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中文摘要 
 
 
    網路編碼技術利用對網路封包作加密及解密的動作來提升網路傳輸的效

能。而網路編碼技術可以簡略分成兩個方向：intra-session 及 inter-session coding，
在這篇論文裡，我們將重點放在 inter-session coding，由於 inter-session coding 是

針對不同的一對一資料流來做編碼，所以比起 intra-session coding 的困難度相對

提高。 
 這篇論文與之前網路編碼的理論分析研究大不相同，我們提出一個容易實作

及佈建的機會式網路編碼架構並建構在 IEEE 802.16(d) 網狀網路上。不同於其他

研究者提出的實作架構，我們的系統只需要路由層及媒體存取控制層的相關資訊

即可發現編碼機會，而不需要額外的網路協定。由於這項優勢，我們的系統可以

輕易的架構在真實世界的網路上而不需大幅的修改。 
 除此之外，我們指出了一項新的“延伸的隱藏終端點問題＂，這個問題在使

用網路編碼的網路中會很容易發生，然而，在目前常用的無線網路標準裡無法避

免這個問題，所以我們提出一個頻寬保留的機制去避免此問題的發生，而這個機

制是由原本 IEEE 802.16(d) 網狀模式的三方交握機制去延伸而得。我們的模擬結

果展現了在應用層效能上網路編碼技術比起原本的路由機制大幅提昇，而且我們

提出的頻寬保留機制可以顯著地減少延伸的隱藏終端點問題的發生及封包碰撞

的次數。 
 
 關鍵字：無線網狀網路，網路編碼，IEEE 802.16，WiMAX，延伸的隱藏

終端點問題 
 



ABSTRACT

Network coding is a packet-encoding-decoding mechanism that aims to increase

the data transmission efficiency of a network. The development of network coding

can be roughly classified into two categories: intra-session and inter-session cod-

ing. In this thesis, we focus on the inter-session network coding because it is more

challenging to improve the performances of multiple unicast flows.

Unlike other theoretical studies, we propose an easy-to-implement and easy-to-

deploy network coding scheme that is based on the opportunistic approach over

IEEE 802.16(d) mesh networks. As compared with previous opportunistic coding

scheme, our proposed scheme need not employ an additional protocol to find cod-

ing opportunities or coding structures. Instead, only the routing and MAC-layer

information are needed in our coding scheme. Using this advantage, it is easier to

be realized in a real-life network as compared with the previously-proposed oppor-

tunistic coding schemes.

In addition, in this thesis we point out a new “extended hidden terminal prob-

lem,” which can frequently occur in a wireless network using network coding. We

will explain why the EHT problem can not be solved by currently-existing wire-

less network standards and propose a bandwidth reservation mechanism that is

extended from the IEEE 802.16(d) mesh-mode three-way handshake procedure to

prevent the EHT problem from occurring. Our simulation results show that the

throughput performance of a network using our network coding scheme is better

than that of a network using the traditional routing. Furthermore, our extended

bandwidth reservation mechanism can reduce the EHT problem and decrease the

collision occurrences largely.

Keywords: wireless mesh networks, network coding, IEEE 802.16, WiMAX,

extended hidden terminal problem.

i



Contents

Abstract i

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1

2 Related Work 5

3 Background 8

3.1 Overview of Network Coding . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Overview of IEEE 802.16(d) Network . . . . . . . . . . . . . . . . . . 10

3.2.1 Definitions of Teminologies . . . . . . . . . . . . . . . . . . . . 12

3.2.2 Network Entry Process . . . . . . . . . . . . . . . . . . . . . . 16

3.2.3 Link Establishment Process . . . . . . . . . . . . . . . . . . . 18

3.2.4 Network Synchronization . . . . . . . . . . . . . . . . . . . . . 19

3.2.5 Distributed Scheduling . . . . . . . . . . . . . . . . . . . . . . 21

4 Design and Implementation 25

4.1 Introduction to the NCTUns Network Simulation Platform . . . . . . 26

4.2 The Format of a Network-coded Packet under Our Proposed Scheme 27

4.3 Packet Encoding and Decoding . . . . . . . . . . . . . . . . . . . . . 29

ii



4.3.1 Main Encoding Rules . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.2 Decoding Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Complete Control Flow Explanation . . . . . . . . . . . . . . . . . . 35

4.4.1 Sending Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.2 Receiving Side . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Four-way Handshake Procedure 39

5.1 Packet Collision Problem in a Wireless Network-coded Network . . . 40

5.2 Modified Control Messages . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Four-way Handshake Procedure Design . . . . . . . . . . . . . . . . . 44

5.4 Data Schedule Holdoff Algorithm . . . . . . . . . . . . . . . . . . . . 47

6 Performance Evaluation 49

6.1 Simulation Parameters Description . . . . . . . . . . . . . . . . . . . 49

6.2 Simulation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 Simulation Environment Description . . . . . . . . . . . . . . . . . . 51

6.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4.1 Network Coding Throughput Improvement . . . . . . . . . . . 52

6.4.2 Under Different Fresh Clear Timers . . . . . . . . . . . . . . . 54

6.4.3 Under Four-Way Handshake Procedure . . . . . . . . . . . . . 56

6.5 System Resources Discussion . . . . . . . . . . . . . . . . . . . . . . . 64

7 Future Work 67

8 Conclusion 68

Bibliography 70

iii



List of Figures

3.1 The general butterfly example . . . . . . . . . . . . . . . . . . . . . . 9

3.2 The chain and star coding structures . . . . . . . . . . . . . . . . . . 10

3.3 The IEEE 802.16(d) protocol layering . . . . . . . . . . . . . . . . . . 11

3.4 The mac PDU format . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 The mesh frame structure . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Mesh subframes in detail . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.7 The registration process . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.8 The procedure of the link establishment process . . . . . . . . . . . . 18

3.9 The Next Xmt Time in both sender’s and neighbors’ views . . . . . . 20

3.10 The three-way handshake mechanism to establish a schedule . . . . . 23

4.1 The protocol stack configuration of IEEE 802.16(d) mesh-mode mod-

ules in NCTUns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 The format of a network-coded packet . . . . . . . . . . . . . . . . . 27

4.3 Two encoding rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 The sending flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 The receiving flow chart . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 The extended hidden terminal problem in chain networks . . . . . . . 41

5.2 The extended hidden terminal problem in butterfly networks . . . . . 42

5.3 The format of the modified MSH-DSCH message . . . . . . . . . . . 44

5.4 The format of the modified Grant IE message . . . . . . . . . . . . . 44

5.5 The four-way handshake procedure . . . . . . . . . . . . . . . . . . . 45

5.6 The mini-slot usages when dealing with the extended confirm . . . . . 46

iv



6.1 The two simple topologies . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 The 7-nodes chain topology . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 The 9-nodes grid topology . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 The 25-nodes grid topology . . . . . . . . . . . . . . . . . . . . . . . 53

6.5 The throughput of the Alice-and-Bob network . . . . . . . . . . . . . 54

6.6 The throughput of the butterfly network . . . . . . . . . . . . . . . . 55

6.7 The throughput of butterfly network under different fresh clear timers 57

6.8 The throughput of 7-node chain network under different fresh clear

timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.9 The throughput of 9-node grid network under different fresh clear

timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.10 The throughput of 7-node chain network . . . . . . . . . . . . . . . . 61

6.11 The throughput of 9-node grid network . . . . . . . . . . . . . . . . . 62

6.12 The throughput of 25-node grid network . . . . . . . . . . . . . . . . 63

v



List of Tables

3.1 The mac management messages used in the mesh mode . . . . . . . . 14

4.1 The notations used in our encoding rules . . . . . . . . . . . . . . . . 30

6.1 Average end-to-end delay under different connection queue sizes in

Alice-and-Bob networks . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Average end-to-end delay under different connection queue sizes in

butterfly networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3 The average reduced ratio of collisions in the four-way handshake

procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 Average end-to-end delay under different connection queue sizes in

7-node chain networks . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.5 Average end-to-end delay under different connection queue sizes in

9-node grid networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.6 Average end-to-end delay under different connection queue sizes in

25-node grid networks . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vi



Chapter 1

Introduction

Network coding is a packet-encoding-decoding mechanism that aims to increase the

data transmission efficiency of a network. It was first proposed by Ahlswede et al.

[2] in 2000 and has gained much attention in recent years. A typical network coding

mechanism is composed of two main operations: 1) mixing distinct outgoing packets

on intermediate nodes; and 2) decoding mixed packets before (or when) they arrive

at their destination nodes. With carefully finding and exploiting possible network

coding opportunities, network coding can reduce the number of packet transmissions

required for disseminating the same amount of data, as compared with traditional

routing.

