
 

國 立 交 通 大 學 
 

資訊科學與工程研究所 

 

碩 士 論 文 
 
 

 
 

在異質雙核心平台上設計與分析 

動態分工的串流播放器 

 

Dynamic Task Partition Design and Analysis of Streaming Player on 

Heterogeneous Dual-Core Platforms 
 

研 究 生：廖珮晴 

指導教授：蔡淳仁  教授 

 
 

中 華 民 國  九 十 七  年 十二 月 



在異質雙核心平台上設計與分析動態分工的串流播放器 

Dynamic Task Partition Design and Analysis of Streaming Player on 
Heterogeneous Dual-core Platforms 

 
 

研 究 生：廖珮晴          Student：Pei-Ching Liao 

指導教授：蔡淳仁          Advisor：Chun-Jen Tsai 

 

國 立 交 通 大 學 

資 訊 科 學 與 工 程 研 究 所 

碩 士 論 文 

 
A Thesis 

Submitted to Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of Master 

in 

 
Computer Science 

 
Dec 2008 

 
Hsinchu, Taiwan, Republic of China 

 

   中華民國九十七年十二月 



Abstract 
This thesis presents the design of an ISMA-compliant highly efficient streaming player 

with dynamic task partition approach for MPEG-4 video decoding on a heterogeneous 

dual-core embedded system. The streaming library is designed to reduce the memory 

bandwidth requirement for processing RTSP/RTP/RTCP network protocols. For embedded 

systems, the proposed design enables reception of higher data rate streams without packet 

losses. In the proposed design, the streaming player running on the RISC core would call the 

streaming library for receiving the contents, and dynamically control the partition of the video 

decoding tasks between the RISC and the DSP cores. The decoding tasks are assigned at 

run-time according to the load of each processor. The proposed design is implemented on the 

TI OMAP 5912 OSK development board. 

 



Acknowledge 
我要感謝我的指導教授蔡淳仁博士，在老師的細心指導下，我才能夠順利完成本論

文。這兩年在嵌入式多媒體實驗室裡學習過程中，從老師以及實驗室學長、同學以及學

弟妹身上學習到很多，有了這些經驗，相信在我未來的人生中有很大的幫助。最後我想

感謝我的家人與朋友，有各位的鼓勵與支持，讓我可以順利完成碩士學業。 



 

 
i

Contents 
Chapter 1.  Introduction ................................................. 1 

1.1.    Motivation ........................................................................................................... 1 

1.2.        Introduction to the OMAP 5912 Starter Kit ........................................................ 2 

1.2.1.    The Memory Map of OSK 5912 .......................................................................... 3 

1.2.2.    Inter-processor communication on OMAP 5912 ................................................. 4 

1.3.        Scope of the Thesis .............................................................................................. 5 

Chapter 2.  Previous Work ............................................. 6 

2.1.        Static Task Partition ............................................................................................. 6 

2.2.        Dynamic Task Partition ....................................................................................... 7 

2.3.        RTP Streaming Libraries ..................................................................................... 9 

2.4.        Porting of eCos Embedded Operating System to OMAP ................................. 10 

Chapter 3.  Streaming Player Architecture ................ 12 

3.1.    System Architecture ........................................................................................... 12 

3.2.    RTSP Client Module .......................................................................................... 13 

3.2.1.  The DESCRIBE Request and Reply .................................................................. 14 

3.2.2.  The SETUP Request and Reply ......................................................................... 16 

3.2.3.  The PLAY Request and Reply ........................................................................... 16 

3.2.4.  TheTEARDOWN Request and Reply ............................................................... 17 

3.3.    RTP Client Module ............................................................................................ 17 

3.3.1.   Buffer Design ................................................................................................... 19 

3.3.2.   RTP Receiving Module .................................................................................... 20 

3.3.3.   RTP Processing Module ................................................................................... 20 

3.3.4.   RTCP Receiving Module .................................................................................. 21 

3.3.5.   RTCP Processing Module ................................................................................ 21 

3.3.6.   RTCP Sending Module ..................................................................................... 22 

3.3.7.   Video Payload Parser ....................................................................................... 23 

3.3.8.   Audio Payload Parser ....................................................................................... 24 

3.4.     Video Decoding Module .................................................................................. 25 

3.5.          Audio Decoding Module ................................................................................. 25 



 

 
ii

Chapter 4.  Dynamic Partition Architecture .............. 27 

4.1.          System Overview ............................................................................................. 27 

4.2.          System organization on the DSP side .............................................................. 29 

4.2.1.      DSP Executable File Conversion ..................................................................... 29 

4.2.2.      DSP Memory Management Unit ...................................................................... 32 

4.3.          Design of Dynamic Task Partition Mechanism ............................................... 33 

4.3.1.      Design Issues for Dual-core Application ......................................................... 34 

4.3.2.      System memory map ........................................................................................ 34 

4.3.3.      Dual-core Video Decoding Architecture .......................................................... 35 

4.3.3.1.  Control Variables for Dynamic Task Partition ................................................ 37 

4.3.3.2.  Mailbox Commands ....................................................................................... 37 

Chapter 5.  Experimental Results ............................... 40 

5.1.          Experiments on Streaming Library Performance ............................................ 40 

5.2.          OMAP 5912 Network Capability under eCos ................................................. 42 

5.3.          Experiment of Dynamic Video Decoding Task Partition ................................ 43 

5.4.          Experiment of Adding another Task to ARM or DSP core .............................. 44 

Chapter 6.  Conclusions and Future Works ............... 47 

References………………………………………….......48 

 



 

 
iii

 

List of Figures 
Figure 1.1 - The OSK 5912 development board and Q-VGA display module. ................ 2 

Figure 2.1 - Structure of a DSP task. ................................................................................. 8 

Figure 2.2 – Protocol stack in normal case and embeddedRTP structure. ...................... 10 

Figure 3.1 - The system architecture. .............................................................................. 12 

Figure 3.2 - The flow chart of the streaming player. ....................................................... 13 

Figure 3.3 - A typical RTSP protocol session. ................................................................. 14 

Figure 3.4 - RTP client module flowchart. ...................................................................... 18 

Figure 3.5 - Relation between the circular buffer and joint the packet buffer pool. ....... 19 

Figure 3.6 - The operation of the circular buffer. ............................................................ 24 

Figure 3.7 - The payload parser operation. ...................................................................... 24 

Figure 3.8 - Video decoding module flowchart. .............................................................. 25 

Figure 4.1 - System development flowchart. ................................................................... 29 

Figure 4.2 - Bootloader build flowchart. ......................................................................... 30 

Figure 4.3 - The address translation. ............................................................................... 33 

Figure 4.4 - The global memory diagram. ....................................................................... 35 

Figure 4.5 - The dynamic video decoding task partition flow. ........................................ 36 

Figure 4.6 - The mailbox command transaction flowchart. ............................................ 39 

Figure 5.1 - The RTPLIB and the proposed streaming library performance comparisons.42 

Figure 5.2 - The test setup. .............................................................................................. 43 

 



 

 
iv

List of Tables 
Table 1.1 - The MPU global memory map. ....................................................................... 4 

Table 1.2 - The DSP global memory map. ........................................................................ 4 

Table 3.1 – The DESCRIBE request. .............................................................................. 14 

Table 3.2 - The DESCRIBE reply. ................................................................................... 15 

Table 3.3 - The SDP with MPEG-4 format content. ........................................................ 15 

Table 3.4 - The SETUP request. ...................................................................................... 16 

Table 3.5 - The SETUP reply. .......................................................................................... 16 

Table 3.6 – The PLAY request. ........................................................................................ 17 

Table 3.7 - The PLAY reply. ............................................................................................ 17 

Table 3.8 - The TEARDOWN request............................................................................. 17 

Table 3.9 - The TEARDOWN reply. ............................................................................... 17 

Table 3.10 - RTP packet format. ...................................................................................... 21 

Table 3.11 - RTCP SR packet format. .............................................................................. 22 

Table 3.12 - The RTCP RR. ............................................................................................. 23 

Table 4.1 - Intel MCS-86 object format. ......................................................................... 31 

Table 4.2 - Linker file configuration. .............................................................................. 31 

Table 4.3 - The streaming player memory map. .............................................................. 32 

Table 5.1 - OMAP 5912 Network Capability under eCos. .............................................. 43 

Table 5.2 - The performance of the proposed streaming player. ..................................... 44 

Table 5.3 - Task Partition ration of each sequence. ......................................................... 44 

Table 5.4 - DSP runs another busy task. .......................................................................... 45 

Table 5.5 - Task Partition ration of each sequence when DSP is busy. ........................... 45 

Table 5.6 - ARM runs another busy thread. ..................................................................... 45 



 

 
v

Table 5.7 - Task Partition ration of each sequence when ARM is busy. .......................... 46 

Table 5.8 - Task Partition Ratio. ...................................................................................... 46 



 

 
1

Chapter 1.   Introduction 

1.1. Motivation 

 Nowadays, portable devices such as mobile phones and PDAs are becoming more and 

more popular. Since these devices are not only for business, but also for entertainments, 

rich-multimedia audio-video functionalities are essential for the devices. The Third Generation 

Partnership Project (3GPP) working group defines a framework for watching streaming 

multimedia presentation via the unicast Packet-switched Streaming Service (PSS) based on the 

Real-time Transport Protocol (RTP) [1], or the multicast Multimedia Broadcast/Multicast 

Service (MBMS) based on the Secure Real-time Transport Protocol (SRTP) [2]. Many 

embedded multimedia devices are built with heterogeneous multi-processors. For example, the 

dual-core platforms may contain a microprocessor unit (MPU) and a digital signal processor 

(DSP). The MPU core is responsible for control while the DSP core is responsible for low level 

complicated tasks. However, new generations of MPU cores are more powerful and are able to 

deal with computationally expensive jobs, so we could assign such jobs to the MPU core for 

overall performance improvement if it is not busy.  

