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摘要 

 

 通常來說ALU對於處理器的效能是個瓶頸，所以能夠有效提升ALU的效能對於處理

器整體效能的提升有一定的幫助。然而在同步電路設計上，整體的速度往往是由最慢的

元件所決定。但是對於非同步電路設計而言，再前一筆資料處理完之後便能立刻去處理

下一筆需要處理的資料。所以整體效能是隨著資料的複雜性而有所不同而不會綁在最長

的延遲時間上，因此效能上較趨向於平均延遲時間而非最長延遲時間。 

 於是在本篇論文中便引入非同步電路設計的概念來幫助我們提升ALU的效能。而其

構想是來自於DSP處理器中常用到的MAC指令。MAC指令是一個先做乘法再將所得的結

果作加法的兩階段指令。我們將此想法加以應用並設計一個包含兩個階段的ALU。此設

計的優點在於其指令格式和延遲時間上更具有彈性。 
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Abstract 

 

Because ALU usually is the bottleneck of the processor performance, improving the 

processing time of ALU is also the chance to improve overall performance. In synchronous 

circuit design, the performance is determined by the slowest component. However, in an 

asynchronous circuit design, the next computation step can be started immediately after 

previous step has been completed.  

Thus in this thesis we introduce the concepts of asynchronous circuit design to improve 

performance of ALU. The original idea of our design is derived from MAC related instruction 

supported by almost all DSP processors. Then we extend this idea to design our ALU 

composed of stages. The advantage of this kind of design is its flexibility on instruction types 

and delays. 
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Chapter 1. Introduction 

1.1 Overview 

    Most high performance processors are based on synchronous design method, because it has 

a complete design flow and tools. There are many advantages in synchronous design 

methodology. For example, it is easier to design because all signals are controlled by a global 

clock. All we have to do is to ensure that all works must be done during a clock period. 

Furthermore, the CAD tools are plentiful for us to choose. From high level modeling to 

back-end testing, it is easy to find relative tools for use. However, as long as systems become 

larger and more complex, some serious problems appear. First, the system clock may cause 

problems in designing a large high clock frequency chip. Second, the clock period is bounded 

by the critical path delay time. It causes the worst case delay time. With system becoming 

more complex, it is more difficult to balance each pipeline stage; therefore the performance is 

harder to improve.  

  Asynchronous circuit design, alternatively, is a good choice for designing a large and 

complex processor. Instead of the global clock, the synchronization is done via handshaking 

protocols. The power consumption is lower than synchronous circuits inherently because it 

almost attains zero power dissipation when there is no useful work to do. On the other hand, 

its working delay to finish one operation is no longer bounded by the worst-case clock period, 

and each pipeline stage only communicates with its adjacent stages, regardless of the other 

stages. Besides these advantages, asynchronous circuit design still has other advantages, 

including no clock skew problems, low EMI, and more robustness for environment [1]. 
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1.2 Motivations 

 The original idea of our design is derived from the MAC related instructions supported 

by almost all DSP processors. The instruction multiplies two operands first and then 

accumulates the result with another operand. It is an important instruction for almost all DSP 

or ARM processors. That’s because this instruction is needed for almost all multimedia 

applications. In synchronous circuit, the performance is determined by the slowest block. 

Thus other instructions which do not need too much computation time also must be bounded 

to the worst case delay. This is not a good thing for performance. In asynchronous circuit 

design, stages can work at their own speed, and therefore the operation speed is no longer 

constrained by the slowest block in the system as in a clocked system. So in this thesis we 

extend this idea to design our ALU composed of two stages. The advantage of this kind of 

design is its flexibility on instruction types and delays. 

 

1.3 The Organization of This Thesis 

 In chapter 1, the overview and motivation is presented. In chapter 2, the related 

background of asynchronous circuit design technologies and concepts will be introduced. In 

chapter 3, the analytic result and the way of implementation is introduced. In chapter 4, the 

simulation results are showed. Finally, the thesis is concluded in chapter 5. 
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Chapter 2. Background 

2.1 Asynchronous Circuits 

 In an asynchronous circuit, the clock signal is replaced by some forms of handshaking 

protocols between neighboring components.  

l is replaced by some forms of handshaking 

protocols between neighboring components.  

  

2.1.1 Handshake Protocols 2.1.1 Handshake Protocols 

 There are several methodologies to realize the asynchronous protocols. We can roughly 

divide the encoding schemes into Bundled-Data and Dual-Rail protocols and each of it can be 

combined with 2-phase or 4-phase signaling protocols. Therefore, we have four kinds of 

asynchronous handshaking protocols as figure 2.1 illustrated. 

 There are several methodologies to realize the asynchronous protocols. We can roughly 

divide the encoding schemes into Bundled-Data and Dual-Rail protocols and each of it can be 

combined with 2-phase or 4-phase signaling protocols. Therefore, we have four kinds of 

asynchronous handshaking protocols as figure 2.1 illustrated. 

        

                       
                Figure 2-1: Categories of asynchronous handshake protocol  

         

 The Bundled Data refers to separate request and acknowledges wires that bundles the 

data signals with them (figure 2-2(a)). The data wires carry conventional data signals. Figure 

2-2(b) shows the 4-phase bundled-data protocol. The sender places a data value on the data 
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wires and produces an event on one of its control wire called “request” to indicate that the 

data are available. After the receiver receiving the request event, the receiver sends an event 

called “acknowledge” to the sender to indicate the data have been accepted. After the sender 

receives the acknowledge signal, it falls the request signal to indicate for preparing next 

transfer. Finally, when the receiver gets the request low signal, it will pull down the 

acknowledge signal to low to tell the sender that it can transfer next data. 

