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摘要 

 

 現今的處理器設計，趨向於同時注重效能的增進以及省電能力。在製程技術的演進

之下，積體電路中的靜態漏電(leakage power)問題日顯嚴重。實驗數據指出，在 70奈米

的製程下，處理器中多於 60%的耗電來自於靜態漏電。而造成靜態漏電最主要的元件便

是晶片上的記憶體(on-chip memory)，如分支目標緩衝器(Branch Target Buffer, BTB)及快

取記憶體系統(cache memory system)等。 

在這篇論文所發表的設計中，我們提出以使用算術運算單元(arithmetic unit)以及存

取小型緩衝器(buffer)的方式，減少分支目標緩衝器的記憶體使用量和耗電。概念上，此

方法是以小量的動態耗電(dynamic power)換取大量的靜態漏電。藉由提早產生分支目標

(early target address generation)，原本必須存放於分支目標緩衝器中的資訊量可望大幅度

地減少。此方法可完全不造成任何的效能下降，甚至有機會得到可觀的效能增進。實作

提早產生分支目標機制，我們發現程式中超過 77%的分支將不再需要存放於分支目標緩

衝器中。此結果幫助我們減少了超過 75%的分支目標緩衝器記憶體容量，同時減少了超

過 60%的分支目標緩衝器耗電。
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Abstract 
Modern processor designs focus on both higher performance and lower power 

consumption. As the evolution of process proceeds, static power consumption grows 

dramatically. It has been shown that under 70nm process, more than 60% of the total system 

power is statically consumed. And large on chip memories like Branch Target Buffer (BTB) 

and Cache systems are held most responsible for such leakage.  

In this thesis, we proposed a method of exercising arithmetic unit and accessing 

small-size buffers to reduce the storage and power consumption of Branch Target Buffer 

(BTB). The idea is to reduce a large amount of static power by adding relatively small amount 

of dynamic power overhead. By performing an early branch target generation, information 

necessarily stored in BTB can be significantly lessen. The approach proposed suffers strictly 

no performance degradation, and can even deliver noticeable system performance 

improvement. With early branch target generation, more than 77% of the branches no longer 

need to reside in BTB. Leads to an approximately 75% of BTB storage reduction, and more 

than 60% of BTB power reduction. 
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Chapter 1  Introduction 
In recent years, with the pursuit of higher computation power, general purpose processor 

design focus on performance exploitation. A lot of methods and ideas are introduced to bring 

more powerful computational ability into reality. One of the major factors that affect 

execution smoothness is branch instruction. As we know, a branch instruction may cause two 

possible outcomes: proceed to next instruction sequentially or leap to target address. In order 

to decide the next move while a branch instruction was encountered, Branch Predictor was 

hence proposed for the very purpose.  

A Branch Predictor is necessarily composed of two major parts: Direction Predictor and 

Target Address Predictor. The Direction Predictor obviously makes the judgment of whether a 

certain branch instruction would jump to a distant address or stay put by going inline. The 

Target Address Predictor on the other hand, can be viewed as an entourage of the Direction 

Predictor, since the target is only required at the point of certainty of a branch jump. In 

implementation, both predictors are history-base storage units made of SRAM. Base on the 

record taken down as the program execution, predictor can make accurate predictions of 

future behavior for branches encountered again. In nowadays processor designs, a Branch 

Predictor usually has two separated physical components: a Direction Predictor (for direction 

prediction) and a BTB (for target address prediction).  

Aside from computational ability, power consumption of electronics draws more and 

more attention today. Portable devices like cell phones and laptop computers strongly depend 

on longer battery lifetime for a better using experience. Even with plugged devices, we expect 

less power consumption in order to achieve more energy-efficient solutions. The power 

consumption of electronics can be put into to two parts: dynamic power and leakage power. 

While dynamic power comes from every exercise or access to a circuit component, the 



2 
 

leakage power is statically consumed when the device is turned on. It has been shown that 

under 70nm process, more than 60% of the total system power is statically consumed [1]. In 

storage units in a system, like SRAM-based Branch Target Buffer (BTB), the power leak is 

particularly serious, and the degree of this power consumption increase linearly with the 

storage size. 

BTB servers many purposes in a system, one of them is Branch Identification. BTB is 

accessed in a way similar to cache: indexed by program counter (PC) following by 

performing a tag comparison to determine a hit. A hit in BTB implies that the current 

instruction is actually an executed branch. In order to identify branch instructions, every cycle 

the BTB is accessed by the PC. To improve the hit rate, designers tend to increase the number 

of BTB entries. And to determine a hit, BTB must maintain a tag bit field in its structure, 

along with a target address field. The nature of BTB as being a large and frequently-accessed 

structure has destined it to become a power hungry component in the system. Statistic shows 

that BTB is the second largest on-chip memory: second to cache systems, and consumes 

approximately 5%~10% of total power, in processor system such as Pentium Pro and Alpha 

21264 [2] [3].  

Overall speaking, branch predictor is an irreplaceable unit when it comes to efficient 

program execution. Meanwhile, it comes with a price of not only chip area but also power 

consumption. The very existence of the key member of branch predictor, BTB, perfectly 

demonstrated the dilemma older than time in architecture design philosophy: compromise 

between cost and performance. 
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1.1  Branch and Target Generation Method 
 Branch predictor undoubtedly handles branches. First, let’s get to understand what we 

are dealing with here. We can basically put branches into two different categories according 

to how their target addresses are generated: 

 PC-relative Branch － Also known as Direct branch. The PC-relative branches 

may be conditional or unconditional. Despite of how the condition is set to 

determine direction, all these branches share the same method of target address 

generation. That is, target address = [PC + 4 + branch offset]. While the PC is 

known to system, the branch offset can be extracted from the branch instruction 

body according to the defined instruction format. Once the PC and instruction is in 

hand, target address can be generated in just a latency of an Adder. In a 

conventional five-stage system pipeline, after an instruction is decoded and 

certainly identified as a branch, its instruction address (PC) and offset extracted are 

add together during the EXE stage and target address is determined. 

 Indirect Branch － Indirect branches usually have their target address kept in 

register file entries. Often times, the instruction set would define certain fixed 

register entries for this purpose. However, this category of branch may differ from 

instruction set to instruction set. For example, Alpha instruction set shows very 

strong characteristic: all indirect branches in Alpha are unconditional (so are also 

referred to as indirect jumps), and their target address are provided with certain 

predefined register file entries (i.e. $ra, $pv, $AT). As for other instruction set, like 

ARM instruction set, indirect branches could be a little tricky to identify, since any 

MOV instruction with destination of $15 (i.e. the PC) should be treated as an 

indirect jump instruction. Nevertheless, in ARM instruction, there is still a register 
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file entry defined as Link Register, where an address is meant to be load into as 

CALL and then later accessed from as RETURN. 

According to our experiment results, most branches in common programs are PC-relative 

branches. The direct branch category counts for approximately 90% of total branches in 

average, where as the indirect branches count for the rest 10%. Since branches in the same 

category have similar or even identical target generation method, we suppose it is possible to 

design a simple mechanism to provide targets for branches with reasonable hardware 

overhead. And by doing so, branches would have an alternative, light-weighted handler 

besides the conventional huge, power-hungry BTB. 

 

1.2  Research Motivation  
So far we have introduced the purpose of a BTB: branch identification and target 

providing; how it is one of the largest on chip memory in system: second to cache systems in 

size; and last but not least, how power-consuming it is: 5%~10% of total power in a general 

purpose system. In addition, we have discovered that targets stored in BTB are rather easy to 

obtain. Simply by exercising integer arithmetic unit and access register entries, we can 

generate the target addresses for all branches. 

 We’ve found that BTB uses up an inefficient amount of storage for the information it 

contains. If we can find a way to generate target addresses without sabotaging the whole 

branch prediction timing scheme, the information load in the BTB can be greatly lessened, 

thus the number of BTB entries can also be greatly reduced. 

Storage reduction of BTB not only linearly lowers the static power consumption, but also 

dynamic power due to the fact that the smaller structure consumes less power every access. 

By both the static and dynamic power reduction, BTB storage reduction contribute even 

significantly to overall power saving. 
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1.3  Research Objective 
We intend to design a mechanism that logically serves the same purposes as the BTB: 

branch identification and target address providing. Here we name our design a “Branch 

Handling Unit” (BHU), since its original goal is to “handle” branches and ease the 

information load of BTB. The BHU design is composed of two parts: a Branch Identifier 

and an Early Branch Target Generator, to provide the above mentioned functions. By 

implementing BHU into the system, there are three main goals to accomplish: 

1. To reduce BTB storage requirement:  

  By handling branches by BHU, less BTB entries would be required. Less storage 

benefits both to less power consumption and chip size shrinking. However, this 

doesn’t mean BTB is no longer necessary in the system. On one hand, due to some 

branch unpredictable nature (e.g. indirect jumps), storing the last target address for 

certain branches is still an irreplaceable method. On the other hand, BHU design 

would face some physical constrains, making BTB still required in the system to 

function as its counterpart. We name the remaining BTB a Reduced BTB (RBTB), 

since it has far less number of entries than the original one. This will be discussed in 

later chapter. 

2. To reduce BTB power consumption:  

  The power reduction part can be evaluated by static and dynamic part.  

a. Leakage power:  

Leakage power of BTB is linearly affected by the size of the storage used. 

Under advanced process today, where static power counts for more than 

half total system power, it is effective to focus on static power reduction, in 

the aspect of overall power saving. 
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b. Dynamic power:  

Dynamic power of BTB is affected by the power consumption of each 

access and the number of access. A BTB of less number of entries can offer 

a lower access power; by processing branches by BHU, less BTB updates 

need to be done. Both facts noticeably reduce dynamic power of BTB. 

c. To maintain or improve system performance:  

Branch penalty can dominate the performance of a system. When it comes 

to branch predictor design, performance degradation is undesired, and 

under most circumstances, unacceptable. Since BTB count for 5%~10% of 

system power, any performance degradation would be punished 10X~20X 

as worse; with the same sense, any performance improvement would be 

evaluated 10X~20X as better. Our goal is to at least maintain the system 

performance or even to provide better performance with reasonable cost, 

while achieving the above mentioned storage and power reduction. 

