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Abstract

One challenge for environmental monitoring in a large-scale wireless sensor net-
work is how to accurately and efficiently summarize the target observation area.

This paper considers the construction of contour maps of a sensing field with diffu-
sion events. Observing that accuracy and communication overhead are conflicting
concerns, we propose four algorithms for different network deployments and re-
quirements. The first scheme is a centralized one when sensor nodes are deployed
in a grid manner. The second scheme is a localized one under the same grid de-
ployment; neighbor information is exploited to reduce communication overheads.
The third scheme is extended from the first one and is for random deployment.

The last scheme is extended from the second one and is for random deployment.
Through localized Delaunay triangulations, it achieves energy efficiency with dis-

tributed computation and communication. Performance analysis and simulation
results are presented to verify the effectiveness of these results.

Keywords: computer geometry, contour map, diffusion event, wireless commu-
nication, wireless sensor networks.
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Chapter 1

| ntroduction

Therapid progress of wirelesscommunication and embedded micro-sensing MEM S
technologies has made wireless sensor networks (WSNSs) possible. A WSN nor-
mally consists of many inexpensive wireless nodes, each capable of collecting,
processing, and storing environmental information, and communicating with neigh-
boring nodes. Research efforts have been dedicated to several topics, such as
smart living space [12][16], localization [6][11], and environmental monitoring
[91[17].

This work considers the construction of contour maps of a sensing field cov-
ered by a WSN with diffusion events. A contour map is composed of several
isolines, each as a curve on the surface connecting points of the same value. It
helps understand the spatial characteristic and movement of the diffusion event.
Fig. 1.1(a) showsthe sensing values mapped to atarget areaand Fig. 1.1(b) shows
its contour map. Examples of diffusion events include intensity of light, tempera-
ture, and humidity.

Severa works [5][8][13][14] have discussed contour maps construction in
WSNs. Reference [5] extends the query engine of TinyDB [1] to support visualiz-
ing the sensing field. Sensor nodes are deployed into a grid manner and each node
buildsasmall representation of itslocal areato construct acontour map. However,
the shape of the map is axis-dependence. 1so-Map [8] builds contour maps based
on selecting some representation nodes (called isoline nodes) around each isoline



@ (b)
Figure 1.1: (a) Sensing valuesin atarget area. (b) A contour map of (a).

to reduce traffics. It applies a linear regression model for efficient gradient esti-
mation to reduce the reporting packets. However, the final contour maps may not
be accurate since each partial contour isoline must pass isoline nodes and VVoronoi
edges. The contour maps constructed from the works [5][8] are not accuracy be-
cause their contour must pass on the boundary of grid or areaand sensor nodes. A
guadtree-based approach is proposed in [13] to cluster nodesfor energy efficiency.
However, the map construction itself is not considered. An energy-efficient data
collection algorithm is proposed in [14] by allowing only nodes nearby isolines
to report. However, it does not mention how to detect the boundaries of isolines
and how to use the sensing values to reconstruct contour maps. Furthermore, both
[13][14] assume that the sink is responsible for constructing isolines.
Energy-efficient approaches are proposed in [18][10]. The work [10] consid-
ers the spatial suppression at individual nodes to reduce traffics and proposes an
interpolation and smoothing algorithm at the sink. Nevertheless, the contour map
accuracy highly depends on the data suppression rate. Instead of using a ssimple
threshold-based detection, an event detection mechanism based on matching con-
tour maps to sensing values is proposed in [18]. An in-network linear regression
to represent the distributions of sensing valuesin each region is developed. Since
it only considers event pattern matching, produced arough sketch of datadistribu-
tions. To summarize, [18][10] focus more on reducing communication overhead,
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and thus may sacrifice map accuracy. Also, these works may not be scalable to
larger WSNs. Reference [3][4] focus on approximating contour maps by afamily
of k-vertex polygon. It is assumed that contour boundaries are given and the goal
is data reduction with a provable quality approximation.