 

   
  Figure 2-2: Bundled Data channel (a); 4-phase bundled-data protocol (b); 2-phase bundled-data protocol (c) 

 Another solution is the 2-phase bundled-data methodology shown in figure 2-2(c). The 

“2-phase” indicates that only two phases of the operation: the sender’s active phase and 

receiver’s active phase. First, the sender places a data on the data wires and then indicates an 

event on request wire to tell the receiver that the data is ready. After the receiver has received 

the data completely, it generates an acknowledge event to the sender. When the sender 

receives the acknowledge signal, it means that the sender can prepare the data for next 

transferring. 
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 All the bundled-data protocols rely on the matching delay. That is, the sender must 

ensure that the data signals are ready for the receiver before it can send the request event. 

 Besides the bundled-data protocols, another choice is to use a more sophisticated 

protocol that is robust to wire delay. The idea of 4-phase dual-rail protocol will be used in our 

design. 

The 4-Phase Dual-Rail Handshake Protocols 

 In dual-rail handshake protocols, data signals and timing information are combined 

together by a special encoding mechanism. It can be used to detect whether the signal is ready 

or not by judging the encoding signals directly. Therefore this protocol is very robust for 

delays, and can be applied to variable environments. To represent 1-bit data in 4-phase 

dual-rail protocol, two wires are used. For example, a valid data, D is represented by two 

physical data wires, d.t and d.f. The following equation shows this encoding scheme. 

D = 0 ; (d.t,d.f) = (0,1) 

D = 1 ; (d.t,d.f) = (1,0). 

The signal (d.t, d.f) = (0, 1) or (1, 0) is used to represent a valid 0 or 1 information. The signal 

(d.t, d.f) = (0, 0) means that the data is still not ready and this signal is used to separate two 

valid data. Table 2-1 shows how a valid bit is represented in dual-rail encoding scheme.           

 

  d.t d.f
Empty 0 0 

Valid "0" 0 1 
Valid "1" 1 0 
Not used 1 1 

Table 2‐1: 1-bit dual-rail encoding 

The 4-phase dual-rail channel encodes the request signal into the data signals using two 

wires per bit as shown in figure 2-3 (a). The sender does not need to send request signal any 

more, and the receiver has to detect when the data is valid.  

The abstract view of 4-phase handshake as shown in figure 2-3 (b): (1) the sender sends valid 
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data to the receiver, (2) the receiver absorbs the valid data and sets the acknowledge signal 

high, (3) after the sender announced by acknowledge, it sets the data out to be empty value, (4) 

the receiver responses this by setting acknowledge signal low and at this time the sender may 

initiate next communication cycle. 

 
Figure 2-3: (a) 4-phase dual-rail channel. (b) 4-phase dual-rail protocol. 

 The 2-phase dual-rail protocol also uses 2 wires {d.t, d.f} per bit, but the information is 

encoded as transitions. The information on the request and acknowledge wires is now 

encoded as signal transitions on the wires and there is no difference between 0->1 and 1->0 

transition, they both represent a signal event. On an N-bit channel a new codeword is received 

when exactly one wire in each of the N wire pairs has made a transition. There is no empty 

value. A valid message is acknowledged and followed by another message that is 

acknowledged. Figure 2-4 shows the signal waveforms on a 2-bit channel using the 2-phase 

dual-rail protocol. 
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Figure 2-4: Illustration of the handshaking on a 2-phase dual-rail channel 

2.1.2 Classification of Asynchronous Circuits 

 Asynchronous circuits can be classified into self-timed, speed-independent, 

quasi-delay-insensitive and delay-insensitive depending on the delay assumptions that are 

made.  

 (1) Delay-Insensitive (DI): A circuit that operates “correctly” with positive, bounded but 

abstract delay in wires as well as in gates. Such circuits are obviously extremely robust. 

However, there are too many constraints in pure DI circuits that make it hard to implement. 

Only circuits composed of C-elements and inverters can be delay-insensitive. 

 (2) Quasi-Delay-Insensitive (QDI): Circuits that are delay-insensitive with the exception 

of some carefully identified wire forks where d1 = d2 as figure 2-5 illustrated are called 

quasi-delay-insensitive (QDI). Such wire forks where signal transitions occur at the same time 

at all end-points are called isochronic fork. 
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1

2

Figure

rectly” with positive, bounded 

but unknown delay in gates and ideal zero-delay in wires. 

orrect operation relies on more elaborate and/or 

ing assumptions. 

 

2.2 Asynchronous Pipeline 

odel we choose, we will introduce the Muller C-element and 4-phase 

 

2.2.1 C-element 

 2-5: Quasi-Delay Insensitive Delay Model 

(3) Speed-Independent (SI): A circuit that operates “cor

(4) Self-Timed: circuits whose c

engineering tim

 There are several asynchronous pipeline implementation styles have been proposed. One 

of the most important models is the Muller pipeline. It is built from C-elements and inverters. 

Another well known circuit is called Micropipelines, which is 2-phase bundled-data protocol, 

introduced by Ivan Sutherland in his Turing Award Lecture [2]. Other asynchronous pipeline 

implementations use different circuit design methods to replace the C-element and latch. 