The development of network coding can be classified into two categories based

on the network traffic patterns that it intends to address. One deals with the traffic

generated by one or more multicast flows (referred to as intra-session coding) [4],

while the other deals with the traffic generated by multiple unicast flows (referred

to as inter-session coding). Several previous work has proven that the intra-session

coding is beneficial for multicast-flow traffic and has well studied the characteristics

of this network coding class. More information for the intra-session coding can be

found in Chou et al ’s survey article in [3].

In contrast, developing an inter-session network coding scheme to effectively

improve the performances of unicast flows is more challenging. In a unicast-flow
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scenario, each flow has only one node as its intended receiver. In such a condition,

blindly coding packets is likely to waste network bandwidth to disseminate a packet

to nodes that are not interested in it. As such, designing an efficient inter-session

network coding scheme is difficult because such a scheme needs to consider three

problems at the same time: 1) routing path selection; 2) traffic load balancing; and 3)

network coding decision. [15][6][9][13] [16] formulate the inter-session network cod-

ing problem as a resource optimization problem that considers the aforementioned

problems and use the linear programming technique to mathematically obtain the

optimized solution to this problem.

Such theoretical studies have explored the characteristics of the inter-session

coding problem; however, they do not propose feasible distributed protocols for

scheduling inter-session network coding across a network. (Wang et al. [16] propose

a theoretical distributed framework to control inter-session coding over a virtualized

wireless network model. However, they do not present numerical results to evaluate

the throughput and packet delay time performances of their proposed framework.)

The reason is that a linear-programming-based scheduling approach usually requires

high computation complexity to find the optimal scheduling, which means that a

distributed algorithm developed based on this approach needs long time to converge1

(and may not converge under highly-changing traffic pattern).

In addition, these previous studies assume that no packet collisions occur in a net-

work; that is, they do not consider the performance degradation of an inter-session

network coding scheme caused by the well-known “hidden terminal problem.” The

impacts of the hidden terminal problem can be discussed by two aspects. First, the

packet collisions caused by the hidden terminal problem greatly reduce the over-

hearing capability of each node, which is fundamental to the operation of network

coding. As such, the performance of a network coding scheme will be degraded if

hidden terminals are present.

Second, using virtual carrier-sensing mechanisms (e.g. the RTS-CTS mecha-

1The convergence of a network-coding protocol is defined as: the coding and routing decisions

of all nodes in a network is consistent and loop-free.
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nism used in the IEEE 802.11 network) and reservation-based mechanisms (e.g. the

three-way handshake procedure used in the IEEE 802.16 mesh network) to prevent

the hidden terminal problem from occurring is likely to introduce time and band-

width overheads for packet transmission. Such extra overheads also decrease the

performance benefits achieved by a network coding scheme. As such, considering

the impacts of the hidden terminal problem is essential to designing a good network

coding scheme that aims to run in real-life networks.

To the best of the authors’ knowledge, in the literature no inter-session network

coding schemes that take the hidden terminal problem into account have been pro-

posed. As such, the objective of this paper is to propose a practical inter-session

network coding scheme that can be easily implemented in the real world and can

improve the performance of a network. This paper has two contributions. First, in

this paper we propose an easy-to-implement and easy-to-deploy inter-session net-

work coding scheme that is based on the opportunistic approach. As compared

with previous opportunistic coding schemes, such as COPE [12] and BFLY [14], our

proposed scheme need not employ an additional protocol to find coding opportuni-

ties or coding structures. Instead, our proposed scheme exploits only routing and

MAC-layer information to find coding opportunities and coding structures. Using

this advantage, it is easier to be realized in a real-life network, as compared with

the previously-proposed opportunistic coding schemes.

Second, in this paper we point out a new “extended hidden terminal problem,”

(denoted as the EHT problem) which can frequently occur in a wireless network

using network coding. (In this paper, we call such a network a “network-coded

wireless network.”) The EHT problem can result in the failure of network-coded

packet decoding, thus significantly decreasing the performance of a network-coded

wireless network. In Chapter 5, we will explain why the EHT problem cannot

be solved by the currently-existing wireless network standards, such as the IEEE

802.11(b) and the IEEE 802.16(d) specifications. In addition, we also propose a

bandwidth reservation mechanism that is extended from the IEEE 802.16(d) mesh-

mode three-way handshake procedure to prevent the EHT problem from occurring.
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Although our mechanism proposed in this paper is specific to the IEEE 802.16 mesh

network, it can be used as an example protocol design to eliminate the EHT problem

for other network-coded wireless networks.

The rest of this thesis is organized as follows. In Chapter 2, we present related

work and explain the different of our work and other previous work that oppor-

tunistically performs network coding. In Chapter 3, the background of the network

coding theory and the IEEE 802.16(d) mesh network are introduced. In Chapter 4,

we propose our opportunistic inter-session network coding scheme and explain the

detail issues of practical implementation. In addition, we explain the EHT problem

and provide our solutions in Chapter 5. Furthermore, we present the simulation

results and performance evaluations in Chapter 6. Finally, we propose possible

extensions to our work in Chapter 7 and conclude the thesis in Chapter 8.
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Chapter 2

Related Work

In the literature, several papers ([15][6][9][13][16]) have theoretically studied the

inter-session network coding problem. In these studies, the authors modelled the

inter-session network coding problem as a resource allocation problem that considers

a number of factors, such as coding chances, queue size of nodes, and link capacity,

and then find the optimal allocation for such a problem using linear programming-

based approaches. Although these previous studies have discussed the characteris-

tics of the inter-session network coding problem, turning their mathematical results

into feasible distributed real-life protocols is difficult due to the huge computation

complexity required by the linear-programming-based mathematical operations.

On the other hand, another track of inter-session network coding research is

opportunistic coding, which aims to develop sub-optimal yet easy-to-implement and

easy-to-deploy network coding schemes for unicast-flow wireless networks. In [12],

Katti et al. implemented the COPE coding scheme over a real-life IEEE 802.11(b)

wireless network. COPE performs network coding operation in an opportunistic

manner, and its main operations are described below.

Using COPE, each node periodically broadcasts a ”reception report” message to

its neighboring nodes. A reception report message of node i contains the informa-

tion of packets that node i currently possesses. Based on received reception report

messages, a network node maintains a packet information pool that records which

5



packets are currently possessed by its neighboring nodes. Each time when a node

is going to transmit a data packet, it first looks up the packet information pool to

check whether a coding opportunity exists or not. If so, this node mixes several

packets that can be coded together to form a new network-coded packet and sends

this network-coded packet out. If not, it defers the transmission of this packet until

the maximum allowed waiting time has elapsed. In this condition, the packet should

be transmitted immediately.

COPE uses the simple protocol explained above to help a node find coding

opportunities within its one-hop neighborhood, i.e., using COPE a node is only

capable of finding coding opportunities in chain-based or start-based topologies. In

[14], Omiwade et al. propose the BFLY scheme that allows nodes to find coding

opportunities in a butterfly topology. The operation of BFLY is briefly described

here.

Using BFLY, each node i should periodically broadcast a hello message to its

neighboring nodes. A hello message of node i contains node i’s neighboring node

list and a neighbor vector describing the relative neighboring relationship (regard-

ing the butterfly structure) of node i and its neighboring nodes. As such, each

node can maintain all of its possible butterfly coding structures based on the hello

messages advertised by its neighboring nodes. Upon transmitting data packets, a

node can check whether its outgoing packets can generate coding opportunities over

the maintained butterfly structures. If so, the node mixes these packets to form a

network-coded packets and then transmits the packet out.

The idea of BFLY is similar to our proposed network coding scheme, which can

find coding opportunities in chain-based, star-based, and butterfly-based topologies.

However, as compared with COPE and BFLY, our proposed network coding scheme

has several advantages. First, COPE and BFLY need to employ additional proto-

cols to exchange the information of either packets possessed by neighboring nodes

(in COPE) or butterfly-structure relationship of neighboring nodes (in BFLY). In

contrast, our proposed network coding scheme utilizes only routing and MAC-layer

neighborhood information to find coding opportunities and thus need not employ

6



any additional protocols to operate. As such, the bandwidth and time overheads

generated by such additional protocols can be eliminated. In addition, because the

operation of our proposed coding scheme need not rely on additional protocols, the

implementation complexity and deployment cost of our proposed scheme is greatly

lower than that of COPE and BFLY.

Second, to the best of the authors’ knowledge, the coding schemes proposed in

the previous studies, such as COPE and BFLY, do not consider the performance

degradation caused by the hidden terminal problem. As such, these schemes can

only work well over an interference-free wireless network, which is uncommon in the

real world. In contrast, our work takes the hidden terminal problem into account

and studies its impact on the performances of inter-session network coding.