Asreviewed above, most existing works only address one of the two concerns,
communication efficiency and accuracy, and may sacrificethe others. Inthiswork,
we attempt to address both the fidelity of contour maps and energy efficiency. We
will exploit in-network computation as much as possible to reduce communication
workload. We propose four schemes. The first scheme is a centralized one when
sensor nodes are deployed in a grid manner. The second scheme is a localized
one under the same grid deployment; neighbor information is exploited to reduce
communication overheads. The third scheme is extended from the first oneand is
for random deployment. The last scheme is extended from the second one and is
for random deployment. Through localized Delaunay triangulations, it achieves
energy efficiency with distributed computation and communication. Performance
analysis and simulation results are presented to verify the effectiveness of these
results.

Therest of this paper isorganized asfollows. Chapter 2 describes our network
model. Chapter 3 presents our centralized and distributed algorithms for grid-
like WSNs. Chapter 4 extends these algorithms to randomly deployed WSNSs.
Simulation results are in Chapter 5. Chapter 6 concludes this work.



Chapter 2
Network Model

A contour map consists of multiple isolines. An isoline is a curve on a surface
that connects points of equal values. The difference between each isolineis called
isoline interval. The set of values that isolines are formed is called isoline lev-
els. Fig. 1.1(b) shows an example with isoline interval = 2 and isoline levels
— {14,16,18,20,22, 24}.

A WSN ismodeled asagraph G = (V, E'), where V' contains al sensor nodes
and E containsall communication links between nodesin V. Each node maintains
its neighbor information by HEL L O messages. \We assume that each node knows
its own location and the network is dense enough to ensure connectivity. We
consider two kinds of network deployment, grid and random. In grid deployment,
sensor nodes are regularly separated by a distance of L and each node has up to 8
neighbors. In random deployment, there is no special structure.

Nodes sense the field periodically. I1soline levels are given by query packetsin
advance. Depending on different models, nodes may perform local computations
and send their results to the sink. When a packet travels to the sink, some data
aggregation may be done, but this is beyond the scope of this work. Finaly, the
sink will properly construct a contour map.



Chapter 3

Contour Maps Construction for
Grid Networks

Givenagrid-like WSN, wewill present acentralized and distributed schemes. The
first scheme can render a 3D surface, while the second one can render polygon-

likeisolineson a2D plane.

3.1 Centralized Grid Surface Approximation Scheme

This scheme exploits the grid structure of nodes to compute isolines. We will
not address the aggregation or convergecast mechanism while delivering packets,
which is beyond the scope of this work. The sink will apply the bicubic spline
interpolation [15] to obtain isolines from the collected data.

To understand the scheme, we first explain how the cubic spline interpolation
works to approximate a 1-dimensional function. We are given a sequence of reals
x;,t = 1,...,n, and their corresponding values y;. A spline consisting of series
of piece-wise polynomial curves will be constructed. It is guaranteed that the
spline will pass y; a each z;,i = 1,...,n. Thecurvein each interval [z;, z;.1],
i=1,...,n—1,isapproximated by a polynomial:

Si(z) = a;2® + bix® + cix + d;, (3.0
where a;, b;, ¢;, d; are coefficients to be determined. To pass y; and y;; and to
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Figure 3.1: An example of the cubic spline interpolation.

satisfy the continuity property, the following equations hold:

Si(xi) = i

Sz‘(fITz+1) Yit1

i) = S (x) 52

S5i'(xi) = S5 (2:)
Since there are four equations and four unknowns, a;, b;, ¢;, and d; can be found.
Fig. 3.1 shows how this method works given six points {(0, 3), (2,4), (4,0), (7,6),
(10,1), (12,3)}.