Because of the m

dual-rail pipeline. 

 The Muller C-element is widely used for asynchronous circuits design. Figure 2-6 shows 
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the symbol, construction and truth-table of a two input C-element. When all of the inputs of a 

C-element are low, the output will be low; when two inputs of a C-element are high, the 

output will be high; otherwise the output will remain unchanged. With this property, the 

etimes can be used as a storage element. 

           

C-element som

in1 in2

0 0

0 1

01

1 1

out

0

no change

1

no change

C y
a
b

a

y

(a)

(b) (c)

b

 
Figure 2-6: C-element: (a) symbol; (b) possible implementation; (c) truth-table 

 

2.2.2 4-phase dual-rail Pipeline 

    A 4-phase dual-rail pipeline is based on the Muller Pipeline; however the request signal 

can be eliminated by the dual-rail encoding of data. Figure 2-7 shows the implementation of a 

1-bit wide and three-stage pipeline without data processing. 
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Figure 2-7: A simple 3-stage 1-bit wide 4-phase dual-rail pipeline   

 To construct circuits with this protocol, gates and data storing elements are required. 

Each stage can be considered as a dual-rail latch. This latch is used to store the data similar to 

a master slave flip-flop in a synchronous circuit. In the initial state, each stage is in NULL 

state (null codeword {d.t, d.f} = {0, 0}) which means the output of C-element in each stage is 

low. The null data causes acknowledge signal low. After the signal pass through an inverter, 

one of the input of the C-elements in each stage is high. At this moment, the stage is ready to 

accept the data codeword {0, 1} or {1, 0}. After receiving a valid data codeword, the 

acknowledge signal turns to high to indicate the previous stage that it has to accept null data. 

We should notice that because the codeword {1, 1} is illegal and does not occur, the 

acknowledge signal generated by the OR gate safely indicates the state of the pipeline stage as 

“Data” or “Null”. 

 An N-bit wide pipeline can be implemented by using a number of 1-bit pipelines in 

parallel. If bit-parallel synchronization is needed, the individual acknowledge signals can be 

combined into one global acknowledge with a C-element. Figure 2-8(a) shows a 3-bit wide 

latch. The OR gates and the C-element in the dashed box form a “completion detector” that 

indicates whether the 3-bit dual-rail codeword stored in the latch is valid data or null data. 

Figure 2-8(b) shows an alternative completion detector that uses only a 2-input C-element. 
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Figure 2-8: (a) A 3-bit latch with completion detection. (b) Alternative completion detector 
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Chapter 3. Analysis and Implementation 

3.1 Overview 

Because we need to know the usages of each instruction in a program, we selected 

the MediaBench and MiBench as the target programs to be analyzed and compiled them 

with GNU C/C++ compiler. GNU C/C++ Compiler (GCC) is an integrated distribution 

of compilers for several major programming languages. These languages currently 

include C, C++, Java, Fortran, and Ada. GCC is often the compiler chosen for 

developing software that is required to execute on a wide variety of hardware. 

Differences in native compilers lead to difficulties in developing code that may be 

compiled correctly on all the compilers and building scripts that may be executed for all 

the platforms. Four compilation stages of GNU C/C++ Compiler are shown in figure 3-1.  

Input Files
Stages of 

Compilation Output Files

Preprocessing
(cpp)

Compiling
(-gcc)

Assembling
(arm-elf-as)

Linking
(arm-elf-ld)

Input file:

Output file:

option:

C code (.c)

Preprocessed (.i)

-E

Preprocessed (.i)

Assembler (.s)

-S

Assembler (.s)

Object (.o)

-c

Object (.o)

Executable (.elf)

(none)

arm-elf-gcc Execution

 
Figure 3-1: Compilation stages of GNU C/C++ Compiler 
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Preprocessor convert all preprocessing statements such as #define, #include, and 

#ifdef into true C code. Compiler converts preprocessed input into assembly codes. 

Assembler takes the assembly codes as input and produces object files with extensions. 

Linking is the final stage, where the modules are placed in the executable file. Library 

functions that the program refers to are also placed in the file.  

3.2 Result of analysis 

   

In this thesis we use C program codes of MiBench and MediaBench as source and 

ARM as target processor. “arm-elf” means that target machine is ARM and the supported 

file format is ELF file format. MiBench and MediaBench are a set of embedded 

applications for benchmarking. We choose parts of applications as our object of analysis. 

They includes fft, bitcnts, crc, qsort, and video encoding/decoding which have been 

proposed as a benchmark representative of multimedia, automotive/industrial control 

system and communications applications. The purposes of each benchmark are 

illustrated as follows. 

fft: This benchmark performs a Fast Fourier Transform and its inverse transform on 

an array of data. Fourier transforms are usually used in digital signal processing to find 

frequencies contained in a given input signal which is a polynomial function with 

pseudorandom amplitude and frequency sinusoidal components. 

bitcnts: The bit count algorithm tests the bit manipulation abilities of a processor by 

counting the number of bits in an array of integers. The input data is an array of integers 

with equal numbers of 1’s and 0’s.  

crc: This benchmark performs a 32-bit Cyclic Redundancy Check on a file. CRC 

checks are often used to detect errors in data transmission.  

qsort: The qsort test sorts a large array of strings into ascending order using the well 
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known quick sort algorithm. Sorting of information is important for systems so that 

priorities can be made, output can be better interpreted, data can be organized, and the 

overall runtime of programs reduced. 