In this thesis, we proposed the designed of a streaming player that could watch streaming 

video via RTSP/RTP/RTCP protocols [3][4] on the TI OMAP5912 platform. The streaming 

library and the system control module are running on the MPU core while the MPEG-4 Simple 

Profile video decoding tasks are dynamically assigned to both cores. The decoding task is 

assigned according to the loading of each core in this approach. From the experimental results, 

one can see that the performance is improved with dynamic task partition of video decoding 

job between heterogeneous cores. Therefore, the proposed dynamic partition system is very 

promising for practical applications. 



 

 
2

1.2. Introduction to the OMAP 5912 Starter Kit 

 The Texas Instruments OMAP 5912 includes the MPU subsystem, the DSP subsystem, 

and the system direct memory access (SDMA). It is designed for multimedia applications, such 

as decoding of MPEG-4/H.263 video, MP3/AAC audio, and JPEG images. The MPU 

subsystem which performs most operation on the chip is based on the ARM926EJ. The DSP 

subsystem based on the TMS320C5510 is responsible for intensive data computing tasks. Both 

the MPU core and the DSP core have a maximal frequency at 192MHz. The OSK 5912 is a 

development board that integrated the OMAP 5912 chip and other peripherals such as 32MB 

DDR SDRAM, 32MB Flash ROM, an RS-232 serial port, and a 10Mbps Ethernet port, etc. 

Figure 1.1 shows the OSK 5912 development board and the Q-VGA display module. The 

Q-VGA display module is connected to the OSK 5912 board for displaying video frames. 

 
Figure 1.1 - The OSK 5912 development board and Q-VGA display module. 



 

 
3

1.2.1.  The Memory Map of OSK 5912 

Table 1.1 shows the MPU global memory map. The DSP core has a 32KBx16-bit on-chip 

dual-access RAM (DARAM) and a 48KBx16-bit on-chip single access RAM (SARAM). Table 

1.2 gives the DSP global memory map [5]. Note that the MPU core uses byte addressing while 

the DSP core uses word addressing. 

Device Name Start Address End address Signal Size Data access Type 

External Memory Interface Slow (EMIFS) 

CS0 0x0000 0000 0x03FF FFFF 64MB   

Boot ROM 0x0000 0000 0x0000 FFFF 64KB 32-bit Ex/R 

Rserved boot ROM 0x0001 0000 0x0003 FFFF 192KB 33-bit Ex/R 

Reserved 0x0004 0000 0x01FF FFFF     

NOR flash 0x0200 0000 0x03FF FFFF 32MB 8/16/32-bit Ex/R/W 

CS1 0x0400 0000 0x07FF FFFF 64MB   

NOR flash 0x0400 0000 0x07FF FFFF 64MB 8/16/32-bit Ex/R/W 

CS2 0x0800 0000 0x0BFF FFFF 64MB   

NOR flash 0x0800 0000 0x0BFF FFFF 64MB 8/16/32-bit Ex/R/W 

CS3 0x0C00 0000 0x0FFF FFFF 64MB   

NOR flash 0x0C00 0000 0x0FFF FFFF 64MB 8/16/32-bit Ex/R/W 

External Memory Interface Fast (EMIFF) 

SDRAM external 0x1000 0000 0x13FF FFFF 64MB 16-bit Ex/R/W 

Reserved 0x1400 0000 0x1FFF FFFF     

    L3 OCP T1     

Frame buffer 0x2000 0000 0x2003 E7FF 250KB 32-bit Ex/R/W 

Reserved 0x2003 E800 0x2007 D7FF     

TI Camera I/F 0x2007 D800 0x2007 DFFF 2KB 32-bit Ex/R/W 

    L3 OCP T2     

Reserved 0x3000 0000 0x3000 D7FF     

TI Camera I/F 0x3007 D800 0x3007 DFFF 2KB 32-bit Ex/R/W 

Reserved 0x3007 E000 0x7FFF FFFF     

    DSP MPUI Interface   

MPUI memory +  

MPUI peripheral 
0xE000 0000 0xE101 FFFF     

Reserved 0xE102 0000 0xEFFF FFFF     

    TIPB Peripheral and Control Registers 



 

 
4

Reserved 0xF000 0000 0xFFFA FFFF     

OMAP5912 peripherals 0xFFFB 0000 0xFFFE FFFF     

Reserved 0xFFFF 0000 0xFFFF FFFF     

Table 1.1 - The MPU global memory map. 

 

Byte address range Word Address range Internal memory External memory 

0x00 0000 - 0x00 FFFF 0x00 0000 - 0x00 7FFF DARAM (64Kbytes)  

0x01 0000 - 0x02 7FFF 0x00 8000 - 0x01 3FFF SARAM (96Kbytes)  

0x02 8000 - 0x04 FFFF 0x01 4000 - 0x02 7FFF Reserved  

0x05 0000 - 0xFF 7FFF 0x02 8000 - 0x7F 8FFF  Managed by DSP MMU 

0xFF 8000 - 0xFF FFFF 0x7F C000 - 0x7F FFFF PDROM (MPNMC=0)
Managed by DSP MMU 

(MPNMC=1) 

Table 1.2 - The DSP global memory map. 

1.2.2.  Inter-processor communication on OMAP 5912 

    Three mechanisms are available for inter-processor communication (IPC) between the 

MPU and the DSP on the OMAP5912 device. These facilities include mailbox registers, the 

MPU Interface, and shared memory space. 

    There are four sets of mailbox registers. Two of them are for the MPU core to send 

messages and issue interrupts to the DSP core, and the other two are for the DSP core to signals 

the MPU core. There are one 16-bit command register, one 16-bit data register, and one 1-bit 

flag register in each set of mailbox registers. When the command register is written, it causes an 

interrupt to the other processor and sets the responding flag register. The interrupted processor 

could read the command and data registers, and clear the flag. 

    The second mechanism is the MPU interface (MPUI). MPUI enables the MPU core and the 

system DMA controller to access the memory-mapped registers of the DSP core and its 

peripherals such as the SARAM, the DARAM, and the control registers. 

     The MPU/DSP shared memory via the traffic controller is the third mechanism for IPC. 

The MPU core and the DSP core could share accesses to the on-board SRAM and SDRAM if 



 

 
5

the DSP memory management unit (MMU) is enabled and configured properly. We will give 

more details in section 4.2.2. 

1.3. Scope of the Thesis 

The rest of the thesis is organized as follows. Some previous work related to the design of 

the proposed streaming server with the dynamic task partition approach is introduced in chapter 

2. Chapter 3 presents the architecture and details of the proposed streaming library. Chapter 4 

describes the implement details of the dynamic task partition system in the streaming player. 

Chapter 5 shows the experimental results, and finally, the conclusion and some discussions will 

be given in chapter 6. 

 



 

 
6

Chapter 2.   Previous Work 

    In this chapter, we will review some previously published work related to the design of 

the proposed streaming player on a heterogeneous dual-core platform. The surveyed topics are 

as follows: task partitioning systems for multi-core architecture, implementations of RTP 

streaming protocols, and porting of the deeply-embedded OS eCos to the OMAP 5912 OSK. 

2.1. Static Task Partition 

    Most heterogeneous multi-processor platforms apply static task partition decision at 

runtime. The designers profile and analyze an application during design time, and assign the 

sub-tasks of the application to each processor according to their behaviors. This assignment 

will not change during run-time even if the target processor core is busy with other tasks. 

    Take the design in [6] as an example. Ye Yang et al. proposed the GEM-SOC architecture 

for portable media application, and used Ogg Voribs decoder [8] as an example to verify their 

proposed architecture. The Ogg Vorbis decoding task could be partitioned into decoding part 

and communication part. When user open the audio player, decoding module on the DSP core is 

loaded into on-chip memory by the RISC. The bitstream would be also loaded into the DSP 

on-chip memory before decoding every audio frame. The RISC core is only responsible for 

playing back after the DSP core finished decoding, and controlling the DSP decoding tasks. 

    Kun-Yuan Hsieh et al. [7] presented a middleware called streaming remote procedure call 

(RPC) for a streaming-function remoting mechanism on heterogeneous dual-core architectures. 

They verified the streaming RPC both on an experimental platform known as the PAC 

dual-core platform and TI OMAP 5912 with a JPEG decoder, MP3 decoder, and QCIF H.264 

decoder. The proposed streaming RPC is based on pCore Bridge [9] running on the MPU core, 

and pCore running on the DSP core. The pCore Bridge is a thread which provides basic 

communication modules, and the pCore cooperates well with the OS on the MPU. The paper 



 

 
7

took a MP3 decoder as an example, and the streaming RPC calls the DSP core to perform 

IMDCT through the pCore interface. 

    The static task partition approach is commonly used in some researched and industry. 

However, the new generations of multimedia applications are more and more complex. Thus, 

we should consider other approaches for performance improvement. 

2.2. Dynamic Task Partition 

    One of the disadvantage of static task partition is the program designer should profile and 

analyze the dual-core applications in advance, and then assign each task to the processor that is 

more capable of executing the task. This decision cannot change at run-time. Therefore, tasks 

would not be re-assigned to the other processor even if the originally assigned one is 

overloaded with other tasks. For example, the RISC is responsible only for task management 

while the computationally expensive tasks are always assigned to the DSP. The RISC might be 

idle and just waiting for the DSP to finish current job.  

    Nowadays, the RISC processors are more powerful, and they could share the load of 

computation jobs for the DSP core. There are some researches for dynamic task partition as 

described in the following paragraphs. 

    L. Sha et al. [11] proposed the Distributed Priority Ceiling Protocol (DPCP) for real-time 

synchronization on heterogeneous multiprocessor platforms in 1990. They assumed that the 

architecture is composed by a general purpose CPU and a DSP as a specialized CPU, and the 

two processor share a common bus, RAM memory, and some ROM (Flash) memory. The two 

processors and the shared resource are all built in the same chip. The general purpose CPU  

acts as the master processor, and the structure of a DSP task is shown in Figure 2.1. The tasks 

do not require a DSP activity are called regular tasks. Each DSP task executes Ci
DSP units of 

time, and pre-process and post- process take Ci
pre, Ci

post units of time, respectively. For such 

real-time systems, the uncontrolled priority inversion problem, a high priority job is indirectly 



 

 
8

blocked by lower priority jobs for an indefinite period of time, is solved by the proposed 

DPCP scheduling approach.  

