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Abstract

Low-Power Area-Efficient Data Format Converter

Design Using Static Register Allocation

Student : Te-An Wang Advisor : Dr. Lan-Da Van

Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University

ABSTRACT

In this thesis, we explore qne lowrpower and area efficient register allocation
algorithm for data format converter (DFC)-architecture designs. The proposed static
register allocation (SRA) approach mnot only-minimizes the power and number of
register transitions, but also achieves a‘comparable area cost for DFC designs. From the
implementation results of 16-bit 3x3, 4x4, 16x16 transposer, and IIR filter benchmarks
using 1-D SRA, the power consumption can be alleviated by 27.4%, 45.3%, 50.2% and
25.7% respectively, compared with the SSRA design in 0.18 um CMOS process. The
core area reduction by 44.6%, 51%, 53.9% and 38% can be achieved for the same cases.
From the implementation results of 16-bit 1-D DWT, Zigzag scanner and 4x4
par-transposer benchmarks using 2-D SRA, the power consumption can be alleviated by
5.3%, 13.6% and 16.1%, respectively, compared with the SSRA design in 0.18 um
CMOS process. The core area reduction by 28.9%, 33.6% and 26.4% can be achieved
for the same cases. Thus, the proposed SRA-based design has lowest power

consumption and cost effective among the several approaches. Finally, we implement
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the interleaver using SRA for WiMAX system.
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Chapter 1 Introduction

Chapter

Introduction

DATA format converters (DFCs) [2-9] has been widely used in digital signal
processing (DSP), image, and video processing such as matrix transposers [2, 7-8],
serial to parallel converter [2], digital filter [2, 9], one-dimensional (1-D) discrete
wavelet transform (DWT) [4,12], two-dimensional (2-D) discrete wavelet transform
(DWT) [23-26], JPEG image compression:[21-22] and interleaver for WiMAX [27-29].
The DFC consisting of data registers and-control ‘'unit' serves to permute the data from
one format to another. The registers of DFC read in data from the input bus and place
data on the output bus. The registers of the conventional DFC communicate with each
other via dedicated interconnections. Due to the largely growth of low power demands
for portable multimedia-communication designs, the parallel, folded, pipelined
architectures have been widely applied to these computation engines to save power [1,
2]. In the above low-power architectures, the DFC plays an important role of
implementing these computations. However, few papers [7-8] focus on improving
power consumption for DFC design. Thus, we are motivated to propose a lower-power

DFC design. Generally, the power consumption of a CMOS VLSI circuits can be

formulated as P =aC .V f, where a, Ci, Vyq, f denote the number of transitions, the

effective load capacitance, the power supply voltage, and the clock frequency of the

circuits, respectively [1,18]. At the algorithm and architecture level of DFC design,

1



Chapter 1 Introduction

under the same operating frequency and supply voltage, we have little room to directly
reduce capacitance for power saving. Thus, an effective way of reducing the power
consumption of the DFC is by alleviating the number of register transitions. This is

equivalent to reducing the number of variables that move from one register to another.

In brief review, many register allocation techniques [2]-[9],[19-20] have been
proposed to design DFC’s under the constraint of the minimum number of registers, and
other register allocation schemes [10-11,15-17] are applied to the register file used in
the instruction-based processor and the multi-dimensional signal processing systems.
The forward-backward register allocation (FBRA) proposed in [2-3] is the pioneer
systematic work to solve the register allocation problem for DFC designs. The FBRA
scheme results in a serial interconnection of registers; thereby, the number of transitions
is increased. A two dimensional (2D) extension of the: FBRA scheme has been proposed
in [4], where multiple data are input and eutput at the same time. A video data format
converter based on FBRA is propoesed”in [19]. The design methodology presented in
[5-6] for implementing 2-D DFC architecture results in a small area. A general
framework for synthesis of data format converters is proposed in [20]. All of these
schemes require larger number of register transitions such that the larger power
consumption is incurred. The sequencer-based data path synthesis scheme [9] is the
technique that tries to reduce the number of memory/register accesses by exploiting the
pattern properties. Next, a semi-static register-allocation scheme has been proposed by
SSRA to improve the number of transitions and power consumption for DFC
architecture [7-8]. However, as mentioned in [8], since many tri-state buffers are applied
to this semi-static register allocation-based DFC design, the buffers own the large
portion of area and power consumption. On the other hand, using SSRA scheme, the last

input variable is required to transit from the fist register to the last register. It is
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observed that the transition power has not been minimized using SSRA scheme. Thus,

the SSRA scheme results in large control area and power consumption.

1.1 Motivation

The variables move every cycle in the FBRA approach. It costs large power
consumption. In this thesis, we primarily concentrate on reducing the number of
transitions and power consumption with a slightly penalty of the increased area cost for
DFC designs. We propose a new register-allocation scheme, called static register
allocation (SRA), where each variable is allocated to the fixed register at each iteration.
We verify the correctness of this approach by implementing and experimenting with
seven examples including 3x3 transpeser; 4x4 transposer, 16x16 transposer, IIR filter,
1-D DWT, 4x4 par-transposer and Zigzag Scanner, ‘Although we need slightly larger
number of multiplexers than that-of SSRA, the SRA scheme results in much less control
area due to zero tri-state buffer, From the architecture analysis and post-layout
simulation results, the proposed design using SRA has lowest register transition and
power consumption with satisfactory area cost. Other register allocation schemes [10-11]
are applied to register file and high level synthesis with the application of embedded
processor and computer instead of DFC designs. Thus, this kind of register allocation

schemes [10-11] always work with tool chain such as compiler.

1.2 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 introduces the fundamentals
of 1-D and 2-D register allocation schemes including the forward backward register

allocation (FBRA), semi-static register allocation (SSRA), and two-dimensional (2-D)
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register allocation. The proposed 1-D SRA algorithm and architecture is presented in
Chapter 3. The proposed 2-D SRA algorithm and architecture is presented in Chapter 4.
Four 1-D and four 2-D DFC benchmarks using three different approaches are compared
in terms of transition activity, power consumption, and area in Chapter 5. Meanwhile,
we implement the interleaver for WiMAX system using the SRA approach and compare
the power consumption with the conventional memory-based design. Finally, the

conclusion and the future work are remarked in Chapter 6.
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Chapter

Fundamentals of 1-D and 2-D Register
Allocation

In this chapter, we will introduce the fundamentals of 1-D and 2-D register
allocation schemes including forward backward register allocation (FBRA), semi-static
register allocation (SSRA), and two-dimensional (2-D) register allocation for data
format converter (DFC) designs.

For convenience of demonstrating the difference of the FBRA and SSRA schemes,
we use matrix transposer as an example,

Assume that Xsx3 and Ysx3 denote the input matrix and the transpose matrix of Xsys,

respectively, where the relationship is expressed in (2.1).

T
Yax3 = X3><3_

2.1)
Xaga=|dy & f Yaa=|b e h
Let 9 M ] e obtain & T \where the input and output

data sequences are scanned in {ai,b1,c1,d1,e1,f1,01,h1,i1} and {a1,d1,91,b1,e1,h1,C1,F1,11},

respectively.
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2.1 Forward-Backward Register Allocation (FBRA)

The FBRA scheme presented in [2-3] uses a single data path having a pipeline-like
serial interconnection of registers. Thus, the control method of FBRA is much simple
such that the control overhead is low. However, the variables storing in registers always
move forward or backward every cycle such that larger power consumption is incurred.
Figure 2.1 shows the forward-backward register allocation table for the 3x3 transposer,
where arrow denotes the register transition. In this case, the number of transitions for
each iteration is 36.

Figure 2.2 shows the architecture of 3x3 transposer using FBRA. The 3x3
transposer architecture of FBRA uses one three-to-one multiplexer and two two-to-one

multiplexers to control the DFC data flow.

cycle input R1 R2 R3 R4 output
0 AN

1 bl\\A ax

2 Cy M by A a1\

3 dl\ N C1 ™ bl\‘\ as

4 e; T di | cl\\\ b [ a,
5 fi N g \@ N Cr. ™ Dby d,
6 @ T o ™ e ﬁ‘il C1 01
7 hi gl W\A e ™ by
8 e ™ Pl D o PN \\@ e
0 N g \@ oo N f h:
1 N i f.. N (c c1
2 \\A 1N M @ fy
3 N (i) iy

Figure 2.1 Allocation table for 3x3 transposer using FBRA.
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9|+6 ? ? 91+1234.78

91+0,5

IN R1 R3 —-I R4 }—¢

9l+6 91+0,5

Figure 2.2 Architecture of the 3x3 transposer using FBRA.

2.2 Semi-Static Register Allocation (SSRA)

The semi-static register allocation (SSRA) scheme [7-8] has been proposed to
improve the number of transitions and power-consumption for DFC architecture. In the
same case, Figure 2.3 shows the SSRA-bhased" allocation table for the 3x3 transposer,
where arrow denotes the register transition. From Figure 2.3, the number of transitions
for each iteration is 11. Using the SSRA scheme, the last input variable is required to
transit from the fist register to the last register. It is observed that the transition power
has been reduced; thus, the SSRA scheme results in less power consumption.

Figure 2.4 shows the architecture of NxN transposer using SSRA. The global
inter-register buses and 1/0 buses, driven by tri-state buffers, are used in the SSRA
scheme to transfer data between any two registers and the 1/O. Since many tri-state
buffers are applied to the SSRA-based DFC design, the buffers own the large portion of

area. Thus, the SSRA scheme results in large control area.
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cycle input R1 R2 R3 R4 output
0 IR
1 bl\\\\\al
2 cl\\al\ P~ by
3 dl\\éh\}* C1
4 1N @ b\1$1-> ds a;
5 fl\\&;\ b, C1 @ dy
6 (@) e | b o—t= 01
7 hi~_ &1 Cy f by
8 i1 ™ C1 fy e
0 i (hy) c1 fi hy
1 i (© fi c1
2 M i ® fa
3 IO i

Figure 2.3 Allocation Table for:3x3 transposer using SSRA.

Input bus Inter-Register buses Output bus

T1 P1

Control Logic 11— Register 1 a1
—p T1-TN
— 11-IN

PLA — P1-PN T2 P2
- J1-IN

12 Register 2 J2

Counter
TN . PN
Register
IN N JIN

Register array

Figure 2.4 Architecture of the NxN transposer using SSRA.
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2.3 Two-Dimensional Register Allocation

One of the 2-D register allocation schemes [4] is the extension of the FBRA
scheme. It has been proposed to reduce the area of the 2-D DFC. Since 2-D register
allocation scheme is used for multiple inputs and multiple outputs, it uses multiple data
paths of vertical pipeline of registers and gated clocks to reduce control area overhead
and power consumption.