Video encoding/decoding: The video-centric media benchmark suite is composed of 

the encoders and decoders from video compression standards: H.263, H.264, MEPG-2, 

and MEPG-4. After compiling, we can obtain the assembly code for following analyzing. 

Figure 3-2 shows the percentages of each instruction categories.  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bi
tcn

ts cr
c fft

qs
or

t

m
ed

iab
en

ch
2_

vi
de

o

others
mul/mla
cmp

logical operation

add/sub

control flow

str

ldr

data movement21.3%

17.7%

10.9%

17.7%

8.8%

9.3%

0.8%
2.4%

11.1%

Instruction categories

20.4%

18.2%

11.3%

18.9%

10.5%

8.8%

9.1%
0.4%

2.4%

22.6%

16.7%

10.1%

18.5%

12.0%

7.8%

8.7%
0.7%

2.9%

22.6%

16.3%

10.3%

19.7%

12.0%

7.8%

9.2%

0.2%
1.9%

20.4%

19.5%

9.4%

18.1%

12.6%

7.4%

9.9%
0.4%

2.3%

 
Figure 3-2: The percentages of each instruction categories 

 We classify all instructions into seven categories including: data movement, load, store, 

arithmetic operation, logical operation, comparison, and others. Arithmetic operations include 

add, sub, MLA/mul. Logical operations include and, or, not, logical shift left, and logical shift 

right. In computing bounded programs, especially those designed for digital signal processing 

(DSP), multiply-accumulate is a common operation that computes the product of two 
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numbers and adds that product with an accumulator. The multiply-accumulate operation is 

called MLA in ARM processors. It’s the same important as MAC instruction in any DSP 

processors. From table3-1 we can find that the percentage of arithmetic operations, logical 

operations and MLA/mul instructions is about 19.7%~20.7%. It seems that the ratio is not so 

high; however considering other instructions such as branch instructions also needs to use 

arithmetic logic unit in practice. Thus the utilization of ALU is about 40%. On the other hand, 

ALU usually is the bottleneck of the performance. Therefore, if we improve the performance 

of ALU, the overall performance can also be easily improved. In synchronous circuit design, 

the performance is determined by the slowest component. This property makes synchronous 

circuits design run at worse-case performance. However, in an asynchronous circuit design, 

the next computation step can be started immediately after the previous step has been 

completed. There is no need to wait for a transition of the clock signal. This feature 

potentially leads to a fundamental performance advantage for asynchronous circuit design that 

increases with the variability in delays associated with these computation steps. Thus in this 

thesis we introduce the asynchronous circuit design to improve performance of ALU. Figure 

3-3 shows the execution sequence of MLA instruction.  

 
Figure 3-3: The execution sequence of MLA instruction 
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The execution sequence of MLA instruction is that source1 multiplies with source2 first 

and the intermediate result is then added with source3 to generate the final result. Figure 3-4 

shows the idea which extends from MLA instruction.  

 

 

Figure 3-4: The idea which extends from MLA instruction 

e think that the operations in the circle can be replaced by other operations to constitute 

other common use instructions. W

 

W

e analyze the assembly code further and find all possible 

collocations between operations in advance. Table 3-1 shows all possible combinations that 

appear in each benchmark.  
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Table 3-1: All possible combinations that appear in each benchmark 

Before explaining table3-1, we need to give definition of compound instructions and common 

instructions. The definition of the compound instruction in this thesis is one’s computation 

result as the next instruction’s operand. Take the following two cases as example: 

 case 1: LSL R1, R1, #3  

    ADD R3, R2, R1   ; R3 := R2 + (R1 23) 

case 2: ADD R4, R4, #4064 

          ADD R4, R4, #15 

In case 1, the value of register R1 is logical shift left 3-bit and stored into register R1 itself 

first. Then the intermediate result is added with the value of another register R2 and stored 

into register R3 finally. In case 2, the value of register R4 is added with the constant value 

4046 first. Then the intermediate result is added with the constant value 15 and stored into 

register R4 itself finally. Because these two cases conform to definition of compound 

instruction that we just mentioned, we find all these kinds of instructions out from assembly 
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code. Statistic result is listed in the table 3-1. From table 3-1 we can find that collocations of 

different operations include: add/sub + add/sub, add/sub + multiply, add/sub + shift left, 

add/sub + shift right, add/sub + and, add/sub + or, and + and, and + or, and + shift right, or + 

shift left, or + shift right, or + or, shift left + shift right, shift left + shift left, shift right + shift 

right. The percentage of these collocations is about 6.2%~12.1% in original arithmetic and 

logical instructions. Other instructions that contain single operation are called common 

instructions. Take the following two cases as example: 

 case 1: ADD R3, R3, #4 (example for arithmetic operation) 

 case 2: AND R2, R7,R1 (example for logical operation) 

The question now is how we can implement an ALU to fulfill the need of compound and 

common instructions at the same time. One ALU unit can only provide the need of common 

operation. After collocating two ALU units, the requirements can be satisfied. Figure 3.5 

shows process how we transfer our idea illustrated in figure 3.4 to concrete design. 

 

Figure 3-5: The process we transfer our idea to concrete design 
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According to the statistic result of table 3-1, we can find operations that can be placed in the 

circle marked with interrogation point including: add/sub, multiply, and, or, shift left, shift 

right. Thus each circle was replaced by ALU that includes these operations. Internal structure 

of each ALU is illustrated in the following section.  