The bicubic splineinterpolation isto interpolate a 2-dimensional function. We

aregiven pointsz;,i = 1,...,n,, and y;,¢ = 1, ..., n,, and their corresponding
values z; ;. The goal isto construct (n, — 1) x (n, — 1) piece-wise spline curves

3
Sij(z,y) Zzauvx Y’ (33
u=0 v=0
for areas [v;, xi41) X [y;,yj+1],i =1,...,n, —1landj =1,...,n, — 1. There

are 16 coefficients a,,, to be determined for each curve. To guarantee continuity
of these piece-wise curves, each curve Eq. (3.4) must satisfy the following 16

6



equations:
Si,j(xi+5xa yj+§y) = Zit-dx,j+0y
dS; j(Tas Yjrsy)/dr = dSp j(Tas Yjrsy) /dz
dS; j(Tivse Ye)/dy = dSi a(Tivse,Ye)/dy
dSi,j(Iaa yC)/dxy = dde(vraa yc)/dxy,

wheredz =0orlanddy =0or1fora=iori+1,b=i—10ri+1,c=jor

(3.4)

j+1l,andd=j—1orj+1.

if a=1, then b=7i—-1

{if a=i+1, then b=i+1 (35)
if c—j,  then d=j—1

{if c=j+1, then d=j+1 (3.6)

While this method can give smooth and accurate surfaces, it relies on all
nodes sensory data. Furthermore, sensor nodes must be deployed in a grid man-
ner, which is practically costly.

3.2 Distributed Grid Plane Approximation Scheme

This scheme aims at reducing the reporting traffics while maintaining acceptable
accuracy. First, we will elect some leaders by inhibiting some nodes reporting.
Then, leaders will try to construct isoline segments. Finally, isoline segments are
sent to the sink to combine them into an isoline. This scheme consists of four
steps. Without loss generality, let us consider oneisoline level v;.

Step 1. Candidate Nodes, |-nodes, and O-nodes Selection. We assumethat the
sensor reading of two neighboring grid nodes would not exceed a threshold
e. Therefore, anode is called a candidate node if its reading isin the inter-
val [v; — €, v; + ¢]. To save energy, a non-candidate node does not need to
check its neighbors’ values, but a candidate node does. If a candidate node
with a value less than v; sees a neighbor with a value larger than v, it is
called an i-node (inner-boundary node). If a candidate node with a value
larger than v; sees aneighbor with avalue lessthan v;, it is called an o-node
(outer-boundary node). An exampleisshownin Fig. 3.2.

7
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Figure 3.2: The candidate nodes, i-nodes, and o-nodes

Step 2: Grid Formation. For each grid unit, if its four member nodes contain
both i-nodes and o-nodes, we will elect one nodes as the leader. For load
balance, we can use a random bidding process to elect leaders. Each leader
should collect the values of the other three member nodes and compute iso-
line segments within its grid. Without loss of generality, letting the upper-
right node of the grid be an i-node and traversing the grid members in the
clockwise direction, there are four combinations: 1-O-O-O, 1-O-O-I, I-O-1-
O, and I-1-1-O, where | means an i-node and O means an o-node. These are
illustrated in Fig. 3.3.

Step 3: Partial Isolines Estimation. In each grid, the leader will divide its grid
into two triangles. Depending on cases the triangulations are as shown in
Fig. 3.3. Traversing atriangle in a clockwise direction, there are two cases,
[-O-O and I-1-O. Each triangle must have two cross edges, which is 1-O or
O-l edge, and one non-cross edge, which isI-1 or O-O edge. We can do a
linear interpolation to find a point in each cross edge as an estimated point
passed by an isoline. Connecting the two points on the cross edges by a
line segment, we would consider this line segment as an isoline segment.
Fig. 3.3 shows different combinations of isoline segments for the above

8



Casea: [-0-0-0 Cased: /-7/-7-0
o

0

Caseb: 7/-0-0-17
1

o 0 O 0

I € i-nodes

Casec: /-0-17-0 0 € o-nodes

Figure 3.3: Four cases of grid formation and isoline segments estimation.




four cases. Cases (a) and (d) have quite clear boundaries. Case (b), we can
consider the union of the gray areas as the area with values less than v;.
Four case (c), there are actually two ways to interpret the areas with values
less than v; (it should be clear from theillustration.).