According to [4], the interface format of a DFC is defined as (m1,d;)—(m2,d2)[N].
This general format can be used to describe both word-level as well as bit-level
converters. For bit-level converters, primarily used in signal processing systems, this
can be read as: d; bits of m; words are input every input clock cycle, each having a
word-length of N, while d, bits of m, words are output every clock cycle. For
word-level converters used in two-dimensional.image/video processing applications, the
above format may be interpreted-as: dy samples.of ms-rows of the image are input every
input clock cycle, each row having"N samples; and d, samples of m, rows are output
every clock cycle.

Such an input specification can be used for almost all DFC applications, except for
a few like the zigzag scanner.

For convenience of demonstrating the difference of the 2-D register allocation
schemes, we use 1-D DWT as an example.

Assume that X and Y denote the input matrix and the output matrix, respectively.

WéO) Wl(O) WgO) W§0) W(()O) WfO) W(()Z) W:EZ)
© W (O © W@ @ (@
w? WO WO w . w® WO W@ W
Let X= ‘(‘2) ?2) fz) 22) . we obtain Y = fo) :(”O) fz) fz) . where the
w? w® W w w? WO w® o w
W[(lZ) WéZ) WéZ) W§2) WéO) W§0) WéZ) W§2)

input and output data sequences are scanned in {wo®, w1 @ wo@, w3, {w,©, ws©,
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we® w03 wo®, Wi, wo®, ws@3, {wis®, ws®, we®, ws @} and {wo®, wi®, wo®,
Wi}, W@, ws®, wo®, we®3, @, ws®, we®, wa®Y, @, we®, we®, wo@3,
respectively.

Figure 2.5 shows allocation table for the 1-D discrete wavelet transform (DWT)
using the 2-D register allocation. The specification of the 1-D DWT DFC can be given
as (1,4)—(2,2)[8].

Figure 2.6 shows architecture for the 1-D DWT using the 2-D register allocation.
The 2-D register allocation use multiple local interconnects and multiple global
interconnects as well as reduce the number of interconnections by maximizing the reuse

of the interconnections.

time input R1 R2 R3 R4 RS R6 R7 R8 output

Oy, 0 4.0 .0

0 [wo~ Wi Wy Wy

0 0 0 0
L O w0 wg® | w© | w0 w0

2 2
2 D wis? @ | & w6 w, g vy
2 @y @) 2 v “ .
s PPl 1O ] 0 | @1 @ | @T@T w® | w® w2 us?

b0 | 0 0,0 00 5,2 0

6 7
5 @T@TW | @ |ww w2 w

Figure 2.5 Allocation Table for 1-D DWT using 2-D register allocation.
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W4(2) W5(2) W 6(2) W7(2)
WO(Z) Wl(z) W2(2) W3(2) nout
©0) ) ©) ©) P
W, W5 W5 W5
Y, 0(0) Wl(o) W 2(0) W 3(0)
IO I 1 |2 |3
1 2 3 4
01 01
Oy O, 0O, O3
5 6 7 8
Ty — 11
0123 0123
WG(O) W7(0) W6(2) W7(2)
W4(0) W5(0) W4(2) W5(2) Outout
) ©) @) @) Y
W2 W3 W6 W3
WO(O) Wl(O) WO(Z) Wl(Z)

Figure 2.6 Architecture for 1-D DWT using 2-D register allocation.
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Chapter

1-D Static Register Allocation Algorithm
and Architecture

In this chapter, we explore the 1-D static register allocation (SRA) algorithm and
the corresponding low-power area-efficient DFC architecture. In the same chapter, the
properties for NxN matrix transposer and .control unit of the 2-D DFC design are

presented.

3.1 Algorithm and Architecture

Given the input time and output time of all variables.

The design steps of the 1-D SRA algorithm are described as follows.

Step 1: Determine the minimum number of registers using the lifetime analysis.

Step 2: Assign the input variable to the available register in ascending order until
exceeding the minimum number of registers.

Step 3: Return to and search for the available register from the first register when
exceeding the minimum number of registers.

Step 4: Repeat steps 2 and 3 as required until one iteration allocation is complete.

Step 5: Go to the following iterations and repeat steps 2, 3 and 4 as required until one
period allocation is complete.

In this thesis, the iteration is defined as the required cycles to finish a computation

12



Chapter 3 1-D Static Register Allocation Algorithm and Architecture

process. The period is defined as the required cycles to finish a complete computation
process, where each complete computation process has the same register allocation
assignment for all variables. If the sum of life time of the corresponding variables
storing at the same register is larger than the number of cycles for one iteration, the
DFC possesses the feature of the multiple iterations. Otherwise, the DFC will belong to
the single iteration. For the single iteration, the period has the same cycle count as the
iteration. Otherwise, the period is equal to the cycles of the multiple iterations. Without
loss of the generality, we use four benchmarks including 3x3 transposer, 4x4 transposer,
16x16 transposer and IR filter to verify and demonstrate the above design steps. In the
first benchmark, assume Xsx3 and Ysys denote the input matrix and the transpose matrix

of Xsyxs, respectively, where the relationship is expressed in (3.1).

Y3x3 = x;x3' (31)
& b ¢ - d g

Let X,,=|d, e f |, we obtainerYsm=|b- e h |, where the input and
gl hl i1 Cl fl il

output data sequences are scanned in  {aj;,b;,cy,d1,61,f1,91,01,11} and
{a1,d1,01,b1,e1,h1,¢4,f1,i1 }, respectively. The length of both sequences is nine. In step 1,
using the lifetime analysis in [2], the minimum number of registers is four. In step 2, we
use allocation table to assign the input variables to available registers in ascending order
as shown in Figure 3.1, where arrow denotes the register transition. Thus, the input
sequences {a;, by, ¢y, di} are inputted to the corresponding registers {R1, Rz, R3, R4}
For next sequence data e;, we need to return to the first register and search for which
register is available from R; to R4 in step 3. In this case, Ry is available for input
sequence data e;. About the next input sequence data f;, we find that R, and R3 are not
empty as shown in Figure 3.1 and then skip R, and R3. Thus, the input data f; is inputted
to the Ry register.

13
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cycle input R, R, R3 R4 output
0 a;
1 b; — . a
2 C; — a ™ by
3 dy ——a; | by ™ C1
4 er @ by | & T d; ar 1
5 f, 1 we | b ¢ @ d
6 @ e by e fu O1
7 hy —| e @ C1 f by
_8 _ | L @ M~ hy C1 fi e Iteration 1
9 (0) a -f 0 i1 (@) c f hy
10 (1) b, i1 s g ®_ |1 = o
1@ [ e it a e b ®_| ©
2E| o] @ | & 77 e e | i
13 (4) o @ b, c2 a
14 (5) f, - @ ~~~~~~ ™~ e b, ) d;
15 (6) @ ‘o e b, C2 92
16 (7) hy - fz €2 @ C2 b,
17(8) | dp =i & | ey ~ Cy g, |ieration2
18 (0) & 4 6 ™0k | ™ | o hs
wvw| b4 | o a | © c
20 (2) s N ® i N @~ b f,
21 (3) d; —| Cs @_ az bs 2 Period
22 (4) es — ™ ds bs a
23 (5) f | cs || @1 e bs ds
24 (6) @ C ™ fa es bs s
25 (7) hs +— & | | fs e; ® bs
| 26(8) | s fo LRI % hs e;  [merations
27 (0) ag ofeeCal e s > i3 @ hs
28| b @ | & TR a &
202) | c |4 b, ® | i & s
0@ | defonbe ot e | @1 a6
31(4) €4 - b4 C4 """" ~ s as
32 (5) fa ... b4 C; ........... """ > €y ds
336 | @ b | TET s & 9
34 (7) he ~| (@ Cs fs e, by
35 (8) T o Ca fa e, |terationa
0 a D) e | e W) ha
1 by a D) fs is 4
2 C1 ap b, @ is fa ‘
3 dy a by Cy @) is v

Figure 3.1 Allocation Table for 3x3 matrix transposer using 1-D SRA.

In step 4, we repeat steps 2 and 3 recursively until one iteration allocation is done
as shown in Figure 3.1, where the dash-bold line denotes the boundary of one iteration.

Equivalently, one computation process, 3x3 transposing, is calculated under one
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iteration. Finally, in step 5, we repeat steps 2, 3, 4 as required until one period
allocation is finished as shown in Figure 3.1, where the solid-bold line denotes the
boundary of one period. In this case, the 3x3 transposer has nine cycles and 36 cycles
for one iteration and period, respectively. From the allocation table as shown in Figure
3.1, all input variables are static in one register until they become desired outputs.
Hence, this method is referred to 1-D static register allocation (SRA). According to the
proposed 5-step 1-D SRA algorithm, the number of transitions can be further minimized
compared with that of [2-3] and [7-8]. In this case, the numbers of transitions for each
iteration handled by FBRA, SSRA, and 1-D SRA schemes are 36, 11, and 8,
respectively. The corresponding new 3x3 transposer architecture is depicted in Figure
3.2. In similar behavior, the proposed 1-D SRA is capable of treating the register
allocation for higher-order transpaoser. In the case.of 4x4 transposer, the numbers of
transitions for each iteration handled by FBRA; SSRA, and 1-D SRA schemes are 144,
24, and 15, respectively. For larger size.case,.16x16 transposer has 57600, 570, and 255
transitions for each iteration performed by FBRA, SSRA, and 1-D SRA schemes,
respectively. As a consequence, the 1-D SRA scheme can lead to lower transitions for

NXxN transposer.

h’ ouT
<«
° °
361 36|+ 361 36|+ 36l +
0,4,8,12,14,20,28, 1,7,9,13(17,21,23 2,10,16}18,22, 3,5,11,19,25,27, 6]15,24,33
34 ,2! 26,30,32 31,35
R1 R2 R3 R4
A
361 36|+ 361 36|+ 36l +
0,4,8,12,14,20,28, 1,7,9,13(17,21,23  2,10,16}18,22, 3,5,11,19,25,27, 6]15,24,33
34 ,2! 26,30.32 31,35
o °
IN 4

Figure 3.2 Block diagram of 3x3 transposer using 1-D SRA.
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In the fourth benchmark, IIR filter that computes y(n) = ay(n-3) + by(n-5) + x(n) is
folded, we apply the SRA approach to improve the transition activities. The resulting
allocation table and the improved IIR filter architecture are depicted in Figure 3.3 and

3.4, respectively, where the same notations are adopted as that in Fig. 6.19 of [2].

cycle input R: R, Rs output
0

1

2 n,

3 N3 ™ Ny

4 N | }m @ Ny
5 Ns - ng‘ n,

60 | N~ '.'h’z"“@ Ny
T | oy (0 o, N, n,
8(2) nz\{‘@ W En, | N

93 | ny e =N n,
w@ | n,4on, | o} n | n
16 | ng n, n, @ n,
20| n, n, n, | )| n,

Figure 3.3 Allocation table for IIR filter using 1-D SRA.
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a b

6I+0,2,Al £6|+1,3,5 6I+0,2,4J’ $6I+1,3,5

61+1,3,5
X(N—9
61+0,2,4
46
L' g
Gelas 61412 o [61+12
+ ) !
. 2 {—o—I—el 3.4 . 161434 o 0135
61+0,2.4 e R2 S
® 614024
61+0.57 61405
61+0,2,4 R3
—9 )\o—>y(n)

Figure 3.4 Block diagram of IIR filter using 1-D SRA.