 

3.3 Internal Structure of Proposed ALU 

 In this section we focus on the explanation of internal structural of the ALU. Figure 3-6 

shows diagram of internal structure of the proposed ALU. 

 

Figure 3-6: Block diagram of internal structure of ALU 

In synchronous processor design, data path may have several different works depending on 

the instruction type. Because the clock period is restricted to worst case delay, designer 

usually do all works in parallel and simply use a multiplexer to select one result to output. 

However, in DI circuit design it is possible to design circuits that can operate in different 

length of time and no longer to let data flow through all function blocks. For this reason, the 

Demux-Demux and Demux-Merge pair is proposed to control the data flow. The 1-bit-select 

Demux-Merge pair is shown in figure 3-7. 
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Figure 3-7: 1-bit-select Demux-Merge pair and its implementation 

 

In figure 3-7, the Demux consists of two C-elements. Only one of them will output valid data 

depending on the select signals. Then the valid data will be sent to only one function block 

and the other function block will still be NULL. The Merge is composed of OR gate simply. 

Because only one function block can generate the valid data, it will not influence other 

unrelated function block and thus the average case delay time is guaranteed. The 1-bit-select 

Demux-Demux pair is shown in figure3-8. 
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Figure 3-8: 1-bit-select Demux-Demux pair and its implementation 

ontrol signal is 4 bits. The definitions of FnCode are 

showed in table 3-2.  

 

From figure 3-8 we can find little difference between figure 3-7 and figure 3-8. In figure 3.8 

we use sel2.f and sel2.t signals to choose whether bypass another ALU or not. When sel2.t is 

1 and sel2.f is 0, computation result of function block is used as one of operand of another 

ALU. When sel2.t is 0 and sel2.f is 1, the computation result bypasses another ALU as final 

result. The FnCode is used as sel signal appeared in figure 3-8 and it denotes the operation of 

an instruction. Because we have 9 operations including 8 operations listed in table 3-2 and 

bypass, the width of our FnCode c
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    Table 3-2: The arrangement of FnCode 

 

In addition the definitions of FnCode2 are the same as FnCode1. The purpose of FnCode1 and 

FnCode2 is used to control ALU. When the FnCode is a value between 0001~1000, it means 

that ALU will do the corresponding operation listed in table 3-2. For common instruction, the 

computation result of first ALU is also the final result. For compound instruction, the 

computation result of first ALU is just one operand of second ALU. For this reason, 

Demux-Demux is used for the first ALU. Depending on the bypass_or_not signal, the 

computation result of first ALU will go the right way that it shall go. The bypass_or_not is 

determined by the following equation: 

 bypass_or_not = FnCode2 [3] | FnCode2 [2] | FnCode2 [1] | FnCode2 [0] 

When FnCode2 [3:0] is 0000, the value of signal bypass_or_not is 0. It means that the 

computation result will bypass second ALU as the final result. Otherwise the value of signal 

bypass_or_not is 1. From figure 3-8 we can find that when (sel2.t, sel2.f) = (1, 0) the 

computation result will go through below path to second ALU as its operand. The advantage 

of this kind design is its flexibility. We can implement not only common instruction under the 
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collocation of FnCode1 and bypass but compound instruction under the collocation of 

FnCode1 and FnCode2. With this design, the instruction type can be designed with high 

flexibility.   

 

3.4 Implementation 

In this section we will introduce the details of implementation. We first introduce the 

completion detection circuit. How to detect the completion of asynchronous circuits fast is an 

important issue in asynchronous circuits design because there is no clock distribution. Then 

we will introduce internal components of ALU in order. 

 

3.4.1 Completion Detection Circuit 

Because of the potential advantage of asynchronous design, such as no clock skew 

problem, low power consumption, average case performance, research of asynchronous logic 

is increasing [3, 6]. The promise of high performance is especially attractive. To achieve high 

performance, one must design a fast self-timed circuit with good average case performance 

and a fast completion detection circuit detecting the completion of the self-timed circuit.  

A C-element may be used to implement a completion detection circuit for self-timed or 

delay-insensitive circuits [7, 9]. Figure 3-9 shows a dual-rail self-timed component with an 

n-input completion detector. The completion detector consists of an n-input AND gate, an 

n-input OR gate and a two-input C-element. The n-input AND gate can be regarded as the 

computation-completion signal. That is, the computation is done when all Ackis are turned on. 

The n-input OR gate can be regarded as the reset-completion signal. That is, the circuit is 

reset (the OR gate output goes to 0) and ready to accept next new input data when all Ackis 
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are turned off. Therefore the self-timed component has completed an operation when 

DoneReset signal goes high and it can be reset when DoneReset signal goes down. The 

completion detector will be used in each self-timed components illustrating in the following 

section. 