 

Figure 2.1 - Structure of a DSP task. 

Paolo Gai et al. [10] indicated the problem of DPCP. A hole is generated in the schedule 

of a master processor when executing a DSP task. In order to solve the problem, they 

re-arranged the scheduling and used a fixed priority assignment so that the master processor 

could execute other regular tasks when DSP is active. Two priority queues, one is for DSP 

tasks while the other is for regular tasks, are designed to the scheduling approach. When the 

DSP is idle, the scheduler selects the task with the highest priority in the two queues. When 

DSP is active, the scheduler only selects the task with the highest priority in the regular task 

queue. The improved DPCP achieves a significant improvement. 

    The improvement in [10] still has some problems. Kwangsik Kim et al. [12] indicated 

that a regular task with lower priority may execute before a DSP task with higher priority. 

Also, if all the tasks are DSP tasks, the second task could not be executed in the hole time. 

Kim designed only one priority queue for DSP and regular tasks, thus another DSP task could 

be executed when DSP is active. 

Cheng-Nan Chiu et al. [13] proposed a dynamic dual-core partition framework for 

multimedia applications on heterogeneous dual-core platforms. In this paper, an MPEG-4 



 

 
9

simple profile encoder is used as an example to verify the proposed framework. They defined 

the task granularity at macroblock level, and the decoding tasks would be assigned dynamically 

to the processor with less loading. If both processors are available, the tasks would be 

dispatched to both of them for parallel execution. 

    Even though [13] showed that the dynamic partitioning approach run faster than the 

conventional static task partition approach for the example video coding application, the 

communication overhead between processors was expensive since the task granularity was 

defined at macroblock level. Tsung-Fan Shen [14] designed a video decoder application based 

on the dynamic task partition approach. The inter-processor communication overhead is 

reduced by defining the task granularity at slice level. The experiments showed that the 

dual-core approach could easily fulfill real-time (30FPS) decoding of QVGA video at 96MHz 

and even out-perform the state-of-the-art implementation from the industry. 

2.3. RTP Streaming Libraries 

    Streaming media is becoming popular on the Internet. At present, many streaming players 

support Real-time Transport Protocol (RTP), such as the QuickTime player, RealPlayer, and 

the VideoLAN VLC player. To maintain good quality streaming media presentations, there are 

many issues that should be taken into account. A good streaming library has to reduce the 

packet lost rate, enable high streaming data rate, and decrease the delay time.  

    Many multimedia services such as VoD, AoD and VoIP adopted the RTP protocol for 

media transport, but the RTP library is typically not integrated into the network protocol stack 

of an operating system. Dong-Guk Sun et al. proposed the embeddedRTP architecture [32], 

which embed the RTP transport protocol into the network subsystem of the OS kernel so that 

it does not has to be include in every applications. 



 

 
10

Data Link Layer Data Link Layer

IP IP

UDP
UDP

RTP RTP RTP

embeddedRTP

APP

APP

APP

APP

APP

APP

user
level

kernel 
level

 

Figure 2.2 – Protocol stack in normal case and embeddedRTP structure. 

    As Figure 2.2 shows, they implemented the embeddedRTP at kernel level, and it could be 

invoked through system calls. Moreover, the embeddedRTP provides APIs for application 

portability. The experimental results from [32] show that the packet processing speed of 

embeddedRTP is about 7.8 times faster than UCL RTP [33] on a PDA device, and the memory 

requirement and code size are also less than UCL RTP.  

    There are many streaming libraries in the open source community. For example, Nick 

Feamster et al. [16] designed an SR-RTP streaming library to adapt to variable bandwidth and 

delay, and perform selective retransmission for packet loss in their OxygenTV project. Arne 

Kepp [17] from Columbia University implemented jlibRTP for streaming media across 

IP-based networks, in Java. However, one of the most popular open source RTP libraries is the 

JRTPLIB developed by Jori Liesenborgs [18]. JRTPLIB is an object-oriented RTP library 

written in C++. The open source JRTBLIB is widely used in many industry and research 

projects, and the latest version of the library is 3.7.1. We will compare the performance of our 

proposed streaming library to that of the JRTPLIB later in Chapter 5 of this thesis. 

2.4. Porting of eCos Embedded Operating System to 

OMAP 

    The OMAP 5912 OSK supports Monta Vista Linux 2.4, which uses a kernel module, DSP 

gateway, for IPC between the RISC core and the DSP core. Since the overhead of the DSP 



 

 
11

gateway is quite high, it is not suitable for the implementation of dynamic task partition 

system. In this thesis, we have selected the deeply-embedded OS, eCos, as the software 

implementation platform. The eCos is an open source, real-time operating system for 

embedded applications, and it is highly configurable so that the system could achieve best 

possible run-time performance. However, there is no official eCos port to OMAP 5912 OSK. 

Kuo-Cheng Lee [15] ported eCos to OMAP 5912 OSK, and designed efficient mailbox and 

shared memory communication mechanism for the study of an eCos-based dynamic task 

partition programming model for heterogeneous dual-core platforms. In the thesis, he designed 

a new dispatcher which is added to the eCos kernel for monitoring the run-time loading of each 

processor and dispatching tasks accordingly. Every task which is registered as a dual-core 

module would be assigned to either the MPU core or the DSP core dynamically at run-time 

based on the loading of both cores. Our streaming player application is based on the eCos port 

in [15]. 

 



 

 
12

Chapter 3.   Streaming Player Architecture 

    We give a detailed description of the proposed streaming player in this chapter. The overall 

system architecture is presented in section 3.1 first. Section 3.2 describes the RTSP client 

module, and section 3.3 introduces the RTP client module. The designs of the video and audio 

decoding modules are presented in section 3.4 and section 3.5, respectively. 

3.1. System Architecture 

RTP Client Module

RTCP 
Processing

RTCP 
Receiving

RTCP 
Sending

RTP 
Processing

RTP 
Receiving

Statistics 
Data

Packet 
Buffer

Circular 
Buffer

Video
Parser

Audio 
Parser

Video
Decoder

Video
Displaying

Audio
Decoder

Audio
Displaying

Video Module Audio Module

RTSP 
Processing

RTSP 
Receiving

RTSP 
Sending

RTSP Client Module

Streaming Player

UDPTCP

Network Interface

 

Figure 3.1 - The system architecture. 

Figure 3.1 shows the system architecture of the streaming player. The streaming player 

calls the RTSP module to connect to the streaming server, and creates an RTP receiving thread 

to receive the RTP and RTCP packets. Note that the RTP packets are transported over UDP 

while RTSP messages are transported over TCP. The receiving thread is created before the 



 

 
13

player sends a RTSP PLAY request to the server in order to prevent potential packet losses at 

the beginning of a streaming session. After requesting the server to begin sending the audio and 

video contents, which are encapsulated in the RTP packets, the player creates the decoding 

threads to call payload parsers and decoders for media presentation. The player works until the 

user hitting the stop button and it would send a RTSP TEARDOWN message to the server to 

request for disconnection. Figure 3.2 shows the flowchart of the streaming player. 

 

open stream

RTPReceiveThreadplay  stream

close stream

VideoDecodeThreadAudioDecodeThread

Thread2

Thread1

Thread3

start

user ask for exiting
Data flow

RTP client module

video decoding  moduleaudio decoding  module

 

Figure 3.2 - The flow chart of the streaming player. 

3.2. RTSP Client Module 

This module communicates with the streaming server to establish a connection via the 

Real-Time Streaming Protocol (RTSP). A typical RTSP protocol transaction session is shown 

in  Figure 3.3. 



 

 
14

 

Server timeline Client timeline 
DESCRIBE

SDP

SETUP track 1

OK
SETUP track 2

OK
PLAY

TEARDOWN

Media data (RTP)

OK

OK

 

Figure 3.3 - A typical RTSP protocol session. 

3.2.1.  The DESCRIBE Request and Reply 

Table 1.1 shows the DESCRIBE request composed by the streaming player. Table 3.2 and  

Table 3.3 show the RTSP DESCRIBE reply. Table 3.2 is the DESCRIBE reply header while 

Table 3.3 is the entity body of the reply. The format of the entity body is coded in Session 

Description Protocol (SDP). We could derive the media attributes, such as number of tracks, 

content length, mime type, video header, and audio sample rate and so on, from the SDP content. 

For detail description of the protocol, please refer to RFC 2327 [4]. 

 

Table 3.1 – The DESCRIBE request. 

DESCRIBE rtsp://140.113.208.195/weeeek.mp4 RTSP/1.0 
CSeq: 0 
User-Agent: stream_player 
Accept: application/sdp 



 

 
15

 

Table 3.2 - The DESCRIBE reply. 

 

Table 3.3 - The SDP with MPEG-4 format content. 

v=0 
o=StreamingServer 3423451400 1209353216000 IN IP4 140.113.208.195 
s=/weeeek.mp4 
u=http:/// 
e=admin@ 
c=IN IP4 0.0.0.0 
t=0 0 
a=control:* 
a=isma-compliance:1,1.0,1 
a=range:npt=0- 232.96000 
m=video 0 RTP/AVP 96 
a=control:trackID=2 
a=rtpmap:96 MP4V-ES/90000 
a=mpeg4-esid:1 
a=fmtp:96 profile-level-id=1; 
config=000001b001000001b58913000001000000012000c48d8ba9850a041e1463; 
m=audio 0 RTP/AVP 97 
a=control:trackID=4 
a=rtpmap:97 mpeg4-generic/48000/2 
a=mpeg4-esid:3 
a=fmtp:97 streamtype=5; profile-level-id=15; mode=AAC-hbr; config=1190; 
SizeLength=13; IndexLength=3; IndexDeltaLength=3; 

RTSP/1.0 200 OK 
Server: DSS/5.5.5 (Build/489.16; Platform/Linux; Release/Darwin; state/beta; )
Cseq: 0 
Last-Modified: Mon, 28 Apr 2008 03:26:56 GMT 
Cache-Control: must-revalidate 
Content-length: 1210 
Date: Thu, 26 Jun 2008 06:42:47 GMT 
Expires: Thu, 26 Jun 2008 06:42:47 GMT 
Content-Type: application/sdp 
x-Accept-Retransmit: our-retransmit 
x-Accept-Dynamic-Rate: 1 
Content-Base: rtsp://140.113.208.195/weeeek.mp4/ 

  Video content attribute. 