Step 4. 1solines Combination. Then each leader can report its isoline segments
to the sink. Each isoline can be represented by its two endpoints. Since
some segments may share one endpoint, each report will contain three or
four endpoints. Then the sink can combine them into an isoline. Note that
the ambiguous case (c) should be solved at the sink.

10



Chapter 4

Contour Maps Construction for
Random Networks

Next, we relax our grid constraint by allowing sensor nodes to be randomly de-
ployed. A centralized and a distributed schemes based on triangulation of the
sensing field will be derived. Since we focus on diffusion events, the Delaunay
triangulation which enforces that the circle circumscribing the endpoints of each
triangle does contain any other point is adopted to exploit the spatia correlation
of sensing data (i.e. each triangle’s endpoints are the nearest to each other).

4.1 Centralized Triangular Surface Approximation
Scheme

We will extend our centralized scheme for grid networks to one for random net-
works. The main ideaisto translate sensing data at random points to ones at grid
points. Then we can apply the same bicubic spline interpolation to construct a
contour map. The scheme has three steps:

Step 1. Delaunay triangulation on the locations of sensor nodes.

Step 2: Then, on the sensing field, form a virtual n, x n, grid network, where
the grid interval is auser-specific parameter. For each grid location, we will

11



approximate its value as follows. Let AABC be the triangle that contains
location L. The sensing value at location L will be approximated by:

z(A)- LA N 2(B)-LB N z(C)- LC

D W o R ) e SR )
) = 75470 TALIB+IC TA+iBLIC

(4.1
where z( L) isthe sensor reading at location L.

Step 3: Finally, apply the bicubic spline interpolation are in Chapter 3.1 on these
n, % n, datapointsto obtain a contour map.

4.2 Distributed Triangular Plane Approximation Scheme

For grid networks, rectangle structures can be easily found in a distributed way.
For random networks, distributed triangulation schemes have been proposed in
[2]. However, such works aim at forming triangles of the whole network. Here,
we are only interested in forming triangles around the potential isolines. We will
modify the localized Delaunay triangulation in [7], which can partition a network
into planar graph in a distributed manner, to form several triangles around the
potential isolines.

The localized communication based on the Delaunay triangulation might not
possible, because it can contain links longer than communication range of wire-
less sensor nodes. We make some assumptions to avoid incompleteness network
partition according to a potential isoline: given agraph GG, aspanning subgraph H
of G isat-spanner if thelength of the shortest path connecting any two nodesin H
isno more than ¢ times of the shortest path connecting two nodesin G. Localized
Delaunay triangulation [7] that constructs a planar 2.5-spanner of unit-disk graph
as anetwork topology and partitions the network into the Delaunay triangulation.
Based on thelocalized Delaunay triangulation, we propose a distributed triangular
plane approximation scheme. This scheme consists of five steps.

12



Step 1. Candidate Node Selection. We design a localized approximation using
neighborhood information to do isolines estimation. For energy saving, in-
stead of collecting overall sensory reading, we first select candidate nodes
as describe in Chapter 3.2. Then, we will employ localized Delaunay trian-
gulation with these candidate nodes.

Step 2: Localized Delaunay Triangulation. In [7], the authors propose the k-
localized Delaunay triangle Auvw satisfies k-localized property if the in-
terior of disk (u,v,w) does not contain any k-neighbor of w, v, or w and
all edges of Auvw are in the communication range. The algorithm of lo-
calized Delaunay triangulation is composed of two steps: firstly construct
1-localized Delaunay triangulation, and then make it a planar graph effi-
ciently. We select candidate nodes to be applied to following localized De-
launay triangulation:

Step 2a: The 1-Localized Delaunay Triangulation Formation. Each can-
didate node broadcasts a advertisement message containing its iden-
tity and location to its one-hop neighbors, and then listens to the mes-
sages from other nodes. When the candidate node gather al its one-
hop neighbor advertisement messages, it compute the Delaunay tri-
angulation through local information. Each candidate node finds all
triangles form Delaunay triangulation such that all three edges within
communication edge by checking the angle between each edge, and
then broadcasts a proposal message that contains eligible trianglesin-
formation. After sending the proposal message, double-check whether
another proposal message sent by its neighbor matching the same tri-
angle or not. Broadcast an accept with matched triangle information,
otherwise sent areject message. Finally, all accepted triangles form
the 1-localized Delaunay triangulation.