Besides, we point out a new extended hidden terminal problem that only takes

place in a wireless network-coded network. With the presence of hidden terminals

and extended hidden terminals, the goodputs obtained by application programs in

a wireless network-coded network can be greatly decreased (even much lower than

those in a traditional routing-based network). To address this problem, our pro-

posed network coding scheme employs an ”extended three-way handshake procedure

(ETHP)” to eliminate the HT and EHT problems in a wireless network-coded net-

work. Our simulation results show that our proposed network coding scheme can

effectively eliminate the occurrence of HTs and EHTs and significantly increase the

application goodputs of of a wireless network-coded network.
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Chapter 3

Background

This chapter gives the background of this thesis which includes two main aspects:

Network Coding and IEEE 802.16(d) networks. In the following, we shall briefly

introduce the fundamental knowledge about each territory.

3.1 Overview of Network Coding

Network coding is a new paradigm to increase the utilization of both wired and

wireless networks. The core idea of network coding is to allow information mixing

in the intermediate nodes. A receiver sees these mixed-up packets and deduces from

the messages which were originally intended for the data sink. The fundamental

concept of network coding was first stated by [2], which demonstrated the famous

butterfly example. Consider the topology in Fig. 3.1, where source node S1 wants

to send packet P1 to destination T1, and source node S2 wants to deliver packet

P2 to destination T2. Using the traditional techniques of packet forwarding, packet

P1 and P2 should be passed through R1 and R2, and finally be delivered to the

destination T1 and T2. As a convention, we use the term “routing” to describe this

traditional solution. Unfortunately, there will be a bottleneck at link between R1

and R2 in the routing solution if each link capacity is only one packet.

In [2], the network coding scheme sloves this problem by mixing packets P1 and

P2 at node R1. A simple network coding mixing method is using the “exclusive

8



Figure 3.1: The general butterfly example

or” (XOR) to encode two packets. In a butterfly topology like Fig. 3.1, at first

time node S1 and S2 broadcast P1 and P2. Node R1 gets both two packets and

node T1 and T2 also receive P2 and P1 respectively. Each broadcasting casts one

transmission time. Also, node R1 and R2 broadcast the encoding packet “P1+P2”,

and node T1 and T2 can decode to the packets they want. Therefore, we can reduce

the transmissions from six to four and produce a coding gain of 6
4

= 1.5.

As mentioned in Chapter 1, most of the network coding researches after [2] focus

on the theoretical studies rather than the pratical approaches. Since the theoretical

studies have explored the characteristics of network coding, they do not propose a

feasible protocol and some assumptions of them can not be ignored in real-world

networks. On the contrary, the pratical implementations like [12][14] are based

on the opportunistic approach. They need to find coding opportunities or coding

structures to proceed the network coding scheme. The coding structures includes

chain, star and butterfly structures. The butterfly structure is shown as in Fig. 3.1

and its coding benefits are explained above. In addition, the chain and star (or

cross) structure are depicted in Fig. 3.2. At the chain structure example as Fig. 3.2

(a), node S1 and S2 want to deliver P1 and P2 to each other through node R1.

The network coding opportunitie is obvious where node R1 encodes (P1,P2) and

9



Figure 3.2: The chain and star coding structures

broadcasts to each sinks. The Structure in Fig. 3.2 (a) can reduce the transmissions

from four to three and generate a coding gain of 4
3

= 1.33 by using network coding.

Similarly, the star structure shown as Fig. 3.2 (b) is a kind of variations of

the chain structure. On the other hand, many chain structures comprised a star

structure. Fig. 3.2 (b) is also named the cross structure which forms by two chain

structures. In short, if there is only one forwarding node in the center (like R1) and

N source nodes transmit data to each opposing side across the forwarding node, the

central node can encode N packets and broadcast once. The coding gain of the star

structures can be computed as 2N
N+1

if all destinations can decode successfully.

3.2 Overview of IEEE 802.16(d) Network

IEEE 802.16(d) standard (also known as WiMAX) [1] is a promising next-generation

technology for the future FBWA1 systems. In this standard, the MAC layer is

structured to support multiple PHY-layer specifications, each suited to a particular

operational environment. In addition, the standard also supports IP-based network

1Fixed Broadband Wireless Access.

10



Physical layer 
(PHY-layer)

Security Sublayer 

MAC Common Part
Sublayer

(MAC CPS)

Service-Specific
Convergence Sublayer 

(CS)

M
A

C
-la

y
er

Figure 3.3: The IEEE 802.16(d) protocol layering

architecture (i.e. all WiMAX nodes are layer-3 devices).

Two operating modes are defined in the standard: the PMP mode and the

Mesh mode. Firstly, the PMP mode is designed to resolve the last-mile problem

in traditional wired environment. When this mode operates in the 10-66 GHz li-

censed bands, its line-of-sight (LOS) applications offer data rates grater than 120

Mbit/sec. Secondly, the Mesh mode is an extension mode to support the infras-

tructure of Wireless-MANs. In addition, this mode operates in the licensed bands

below 11 GHz and uses orthogonal frequency division multiplexing (OFDM) tech-

nology. Therefore, it can support non-LOS (NLOS) applications. Compared with

the traditional 802.11-based mesh network, the WiMAX Mesh Network is able to

provide higher throughput and larger coverage. In this thesis, we will only focus on

the Mesh operating mode.

Fig. 3.3 illustrates the reference mode defined in the standard. The MAC layer

consists of three sublayers, which are the Service-Specific Convergence Sublayer

(CS), the MAC Common Part Sublayer (MAC CPS) and the Security Sublayer.

The PHY layer adopts single-carrier technology to support LOS applications, and

uses OFDM technology to support NLOS applications.

The functionality of each MAC sublayer is presented in the following. In the

Service-Specific Convergence Sublayer, the major function is classifying the data

from upper layer, and then associating them to appropriate MAC connections. In the

11



MAC Common Part Sublayer, all of the main Mesh operations such as network entry

process and network synchronization are specified. The Security Sublayer provides

the subscribers with privacy across FBWA system by encrypting the connections

between BS and SS. In this section, we regard the MAC CPS as MAC layer directly

and only focus on this sublayer.

3.2.1 Definitions of Teminologies

In the following, some terminologies used extensively in the standard are introduced.

• Mesh BS and Mesh SS

The station that has a direct link to backhaul services (i.e. the Internet)

outside the WiMAX Mesh network is termed as a Mesh BS2. Other stations

are termed as Mesh SSs3.

• Sponsoring Node, Candidate Node and Registration Node

These three types of nodes are only used in network entry process. The Spon-

soring Node assists a new node in entering the WiMAX Mesh network during

the network entry process. The new node involved in this process is termed as

a Candidate Node. The Mesh node which assigns Node IDs to the new nodes

is termed as a Registration Node.

• Link

A link is a directional mapping between two MAC peers for either control

messages exchange or traffic flows transmission. It is identified by an 8-bit

link identifier (Link ID) and used to construct the connection identifier (CID).

Note that a link is a logical communication between two Mesh nodes in their

MAC-layer views.

• Connection

2Base Station
3Subscriber Station
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Figure 3.4: The mac PDU format

A connection, instead of a link, is a unidirectional mapping between two MAC

peers. For a specified link, many different connections are constructed by

either the various QoS parameters or the different network logical ID (i.e. A

link can construct multiple connections). In addition, a connection is identified

by a 16-bit connection identifier (CID). Note that a connection is a logical link

between two Mesh nodes in their MAC-layer views as a link.

• Neighbor, Neighborhood and Extended Neighborhood

The station that a node has a direct link connecting with is defined as the

node’s neighbor. Neighbors of a node form a neighborhood, and they are

considered to be one-hop away from this node. An extended neighborhood

covers not only a node’s neighbors but also the neighbors of those being in the

node’s neighborhood.

MAC PDU

As shown in Fig. 3.4, the MAC PDU comprises a 6-byte generic MAC header, a

variable-length Payload and an optional 4-byte cyclic redundancy check (CRC). In

addition, there are zero or more subheaders and the payloads carried in the Payload

field. The payloads, instead of the Payload, are used to carry either the data from

upper layer (such as IP packet) or the MAC management messages.

The major functions of generic MAC header, subheader and CRC are described

as follows. The generic MAC header indicates what the subheaders are carried

in the Payload field and whether the CRC is appended. The extra information,

such as the payload fragmentation state or the transmitting Node ID, are specified

13



Table 3.1: The mac management messages used in the mesh mode

Message Name Message Description

REG-REQ Registration Request

REG-RSP Registration Response

SBC-REQ SS Basic Capability Request

SBC-RSP SS Basic Capability Response

MSH-NCFG Mesh Network Configuration

MSH-NENT Mesh Network Entry

MSH-DSCH Mesh Distributed Schedule

MSH-CSCH Mesh Centralized Schedule

MSH-CSCF Mesh Centralized Schedule Configuration

in the corresponding subheaders. The CRC covers the generic MAC header and

the Payload to achieve error-protecting. Table 3.1 lists the important management

messages used in the Mesh mode.