 

Figure 3-9: Self-timed component with completion detection circuit 

3.4.2 Logical operation 

There are several design methodology to construct the DI circuits, including DIMS[10] 

and NCL gates[11]. The full name of NCL is NULL Convention Logic. NCL is a symbolically 

complete logic. It expresses process completely in terms of the logic itself and inherently and 

conveniently expresses asynchronous digital circuits. NCL is easy to design, but the cost is 

higher. The thesis is based on the DIMS, and developed with Verilog hardware description 

language. The full name of DIMS is Delay Insensitive Minterm Synthesis. DIMS is an 

asynchronous design methodology and the basis for DIMS is the use of two wires to represent 

each bit of data. This is known as a dual-rail data encoding. The basic elements are modeled 

in gate level, and all the large blocks are composed of the basic elements. 
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Figure 3-10: The 2-input dual-rail AND gate 

al-rail AND gate. The circuit waits for all its inputs to 

3.4.3 Arithmetic operation  

In this thesis arithmetic operations include 16*16 bits array multiplier and 32*32 bits 

carry

 Figure 3-10 shows the 2-input du

become valid. When this happens exactly one of the four C-elements goes high. This again 

causes the relevant output wire to go high corresponding to the gate producing the desired 

valid output. When all inputs become empty the C-elements are all set low and the output of 

the dual-rail AND gate becomes empty again. By using the same concepts, other dual-rail 

basic elements including OR, XOR are constructed. These basic elements are also used to 

construct the half adder, full adder, and other ALU blocks in hierarchical. 

 

-lookahead adder. We introduce 16*16 bits array multiplier first. Multiplier is an 

essential device in apparatuses such as microprocessors or in digital signal processors. It also 

takes the longest operational time, which usually is the decisive factor of an effective chip. 

For the time being, several asynchronous designs have been proposed. Due to its low power 

consumption, low average operational time and flexibility to adapt to various process and 

environment, the asynchronous circuit has been used in VLSI circuits for better performance. 
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In our design the multiplier comprises a partial product generator, an addition array, a 

final-stage adder and a completion detector. The partial product generator generates 

intermediate partial products, and the addition array adds these partial products. Then, the 

final-stage adder adds these partial products and outputs the sum. Finally, the completion 

detector checks and output the result. Figure 3.11 shows the work flow of conventional 

asynchronous multiplier. 

 

 
Figure 3-11: The work flow of conventional asynchronous multiplier 

Figure 3-12 shows an 8*8 bits right-to-left array multiplier including a partial product 

gene

 

rator, and a right-to-left addition array.  
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Figure 3-12: An 8*8 bits right-to-left array multiplier 

 

In figure 3-12 “●” represents a bit product generation. The partial product generator is 

usually implemented with an AND gate. ”♁” represents an adder. In the right-to-left array 

adder, the sum of each adder is propagated to the next-level adder. The carry of each adder is 

propagated to the higher-bit adder in the same level. The computation result of each adder 

covered by gray dotted line is used to generate completion-detection signal. 

The partial product generator is implemented with the DI AND gate which is illustrated 

in previous section so that in this section we do not mention it again. Figure 3-13 is a 

schematic drawing showing a single partial product generator scheme in a single row. 

Referring to figure 3-13, the gray point represents the partial product, which is the product of 

multiplier and a particular bit of the multiplicand xj.  
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Figure 3-13: A conventional single partial product generator scheme 

Then the partial products are added by the adder array. In the conventional technique, the DI 

full adder can be a basic unit of the addition array. To implement the full adder, the dual-rail 

signal is used for the inputs, (A0, A1), (B0, B1) and (Cin
0, Cin

1), and the outputs, the sum (S0, S1) 

and the carry (Cout
0, Cout

1). Wherein, the sum and carry can be obtained from the following 

logic expressions: 

 Cout
0 = A0 B0 + A0 Cin

0 + B0 Cin
0 

 Cout
1 = A1 B1 + A1 Cin

1 + B1 Cin
1 

 S0 = A0 B0 Cin
0 + A1 B1 Cin

0 + A0 B1 Cin
1 + A1 B0 Cin

1 

 S1 = A1 B1 Cin
1 + A1 B0 Cin

0 + A0 B1 Cin
0 + A0 B0 Cin

1 

For example, when A = 1, B = 0, and Cin = 1, then Cout = 1 and S = 0. By using dual-rail 

encoding, we can use (A0, A1) = (0, 1) to represent A (valid “1”), (B0, B1) = (1, 0) to represent 

B (valid “0”), and (Cin
0, Cin

1) = (1, 0) to represent Cin (Valid “1”). After applying to the above 

logic expression, we can obtain (Cout
0, Cout

1) = (0, 1) which represents valid “1” and (S0, S1) = 

(1, 0) which represents valid “0”. The result agrees with our expectation. Figure 3-14 is a 

schematic drawing showing a dual-rail symbol of a DI full adder.  
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Figure 3-14: A dual-rail symbol of a DI full adder 

                  

The DI full adder can be needed to comprise the right-to-left carry-ripple array of the 

asynchronous multiplier shown in figure 3-13. 

After introducing array multiplier, the details of DI Carry-Lookahead Adder are 

illustrated in the following paragraph. DI Carry-Lookahead Adder can be implemented by 

using dual-rail signaling in input bits, sum bits, carry bits, and carry-kill bit. A carry is said to 

be “generated” from a given bit position if the sum for the given position produces a carry out 

independent of a carry in. A carry is said to be “killed” in a given bit position if a carry does 

not propagate through the bit. Thus the adder is statistically faster than the ripple adder since 

carry-kill and carry-generate signals can be generated in the middle bits instead of going 

through all the carry logic from the least significant bit (LSB). The terms propagate, generate, 

and kill may be applied to blocks. Several full adders can also be grouped together to form an 

adder block. A carry is said to propagate through a given block if a carry transferred into the 

given block’s LSB summation is followed by a carry out of the given block’s MSB 

summation. A block is said to generate a carry if the block’s MSB summation produces a 
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carry out, independent of carries into the block’s LSB. Figure 3-15 is a schematic drawing 

showing a conventional DI carry lookahead adder. The DICLA comprises the input bits (Ai, 

Bi), the output bits (Si, Ci) and the hot code (ki, gi, pi) of internal signal. For simplicity, we 

use an 8-bits DICLA scheme as example.  