 
Audio content attribute. 



 

 
16

3.2.2.   The SETUP Request and Reply 

The streaming player sends SETUP request for the tracks that the user wants to play. The 

information on client ports, server ports, SSRC and other attributes could be exchanged 

between the player and the server during this transaction. Table 3.4 is an example composed 

by the streaming player for requesting the contents with trackID equals to two, while Table 3.5 

shows the corresponding reply. 

Table 3.4 - The SETUP request. 

 

Table 3.5 - The SETUP reply. 

3.2.3.  The PLAY Request and Reply 

The server sends the contents after receiving the PLAY request. Therefore, the player 

should be ready for receiving the incoming RTP packets as soon as it sends the PLAY request. 

The PLAY reply from the streaming server contains session information of each track. Table 

3.6 and Table 3.7 show the PLAY request and its reply.  

RTSP/1.0 200 OK 
Server: DSS/5.5.5 (Build/489.16; Platform/Linux; Release/Darwin; state/beta; )
Cseq: 1 
Last-Modified: Mon, 28 Apr 2008 03:26:56 GMT 
Cache-Control: must-revalidate 
Session: 6696199755856328349 
Date: Thu, 26 Jun 2008 06:42:47 GMT 
Expires: Thu, 26 Jun 2008 06:42:47 GMT 
Transport: 
RTP/AVP;unicast;source=140.113.208.195;client_port=6000-6001;server_port
=6970-6971;ssrc=55191DF2 

SETUP rtsp://140.113.208.195/weeeek.mp4/trackID=2 RTSP/1.0 
CSeq: 1 
Transport: RTP/AVP;unicast;client_port=6000-6001



 

 
17

 

Table 3.6 – The PLAY request. 

 

Table 3.7 - The PLAY reply. 

3.2.4.  The TEARDOWN Request and Reply 

The TEARDOWN request would be sent when the streaming player wants to end the RTP 

session. Table 3.8 and Table 3.9 show the TEARDOWN request and its reply. 

Table 3.8 - The TEARDOWN request. 

 

Table 3.9 - The TEARDOWN reply. 

3.3. RTP Client Module 

    This module is executed by the RTP receiving thread as soon as the RTSP client module 

RTSP/1.0 200 OK 
Server: DSS/5.5.5 (Build/489.16; Platform/Linux; Release/Darwin; state/beta; )
Cseq: 3 
Session: 1357751978789435963 
Connection: Close 

TEARDOWN rtsp://140.113.208.195/weeeek.mp4 RTSP/1.0 
CSeq: 4 
Session: 6696199755856328349Range: npt=0-

RTSP/1.0 200 OK 
Server: DSS/5.5.5 (Build/489.16; Platform/Linux; Release/Darwin; state/beta; )
Cseq: 3 
Session: 6696199755856328349 
Range: npt=0.00000-232.96000 
RTP-Info: 
url=rtsp://140.113.208.195/weeeek.mp4/trackID=2;seq=3529;rtptime=534282
511,url=rtsp://140.113.208.195/weeeek.mp4/trackID=4;seq=35449;rtptime=11
8700607 

PLAY rtsp://140.113.208.195/weeeek.mp4 RTSP/1.0 
CSeq: 3 
Session: 6696199755856328349 
Range: npt=0- 



 

 
18

sends a PLAY request. The network would be setup first and then the receiving thread enters a 

loop. In this loop, it checks whether the RTP and RTCP sockets is active. If the RTP socket is 

active, the RTP receiving module and the RTP processing module would be called to deal with 

the incoming RTP packets. The RTCP receiving and processing module would be called if the 

RTCP socket is active. After checking for an incoming RTP or RTCP packet, the RTCP 

Receiver Report (RR) module would be called if it is time to send an RTCP RR. Figure 3.4 

shows the flowchart of the RTP client module. The following sections give the details of this 

modules and the design of the proposed efficient packet buffer sub-systems.  

 
start

rtpsock set?

setup network

receive RTP packet

process RTP packet

send RTCP?

receive RCTP packet

process RTCP packet

rtcpsock set?

send RTCP?

send RTCP RR

send RTCP RR

yes

no

yes

no

streaming stop?exit yes

yes

yes

no

no

no

 

Figure 3.4 - RTP client module flowchart. 



 

 
19

3.3.1.  Buffer Design 

    We designed a joint packet buffer pool for storing both the RTP and RTCP packets when 

the RTP or the RTCP receiving modules are invoked. All the arriving (audio and video) packets 

will be stored in this buffer sequentially. Once a packet enters the packet buffer, there is no 

need to copy it for de-multiplexing purpose until the decoders request its payload data. The 

audio and video circular buffers are data structures used to tag the packets in the joint packet 

buffer pool. Each element in the circular buffer stores the important header information such as 

the timestamp, the sequence number, and the mark bit, etc., and a pointer points to the location 

of its payload in the packet buffer pool. Figure 3.5 illustrates the relation between the circular 

buffer and the packet buffer pool. 

tail pointer,
grown by 
RTP processing module

head pointer,
shrunk by 
Video payload parser

Video session 
circular RTP
packet buffer

RTP header RTP payload RTP header RTP payload RTCP header RTCP payload RTP header RTP payload

Packet buffer

Audio session 
RTCP parser

Audio session 
circular RTP
packet buffer

Video session 
RTCP parser

 

Figure 3.5 - Relation between the circular buffer and joint the packet buffer pool. 

The buffers are large enough to accommodate 15 seconds of steaming media a bitrate of 

6Mbps, and the maximal size of a UDP datagram is assumed to be 1514 bytes. Therefore, the 

player pre-allocates 7430 (= 6Mbps / (1514 *8 (bit/packet)) * 15sec) packet entries for the 

circular buffer data structure. To get around the issue of possible out-of-order delivery of UDP 

datagrams, the position of the RTP packets in the circular buffer is sorted according to the value 

of sequence number modulo the size of the circular buffer. We select the value that is a power of 



 

 
20

two for this purpose. That is, in the program, we have the following parameter definition: 

#define RTP_CIRBUF_MAXSIZE 8192 

Because we need two circular buffers for audio and video tracks, the space required by the 

packet buffer should be greater than 2tracks * 8192 packets * 1514 bytes = 24805376 bytes. 

Hence, in the program, we have the following parameter definition: 

#define MAX_PACKET_BUF_SIZE 25000000 

3.3.2.  RTP Receiving Module 

The module is responsible for receiving an RTP packet, storing the packet into the 

packet buffer, and calling RTP processing module to validate and process this RTP 

packet. In the end, it calls RTCP sending module if it needs to send an RTCP RR..  

3.3.3.  RTP Processing Module 

This module processes an RTP packet with specified packet length and track 

identity. For each RTP packet, it validates SSRC field, skips padding bytes if the padding 

bit is set, and computes the jitter of the arriving RTP packets. The jitter is computed by 

the equations defined in RFC 3550 [3]. 

 

The RTP processing module first puts header information of the RTP packet into the 

circular buffer entry corresponds to the packet. This position of the entry is calculated 

using the RTP sequence number modulo the size of the circular buffer. It then changes 

the payload pointer in the circular buffer to point to the location of the RTP datagram in 

the packer buffer, updates the tail pointer and the network statistics of the streaming 

session. Table 3.10 shows the structure of an RTP packet, please see RFC 3550 [3] for 

the details of each field. 

D(i,j) = (Rj-Sj)-(Ri,Si)  
Ji = Ji-1 + (|D(i,j)| - Ji-1) / 16  



 

 
21

  0                   1                   2                   3   
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=2|P|X|  CC   |M|     PT      |       sequence number         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           timestamp                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           synchronization source (SSRC) identifier            |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
|                            payload                            |
|                             ....                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 

Table 3.10 - RTP packet format. 

3.3.4.  RTCP Receiving Module 

The module is responsible for receiving an RTCP Sender Report (SR) packet, storing the 

packet in the packet buffer, and calling RTCP processing module to validate and process this 

RTCP SR packet. In the end, it calls RTCP sending module to send RTCP RR if necessary. 

3.3.5.  RTCP Processing Module 

This module processes an RTCP sender report (SR) packet with specified packet length 

and track identity. For each RTCP packet, it validates the SR header, SDES header, and updates 

the network statistics of the streaming session. If the RTCP BYE packet is appended, we know 

that the server has ended the streaming session. Table 3.11 shows the structure of the RTCP SR 

packet, please see RFC 3550 [3] for the details of each field. 



 

 
22

  0                   1                   2                   3   
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=2|P|    RC   |   PT=SR=200   |             length            | header
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                         SSRC of sender                        |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
|              NTP timestamp, most significant word             | sender
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ info
|             NTP timestamp, least significant word             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                         RTP timestamp                         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                     sender's packet count                     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                      sender's octet count                     |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
|V=2|P|    SC   |  PT=SDES=202  |             length            | sdes
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                            SSRC                               | 
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
|    CNAME=1    |     length    | user and domain name         ...
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
|V=2|P|    SC   |   PT=BYE=203  |             length            | bye
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                            SSRC                               |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

 

Table 3.11 - RTCP SR packet format. 

3.3.6.  RTCP Sending Module 

The module generates RTCP RR for the RTP session. Table 3.12 shows the structure of 

the RTCP RR packet, the details of each field are defined in RFC 3550 [3]. The BYE block 

would be appended if the user exits the connection. 