3.2 Properties of N x N-Transposer Using 1-D SRA

From the SRA-based allocation ‘table, we observe that the periodic allocation
occurs for 3x3, 4x4, and higher-order transposer. For example, if register R; is occupied
with a variable in the first cycle, then R; owns the identical variable in (I + Cp)-th cycle,
where Cp denotes the number of cycles for one period. We can calculate Cp by the
following properties 2 and 3.

Without loss of the generality, the relationship of the NxN input matrix and

transposed matrix can be expressed in (3.2).

— -T — -

al,l al,z al,N a-l,l az,l aN,l

Ay Ay - A a, a. -+ a
YNXN — XLXN — :2,1 :2,2 . :Z,N :1,2 :2,2 . :N,Z (32)

aN,l aN,Z aN,N a-l,N aZ,N aN,N

We can derive the following properties for NxN transposer.

17
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Property 1: The number of registers Ng equals (N-1)* for NxN transposer.

Proof:

Input and output data sequences in (3.2) can be scanned in the following.

X ={a11,81 50 Q1N 801,80 00000y B yevs AN 1000 BN N T (3.3a)

Yo ={a11,85 1,0 QN 1,812,189 0000 AN 240 BN s BN N T (3.3b)

From (3.3a) and (3.3b), since NxN transposer is a causal system, we need to shift right

the transposed sequence in (3.3b). The variable in (3.3a) compared with that in (3.3b)
which has the longest distance will be the aligned point. In this general case, ay; is

the aligned point. Thus, the shift-right distance implemented by registers is equal to the
number of registers for NxN transposer. Hence, the required number of registers can be

presented in (3.4).

N, =N(N-1)+1-N =(N=017. ¢ (3.4)
Property 2: The number of cycles for one iteration, C;,"equals N? for NxN transposer.
Proof:

According to the iteration definition and allocation table as addressed in this chapter, we
can see that each iteration consumes the cycles equaling the total number of variables in
the transposer. Thus, for NxN transposer, the number of cycles for each iteration can be

expressed in (3.5).
C, = N?Z. ¢ (3.5)

Under the multiple-iteration case (i.e., N = 3), we can obtain Property 3.

Property 3: The number of iterations for one period, Ip equals 2(N-1) for NxN
transposer.

Proof:

For convenience of derivation, the input matrix X is repeated in (3.6).
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®L,l a\l—l,Z a\l—l,3 a\l—l,4 a\|—1,5 ad—1,5 ... é\l—l,N
_a.N,l aN,Z aN,3 a\l,4 a\l,S a\l,6 ttt a\l,N

- (3.6)

At the first iteration, from input sequence in (3.3a) and aligned output sequence of
(3.3b), the output variable a; 1 occurs at the same time instance as the input variable ay.;,
2. Similarly, the output variable an.;2 occurs at the same time instance as the input
variable ayn. These three variables are certainly allocated at the same register, R;. That
means the input variable a; ; at the next iteration cannot be allocated at R; register and
moved to R, register. At the second and third iteration, the new first input variable a; 1
has to be fed into the next available register-R;-and R3, respectively, via SRA approach.
For N=3, at the forth iteration, the new firstiinput variable a;; has to be fed into the
available register Ry (i.e., a4 is fed into R4 as shown in Figure 3.1). However, for N >4,
at the fourth iteration, the first input variable will encounter the unavailable register Ry
that is occupied by other variable. That means Ry register has longer life time while the
input variable a; ; is arriving.

For instance, we show the allocation table of 4x4 transposer in Figure 3.3 to
illustrate the above situation. In this case, a; ; is needed to input to available register R;
and each input variable will be only appeared in dedicated registers for N>4. As a
consequence, the input variables can be separated into Q groups (i.e., G, Ga, ..., Gg) to
finish the allocation. In the case of 4x4 transposer, there exist two groups in Figure 3.5.

The group G; is composed of Ry, Rz, R3, R7, Rg, Rg and the group G, consists of R4, Rs,
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Re.

After transposing the NxN matrix, at the first iteration, some registers store multiple
variables and some registers store single variable. The sum of the lifetime of all
variables stored at the register under the first iteration boundary can be longer than C,,
less than (C,-1), or equal to C and (C,-1). Thus, the utilized registers from R; to Rn.1)°
can be classified into five types. The lifetime of one register storing the single variable
is longer than C, and then is referred to as type-1 register. The lifetime of one register
storing multiple variables is longer than C,, and then is named as type-2 register. The
lifetime of one register storing the single variable is equal to (C,-1), and then is referred
to as type-3 register. The lifetime of one register storing multiple variables is equal to
(Ci-1), and then is named as type-4 register. The lifetime of one register storing the
single variable is less than (C,-1),.and then is referred to as type-5 register. Thus, for
N >3, the difference value of the.type-3, and 4.register can be defined as the sum of the

lifetime of all variables storing in-this register.in(3.7).

Dy =Cur g —C, +1. (3.7)

where C; . denotes the life time of the register Ri. For aj 1, it belongs to the type-2

register; from Property 1, the difference cycle Day 1 is (N-1)? due to the shift distance.
For other input variables marked in dash-line circle, they belong to the type-3 and 4
registers. The difference values of the corresponding registers are equal to zero in (3.7),
where the specified input variables a;; are allocated at Rg.1)x+j). According to the above

calculation, the input variable belongs to which register can be determined.
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cycle input R1 R2 R3 R4 R5 R6 R7 R8 R9 output

0 a1

1 a2 \31,1

2 3 a1 [~ A

3 a;4 —2a }* a3

4 a1 T——8ra | &, | amz ™ aw

5 Q2 T8 & az | ara P~ @

6 Q3 T— | &1 a3 TAT" a2

7 B4 TR @2 | s | & | @i | @ &g

8 a1 T B8 | as | & | @1 | ao | @3 " @ -

9 az2 a2 a3 aia a1 Q2 | @25 | @i 1™ a3 a1

10 a3 —:as,g a2 a3 aia az a3 a4 as1 a1

11 834 T 8382 | @ | a1 = ass a2 az3 a4 as1

12 g1

13 ai 2

14 a2

15 az2
16 0) 22 1 |teration 1
17 (1) a3
18 (2) _ a3
19 (3) 4 - : , , ars | 3 , 334 33
20 (4) 1 Ao 8, : ol Ay, } a3 a3
21 (5) 2 , , , @ s } ’ aza aig
22(6) | @pa f--Bau. 4 , , , ‘ | asa | @
23(7) : a7 : : | ) -3, @9 | a4
24 (8) Ay, i
25 (9) a1l
26(10) a1
27(11) az1
28(12) A
29(13) aio
30(14) a2
31_(151 azz2
32 (0) &2 | \teration 2
33 (1) a3
34 (2) a3
35 (3) a3
36 (4) as3
37 (5) , _ , , , ‘ , avs
38 (6) , , , ) , ‘ , , @2 | a4
39 (7) I
40 (8) e i
41(9) a1
42(10) —aza | a1
43(11) a2 4 az1
44(12) A24 a3 a1
45(13) — a3 1,2
46(14) 43 +—824 | 334 az2 ass | @ | are—|> s a3 a3 a2
47(15) 4 s ag2
48 (0) 823 42| jteration 3
49 (1) | a3 a3
50 2 i 225
51 (3) ™ a3 l 33
52 (4) a3 : a3
53 (5) a1 | ais
54 (6) a1z || @24
55 (7) as || asa
56 (8) as |aa | 4
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56 (8) a1 |_ _I g a1 . a1 a2 a1 3 I_ 844 |
57 (9) X a1 i
58(10) 3 - , , @y | 5T ag, ‘ , az1
5011 | asa oz | as | Gay [TEr as.
60(12) a1
61(13) ayn
62(14) az2
| 63(15) as2
64 %2 | teration 4
65 (1) a3
66 (2) \ ! az3
67 (3) , | | %
68 (4) a1 —‘é\%:.az\,zt Az WI‘ aia :_@ s || A1 a2 || s
69(5) | ap ‘\aivs\i_ﬁA a4 R T ! aa || & a, || s
70(6) | a3 J~&3 | TA}* a2 a4 a1 : as | an a: || a
1M | as —aiz |3 :_ @3 _: a2 A4 a1 i 844 : a1 a2 ! a4
72(8) | as1 T—Ars—| @3 ™ &4 a2 a4 @y || @D i a1 a2 ;_aia _ v
739) | az; +—aws | s | @ Q2 | aa | @mr—ass ai, s
74(10) Az3 T—a+s—| a3 a4 azp T@%* azp a2 a1
75(11) A4 Tz @3 A4 szLA\" az3 @ az2 a2 a3 1
76(12) a1 3 a3 X Ao | @14 | dr—>aas azp a2 a1
77(13) &, T Brz——da3 | @4 a2 a4 az3 Az a2 a2
78(14) a3 T—ass_ | @23 a4 aa A3 | @4 | W@z ™ az
| 79(15) |_ ass _“‘%3‘%%“&.3 a4 833 a3 4 a2 832
800 Iteration 5
81 (1)
82 (2)
83 (3)
84 (4)
85 (5)
86 (6)
87 (7)
88 (8) ¥
89 (9)
90(10)
91(11)
92(12)
93(13)
94(14)
95(15)
0 Iteration 6
1
2
3
4
5
6
7
8 az,1 a1 a2 a3 ag4 az1 a2 a3 a4 @ A4 v

Figure 3.5 Allocation table for 4x4 transposer using 1-D SRA.

The difference of the type-1 and type-5 registers can be calculated from the
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corresponding variables owing to the single variable. The difference of type-1 register

designated by square box as shown in (3.6) can be generally represented in (3.8).

Dai,i+k+3 = CLT'ai,i+k+3 _Cl = (k +1)(N _l) (3 8)
forl<i<(N—k-3),k=012,...(N —4),and N > 4 '

where C,; .~ denotes the life time of the input variable a;;. Each detailed equation can

be obtained from (3.8) as follows. Da; 4= Days= ... = Dangn= (N-1), Da;s= Dazg= ...
= Dan.an = 2(N-1), Daig = Day7= ... = Dan.sy = 3(N-1), ..., Dagn= (N-3)(N-1), where a;;
will be allocated at Rg-1yxn+j). In similar behavior, at the first iteration, the difference of
each type-5 register designated by circle box as shown in (3.6) can be generally

represented in (3.9).

