scheme.

dt | df
Empty 010
Valid"0" | 0 | 1
Valid "1" 1|0
Not used 1 1

Table 2-1: 1-bit dual-rail encoding

The 4-phase dual-rail channel encodes the request signal into the data signals using two
wires per bit as shown in figure 2-3 (a). The sender does not need to send request signal any
more, and the receiver has to detect when the data is valid.

The abstract view of 4-phase handshake as shown in figure 2-3 (b): (1) the sender sends valid

5

data to the receiver, (2) the receiver absorbs the valid data and sets the acknowledge signal
high, (3) after the sender announced by acknowledge, it sets the data out to be empty value, (4)
the receiver responses this by setting acknowledge signal low and at this time the sender may

initiate next communication cycle.

y Acknowledge Data{dt,df}

: Empty ><\Valid ,><——-\Empty>< Valid
Sender| Data Recetver ZANERVAN

\)
\
J \
2rl d \ / \
- N N

Ack
(a) (b)

Figure 2-3: (a) 4-phase dual-rail channel (b) 4-phase dual-rail protocol.

The 2-phase dual-rail protocol also uses 2 wires:{d.t, d.f} per bit, but the information is
encoded as transitions. The information on the request and acknowledge wires is now
encoded as signal transitions on the wires and there is no difference between 0->1 and 1->0
transition, they both represent a signal event. On an N-bit channel a new codeword is received
when exactly one wire in each of the N wire pairs has made a transition. There is no empty
value. A valid message is acknowledged and followed by another message that is
acknowledged. Figure 2-4 shows the signal waveforms on a 2-bit channel using the 2-phase

dual-rail protocol.

00 01 00 11

_h Ack . | | |

|
dl.t, dl. |
{ f} >

1do, do.f)

Figure 2-4: Illustration of the handshaking on a 2-phase dual-rail channel
2.1.2 Classification of Asynchronous Circuits

Asynchronous circuits can betl/¢lassified into self-timed, speed-independent,
quasi-delay-insensitive and delay-insensitive depending on the delay assumptions that are
made.

(1) Delay-Insensitive (DI): A circuit that operates “correctly” with positive, bounded but
abstract delay in wires as well as in gates. Such circuits are obviously extremely robust.
However, there are too many constraints in pure DI circuits that make it hard to implement.
Only circuits composed of C-elements and inverters can be delay-insensitive.

(2) Quasi-Delay-Insensitive (QDI): Circuits that are delay-insensitive with the exception
of some carefully identified wire forks where d; = d, as figure 2-5 illustrated are called
quasi-delay-insensitive (QDI). Such wire forks where signal transitions occur at the same time

at all end-points are called isochronic fork.

—(di

\/

—(d>

Figure 2-5: Quasi-Delay Insensitive Delay Model

\/

(3) Speed-Independent (SI): A circuit that operates “correctly” with positive, bounded
but unknown delay in gates and ideal zero-delay in wires.
(4) Self-Timed: circuits whose correct operation relies on more elaborate and/or

engineering timing assumptions.

2.2 Asynchronous Pipeline

There are several asynchronous pipeline implementation styles have been proposed. One
of the most important models is the Muller pipeline. It is built from C-elements and inverters.
Another well known circuit is called Micropipelines, which is 2-phase bundled-data protocol,
introduced by Ivan Sutherland in his Turing Award Lecture [2]. Other asynchronous pipeline
implementations use different circuit design methods to replace the C-element and latch.
Because of the model we choose, we will introduce the Muller C-element and 4-phase

dual-rail pipeline.

2.2.1 C-element

The Muller C-element is widely used for asynchronous circuits design. Figure 2-6 shows

8

the symbol, construction and truth-table of a two input C-element. When all of the inputs of a
C-element are low, the output will be low; when two inputs of a C-element are high, the
output will be high; otherwise the output will remain unchanged. With this property, the

C-element sometimes can be used as a storage element.

inl in2 out

0 0 0

0 1 no change

1 0 no change

(a)
—|
J
_I 1 1 1
R

(b) (©)

Figure 2-6: C-element: (a) symbol; (b) possible implementation; (c) truth-table

2.2.2 4-phase dual-rail Pipeline

A 4-phase dual-rail pipeline is based on the Muller Pipeline; however the request signal
can be eliminated by the dual-rail encoding of data. Figure 2-7 shows the implementation of a

1-bit wide and three-stage pipeline without data processing.

| | |
i e =
acke | [0 le— ack

IR RN
= o)) -

T L
| | P L N B b df

| T\ L [) Lo CJ ,

1" I - i

| |

[| : I |

Figure 2-7: A simple 3-stage 1-bit wide 4-phase dual-rail pipeline

To construct circuits with this protocol, gates and data storing elements are required.
Each stage can be considered as a dual-rail latch. This latch is used to store the data similar to
a master slave flip-flop in a synchronous circuit. In the initial state, each stage is in NULL
state (null codeword {d.t, d.f} = {0, 0}) which means the output of C-element in each stage is
low. The null data causes acknowledge signal low.-After the signal pass through an inverter,
one of the input of the C-elements in each stage is high. At this moment, the stage is ready to
accept the data codeword {0, 1} or {1,-0}.~After receiving a valid data codeword, the
acknowledge signal turns to high to indicate'the previous stage that it has to accept null data.
We should notice that because the codeword {1, 1} is illegal and does not occur, the
acknowledge signal generated by the OR gate safely indicates the state of the pipeline stage as
“Data” or “Null”.