 

 
23

  0                   1                   2                   3   
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=2|P|    RC   |   PT=RR=201   |             length            | header
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                     SSRC of packet sender                     |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
|                            SSRC                               | receiver
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ report
| fraction lost |       cumulative number of packets lost       |   
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           extended highest sequence number received           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                      interarrival jitter                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                         last SR (LSR)                         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                   delay since last SR (DLSR)                  |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
|V=2|P|    SC   |  PT=SDES=202  |             length            | sdes
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                            SSRC                               | 
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
|    CNAME=1    |     length    | user and domain name         ...
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
|V=2|P|    SC   |   PT=BYE=203  |             length            | bye
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                            SSRC                               |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

 

Table 3.12 - The RTCP RR. 

3.3.7.  Video Payload Parser 

The video parser returns the next video frame and its length and timestamp for 

given video track. If the remaining contents in circular buffer are too few to play, it 

enters re-buffering mode to wait until there are enough contents for continuous playback 

(i.e., waiting for the tail pointer to grow beyond a point). Figure 3.6 illustrates the 

operation of the circular buffer.  



 

 
24

 

tail pointer,
grown by 
RTP processing module

head pointer,
shrunk by 
Video payload parser

Circular RTP
packet buffer

 

Figure 3.6 - The operation of the circular buffer. 

The RTP packets whose payloads belong to the same video frame have the same 

timestamp. The video payload parser would copy the RTP payloads to the video buffer 

until the marker bit is equal to one. Figure 3.7 illustrates the payload parser operation 

and the relation between the circular buffer, the packet buffer and the video buffer. Note 

that the payload parsers are designed to implement subsets of the media payload RFCs 

that correspond to the implementation of the open source Darwin Streaming Server. 

 

0

Circular buffer

Payload pointer Payload pointer Payload pointer

RTP header RTP payload RTP header RTP payload RTP header RTP payload

Packet buffer

0 1

RTP payload

Video buffer

RTP payload RTP payload

 

Figure 3.7 - The payload parser operation. 

3.3.8.  Audio Payload Parser 

    The audio payload parser returns the next audio frame and its length and timestamp for 

given audio track. It works in the same way as the video payload parser. Please see 3.3.7 for the 

details. 



 

 
25

3.4. Video Decoding Module 

    This module is called by the video decoding thread with track ID as the input parameter and 

is responsible for video decoding and displaying. For each frame, it calls the video payload 

parser in the RTP client module to get a video frame and passes the frame to the MPEG-4 video 

decoder. The module also calls display module to convert a frame represented in YCBCR 4:2:0 

color format to the RGB format and stores the frame data in video frame buffer for display. 

Figure 3.8 shows the flow chart of the video decoding module. 

start

get video header

decode video header

setup for displaying

thread running?

get video sample

decode frame

display

yes

no

exit  

Figure 3.8 - Video decoding module flowchart. 

3.5. Audio Decoding Module 

This module is called by audio decoding thread with track ID as the input parameter 

and is responsible for audio decoding and playback. It calls the audio payload parser in 



 

 
26

the RTP client module to get an audio frame. For each audio frame, it passes the contents 

to the AAC decoder and sends a raw signed 16-bit PCM data to the audio device for 

playback (for implementation under Linux, it uses the OSS API). It is important to point 

out that the player does not use sophisticated ping-pong buffer management for audio 

playback (which requires low-level audio APIs such as the Linux ALSA audio API). 

Therefore, there may be some clicking noise during audio playback. However, this issue 

does not affect the verification of the streaming library and functional behavior of the 

streaming player. 

Currently, this module is only implemented under Linux. The OS we adopt in this 

thesis is eCos, and we focus only on dynamic task partition for the MPEG-4 video 

decoding process. Therefore, we did not implement the audio decoding module under 

eCos. 

 



 

 
27

Chapter 4.   Dynamic Partition Architecture 

    The proposed streaming player in this thesis adopts a dynamic task partition approach for 

video decoding. Video decoding tasks are divided into slice decoding subtasks, where each 

subtask is dispatched to the RISC core or the DSP core for processing based on the run-time 

loading of each core.  The dynamic task partition MPEG-4 video decoder by Tsung-Fan Shen 

[14] is used as the starting point of our implementation. The decoder described in [14] is a 

barebone video decoder that is not integrated into a complete multimedia system. In this 

chapter, the detail of integrating the video decoder into a complete streaming player running 

under eCos is presented. 

4.1. System Overview 

    The dynamic task partition approach video decoder was originally developed [14] using 

Code Composer Studio (CCS) by Texas Instruments. The decoder is loaded via a JTAG cable 

from CCS onto the OSK 5912 for execution. The decoder reads the video bitstream from 

on-board flash memory, decodes the bitstream, and writes the output to the video frame buffer. 

However, for a standalone streaming player, it is easier to use an OS with network stack 

implementation. eCos is selected as the base operating system in this thesis. Although OSK 

5912 comes with MontaVista Linux, it is too heavy for embedded streaming applications. 

Also, the DSP Gateway module used for IPC under Linux is not efficient enough for dynamic 

task partitioning. Hence we use the eCos ported by Kuo-Cheng Lee [15]. 

    To make a standalone streaming player under eCos, the DSP codes must be loaded and 

initiated by the RISC processor. We follow the steps shown in Figure 4.1. First, develop the 

DSP codes by CCS and generate an executable file (with suffix “.out”). Be sure that the 

memory is assigned properly and the .text section should include the DSP boot codes. Since the 

DSP codes are loaded by the RISC, the memory used to hold DSP codes should be accessible 



 

 
28

by the RISC core. We convert the .out file generated by CCS to a hexadecimal header file by 

the out2boot tool [19]. Note that we have modified the out2boot to match the organization of 

the DSP memory map of the streaming player. The RISC code that boots the DSP must include 

the dsp_proj_code.h generated during previous step, which contains the binary of the DSP 

code. Finally, the RISC codes (including eCos kernel, DSP boot code, and the streaming 

player application) is compiled into a single executable .elf file. 

   The RISC core sets the corresponding DSP control registers and initializes the DSP MMU 

(memory map unit). Upon startup, the RISC core loads the DSP codes defined in a byte array in 

dsp_proj_code.h into the proper SDRAM addresses. After that, it enables the DSP MMU and 

DSP control registers. If the DSP core is enabled, it would set the mailbox to inform the RISC 

core for next step. The RISC core starts to communicate with the streaming server and create a 

receiving thread for the incoming RTP packets. The video decoding control thread is also 

executed by the RISC core, and it starts dispatching decoding and displaying tasks to the DSP 

core through mailbox if the DSP core is not busy. Otherwise it will handle the next decoding 

task by itself. 



 

 
29

RISC core DSP core

Compile DSP codes under CCS
to generate executable .out file

Convert .out to RISC readable
hexadecimal .h file

Include dsp_proj_code.h

Set DSP MMU and
corresponding register

Compile ARM codes under
eCos to generate
executable .elf file

LoadDSP codes into SDRAM

Enable DSP MMUand DSP core

Receive RTP packets and
decode

Decode and display

DSP is ready

Communicate via mailbox

Compile time

Run time

 

Figure 4.1 - System development flowchart. 

 

4.2.  System organization on the DSP side 

    This section describes the details of the executable .out file format, the MPU readable 

hexadecimal header file, the out2boot converting tool, and the DSP MMU and DSP control 

registers. 

4.2.1.  DSP Executable File Conversion 

    The DSP codes are developed using CCS, generate an executable .out file. The .out file is 

loaded through the JTAG interface for bootstrapping the DSP. For a standalone embedded 



 

 
30

system, we could not use the JTAG interface to boot the system after the developing time. 

Therefore, the SDRAM booting mode is provided by the DSP. Rishi Bhattacharya provided a 

DSP booting example on OMAP 5910 [19]. The DSP executable .out file is converted into a 

const data array in a header file and compiled with the RISC codes. After the const data array is 

loaded into SARAM through the MPUI, the DSP could be enabled by the RISC. The flowchart 

of this DSP booting example is shown in Figure 4.2 - Bootloader build flowchart. 

Project build

DSP project files

dsp_proj.out

Run OUT2BOOT on 
dsp_proj.out

dsp_proj_code.h

ARMproject files

Project build

arm_boot.out

 

Figure 4.2 - Bootloader build flowchart. 

    The converting tool, out2boot, is also provided in [19]. It calls the Hex Conversion Utility 

(hex55.exe) which is provided by CCS [20] to convert the .out file into an Intel MCS-86 object 

format and then converts to a const data array in a header file which calls dsp_proj_code.h. The 

Intel MCS-86 object format is shown in Table 4.1. 



 

 
31

:020000040008F2
:20000000EC314E00330078300002F406F91F98F506410098F496FA0098F5968000984656BF
:200020004617EC318E003B009089908A908B908C908D908E908F908790866C08EC286C0890
:200040008EA03C196C08E9B4ED310800D52EEB310800D52CF7310001003B67ED318F00D571

Start
Character

Address Most
Significant
16 Bits

Byte
Count

DataRecode
Type

Check
Sum

Check
Sum

 

Table 4.1 - Intel MCS-86 object format. 

    Only 16 bits address could be recoded in the MCS-86 format, but 32 bits address is needed 

on the RISC side. Thus, we must assign the higher 16 bits of the address in out2boot. On the 

other hand, we select the external memory booting mode from 0x080000 by set the 

DSP_BOOT_CONFIG register equal to one. The CCS linker file (.cmd file) should be also 

applied to this booting mode. The .cmd file configuration is shown in Table 4.2. The .text 

section should include boot.obj to initialize the DSP system by executing c_int00 function and 

then enter main function. 

MEMORY 
{

…
DARAM: origin = 0x5A00,      len = 0x1A600
...
SARAM: origin = 0x21A00,     len=0x3570 
…
SDRAM_Text: origin = 0x080000,    len = 0x20000 
…   

}
SECTIONS
{

…
.text:    { rts55x.lib<boot.obj> (.text) } > SDRAM_Text
…

}
 

Table 4.2 - Linker file configuration. 