Frame Structure

The Mesh frame structure is illustrated in Fig. 3.5 and Fig. 3.6. Only time

division duplex (TDD) is supported in the Mesh mode. A Mesh frame consists

of a control subframe and a data subframe. In addition, the control subframe is

divided into transmission opportunities (TxOpps); the data subframe is divided

into minislots. There are two kinds of control subframes which named the network

control subframe and the schedule control subframe. The former is used for network

configuration, new node entry and network synchronization. The latter is used

to exchange the coordinated scheduling information. In the following, we shall

introduce the control subframe and data subframe in detail.

The length of a control subframe is a fixed value of MSH-CTRL-LEN TxOpps.

Each TxOpp comprises 7 OFDM symbols. A control subframe is either a network

control subframe or a schedule control subframe. In the network control subframe,
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Figure 3.5: The mesh frame structure
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Figure 3.6: Mesh subframes in detail
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one TxOpp is reserved for the network entry process, and the (MSH-CTRL-LEN -

1) TxOpps following the reserved one is used for the network configuration. On the

other hand, in the schedule control subframe, MSH-DSCH-NUM defines the number

of MSH-DSCH TxOpps per schedule control subframe. In addition, during this

subframe, the first (MSH-CTRL-LEN - MSH-DSCH-NUM) TxOpps are reserved

for centralized scheduling. The remainder is allocated for distributed scheduling.

The parameters about the Mesh frame format are carried in the Network Descriptor

of NCFG message.

The data subframe is divided into (up to) 256 minislots. In this subframe, the

coordinated scheduling data and the uncoordinated scheduling packets will take

place. A scheduled allocation consists of one or more minislots.

3.2.2 Network Entry Process

A new Mesh SS node shall perform the network entry process to join the Mesh

network before starting a scheduled transmission. In the following, we elaborate

this procedure step by step.

1. First of all, the new node listens to the ongoing transmissions in the air and

searches for MSH-NCFG messages to synchronize coarsely with the Mesh net-

work. In the meantime, the new node shall build a physical neighbor list

according to the information carried in the MSH-NCFG message.

2. When enough information is acquired, the new node selects a Sponsor Node

from its neighbor list, and it becomes a Candidate Node. Moreover, the new

node shall synchronize its time to this Sponsor Node by the assumption of no

propagation delays.

3. By exchanging MSH-NENT and MSH-NCFG messages, the Candidate node

and the Sponsor node establish a temporary schedule named Sponsor Channel.

4. Through the Sponsor Channel, the Sponsor Node assists the Candidate node

to finish the basic capabilities negotiation and authorization with the BS.
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Figure 3.7: The registration process

Afterward the Candidate node shall perform the Registration Process to obtain

its Node ID, as shown in Fig. 3.7.

5. At the beginning of the Registration Process, the Candidate Node transmits

a REG-REQ message to register with the Registration Node via its Sponsor

Node. Upon receiving the REG-REQ message the Sponsor Node tunnels the

message by prepending a tunnel subheader, a UDP header and an IP header.

The tunneled message is sent to the Registration Node, which can optionally

be co-located with the Mesh BS. Upon the reception of this message, the

Registration Node assigns the Node ID of the Candidate Node and replies

the tunneled REQ-RSP message. When receiving this tunneled message, the

Sponsor Node shall extract the message and forward the REQ-RSP message

to the Candidate Node. Eventually, the Candidate Node obtains its Node ID

and accomplishes the Registration Process.

6. While finishing the Registration Process, the Candidate Node continues to

acquire an IP address using DHCP and retrieves the current system time via

the protocol defined in IETF RFC 868. Furthermore, it downloads the file

containing operational parameters by using TFTP.

7. Finally, after completing above processes, the Candidate Node closes the Spon-

sor Channel and becomes a functional node.
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Figure 3.8: The procedure of the link establishment process

3.2.3 Link Establishment Process

The Link Establishment Process is a three-way handshake procedure that performs

a simple authentication and establishes two unidirectional links between a pair of

neighboring functional nodes. Before the new node can transmit data packets, it

has to establish links with its neighbors by a Link Establishment Process. In the

following, we take an example to explain this procedure step by step and illustrate

it in Fig. 3.8.

1. At first, the Node 1 begins the Link Establishment Process by sending a chal-

lenge message to Node 2.

2. While receiving the challenge message, the Node 2 will try to authenticate

Node 1. If the authentication is successful, the Node 2 will create a link from

itself to Node 1 and then send back a response challenge message carrying this

link value to Node 1.

3. Similarly, when receiving the response challenge message of Node 2, the Node 1

first performs the authentication for Node 2. If the authentication is successful,

a link is established from itself to Node 2. Finally, the Node 1 will transmit

an acceptance message carrying the link value to Node 2. This message also

indicates that the Link Establish Process has been finished. Therefore, two

one-way links are created safely between the Node 1 and Node 2.
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3.2.4 Network Synchronization

In the WiMAX Mesh network, functional nodes periodically broadcast MSH-NCFG

messages to exchange network configuration information with their neighbors. This

procedure is named the Network Synchronization. Moreover, the transmission tim-

ing of the synchronized messages is determined by a pseudo-random algorithm. The

algorithm works without explicit negotiation and is completely distributed, fair and

robust. In the following, we introduce the Network Synchronization and the pseudo-

random algorithm respectively.

Network Synchronization

In the Network Synchronization, a node does not broadcast its exact next Xmt

Time (i.e., the time slot when a node transmits its MSH-NCFG messages). In

contrast, a node advertises an interval covering the actual Xmt Time. The interval

is only composed of a 5-bit Next Xmt Mx and a 3-bit Xmt Holdoff Exponent for

reducing the signaling overhead. Consequently, as shown in Fig. 3.9, the neighbors

only know the interval that covers the actual next transmission time (Next Xmt

Time) of the sender. The interval of the Next Xmt Time can be computed as

follows:

2XmtHoldoffExponent·NextXmtMx < NextXmtT ime ≤ 2XmtHoldoffExponent·(NextXmtMx+1)

A node broadcasts not only its own Next Xmt Mx and Xmt Holdoff Expo-

nent but also these two values of all its one-hop neighbors. Therefore, every regular

node possesses the scheduling information within its extended neighborhood.

Pseudo-random algorithm

When a node is able to transmit the MSH-NCFG message, it shall schedule its

next transmit time of MSH-NCFG message. The determination of the Next Xmt

Time is accomplished by a pseudo-random algorithm according to the information

deriving from its neighbors. In the following, we define the terminologies used in
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Figure 3.9: The Next Xmt Time in both sender’s and neighbors’ views

this algorithm.

• Xmt Holdoff Time

This is the number of MSH-NCFG TxOpps after Next Xmt Time. In this

period, a node is not eligible to transmit any MSH-NCFG packet. This value

can be computed as follows:

XmtHoldOffT ime = 2XmtHoldoffExponent+4

• Earliest Subsequent Xmt Time

The Earliest Subsequent Xmt Time indicates the earliest time when a node is

capable of competing the candidate TxOpp, and it can be obtained by

EarliestSubsequentXmtT ime = 2XmtHoldoffExponent·NextXmtMx+XmtHoldoffT ime+1

• Temp Xmt Time

Temp Xmt Time starts from the TxOpp which is equal to current Xmt Time

plus Xmt Holdoff Time. This time is when this node can compete for

TxOpps. If this node does not win the election, Temp Xmt Time will be set

to next TxOpp until this node wins.
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By definition, the node only competes for TxOpps later than the current Xmt

Time plus the node’s Xmt Holdoff Time. That’s when the Temp Xmt Time

starts from. Before the election begins, Mesh nodes shall determine what neighbors

are eligible to compete for the Temp Xmt Time. There are three conditions in

the following. If a neighbor meets one of them, the neighbor node is eligible.

1. The Next Xmt Time interval of the neighbor includes the Temp Xmt

Time.

2. The Earliest Subsequent Xmt Time of the neighbor is less than or equal

to the Temp Xmt Time.

3. The schedule of the neighbor is unknown.

When a Mesh election for the Temp Xmt Time is held among the sender and its

eligible neighbors, a pseudo-random mixing number f (Node ID, Temp Xmt T ime) is com-

puted for each of the nodes involved in the election. If f (Sender′s Node ID, Temp Xmt T ime)

is the greatest among all numbers, the sender sets its Next Xmt Time equal to

Temp Xmt Time, i.e. it can use the winning TxOpp to transmit its MSH-NCFG

message. Otherwise, the Temp Xmt Time is advanced and the algorithm is re-

peated until the node wins a TxOpp. Note that the fairness is ensured by the

algorithm and the seeds (Temp Xmt Time) are different for every TxOpp.