 

1.4  Organization of this thesis 
The remaining chapters of this thesis are organized as follows: In chapter 2, we would 

provide background knowledge for BTB and related works would be introduced and a brief 

comparison would be made indicating the opportunity we find worth trying for. In chapter 3, 

we would present two different approaches of our design and propose a plain evaluation of the 

two methods; also, challenges encountered in implementation would be discussed and 

provided with practical methods or conceptual solutions. Chapter 4 would demonstrate the 

simulation technique and results of this work; some environmental assumption would also be 

listed in this chapter. And finally, chapter 5, a summary would be made and some future work 

would be proposed. 
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Chapter 2   Backgrounds and Related Works 
In the first part of this chapter, we explain necessary background including conventional 

BTB structure, access strategy, and replacement policy. Also, provide basic knowledge of 

another important component in our assumed system, known as Instruction Buffer. In the 

second part, a brief introduction of BTB power saving techniques would be made. Two 

previous works done on BTB size reduction would be presented and evaluated in more detail. 

 

2.1  Backgrounds  
 Two aspects of background knowledge are introduced in this section. The first part is the 

Branch Target Buffer (BTB), and the second part is the Instruction Buffer (IB). 

2.1.1  Branch Target Buffer (BTB) 
In modern processor designs, Branch Target Buffer (BTB) is widely used to lower branch 

penalty. Conventionally, BTB integrates both direction predictor and target address predictor 

and provides predictions for both. By using up an amount of SRAM, BTB keeps track of all 

the information needed to make a proper prediction, that is, both direction and destination. 

However, in recent year, a lot of researches have proven that a standalone Direction Predictor 

often achieves better prediction accuracy [4]. The reason is mostly because independent 

structures make number of entries along with the indexing method more flexible and thus 

optimal. Also, when a replacement takes place, valuable history of direction predictions 

would not be evicted along with the target address. Therefore, in nowadays processor designs, 

a Branch Predictor usually has two separated physical components: a Direction Predictor (for 

direction prediction) and a BTB (for target address prediction). Thus BTB referred to 

throughout this thesis stands for a BTB with no direction prediction ability. This also explains 
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the reason why we are able to reduce the number of BTB entries without degrading direction 

prediction accuracy. 

 Most BTB has two essential fields: tag field and target address field. Every taken 

branch register an entry in BTB after it is executed. The correct target address calculated in 

EXE stage is stored into the target address field of BTB as the registration. For the case an 

encountered branch already registered an entry in BTB, a possible target address update 

maybe performed according to the calculated target address. Note that BTB keeps only the 

latest, correctly-calculated target addresses. As for replacement policy, most BTBs apply 

LRU strategy for eviction. 

In order to identify a branch before decode stage, BTB is accessed every cycle at the first 

pipeline stage for each instruction. Conventionally, it is access in a way similar to cache 

system: First, ignore the two least significant bits in the instruction address (PC), since we 

address in word address instead of byte address. Secondly, look up BTB by index using a low 

order portion of the PC. Finally, perform tag comparison to determine a hit or a miss in BTB. 

A miss in BTB implies currently we have no information of the instruction pointed by PC 

being a branch or not, so it should be proceeded as a non-branch instruction; while a hit in 

BTB indicates a branch is being dealt with, and the last target address is expected to be landed 

on again this time, thus target address is provided from BTB. Figure 2-1 shows the basic 

overview of a Branch Prediction Mechanism in a 32-bit system. 
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Figure 2-1: A typical 32- bit Branch Prediction Mechanism overview. 
   Direction prediction and target address prediction are delivered by 
   two independent parts, Direction Predictor and BTB, respectively. In 
   practical implementation, BTB has 64~2048 entries, thus gives us 
   the tag and target address length estimation as shown above. 

 

2.1.2  Instruction Buffer (IB) 
Instruction Buffer (IB) is a simple idea proposed to save fetch energy consumption of 

instruction cache (i-cache). Since sequential access dominates the program stepping, 

instructions in the same i-cache line are most likely to be accessed in the near future. IB keeps 

a copy of i-cache line that is most recently accessed, in the hope of providing a fast and 

low-power instruction fetch in the near future. Every cycle the tag and index portion of 

current PC are compared to those of the PC last cycle. A match indicates a same-i-cache-line 

access, and the instruction thus can be provided from the IB immediately. Usually, IB and 

i-cache are access simultaneously. Assuming it takes a much shorter time to determine if a hit 

would occur in IB than to actually finish a proper i-cache access. Once it is determined that a 

hit would occur in IB, the unfinished i-cache access can be aborted. As shown in Figure 2-2. 
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Figure 2-2: Instruction Buffer overview. 
 

2.2  Related Works  
There are many methods proposed to reduce BTB power. The nature of BTB, frequently 

accessed and large in structure, gives lot of opportunity when it comes to power saving, 

including: 

1. BTB power management 

2. Reduction of BTB access count 

3. Reduction of BTB size 

In this section, we focus on presenting previous works on BTB size reduction. Two 

related works are introduced here: 

1. Partial Resolution in BTB, IEEE ToC, 1997. [5] 

2. Cost-Efficient BTB, Euro-Par Conference on Parallel Processing, 2000. [6] 

Both listed related works focus on reduction of each BTB entry width, while as we will learn 

later in this thesis, our method put effort on reducing number of BTB entries. 
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2.2.1  Related Work 1: Partial Resolution of BTB 
In partial resolution of BTB, a technique of tag width reduction in BTB is proposed. By 

using the proposed technique, named Partial Resolution, tag field length of each BTB entries 

can be shorten to 3~8 bits in a direct-map BTB. 

 For a long time, tag comparison has been a very time and power consuming process in 

cache-like storage access, e.g., BTB. The comparator used for the process examines every bit 

of both tags to be equal for a hit, while a single bit mismatch can conclude a failure. By this 

characteristic, there is a chance to shorten the length of tag field in BTB. The shorten tag can 

unambiguously detect an absence in BTB, though it may falsely indicate a presence. Figure 

2-3 shows the basic idea of Partial Resolution. 

 

(a)                             (b) 
Figure 2-3: (a) Conventional BTB (i.e. full tag) and (b) Partial Resolution in BTB. 

 

As can be seen in Figure 2-3(b), a segment of least significant bits of tag are proposed to 

be used as a shorten version of tag. Intuitively, we can foresee that a partial tag may lead to 

possible false hits, which means mistaking a non-branch instruction as another branch 

instruction. Thus a non-branch instruction may wrongfully proceed with the target address 

provided by BTB, and a later necessary pipeline flush would take place for this misprediction. 
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Note that this particular kind of misprediction wouldn’t occur in conventional BTB design, 

and it causes nothing but disturb to system pipeline flow and may even harm the accuracy of 

direction predictor. According to the experimental results presented in the paper, only 3~8 bits 

are required to provide 99% of the accuracy that full tag can deliver in a direct-map BTB. 

However, in a BTB with high associativity, longer tag bit field would be needed to maintain 

prediction accuracy. 

 

2.2.2  Related Work 2: Cost-Effective BTB 
Cost-effective BTB presented a technique to shorten target address field of BTB. By 

storing only the difference between branch address and branch target address, the target 

address field length of BTB can be reduced to essential. 

 Target address field shortening is based on the exploitation of Branch Locality. The fact 

is a branch doesn’t tend to jump too far away from itself. So when we compare the address of 

a branch instruction and the address of its corresponding branch target, only a segment of low 

order bits would be different. Storing only the difference segment of branch and its target can 

help us reducing the target address field of BTB. The correct target address can be obtained 

by concatenating high order bits of PC with the difference segment stored in BTB when the 

branch is encountered again later on. Difference segment examination can be done by 

conducting bit by bit XOR on branch address and its branch target and then by finding the 

leading 1. The distance between the leading 1 and the least significant bit represents the 

difference segment length. Note that the difference segment length can vary greatly for each 

branch. And methods should be proposed for the variation in order to maintain correctness 

and accuracy. In this paper, two methods are proposed for this problem: Paired-Entry BTB 

and Variable Entry Size BTB. 
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Paired-Entry BTB 

Paired-Entry BTB suggested that every entry in BTB has a shorten length than 

conventional BTB; while for long difference segment, two adjacent short entries can be 

paired together in order to form a longer entry. Extra control bit field should be attached to 

each BTB set to indicate the mode of the entry utilization: independent entries or as a long 

paired-entry. Note that in paired-entry mode, tag bit field of one of the entries is proposed to 

become a part of the target address field. Physically, this requires a specially designed BTB, 

where tag field can be programmed to function as data field. Figure 2-4 shows how the 

Paired-Entry BTB works. 

 
Figure 2-4: Conventional BTB vs. Paired-Entry BTB. 
    As can be seen in the figure, target address field in Paired-Entry 
   BTB is noticeably shortened. Also, control bit field is attached to 
   the BTB. A 1 indicates two entries are paired, and the original tag 
   field between the two paired entries is therefore used as a part of 
   new data field to contain the long address. A 0 indicates two entries 
   function independently. 

 

Variable Entry Size BTB 

Variable Size Entry BTB applies a rather straightforward way of dealing with long 

difference segment. It is proposed to put entries into groups, usually each ways as different 

groups, and set different target field length to each group. Branches thus enter BTB group and 
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register for an entry according to the length of its difference segment. Figure 2-5 explains the 

idea. 

 

Figure 2-5: Conventional BTB vs. Variable Entry Size BTB.  
     Variable Entry Size BTB handle long difference segment by  
    reserving certain number of entries with long target address field. 

 

Paired-Entry BTB is more dynamically adjustable, since entries are only paired as needed. 

Besides, using tag field as data field requires hardware support, which leads to a more 

complex BTB structure in implementation. Variable Entry Size BTB shows less flexibility 

when it comes to dealing with long difference segment. The number of entries of different 

target address length should be decided precisely to provide optimal performance. 