Dai+k+l‘i+2 = CLTvai+k+1,i+2 _C| = _(k +1)(N _1) (3 9)
for 1<i<(N-k—-3),k=012,...,(N—4),N.> 4 '

Each detailed equation can be ‘obtained from (3.9) as follows. Day3 = Daz4 =...=
Dan-an-1 = -(N-1), Dags = Dag 4 =" = Dan-an2=-2(N-1), ..., Dayo3 = -(N-3)(N-1), where
aij will be allocated at R(Gi-1yxn+j). Note that, for 3x3 transposer, equations (3.8) and (3.9)
do not exist.

According to (3.7), (3.8) and (3.9), we can calculate matrix D in (3.10) to represent the

relationship of difference of registers.

:" ARy R

b N+
DQ2N+1 DR2N+2 ‘v
D =]

| o - (3.10)
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In (3.6), G; group as designated by diamond box consists of the input variables a; 1,
aj 2, A13, 42,3, A24,..., AN-2N-1, AN-2,N, AN-1,1. Using (36), (3.7), (38), (39) and (3.10), the

cycles of Dg; can be derived as

Dgy = Dgy + Dg, + Dgs +...+ DR(NZ_ZN_D +Day 4t DR(N—l)z
=Dy, +Dg, +Dgs +...+ DR(NZ_ZN_D + DR(N(N_Z)) + DR(N—l)Z
=(N —1)2—(N—3)(N -1)=2(N-1), N >3 (3.12)

where Dg, denotes the sum of difference cycles of registers in G; group. However, it
is difficult to formulate the relationship between difference value of D¢ of other group
and order N. From (3.10), the value of Dg will be consumed by Dg iterations. That
means one complete periodic allocation process can be finished after Dg; iterations.
Thus, we obtain (3.11) as follows.
l, =2(N-1), N=>3. ® (312

Example 1: For 3x3 transposer-whaose input_matrix is shown in (3.13), at the first
iteration, the life time cycle of each register is listed from (3.14a) to (3.14d) and the 3x3

matrix D is shown in (3.15).

Xog =

Q2 s
G Qe s (3.13)
and
Dri=13-9=4, (3.144a)
Dr,=9-9=0, (3.14b)
Drs=9-9=0, (3.14¢)
Drs=9-9=0. (3.14d)
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D3x3: X
X X

X

X (3.15)
In this case, the group G; consists of R1, Ry, R3, and Rs. We obtain the number of
iterations by summing (3.14a) to (3.14d). 1p=Dg1=Dr1+Dgro+Dr3st+Drs=4. Thus, we

require four iterations to complete one period allocation for 3x3 transposer. L 2

Example 2: For 4x4 transposer whose input matrix is shown in (3.16), at the first
iteration, the life time cycle of each register is listed from (3.17a) to (3.17i) and the 4x4

matrix R is shown in (3.18).

By (3.16)
and

Dri=25-16=9, (3.17a)
Dr2=16 - 16 =0, (3.17hb)
Drs=16-16 =0, (3.17¢)
Dra=19-16 =3, (3.17d)
Drs=16—16 =0, (3.17¢)
Dre =16 — 16 =0, (3.17f)
Dr7=13 - 16 = -3, (3.179g)
Dre =16 — 16 = 0, (3.17h)
Dro=16—16 =0, (3.17i)
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! 1 (3.18)

Note that there exist two groups. The group G; is composed of R, Rz, R3, R7, Rg, Rg
and the group G consists of R4, Rs, Rg. We obtain the number of iterations by summing
(3.17a), (3.17b), (3.17c), (3.17g), (3.17h), and (3.17i). I, = Dg1 = Dgr1 + Drz+ Drs+ Dgry
+ Drg + Drg = 9-3x1= 6. Thus, we require six iterations to complete one period

allocation for 4x4 transposer. <

Hence, we are able to calculate the number of cycles for one period via multiplying (3.5)
and (3.12) for multiple iterations,as expressed in upper part of (3.19). For single

iteration, Cp=C, as expressed in lower part of (3.19),

2(N = >
sz{ZN (N-1) for N3 (3.19)

C,=N? for N=2/

In the case of the 3x3 transposer, we can directly use (3.19) to calculate the number of

cycles for one period (i.e., Cp = 36).

3.3 Control Unit of DFC Using 1-D SRA

The control unit of DFC designs affects the control area size and power
consumption of the DFC design. Since the control unit of the 1-D SRA-based design
has to handle multiple iterations (one period), the control overhead is larger than that of
the conventional designs. The signals generated by control unit are responsible for

controlling the multiplexor and register writing. Since the control signal can be
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partitioned to several groups, the number of groups depends on the size of the DFC
design (i.e., the 4x4 transposer with two groups). In the multiple-iteration case, the
group control signal bits of the second iteration can be obtained by rotating right 1-bit of
the group control signal bits of the first iteration. The group control signal bits of the
third iteration can be obtained by rotating right 1-bit of the group control signal bits of
the second iteration and so forth until the last iteration. An example is shown in Figure
3.6. According to the above analysis, we can use barrel shifters to reduce overhead and
complexity of the control unit. The architecture of control unit using SRA is shown in
Figure 3.7.

The architecture of 4x4 transposer using SRA is shown in Figure 3.8. Compared
with SSRA, the input ports of all registers connect to data input port of the top module
to reduce control overhead and .each writing signal of register is independently

generated by iteration based control_unit.
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The control signal of Iteration 1 : The control signal of Iteration 2 :

Rt Ry Rs|Ry Rs Rel R7 Rs R Ry R, Ry Rs Rs Rel R7 Rs R
Cycle 0 10010000 00fcCyle0 01010 00l0o 00
Cycle 1 010lo0o0 0:0 0 0 | Cyclel 00100 O:O 00
Cycle 2 00 1:0 0 00 0 O | Cycle2 00 0:0 0011 00
Cycle 3 0 0 0j1 00lI0 O O0|Cycle3 00 0,0 10l0 00
Cycle4d 0 0 010 1 olo 0 o0 Cycle4 0 0 010 O 1lo 0 0
Cycle 5 0 0o0loo 1:0 0 0fCycle5 0 0 o0l1 0 0:0 00
Cycle 6 00 0:0 0 0j1 0 0| Cycle6 0 0 0:0 000 10
Cycle 7 0 0 0j0 00l0 1 0| Cycle7 0 00,0 00l00°1
Cycle 8 0 0o0l0o00l0o01 Cycle 8 100000000
Cycle 9 100l0 o0 0:0 0 0 | Cycle9 010l00 0:0 00
Cyclel0 0 0 0:0 100 0 0|Cycle10 0 0 O:O 01,000
Cyclell 0 0 0;)0 00I0 O 1 (Cyclell 1 0 0,0 0010 00
Cycle1l2 0 0 010 00/0 0 0 |Cyclet2 0 0 010 00lo 0 0
Cyclel3 0 1 0:0 0 0:0 0 0 |Cyclel3d 0 O 1:0 0 0:0 00
Cyclel4 0 0 0,0 0 110,070 |Cycle14 0 0 Oll 00j0 0O
Cyclel5 1 0 0j0 0 O_!O 0 OufCyclels 0 1 00 O 0_!0 00

Figure 3.6 Control signals of the 4x4 transposer using 1-D SRA.
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Figure 3.7 Architecture of control unit of DFC using 1-D SRA.
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Figure 3.8 Architecture of 4x4 transposer using 1-D SRA.
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Chapter

2-D Static Register Allocation Algorithm
and Architecture

In this chapter, we propose the 2-D static register allocation (2-D SRA) algorithm
and the corresponding low-power area-efficient 2-D DFC architecture. In the same
chapter, the properties for NxN par-transposer.and control unit of the 2-D DFC design

are presented.

4.1 Algorithm and Architecture

According to [4], the throughput of the 2-D DFC is maintained constant, i.e., the
input and output data rates are the same. From the given specifications, the number of
data samples input in every input clock cycle =m, xd,, while the number of samples
output in every output clock cycle =m, xd,. Thus, if g = gcd(m, xd,, m, xd, ), then the
input cycle period = (m,xd,)/g and the output cycle period = (m,xd,)/g. This
ensures that the number of samples input and output from the DFC for every clock cycle
remains constant at g samples per time unit.

The design steps of the 2-D SRA algorithm are described as follows.
Step 1: Determine the minimum number of registers using the lifetime analysis.
Step 2: Assign the input variables to the available registers in ascending order until

exceeding the minimum number of registers.
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Step 3: Return to and search for the available registers from the first register when
exceeding the minimum number of registers.

@ Allocate the corresponding variable to the same register when the variable of the
last iteration stores at the register.

@ Allocate the variable with the shorter lifetime to the register with the lower index
and allocate other variables with the longer lifetime to the next register with larger index
in ascending order.

Step 4: Repeat steps 2 and 3 as required until one iteration allocation is complete.
Step 5: Go to the following iterations and repeat steps 2, 3 and 4 as required until one
period allocation is complete.

In this chapter, the iteration is defined as the required cycles to finish a
computation process. The period is:defined as thesrequired cycles to finish a complete
computation process, where each complete computation process has the same register
allocation assignment for all variables.“If the_sum of life time of the corresponding
variables storing at the same register is larger than the number of cycles for one iteration,
the DFC possesses the feature of the multiple iterations. Otherwise, the DFC will belong
to the single iteration. For single iteration, the period has the same cycle count as the
iteration. Otherwise, the period is equal to the cycles of the multiple iterations. Without
loss of the generality, we use four benchmarks including 1-D discrete wavelet transform
(DWT), zigzag scanner, 4x4 par-transposer and 16x16 par-transposer to verify and
demonstrate the above design steps. The DFC of 1-D DWT is being increasing used as a
tool for multiscale analysis for image compress application [12]. The DFC of 1-D DWT
is used to reorganize the data from the filter at the lower resolution level to be fed into
the low-pass and high-pass filters of the next resolution level. The specification of the
DFC of 1-D DWT can be given as (1,4) —(2,2)[8]. Note that the period of computation
is four cycles, and four samples are processed each clock cycle.
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In the first benchmark, assume X and Y denote the input matrix and the output
matrix, respectively.