    Since the DSP program for the streaming player uses DARAM and SDRAM, the Recode 

Type in Intel MCS-86 object would be equal to four, and the type is not supported by out2boot. 

We modified the out2boot program in order to support the intended DSP memory map of the 

streaming player. 



 

 
32

4.2.2.  DSP Memory Management Unit 

    Five boot modes are provided for the DSP bootloader. The MPU could select any of these 

boot modes by setting the DSP_BOOT_CONFIG register [21]. Our system writes the 

DSP_BOOT_CONFIG register to one to boot DSP from external memory (SDRAM). The 

bootloader simply branches to byte address 0x08 0000 in DSP external memory after enabling 

the DSP. The MPU core needs to set up the DSP MMU such that the DSP core executes from 

valid DSP external memory for this boot mode. 

Table 4.3 describes the memory map of our streaming player. The DSP codes which are 

specified in DARAM and SARAM could be loaded to the corresponding 32-bit address through 

the MPUI. As for the .text section, the MPU core loads the codes to the corresponding 32-bit 

SDRAM address and enables the DSP MMU so that the DSP can fetch instruction codes from 

this memory area. 

MPU (32 bits address) DSP (16 bits address) 

0xE0000000-0xE000FFFF  0x000000-0x00FFFF DARAM 

0xE0010000-0xE0028000  0x010000-0x028000 SARAM 

0x10000000-0x101FFFFF eCos system memory   

0x10280000-0x1029FFFF  0x080000-0x09FFFF SDRAM 

.text section 

0x10300000-0x103FFFFF  0x500000-0x5FFFFF Bitstream 

0x10400000-0x104FFFFF  0x600000-0x6FFFFF Frame buffer  

0x10500000-0x105FFFFF  0x700000-0x7FFFFF Current decoded YUV 

frame  

0x10600000- eCos system memory   

Table 4.3 - The streaming player memory map. 

    The DSP MMU could translate 24-bit DSP virtual address to 32-bit MPU physical address 

by using the translation look-aside buffer (TLB) contained in the MMU. The TLB contains 

CAM and RAM embedded memories. Each entry in the CAM stores the virtual tag, the 

preserved bits, valid bits, and page size. In the RAM, each entry contains the upper part of the 



 

 
33

corresponding physical address and the access protection field. We define the page size of each 

mapping to section (1Mbytes). The address translation for section page size is shown in Figure 

4.3. 

table Index section Index

CAM ‐ table index

section base index AP

section base index section index

23 20 19 0

31 20 19 1211 10 9 0

31 20 19 020
12

24-bit DSP Virtual Address 

32-bit Physical Address  

Figure 4.3 - The address translation. 

4.3.  Design of Dynamic Task Partition Mechanism 

    Nowadays, an application targeted for the execution on heterogeneous multi-core 

platforms usually adopts static partition where task partition is done at development time. The 

dynamic partition where task partition is done at run-time according to the loading of each core 

at run time is mostly for symmetric multi-core systems. New generations of RISC processors 

are powerful enough to take over some of the computationally expensive jobs. Besides, 

multimedia applications like streaming player might become more complicated and could not 

reach optimal performance if static task partition is used. For mobile devices, the streaming 

data rates are usually not high enough such that the streaming player only receives streaming 

packets periodically from the server. This application scenario makes the RISC core be idling 

most of the time while the DSP might be busy decoding all media data received. Therefore, 

dynamic task partition is used in this thesis so that the task could be dispatched to the idling core 



 

 
34

during runtime and makes the system reach the optimal performance.  

4.3.1.   Design Issues for Dual-core Application  

    There are some issues in the heterogeneous dual-core platforms that hinder the performance 

of dynamic task partition. First, the data accessing unit size of the DSP and MPU core are 

different on OMAP 5912. The 32-bit MPU core allows byte addressing while the 16-bit DSP 

allows only 16-bit word addressing. Thus, we use the same optimal data accessing unit size for 

optimal performance. Besides, the MPU uses the little-endian data format while the DSP 

operates in big-endian mode. The endian issue should be concerned when loading the DSP 

codes to the SARAM, DARAM or SDRAM and the bitstream sharing by the MPU and DSP. 

4.3.2.  System memory map  

    We use the advantages of memory bank to improve the performance. Since the DSP core 

has two on-chip memory blocks, 64KB DARAM and 96KB SARAM, the frequently accessed 

data should be put into them due to higher memory bandwidth. For example, 

the .stack, .sysstack and .bss section that store parameters and variables are accessed frequently. 

Hence, we assigned these sections to the DARAM.  

On the other hand, the Internal Reference Macroblock Buffer (IRMB) which contains 

some macroblock data of previously decoded frame are also allocated in the DARAM due to 

the fact that the macroblocks might be accessed many times when decoding current frame. The 

Internal Current Macroblock Buffer (ICMB) which stores currently decoded macroblock 

YCBCR data is located inside SARAM for speeding up the accesses. 

Due to the size limit of internal memory, some data that would not be accessed frequently 

should be assigned to the external memory. The .text section, input bitstream, current decoding 

frame and reference frame are allocated to SDRAM. Figure 4.4 shows the global memory map 

of the dynamic partition streaming player. 



 

 
35

Memory map on DSP

0×00 0000

0×01 0000

Memory map on ARM

0×1028 0000

DSP MMU

Code section

Code section

Data section

Input bitstream

Reference f rame

QVGA Frame buf fer

Current f rame

IRMB

IMGLIB Buf fer

Data section
(stack,.sysstack,.bss)

Internal Bitstream
Buffer (IBB)

ICMB

Clipping table

Macroblock Info.

: DSP access only

: ARM access only

: Both ARM / DSP access

Data section
(.cinit, .cio, .const,
.switch)

SDRAM (32MB)

0×1030 0000

0×1040 0000

0×1050 0000

0×28 0000

0×30 0000

0×38 0000

DARAM(64KB)

SARAM(96KB)

0×E000 0000
0×E001 0000 0×08 0000

MPUI

 

Figure 4.4 - The global memory diagram. 

4.3.3.   Dual-core Video Decoding Architecture  

    Since we proposed a dynamic task partition approach for video decoding, the task 

granularity should be carefully designed. If the task granularity is too small, the communication 

overhead between two cores would restrict the performance. On the other hand, the 

computation model would operate like static task partition if the task granularity is too large. 

Therefore, we define task granularity at slice level. One video frame would be encoded into 

several slices, and there is no dependency between two slices. Five slices per frame is used for 

experiments in this thesis (for video resolution of 320x240), but the implementation is not tied 

to any particular slice number per frame. 

    A system control module running on the MPU core is called Task Partitioner, and it is 

combined with the video decoding module described in 3.4 and responsible for dynamic task 

assignment. The DSP core executes the Task Interface module to receive the tasks assigned via 

mailbox commands from the Task Partitioner. Figure 4.5 shows the dynamic video decoding 



 

 
36

task partition flow. The following subsections will describe details of the control flags and the 

mailbox commands. 

dsp_dec_initialized?

A2D_INITIALIZE_DECODER

initialize ARM decoder

video_thread_running?

A2D_PARSE_SLICE

ARM  parse frame

initialize DSP decoder

D2A_INITIALIZE_DONE

dsp_dec_initialized=1

DSP parse frame

D2A_PARSING_DONE

decode_slice_flag=1 decode_slice_flag=1?

DSP decode slice

D2A_DECODING_DONE

FRAME_NOT_FINISHED?

count ARM_SLICE_NUM

ARM_SLICE_NUM<5?

ARM decode slice

FRAME_NOT_FINISHED=0

ARM_SLICE_NUM=4?

display_flag=1 display_flag=1?

display frame

D2A_DISPLAYING_DONE

get next frame

DSP_SLICE_NUM=4?

FRAME_NOT_FINISHED=0

FRAME_NOT_FINISHED?

count DSP_SLICE_NUM

A2D_DECODE_SLICE

DSP_SLICE_NUM<5?

Task Partitioner D2A mailbox ISR A2D mailbox ISR

0x10300000

0x080000

0x500000
0x700000 (cury) 
0x740000 (curu) 
0x750000 (curv) 
0x760000 (refy) 
0x7A0000 (refy) 
0x7B0000 (refy)

0x600000

0x10300000
0x10500000 (cury) 
0x10540000 (curu) 
0x10550000 (curv) 
0x10560000 (refy) 
0x105A0000 (refy) 
0x105B0000 (refy)

0x500000

A2D_DISPLAY

FRAME_NOT_FINISHED?

get next frame

dsp_display_ok=1? dsp_display_ok=1

0x10300000

return

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

0

0

1

1

1

0

Task Interface

0x10280000

 

Figure 4.5 - The dynamic video decoding task partition flow. 



 

 
37

4.3.3.1. Control Variables for Dynamic Task Partition 

Four important control variables are introduced in this subsection.  

 VIDEO_THREAD_RUNNING 

The flag is set by the streaming player main program. It would be set to 0 if video 

decoding thread has to exit.  

 ARM_SLICE_NUM  

 DSP_SLICE_NUM 

The two variables indicate the slice number of a video frame that the MPU and DSP 

core should decode. They are calculated as follows: 

 

 FRAME_NOT_FINISHED 

This flag would be set to 0 if the ARM_SLICE_NUM or DSP_SLICE_NUM is equal 

to four, and that means all slices of the current frame has been decoded. The Task 

Partitioner could initialize the next frame decoding if the FRAME_NOT_FINISHED is 

set to one. 