Unbalanced utilization among groups is suspected for some cases where long difference 

segment branches use up all the reserved entries. Both method introduced experience a 

replacement policy complication in BTB, since a long difference segment branch may evict 

two short ones in Paired-Entry BTB; as for Variable Entry Size BTB, each groups of different 

target address length may have to maintain its own replacement policy. 
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2.3  Opportunity and Evaluation 
Both the related works introduced in this chapter focus on BTB entry width shortening. 

None of them put effort on reduction of number of BTB entries. This is our first opportunity 

be working on something that has never been done before. Another issue worth mention is 

that both methods are likely to be accompanied with branch prediction accuracy and thus 

performance degradation. Our design principle, however, is set to implement a 

degradation-free BTB alternative. So that no system performance loss would occur and hence 

to system power overhead could harm our final power saving results.  

Here we estimate the overall size reduction that is possibly accomplish by both methods 

introduced. For Partial Resolution, the author suggest that only 3~8 bits are required for a 

direct-map BTB to keep 99% of prediction accuracy of a full-tag BTB. Assume it is also true 

when the circumstances change to a 2-way or 4-way set associative BTB and also consider the 

accuracy does not get affected at all. For a 256-entry BTB, target address takes 30-bit, since 

the two least significant bits are always 0 in word address format; the index takes up 8 bits, so 

a full tag would be 22-bit long. That makes 30+22 bits for an original 256-entry BTB. After 

applying partial resolution tag is left to 3~8 bits, so that an entry is shorten to (30+3) ~ (30+8) 

bits. To sum up, partial resolution leads to approximately 27%~37% of size reduction for a 

256-entry BTB. By the same measuring method, 25%~35% of area can be saved in a 

512-entry BTB.  

To evaluate cost-effective BTB, also let the performance wouldn’t be harmed. Assume 

every entry’s target field can be shortened to half size. For 256-entry BTB, index takes 8 bits, 

leaving 22 bits of tag. Now that the target address field only need 15bit, this gives a 29% of 

BTB size reduction. For 512-entry BTB the reduction is 30%. Based on the statistic we gain 

form experiment (see 3.4.2, adder length shortening), most branches only have difference 

segment of 20-bit length. So this drive us to make another estimation of only 10-bit target 
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field size is required. Thus for 256-entry BTB the reduction is 39% and for 512-entry BTB 

the reduction is 40%. In summary, by cost-effective BTB, the size reduction is 29%~39% for 

256-entry and 30%~40% for 512-entry BTB. Table 2-1 gives a preview of our design 

compared to the related works. Note that the BHU design reduce the number of BTB entry, so 

the two methods in related works can still be applied to RBTB to achieve a further size 

reduction. 

Table 2-1: Proposed design vs. existing methods. 
 Partial Resolution 

(Related Work 1)  
Cost-Effective BTB 
(Related Work 2) 

BHU + RBTB 
(Proposed) 

False Hit Yes No No 
BTB unbalanced 
utilization 

No Yes No 

BTB control and 
replacement policy 
complication 

No Yes No 

Performance 
degradation 

Yes Yes No 

Storage reduction 
Estimation 

25% ~37% 29%~40% More than 50% 

Hardware Overhead None Little One integer adder 
One partial decoder 
Three 32-bit buffers 
Control MUXs 

Dynamic Power  
(from 9% to…) 

8% 6% 14%+4% 

Static Power  
(from 91% to…) 

77% 64% 1%+14% 

Total Power 
(from 100% to…)  

85%  70% Less than 40% 
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Chapter 3  Branch Handling Unit Design 

In this chapter, we present two approaches of our Branch Handling Unit (BHU) design. 

Both with the final goal of reduce number of BTB entries (i.e. storage) and power 

consumption with the aid provided by BHU. The BTB shrunk in size with less number of 

entries is therefore referred to as Reduced BTB (RBTB). The two approaches basically share 

the same idea, while different implementations lead to different runtime behavior. 

After the two approaches are introduced, a brief comparison would be presented and a 

general recommendation would be suggested base on some environment assumptions. Finally, 

two challenges encounter during the BHU design would be stated and possible solutions are 

introduced.  

 

3.1  Architecture and BHU 
The BHU design is targeted to be applied to general purpose processors, assuming 

running on RISC. BHU originally was meant to be designed for general purpose processors, 

where both performance and power should be concerned. However, this doesn’t restrict the 

usage of BHU into certain specific environments. Application of BHU design in embedded 

system is also expected to be effective. The BHU design is also tightly coupled with 

Instruction Set Architecture (ISA), the nature of certain ISA can greatly change our 

implementation in practical. As for instruction sets, Alpha, MIPS, and ARM are all 

considered possible to become the final target machine ISA. While for simplicity and 

illustration, we make discussions about occasions under Alpha instruction set. 

As mentioned in Chapter 1, there are basically two categories of branches: PC-relative 

Branches and Indirect Branches. In the aspect of addressing mode, they belong to PC-relative 

and Register Indirect addressing mode, respectively. PC-relative branches obtain effective 
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address by performing PC + 4 + offset, where offset can be extracted from instruction itself. 

Note that the PC + 4 + offset process is a simple integer addition, which in a traditional 

five-stage pipeline can be estimated to be done within one cycle time. Indirect branch 

accesses register file for target address. In addition, fixed register file entries are likely 

predefined in ISA to keep target address for certain indirect branch instruction to obtain from. 

In MIPS and ARM, $31 and $14 are used to hold the return address every time a call 

instruction is executed. In Alpha, more register entries are specified for target address holding: 

$26, $27, $28, respectively keeps target address for RETN (i.e. return), JSR (i.e. indirect call), 

and JMP (indirect jump). Table 3-1 gives the branch target generation method for branches of 

Alpha instruction set [7]. 

Table 3-1: Branch instructions and their target address generation methods in Alpha instruction set. 

  Branch Instruction Target Address 

PC-relative 

Branches 

BR, BSR, 

FBEQ, FBLT, FBLE, FBNE, FBGE, FBGT, BLBC, 

BEQ, BLT, BLE, BLBS, BNE, BGE, BGT 

 

PC + 4 + offset 

Indirect Branches JSR, JMP, RETN, JSR_COROUTINE ($Rb) & ~3 

The Alpha instruction set shows very organized branch and target generation 

characteristic. It follows a conventional PC-relative target generation method and 

well-defined register usage specification for indirect branches. As a matter of fact, the Alpha 

instruction set gives a good background environment to demonstrate how BHU is supposed to 

be implemented. Here in this thesis, we use Alpha instruction set as a specific example and 

explain the design of BHU. 
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3.2  Idea of BHU 
BHU is intended to serve the same logical purposes as a BTB. By providing the same 

function and running under the same timing constrain, BHU can help reduce the information 

load, thus number of entries, of BTB.  

 
Figure 3-1: Branch handling policy comparison. 

 

Figure 3-1 shows the idea of BHU+RBTB comparing to conventional BTB in the system. 

The ideal purpose of branch prediction is to incur no bubble to the system pipeline. 

Conventional BTB insures this by looking up for a hit. A hit would give a target address 

regarding the last target the branch has jumped to. A good target address together with a good 

direction prediction means a smooth execution flow without pipeline flush. Either it can be a 

direction prediction of taken with target address fetch as next PC or not taken with 

sequential PC used as next PC. Our design means for no different goal, but to split branches 

and deal with them by either BHU or RBTB. Target address of a branch may be provided by 

either one or both, while a decision would be made to choose out final target address. BHU 

and RBTB work as each other’s complementary towards the same goal.  

Branches which BHU can successfully provide target addresses in time are known as 

handleable, and handleable branches are the responsibility of BHU only. No allocation of 
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RBTB entries is needed for handleable branches. A branch can be unhandleable due to 

several timing reasons. In other words, a branch is unhandleable when BHU experience 

difficulties and fails to provide target address for it in time. Unhandleable branches are stored 

into RBTB in our system, hoping for future prediction correctness. By this policy, branches 

that are stored in the RBTB are the ones with a bad history record. So when it comes to the 

case that both BHU and RBTB are able to provide a target address for a certain branch, the 

one from RBTB is considered more appropriate. Figure 3-2 shows how BHU and RBTB 

cooperate. Conceptually, all branches dealt with in a conventional BTB system are also found 

solved under our design one way or the other. No branch is left untended. This is why, 

comparing to conventional BTB design, a performance degradation-free system is expected 

from our design; in fact, experimental results even shows that there is a possibility to slightly 

improve system performance. 

 

Figure 3-2: BHU and RBTB co-work scenario. 
     BHU and RBTB are both able of providing a target address, final 
     target address is chosen from one of the two. RBTB holds branches 
    with bad records with the BHU, so when these branches are  
    encountered again, they should be trusted with RBTB’s judgment 
    prior to BHU’s. 

 

BHU design is closely related to Instruction Buffer (IB). BHU takes output of IB as input, 

including branch offset and operation code as well. We assume our system is a single-issue, 

five-stage pipeline. Also, the system is attached with an instruction buffer (IB) buffering the 

most recently accessed instruction cache line for fast and low power instruction fetch. Figure 

3-3 shows a comparison between conventional BTB and BHU + RBTB. 
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Here we propose two practical implementation approaches of our BHU design. The two 

approaches slightly differ in the Branch Identifier (BI) part, while the Early Branch Target 

Generator (EBTG) part basically stays unchanged. However, due to divided strategies of 

branch identification, two approaches have various runtime behavior and applicable 

environments.  

 

Figure 3-3: System overviews. 
    Comparison between conventional BTB and BHU + RBTB is  
    shown. The purple colored zone in the right, including BHU and 
    RBTB is expected to be as a counterpart of convention BTB.  
     Overhead added in the system are colored grey. 