Step 2b: The Planarize 1-L ocalized Delaunay Triangulation. 1-localized
Delaunay triangle does not prevent intersection of two triangles and it

13



may happen when the radius of circumcircle of triangle large than the
communication range of sensor nodes. We remove edges of triangles
to make 1-localized Delaunay triangle to be an planar in the planarize
phase. Initially, each node of 1-localized Delaunay triangles formed
by previous phase detect that if any nodes inside of the circumcircle
of each triangle. When such a triangle is found, we remove the tri-
angle if its circumcircle contains a nodes from other triangle. Then
update the remaining non-removed triangles until no nodes inside any

circumcircle of triangles.

Step 3: Boundary Node Selection and Well-Subdividing into Triangular Blocks.
Thetriangular blocks between isolinesare well-subdivisionif all crossedges
belong to two different triangles. After localized Delaunay triangulation is
done with candidate nodes, we cannot ensure our candidate nodes are well-
subdivision into triangular blocks. That is because we only use a part of
nodes of our random networks, that is candidate nodes selected with it own
sensory values without considering neighbor nodes correlation. So that
after each candidate node exchanges sensory values with its one-hop neigh-
bors, those candidate and non-boundary nodes will be deleted and those
non-candidate and boundary nodes will be added as the following proce-
dure.

Step 3a: Delete Candidate and Non-boundary Nodes. Onceall three can-
didate nodes of the same triangular block belong to all i-nodes or all
0-nodes, we can sure that the potential isoline do not pass through
the triangular block. Those three nodes can not provide any informa-
tion of approximate the potential isoline in our localized computing
scheme, so that we delete some of the three nodes which do not be-
long to any other triangular blocks. The deleted node is candidate and
non-boundary node, that is the sensory value of the deleted candidate

14



node is with [v; — &, v; + ¢] but has no neighbors with cross edges
across the potential isoline.

Step 3b: Add Non-candidate and Boundary Nodes. We add non-candidate
and boundary nodesinto our boundary nodes set if there exists any two
candidate nodes u and v, both nodes are either i-nodes or o-nodes with
anon-cross edge and the edge does not belong to any triangles. These
two nodes exist a communication edge between each other but they
belong to different triangles. Then, these two nodes will broadcast
REQUEST message to their one-hop neighbor. With the 2.5-spanner
assumption, we can find that these two nodes must contains the same
neighbor nodesin the another side of the potential isoline. The nearest
neighbor w will replay JOINT message to these two nodes and con-
struct two cross edges. By adding the nearest common neighbor of
these two nodes, the three nodes «, v and w can form atriangles. Af-
ter this step, there is no isolated non-cross edges without belonging to
any triangles. Fig. 4.1(a) shows an example of this step.

When there is no isolated non-cross edges, we will check that whether
each cross edge belongs to two different triangles or not. A node m
has two cross edges but each cross edge only belongs to one triangles.
Then node m will select the smaller ID’s node n within one cross
edge to trigger adding nodes step. The node m and n will send the
REQUEST message to find a common neighbor. The common neigh-
bor will reply the JOIN message to these two nodes and construct one
cross edge and one non-cross edge. |If multiple nodes reply the JOIN
message to these two nodes, the node already belongs to the triangu-
lar blocks will be chosen first. If no such node can be found, choose
the farthest node from these REQUEST senders. Redo this step until
all cross edges belong to two different triangles. Fig. 4.1(b) shows an
example of this step.

15
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Figure 4.1: The step of add non-candidate and boundary nodes.