An N-bit wide pipeline can be implemented by using a number of 1-bit pipelines in
parallel. If bit-parallel synchronization is needed, the individual acknowledge signals can be
combined into one global acknowledge with a C-element. Figure 2-8(a) shows a 3-bit wide
latch. The OR gates and the C-element in the dashed box form a “completion detector” that
indicates whether the 3-bit dual-rail codeword stored in the latch is valid data or null data.

Figure 2-8(b) shows an alternative completion detector that uses only a 2-input C-element.

10

ack_i

di[0].f—

di[0].t—

di[1].t—

L ©
=1
aif i——{ C)
=1
=1

di[2].f—]

dif21t——] C)

()

ack_o

do[0].f

do[0].t

do[1].f

do[1].t

do[2].f

do[2].t

“ All empty

(b)

Figure 2-8: (a) A 3-bit latch with completion detection. (b) Alternative completion detector

11

Chapter 3. Analysis and Implementation

3.1 Overview

Because we need to know the usages of each instruction in a program, we selected
the MediaBench and MiBench as the target programs to be analyzed and compiled them
with GNU C/C++ compiler. GNU C/C++ Compiler (GCC) is an integrated distribution
of compilers for several major programming languages. These languages currently
include C, C++, Java, Fortran, and Ada. GCC is often the compiler chosen for
developing software that is required to execute on a wide variety of hardware.
Differences in native compilers lead to difficulties in developing code that may be
compiled correctly on all the eompilerssand building scripts that may be executed for all

the platforms. Four compilation stages of GNU C/C++ Compiler are shown in figure 3-1.

arm-elf-gee Execution

. Stages of
Input Files Compilation Output Files
Preprocessing Compiling Assembling Linking
(cpp) (-geo) (arm-elf-as) (arm-elf-1d)
Input file: C code (.c) Preprocessed (.i) Assembler (.s) Object (.0)
Output file: Preprocessed (.i) Assembler (.s) Object (.0) Executable (.elf)
option: -E -S -C (none)

Figure 3-1: Compilation stages of GNU C/C++ Compiler

12

Preprocessor convert all preprocessing statements such as #define, #include, and
#ifdef into true C code. Compiler converts preprocessed input into assembly codes.
Assembler takes the assembly codes as input and produces object files with extensions.
Linking is the final stage, where the modules are placed in the executable file. Library

functions that the program refers to are also placed in the file.

3.2 Result of analysis

In this thesis we use C program codes of MiBench and MediaBench as source and
ARM as target processor. “arm-elf” means that target machine is ARM and the supported
file format is ELF file format. MiBench and MediaBench are a set of embedded
applications for benchmarking,“We choose parts of applications as our object of analysis.
They includes fft, bitents, erc,.gsort, and video encoding/decoding which have been
proposed as a benchmark representative-of multimedia, automotive/industrial control
system and communications applications. The purposes of each benchmark are
illustrated as follows.

fft: This benchmark performs a Fast Fourier Transform and its inverse transform on
an array of data. Fourier transforms are usually used in digital signal processing to find
frequencies contained in a given input signal which is a polynomial function with
pseudorandom amplitude and frequency sinusoidal components.

bitcnts: The bit count algorithm tests the bit manipulation abilities of a processor by
counting the number of bits in an array of integers. The input data is an array of integers
with equal numbers of 1’s and 0’s.

crc: This benchmark performs a 32-bit Cyclic Redundancy Check on a file. CRC
checks are often used to detect errors in data transmission.

gsort: The gsort test sorts a large array of strings into ascending order using the well

13

known quick sort algorithm. Sorting of information is important for systems so that
priorities can be made, output can be better interpreted, data can be organized, and the
overall runtime of programs reduced.

Video encoding/decoding: The video-centric media benchmark suite is composed of
the encoders and decoders from video compression standards: H.263, H.264, MEPG-2,
and MEPG-4. After compiling, we can obtain the assembly code for following analyzing.

Figure 3-2 shows the percentages of each instruction categories.

2.99 1.9% 2.3% others
100% " i 027 0@} mul/mla
cmp

90%

8.8% 8.8% 7.8% 7.8% 7.4% logical operation
80%

11.1% 10.5% 12.0% 12.0% 12.6% add/sub
70%
60% 117.7% 18.9% 18.5% 19.7% 18.19%— control flow
50%

10.9%) 11.3% 10.1%| 10.3% 9.4% str
40%
30% [(177% 18.2% 16.7% 16.3% 19.5%—| 1dr
20%
10% [213% 20.4% 22.6% 22.6% 20.49 data movement
0%

X X . .
@ <& $ & O Instruction categories
QQ Q S ,b@
& & R
/
>
&
S
S
N

Figure 3-2: The percentages of each instruction categories

We classify all instructions into seven categories including: data movement, load, store,
arithmetic operation, logical operation, comparison, and others. Arithmetic operations include
add, sub, MLA/mul. Logical operations include and, or, not, logical shift left, and logical shift
right. In computing bounded programs, especially those designed for digital signal processing

(DSP), multiply-accumulate is a common operation that computes the product of two

14

numbers and adds that product with an accumulator. The multiply-accumulate operation is
called MLA in ARM processors. It’s the same important as MAC instruction in any DSP
processors. From table3-1 we can find that the percentage of arithmetic operations, logical
operations and MLA/mul instructions is about 19.7%~20.7%. It seems that the ratio is not so
high; however considering other instructions such as branch instructions also needs to use
arithmetic logic unit in practice. Thus the utilization of ALU is about 40%. On the other hand,
ALU usually is the bottleneck of the performance. Therefore, if we improve the performance
of ALU, the overall performance can also be easily improved. In synchronous circuit design,
the performance is determined by the slowest component. This property makes synchronous
circuits design run at worse-case performance. However, in an asynchronous circuit design,
the next computation step can be started immediately after the previous step has been
completed. There is no need to wait for a transition of the clock signal. This feature
potentially leads to a fundamental'performance-advantage for asynchronous circuit design that
increases with the variability in delays-associated with these computation steps. Thus in this
thesis we introduce the asynchronous €ircuit.design to improve performance of ALU. Figure
3-3 shows the execution sequence of MLA instruction.