0)

© W® W@
W w® w®w W w® w? o w
© 0 WO (0 © W@ @D (@
w® WO WO w . w® WO W@
Let X= ‘(‘2) jz) fz) ZZ) , We obtain Y = io) ‘;’0) %a ?2) , Where the
w? w? w?w w?  w w? o w
W4(12) Wéz) WéZ) W§2) WéO) W§O) WéZ) W§2)

input and output data sequences are scanned in {wo®, wi@, w,®, w33, {w,®, ws©,
We® Wi we® wi® we®, ws?Y, {wa®, we®, we?, wr?% and {wo®, wi®, we®,
W@ e WO wo® W@ e we®, wa® W@ wa®, we?, we®, w2,
respectively. The length of both sequences is four. In step 1, using the lifetime analysis
in [2], the minimum number of registers is eight. In step 2, we use allocation table to
assign the input variables to available registers in ascending order as shown in Figure
4.1. Thus, the input sequences {wo'@, wi @yws'®, ws@} and {w,©, ws@, we®, w7} are
inputted to the corresponding registers {R:, Rz, R3, Rz} and {Rs, Rs, R7, Rg}. For next
sequence data W, and w5®, we need-fo returnto the first register and search for which
register is available from R; to Rg in ‘step 3./ In this case, R; and R, are available for
input sequence data w>® and w;®. About the next input sequences data {w,?, ws?,
we®, w7}, we find that Ry, Ry, Rs and R, are not empty as shown in Figure 4.1. From
step 3, since the lifetime of w,® andws® is shorter than the lifetime of we® and w;®,
the input data w4 and ws"® are inputted to the Ry and R, register and the input data we®

and w-® are inputted to the R3 and Ry register.
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Figure 4.1 Allocation Table for 1-D DWT using 2-D SRA.

In step 4, we repeat steps 2 and 3 recursively until one iteration allocation is done
as shown in Figure 4.1, where the dash-bold.line denotes the boundary of one iteration.
Equivalently, one computation pracess is.calculated under one iteration. Finally, in step
5, we repeat steps 2, 3, 4 as required until one period allocation is finished as shown in
Figure 4.1, where the solid-bold ‘line ‘denotes-the boundary of one period. In this case,
the 1-D DWT has four cycles and eight cycles for one iteration and period, respectively.
From the allocation table as shown in Figure 4.1, all input variables are static in one
register until they become desired outputs. Hence, this method is referred to the 2-D
static register allocation (2-D SRA) approach. According to the proposed 5-step 2-D
SRA algorithm, the number of transitions can be further minimized compared with that
of [4] and [7-8]. In this case, the numbers of transitions for each iteration handled by
2-D register allocation, SSRA, 2-D SRA schemes are 28, 16, and 14, respectively. The
corresponding new 1-D DWT architecture is depicted in Figure 4.2. Similarly, the
proposed 2-D SRA is capable of treating the register allocation for different 2-D DFC
applications. The 2-D SRA scheme can account for lower transitions for 2-D DFC

designs.
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Figure 4.2 Block diagram of 1-D DWT using 2-D SRA.

In the second benchmark, since the discrete cosine transform (DCT) is an integral
part of a JPEG compression system, the zigzag- scanner is used in ordering the DCT
coefficient for efficient are placed before: high-frequency coefficients for efficient
entropy. In the zigzag scanner benchmark; the zigzag scanner rearranges the coefficient
into a 2-D array sorted from the DC value to the highest-order spatial frequency
coefficient as shown in Figure 4.3. This is accomplished using zigzag sorting [13], a
process which traverses the 4x4 block in a back-and-forth direction of increasing spatial
frequency.

We apply the 2-D SRA approach to improve the transition activities. The resulting
allocation table and the improved zigzag scanner architecture are depicted in Figure 4.4

and 4.5, respectively, where the same notations are adopted as that in Figure 6 of [4].
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Figure 4.3 Illustration of zigzag scan for efficient coefficient encoding.
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Figure 4.4 Allocation table for zigzag scanner using 2-D SRA.
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Figure 4.5 Block diagram of zigzag scanner using 2-D SRA.
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In the third benchmark, assume Xsxs and Yy denote the input matrix and the

transpose matrix of Y44, respectively, where the relationship is expressed in (4.1)

;
Y4x4 = X4x4 . (4-1)
al 1 a‘l,Z a1,3 al,4 al,l a2 1 a3,1 a4 1
a, a,, a,, a , a, a, a, @ _
Let X=| * 2 " "\ weobtainY=| * ** ** "**| where the input and
a3l a3,2 a3,3 a3,4 a’l,3 aZ 3 a3,3 a4 3
a4,1 a4,2 a4,3 a4,4 a'l,4 a2,4 a3,4 a4‘4

output data sequences are scanned in {aj1, a12,a13, 814}, {821,822, 823, A24}, {831, 832,
a33, A4}, {41, A4, a3, Aaa} aNd {@11, 321, 831, Q41}, {12, B22, 832, A2}, {Au3, A2, A3,
asa}, {a14, 824, 34, 244}, respectively. The length of both sequences is four. Note that
the period of computation is four cycles, and four samples are processed each clock
cycle. In step 1, using the lifetime apalysis in[2], the minimum number of registers is
12. In step 2, we use allocation table to assign the input variables to available registers
in ascending order as shown in Figure 4.6.- Thus, the input sequences {a1 1,212, 13, a1.4},
{a21, @22, @23, 824} and {as1, 832, 833, @34} are inputted to the corresponding registers {Ry,
Rz, R3, R4}, {Rs, Rs, R7, Rg} and {Rg, Rio, R11, R12}. For next sequence data {as2, as 3,
as 4}, We need to return to the first register and search for which register is available
from R; to Rg in step 3. In this case, R1, Rsand Rg are available for input sequence data
{as2, a43, a44}. From step 3, since the lifetime of a4, is shorter thanthe lifetime of a3
and a4 4, the input data a4 is inputted to the R; register. since the lifetime of a3 is
shorter thanthe lifetime of a4, the input data a, 3 is inputted to the Rs register and the

input data a4 4 is inputted to the Rg register.
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Figure 4.6 Allocation table for 4x4 par-transposer using 2-D SRA.

In step 4, we repeat steps 2 and 3 recursively until one iteration allocation is done

as shown in Figure 4.6, where the dash-bold.line denotes the boundary of one iteration.

Equivalently, one computation pracess is.calculated ‘under one iteration. Finally, in step

5, we repeat steps 2, 3, 4 as required until one period allocation is finished as shown in

Figure 4.6, where the solid-bold ‘line ‘denotes-the boundary of one period. In this case,

the 4x4 par-transposer has four cycles‘and ‘eight cycles for one iteration and period,

respectively.

According to the proposed 5-step 2-D SRA algorithm, the number of transitions

can be further minimized compared with that of [4] and [7-8]. In this case, the numbers

of transitions for each iteration handled by 2-D register allocation, SSRA, 2-D SRA

schemes are 41, 18, and 15, respectively. The corresponding new 4x4 par-transposer

architecture is depicted in Figure 4.7.
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Figure 4.7 Block diagram of 4x4 par-transposer using 2-D SRA.

4.2 Properties of N x N Par-Transposer Using 2-D SRA

From the 2-D SRA-based allocation table; we observe that the periodic allocation
occurs for 4x4, 16x16 and higher-order-par-transposer. For example, if register R; is
occupied with a variable in the first'cycle, then R; owns the identical variable in (I +
Cp)-th cycle, where Cp denotes the number of cycles for one period. We can calculate Cp
by the following properties 2 and 3.

Without loss of the generality, the relationship of the NxN input matrix and

transposed matrix can be expressed in (4.1).

_ T - _
a1,1 a1,2 °c al,N a1,1 az,l ce aN,l
a.2,l a:z,z °c a-.Z,N a.1,2 a.z,z °c a.N,Z (4.1)

NxN — ZMNxN =

aN,l aN,z aN,N al,N az,N aN,N

We can derive the following properties for NxN par-transposer.
Property 1: The number of registers Ng equals N x (N-1) for the NxN par-transposer.

Proof:
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Input and output data sequences in (4.1) can be scanned in the following.

st{alyl,aly2 ..... Q1N 1821589 2 ey B N reees AN 11000 aNYN} (4.2a)

Yo ={@11,85 1,0 QN 1,812,589 0400 AN 21een AL N 1oees aynt (4.2b)

From (4.2a) and (4.2b), since NxN par-transposer is multiple inputs and multiple outputs,
the number of input variables is N for one cycle and the number of output variables is N
for one cycle. Since NxN par-transposer is a causal system, we need to shift right the
transposed sequence in (4.2b). The variable in (4.2a) compared with that in (4.2b) which
has the longest distance will be the aligned point. In this general case, the input
sequences {a;1,821,...,an1} IS the aligned sequence. Thus, the shift-right distance
implemented by registers is equal to the number of registers for the NxN par-transposer.

Hence, the required number of registers can.be presented in (4.3).
N, =N(N-1). * (4.3)

Property 2: The number of cycles for one iteration, C;, equals N for the NxN

par-transposer.
Proof:

According to the iteration definition and allocation table as addressed in this chapter, we
can see that each iteration consumes the cycles equaling the total number of rows in the
transposer. Since the NxN par-transposer has multiple input and multiple output, the
number of input variables is N every cycle. Thus, for the NxN par-transposer, the

number of cycles for each iteration can be expressed in (4.4).

C, =N. ® (4.4)
Under the multiple-iteration case (i.e., N > 3), we can obtain Property 3.
Property 3: The number of iterations for one period, Ip, equals 2 for the NxN
par-transposer.
Proof:

For convenience of derivation, the input matrix X is repeated in (4.5).
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i @ [@ad.fad @y |
3 (a;zf F% ,@“ ,@
a; (3@) 2

XNxN = &;1@’@@’ - @\ul

Ani Az Az Ghe - - - O

. . (4.5)

At the first iteration, from the SRA approach, the lifetime of input variables a; s,

ai4 and ay4 are longer than C,. That means the input variables a; 3, a14 and a,4 at the
next iteration cannot be allocated at R3, Rsand Rgregisters and moved to Rg, Rio and
R1j registers, respectively. At the second iteration, the new input variables a; 3,a; 4 and
a4 have to be fed into the next available registers Rg, Rio and Ry, respectively, via the
SRA approach.

For instance, we show the allocation table of the 4x4 par-transposer in Figure 4.3
to illustrate the situation. The“multiple_input. variables will be only appeared in
dedicated registers for N >3. As a‘consequence, the input variables can be separated
into Q groups (i.e., G1, Gy, ..., Gg) to finish the allocation. In the case of the 4x4
par-transposer, there exist nine groups in Figure 4.6. The group G, are composed of Ry,
the group G, are composed of Ry, the group Gz are composed of Rs, the group G4 are
composed of Ry, the group Gsare composed of Ry, the group Ggare composed of Ri,
the group G;are composed of Rs, Rg, the group Ggare composed of Ry, R, the group
Gy consists of Rg, R11.

After transposing the NxN matrix, at the first iteration, some registers store multiple
variables and other registers store single variable. The sum of the lifetime of all
variables stored at the register under the first iteration can be longer than C,, less than
(Cy -1), or equal to C; and (C, -1). Thus, the utilized registers from R; to Ry(-1) can be
classified into four types. The lifetime of one register storing the single variable is
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longer than C, and then is referred to as type-1 register. The lifetime of one register
storing the single variable is equal to (C, -1), and then is named as type-3 register. The
lifetime of one register storing the single variable is less than (C, -1), and then is named
as type-5 register. The lifetime of one register storing the single variable is equal to C,,
and then is named as type-6 register. The lifetime of one register storing multiple
variables is equal to C,, and then is named as type-7 register. Thus, forN >3, the
difference value of the type-3, 6 and 7 registers can be defined as the sum of the lifetime

of all variables storing at this register in (4.6).