4.3.3.2. Mailbox Commands 

    Both the Task Partitioner and Task Interface have mailbox interrupt service routines (ISRs) 

associated with them for receiving commands and notifications from the other core. After the 

MPU core enables the DSP core, the DSP core would send a D2A_READY command to inform 

the Task Partitioner that the DSP is ready for job assignment. The Task Partitioner then sends 

an A2D_INITIALIZE_DECODER command to initialize the decoder on the DSP side. At the 

same time, the Task Partitioner calls MPU decoder initialization function to initialize the video 

decoder module on the MPU side. As soon as the Task Partitioner receives 

ARM_SLICE_NUM = MAX (ARM_SLICE_NUM, DSP_SLICE_NUM) +1



 

 
38

D2A_INITIALIZATION_DONE command, it sends A2D_PARSE_SLICE command and then 

calls the MPU video decoding module for parsing slices of current frame.  

    The dispatch of the slice decoding task is done according to the ARM_SLICE_NUM and 

DSP_SLICE_NUM variables introduced in previous subsection. The Task Partitioner sends a 

A2D_DECODE_SLICE command with DSP_SLICE_NUM as the parameter to ask the DSP 

core to decode the corresponding slice. The Task Partitioner would not dispatch next slice 

decoding task to the DSP core until the Task Interface send a 

D2A_DECODING_SLICE_DONE notification. If all slices in a frame are decoded, the Task 

Partitioner sends an A2D_DISPLAY command to the DSP core for color conversion and 

displaying. After the D2A_DISPLAYING_DONE command is received, the MPU video 

decoding module calls video payload parser to get next video frame and enter next decoding 

iteration. 

    The Task Partitioner sends an A2D_RELEASE_DECODER command, waits for 

D2A_RELEASING_DECODER command from the Task Interface. Similar synchronization 

techniques is used in the MPU video decoding module for releasing the MPU and DSP decoder 

if VIDEO_THREAD_RUNNING flag is set to zero. The mailbox command transaction 

flowchart is shown in Figure 4.6. 



 

 
39

Task 
Partitioner 

Task 
Interface

A2D_INITIALIZE_DEOCDER 

D2A_INITIALIZATION_DONE 

D2A_READY 

A2D_PARES_SLICE 

D2A_PARSING_DONE 

A2D_DECODE_SLICE  

D2A_DECODING_SLICE_DONE 

…

A2D_DECODE_SLICE  

D2A_DECODING_SLICE_DONE 

…
A2D_Release_DECODER   

D2A_RELEASING_DONE 

Finish

Decoding a slice Decoding a slice

A2D_DISPLAY

D2A_DISPLAYING_DONE 

 

Figure 4.6 - The mailbox command transaction flowchart. 



 

 
40

Chapter 5.   Experimental Results 

This chapter shows experimental results of our streaming player. Two development boards 

are used during the experiments. First, to evaluate the performance of the proposed RTP 

streaming module, a Xilinx ML403 board is used to compare the proposed RTP streaming 

library against the popular JRTP library. The reason we use ML403 instead of OSK 5912 for 

the first set of experiments is because the eCos Ethernet controller driver on 5912 OSK only 

allow streaming at a fairly low data rate. Therefore, it is difficult to discriminate those two 

streaming libraries on OSK 5912. However, since ML403 also has a RISC processor 

(PowerPC 405), the performance comparisons on ML403 should be able to reflect the 

behaviors of both libraries on typical embedded systems. 

For the second set of experiments that test the performance of the dynamic task partition 

system, the OSK 5912 is used, as described in previous chapters. For the second set of the 

experiments, we set the clock rate of both MPU and DSP core to 96MHz. 

5.1. Experiments on Streaming Library Performance 

    Since Ethernet controller under eCos is not efficient enough, we test our streaming library 

on a PowerPC-based embedded platform, the Xilinx ML403 board. The processor clock rate is 

300MHz, and it uses the MontaVista Linux Professional Edition 3.1 based on the 2.4 Linux 

kernel. An USB Ethernet dongle is used for the streaming stress tests because the on board 

Ethernet PHY and network driver implementation seems to have trouble with back-to-back 

delivered packets. Therefore, even if the content bit rate is low, many packets will get lost 

unless the simulated server performs traffic shaping. On the other hand, the USB Ethernet 

dongle has much better support on ML403 and it is quite stable for moderately high data rate. 

Hence, we use the USB Ethernet PHY to test our streaming library. 

    We test our streaming library and compare the performance to that of the the open source 



 

 
41

library JRTPLIB 3.7.1 developed by Jori Liesenborgs [18]. The content bit rates used in the 

tests range from 1Mbps to 7Mbps with one video track and one audio track. The streaming 

player creates only one thread to receive both RTP and RTCP packets. Also, to simulate video 

and audio decoding behavior, the streaming player creates one or two more busy threads. Note 

that the RTCP RR sending module is disabled for our tests. 

    The test cases are described as follows: 

 A1 : One RTP receiving thread based on JRTPLIB 

 B1: One RTP receiving thread based on the proposed streaming library 

 A2: One RTP receiving thread based on JRTPLIB, and one busy thread 

 B2: One RTP receiving thread based on the proposed streaming library, and one 

busy thread 

 A3: One RTP receiving thread based on JRTPLIB, and two busy threads 

 B3: One RTP receiving thread based on the proposed streaming library, and two 

busy threads 



 

 
42

1Mbps 2Mbps 3Mbps 4Mbps 5Mbps 6Mbps 7Mbps

A1 0% 0% 0% 0.01% 0.03% 5.51% 18.69%

B1 0% 0% 0% 0% 0.03% 5.53% 18.76%

A2 0.05% 0.26% 4.69% 14.26% 20.65% 28.35% 38.30%

B2 0% 0% 0% 0% 0.02% 5.51% 18.71%

A3 0.44% 20.59% 35.12% 43.64% 47.59% 52.69% 59.23%

B3 0% 0.55% 0.11% 0% 0.19% 5.78% 19.55%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

pa
ck
et
 lo
st
 r
at
e 
(%

)

 

Figure 5.1 - The RTPLIB and the proposed streaming library performance comparisons. 

    Figure 5.1 shows the packet lost rate under three different conditions. A1 and A2 have 

similar packet lost rates because the RTP receiving thread has enough CPU resource. The 

packet lost rate increases when the data rate higher than 5Mbps is transmitted due to the 

limitation of the USB Ethernet dongle. The performances of test cases A2 and A3 are bad 

while the performances of test cases B2 and B3 are still as good as B1. These experiments 

demonstrates that the proposed streaming library requires much lower CPU resources and 

memory bandwidth than the popular JRTP library. Based on the experimental results, our 

proposed streaming library works more efficient than JRTPLIB. 

5.2. OMAP 5912 Network Capability under eCos 

     The eCos driver for the Ethernet controller on OSK 5912 is not efficient enough for high 

data rate streaming tests. In this experiment, we design a server to send 3,000 packets, and each 



 

 
43

payload size is 1400KB. The sending interval between two UDP packets could be controlled for 

different bit rates. The average packet lost rate could be derived from the number of 

accumulative received packet on OMAP 5912 (client) divide by the number of total send. 

    Table 5.1 shows the result. There are many packet losses if the average bit rate is more than 

128kbps.  

Bit rate Total sending time Average packet lost rate 
128 kbps 262.814 sec 0 % 
256 kbps 131.407 sec 9 % 
512 kbps 65.675 sec 48.89 % 
1 Mbps 33.614 sec 76.85 % 

Table 5.1 - OMAP 5912 Network Capability under eCos. 

5.3. Experiment of Dynamic Video Decoding Task 

Partition 

    Due to the Ethernet restriction, we tested three 128kbps, 30fps QVGA (320x240) 

resolution MPEG-4 video streams in this experiment. In addition, we used a network emulator, 

NCTU SimuNet, to restrict the streaming bit rate below 128kbps.  The test setup is shown in 

Figure 5.2. The gateway of the streaming server and the player is the network emulator.  

Switch

OMAP 5912 OSK

Streaming server

Network emulator
(NCTU SimuNet)

(1)

(2)

 

Figure 5.2 - The test setup. 



 

 
44

    Table 5.2 shows the dynamic video decoding task partition experimental result. We test 

the streaming player with three different task partition approaches, namely, decoding on the 

ARM core, decoding on the DSP core, and dynamic partition to both cores. The DSP core is 

responsible for color conversion and displaying. Compared with the pure DSP decoder, the 

performance gain is about 14%, and with pure ARM decoder, 29%. 

 Pure ARM decoder Pure DSP decoder Dual-core decoder 
Video 1 17.94 fps 19.95 fps 22.89 fps 
Video 2 18.61 fps 21.03 fps 23.86 fps 
Video 3 18.25 fps 20.78 fps 23.74 fps 
Average 18.27 fps 20.59 fps 23.50 fps 

Table 5.2 - The performance of the proposed streaming player. 

 ARM DSP 
Task Partition Ratio

ARM : DSP 
Video 1 13397  19603  1 : 1.463  
Video 2 13186  19841  1 : 1.502  
Video 3 13256  19744  1 : 1.489  

Total 39839  59188  1 : 1.486  

Table 5.3 - Task Partition ration of each sequence. 

    The number of slices assigned to the ARM core and the DSP core, and task partition 

ratios are shown in Table 5.3. As Table 5.3 shows, the average task partition ratio is about 1 : 

1.49 due to the DSP is more powerful on video decoding. Note that the length of each video is 

different. 

5.4. Experiment of Adding another Task to ARM or DSP 

Core 

    To observe behavior of the dynamic task partition approach, we run another busy task on 

the ARM or DSP core. If the static task partition approach is used, some complicated 

computations may always be assigned to the DSP core so that the DSP core is overloaded 



 

 
45

while the ARM core is idle. The dynamic task partition approach has higher performance due 

to the Task Partitioner could dispatch some task to the ARM core automatically. We assign a 

random Π computing task to the DSP core. As Table 5.4 shows, although the busy task 

decreases the pure DSP decoder performance, the dual-core decoder is nearly 24% faster than 

the pure DSP decoder. Table 5.5 presents the variation of the task partition ratio when the DSP 

core is busy. 

 Pure ARM decoder Pure DSP decoder Dual-core decoder 
Video 1 17.76 fps  16.21 fps  20.24 fps  
Video 2 18.62 fps  17.28 fps  21.18 fps  
Video 3 18.37 fps  17.04 fps  21.04 fps  
Average 18.25 fps  16.84 fps  20.82 fps  

Table 5.4 - DSP runs another busy task. 