Source 1 Source 2

Source 3

result

Figure 3-3: The execution sequence of MLA instruction

15

The execution sequence of MLA instruction is that sourcel multiplies with source2 first
and the intermediate result is then added with source3 to generate the final result. Figure 3-4

shows the idea which extends from MLA instruction.

Source 1 Source 2

Source 3

result

Figure 3-4: The idea which extends from MLA instruction

We think that the operations in the circle can be replaced by other operations to constitute
other common use instructions. We analyze the assembly code further and find all possible
collocations between operations in advance. Table 3-1 shows all possible combinations that

appear in each benchmark.

16

bitcnts crc fft gsort video
add/sub add/sub 65 63 %4 91 155
add/sub mul 1 1 (0] 1 1
add/sub shift left 44 32 37 59 32
add/sub + shift_right 17 12 8 24 31
add/sub + and 23 21 5 24 10
add/sub + or 13 7 8 18 8
and + and 21 21 0 20 17
and + or 15 17 6 26 11
and + shift right 2 2 (0] 2 7
or + shift_left 28 20 3 35 21
or + shift right 6 6 1 10 18
or + or 4 1 1 6 4
shift left + shift left 0 0 0 (0] 20
shift_left + shift right 0 0 0 0 1
shift right + shift right 0 0 (0] 0 1
total 239 203 163 316 337
arithmetic + logical operation 2208 2100 2634 3178 2795
10.8% 9.6% 6.2% 9.9% 12.1%

Table 3-1: All possible combinations that appear-in each benchmark
Before explaining table3-1, we need to give definition of compound instructions and common
instructions. The definition of the"compound instruction in this thesis is one’s computation
result as the next instruction’s operand. Take the following two cases as example:

case 1: LSL R1,R1, #3
ADD R3,R2,R1 ;R3:=R2+ (R1x2%

case 2: ADD R4, R4, #4064

ADD R4, R4, #15

In case 1, the value of register R1 is logical shift left 3-bit and stored into register R1 itself
first. Then the intermediate result is added with the value of another register R2 and stored
into register R3 finally. In case 2, the value of register R4 is added with the constant value
4046 first. Then the intermediate result is added with the constant value 15 and stored into

register R4 itself finally. Because these two cases conform to definition of compound

instruction that we just mentioned, we find all these kinds of instructions out from assembly

17

code. Statistic result is listed in the table 3-1. From table 3-1 we can find that collocations of
different operations include: add/sub + add/sub, add/sub + multiply, add/sub + shift left,
add/sub + shift right, add/sub + and, add/sub + or, and + and, and + or, and + shift right, or +
shift left, or + shift right, or + or, shift left + shift right, shift left + shift left, shift right + shift
right. The percentage of these collocations is about 6.2%~12.1% in original arithmetic and
logical instructions. Other instructions that contain single operation are called common
instructions. Take the following two cases as example:

case 1: ADD RS3, R3, #4 (example for arithmetic operation)

case 2: AND R2, R7,R1 (example for logical operation)
The question now is how we can implement an ALU to fulfill the need of compound and
common instructions at the same time. One ALU unit can only provide the need of common
operation. After collocating two ALU units, thé-requirements can be satisfied. Figure 3.5

shows process how we transfer our idea illustrated in figure 3.4 to concrete design.

Sourced Source 2 Source 3
< y y
/ / /
Source 1 Source 2 Source 3
4
/ _/
Arithmetic Unit Logic Unit
result Arithmetic Unit Logic Unit

result

Figure 3-5: The process we transfer our idea to concrete design

18

According to the statistic result of table 3-1, we can find operations that can be placed in the
circle marked with interrogation point including: add/sub, multiply, and, or, shift left, shift
right. Thus each circle was replaced by ALU that includes these operations. Internal structure

of each ALU is illustrated in the following section.

3.3 Internal Structure of Proposed ALU

In this section we focus on the explanation of internal structural of the ALU. Figure 3-6

shows diagram of internal structure of the proposed ALU.

FnCode2[3:0] ByPass
r T~ hypass or not r T~
| | - ¥
FnCodel[3:0] : | I
Adder Adder
H |
Sourcel[31:0] — \I
Demux Multiplier | Multiplier B — Result[31:0]
Source2[31:0] — /l | Merge
I .
I
| Shift Right Shift Right I
| ’’’’’’’’’
7 fistA 7 second ALU
Source3[3L) ALY

Figure 3-6: Block diagram of internal structure of ALU

In synchronous processor design, data path may have several different works depending on
the instruction type. Because the clock period is restricted to worst case delay, designer
usually do all works in parallel and simply use a multiplexer to select one result to output.
However, in DI circuit design it is possible to design circuits that can operate in different
length of time and no longer to let data flow through all function blocks. For this reason, the
Demux-Demux and Demux-Merge pair is proposed to control the data flow. The 1-bit-select

Demux-Merge pair is shown in figure 3-7.