After the Next Xmt Time is decided, it is converted into the corresponding

Next Xmt Mx based on the specified Xmt Holdoff Time. Then the Next Xmt

Mx and the specified Xmt Holdoff Time are added to the outgoing MSH-NCFG

message.

3.2.5 Distributed Scheduling

In the WiMAX Mesh network, the network resources (i.e. minislots) may be al-

located by three different scheduling modes: the centralized scheduling mode, the

distributed scheduling mode and combination of above two modes. In this thesis,

we only focus on the distributed scheduling.
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In the distributed scheduling mode, schedules are established in a distributed

way in which all the Mesh nodes involved are regards as peers (including the Mesh

BS). The schedules are set up by a three-way handshake mechanism, which ensures

the established schedules to be collision-free within the extended neighborhood. In

the following we describe the distributed scheduling mode in more detail.

The distributed scheduling mode is divided into two operational modes, namely

the coordinated mode and the uncoordinated mode. In both coordinated and un-

coordinated modes, schedules are established between two nodes using a three-way

handshake mechanism by the MSH-DSCH message exchange. In the coordinated

distributed scheduling mode, the MSH-DSCH messages are transmitted over Tx-

Opps in the schedule control subframe without collisions. In contrast, in the un-

coordinated distributed scheduling mode, the MSH-DSCH messages can only be

exchanged in the data subframe. Therefore, collisions may occur in the uncoordi-

nated distributed scheduling mode. In this thesis, we only discuss the coordinated

distributed scheduling mode.

There are four kinds of information elements (IEs) that can be included in a

MSH-DSCH message. The MSH-DSCH:SchedulingIE carries the coordinated dis-

tributed scheduling information: Next Xmt Mx and Xmt Holdoff Exponent.

The MSH-DSCH:RequestIE is used to convey resource requests on a specified link

with the demand expressed in minislots. The MSH-DSCH:AvailabilityIE indicates

free minislots ranges of the requesting node, which one MSH-DSCH:RequestIE can

be corresponded to multiple MSH-DSCH:AvailabilityIEs. The granting node uses

the MSH-DSCH:GrantIE to specify the range of granted minislots which selected

from the free minislots reported by the requesting node. When it is sent by the

requesting node, the MSH-DSCH:GrantIE acts as a grant confirmation called MSH-

DSCH:ConfirmIE.

In the following, we explain the three-way handshake mechanism step by step,

which is illustrated in Fig. 3.10. Note that each MSH-DSCH message transmission

is just requiring one TxOpp. Therefore, it needs three time TxOpps to achieve the

three-way handshake mechanism where two TxOpps are for the requesting node and
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Figure 3.10: The three-way handshake mechanism to establish a schedule

23



one is for the granting node.

1. The requesting node first transmits a MSH-DSCH:RequestIE and one or more

MSH-DSCH:AvailabilitiyIEs to ask for a schedule.

2. Upon reception of the requesting message, the granting node responds a MSH-

DSCH:GrantIE specifying the actual schedule. In addition, the neighbors (ex-

cept the requesting node) of the granting node shall assume that the schedule

will take place as granted.

3. When receiving the granting message, the requesting node sends back a MSH-

DSCH:ConfirmIE which is a copy of the MSH-DSCH:GrantIE to confirm the

schedule to the granting node. Moreover, the third parties (i.e. the request-

ing nodes neighbors except the granting node) shall keep silence during this

schedule to avoid collisions.
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Chapter 4

Design and Implementation

In this chapter, we explain the design and implementation of our proposed network

coding scheme for IEEE 802.16(d) mesh networks. The design of our proposed net-

work coding scheme includes the collaboration of the MAC layer and the employed

routing protocol. In our design, the packet encoding-decoding functions and coding

scheduler are implemented in the MAC layer. The coding scheduler needs the next-

hop information of each outgoing packet to examine whether a coding opportunity

exists. Such information can be easily acquired by consulting the collaborative rout-

ing protocol, which is usually installed inside the operating system. Although our

proposed network coding scheme employs a cross-layer design, the cost to integrate

functions in different layers is insignificant.

We evaluate our proposed network coding scheme using the NCTUns network

simulator, which can use real-life Linux protocol stack and real-life application pro-

grams to conduct simulation. In Section 4.1, we first introduce NCTUns and presents

our implementations over this simulation platform. In Section 4.2, we explain the de-

tailed formats of the network-coding packet header, which contains the information

necessary to the operation of our proposed network coding scheme. We then explain

the designs of the packet encoding-decoding mechanism and the coding scheduler in

4.3. Finally, in Section 4.4 we elaborate the control flow of a network coded packet

from the sending node to a receiving node.
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Figure 4.1: The protocol stack configuration of IEEE 802.16(d) mesh-mode modules

in NCTUns

4.1 Introduction to the NCTUns Network Simu-

lation Platform

The NCTUns network simulator [17] is a high-fidelity and extensible network simula-

tor. By using a novel kernel re-entering simulation methodology, the protocol stacks

of real-life Linux operating systems can be used to conduct simulation. As com-

pared with other existing network simulators, real-life UNIX application programs

can directly run on top of NCTUns without any modifications. This unique feature

makes the simulation results generated by NCTUns more accurate and realistic.

NCTUns supports lots of different network protocols, and all of them are imple-

mented as protocol modules. In this these, we modify the implementation of the

IEEE 802.16(d) mesh-mode protocol modules, which was first developed by Chu et

al. [5] and refined by Hsu et al. [7][10][19]. The architecture of the IEEE 802.16(d)

mesh-mode modules is illustrated in Fig. 4.1. As shown in this figure, an IEEE

802.16(d) mesh network is composed of four modules: Mesh Route, MAC802.16

MeshBS, MAC802.16 MeshSS, and OFDM Mesh.
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Figure 4.2: The format of a network-coded packet

The Mesh Route module determines the routes of each packet and maintains a

routing table for a network node. It also implements the application programming

interfaces (APIs) of the route inquiry function, which is needed by the MAC-layer

coding scheduler.

On the other hand, the MAC802.16 MeshBS and MAC802.16 MeshSS modules

implements the MAC-layer functions defined by the IEEE 802.16(d) mesh-mode

standard. We implement the main packet coding-decoding functions in these two

modules. Finally, the OFDM Mesh module implements the characteristics of OFDM

channels and simulates the broadcasting nature of a wireless network.

4.2 The Format of a Network-coded Packet under

Our Proposed Scheme

Our proposed network coding scheme needs to add an additional network-coding

header into each outgoing packet such that intermediate nodes can differentiate

whether an incoming packet is network-coded or not. Such network-coding header

is inserted in front of each packet’s IEEE 802.16 MAC header. The detail format of

a network-coded packet is depicted in Fig. 4.2. The network-coding header can be

divide into two parts: 1) the Network Coding Header (NC hdr) and 2) the Network

Coding Coefficient (NC Coef). Following the network-coding header are the IP

header and TCP/UDP layer-4 packet. The network-coding header is also called a

shim header between the IEEE 802.16(d) MAC header and the general IP header.
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In the following, we describe the fields of a network-coding header in detail.

Network Coding Header

1. Coefficient Length:

This field indicates the number of Network Coding Coefficients. For a network-

coded packet, this field is set to two because, our proposed network coding

scheme only mixes packets belonging to two different flows. On the contrary,

this field is set to one if the packet is fresh.

2. Payload Length:

For a network-coded packet, its data payload corresponds to a complete IP

packet. When two fresh packets of different lengths are encoded together to

form a new network-coded packet, the payload length field of the new network-

coded packet should be set to the length of the longer fresh packet.

3. Time-to-live:

The Time-to-live (TTL) field shows the number of hops that a packet is allowed

to be forwarded. In the next section, we will present our proposed network-

encoding rules for finding coding opportunities in different coding structures.

Usually, this field is set to one for all packets to avoid bandwidth wastage due

to unlimited packet flooding. However, in a butterfly coding structure this

field should be set to two for the operation of our proposed network coding

scheme.

Network Coding Coefficient

A mixing packet may comprise two fresh packets. For each fresh packet, its

Network Coding Coefficient part is composed of the following information.

1. Source IP Address:

This field indicates the IP address of the traffic source node. In our network
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coding scheme, Source IP Address and Sequence Number are regarded as the

unique packet ID.

2. Destination IP Address:

This field indicates the IP address of the traffic destination node. We use this

information for looking up the routing path.

3. Sequence Number:

For every traffic source node, the Mesh Route module will assign a sequence

number for each local transmitting packet. As the description above, the

unique packet ID is referred to Source IP Address and Sequence Number.