 

3.3  Design of BHU 
 In this section, we would first present our design of Early Branch Target Generator 

(EBTG). And in second, Branch Identification (BI) is introduced along with how it should 

co-work with the EBTG. 
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 BHU is designed to deliver two logical functions as BTB: Identification of branches 

and target address providing for branches. Thus it contains two parts for such purpose: 

Branch Identifier (BI) and Early Branch Target Generator (EBTG). On one hand, EBTG 

is responsible of generating target addresses for each type of branches. Due to the parallelism 

and the various methods of branch target generation, there could be several target addresses 

ready to be selected as the output of BHU. On the other hand, BI provides the branch type 

information to indicate which target address (or none) is appropriate. Together, BI and EBTG 

provide a complete function of branch prediction: branch identification and target prediction, 

which are exactly what a conventional BTB stands purpose for traditional system. Figure 3-4 

presents the idea of their work division. 

 
 Figure 3-4: BI and EBTG working scheme.  
    Final target is provided from either BHU or RBTB. RBTB hit is   
    considered prior to BHU generation. 
 

3.3.1  Early Branch Target Generator (EBTG) 
First we should take a look at the Early Branch Target Generator (EBTG). As mentioned 

before, the example is shown running Alpha instruction set. Recall Table 3-1, there are 4 

different ways to generate target address for branches in Alpha instruction: 

1. Perform (PC + 4 + offset) for all PC-relative branches. 

2. Access $26 for RETN. 
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3. Access $27 for JSR. 

4. Access $28 for JMP. 

The actually instruction-set defined branch targets are described as above. Note that the 

other indirect branch, JSR_COROUTINE, is rarely used and in practical and its register 

undefined by instruction set; in fact, it does not appear at all in our benchmark set. Assume a 

single-issue, five-stage pipeline. Since our goal is to perform early branch target generation, 

we intend to move the above operations, which is meant to be done in EXE stage, to an earlier 

IF stage. This is when the fast instruction access from instruction buffer (IB) becomes handy.  

 

Target Address Generation for PC-relative Branches 

To generate target address for PC-relative branches, offset must be extracted for the 

addition to operate. Since instruction buffer (IB) is only a line size buffer, instructions inside 

can be available in a short access time. We propose to set an extra, dedicated adder for BHU 

to perform PC + 4 + offset, instead of sharing resource with the system pipeline functional 

unit. The nature of PC-relative branches is pointed out: once the (PC + 4 + offset) addition 

operation is properly finished, there is no chance that this target address can be wrong. The 

only thing that can still go wrong is the direction prediction, which is not the part we mean to 

focus on here.  

In a traditional five stage pipeline, since EXE takes up one cycle, we have reason to 

believe that a simple integer addition operation can be properly finished to match the timing 

constrain of branch prediction: within the first pipeline stage. Evan in deeply pipelined 

systems, integer addition is still considered as a short latency operation, comparing to integer 

multiplication, integer division, floating point operations or memory operations. In addition, 

many existing techniques have suggested that integer adder can be well customized in timing 

or area aspect, and it can be easily tuned to incur very short latency. To sum up, integer adder 



24 
 

is likely to fit into one cycle time even in high clock rate machines. More timing details are 

presented in section 3.3.5. 

 

Target Address Generation for Indirect Branches 

As for the three specific indirect branches, JMP, JSR, and RETN, we propose to provide 

their target addresses by using three Register Buffers. Reading the register files could be a 

straightforward way for target addresses, but it may require another dedicated set of read ports 

to the register files to avoid hardware conflict. This drawback is unacceptable when it comes 

to a low power design like this work. So instead, buffering the register value becomes a 

reasonable alternative solution. It has the advantage of short access latency and low power 

consumption. Every time there is a write operation destine to the three specific register file 

entries, $26, $27, $28, a copy of the write value is duplicated into corresponding register 

buffer. Therefore when a certain indirect branch instruction is encountered, target address can 

be ready in a buffer access time. Note that the original register read was supposed to be done 

in the ID stage. Now the operation is done earlier in the IF stage by reading register buffer, 

there is a chance of suffering from data dependency. And also, conventional register usage 

may not always be followed. That is, compiler can set its own strategy of optimizing register 

usage, and violate the conventional rules in practical. Both facts mentioned above may result 

in a wrongful target address obtainment. However, according to our experiment, there are 

more than 70% of chances that this simple method provides a correct target address for 

indirect branches. As for the branches provided with bad target addresses, we propose to store 

them into RBTB for future correctness.  

Some may argue that Return Address Stack (RAS) is another way to offer target 

addresses. Though RAS is indeed a useful design for RETURN instructions, it doesn’t work 

for other indirect branches, in our case, the JMP and JSR instructions. And also a typical RAS 

takes up to 16 or 32 entries for reasonable prediction accuracy, while we proposed only takes 
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up 3 entries for all indirect branches. Recall that this is a research focus on storage reduction, 

it’s not hard to understand why we preferred to left out RAS and go with register buffers. 

Figure 3-5 shows our BHU design for Alpha instruction set. The extra dedicated adder 

has two inputs as PC and offset, which is available from the instruction buffer. Note that for a 

32-bit system, target addresses can be provided in word address instead of byte address. So 

the (PC + 4 + offset) can actually be done by feeding PC and offset as inputs and 1 as the 

Carry In bit of the adder. This way, no extra latency but the adder itself should be incurred. 

The three register buffers are rather simple to implement. They share the (write) enable 

signals and write data bus with the physical register entries: $26, $27, $28. The only overhead 

is the extra bus lines and the three 32-bit buffers storage themselves. 

 

Figure 3-5: Overview of the implementation of a BHU in Alpha instruction set. 
   Target addresses are generated by adder and register buffers. Final 
   branch target decision is made by Branch Identifier (BI), of which 
   two different proposals are introduced later in this chapter. 
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3.3.2  Branch Identifier 
The Branch Identifier applies a dynamic way of branch identification by using a Partial 

Decoder (PD) for the job. Since the instruction is available from IB, we can also extract the 

operation code to perform a quick examination. Table 3-2 is the operation code of all 

branches in Alpha instruction set. 

Table 3-2: PC-relative branches in Alpha. 

Op name Op code Op name Op code Op name Op code Op name Op code 

BR 110000 FBNE 110101 BLT 111010 BGT 1111111 

FBEQ 110001 FBGE 110110 BLE 111011   

FBLT 110010 FBGT 110111 BLBS 111100   

FBLE 110011 BLBC 111000 BNE 111101   

BSR 110100 BEQ 111001 BGE 111110   

Table 3-3: Indirect branches in Alpha. 

Op name Op code 

JMP 000000 

JSR 000001 

RET 000010 

JSR_C 000011 

We mean to partially decode instructions to decide which target address of EBTG should 

be chosen. Therefore, PC-relative branch category along with three specific instructions: 

RET, JSR, and JMP, should be identified. According to Table 3-2, PC-relative branches 

occupy the encoding space of “11xxxx”, so a single AND of the highest two bits of the 

operation code (op code) would give a correct result. And according to Table 3-3, RET, JSR, 

and JMP can be decode in similar ways. A six-input AND can check out a match pattern for 

each of the three indirect branches. Note that the partial decoder would have a total of four 

outputs. Respectively indicates the current instruction being a PC-relative branch or one of the 
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three indirect branches. Only one of the outputs would be TRUE or none would be. Figure 3-6 

shows the design of our partial decoder. 

 

Figure 3-6: Implementation of Partial Decoder. 
   Overview of the whole PD + BHU mechanism in an Alpha  

    instruction set system. 

 

We must point out that with partial decoder, every cycle an exercise must be performed 

to know whether a branch instruction is being dealt with. The same thing happens to EBTG. 

Every cycle EBTG must blindly generate target address for instruction not yet identified, and 

the generated address is only a meaningful target when partial decoder confirms that it is a 

branch. A lot of generated results go to waste for non-branch instructions, since PD and 

EBTG are unlikely to work in sequence due to strict timing constrain. 
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3.4  Constrains of BHU 
Ideally, we would like every branch to be identified and its branch target generated by 

BHU. However, this is not possible due to some constrains. These constrains cause timing 

issues, which lead some branch to become unhandleable and cannot be handled by BHU in 

desired timing. For branches unhandleable by BHU, our strategy is to deal with them by the 

traditional method: store them in BTB and look up later. This is the exact reason why a 

Reduced BTB (RBTB) still remains in the system. In this section, discussion and possible 

solutions are presented for the three constrains of BHU: instruction buffer refilling, BHU 

latency, and indirect branch misprediction. 

3.4.1  Instruction Buffer Refilling 
 The first constrain is Instruction Buffer (IB) refilling. As can be seen in Figure 3 7, along 

with program execution, the PC is bound to stride from one cache line to another. No matter it 

is due to sequential step or a leap to target caused by a branch. When a line change occurs, IB 

miss will take place and refill must be carries out. Meanwhile, the instructions during refill are 

fetched from instruction cache instead. Before the refill is completed, BHU cannot be fed with 

any input signal to perform identification and generation. No meaningful output can come out 

in such circumstance, thus the output of BHU should be gated and discarded. Assuming a five 

stage pipeline with single cycle instruction cache access, we can expect the IB refill to be 

done in one cycle. This makes one unhandleable instruction every cache line change. These 

unhandleable instructions are stored into the RBTB, that is, of course, if they are taken branch 

instructions. Registries of these branches in RBTB are likely to lead to future prediction 

correctness. 
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 Figure 3-7: Two possible scenarios of Instruction Buffer miss. 
     On the left, program execution sequentially steps into a consequent 
    cache line. On the right, control instruction, such as branch,  
     changes the flow by leaping into the middle of another cache line. 
 

Instruction buffer miss and the consequent refilling is an unavoidable issue. And every 

time its presence causes an inevitable unhandleable instruction to our design. The only thing 

that can be done here is to hope that these instructions are not branches. That way, the 

unhandleable ones causes nothing but a vain BHU exercise. Since the locations of instructions 

in a cache are adjustable with the help of the compiler, this problem can actually be transform 

to a new problem related to software co-design. This issue would be further discussed and 

advised in later chapter of this thesis. 

 

3.4.2  BHU Latency 
The second constrain involves circuit latency. As we know, BHU is a part of branch 

predictor, and as every branch predictor, it has timing constrain. Typically, branch predictor is 

designed to be properly accessed within the first cycle of the pipeline. So with a correct 

prediction, no bubble is incurred and branch penalty is completely avoided. BHU must not 
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have exercise latency exceeding one cycle time, or either the branch prediction mechanism 

would suffer a functional change, or the system pipeline cycle time would be strained for 

BHU to fit in. Both cases are unacceptable as long as performance is concerned. The BHU 

latency modeling is shown in Figure 3-8. 