19

MERGE

B
!

out

out

Function Block
In
DeMUX
Function Block
sel
' Function Block
in
—_—
Function Block
sel.f
sel.t

Figure 3-7: 1-bit-select Demux-Merge pair and its implementation

In figure 3-7, the Demux consists of two C-elements. Only one of them will output valid data
depending on the select signals. Then the valid data will be sent to only one function block
and the other function block will still be NULL. The Merge is composed of OR gate simply.
Because only one function block can generate the valid data, it will not influence other

unrelated function block and thus the average case delay time is guaranteed. The 1-bit-select

Demux-Demux pair is shown in figure3-8.

20

/

Function Block — bypass

in DeMux DeMux

result

Function Block

sell sel2

Function Block bypass

in ———

result

Function Block

Figure 3-8: 1-bit-select Demux-Demux pair and its implementation

From figure 3-8 we can find little difference between figure 3-7 and figure 3-8. In figure 3.8
we use sel2.f and sel2.t signals to choose whether bypass another ALU or not. When sel2.t is
1 and sel2.f is 0, computation result of function block is used as one of operand of another
ALU. When sel2.t is 0 and sel2.f is 1, the computation result bypasses another ALU as final
result. The FnCode is used as sel signal appeared in figure 3-8 and it denotes the operation of
an instruction. Because we have 9 operations including 8 operations listed in table 3-2 and
bypass, the width of our FnCode control signal is 4 bits. The definitions of FnCode are

showed in table 3-2.

21

FnCode Operation
0001 Add/Sub
0010 Multiplier
0011 AND
0100 OR
0101 NOT
0110 XOR
0111 Shift Left
1000 Shift Right

Table 3-2: The arrangement of FnCode

In addition the definitions of FnCode2 are the same as FnCodel. The purpose of FnCodel and
FnCode2 is used to control ALU: When the EnCode 1s a value between 0001~1000, it means
that ALU will do the corresponding operation listed in table 3-2. For common instruction, the
computation result of first ALU is also the final result. For compound instruction, the
computation result of first ALU is just one operand of second ALU. For this reason,
Demux-Demux is used for the first ALU. Depending on the bypass or not signal, the
computation result of first ALU will go the right way that it shall go. The bypass or not is
determined by the following equation:
bypass_or not =FnCode2 [3] | FnCode2 [2] | FnCode2 [1] | FnCode2 [0]

When FnCode2 [3:0] is 0000, the value of signal bypass or not is 0. It means that the
computation result will bypass second ALU as the final result. Otherwise the value of signal
bypass_or not is 1. From figure 3-8 we can find that when (sel2.t, sel2.f) = (1, 0) the
computation result will go through below path to second ALU as its operand. The advantage

of this kind design is its flexibility. We can implement not only common instruction under the

22

collocation of FnCodel and bypass but compound instruction under the collocation of
FnCodel and FnCode2. With this design, the instruction type can be designed with high

flexibility.

3.4 Implementation

In this section we will introduce the details of implementation. We first introduce the
completion detection circuit. How to detect the completion of asynchronous circuits fast is an
important issue in asynchronous circuits design because there is no clock distribution. Then

we will introduce internal components of ALU in order.

3.4.1 Completion Detection Circuit

Because of the potential advantage of-asynchronous design, such as no clock skew
problem, low power consumption, average case performance, research of asynchronous logic
is increasing [3, 6]. The promise of high performance is especially attractive. To achieve high
performance, one must design a fast self-timed circuit with good average case performance
and a fast completion detection circuit detecting the completion of the self-timed circuit.

A C-element may be used to implement a completion detection circuit for self-timed or
delay-insensitive circuits [7, 9]. Figure 3-9 shows a dual-rail self-timed component with an
n-input completion detector. The completion detector consists of an n-input AND gate, an
n-input OR gate and a two-input C-element. The n-input AND gate can be regarded as the
computation-completion signal. That is, the computation is done when all Ack;s are turned on.
The n-input OR gate can be regarded as the reset-completion signal. That is, the circuit is

reset (the OR gate output goes to 0) and ready to accept next new input data when all Ack;s

23

are turned off. Therefore the self-timed component has completed an operation when
DoneReset signal goes high and it can be reset when DoneReset signal goes down. The

completion detector will be used in each self-timed components illustrating in the following

section.
rHr—-—-r=--—=-—---—"-"-n --- - |
0
S, | Ack,
Done
—] + [T |
:] [] S I | |
0 I
: Self-timed . : DoneReset |
Component
0 L]
An-1:] Sn | A :
! + i)
A . a
| N | Ack,.| Reset |
Sn-l |
I
L e o o o o |

Completion Detector

Figure 3-9: Self-timed component with completion detection circnit
3.4.2 Logical operation

There are several design methodology to construct the DI circuits, including DIMS[10]
and NCL gates[11]. The full name of NCL is NULL Convention Logic. NCL is a symbolically
complete logic. It expresses process completely in terms of the logic itself and inherently and
conveniently expresses asynchronous digital circuits. NCL is easy to design, but the cost is
higher. The thesis is based on the DIMS, and developed with Verilog hardware description
language. The full name of DIMS is Delay Insensitive Minterm Synthesis. DIMS is an
asynchronous design methodology and the basis for DIMS is the use of two wires to represent
each bit of data. This is known as a dual-rail data encoding. The basic elements are modeled

in gate level, and all the large blocks are composed of the basic elements.