              

         
Figure 3-15: An 8*8 bits DICLA scheme      

 The DICLA can be built with two basic modules: C and D modules, connected in a 

tree-like structure. The equations of the C module are defined as follows: 

 Carry-kill ki = Ai
0Bi

0 

 Carry-generate gi = Ai
1Bi1 

 Carry-propagate pi = Ai
0Bi

1 + Ai
1Bi0   

 Sum S0 = A0 B0 Cin
0 + A1 B1 Cin

0 + A0 B1 Cin
1 + A1 B0 Cin

1 

 Sum S1 = A1 B1 Cin
1 + A1 B0 Cin

0 + A0 B1 Ci
0 + A0 B0 Ci

1 

Where i = 0, 1, …, n-2, n-1. The C module is shown in figure 3-16. The dual-rail signals on 

the left side of figure 3-16 are grouped as Ai = (Ai
0, Ai

1), Bi = (Bi
0, Bi

1), Ci = (Ci
0, Ci

1), Si = 
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(Si
0, Si

1), and Ii = (ki, gi, pi). The schematic symbol of C module is shown on the right side of 

figure 3-16.  

 
Figure 3-16: C-module 

The equations for the D module are defined as follows: 

 Block-carry-propagate Pi,k = Pi,jPj-1,k 

 Block-carry-kill Ki,k = Ki,j + Pi,jKj-1,k 

 Block-carry-generate Gi,k = Gi,j + Pi,jGj-1,k 

 Block-carry-out = Cj
0 = Kj-1,k + Pj-1,kCk

0 

 Block-carry-out = Cj
1 = Gj-1,k + Pj-1,kCk

1 

Where i = 0, 1, …, n-2, n-1. The D module is shown in figure 3-17.  
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Figure 3-17: D-module 

The signals on the left side of figure 3-17 are grouped as Ii,j = (Ki,j, Gi,j, Pi,j), and Ci = (Ci
0, Ci

1). 

The schematic symbol of D module is shown on the right side of figure 3-17. Initially, all 

carries (Ci
0, Ci

1 for i = 1, 2, …, n) and the internal signals (Ki,j, Gi,j, Pi,j) are zero, because all 

primary inputs (Ai
0, Ai

1, Bi
0, and Bi

1 for i = 0, 1, …, n-1) and input carry (Ci
0, Ci

1) are zero. 

During the computation, the inputs Ai
0, Ai

1, Bi
0, Bi

1, C0
0, and C0

1 become valid, and then the 

outputs (Ci
0, Ci

1) and (Si
0, Si

1) for i = 1, 2, …, n become valid gradually. Finally, the 

completion detector checks all outputs and outputs the completion signal indicating that the 

operation is completed. 

 

 

3.4.4 Barrel Shifter 

 Data shifting and rotating are required in several applications including arithmetic 

operations, variable-length coding, and bit-indexing. Consequently, barrel shifters which are 

capable of shifting or rotating data are commonly found in both digital signal processors and 

general-purpose processors. In this thesis, we define A to be the input operand, B to be the 

shift/rotate amount, and R to be the shift/rotated result. We define A to be an n-bit value, 
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where n is an integer power of two. Therefore, B is a log2(n)-bit integer representing values 

from 0 to n-1. The barrel shifter performs the following six operations: shift right logical, shift 

right arithmetic, rotate right, shift left logical, shift left arithmetic, and rotate left. The 

dual-rail signal is used for the inputs, ai = (ai
0, ai

1) and bi = (bi
0, bi

1), and the outputs, ri = (ri
0, 

ri
1) where i = 0, 1, …, n-1. Table 3-3 gives an example for each of these operations. In this 

table, the bit vector for A is denoted as a7a6a5a4a3a2a1a0 and the shift/rotate amount, B, is 3 

bits. 

 
Table 3-3: Shift and rotate example for A = a7a6a5a4a3a2a1a0 and B = 3 

 

As illustrated in this table: 

 A B-bit shift right logical operation performs a B-bit shift and sets the upper B bits of the 

result to zeros. 

 A B-bit shift right arithmetic operation performs a B-bit right shift and sets the upper B 

bits of the result to an-1, which corresponds to the sign bit of A. 

 A B-bit rotate right operation performs a B-bit right shift and sets the upper B bits of 

result to the lower B bits of A. 

 A B-bit shift left logical operations performs a B-bit left shift and sets the lower B bits of 

the result to zeros. 

 A B-bit shift left arithmetic operation performs a B-bit left shift and sets the lower B bits 
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of the result to zeros. The sign bit of the result is sets to an-1. 

 A B-bit rotate left operation performs a B-bit left shift and sets the lower B bits of result 

to the upper B bits of A. 

The operation performed by the barrel shifters is controlled by a 3-bit opcode, 

which consists of the bits left, rotate, and arithmetic, as summarized in table 3-4. 