4. Next Hop:

In the network coding scheme, every node needs to overhear packets which are

not for itself. For the sake of this reason, we use this information to notice

the real next hop. We fill in this field by the routing information basically but

sometimes modify it to perform the butterfly rule.

Adding the coding header into a packet generates a few bandwidth overheads.

The Network Coding Header is of 12 bytes in length and the Network Coding Coef-

ficient is of 16 bytes in length (for a fresh packet) or 32 bytes in length (for a mixing

packet). As such, if we have a 1400-byte UDP packet, the overhead only accounts

for 1.9% to 2.9%. Such a bandwidth overhead is negligible, as compared with the

performance gain obtained from network coding.

4.3 Packet Encoding and Decoding

Under our proposed network coding scheme, at most two different fresh packets are

exclusive-or-coded (XOR-coded) to form a network-coded packet. The reason why

we use this simple coding design is explained here. According to [13], Wang at al.

stated that the packet forwarding efficiency of coding two distinct packets is not
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Table 4.1: The notations used in our encoding rules

Notation Description

NH(a) The next-hop node of packet(a)

DST(a) The destination node of a packet(a)

TX(a) The transmitting node of packet(a)

NBR(A) The set of nodes that is one-hop away from node A

different from that of coding three and more distinct packets. In addition, regarding

coding two distinct packets, the XOR operation can greatly reduce the computation

complexity for network-coding a packet, as compared with other complicated coding

operations (such as finite field operations), while, at the same time, achieve the same

coding quality.

There are two advantages in our coding scheme. First, it is an easy-to-implemented

and easy-to-deployed scheme. Our proposed scheme need not employ an additional

protocol to find coding opportunities or coding structures. Second, as compared

with COPE[12] and its extension, which only can support chain-based and star-

based coding structures, our work can support chain-based, and butterfly-based

coding structures at the same time. (Note that the star-based coding structure

rarely happens in a real-life wireless network. As such, removing the star-based

coding from our coding scheme results in insignificant performance impact.) As

such, our proposed network coding scheme can find more coding opportunities that

COPE-based schemes. In the following, we elaborate on the encoding mechanism

employed by the proposed network coding scheme.

4.3.1 Main Encoding Rules

Chain Rule :

As shown in Fig. 4.3 (a), node B has received two packets from node A and C

(denoted as Pkt(a) and Pkt(c), respectively). After receiving these two pack-

ets, node B will check whether these two packets can form a coding opportunity
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by checking whether the following rules are satisfied.

1. TX(a) = NH(c)

2. TX(c) = NH(a)

The chain rule is simple because only one-hop neighboring nodes (nodes A

and C) of the coding node (node B) are involved. As such, the coding node

can make sure that if these two conditions are satisfied, nodes A and C must

possess Pkt(a) and Pkt(c), respectively. In addition, node A intends to receive

Pkt(c) and node C intends to receive Pkt(a). As such, if node B transmits a

network-coded packet (Pkt(a) ⊕ Pkt(c)), node A is able to obtain Pkt(c) by

XOR-ing Pkt(a) and (Pkt(a) ⊕ Pkt(c)). On the other hand, node C is able

to obtain Pkt(a) by XOR-ing Pkt(c) and (Pkt(a) ⊕ Pkt(c)). Using the chain

rule, a node can reduce the number of packet transmissions from four to three

and thus increase the packet transmission efficiency by 33%.

Butterfly Rule :

The chain-based network coding is easily implemented; however, such a cod-

ing scheme can achieve at most 33% improvement of transmission efficiency.

In contrast, the butterfly network coding can reduce the number of required

packet transmissions from six to four, which can improve the packet transmis-

sion efficiency by 50%.

The encoding-decoding mechanisms for the chain coding structure much dif-

fer from that for the butterfly coding structure. Using the chain coding, a

network-coded packet is decoded on its next-hop node. However, using the

butterfly coding, the network-coded packet is decoded on the nodes that are

two-hop away from the transmitting node. The operation of our butterfly

coding is composed of two parts: rule checking and routing designation. The

detailed design is explained below.

We use the topology shown in Fig. 4.3(b) as an example, where the network is

composed of six nodes. Node A intends to deliver Pkt(a) to node F and node
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C intends to transmit Pkt(c) to node D. On receiving these two packets, node

B should check whether they satisfy the following rules or not.

Butterfly Coding Rules

1. NH(a) = NH(c)

2. DST (a) 6= DST (c)

3. (NBR(A) ∩ NBR(E)) − B 6= ∅

4. (NBR(C) ∩ NBR(E)) − B 6= ∅

For a pair of packets, satisfying the above four rules indicates that they can

form a butterfly coding opportunity. The first rule indicates that the two

packets have the same next-hop node while the second rule indicates that

they belong to different flows and are destined to different destination nodes,

respectively.

A pair of packets satisfying the first two rules means that the routes of these

two packets have a chance to perform butterfly coding. Then, the third and

fourth rules check whether these two packets have opportunities to be decoded

correctly in a butterfly structure, in case they are XOR-ed to form a network-

coded packet. This checking is accomplished by examining if 1) nodes A

and E have any common one-hop neighboring nodes other than node B and

2) nodes C and E have any common one-hop neighboring nodes other than

node B. Rules (3) and (4) being satisfied means that the remedy packets for

(Pkt(A) ⊕ Pkt(C)) can reach node E’ neighboring nodes, when nodes A and

C transmit their own packets (i.e.,Pkt(A) and Pkt(C)) out, which means that

the decoding for the network-coded packet (Pkt(A)⊕Pkt(C)) can succeed on

nodes D and F.

If Pkt(A) and Pkt(C) pass rules (1) to (4), node B will mix these two packets

to form a network-coded packet (Pkt(A)⊕Pkt(C)). Then, to make sure that

Pkt(A) and Pkt(C) can reach nodes D and F, respectively, node B should

designate the routes of the two mixed packets for node E. This is done by
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Figure 4.3: Two encoding rules
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setting the next-hop node fields of the component packets in the network

coding header of the network-coded packet (Pkt(A) ⊕ Pkt(C)). The route

of Pkt(A) on node E should be set to node D and that of Pkt(C) on node

E should be set to node F, respectively. In addition, node B should set the

TTL field of this coded packet to 2, which indicates that node E is allowed to

re-broadcast this coded packet once again.

Finally, node B can send the coded packet (Pkt(A) ⊕ Pkt(C)) out. Upon

receiving this coded packet, node E first checks whether it can decode this

packet. Since it does not possess the remedy packets for this coded packet,

it cannot decode this packet. In such a condition, it first decreases the TTL

value of this coded packet and then checks if the TTL value is still larger than

zero If so, it should re-broadcast this coded packet again. If not, it should

drop this packet immediately.

Using such a design, the packet (Pkt(A)⊕Pkt(C)) can be flooded to nodes D

and E. Because these two node have remedy packets for (Pkt(A) ⊕ Pkt(C)),

they are able to decode the packets that they intend to receive (Pkt(C) and

Pkt(A) in our example).

Our proposed scheme is feasible and easy to be implemented because, for a

node, the one-hop neighboring node set of its neighboring node can easily

obtained from the hello message or link state message received by the collab-

orative routing protocol. In addition, for an IEEE 802.16(d) mesh network,

such neighborhood information can be directly obtained from control-plane

messages, such as MSH-NCFG messages or MSH-DSCH messages.

Route Designation for Next-hop Node

1. NH(a) ∈ ((NBR(C) ∩ NBR(E)) − B)

2. NH(c) ∈ ((NBR(A) ∩ NBR(E)) − B)
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4.3.2 Decoding Rules

The packet decoding mechanism of our proposed scheme is simple and explained

below. Every 802.16(d) mesh-mode node must maintain a fresh packet queue to

store the packets that are sent by itself or overheard from its neighbor nodes. Upon

receiving an coded packet, the receiving node first looks up the fresh packet queue

using the Packet ID as index (i.e, source IP address and sequence number). If one

of the coded packet’s component exists in the fresh packet queue, the receiving node

will XOR the coded packet that it receives and the fresh component packet found

in the fresh packet queue to obtain the other fresh component packet.

To save the storage space, each node periodically checks the fresh packet queue

and removes packets that are obsolete. An obsolete packet is defined as a packet

that has been existed in the network for more than a pre-defined time interval.

4.4 Complete Control Flow Explanation

In this section, we present the control flow of our proposed network coding scheme,

which is discussed from the sending side and receiving side. The sending-side flow

chart is depicted in Fig. 4.4 and the receiving-side flow chart is depicted in Fig. 4.5.