Step 4. Partial Isoline Estimation. After constructing the well-subdividing tri-
angular blocks, each triangle select a leader node to estimate the partial
isoline. There are two kinds of triangles, which are ATOO and AOII, in
well-subdividing triangular blocks. The A7OO and AOII choose node 1
and O as the leader node, respectively. Then, each leader node applies the
linear model of partial isolines estimation which is aready mentioned in
Chapter 3.2.

Step 5: Reporting and Combine partial solines. Theleader of each triangletrans-
mits computing results which contains the parameters of each partial iso-
lines to the sink. Then sink combines adjacency partial isolines to form a
complete contour map.

In this scheme, we need only those sensory reading related to the potential
isolines construction for energy saving instead of collecting overall sensory data.
Base on the localized Delaunay triangulation, we construct the well-subdividing,
which means that the network is partition into piece-wise non-overlapping trian-
gles, triangular blocks. Each leader node compute the partia isoline indepen-
dently. Hence, the localized scheme is scalable, even in large-scale sensor net-
works, leaders of sensor nodes can approximate potential isolines quickly.

16



Chapter 5

Performance Analysis and
Simulation Results

Severa metrics have been proposed to measure the quality of apolygonal approxi-
mation. A widely used choice is the Hausdorff error metric. Consider a polygonal
curve A and an approximation curve B. Given m points (ai, as, ..., a,,) of A,
n points (by, by, ..., b,) of B and the notation d(p, )) is the minimum Euclidean
distance from a point p to apolyline ). The Hausdorff metric is defines as below.

H(A, B) = max( max d(a;, B), max d(A,b,)) (5.1)

0<i<m 0<j<n

In these simulations, we consider the accuracy of contour map, network traffic
and computation workload for grid and random deployment. For grid deployment,
we compare our centralized grid surface approximation scheme (denote by CGS)
and distributed grid plane approximation scheme (denote by DGS) against the
TinyDB, INLR. For random deployment, we compare our centralized triangular
surface approximation scheme (denote by CTS) and distributed triangular plane
approximation scheme (denote by DTS) against 1so-Map. The accuracy of con-
tour map measures the effectiveness of our algorithm, and the network traffic and
computation workload reflects the power efficiency. Both performance metrics
are important for environmental monitoring in wireless sensor networks.

17



5.1 Contour Map Accuracy

We utilize afunction in Eq. (5.2) to simulate the relation of sensory location and
sensory value (refer to Fig. 1.1 for the measurement and its contour map) as our
test data.

flx,y) =31 — )2 "~ Wt)* —10(z/5 — 2% — yf)e """ — (1/3)e(@tD)*~¥*
(5.2

In the past, the accuracy of TinyDB in grid deployment were thought to be the
best accuracy compared with all other existing scheme, since it collects sensory
values in whole observation areawithout losing any detail information. INLR isa
regression and aggregation-based approach, so that the criteria of regression and
aggregation highly effect on accuracy of a contour map. In our simulations, we
use the best case of INLR in accuracy, that is supposed that no regression and no
aggregation of INLR to construct a contour map to compare with ours.

The key factor of contour map construction accuracy is the density of sensor
nodes deployment. In this simulation, we fix the deployment area and vary the
number of sensor nodes. When the number of sensor nodes increase, the nodes
density also increases. Fig. 5.1 shows the simulation results for different net-
work density in grid deployment. The CGS can achieve much more accuracy than
TinyDB and the best case of INLR for different number of sensor nodes in the
same area. The CGS performs well in accurate approximation contour isolines
with mush lower error compared with TinyDB and INLR in any node density cir-
cumstances. The DGSismore accuracy in dense sensor networks but TinyDB and
INLR are advantageous in sparse sensor networks. Fig. 5.2 shows the simulation
results for different network density in random deployment. The contour map ac-
curacy constructed by 1so-Map has much more Hausdorff error because CTS and

DTS mainly rely on the precise definition influence area of sensor nodes.
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Figure 5.1: Simulation resultsin grid deployment.
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Figure 5.2: Simulation results in random deployment.
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5.2 Network Traffic and Computation Overhead