 
 Figure 3-8: Latencies of every components of the Branch Prediction Mechanism. 
 

As shown in the right of Figure 3-8, there are two paths for branch prediction mechanism 

to generate target address: from RBTB or BHU. If either path of branch prediction mechanism 

incurs latency that exceeds one cycle time, then the target address generated would be 

overdue and branch penalty cannot be avoided. We assume the critical path would be on the 

path of the BHU, since RBTB has smaller size and shorter access time comparing to the 

original BTB, which can be accessed in one cycle. More specifically, the critical path is 

assumed lying on the path of the integer adder within the BHU, as shown in Figure 3-9. To 

shorten the exercise latency of the BHU, we need to work on the estimated critical path by 

cutting the time requirement of the adder. Hence, we propose a possible solution to shorten 

BHU delay: Adder Length Shortening. Adder length shortening is a rather practical guideline 

that aggressively adjusts adder latency to make generation fit into certain number of cycle(s). 

Most of the time, we tend to crunch the generation latency to fit into one cycle for a no-bubble 

branch prediction. Furthermore, for pipelines that even adder length shortening fails to make 
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the BHU work smoothly, we propose to apply Lookahead Pipelining technique to make a 

compromise between performance and applicability. 

 
 Figure 3-9: Critical path of the BHU 

    The critical path is assumed lying on the integer adder. 

 

Adder Length Shortening 

Adder shortening is a simple idea. We’ve discovered that most branches won’t have 

target too far from themselves address-wise. That is why the (PC + 4 + offset) process 

wouldn’t require a 32-bit full adder, since the carry will not ripple too far from the least 

significant bit. With a short adder, the output represents the low order bits of target address. 

The low order bits should be concatenated with the high order bits of PC (instruction address 

of the branch instruction) to form the correct target address. According to research 

experiments, latency of adders is approximately linearly reflected by the length of the adder. 

Hence this gives us a good opportunity to reduce BHU latency by shorten adder. 

Figure 3-10 shows the result of percentage of PC-relative branch that carries far most 

into the i-th bit while performing (PC+4+offset), regarding the benchmarks in SPEC2K. 

Figure 3-11 shows the accumulative result of Figure 3-10. For an i-bit adder, we can 

determine whether the calculation is complete or not by examining the carry out bit of adder. 

A 0 carry out bit indicates a complete calculation, while a 1 carry out bit implies a failure. 
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Hence, carefully chose an adder with short latency and use the carry out as a hint of a correct 

calculation, we can reduce the delay on the adder path. Branches that cannot be correctly 

calculated by the chosen adder are again stored into RBTB. A compromise must be made 

between the length of the adder and the number of miscalculated PC-relative branches that 

need to be registered in RBTB. A long adder incurs longer latency and cost more area and 

dynamic power while exercising; while a short adder fails more target generation operations, 

leading to a RBTB with more entries needed. 

 
Figure 3-10: Difference segment length of PC-relative branches.  
     Percentage of PC-relative branch with their target address that 
     carries far most into the i-th bit during calculation of   
     (PC+4+offset). X-axis in the chart represents bit number, and 
     y-axis represents the percentage of PC-relative branch. 

 
Figure 3-11: The accumulative result.  
    X-axis in the chart represents bit number, and y-axis represents the 
    percentage of PC-relative branch. 
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Note that in Figure 3-11 adder of 1-bit or 2-bit length exhibit no accumulation at all. This 

is due to the fact that instruction addresses are presented in word address format. In a 32-bit 

system, every instruction is 32-bit long. So that in word address format, every last two bits of 

an instruction address should be “00”. This characteristic can actually be exploited to further 

reduce the requirement of adder length. There would be no reason for us to use a function unit 

to calculate bits that we’ve already known, thus another 2-bit length can be spared from the 

adder. In the end, our PC-relative branch target generator can be simplified as an 19-bit 

integer adder, putting its effort on only the middle part of the whole 32-bit address: outputting 

from bit 3 to bit 21, with bit 1 and bit 2 set to “0” and bit 22 to bit 32 copied from the branch 

address. Figure 3-12 shows the final chart of percentage of PC-relative branches comparing to 

the possible adder length. 

 
Figure 3-12: Actual length of adder required in implementation.  
    Most adders are implemented as a combination of 4-bit adders, so 
    multiples of 4 are highlighted and labeled in this figure. 

 

Lookahead Pipelining BHU 

 For systems of high clock rate where even adder shortening fails to suppress BHU 

latency within one clock cycle, we propose to apply lookahead pipelining technique. First, 

recall Figure 3-8, the latency of BHU is defined as: 

TBHU = max (TIB +TPD + T4:1 mux , TIB +Tadder + T4:1 mux , TRB + T4:1 mux ) 
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, where 

TBHU = the delay of BHU 

TIB = the access time of instruction buffer 

TPD = the latency of partial decoder 

T4:1 mux = the latency of 4-to-1 mux 

Tadder = the latency of adder 

TRB = the access time of register buffer 

The BHU is pipelined according to its latency into N stages, where: 

(N-1) × cycle_time < TBHU ≦ N × cycle_time 

Then lookahead is performed, sacrificing some instructions in order to keep others under the 

timing constrain of branch prediction mechanism. A target address is required at the end of 

the first system pipeline stage for all branches to have a bubble-free branch prediction. As 

BHU is pipelined, we can guarantee penalty free prediction for most branches by starting 

generation beforehand. The final expectation is: as an instruction enters the system pipeline, it 

also reaches the final stage of BHU generation. For the lookahead technique to work, a certain 

number of instructions would be skipped at the beginning. These instructions are 

unhandleable to BHU, and unhandleable branches are stored into RBTB. Figure 3-13 show 

the expected pipe flow and Figure 3-14 shows an example of a three-cycle BHU. 

 
 Figure 3-13: The expectation of Lookahead Pipelining BHU.  
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     Instruction reaches the last stage of branch target generation as it 
     enters first stage of system pipeline. In one cycle time, the target 
     address would be ready and match the required branch prediction 
     timing. 

 
Figure 3-14: An example of a three-cycle target generation (i.e. N=3). 

 

Here we elaborate the case of a three-cycle BHU to draw a clear picture of how 

lookahead pipelining works. As can be derived from Figure 3-14, in this N=3 scenario, for a 

prediction to be ready in time, the BHU should start 2 cycles before the branch instruction 

itself actually enters the pipeline. Two possible cases of a cache line change are shown above. 

Assuming instruction buffer refilling takes up one cycle, the first instruction that is supposed 

to be executed in the cache line always suffers as being unhandleable, marked as the black 

cross. In the consequent cycle, suppose the program flows sequentially, a hit would occur in 

the instruction buffer. This very moment’s snapshot is presented in Figure 3-15. As PC 

pointed at the currently being executed instruction, a 2-cycle lookahead must be carried out, 

hence (PC+8) ought to get started with its target address generation for prediction to be ready 

in time. The lookahead brutally sacrifices PC and (PC+4) in order to keep the rest of the 

instructions in this cache line attended. Seemingly, PC and (PC+4) become ones that are 

unhandleable and are marked with white cross. All the crossed instructions, either black or 
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white, are out of BHU’s hand. And if there are any branches among these unhandleable 

instructions, they should be taken care of by the RBTB.  

 It cannot be over emphasized that lookahead pipelining is a conceptual method proposed 

to for precaution and completeness of this research, and according to a lot of circuit design 

researches, which we may never have to put to practice. 

 

3.4.3  Indirect Branch Misprediction 
The third constrain lies in prediction for indirect branch. Once again, in Alpha instruction 

set, JMP, JSR, and RETN each has its own dedicated register to access in order to obtain 

target address. The register read operation is supposed to be done in ID stage, assuming a 

conventional five-stage pipeline. However, with our BHU design, the register buffers are read 

in IF stage to deliver branch prediction. This makes an one-cycle-early register read operation. 

Chances are that the value is not ready for access yet at this time. For example, there could be 

an in-flight LOAD or MOV instruction still working on the value that should be accessed. 

The problem, as can be seen, is in fact a data dependency hazard. Fortunately, true 

dependency like this is mostly well-handled by the compiler. So even if the data dependency 

causes a bad target prediction, it still belongs to one of the minority cases. And the 

mispredcited indirect branches would be put into RBTB for future reference.  

The real challenge of indirect branch prediction actually comes from the outlaws. 

Although the instruction set defines register entries for indirect branches to keep their targets, 

sometimes compiler can violate the convention by keeping them elsewhere. For example, 

when sequential CALLs not interleaved by RETNs are being optimized. In such a scenario, 

compiler can selectively keep the return address in currently unoccupied register entries to 

achieve multiple return addresses tracking without pushing information into program stack in 

memory. These rule-breakers are the outlaws that cannot be controlled. The only thing we can 
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do about it is to monitor their every move by storing them into the RBTB or to endure the 

branch penalty and wait until their correct target addresses are verified in the EXE stage. 

Figure 3-15 shows the instruction format and describes how an indirect branch obtains its 

correct target address in the EXE stage. 

 

Figure 3-15: Instruction format of indirect branches in Alpha instruction set.  
    The correct target address is obtained by accessing the register entry 
    indexed by field Rb, and then set the two least-significant bits of the 
    value to 0 (taking only the word address). 
 

To sum up, the cause of indirect branch misprediction can be traced back to two reasons: 

data dependency and unconventional register usage. Both can simply be dealt with using a 

compiler that takes these two issues into consideration. Likewise, this is a problem that can be 

transformed into a compiler co-design topic. 

 

3.5  BHU in More Complicated Pipeline 
The design of BHU is intended to target general purpose processors. We depicted the 

design in a conventional single-issue, five-stage pipeline, where the design works smoothly 

and efficiently. However such pipeline configuration can be considered old-fashioned and 

improvable through the performance hungry eyes of today. Actually, there are certain things 

we can do to apply our design to more sophisticated systems and exploit most functionality of 

our BHU design, if not fully. In this section, we would show how the BHU design adapts to 

different environment of more complicated pipeline. 