4.4.1 Sending Side

When the transmitting node sends or forwards a packet, the outgoing packet is

first placed into one of the node’s MAC-layer connection queue. This action then

triggers the MAC layer to perform a three-way handshake procedure to create a

data schedule for the connection queue, if no data schedule corresponding to the

connection queue exists so far.

As shown in Fig. 4.4, after the data schedule has been created, the MAC layer

first scans the connection queue and tries to find whether packets that match the

chain coding rules or butterfly coding rules exist. If such packets exist, the MAC

layer then 1) codes these packets; 2) removes these packets out of the connection
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queue; and 3) inserts the new coded packets into the connection queue. Such a

scanning process is repeated until 1) the MAC layer cannot find any packets to

perform network coding or 2) the total length of found packets have exceeded the

length of a data burst that the MAC layer is currently allowed to transmit. After

the encoding process, the MAC layer makes up a complete MAC-layer data burst

for those coded packets and then transmit this data burst down to the physical layer

to accomplish the sending process.

4.4.2 Receiving Side

The processing flow on the receiving side is shown in Fig. 4.5. On receiving a packet

from the physical layer, the MAC layer first checks whether it is a fresh packet or not.

For a coded packet, the MAC layer tries to decode it. If it cannot decode this coded

packet, it then checks the TTL field and determines if it can re-broadcast it again.

As aforementioned, if a packet is coded using the butterfly coding, its TTL field will

be set to 2 initially. As such, if the TTL value of such a butterfly-coded packet is

larger than zero, the MAC layer should insert this packet into the connection queue

again to re-broadcast it.

However, in case a coded packet with TTL value being zero cannot be decoded

correctly, the MAC layer should first place this packet into a coded packet queue.

If the MAC layer can receive the remedy packet of this coded packet within a

predefined time interval, the MAC layer can re-perform the decoding process for the

coded packet. Otherwise, after the predefined time interval has elapsed, the coded

packets that cannot be successfully decoded will be discarded.

On the other hand, if the MAC layer receives a fresh packet, it should first check

if the packet is destined to itself or not. If it is, it should send this fresh packet to the

upper layer. If not, it should store a copy of this packet in the fresh packet queue for

future possible decoding. (This is because such a packet may be the remedy packet

of future incoming network-coded packet.)
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Figure 4.4: The sending flow chart
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Figure 4.5: The receiving flow chart
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Chapter 5

Four-way Handshake Procedure

In this chapter, we discuss the impacts caused by the hidden terminal problem and

the extended hidden terminal problem on a network coding scheme. Such an issue

is rarely addressed in the previous studies, which greatly weakens the practicability

of network coding over a real-life wireless network. To design a practical network

coding scheme, in this chapter we explain the problems caused by hidden terminal

nodes and extended hidden terminal nodes and propose a solution that is feasible

in IEEE 802.16(d) mesh network.

The remainder of this chapter is organized as follows. We first discuss why the

packet collision problem can affect the performance of a network coding scheme

in Section 5.1. Then, we point out the extended hidden terminal problem that

frequently occurs in a network-coded network and explain why it greatly degrades

network coding performances in Section 5.2. In Section 5.3, we present our four-way

handshake design to solve this problem in detail. Finally, we propose an algorithm

to determine the activation time of a data schedule to further reduce the potential

bandwidth wastage that may result from our proposed four-way handshake design

in Section 5.4.
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5.1 Packet Collision Problem in a Wireless Network-

coded Network

It has been known that, in a wireless network, the hidden terminal problem can

result in frequent packet collisions. In a traditional IEEE 802.11 network, the RTS-

CTS mechanism is used to prevent transmitted data packets from being collided.

However, the RTS-CTS mechanism also greatly increases the bandwidth and time

cost for a packet transmission. (Using the RTS-CTS mechanism, a data packet

transmission should be accompanied by two control packet, i.e., the RTS and CTS

packets.) As such, it significantly reduces the throughput performance of a wireless

network.

In [12][8][11], Katti et al. have pointed out that the hidden terminal problem can

degrade the performance of a network coding scheme due to the packet collisions

that it causes. In addition, they also point out that using the RTS-CTS mechanism

to solve the hidden terminal problem will diminish the performance gain achieved

by network coding. Due to this reason, most of the previous network coding re-

search assume that a wireless network is collision-free and no hidden terminals (and

extended hidden terminals) are present. However, such an assumption is unrealistic

for a real-life wireless network.

As explained in Section 3.2.5, the IEEE 802.16(d) mesh mode uses a reservation-

based approach to schedule data transmission and employs a three-way handshake

procedure to eliminate hidden terminals. Because a three-way handshake procedure

can reserve a data schedule that spans at most 1.28 second, the bandwidth and

time overheads for avoiding hidden terminals in 802.16(d) mesh networks can be

amortized and less significant, as compared with those in 802.11 networks.

However, the three-way handshake procedure designed by the 802.16(d) mesh

mode does not consider the extended hidden terminal problem that frequently occurs

in a wireless network using network coding. The reasons why an extended hidden

terminal problem occurs are explained here.

In Fig. 5.1, the circles centered at nodes B and D represent the available trans-
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Figure 5.1: The extended hidden terminal problem in chain networks

mission range of these two nodes, respectively. The solid arrow denotes the direction

on which a node intends to its packets and the dotted arrow denotes the direction

on which its neighboring nodes is likely to overhear this packet. Although the three-

way handshake mechanism of the 802.16(d) standard can protect the transmitted

packets from being collided on the intended receiver (nodes A and E in this example

case), these packets are still collided on node C, which should overhear these packets

to perform network coding.

In a traditional routing-based wireless network, such packet collisions are allowed

and do not reduce the effective throughputs experienced by intended receiving nodes.

Nevertheless, in a network-coded wireless network, if network coding is performed,

coded packets may be collided on nodes that should overhear them for decoding

network-coded packets. For example, in the example show in Fig. 5.1, node D

should transmit a coded packet to both node A and node C to increase transmission

efficiency. However, using the three-way handshake mechanism, this coded packet

are protected only on node A. In contrast, it is collided with the one transmitted

by node D on node C. As such, this packet cannot be correctly decoded on node C,

which greatly degrades the performance gain achieved by network coding.

Such an extended hidden terminals can also appear in butterfly coding structures.

As shown in Fig. 5.2, in a butterfly-based network-coded network, nodes D and F

are very likely to lose the remedy packets required to decode network-coded packets

broadcasted by node E, due to the collisions caused by extended hidden terminals.

(In this case, the node pairs (A,E) and (C,I) are extended hidden terminals to
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Figure 5.2: The extended hidden terminal problem in butterfly networks

each, respectively.) Note that, because the original three-way handshake mechanism

cannot solve this sort of hidden terminals. Hence, we call this sort of hidden terminal

problems as the “extended hidden terminal problem.”

5.2 Modified Control Messages

To solve the “extended hidden terminal problem”, we enhance the original WiMAX

three-way handshake scheduling procedure and name it to “four-way handshake”

mechanism. Before describing the details of the “four-way handshake” mechanism,

we shall explain the control message formats which we modified for the new schedul-

ing procedure.

In Section 3.2.5, we express the original three-way handshake and the control

message the nodes exchanged. Similarly, the four-way handshake mechanism uses

the same MSH-DSCH control messages to notify the neighbors. However, we make

a little modification of the message formats. As depicted in Fig. 5.3, we use the

reserved field to achieve our goals. The two reserved bits of the MSH-DSCH message
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should be all zero in standard. We now take one bit to indicate this MSH-DSCH is

using the four-way handshake procedure.

In addition, we create a new IE named “extended confirm”. This new IE copies

all fields in Grant IE and adds additional 5 bits for extended usage. First, we create a

1-bit ExtConfirm field to distinguish from other kinds of Grant IEs. In the standard,

the Grant IE and Confirm IE are the same except the direction bit. Therefore, the

new ExtConfirm field also acts the notification bit in our design. Second, we add a

Frame Prefix field where its length is 4-bits. The Start Frame Number appending to

the Frame Prefix forms the integral Frame Number. In the IEEE 802.16 standard,

the total length of a Frame Number is 12 bits. For the sake of saving control message

length, the Grant IE only picks last 8-bits Frame Number to transmit and receivers

need to recover the actual value by the corresponding Availability IEs or Grant IEs.

Unfortunately, the design in IEEE 802.16 standard does not consider the situations

in the four-way handshake procedure. That is, we do not have enough information

to recover the real Frame Number in the ExtConfirm IEs. Therefore, we add the

Frame Prefix back to insure the correctness of Frame Number in the ExtConfirm

IEs. The format comparison is shown as in Fig. 5.4.