Dy =Cyr e —C, +1. (4.6)

Where Ci; denotes the lifetime of the register R;. For input variables marked in

dash-line circle, they belong to the.type-3 registers. The difference values of the
corresponding registers are equal:to zero in (4.6),-where the specified input variables a;
are allocated at RG-1)x+j). For other input variables marked in the dash-line square box,
they belong to the type-6 and 7 registers. The difference values of the corresponding
registers are equal to one in (4.6), where the specified input variables a;; are allocated at
Ri-1xn+)- According to the above calculation, the input variable belongs to which
register can be determined.

The difference of the type-1 and type-5 registers can be calculated from the
corresponding variables owing to the single variable. The difference of type-1 register

designated by the square box as shown in (4.5) can be generally represented in (4.7).

D, ., =Cia ., —C =k
i,i+k ) 19 Li+k (47)
forl<i<(N-2),k=2,..,(N-1),and N >3

where C,; .~ denotes the life time of the input variable a;;. Each detailed equation can

be obtained from (47) as follows. Da1,3: D8.214: e = DaN.zyN: 2, Da1,4: D32’5: v =
DaN_4,N_1 = 3, Da1,5 = D3.216 = ... = DaN_5,N_1 =4, .., Dal,N = (N-l), where adij will be
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allocated at R-1x+j). In similar behavior, at the first iteration, the difference of each

type-5 register designated by circle box as shown in (4.5) can be generally represented

in (4.8).
8 ik LT.a ik | (48)
for 2<i<(N-1),k=12,...,(N-3),N>3
Each detailed equation can be obtained from (4.8) as follows. Das,= Day3= ... =
DaN.lyN-Z: -1, Da4,2= Da5,3: . = DaN.l,N-3= -2, .., DaN-Lz: -(N-3), where dij will be

allocated at RGi-1yxn+j)- According to (4.6), (4.7) and (4.8), we can calculate the matrix D

in (4.9) to represent the relationship of difference of registers.

Di DBy B3 Ba--Dd
DBLH (D\Brzwz DRJ\M mﬂ. ..
Doy = l—i};w @+2 ‘Q*;L+3 :D%JM :

\ A
| . e
D;(N—Z)H@-Zﬁ@i)ﬁ@~2)+4

X X X X

i ' _ (4.9)

b4

Riels

&

In (4.5), the input variables, a;3 and a,, are one group, a;4 and as, are one
group, ..., a-12and aj; yare one group, ass and az4are one group, an-1n-1 and ay-zn are

one group. The cycles of Dgi, Dgi, ..., Dgg can be derived as

Dg, =Da;+Da,, =2+0=2
Ds, =Da,,+Da;, =3-1=2

Dg;=Day+Da,,=4-2=2

DGQ = DaN71’N71+ DaNizvN :0+2 :2
Dg =Dg1 = Dgy= Dg3=...= DGQ: 2, N >3 (410)

42



Chapter 4 2-D Static Register Allocation Algorithm and Architecture

where Dg, denotes the sum of difference cycles of registers in Gq group. Otherwise, in

(4.9), the register as designated by dash-line square box consists of the register Dgi, Dgo,
Drn+1), DrRn+3), -+ DrevN-2)+1), Drvn-1y)- Single register is one group. From (4.10), the
value of Dg will be consumed by Dg iterations. That means one complete periodic
allocation process can be finished after Dg iterations. Thus, we obtain (4.11) as follows.
l,=2, N=>3. & (411)
Example 1: For the 3x3 par-transposer whose input matrix is shown in (4.12), at the
first iteration, the life time cycle of each register is listed from (4.13a) to (4.13f) and the

3x3 matrix D is shown in (4.14).

Qi Qs (G

Xaxa = | |Gk @ s
EEN w12

and

Dri=4-3=1, (4.13a)
Dro=4-3=1, (4.13b)
Drs=5-3=2, (4.13c)
Dre=4-3=1, (4.13d)
Drs=3-3=0, (4.13¢)
Dre=4-3=1, (4.13f)

,,,,,,,,,,,

(4.14)

In this case, there exist five groups. The group G; consists of Rz and Rs, the group G2
consists of single register Ry, the group Gs consists of single register R,, the group G4
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consists single register R4 and the group Gs consists single register Rs. We obtain the
number of iterations by summing (4.13c) and (4.13e). 1,=Dg1=Dr3+Dgrs=2. Thus, we

require two iterations to complete one period allocation for the 3x3 par-transposer. 4

Example 2: For the 4x4 par-transposer whose input matrix is shown in (4.15), at the
first iteration, the life time cycle of each register is listed from (4.16a) to (4.161) and the

4x4 matrix D is shown in (4.17).

a; a: al al
Qi Gy Qi B

T i @ @ A

A Qe Qs | (4.15)

and

Dri=5-4=1, (4.16a)
Dre=5-4=1, (4.16b)
Drs=6—4=2, (4.16¢)
Dra=7-4=3, (4.16d)
Drs=5-4=1, (4.16¢)
Dre=4-4=0, (4.161)
Dr7=5-4=1, (4.169)
Drs=6—4=2, (4.16h)
Dro=5-4=1, (4.16i)
Drio=3-4=-1, (4.16))
Driz=4-4=0, (4.16K)
Dri2=5-4=1, (4.161)
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L
™

S
i
B2
SF
=N®

X § (4.17)

Note that there exist nine groups. The group G; is composed of Rz, Rg the group G,

consists of R4, Ripand the group Gz consists of Rg, Ry;. Otherwise, from G4 to G, the
group consists of single register. We obtain the number of iterations by summing (4.16c)
and (4.16f), (4.16d) and (4.16j), (4.16h) and (4.16k), respectively. I, = Dg1 = Drs+Drs =
Dg2 = Dr4+DRr1o= Dg3 = Drg+Dgr11 = 2. Thus, we require two iterations to complete one
period allocation for the 4x4 par-transposer. L 2

Hence, we are able to calculate the number of cycles for one period via multiplying
(4.4) and (4.11) for multiple iterations as expressed in upper part of (4.18). For single

iteration, Cp=C, as expressed in lower part-of(4:18).

2N f N >3
P ={ or (4.18)

C, =N for N =2.

In the case of the 3x3 par-transposer, we can directly use (4.18) to calculate the number

of cycles for one period (i.e., Cp = 6).

4.3 Control Unit of DFC Design Using 2-D SRA

Due to multiple input and multiple output, thus, we use several multiplexers to
select data from input port and use several multiplexers to select data output. The

architecture of control unit using 2-D SRA is shown in Figure 4.8.
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Figure 4.8 Architecture.of 4x4 transposer using 2-D SRA.
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Chapter

Comparison and Simulation Results

In this chapter, first, we will compare the number of register transitions using
FBRA, SSRA, 1-D SRA for the DFC designs and compare the number of register
transitions using 2-D register allocation, SSRA, 2-D SRA for the 2-D DFC designs.

Second, we compare the results of post layout simulation obtained by the existing
methods [2-3] and [7-8] with the proposed 1-D SRA scheme and compare the results of
post layout simulation obtained by the existingsmethods [4] and [7-8] with the proposed
2-D SRA scheme.

Finally, we will implement the interleaver for WiMAX system using the 2-D SRA
approach and compare the power consumption with the conventional memory-based

design.

5.1 Comparison Results of the Number of Transitions

In the case of the 3x3 transposer, the number of transitions for each iteration
handled by FBRA, SSRA, 1-D SRA schemes are 36, 11 and 8, respectively. In the case
of 4x4 transposer, the number of transitions for each iteration handled by FBRA, SSRA,
1-D SRA schemes are 144, 24 and 15, respectively. For large size case, 16x16
transposer has 57600, 570, and 255 transitions for each iteration performed by FBRA,

SSRA, and 1-D SRA schemes, respectively.
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For the higher-order transposer performed by FBRA, SSRA, and 1-D SRA, we
partition the number of transitions into several parts and use the equation of parameter
N to replace them. Thus, for the NxN transposer, the FBRA, SSRA, and 1-D SRA
approaches account for the formulation of the number of register transitions in (5.1),

(5.2), and (5.3), respectively.

Teara=(N-1)*xN?, N=>2. (5.1)
(N>-D+(N-1)°-1, N=3
SSRA ™ ) /n /2 2 ) . (5.2)
(N°~1)+(N-12)°-1+(N*-5N+6)/2, N =>4
TeamN?=1, N>2. (5.3)

As a consequence, the 1-D SRA scheme can lead to lowest transition for the NxN

transposer as listed in Table 5.1.

Table 5.1: Comparison results of the number of transitions among FBRA, SSRA, 1-D

SRA approaches:

Benchmarks FBRA[2-3] SSRA[7] 1-D SRA
3x3 Transposer 36 11 8
4x4 Transposer 144 24 15

16x16 Transposer 57600 570 255
NxN Transposer (N -1)2xN? 2.5N?-4.5N+2 N2-1
IR Filter 6 4 2

On the other hand, In the case of 1-D DWT, the number of transitions for each
iteration handled by 2-D register allocation, SSRA, 2-D SRA schemes are 28, 16 and 14,

respectively. In the case of the 4x4 par-transposer, the number of transitions for each
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iteration handled by 2-D register allocation, SSRA, 2-D SRA schemes are 41, 18 and 15,
respectively. For large size case, 16x16 par-transposer has 1240, 360, and 255
transitions for each iteration performed by 2-D register allocation, SSRA, and 2-D SRA
schemes, respectively.

Comparison results of the number of transitions as listed in Table 5.2 among 2-D

register allocation, SSRA, and the proposed 2-D SRA schemes.

Table 5.2: Comparison results of the number of transitions among 2-D register

allocation, SSRA, and the proposed 2-D SRA approaches.

Benchmarks 2-D register SSRA [7-8] 2-D SRA

allocation [4]

1D-DWT 28 16 14
Zig-zag Scan 25 15 15
4x4 par- transposer 41 18 15
16x16 par-transposer 1240 360 255

5.2 Simulation and Implementation Results

In this chapter, the comprehensive comparison results as listed in Tables 5.3 and
5.4 among the FBRA, SSRA and the proposed 1-D SRA schemes are presented. For 3x3,
4x4, 16x16 transposer and IIR filter, in terms of register transitions, the proposed 1-D
SRA can save up to 27.3%, 37.5%, 55.3%, and 50% compared with that of SSRA
approach in [7-8].