Thetraffic generation is based on the number of reporting nodes. Thework [8] has
been proven that the number of isoline nodesis O(n'/2) for any constant number
K contour regions within a square area of n sensor nodes. TinyDB, INLR, CGS
and CTS need to collection all sensory data from whole network, so that traffic
generation of these schemesis O(n). Iso-Map, DGS and DTS select some nodes
correlated to the isoline to report to the sink, and the traffic generation is thus
limited to O(n'/?). Specifically, INLR only save slight traffic by aggregating the
same reporting packets based on tree network structure. The traffic generation of
DGSand DTS are at least one-third of 1so-Map through forming triangular blocks
and reporting through leaders. The energy consumption of communication is the
most costly in wireless sensor network. In DGS and DTS, we aim to reduce the
network traffic in contour map construction. In order to achieve cost effective-
ness of energy consumption, we utilize the local information to approximate the
contour map. Only leader nodes generate traffic which is reported to the sink to
reduce communication overhead.

There are three kinds of computation workload of DGS and DTS: 1) Initia
tion: the in-networks approach of selecting boundary nodes; 2) Computing: the
boundary nodes do localized computing for partial isolines on triangular blocks;
3) Reporting: leaders report the partial isolines in each triangular block. The
computation workload of boundary nodes discovery is bound on O(n'/?) and par-
tial isolines estimation is also bound on O(n'/?) because of only three nodes of
a triangular block involved on O(n'/2) numbers of triangular blocks. The re-
porting phase only relays the computation results without additional computation.
Thus the computation workload of reporting phase is bounded by O(n). The
TinyDB, INLR, and Iso-Map basicaly rely on the sink to construct the contour
map, whereas the DGS and DTS can localized construct the partial isolines. The
computation of DGS and DTS are more than TinyDB and INLR, nevertheless, the
traffic generation is less and more accuracy in dense sensor networks than others.
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Table 5.1: The comparison of network traffic and computation workload.

Approach | Traffic Generation | Network Computation | Sensor Deployment

CGS O(n) O(n) Grid
DGS O(n'/?) O(n*? +n) Grid
TinyDB | O(n) O(n) Grid
INLR O(n) Q(n%?) Grid
CTS O(n) O(n Random
DTS O(n'/?) O(n'’? +n) Random
Iso-Map | O(n'/?) O(deg(G) x n'/? 4+ n) | Random

On the other hands, INLR is a aggregation-based approach, and it can not achieve
load balance, because it require processing the similar data by aggregation when
reporting packets to the sink. Those nodes close to the sink have heavier compu-
tation load than those nodes away form the sink. However, for DGS and DTS,
we can balance per node workload by alternating leader nodes selection. Then,
the per node computation workload is almost equal in along run. Table 5.1 sum-
marizes the comparison of network traffic and computation overhead. Here, we
define deg(G) isthe average degree of each node in the network.
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Chapter 6

Conclusions

This paper is the first work to improve contour mapping accuracy for diffusion
events in wireless sensor networks. We propose accurate contour maps construc-
tion algorithms to approximate the sensing values for diffusion eventsin an en-
ergy efficient way. Since accuracy and communication overhead are conflicting
concerns, centralized and localized contour map construction algorithms are pro-
posed for different deployment and environmental requirements. The centralized
surface approximation aims at improving accuracy, and the localized plane ap-
proximation is to reduce the reporting traffic by localized computing. We redefine
the influence area of sensor nodes, and both centralized and localized methods can
improve contour mapping accuracy by eliminating the limitation of isoline pass-
ing on grid boundary or some sensor nodes. Furthermore, the additional benefits
of our contour map construction algorithms s to reduce communication workload
and per node computation. In conclusion, the mapping accuracy and scal ability of
our algorithm is superior, which makes our algorithms feasible for the large-scale
deployed sensor networks. In the future, we will extend to spatial and time series

contour boundary approximation model.
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