24

inl.f)
inl.t — C
C) g‘r\ out.f
|/ y
in2.f C)
)
n2.t C / out.t

Figure 3-10: The 2-input dual-rail AND gate

Figure 3-10 shows the 2-input dual-rail AND gate. The circuit waits for all its inputs to
become valid. When this happens exactly one of the four C-elements goes high. This again
causes the relevant output wire to go, high corresponding to the gate producing the desired
valid output. When all inputs become empty-the.C-elements are all set low and the output of
the dual-rail AND gate becomes empty again. By using the same concepts, other dual-rail
basic elements including OR, XOR are constructed. These basic elements are also used to

construct the half adder, full adder, and other ALU blocks in hierarchical.

3.4.3 Arithmetic operation

In this thesis arithmetic operations include 16*16 bits array multiplier and 32*32 bits
carry-lookahead adder. We introduce 16*16 bits array multiplier first. Multiplier is an
essential device in apparatuses such as microprocessors or in digital signal processors. It also
takes the longest operational time, which usually is the decisive factor of an effective chip.
For the time being, several asynchronous designs have been proposed. Due to its low power
consumption, low average operational time and flexibility to adapt to various process and

environment, the asynchronous circuit has been used in VLSI circuits for better performance.

25

In our design the multiplier comprises a partial product generator, an addition array, a
final-stage adder and a completion detector. The partial product generator generates
intermediate partial products, and the addition array adds these partial products. Then, the
final-stage adder adds these partial products and outputs the sum. Finally, the completion
detector checks and output the result. Figure 3.11 shows the work flow of conventional

asynchronous multiplier.

multiplier Y

partial product generator multiplicand X

final-stage adder

completion detector

s
e

Figure 3-11: The work flow of conventional asynchronous multiplier

Figure 3-12 shows an 8*8 bits right-to-left array multiplier including a partial product

generator, and a right-to-left addition array.

26

I S R A A A A A T

product

Figure 3-12: An 8*8 bits right-to-left array multiplier

In figure 3-12 “e®” represents a bit.product generation. The partial product generator is
usually implemented with an AND gate. **P’* represents an adder. In the right-to-left array
adder, the sum of each adder is propagated to the next-level adder. The carry of each adder is
propagated to the higher-bit adder in the same level. The computation result of each adder
covered by gray dotted line is used to generate completion-detection signal.

The partial product generator is implemented with the DI AND gate which is illustrated
in previous section so that in this section we do not mention it again. Figure 3-13 is a
schematic drawing showing a single partial product generator scheme in a single row.
Referring to figure 3-13, the gray point represents the partial product, which is the product of

multiplier and a particular bit of the multiplicand x;.

27

multiplier
MSB A LSB

. . [' '
% % { % { O bit of the multiplicand

DI DI DI LN DI DI DI

MSB v LSB
partial product

Figure 3-13: A conventional single partial product generator scheme

Then the partial products are added by the adder array. In the conventional technique, the DI
full adder can be a basic unit of the«addition array. To implement the full adder, the dual-rail
signal is used for the inputs, (A°, A"), (B, BY and (Cy’, Cin'), and the outputs, the sum (s’ shH
and the carry (Cou’, Cout'). Whertein, the-sum-and carry can be obtained from the following
logic expressions:

Cou’ =A"B’+A° C;)” +B° G,

Cou =A'B'+A'C;)' +B' Gy

S =A'BC, +A'B'C, +A°B' C,' +A' B C,

s'=A'B'Cy +A'B’Ci," +A’B' Ci)) + A" B’ Gy
For example, when A = 1, B =0, and Cj, = 1, then Co, = 1 and S = 0. By using dual-rail
encoding, we can use (A%, A= (0, 1) to represent A (valid “17), (B, B")=(1, 0) to represent
B (valid “0”), and (Ci,’, Cin") = (1, 0) to represent Ci, (Valid “17). After applying to the above
logic expression, we can obtain (Como, Coml) = (0, 1) which represents valid “1” and (SO, Sl) =
(1, 0) which represents valid “0”. The result agrees with our expectation. Figure 3-14 is a

schematic drawing showing a dual-rail symbol of a DI full adder.

28

w’—*
w
=]

C out C out

Figure 3-14: A dual-rail symbol of a DI full adder

The DI full adder can be needed to cemprise the right-to-left carry-ripple array of the
asynchronous multiplier shown in figure 3-13.

After introducing array multiplier; ‘the'“details of DI Carry-Lookahead Adder are
illustrated in the following paragraph. DI ‘Carry-Lookahead Adder can be implemented by
using dual-rail signaling in input bits, sum bits, carry bits, and carry-kill bit. A carry is said to
be “generated” from a given bit position if the sum for the given position produces a carry out
independent of a carry in. A carry is said to be “killed” in a given bit position if a carry does
not propagate through the bit. Thus the adder is statistically faster than the ripple adder since
carry-kill and carry-generate signals can be generated in the middle bits instead of going
through all the carry logic from the least significant bit (LSB). The terms propagate, generate,
and kill may be applied to blocks. Several full adders can also be grouped together to form an
adder block. A carry is said to propagate through a given block if a carry transferred into the
given block’s LSB summation is followed by a carry out of the given block’s MSB

summation. A block is said to generate a carry if the block’s MSB summation produces a

29

carry out, independent of carries into the block’s LSB. Figure 3-15 is a schematic drawing
showing a conventional DI carry lookahead adder. The DICLA comprises the input bits (Ai,
Bi), the output bits (Si, Ci) and the hot code (ki, gi, pi) of internal signal. For simplicity, we

use an 8-bits DICLA scheme as example.