Concerning the power consumption and core area measurement, the cell-based
design flow with standard cell library is adopted and the four benchmarks have been
implemented in 0.18 um CMOS process. Synopsys Design Compiler and Cadence SOC
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Encounter are employed to synthesize the RTL design with the constraint of 10 ns and
place and route, respectively. The post layout power and core area of the proposed and
other schemes among four benchmarks are listed in Tables 5.3 and 5.4. In terms of
power consumption of 16-bit 4x4 transposer, the power saving of the proposed 1-D
SRA and conventional FBRA schemes can be achieved by 45.3% and -18.8% compared
with that of the SSRA scheme, respectively. On the other hand, the proposed 1-D SRA
and conventional FBRA schemes can save the area size by 51% and 54.9% compared
with that of the SSRA scheme, respectively. Note that the SSRA scheme has the largest
area cost and FBRA scheme is the most power hungry design among three DFC designs.
For larger size case, 16x16 transposer, the proposed SRA scheme still outperforms other
two schemes in terms of power saving. The layout of 16-bit 16x16 transposer is shown
in Figure 5.1.

As a consequence, compared_with representative register allocation designs as
exposed in Tables 5.1, 5.3 and 5.4, the proposed. 1-D-SRA design possesses the lowest
register transition and power consumption.with slightly increment of hardware

overhead.
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Table 5.3: Comparison results of p'dwer consumpti?on among four benchmarks (UW).

Benchmarks | # of FBRA [2-3] SSRA[7-8] 1-D SRA
bits

3x3 8-bit 668 (112.9%) 591.8 (100%) 434.9 (73.5%)
Transposer | 16-bit 1261 (119.5%) 1055 (100%) 765.6 (72.6%)
4x4 8-hit 1154 (119.7%) 964 (100%) 601 (62.3%)
Transposer | 16-bit | 2190 (118.8%) 1844 (100%) 1008 (54.7%)
16x16 8-bit 18450 (182%) 10140 (100%) 5135 (50.6%)
Transposer | 16-bit | 36310 (186.2%) 19500 (100%) 9716 (49.8%)
lIR Filter | 8-bit | 685.3 (167.9%) 408.2 (100%) 340.9 (83.5%)
16-bit | 1258 (161.5%) 779.1 (100%) 579 (74.3%)
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Table 5.4: Comparison results of chip area among four benchmarks (um>).

Benchmarks | # of FBRA [2-3] SSRA[7-8] 1-D SRA
bits

3x3 8-bit 3483 (56.2%) 6203 (100%) 3764.9 (60.7%)

Transposer | 16-bit |  6238.1 (55.1%) 11325.4 (100%) 6269.5 (55.4%)

4x4 8-bit 6735.1 (45.3%) 14851.5 (100%) 7858.1 (52.9%)

Transposer | 16-bit | 12278.3 (45.1%) 27218.4 (100%) 13337.2 (49%)
16x16 8-bit | 124587.8 (28.2%) 442502.8 (100%) 220666.3 (49.9%)
Transposer | 16-bit 242662.9 (31%) 782386.9 (100%) 361052.5 (46.1%)

IR Filter | 8-bit 2320.8 (66.4%) 3494.7 (100%) 2469.4 (70.7%)

16-bit | 4480.9 (64.9%) 6907.2 (100%) 4285.3 (62%)

On the other hand, the comprehensive comparison results as listed in Tables 5.5
and 5.6 among the 2-D register allocation, SSRA-and the proposed 2-D SRA schemes
are presented. For 1-D DWT, 4x4 par-transposer and 16x16 par-transposer, in terms of
register transitions, the proposed 2-D SRA can save up to 12.5%, 16.7% and 29.2%
compared with that of SSRA approach in [7-8].

Concerning the power consumption and core area measurement, the cell-based
design flow with standard cell library is adopted and the four benchmarks have been
implemented in 0.18 um CMOS process. Synopsys Design Compiler and Cadence SOC
Encounter are employed to synthesize the RTL design with the constraint of 10 ns and
place and route, respectively. The post layout power and core area of the proposed and
other schemes among four benchmarks are listed in Tables 5.5 and 5.6. In terms of
power consumption of 16-bit 4x4 par-transposer, the power saving of the proposed 2-D

SRA and conventional 2-D register allocation schemes can be achieved by 16.1% and
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-14.9% compared with that of the SSRA scheme, respectively. On the other hand, the
proposed 2-D SRA and conventional 2-D register allocation schemes can save the area
size by 26.4% and 37.6% compared with that of the SSRA scheme, respectively. Note
that SSRA scheme has the largest area cost and 2-D register scheme is the most power
hungry design among three 2-D DFC designs. For larger size case, 16x16 par-transposer,
the proposed 2-D SRA scheme still outperforms other two schemes in terms of power
saving.

As a consequence, compared with representative register allocation designs as
exposed in Tables 5.2, 5.5 and 5.6, the proposed 2-D SRA design possesses the lowest
register transition and power consumption with slightly increment of hardware

overhead.
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Table 5.5: Comparison results of power consumption among three benchmarks (UW).

Benchmarks # of 2-D register SSRA[7-8] 2-D SRA
bits allocation [4]

1D-DWT 8-bit 1732 (106.1%) 1632 (100%) 1579 (96.8%)
16-bit | 3211 (107.8%) 2980 (100%) 2822 (94.7%)
Zigzag 8-bit 1810 (113.3%) 1597 (100%) 1328 (83.2%)
Scanner 16-bit | 3650 (108.9%) 3352 (100%) 2897 (86.4%)
4x4 8-bit | 2449 (127.4%) 1923 (100%) 1617 (84%)
par-transposer | 16-bit 4730 (114.9%) 4116 (100%) 3454 (83.9%)

Table 5.6: Comparison results of chif'area.among three benchmarks (um?).
Benchmarks # of 2-D register SSRA[7-8] 2-D SRA
bits allocation 4]

1D-DWT 8-bit | 6292.9 (52.7%) 11944 (100%) 8809.4 (73.8%)
16-bit | 11552.4 (52.4%) 22064.3 (100%) 15681.3 (71.1%)
Zigzag 8-bit |  7744.6 (70.2%) 11032.1 (100%) 7967.8 (72.2%)
Scanner 16-bit | 14041.4 (62.9%) 22318.6 (100%) 14808.5 (66.4%)
4x4 8-bit | 10053.8 (62.3%) 16139.3 (100%) 11830.3 (73.3%)
par-transposer | 16-bit | 19128.8 (62.4%) 30673.4 (100%) 22561.3 (73.6%)
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5.3 Interleaver Implementation for WiMAX System

In this section, we will introduce the interleaving for communication system and
implement the interleaver using the 2-D SRA approach for WiMAX system. Meanwhile,
the power consumption compared with the conventional memory-based design will be

presented.

5.3.1 Interleaving

According to [14], because most forward error-correction codes are not designed to
deal with error bursts, interleaving is applied to randomize the occurrence of bit errors
prior to encoding. At the transmitter, the'codedbits are permuted in a certain way, which
makes sure that adjacent bits are separated: by several bits after interleaving. At the
receiver, the reverse permutation is performed 'after decoding. A commonly used
interleaving scheme is the block interleaver, where input bits are written in a matrix
column by column and read out row by row. Figure 5.2 shows the bit numbers of a
block interleaver operating on a block size of 48 bits. After writing the 48 bits in the
matrix according to the order as depicted in Figure 5.2, the interleaved bits are read out

row by row, so the output bit number are 0, 8, 16, 24, 32, 40, 1,9, ...,47.

0] 8 16 24 32 40

1 9 17 25 33 41

2 10 18 26 34 42
3 11 19 27 35 43
4 12 20 28 36 44
5 13 21 29 37 45
6 14 22 30 38 46

7 15 23 31 39 a7

Figure 5.2 Interleaving scheme.
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5.3.2 Conventional Memory-Based Interleaver for WiMAX

The interleaving for WiMAX has two stages to reorder the sequence. The permutation
of the first stage is defined in (5.1). The permutation of the second stage is defined in
(5.2). The goal of interleaving for WiMAX is to separate adjacent bits to avoid bursty

error.

i = (Negps /16)(K mod 16) + floor(k /16), k =0,1,..., Negpss (5.1)

Where K is the original index, i is the new index and Ncgps is the coded bits per symbol.
J=sx floor(i/s)+ (i + Negps — floor(16 xi/Ngpg))mod s, i1=0,1..., Negpsy (5.2)

Where i is the original index, j is the new index, Ncgps is the coded bits per symbol and
s = max(Ngpsc/2,1) (5.3)
Where Ngpsc is the number of coded bits per subcarrier.
The rate-dependent parameters are shown in Table/5.7. Note that the interleaver for
QPSK has two input bits and two output bits, whichthey are according to Ngpsc in Table
5.7. Since Ncgps is 96 bits, the interleaver for QPSK totally require 96 bits to store the
data sequence. The interleaver for 16-QAM has four input bits and four output bits,
which they are according to Ngpsc in Table 5.7. Since Ncgps is 192 bits, the interleaver
for 16-QAM totally requires 192 bits to store the data sequence. The resulting sequence
after interleaver for QPSK is shown in Figure 5.3. The resulting sequence after the first
stage and the resulting sequence after the second stage are the same. The resulting

sequence after interleaving for 16-QAM is shown in Figure 5.4.
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Table 5.7: Rate-dependent parameters.