Take a quick glance at the modern architecture. It’s not hard to find that with the pursuit 

of higher performance, systems today have some major improvement implemented, which 
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leads to more complicated pipeline designs. There are many different ideas fulfilled in 

nowadays processor designs, the two mainstream aspects are to increase issue width and clock 

rate. By realizing multiple-issue, the pipeline can gain theoretical multiple through put; and 

driving up the clock rate shortens the time that pipeline periodically delivers the finished 

instructions. Both methods are common strategy implemented to increase the system 

performance and these techniques achieved major efficiency breakthrough for the past 

decades. In a system of wide issue width and high clock rate, changes can be made for our 

design to adapt. Note that out-of-order execution pipeline does not at all complicate the design 

of BHU. Since even the instructions can be executed in out-of-order style, the nature of 

human-written program is still sequential. So the pipeline frontend, where instructions are 

fetched and branch predictions are made, still goes in-orderly. In this section, we would focus 

on the polymorphism of BHU in wider issue width and higher clock rate systems. 

 

3.5.1  Multiple Issue Systems 
Firstly, we should take a look at multiple issue architecture. Assuming an n-issue system, 

n instructions are fetched from cache every cycle. As a guide of the fetcher, it is the branch 

predictor’s task to identify branch instructions among these n instructions and provide 

possible target addresses and credible taken or not taken forecasts. It is obvious that the only 

thing differs from what has been depicted in aforementioned single-issue pipeline is the 

quantity. The number of prediction that should be made in one cycle is a not much of a deal to 

handle. A straightforward idea emerges as to duplicate the BHU for each pipe in such a 

system. Figure 3-16 shows the case of a 2-issue pipeline. 
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Figure 3-16: BHU adaption in a 2-issue pipeline. 

 

Figure 3-16 seems to work fine, but actually there could be BHU hardware redundant in 

this scenario. Recall that the BHU contains two parts of hardware for both PC-relative and 

indirect branch. According to earlier assumption, the PC-relative route, which lies on an 

integer adder, would be on the critical path. Given the tight timing constrain, it would be risky 

for the two instructions to utilize one integer adder sequentially (adder works in its own clock 

and calculate two target addresses in one system cycle; buffer must be assigned to latch 

outputs). But for the indirect branch, however, we can save a duplication of the register 

buffers. The register buffers contain the values of corresponding register entries that should be 

ready to be accessed as target address by this moment. Hence one copy of the register buffers 

ought to be sufficient for this purpose. Figure 3-17 shows the version of this redundant 

elimination. In addition, the two Partial Decoders (PDs) may have a chance to be further 

simplified. Since partial decoding actually incurs very short latency (which is shown to be 

equal to three AND sequential gates delay), instructions of different pipes have a chance to 

utilize a common Partial Decoder (PD) in turn (same way as the adder works described above) 

without breaking any timing constrain. Of course, this is another decision that should be made 

based on the issue width, cycle time, and PD latency. 
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Figure 3-17: BHU adaption after eliminating the redundant parts. 

 

3.5.2  High Clock Rate Systems 

Secondly, the high clock rate issue. A system with high clock rate can significantly 

shorten the amount of time for the BHU to work within. Although this may seem terrifying 

given that the branch prediction is a now-or-never job at the very frontend of system pipeline, 

in practice, short cycle time is not as scary as it seems. By taking a closer look at the 

components of the BHU, we can find it to be a lightweight and short latency unit.  

Figure 3-19 shows each and every part of the BHU design. As can be seen in the figure, 

instruction buffer can be accessed in a very short latency. The Partial Decoder (PD) consists 

of four parallel AND, one with a two-bit input and the other three with a six-bit input. The 

critical path of this part is clearly dominated by six-bit input AND, which in the worst case 

can be formed by three levels of two-bit AND gates. The integer adder, which can first be 

shorten in length and as mentioned early in this thesis, can be well customized and clocked up 
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to 10GHz in practical [8][9][10], is likely to meet the timing requirement. The set to zero and 

cascade operation following integer addition barely cause any delay. The three register buffers 

are even more accessible with short latency given each is of just 32-bit in size. And the MUX 

can be implemented by pass transistors to lower pass through latency.  

 
Figure 3-18: Components in BHU. 

 

As a matter of fact, the true challenge of applying BHU to a high clock rate system lies in 

instruction buffer refilling. The pipeline design in such systems tends to be deeper than the 

conventional five stages. And each task is divided into more coarse grain subtasks spread over 

more pipeline stages. In this case, the assumption that instruction can be fetched from the 

instruction cache in one cycle may not stay true. Thus the number of cycles required to 

complete an IB refill may also be strained. Since every cycle needed to complete an IB refill 

causes an unhandleable instruction to BHU, it is evident how this is going to affect our 

design.  

The number of cycles required to access instruction cache varies from processor to 

processor. Most state-of-the-art architecture design well-known today wouldn’t take more 
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than three cycles to access instruction cache. For example, Intel Itanium processor only need 

one cycle for instruction cache access, clocking at around 1GHz; while ARM9 based 

processors often require two to three cycles to fetch an instruction. We intend to turn this into 

an experimental parameter, by simulating different settings and find out the overall 

applicability of the BHU design in modern pipeline systems. The results would be presented 

in the next chapter. 

 

3.5.3  Summary of BHU Adaption 
 To sum up, BHU encounters two major challenges when it comes to sophisticated 

pipeline adaption. Issue width problem can be brutally handled by providing more hardware 

resource to the BHU. High clock rate issue is trickier due to the fact that it involves 

instruction buffer refilling, which is the most critical weak part of the BHU design. As the 

number of cycle required for instruction cache access is put into consideration, the problem 

can be transform to how many instructions would be unhandleable after an instruction cache 

line change. The Reduced BTB (RBTB) serves as a counterpart to complete the BHU 

functionality as the original expectation. And in system that unhandleable cases increase, 

heavier workload is anticipated for RBTB.  



43 
 

 

Chapter 4  Experiment 
In this chapter, experiment methods are described. We implement our BHU design in a 

high level language simulator. The simulator is chosen to be the well-known and trusted 

SimpleScaler 3.0 [11]. For testing program, SPEC2K [12] is used as benchmark to give a 

general idea of how common programs behave in reality. To evaluate power, statistic from 

SimpleScaler 3.0 and CACTI 4.2 [13] [14] are used together to model the power consumption. 

The simulation environment is listed in Table 4-1: 

  Table 4-1: Simulation environment. 

Simulator  SimpleScaler 3.0 

Benchmark Set SPEC2K, 23 benchmarks tested 

Power Tools CACTI 4.2, WATTCH 

Instruction Set Alpha instruction set 

Pipeline Description Conventional five-stage pipeline 

Issue In-order, single-issue 

L1 I-Cache Size 16KB (line size = 32B) 

L1 D-Cache Size 16KB 

L2 Cache Size 2MB 

Instruction Buffer Size 32B 

The benchmark SPEC2K is a well-known and trusted evaluation tool for general purpose 

testing. The benchmark set measure the performance of the processor, memory and compiler 

on the tested system. The benchmark set can be put into integer and floating point parts, each 

of 12 and 14 individual benchmarks respectively. The detail description for each and every 

one of the benchmarks is listed in Table 4-2 and Table 4-3. 
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Table 4-2: Integer benchmarks in SPEC2000. 

Benchmark  Languag

e 

Category Descriptions 

164.gzip C Compression 

 

SPEC's version of gzip performs no file I/O 
other than reading the input. All compression 
and decompression happens entirely in 
memory. 

175.vpr C FPGA Circuit 
Placement and 
Routing 

VPR is an example of an integrated circuit 
computer-aided design program, and 
algorithmically it belongs to the combinatorial 
optimization class of programs. 

176.gcc C C Programming 
Language 
Compiler 

176.gcc is based on gcc Version 2.7.2.2. It 
generates code for a Motorola 88100 processor. 
The benchmark runs as a compiler with many 
of its optimization flags enabled.  

181.mcf C Combinatorial 
Optimization 

A benchmark derived from a program used for 
single-depot vehicle scheduling in public mass 
transportation.  

186.crafty C Game Playing: 
Chess 

Crafty is a high-performance Computer Chess 
program that is designed around a 64bit word.  
It runs on 32 bit machines using the "long long" 
(or similar, as _int64 in Microsoft C) data type.   

197.parser C Word 
Processing 

The Link Grammar Parser is a syntactic parser 
of English, based on link grammar, an original 
theory of English syntax. 

252.eon C++ Computer 
Visualization 

Eon is a probabilistic ray tracer based on 
Kajiya's 1986 ACM SIGGRAPH conference 
paper. It sends a number of 3D lines (rays) into 
a 3D polygonal model. 

253.perlbmk C PERL 
Programming 
Language 

253.perlbmk is a cut-down version of Perl 
v5.005_03, the popular scripting language. 

254.gap C Group Theory, 
Interpreter 

It implements a language and library designed 
mostly for computing in groups (GAP is an 
acronym for Groups, Algorithms and 
Programming). 
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255.vortex C Object-oriented 
Database 

VORTEx is a single-user object-oriented 
database transaction benchmark which which 
exercises a system kernel coded in integer C. 

256.bzip2 C Compression 256.bzip2 is based on Julian Seward's bzip2 
version 0.1. SPEC's version of bzip2 performs 
no file I/O other than reading the input. All 
compression and decompression happens 
entirely in memory. 

300.twolf C Place and Route 
Simulator 

The TimberWolfSC placement and global 
routing package is used in the process of 
creating the lithography artwork needed for the 
production of microchips. 

 

Table 4-3: Floating point benchmarks in SPEC2000. 

Benchmark  Language Category Descriptions 

168.wupwise Fortran 77 Physics / 
Quantum 
Chromodynamics 

"wupwise" is an acronym for "Wuppertal 
Wilson Fermion Solver", a program in the 
area of lattice gauge theory (quantum 
chromodynamics). 