NSRS IR IR IR

3 A A 3

4 4 4 4 4

\ ’17 /16 N \ 4 IS 114\ L 4 13 /Iz \ Y 4 | /IO\
A 4 A 4 y y y y

C5 C3 Cl
C; D Cs D C, D C, D Cy

LD
Lg
<
<
>
»
<
»
>

Csee{ D S

Figure 3-15: An 8*8 bits DICLA scheme

The DICLA can be built with two basic modules: C and D modules, connected in a
tree-like structure. The equations of the C module are defined as follows:

Carry-kill k; = A"B;’

Carry-generate g; = A;'Bi'

Carry-propagate p; = A{’B;' + A;'Bi’

SumS’=A’B°Ci,’ +A'B' Ci," +AB' G +A' B Gy

SumS'=A'B'C;,' +A' B Ci" +A’B' ¢+ A" B’ ¢
Where i =0, 1, ..., n-2, n-1. The C module is shown in figure 3-16. The dual-rail signals on

the left side of figure 3-16 are grouped as A; = (A, A"), B; = (B!, Bi'), Ci= (G, Ci), Si =

30

(SiO, Sil), and I; = (ki, gi, pi)- The schematic symbol of C module is shown on the right side of

figure 3-16.

B
| l _TT Ai Bi S; Ai= (AL A
l m B; = (B}, B})
Ci=(C1,Ch)
¢ :> ¢ Si=(S%, $D)
T Ii = (ki g;, Py)
31
I'r |

Figure 3-16: C-module

The equations for the D module are defined as follows:
Block-carry-propagate P; i = PijPj.; x
Block-carry-kill K = Kj; + P1,jKj.1 x
Block-carry-generate Giyx = Gj; + P;;Gj.1 x
Block-carry-out = CjO =K+ Pj_l,kaO
Block-carry-out = C;' = G + Py 4Cy'

Wherei=0, 1, ..., n-2, n-1. The D module is shown in figure 3-17.

31

Ci=(C, ch)

Iij =(Kij ,Gj;, Pi:)
Kij Gij PijKiik GiixPjixk : oUW

L)l 25
b e R R
2% !

ik
Figure 3-17: D-module

(-
=

ik Gik
The signals on the left side of figure 3-17 are grouped as I;; = (Kij, Gij, Pij), and C; = c®, ch.
The schematic symbol of D module is shown on the right side of figure 3-17. Initially, all
carries (Cio, Ci! fori = 1, 2, ..., n) and the infernal signals (Kj, Gij, P;;) are zero, because all
primary inputs (A, Ai', B, and B;' fori=0, Iy ..5; n-1) and input carry (C;’, C;') are zero.
During the computation, the inputs AiO, Ail, Bio, Bil, COO, and C,' become valid, and then the
outputs (Ci, Ci') and (S, Si') forii= 1, 2, . n become valid gradually. Finally, the
completion detector checks all outputs and outputs the completion signal indicating that the

operation is completed.

3.4.4 Barrel Shifter

Data shifting and rotating are required in several applications including arithmetic
operations, variable-length coding, and bit-indexing. Consequently, barrel shifters which are
capable of shifting or rotating data are commonly found in both digital signal processors and
general-purpose processors. In this thesis, we define A to be the input operand, B to be the

shift/rotate amount, and R to be the shift/rotated result. We define A to be an n-bit value,

32

where n is an integer power of two. Therefore, B is a logy(n)-bit integer representing values
from O to n-1. The barrel shifter performs the following six operations: shift right logical, shift
right arithmetic, rotate right, shift left logical, shift left arithmetic, and rotate left. The
dual-rail signal is used for the inputs, a; = (aio, ail) and b; = (bio, bil), and the outputs, r; = (riO,
;') where i = 0, 1, ..., n-1. Table 3-3 gives an example for each of these operations. In this

table, the bit vector for A is denoted as asagasasazarajag and the shift/rotate amount, B, is 3

bits.
Operation R
3-bit shift right logical 0 0 0 ajagasayas
3-bit shift right arithmetic a7a7a7a7a¢as5a,4 3
3-bit rotate right a)aj;apgasagasa,as
3-bit shift left logical asasza,a;ap0 0 0
3-bit shift left arithmetic azas;a,a; a,0 0 0
3-bit rotate left aja;a,a ;a;a,aga;

Table 3-3: Shift and rotate example for A = a;agasaaza,a;ap and B =3

As illustrated in this table:

® A B-bit shift right logical operation performs a B-bit shift and sets the upper B bits of the
result to zeros.

® A B-bit shift right arithmetic operation performs a B-bit right shift and sets the upper B
bits of the result to a,.;, which corresponds to the sign bit of A.

® A B-bit rotate right operation performs a B-bit right shift and sets the upper B bits of
result to the lower B bits of A.

® A B-bit shift left logical operations performs a B-bit left shift and sets the lower B bits of
the result to zeros.

® A B-bit shift left arithmetic operation performs a B-bit left shift and sets the lower B bits

33

of the result to zeros. The sign bit of the result is sets to a,.;.
® A B-bit rotate left operation performs a B-bit left shift and sets the lower B bits of result
to the upper B bits of A.
The operation performed by the barrel shifters is controlled by a 3-bit opcode,

which consists of the bits left, rotate, and arithmetic, as summarized in table 3-4.