 ARM DSP 
Task Partition Ratio

ARM : DSP 
Video 1 18441  14559  1.267 : 1  
Video 2 17222  15778  1.092 : 1  
Video 3 17216  15784  1.090 : 1  

Total 52879  46121  1.147 : 1  

Table 5.5 - Task Partition ration of each sequence when DSP is busy. 

In order to simulate another busy thread running on the ARM core, for example, an audio 

decoding thread. The experimental result is shown in Table 5.6. Even though the busy thread 

decreases the performance of all decoding approaches, the dual-core decoding approach is 

nearly 55% faster on average than the ARM-only decoding approach, and 8% than the 

DSP-only decoding approach. 

 Pure ARM decoder Pure DSP decoder Dual-core decoder 
Video 1 10.49 fps 15.29 fps 16.3 fps 
Video 2 10.88 fps 15.36 fps 16.70 fps 
Video 3 10.64 fps 15.23 fps 16.65 fps 
Average 10.67 fps 15.29 fps 16.55 fps 

Table 5.6 - ARM runs another busy thread. 



 

 
46

    Although the ARM core is busy for both streaming packet processing and simulated 

audio decoding, it still has CPU resource to deal with the decoding task. Thus, the dual-core 

decoder has higher performance than the pure DSP decoder. As Table 5.6 shows, the dynamic 

partition dual-core decoder is more efficient due to the tasks are assigned depending on the 

run-time computational load of both cores. Table 5.7 presents the number of slices assigned to 

the ARM core and DSP core, and task partition rations. 

 ARM DSP 
Task Partition Ratio

ARM : DSP 
Video 1 10687  22313  1 : 2.088  
Video 2 10079  22921  1 : 2.274  
Video 3 10242  22758  1 : 2.222  

Total 31008  67992  1 : 2.193  

Table 5.7 - Task Partition ration of each sequence when ARM is busy. 

    Table 5.8 provides better insight to the behavior of the dynamic task partition approach. 

Since ARM or DSP is busy, the Task Partitioner could assign decoding tasks to the other core 

for overall performance improvement. 

 ARM DSP 
Task Partition Ratio

ARM : DSP 

Without other tasks  39839  59188  1 : 1.486  

DSP runs an random 
busy task 

52879  46121  1.147 : 1  

ARM runs an extra busy 
thread  

31008  67992  1 : 2.193  

Table 5.8 - Task Partition Ratio.



 

 
47

Chapter 6.   Conclusions and Future Works 

    In this thesis, we implemented a streaming player with highly efficient design of the RTP 

streaming library and dynamic task partition approach for video decoding on TI OMAP5912 

OSK platform. 

    Compare to the well-known streaming library, JRTPLIB, our proposed streaming library 

has much higher performance (near 0% packet loss versus near 50% packet loss at 5 mbps) 

when the system load is high. In addition, the dynamic task partition approach for video 

decoding is used so that the task is assigned according to the loading of each core. If the MPU 

core is not busy because the streaming bit rate is low, the video decoding task could also be 

assigned to the MPU core. The experimental results in chapter 5 show the advantage of the 

dynamic task partition approach. 

    We use eCos embedded operating system to manage the threads. However, the Ethernet 

controller of ported eCos is designed inefficiently so that the networking ability is poor. The 

Ethernet controller driver should be modified to reduce the packet lost rate so that high data 

rate streaming tests can be conducted on OSK 5912. On the other hand, the audio decoding 

module could also adopt the dynamic task partition approach for a more complete streaming 

player system. 



 

 
48

References 

[1] J. Rey, Y. Matsui, “RTP Payload Format for 3rd Generation Partnership Project (3GPP) 

Timed Text,” IETF RFC 4396, February 2006. 

[2] 3GPP 3rd Generation Partnership Project, “3G Security; Security of Multimedia 

Broadcast/Multicast Service (Release 7).” 3G TS 33.246, 3GPP, January 2008. 

[3] H. Schulzrinne et al., “RTP: A Transport Protocol for Real-Time Applications,” IETF 

RFC 3550, July 2003. 

[4] M. Handley and V. Jacobson, “SDP: Session Description Protocol,” IETF RFC 2327, 

April 1998. 

[5] Texas Instruments, OMAP5912 Applications Processor Data Manual, “TI Technical 

Document SPRS231E,” Texas Instruments, Dallas, Texas, December 2005. 

[6] Ye Yang et al., “GEM-SOC: A RISC/DSP dual-core platform for portable media 

applications,” IEEE International Conference on Solid-State and Integrated Circuit 

Technology, 2006. 

[7] K.-Y. Hsieh , Y.-C. Liu, P.-W. Wu, S.-W. Chang, J. K. Lee, “Enabling Streaming 

Remoting on Embedded Dual-core Processors,” Proc. of IEEE International Conference 

on Parallel Processing, 2008. 

[8] A. Kosaka, S. Yamaguchi, H. Okuhata, T.Onoye, and I.Shirakawa, “Soc Design of Ogg 

Vorbis Decoder using Embedded Processor,” Proc. of 2004 Computing Frontier 

Conference, pp. 481- 487, 2004. 

[9] K.-Y. Hsieh, Y.-C. Lin, C.-C. Huang, and Jenq Kuen Lee. Enhancing microkernel 

performance on VLIW DSP processors via multiset context switch. Journal of VLSI 

Signal Processing Systems, 51(3):257–268, June 2008. 

[10] P. Gai, L. Abeni, G. Guttazzo, “Multiprocessor DSP Scheduling in System-on-a-chip 

Architectures,” IEEE Proceedings of the 14th Euromicro Conference on Real-Time 

Systems, 2002. 

[11] L. Sha, R.Rajkumar,” Priority Inheritance Protocols: An Approach to Real-Time 

Synchronization”, IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 9, 

September 1990. 

[12] Kwangsik Kim, Dohun Kim, Chanik Park, “Real-time Scheduling in Heterogeneous 

Dual-core Architectures,” IEEE International Conference on Parallel and Distributed 



 

 
49

Systems, 2006. 

[13] Cheng-Nan Chiu, Chien-Tang Tseng, and Chun-Jen Tsai, “Tightly-coupled MPEG-4 

video encoder framework on asymmetric dual-core platforms,” Circuits and Systems, 

2005. ISCAS 2005. Vol. 3, Pages: 2132-2135, May 2005. 

[14] Tsung-Fan Shen, “Design and Analysis of a Dynamic Task Partitioning Approach for 

Video Decoding on Heterogeneous Dual-core Platforms,” master thesis, NCTU, June 

2008. 

[15] Kuo-Cheng Lee, “Design and Analysis of a Dynamic Fine-Granularity Task Scheduler 

for Heterogeneous Dual-Core Platforms,” master thesis, NCTU, June 2006. 

[16] Nick Feamster, “The SR-RTP Library/Toolkit,” 

http://nms.lcs.mit.edu/software/videocm/ 

[17] Arne Kepp, “jlibRTP – The Java RTP Library.” http://jlibrtp.org/ 

[18] Jori Liesenborgs, “JRTPLIB,” 

http://research.edm.uhasselt.be/~jori/page/index.php?n=CS.JRTPLIB 

[19] Rishi Bhattacharya, “DSP Booting Example,” System Initialization for the OMAP5912 

Device, SPRA828A, Texas Instruments, Dallas, Texas, August 2002. 

[20] Texas Instruments, “Hex Conversion Utility Description,” TMS320C55x Assembly 

Language Tools User's Guide, SPRU280H, Texas Instruments, Dallas, Texas, July 2004. 

[21] Texas Instruments, “DSP Bootloader,” OMAP5912 Multimedia Processor DSP 

Subsystem Reference Guide, SPRU890A, Texas Instruments, Dallas, Texas, May 2005. 

[22] Texas Instruments, OMAP5912 Applications Processor Data Manual, TI Technical 

Document SPRS231E, Texas Instruments, Dallas, Texas, December 2005. 

[23] Texas Instruments,TMS320C55x DSP CPU Reference Guide, TI Technical Document 

SPRU371F, Texas Instruments, Dallas, Texas, February 2004. 

[24] Texas Instruments, Programming the DSP MMU in the OMAP5910 Device, TI 

Application Report SWPA038, Texas Instruments, Dallas, Texas, October 2004. 

[25] Texas Instruments, TMS320C55x DSP Programmer’s Guide, TI Technical Document 

SPRU376A,Texas Instruments, Dallas, Texas, August 2001. 

[26] Texas Instruments, TMS320C55x Image/Video Processing Library Programmer’s 

Reference, TI Technical Document SPRU037C, Texas Instruments, Dallas, Texas, 

January 2004. 

[27] Texas Instruments, IQmath Library A Virtual Floating Point Engine, TI Technical 

Document, Texas Instruments, Dallas, Texas, June 2002. 



 

 
50

[28] Texas Instruments, OMAP5912 Multimedia Processor Direct Memory Access (DMA) 

Support Reference Guide, TI Technical Document SPRU755B, Texas Instruments, 

Dallas, Texas, October 2004. 

[29] Internet Streaming Media Alliance Implementation Specification, Version 1.0, 28 August 

2001. 

[30] Y. Kikuchi et al., “RTP Payload Format for MPEG-4 Audio/Visual Streams,” IETF RFC 

3016, November 2000. 

[31] J. van der Meer et al., “RTP Payload Format for Transport of MPEG-4 Elementary 

Streams,” IETF RFC 3640, November 2003. 

[32] Dong Guk Sun, Sung Jo Kim, "A Kernel-Level RTP for Efficient Support of Multimedia 

Service on Embedded Systems," ICCSA 2005, LNCS 3482, pp. 79–88, 2005. 

[33] University College London, ”UCL Common Multimedia Library”, 

http://www-ice.cs.ucl.ac.uk/multimedia/software/common/index.html. 

 