171.swim Fortran 77 Shallow Water 
Modeling 

Benchmark weather prediction program 
for comparing the performance of current 
supercomputers. The model is based on 
the paper, by Robert Sadourny. 

172.mgrid Fortran 77 Multi-grid 
Solver: 3D 
Potential Field 

172.mgrid demonstrates the capabilities 
of a very simple multigrid solver in 
computing a three dimensional potential 
field. 

173.applu Fortran 77 Parabolic / 
Elliptic Partial 
Differential 
Equations 

Solution of five coupled nonlinear PDE's, 
on a 3-dimensional logically structured 
grid, using an implicit psuedo-time 
marching scheme, based on two-factor 
approximate factorization of the sparse 
Jacobian matrix. 

177.mesa C 3-D Graphics 
Library 

Mesa is a free OpenGL work-alike 
library.  Since it supports a generic 
frame buffer it can be configured to have 
no OS or window system dependencies. 
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178.galgel Fortran 90 Computational 
Fluid Dynamics 

This problem is a particular case of the 
GAMM (Gesellschaft fuer Angewandte 
Mathematik und Mechanik) benchmark 
devoted to numerical analysis of 
oscillatory instability of convection in 
low-Prandtl-number fluids. 

179.art C Image 
Recognition / 
Neural Networks 

The Adaptive Resonance Theory 2 (ART 
2) neural network is used to recognize 
objects in a thermal image. 

183.equake C Seismic Wave 
Propagation 
Simulation 

The program simulates the propagation of 
elastic waves in large, highly 
heterogeneous valleys, such as 
California's San Fernando Valley, or the 
Greater Los Angeles Basin. 

187.facerec Fortran 90 Image 
Processing: Face 
Recognition 

This is an implementation of the face 
recognition system described in M. Lades 
et al. (1993), IEEE Trans. Comp. 
42(3):300-311. 

188.ammp C Computational 
Chemistry 

The benchmark runs molecular dynamics 
(i.e. solves the ODE defined by Newton's 
equations for the motions of the atoms in 
the system) on a protein-inhibitor 
complex which is embedded in water. 

189.lucas Fortran 90 Number Theory / 
Primality Testing 

Performs the Lucas-Lehmer test to check 
primality of Mersenne numbers 2^p-1, 
using arbitrary-precision (array-integer) 
arithmetic. 

191.fma3d Fortran 90 Finite-element 
Crash Simulation 

FMA-3D is a finite element method 
computer program designed to simulate 
the inelastic, transient dynamic response 
of three-dimensional solids and structures 
subjected to impulsively or suddenly 
applied loads. 

200.sixtrack Fortran 77 High Energy 
Nuclear Physics 
Accelerator 
Design 

The function of the program is to track a 
variable number of particles for a variable 
number of turns round a model of a 
particle accelerator such as the Large 
Hadron Collider (LHC) to check the 
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Dynamic Aperture (DA) i.e. the long term 
stability of the beam. 

301.apsi Fortran 77 Meteorology: 
Pollutant 
Distribution 

Program to solve for the mesoscale and 
synoptic variations of potential 
temperature, U AND V wind 
components, and the mesoscale vertical 
velocity W pressure and distribution of 
pollutants C having sources Q. 

The simulation is set to run a fix number of instructions in the benchmark on the 

environment built by SimpeScaler to verify the functionality of our design. In our case, we 

fast forward 500-million instructions at the beginning of each benchmark and then run the 

500-million consecutive instructions to reflect the overall general case during program 

executions. Different configurations of BTB are tested in order to find optimization. 

Information such as: total cycle used, BTB read/write count, prediction accuracy, and BHU 

logic switching are kept track of for our power and performance evaluation. 

For accuracy evaluation, SimpeScaler provides all the statistics during the program 

execution. However, only results related to branch prediction are of our interest here. The one 

thing we care about is the accuracy change that may be caused by the BHU design to the 

system. The branch prediction accuracy is defined by: 

Accuracy = (number of branches correctly predicted) ÷ (total number of branch) 

A correct branch prediction should include two parts: a correct direction prediction and a 

correct target address prediction. With nowadays direction predictor providing very high 

direction prediction accuracy, the overall branch prediction accuracy can be used as an 

impartial measurement for our BHU + RBTB design. 

For power evaluation, equations below are applied to calculation the final total power. 

Each term in the power equation is available using CACTI 4.2 power tool with correct 

configuration set. For conventional BTB:  
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PTotal = PBTB_Read × BTB_Read_Count + PBTB_Write × BTB_Write_Count + PBTB_Leakage × 

Execution_Cycle 

, where 

PBTB_Read = power requirement for a read operation of conventional BTB 

PBTB_Write = power requirement for a write operation of conventional BTB 

PBTB_Leakage = leakage power of conventional BTB 

 
For Reduced BTB (RBTB) with BHU as hardware overhead: 

PTotal =  

PRBTB_Read × RBTB_Read_Count + PRBTB_Write × RBTB_Write_Count + PRBTB_Leakage × 

Execution_Cycle + PBHU_switching × BHU_Switching_Count + PBHU_Leakage × Execution_Cycle 

+ PAdditional_Control_Overhead 

, where 

PRBTB_Read = power requirement for a read operation of reduced BTB 

PRBTB_Write = power requirement for a write operation of reduced BTB 

PRBTB_Leakage = leakage power of reduced BTB 

PBHU_switching = the sum of power requirement to exercise partial decoder, adder and perform 

read operation of register buffer 

PBHU_Leakage = leakage power of conventional BHU (mostly from register buffers) 

PAdditional_Control_Overhead = power consumption of additional MUXs and AND/OR gates 

 

The final power is calculated then compared in normalized form, given that CACTI should be 

used as power consumption reference. The normalized form eliminates any debatable factor 

by seeing only the relative value presented in ratio. 
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4.1  Baselines Determination 
In this section, we determine the configurations of conventional BTBs as our baselines 

for comparison. There are two major parameters when it comes to configuration of a BTB: 

number of sets and associativity. Note that number of sets multiplied by associativity equals 

to number of total entries. In modern processor designs, we find BTBs in common systems 

tend to have more than 256 entries. Also, statistic shows that BTBs with higher associativities 

outperform ones with lower associativity. However, large number of entries and high 

associativity comes with an expensive price of hardware complexity and access power. 

Therefore in practical, most BTBs are implemented as 256-entry to 512-entry [15] [16], as 

2-way or 4-way set-associative. For example, Alpha 21264 embedded a 512-set, 2-way BTB; 

and Pentium Pro embedded a 128-set, 4-way BTB [16]. 

In order to determine our baseline, we ran simulations to have a clear view of how 

different configurations affect the accuracy of branch predicting mechanism. All the 

configurations are simulated in our experiments, and the results of the prediction accuracy and 

IPC they delivered are shown from Figure 4-1 to Figure 4-4. 

In the following experimental results presentation of this chapter, all BTB or RBTB 

configurations are shown in the form of “(R)BTB_<number of sets>_<associativity>”. The 

prefix depends on the environment we’re conducting experiments on. With prefix “RBTB”, it 

is implied that a BHU also exist in the system to branch predictor’s aid; and with prefix 

“BTB” indicates that this is a system with conventional BTB dealing with all the branches on 

its own.  
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Figure 4-1: Average accuracy of different configurations of conventional BTBs. 

 

The results in Figure 4-1 are presented in sets, each of three configurations setting to the 

same number of BTB entries but different associativity. Starting from the left is BTB of 64 

entries configured in direct-map, 2-way, and 4-way set associative. Moving all the way to the 

right, the number of BTB entries increases in order of 2’s power. For viewing convenience, 

results in Figure 4-1 are sorted according to accuracy and presented again in Figure 4-2 for a 

clearer view of how different size of BTBs perform in the benchmark set SPEC2K. Average 

IPC would be presented in the same way in Figure 4-3 and Figure 4-4. 
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Figure 4-2: Average accuracy of different configurations of conventional BTBs 
in sorted order. 

 

 Average IPC is presented in the same way as average accuracy in the following. First 

grouped according to size and then in increasing order of IPC. 

 
Figure 4-3: Average IPC of different configurations of conventional BTBs. 
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Figure 4-4: Average IPC of different configurations of conventional BTBs in 
sorted order. 

 

 The configurations of 256 and 512 entries, 2-way and 4-way associative BTBs are 

highlighted in above figures. The highlighted bars in the figure are mostly located at the 

points before the curve starts to fall drastically. It’s not very hard to realize that these BTB 

configurations actually provide good balance between size and accuracy. Later on in this 

chapter, all these configurations would be the ones that are compared to as reference with our 

BHU + RBTB design. 

 

4.2  Benchmark Evaluation Results 
In this section, our simulation results are presented. SimpleScaler simulator is modified to 

follow expected working flow of our BHU + RBTB design. The most ideal scenario is shown 

in the first part. Then more complicated assumptions are made by passing in different 

parameter to model the circumstances for high clock rate pipelines where BHU can suffer 

from long delay of instruction buffer refilling. The outcome we care about here includes IPC, 

which reflects the overall performance; prediction accuracy, which reflects the functionality 
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and effectiveness of branch predictor; and last but not least, the power/energy consumption, 

which reflects the value of this research and was set to be the goal from the very start. 

4.2.1  Case N = 1 

Here we start with the most ideal case. Assuming we have a system, where the BHU can 

be fully functional within one cycle time and the refilling process also cost one cycle only. 

According to simulation description, instruction per cycle (IPC) is used as a criterion to 

measure overall performance. The first thing to do in order to filter the results is to compare 

the overall average IPC of our BHU + RBTB designs to conventional BTBs. We intend to 

target our work as a performance degradation-free design and to achieve as much BTB size 

reduction as possible, so only ones with similar performance compared to baseline 

configurations are presented here. Figure 4-5 shows the average IPC of this case. 

 
Figure 4-5: Average IPC in N =1 case. 
    The postfix “rc1” represents the value of N, in this case, 1. 