3 blgcggcoifithmetic Operatlon
0 0 0 shift right logical
0 0 1 shift right arithmetic
0 1 0 rotate right
1 0 0 shift left logical
1 0 | shift left arithmetic
1 1 0

rotate left

Table 3-4: Operation control bits

Control signals are set to 1 when performing left, rotate, and arithmetic operations
respectively. An n-bit logarithmic barrel shifter uses logy(n) stages. Each bit of the shift
amount, B, controls a different stage of the shifter. The data transferred into the stage
controlled by by is shifted by 2" bits if b= 1; otherwise it is not shifted. Figure 3-18 shows the
block diagram of an 8-bit logical right shifter, which uses three stages with 4-bit, 2-bit, and

1-bit shifts.

34

1 1
b, \\0— 1/ \\0_j1/ \\o—Jll \\O_j]/ \\0_j1/ \\O—Jll \\0_j1/ \{/ 2-bit right shift

1 1
b, \o 1/ \\0_1// \\O:IJI/ \\o—|_1// \\ilj;/ \\Ojl_l// \y 1/ \{ljl-bltri@tshiﬂ
[7]Lé 5 I 3 [[[

Figure 3-18: The block diagram of an 8=bits logical right shifter

A similar unit that performs right rotations can be designed by modifying the
connections to the more significant multiplexers. Figure 3-19 shows the block diagram of an
8-bit right rotator, which uses three stages with 4-bit, 2-bit, and 1-bit rotates. The right rotator
and the logical right shifter provide different inputs to the more significant multiplexers.
Interconnect lines are inserted to enable routing of the 2* low order data bits to the 2* high
order multiplexers in the stage controlled by by There is no longer need for interconnect lines

carrying zeros since all of the input bits are routed to the output.

35

a7 g as Ay a3 a aj)

1 I
No L—No 1/ No 1 No o/ No i/ _No i/L_\No 1 o 1f 1- bitrightshift
bo \T \"_/ \—f/ \T/ \T/_\TT/
Iy Ie I's Iy Is I I Iy

Figure 3-19: An 8-bits right rotator

The 1-bit multiplexer is shown in figure<3-20. The left side of figure 3-20 shows the
symbol of 1-bit-select multiplexer and right side of figure 3-20 shows its implementation. In
figure 3-20, the multiplexer consists of two-C-elements and OR gate. Only one of the
C-elements will output valid data depending on the select signals. Then the valid data will be

merged by OR gate because only one C-element can generate valid data.

inl inl JD

MUX —) >
- in2 D
o sel.f _

sel.t
(a) (b)

Figure 3-20: 1-bit-select multiplexer and its implementation

36

The logical right shifter can be extended to also perform shift right arithmetic and rotate
right operations by adding additional multiplexers. Figure 3-21 shows an 8-bit right
shifter/rotator with three stages of 4-bit, 2-bit, and 1-bit shifts/rotates.

sra a7 de as ay a3 a) a a

a7 -

[| 1
rotate \\:):l_l/LJ\oj_l/L_\o:’_l/LJ\o_j
1 r

b, No 1L No 1/ No 1/_No 1L No 1/_No 1f \0_1// \\0_] 4-bit right shift

S [N D VA G D Ve W A .
Yo 1
rotate Ao 1
\ l_/l \ ,,/al \ }(/ \ J(/ \ / \ }(/ \ J(/ \ 2-bit right shift
0 1 0 1 1 0 1 0 1 0 1 0 1 o 1/ 2-bitright shi
R O e U Ve N e U e e U U
rotate 01
\ W/‘l \ */ \ J(/ \ /[-\ / \ /[N\ [\ 1-bit right shift
0 1 0 1 0% 01 .1 0 1 0 1 o 1/ 1-butrignt shi
bo \F \"_J \m \"_J
Iy I's 5 I'y I3 I Iy o

Figure 3-21: An 8-bits right shifter/rotator

When the control signal sra is 1, the right shifter/rotator performs shift right arithmetic
operation. When the control signal sra is 0, it performs shift right logical operation. Initially a
single multiplexer selects between 0 for logical right shifting and a,.; for arithmetic right
shifting to produce signal s. In the stage controlled by by, 2° multiplexers select between
signal s for shifting and the 2 lower bits of the data for rotating. From figure 3-21 we can find
that the design concept of right shifter/rotator is composed of logical right shifter, right rotator,
and extra multiplexers mentioned earlier. Left shift operations can also use the same concept

to implement so we do not need tautology.

37

Chapter 4. Simulation Results

Because in ALU multiplier usually takes the longest computation time, we pay our
attention on the comparison of performance between synchronous and asynchronous circuit

design. Figure 4-1 shows a 16*16 bits right-to-left array multiplier.

— ORI R AR BRSSO A SRS
— RS STR Tttt e
Seorhrk S Sl LSSl S VNI S SE
combinational array multplir 18325 \t \d>\‘d\\9’i 3‘;\3%)@\:&.%&%;%\; n \’1\% \Q\A\w
b L S SL L S L
NENE N \x‘g@g»\!k&b@@é&\&%b&» D
B M \g;\gg\g\\{}\ﬂ g;%\fvi\ﬂx‘} \;\;"AJ
bbb ekl n sl
bbb ek sk sk Sk Ll o
o o, Y S S o
e Y Sl S SIS Sl SIS o VL
b 4, 0 o e S S W
REMESY \vg \\![.\!E\f‘b’!kjk.\ﬂk_ e \’k\gk\i’g
o S b NN LSl S R
I \‘c'>\3“ % \? \’:F\t?‘\o\% e x\ly\s\g‘gk}fkg\ll

| product

Figure 4-1: A 16*16 bits right-to-left multiplier

In figure 4-1 the gray dotted line represents the critical path of array multiplier. Furthermore,
in order to verify the correctness of the design, ModelSim 6.0 is used. We also tried to
synthesis our gate-level design with Design Compiler. The data listed in the table is based on
the TSMC 0.13 pum cell library. From the table we can find that the worst case delay for
asynchronous array multiplier is 41.223 ns and 18.325 ns for combinational array multiplier.
It seems that the performance of synchronous array multiplier is better than asynchronous one.
The sentence is not always true because the happening probability of worst case is very low in
actual life. Let’s take an instruction MLA in our daily life such as 213 + (216*144) for

example. Figure 4-2 shows the waveform of instruction MLA.