1 0 rotate left 

0 0 0
0 0 1
0 1 0
1 0 0
1 0 1
1

shift right logical

shift left logical

shift right arithmetic
rotate right 

shift left arithmetic

rotate arithmetic

 
Table 3-4: Operation control bits 

 

Control signals are set to 1 when performing left, rotate, and arithmetic operations 

respectively. An n-bit logarithmic barrel shifter uses log2(n) stages. Each bit of the shift 

amount, B, controls a different stage of the shifter. The data transferred into the stage 

controlled by bk is shifted by 2k bits if bk = 1; otherwise it is not shifted. Figure 3-18 shows the 

block diagram of an 8-bit logical right shifter, which uses three stages with 4-bit, 2-bit, and 

1-bit shifts. 
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Figure 3-18: The block diagram of an 8-bits logical right shifter 

 A similar unit that performs right rotations can be designed by modifying the 

connections to the more significant multiplexers. Figure 3-19 shows the block diagram of an 

8-bit right rotator, which uses three stages with 4-bit, 2-bit, and 1-bit rotates. The right rotator 

and the logical right shifter provide different inputs to the more significant multiplexers. 

Interconnect lines are inserted to enable routing of the 2k low order data bits to the 2k high 

order multiplexers in the stage controlled by bk. There is no longer need for interconnect lines 

carrying zeros since all of the input bits are routed to the output.  
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Figure 3-19: An 8-bits right rotator 

The 1-bit multiplexer is shown in figure 3-20. The left side of figure 3-20 shows the 

symbol of 1-bit-select multiplexer and right side of figure 3-20 shows its implementation. In 

figure 3-20, the multiplexer consists of two C-elements and OR gate. Only one of the 

C-elements will output valid data depending on the select signals. Then the valid data will be 

merged by OR gate because only one C-element can generate valid data. 

 

Figure 3-20: 1-bit-select multiplexer and its implementation 
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The logical right shifter can be extended to also perform shift right arithmetic and rotate 

right operations by adding additional multiplexers. Figure 3-21 shows an 8-bit right 

shifter/rotator with three stages of 4-bit, 2-bit, and 1-bit shifts/rotates. 

 
Figure 3-21: An 8-bits right shifter/rotator 

When the control signal sra is 1, the right shifter/rotator performs shift right arithmetic 

operation. When the control signal sra is 0, it performs shift right logical operation. Initially a 

single multiplexer selects between 0 for logical right shifting and an-1 for arithmetic right 

shifting to produce signal s. In the stage controlled by bk, 2k multiplexers select between 

signal s for shifting and the 2k lower bits of the data for rotating. From figure 3-21 we can find 

that the design concept of right shifter/rotator is composed of logical right shifter, right rotator, 

and extra multiplexers mentioned earlier. Left shift operations can also use the same concept 

to implement so we do not need tautology. 
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Chapter 4. Simulation Results 

 Because in ALU multiplier usually takes the longest computation time, we pay our 

attention on the comparison of performance between synchronous and asynchronous circuit 

design. Figure 4-1 shows a 16*16 bits right-to-left array multiplier. 

 
Figure 4-1: A 16*16 bits right-to-left multiplier 

In figure 4-1 the gray dotted line represents the critical path of array multiplier. Furthermore, 

in order to verify the correctness of the design, ModelSim 6.0 is used. We also tried to 

synthesis our gate-level design with Design Compiler. The data listed in the table is based on 

the TSMC 0.13 μm cell library. From the table we can find that the worst case delay for 

asynchronous array multiplier is 41.223 ns and 18.325 ns for combinational array multiplier. 

It seems that the performance of synchronous array multiplier is better than asynchronous one. 

The sentence is not always true because the happening probability of worst case is very low in 

actual life. Let’s take an instruction MLA in our daily life such as 213 + (216*144) for 

example. Figure 4-2 shows the waveform of instruction MLA.  
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Figure 4-2: The waveform of instruction MLA 

From the figure we can find that the instruction takes 21.199 ns. Other delays of possible 

combinations are listed in table 4-1. 

 

Table 4-1: Other delays of possible combinations 

The data inputs used to generate simulation results shown in table 4-1 are uncomplicated 
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numbers such as 144 or 213. For combinational logic, it takes 37.750 ns under two-stage ALU 

design because multiplier usually takes the longest operational time and bounded to the worst 

case delay. From here we can find that the performance of asynchronous circuit design in this 

thesis may be better than synchronous circuit design in this case. It is a feasible way that one 

applies the advantage of asynchronous circuit designs that operate at average rates instead of 

worst rates on designing ALU. 
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Chapter 5. Conclusion 

 Because ALU usually is the bottleneck of the processor performance, improving the 

processing time of ALU is also the chance to improve overall performance. In synchronous 

circuit design, the performance is determined by the slowest component. However, in an 

asynchronous circuit design, the next computation step can be started immediately after the 

previous step has been completed. This feature potentially leads to a fundamental 

performance advantage for asynchronous circuit design, an advantage that increases with the 

variability in delays associated with these computation steps. Thus in this thesis we introduce 

the concepts of asynchronous circuit design to improve performance of ALU. 

 The original idea of this design is derived from MAC instruction in any DSP processors. 

The MAC instruction is an operation that computes the product of two numbers and adds that 

product with an accumulator. Then we extend this idea to design our ALU composed of two 

stages. The advantage of this kind of design is its flexibility on instruction types and delays. 

We can implement not only common instruction under the collocation of FnCode1 and bypass 

but compound instruction under the collocation of FnCode1 and FnCode2. With this design, 

the instruction type can be designed with high flexibility. In addition, the property of data 

dependency can also make the variability in delays more flexible in asynchronous circuit 

design and verified by the final simulation results in chapter 4.  
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