 

As can be seen in Figure 4-5, by the help of BHU, performance what used to take up 256 

or 512 BTB entries to deliver, now can be provided with only 16 or 32 entries. That is no 
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more than one-eighth of original BTB size. And even more, the 16-entry or 32-entry RBTB 

can be implemented in to a direct-map form which can both contribute to area and power 

reduction of the structure. 

Figure 4-6 shows us exactly how much gain came from the BHU. In this scenario, BHU 

can deliver correct branch targets for about 70% of PC-relative branches, and about 7% of 

indirect branches. The RBTB in the system can deliver another 15% of the PC-relative branch 

prediction accuracy, and less than 2% of the indirect branch prediction accuracy. In total, our 

design achieved approximately 93% of prediction accuracy with a much smaller RBTB in size 

compared to convention. 

 

Figure 4-6: Average accuracy in N=1 case. 
 

Note that in Figure 4-6, the order of the configuraiton in increasing is slightly different 

from Figure 4-5. It must be pointed out that the results presented here are the average of the 

whoel SPEC2K benchmark set. Thus some of the details may differ slightly due to this very 

reason. This stay true in all of the results presented in this chapter. Another fact worth 

mentioning is that for RBTB of 16-entry, no good prediction can be provided for indirect 

branches. 
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Now that we know with 16-entry or 32-entry of RBTBs together with BHU design, the 

average performance and accuracy outbeat conventional BTBs of 256 to 512 entries. Next 

thing we would like to show is exactly how much power is saved by all of these works.  

The total power consumption is calculated according to the power equation mentioned 

above. Storage related power consumption including read power, write power and leakage 

power are available by using CACTI. But the power consumption of the overhead is a bit 

more complicated. Break down the hardware overhead we added, there are: an integer adder 

(adder legnth is actually adjustable down to 19 or 20 bits, but for modeling simplicity, it is 

treadted as a 32-bit full adder here), three 32-bit register buffer, a partial decoder with 

complexity of 19 2-input AND gates (6-input AND is measured by 6 2-input AND gates, and 

there’s another 2-input AND gate, to a total of 19 2-input AND gates), one 4-input fast MUX, 

and one 2-input fast MUX. The ratio of BTB power consumption and integer adder power 

consumption can be aquired by WATTCH [11]. And the partial decoder and the MUXs are 

considered much less complex than an adder. For simplicity, the non-sotrage part overhead is 

modeled as two 32-bit integer adder, and each adder is modeled as system pipeline integer 

ALU, which power consumption is provided by WATTCH as a portion of BTB power 

consumption [7][8][9]. Note that this is obviously an over estimation, the actual power 

consumption should be less than this modeling. Figure 4-7 shows a normalized power 

consumption result. All the values are normalized to a conventional 128-set, 4-way (512-entry) 

BTB. The configurations are sorted in IPC order, the higher IPC to the right. Compared to a 

512-entry conventional BTBs, our design can achieve more than 75% of power reduction with 

strictly no performance loss; and more than 65% power reduction when compared to 

256-entry conventional BTBs. 
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Figure 4-7: Normalized power in N=1 case. 

 

 
Figure 4-8: Normalized power sorted in increasing order of IPC in N=1 case. 
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4.2.2  Case N = 2 

In the next part, simulation parameters are changed to model the BHU + RBTB design in 

more complicated pipelines. Here we present the N=2 case, which means there are two 

unhandleable instructions on every instruction cache change. In this case, we can imagine that 

number of unhandleable branches increse and information load in RBTB as well. More entries 

are needed for RBTB to keep the degradation-free performance. The results of IPC, accuracy, 

and power reduction are shown in Figure 4-8, 4-9, and 4-10, respectively.  

Note that the N=2 case can be used to model a combination of situations. First, it can 

represent the system pipeline with single cycle cache access and a BHU with two cycle of 

latency. Second, it can also stand for a system pipeline with two cycle instrucion cache access 

while embedded with a single-cycle BHU. It can be understood that the N value means the 

total cycle of BHU delay and the number of cycles it takes to finish an instruction buffer refill. 

Generally, we assume that the BHU can fit into a single cycle given the short latency it 

incurrs mentioned above. And all the N parameter cases can be seen as an instruction buffer 

refill modeling for different implementations of instruction cache design. 

 
Figure 4-9: Average IPC in N=2 case. 
    The postfix “rc2” represents the value of N, in this case, 2. 
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Figure 4-10: Average accuracy in N=2 case. 
 

It can be seen that the percentage of PC-relative branches handleable by BHU decrease to 

about 55%. The accuracy lost of these unhandleable branches become the burden of RBTB. 

So now it takes more entries or higher associativity for our BHU + RBTB design to outbeat 

conventional BTBs. 

 
Figure 4-11: Normalized power in N=2 case. 
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Figure 4-12: Normalized power sorted in increasing order of IPC in N=2 case. 

 

As can be foreseen, with more number of entries required to keep the performance, the 

overall power saving faces greater challenge. In the N=2 case, to keep up with no 

performance loss, the power reduction can only reach 70% compared to 512-etnry 

conventional BTBs and 55% compared to 256-entry conventional BTBs. 

 

4.2.3  Case N = 3 

Since in common pipeline system, instruction cache access would not exceed three cycles, 

here we present the last part of our experiment results, the N=3 case.  
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Figure 4-13: Average IPC in N=3 case. 
     The postfix “rc3” represents the value of N, in this case, 3. 

 

 
Figure 4-14: Average accuracy in N=3 case. 
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Figure 4-15: Normalized power in N=3 case. 

 

 
Figure 4-16: Normalized power sorted in increasing order of IPC in N=3 case. 
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4.3  Summary for Simulation Results 
In this chapter we presented experiment results for N=1, N=2, and N=3 cases. The N 

value can be concluded as the sum of BHU exercise cycles and instruction buffer refilling 

cycles. According to many circuit implementation researches, we assume the BHU incurs 

very short latency and generally would not exceed one cycle time. So the N value reflects 

only the number of instruction loss due to the inevitably instruction buffer refill. 

By the statistics, we’ve found that in the idea N=1 case, BHU can handle 77% of total 

branches encounter. And for N=2 and N=3 cases, the number of handleable branches drop to 

62% and 53% respectively. The more unhandleable branches, the more entries RBTB would 

require to keep the performance from degradation. And this fact also reflects on the amount of 

power we can save by our design. 
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Chapter 5  Conclusions and Future Works 
In the first part of this chapter conclusion are made. And in the second part possible 

future works are proposed.  

5.1  Conclusions 
In this thesis, we presented a Branch Handling Unit (BHU) that dynamically identify and 

generate target address for both PC-relative and indirect branches. The BHU is suppose to 

ease information load in the Branch Target Buffer. Target addresses that are able to be 

generated by BHU need not to register entries in BTB, thus the storage requirement can be 

lower. Due to some contrains, we still find the BTB cannot be completely eliminated from the 

system. In the end, the BTB can only be downsized with the help of BHU. In a nutshell, this 

research provides a way to have a trade-off. By exercising BHU, which is composed of a 

number of logic units and small size buffers, dynamic power is used to trade for leakage 

power. The overall outcome is deemed worthy in modern manufacture process, since the 

leakage power consumption today overwhelms the dynamic exercising power consumption. 

Aside from power consumption reduction, the method in this thesis significantly lowered 

the area requirement of branch predictors. In the aspect of manufacturing, this can be a great 

advantage considering price and yield. And by reducing the information load, the number of 

updates in BTB is also decreased, leading to less evictions and replacements. Branches in the 

BTB stay longer, increasing the size of an abstract viewing window of braches for whom 

predictions should be made. This gives a good opportunity to improve the overall system 

performance. 

The BHU is designed to be a low-latency, light-weighted unit in the system. For such a 

simple unit to reduce so many entries in the BTB, it’s not at all absurd to point out that 
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conventional BTB design wasted an inefficient amount of storage to keep track of the 

branches behavior. Our experimental results show that up to 85% of the BTB storage can be 

unnecessary and replaced by the BHU. This fact pushes us to review the nature of 

history-base predictors. With the chase of higher computational power and process stepping, 

is every piece of the hardware put to absolutely good places and being well-utilized to every 

gate? Or we’re just abusing, brutally putting in more and more logic gates into a chip and gain 

less and less efficiency than they should really deliver? 

 

5.2  Future Works 
The future work of our BHU design can be put to three aspects. Each of these ideas 

targets to the same goal: further power reduction for BTB. The three aspects are: another 

downsizing for the RBTB, unnecessary BHU + RBTB access filtering, and compiler 

co-design. 

First, the chances of further size shrinking of the RBTB lies in the width shortening of 

each entry. Since theoretically the information that can be spear from RBTB has been 

minimized by the means of BHU, the number of bit storage of each entry is the only part we 

can now attack. The two related works introduced in chapter 2 offer perfect solutions. The 

RBTB in our system operates exactly as a conventional BTB, thus the two independent 

methods would have no difficulty to co-exist with our design. By tag and address field 

shortening, the RBTB may become a buffer so lightweight and fully utilized, and so that 

every piece of it functions most of its cost. 

The second part is the dynamic power reduction. Now that the BHU and RBTB are 

exercise every cycle, we know it’s actually an overdriven state considering not every 

instruction is a branch. The unnecessary access filtering can be done separately on RBTB and 

BHU or as one task. There were a lot of researches proposed for BTB access count reduction 
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and as the two related works mentioned above, they can also be applied to our design. The 

method of access filtering can also come from the design itself. Assuming we have a loose 

timing constrain system, the partial decoding can then be serialized with following target 

generation or lookup process. Another alternative is to facilitate pre-decode, so that branches 

are identified even before they enter the pipeline. 

Finally, a compiler co-design can improve the efficiency of our current BHU + RBTB 

design. Needless to say, data dependency has always been an issue that compilers are fighting 

against. By rearranging the instruction placement in the instruction cache, so that branches 

stay away from starting position in cache line, the number of unhandleable branches can be 

decreased. Avoid consecutive branches is another way to kill unhandleable branches. And 

setting constrains so that every indirect branch targets are kept in instruction-set-defined 

register can also improve the prediction accuracy in our design. 
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