38

Eie Edit Yiew lnwdt Fomet look MWindow =1

(CHSE || s RRA | KX || %8S e e o LB || %] mlfn) @ Q@ B3| BRI ELEEE Iil
RS
[
[
= s\m.IDII;ruc.EssmlEXE1l;/resullEXET_EXEZ_I 31104

Cursor 1 |99 ps BT
S S | i =

Ops 10 60544 75 | Mow: 60ns Delia; 1

»

Window.. ~ | O UleEaits,. | Pemshousc. | & FbzZia-. | @ a2ER. [B4 Memo. - c:2viah cHmE TR A FEOs

Figure 4-2: The waveform of instruction MLA

From the figure we can find that the instruction takes 21.199 ns. Other delays of possible

combinations are listed in table 4-1.

other possible combinations delay time (ns)
add/sub + add/sub 9.784
add/sub + shift_left 7.248
add/sub + shift_right 7.248
multiply + add/sub 21.199
shift_left + shift_left 6.799
shift_left + shift right 6.799
and + and 4.213
or + or 4.213

Table 4-1: Other delays of possible combinations

The data inputs used to generate simulation results shown in table 4-1 are uncomplicated

39

numbers such as 144 or 213. For combinational logic, it takes 37.750 ns under two-stage ALU
design because multiplier usually takes the longest operational time and bounded to the worst
case delay. From here we can find that the performance of asynchronous circuit design in this
thesis may be better than synchronous circuit design in this case. It is a feasible way that one
applies the advantage of asynchronous circuit designs that operate at average rates instead of

worst rates on designing ALU.

40

Chapter 5. Conclusion

Because ALU usually is the bottleneck of the processor performance, improving the
processing time of ALU is also the chance to improve overall performance. In synchronous
circuit design, the performance is determined by the slowest component. However, in an
asynchronous circuit design, the next computation step can be started immediately after the
previous step has been completed. This feature potentially leads to a fundamental
performance advantage for asynchronous circuit design, an advantage that increases with the
variability in delays associated with these computation steps. Thus in this thesis we introduce
the concepts of asynchronous circuit design to improve performance of ALU.

The original idea of this design is derived from MAC instruction in any DSP processors.
The MAC instruction is an operation that eomputes the product of two numbers and adds that
product with an accumulator. Then we extend this idéa to design our ALU composed of two
stages. The advantage of this kind of design-is-its flexibility on instruction types and delays.
We can implement not only common instrucetion under the collocation of FnCodel and bypass
but compound instruction under the collocation of FnCodel and FnCode2. With this design,
the instruction type can be designed with high flexibility. In addition, the property of data
dependency can also make the variability in delays more flexible in asynchronous circuit

design and verified by the final simulation results in chapter 4.

41

Reference

[1] J. Spars@ and S. Furber, Principles of asynchronous circuit design — a systems prospective,

Kluwer Academic Publishers, London, 2001.

[2] 1. Sutherland, “Micropipelines,” Communications of the ACM, vol. 32, June 1989, pp.
20-38.

[3] Al Davis and Steven M. Nowick, “Asynchronous circuit design: Motivation, background,
and methods,” in Asynchronous Digital Circuit Design, Workshops in Computing, 1995,
pp-1-49.

[4] Mark E. Dean, David L. Dill, and Mark Horowitz, “Self-timed logic using current-sensing
completion detection,” in Journal of VLSI Signal Processing, February 1994, pp. 7-16.

[5] E. Grass, R. C. S. Morling, and:I. KalesActivity, monitoring completion detection: A new
single rail approach to achieve :self-timing,” Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, March 1996.

[6] Scott Hauck, “Asynchronous designh’ methodologies: An overview,” Proceedings of the
IEEE, January 1995.

[7] Fu-Chiung Cheng, “Synthesis of high speed delay-insensitive combinational iterative tree
circuits,” in Proc. International Conf. Computer Design, October 1997, pp. 301-306.

[8] Fu-Chiung Cheng, Stephen H. Unger, Michael Theobald, and Wen-Chung Cho,
“Delay-insensitive carry-lookahead adders,” in Proc. International Conf. VLSI Design, 1997,
pp- 322-328.

[9] Ilana David, Ran Ginosar, and Michael Yoeli, “An efficient implementation of Boolean
functions as self-timed circuits,” IEEE Transactions on Computers, January 1992, pp. 2-11
[10] G. E. Sobelman and K. Fant, “CMOS circuit design of threshold gates with hysteresis,”

in Proc. IEEE Symp. Circuits and Systems, vol. 2, 1998, pp. 61-64.

42

[11] D. Muller and W. Bartky, “A Theory of asynchronous circuits,” in Proceeding of an

International Symposium on the Theory of Switching, April 1959, pp. 204-243.

43

	Chapter 1. Introduction
	Chapter 2. Background