Coded Bits per

Coded Bits per OFDM

Modulation Subcarrier (N, ) Symbol (Negpg)
QPSK 2 %
16-QAM 4 1

The origin sequence (QPSK Ncgps = 96)

ol1|l2]|3|4a|5|6|7]|8]|9|w|11|12|13[14]15

16 17| 18| 19|20 | 21|22 | 23| 24| 25| 26| 27|28 29 |30] 31

32| 33|34 35|36 37|38 |30 40|41 42|43 |aa]|45|46]| 47

48 | 49| 50 | 51| 52| 53|54 | 55| 56| 57| 58| 59|60/ 61)62] 63

64| 65| 66| 67| 68| 69| 70| 70| 72| 73| 74| 75| 76| 77| 78| 79

80| 81| 82| 83|84|85|8 |87 |88|89| 00| 91]|02|093]|04]|o05

\j

0| 1632|4864 |80 0 |16|32|48]64]80
1|17 33| 49|65 |81 T |17 3349|6581
2 |18 |34 |50 66|82 2 | 18|34 50|66 |82
311913 |51]|67]| 83 31193 |51]|67] 83
4 | 20|36 526884 4 |20|36 |52 68|84
5 | 21|37 536985 5 | 21|37 53|69 |85
6 | 2238|5470 |86 6 | 22|38 54|70 |86
7 123|309 |55| 71|87 7 | 23|30 55| 71|87
8 |24 a0 56|72 ee| P |8 |24|40|56]72]ss
9 | 25|41 |57| 73|89 9 | 25|41 |57 | 7389
10 [ 26 | 42 | 58 | 74 | 90 10| 26 | 42 | 58 | 74 | 90
11|27 43|59 |75 91 11 | 27 [ 43|59 | 75 | o1
12|28 |44 | 60| 76| 92 12|28 |44 |60 | 76| 92
13|29 |45 | 61|77 | 93 13|20 |45 |61 77| 03
14 | 30 |46 | 62 | 78 | 94 14|30 |46 | 62| 78] 04
15|31 |47 | 63| 79 | 95 15 | 31 |47 | 63 | 79 | 95

The result sequence after
first stage interleaving

The result sequence after
second stage interleaving

Figure 5.3 Interleaver operation for QPSK of WiMAX.
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The origin sequence (16-QAM Ncgps = 192)

01123456789 (10]|11]|12|13([14]15

16|17 (1819|120 21 (22|23 | 2425|2627 (28 (29 (30] 31

32|33 34|35(36(37|38)39(40 (41 (42) 4344|4546 47

481 49| 50 [ 51|52 53| 54| 55|56 (57)|58]59]60(61|62]| 63

64| 65(66| 6768|6970 71| 72|73 74(75(76| 77] 7879

80| 81| 82[83[84)8 |86(87|8 |8(90(91]92]93[9%( 9%

9 [ 97 98| 99 |100| 101102 103) 104|105 106 107(108| 109 | 110| 111

112 113 114|115 116] 117(118| 119] 120| 121 122 123 | 124| 125 126 127

128 | 129 130 131 | 132| 133 [ 134 135| 136 137| 138 139( 140| 141 142| 143

1441 145] 146 | 147 ( 148) 149|150 151 152| 153 154 155] 156| 157 | 158 159

160 | 161 162|163 | 164( 165 166|167 | 168 169| 170 171 [ 172| 173|174 | 175

176 177178179 [ 180 181) 182 183 | 184 185 186 | 187 188| 189( 190| 191
0 |16]32(48[64|80(096|112]128 144|160 176 0 | 1632|4864 |80 |96 |112(128 (144160 (176
1 (17 (33|49 65| 81|97 |113]129|145] 16L{:177 174, 1 | 49 33| 81|65 |113] 97 | 145|129 177 161
2 [18]34(50|66|82|98(114]|130]146 (162|178 2 1118 | 34|50 | 66 | 82 [ 98 | 114|130 146 162|178
3 (193551678399 115131147 163|179 19 | 34| 51 35| 83|66 [115]| 99 | 147131179163
4120|3652 68|84 |100|116 |132 (148|164 180 4 120365268 |84 [100]116 |132]148 164180
5121 |37 (536985101117 | 133|149 (165|181 21" 5 | 53 [ 37 [ 85 | 69 | 117|101 | 149|133 [181 (165
6 (22|38 (547086 |102(118]134 150166 | 182 6 (2238 (547086 |102118]134 150166 |182
7 (23|39 (55| 71|87 [103(119]135]|151 167183 23| 7 |55(39]87|71|119(103]151 135|183 (167
8 | 24|40 56 | 72 | 88 | 104 (120 | 136 | 152 | 168 | 184 | o | 8 | 24 [ 40 | 56 | 72 | 88 | 104 [ 120|136 | 152 | 168 | 184
9 | 25 (4157|7389 |105|121 137153169 | 185 25 9 574186973 |121[105153| 137|185 169
10 | 26 [ 42 | 58 | 74 | 90 | 106| 122|138 | 154|170 | 186 10|26 [ 42| 58 | 74 | 90 | 106|122 {138 | 154 | 170 | 186
11127 | 43|59 | 75| 91 | 107|123 {139 [ 155|171 | 187 27|11 59 [ 43|91 | 75 | 123(107 | 155 [ 139|187 [ 171
12128 | 44| 60 | 76 | 92 | 108|124 | 140 [ 156|172 | 188 12128 (44|60 | 76 | 92 | 108|124 | 140| 156|172 | 188
13129 | 45| 61 | 77 | 93 | 109|125 | 141|157 | 173189 29 | 13| 61 [ 45 93 | 77 | 125]|109 | 157 | 141 (189|173
14130 (46 | 62 | 78 | 94 | 110|126 142 | 158 | 174 190 14130 (46 | 62 | 78 | 94 | 110|126 | 142 158 | 174 | 190
15|31 | 47 | 63 | 79 | 95 | 111127143 [ 159|175 191 3L 1563 (479579 |127]111)159 143|191 175

The resulting sequence after The first stage interleaving

The resulting sequence after the second stage interleaving

Figure 5.4 Interleaver operation for 16-QAM of WiMAX.

Figure 5.5 shows the transmitter block diagram for WiMAX. We implement the
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conventional memory-based interleaver including the serial-to-parallel (s2p) block and
interleaving. The conventional memory based-interleaver designated by dash-line
square box in Figure 5.5.

Figure 5.6 shows the conventional memory-based interleaver architecture for
WiIMAX system. The conventional memory-based interleaver uses one memory bank
that is partitioned to six banks and then uses six 16-to-1 multiplexers to select data from
six memory banks. Thus, the conventional memory-based interleaver needs to wait until
the data is completely written into the memory bank and then the data can be outputted
to switch block. First, the output sequence has finished the first permutation. Next, the
output sequence of the switch block can be obtained after the second permutation.

Finally, the sequence after interleaver is outputted to QAM mapping block.

Address
controller,

|
|
! i
! I
I | 0
nvolution | . . ubcarrier >
. |16 : Renumbering
> puncture [ s2p |4»] interleaving [ e o E---
encoder | Mapping . randomization
\ permutation fo=e
|

|

|
‘ !
1 U | pilot

FIFO

2

—»| scrambler |

Add |l TX
CP Filter

Figure 5.5 Block diagram for WiMAX.
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o | Bitselect N /
gl 71 16:1 mux
Memory bank 5

Figure 5.6 Architecture of the conventional memory=based interleaver for WiMAX.

5.3.3 Interleaver for WiMAX Using 2-D SRA

Due to the interleaving for WiMAX at the first stage, the permutation is actually
NxM matrix transposer and the number of input data and output data is lower than that
of the par-transposer. The number of multiple iteration cycles will be unexpected. Thus,
the properties of the NxN par-transposer is not suitable for this. In this case, the
interleaver using 2-D SRA only computes the single iteration to reduce iteration control
overhead. Oppositely, the latency of interleaver using 2-D SRA will be increased.

The number of storage of interleaver using 2-D SRA is the minimum number of

registers after using lifetime analysis [2-3]. The minimum number of registers for QPSK
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and 16-QAM is shown in Table 5.8. Figure 5.7 shows the architecture of interleaver
using 2-D SRA. Due to the data width of register is only one bit, the control overhead is
larger than that of the conventional memory based design. The minimum number of
registers can be partitioned to several banks and control in the same writing signals. The
interleaver using 2-D SRA uses two-level multiplexers to reduce the data transitions of

multiplexers for output data of register banks.

Table 5.8: Minimum number of registers after lifetime analysis.

i Original register Register number after
Modulation A :
number lifetime analysis
QPSK 96 (100%) 76 (79.2%)
16-QAM 192 (100%) 168 (87.5%)
Din0
Din1
MUX] [MUX
76 | Register bank Register bank Register bank Register bank
Clock 0 1 2 3
Signal |
Generator 1 f f F
YYYYTYY I YYYYTVYY YYYYYY YYYYTYY +
MUX MUX MUX MUX
| 1 £ I f
' 1 [ : * ' .
S T T N
MUX - MUX
lDOUTO l DOUT1

Figure 5.7 Architecture of the interleaver using 2-D SRA for WiMAX.
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5.3.4 Implementation and Simulation Result

In this section, the comparison results as listed in Tables 5.8 between the
conventional memory-based interleaver and the proposed 2-D SRA scheme are
presented. For QPSK and 16-QAM, the proposed 2-D SRA scheme can save up to
20.8% and 12.5% compared with conventional memory-based approach in terms of
number of registers.

Concerning the power consumption, the cell-based design flow with standard cell
library is adopted and the two benchmarks have been implemented in 0.18 um CMOS
process. Artisan Memory Compiler, Synopsys Design Compiler and Cadence SOC
Encounter are employed to synthesize the RTL design with the constraint of 10 ns and
place and route, respectively. The post layout.power of the proposed and the
conventional scheme between two_benchmarks are listed in Tables 5.9. In terms of
power consumption of QPSK'%and:16-QAM,. the -power saving of the proposed
interleaver using 2-D SRA can be achieved by 52.2% and 65.1% compared with that of
the conventional memory-based scheme, respectively. The layout of interleaver using

2-D SRA for 16-QAM WIMAX system is shown in Figure 5.8.

Table 5.9: Comparison results of power consumption among two benchmarks (uUW).

Modulation Method Power consumption Latency
QPSK Conventional memory design 858 (100%) 48 (100%)
Interleaver using 2-D SRA 410 (47.8%) 38 (79.2%)
16-QAM | Conventional memory design 1488 (100%) 48 (100%)
Interleaver using 2-D SRA 519.2 (34.9%) 42 (87.5%)
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CLE ] -
DOTUT2 DOTT1 OUTPUT_VALID INPUT_VALID

Figure 5.8 Layout of interleaver using 2-D-SRA for 16-QAM WiIMAX.
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Chapter

Conclusion and Future Work

This thesis has addressed the DFC design using a new register allocation scheme
which takes into account the power consumption and area cost. The proposed 1-D SRA
algorithm results in the lowest number of transitions and power consumption with
slightly increment of area cost. On average, the number of register transitions can be
improved by 27.3%, 37.5%, 55.3%;.:and 50% compared with the SSRA approach among
the 3x3, 4x4, 16x16 transposer,=and. IR filter: On. the other hand, for 16-bit 4x4 and
16x16 transposer, the power consumption—-can-be alleviated by 45.3% and 50.2%,
respectively, compared with the SSRAdesign.

On the other hand, this thesis has addressed the 2-D DFC design using a new
register allocation scheme which takes into account the power consumption and area
cost. The proposed 2-D SRA algorithm results in the lowest number of transitions and
power consumption with slightly increment of area cost. On average, the number of
register transitions can be improved by 12.5%, 16.7%, and 29.2% compared with the
SSRA approach among the 1-D DWT, 4x4 and 16x16 par-transposer. On the other hand,
for 16-bit 1-D DWT, zigzag scanner and 4x4 par-transposer, the power consumption can
be alleviated by 5.3%, 13.6% and 16.1%, respectively, compared with SSRA design.

Finally, we implement the interleaver for WiMAX system and compare with the
conventional memory-based interleaver between QPSK and 16-QAM, the power

consumption can be improved by 52.2% and 62.1%.
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The SRA scheme could be applied to other topics such as de-interleaver,

reconfigurable interleaver for future research.
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