In a word, if we receive a MSH-DSCH message whose Reserved field is 00, we

recognize the length of the Grant IEs in this MSH-DSCH is 40-bits. On the other

hand, if the Reserved field of a MSH-DSCH message is 01, we recognize the length

of the Grant IEs in this MSH-DSCH is 45-bits. The max number of Grant IEs in

a MSH-DSCH message is also changed because we modified the Grant IE formats.

In the IEEE 802.16 standard, The max number of Grant IEs is up to 63 in a MSH-

DSCH message (i.e total length is 2520 bits). In our four-way handshake procedure,

the max number of Grant IEs is set to 56. However, the number of Grant IEs in a

MSH-DSCH message rarely exceeds the limit in the simulations.
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Figure 5.3: The format of the modified MSH-DSCH message

Figure 5.4: The format of the modified Grant IE message

5.3 Four-way Handshake Procedure Design

In the following, the “four-way handshake” procedure is presented. The four-way

handshake procedure extends from the original three-way handshake mechanism in

the IEEE 802.16 standard. Fig. 5.5 illustrates the procedure of the four-way hand-

shake procedure. The solid arrows are represented the real direction the node want

to send packets and the dotted arrows mean the overheard direction, respectively.

At the beginning, the requesting node sends a Request IE and the granting node

responses a Grant IE. Then the requesting node transmits a Confirm IE to accom-

plish the original three-way handshake procedure. In the previous section, Fig. 3.10

shows that the aware areas and the transmission protection between the request-

ing node and the granting node in the three-way handshake procedure. Now we

extends the fourth way at the neighbors of the requesting node. After receiving a

Confirm IE which is not for themselves, these nodes will copy the Confirm IE to

an Extended Confirm IE and transmit to their neighbors (i.e the two-hop neighbors

of the requesting node). This mechanism makes sure that the the requesting node
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Figure 5.5: The four-way handshake procedure

and its two-hop neighbors share the same scheduling information and they will not

transmit packets at the same time.

In the original design, if the mini-slots of an extended confirm overlap with the

existing schedule mini-slots, the scheduler may reduce the granting frame ranges to

prevent from collisions. Take Fig. 5.6 (a) for example, based on the IEEE 802.16(d)

standard, if the original 128-frame schedule is overlapped by another schedule (in

this case, it means the extended confirm), the scheduler will try to use multiple

32-frame schedules to replace. This original process wastes some mini-slots and

may reduce the performance. On the contrary, we enhance the handling function of

extended confirms. As shown in Fig. 5.6 (b), the scheduler also use the original 128-

frame schedule to grant. At the actual transmission time, each node (which overlaps

the mini-slots with other nodes) runs an algorithm to decide what node can send

data within the “Overlapped Mini-slots”. If some mini-slots in an overlapped frame

are not really overlapped with other nodes (see the first four frames in Fig. 5.6), the

node can still transmit packets at that time.

In the following, we list the decision algorithm in Algorithm 1. This algorithm

is quite simple and distributed. However, we do not consider the fairness problem

in this algorithm and we also discuss this issue in Chapter 7.
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Figure 5.6: The mini-slot usages when dealing with the extended confirm

Algorithm 1 The Transmitting Node Decision Algorithm in Enhanced Extended

Confirm Handling Procedure

1: ExtCfm ⇐ the overlapped extended confirm schedule

2: OriSch ⇐ the overlapped original schedule

3: if ExtCfm → startframe > OriSch → startframe then

4: OriSch wins the overlapped minislots

5: else if (ExtCfm → startframe = OriSch → startframe) and (ExtCfm →

startminislot > OriSch → startminislot) then

6: OriSch wins the overlapped minislots

7: else if (ExtCfm → startframe = OriSch → startframe) and (ExtCfm →

startminislot = OriSch → startminislot) and (ExtCfm → nodeID >

OriSch → nodeID) then

8: OriSch wins the overlapped minislots

9: else

10: ExtCfm wins the overlapped minislots

11: end if
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5.4 Data Schedule Holdoff Algorithm

The four-way handshake procedure works successfully bases on a hypothesis. That

is, the data schedule time of the requesting node needs to start after all the two-hop

neighbors receive the Extended Confirm IEs. If the data schedule starts earlier,

collisions may still occur due to the missed Extended Confirm IEs. To solve this

problem, we design an algorithm to compute the suitable data schedule starting

time. As described in Section 3.2.4, the WiMAX nodes exchange MSH-NCFG mes-

sages with their neighbors periodically and the next transmitting time information

is involving in the MSH-NCFG messages. Therefore, we can consider all the corre-

sponding nodes and choose a time late enough to wait the Extended Confirm sending

out.

The data schedule holdoff algorithm is explained in Algorithm 2. We divide this

problem into two cases. First, if the Next Txopps of the granting node is before

the Next Txopps of the requesting node itself, the requesting node tries to look

up all the Next Txopps of its one-hop neighbors. The greatest one refers to the

last time extended confirm will be sent out. Therefore, the requesting node will

start the data schedule after the greatest Txopps. However, the second case is

unpredictable. If the Next Txopps of the granting node is before the the requesting

node, the requesting node can not understand when the granting node will response

the Grant IE. Consequently, the requesting node choose the original data schedule

starting time without any back-off.

47



Algorithm 2 The Data Schedule Holdoff Algorithm

1: NBR(x) : one hop neighbors of nodex

2: G ⇐ the granting node

3: MyNextTxopp ⇐ the transmission time of my next control message

4: NbrList ⇐ (NBR(myself) − NBR(G) − G)

5: MaxTxopp ⇐ MyNextTxopp

6: if The next txopp of G ≤ MyNextTxopp then

7: for nodei ∈ NbrList do

8: txoppi ⇐ the max next txopp of nodei

9: if txoppi > MaxTxopp then

10: MaxTxopp = txoppi

11: end if

12: end for

13: return MaxTxopp

14: else

15: return MyNextTxopp

16: end if
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Chapter 6

Performance Evaluation

In this chapter, we use the NCTUns network simulator[17] to evaluate the per-

formances of our network coding scheme. In the following, we first describe the

parameters used in the simulations in Section 6.1. In Section 6.3 and Section 6.2,

we then show the different environments and measured metrics in the simulations.

Subsequently, the simulation results compared with the original IEEE 802.16 stan-

dard are presented in Section 6.4. Finally, in Section 6.5, we discuss the system

resource usages in the network coding scheme and display that this scheme can be

used in the real-world devices.

6.1 Simulation Parameters Description

• Connection Queue Size

Different connection queue sizes in a WiMAX node represent the maximum

capacities of the incoming traffic flows. We simulate the connection queue

sizes from 50 packets to 1000 packets to study the influence of performance

about the connection queue size.

• Fresh Queuing Period

The fresh queuing period is a duration storing the fresh packets. If the fresh

queuing period is too small, the encoding packets may not find the remedy
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packets to decode due to the flush of the fresh queue. We compare different

fresh queuing periods to study the performance effects.

6.2 Simulation Metrics

Our performance evaluation observes the following metrics.

• Aggregate Average Traffic Flow Throughput (AATFT)

We use the aggregate average application throughput of all traffic flows to show

the network capacities in the simulations. The Aggregate Average Traffic Flow

Throughput (AATFT) is defined as follows:

AATFT =

N∑

i=1

ti (6.1)

where ti is the average throughput of the ith traffic flow and N denotes the

total number of traffic flows in the simulation.

• Average End-to-end Delay (AETED)

We compute the application-to-application delay of every UDP traffic flow.

The Average End-to-end Delay (AETED) is defined as follows:

AETED =

∑N

i=1 ADi

N
(6.2)

where ADi denotes the average delay of the ith traffic flow and N denotes the

total number of traffic flows in the simulation.

• Reduced Ratio of Collisions (RRC)

As mentioned in Chapter 5, we proposed the four-way handshake scheme to

eliminate the EHT problem. The Reduced Ratio of Collisions (RRC) is the

ratio of the measured collision numbers in the physical layer (i.e OFDM MESH

module) with and without four-way handshake scheme.

RRC =
Collisions with FourWayHandshake

Collisions without FourWayHandshake
(6.3)
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6.3 Simulation Environment Description

In this section, we explain the simulation topologies and traffic patterns. We use

the aggregate throughput of all traffic flows to show the network utilization in the

simulations. All the traffic flows start after the IEEE 802.16 Network Initialization

Processes (as in Section 3.2.2, Section 3.2.3) and continue for 50 seconds. The traffic

flows have Poisson arrivals and fixed 1400-byte payload size.

In the following, the simulation environments are depicted.

• Chain Topology

As shown in Fig. 6.1 (a), the basic chain network is also called the Alice-and-

Bob network. We set two flows, one is from node 1 to node 3 and the other go

through the reverse direction. Each flow generates packets every 0.001 second

averagely.

• Butterfly Topology

As shown in Fig. 6.1 (b), there are also two flows in the butterfly network. We

set one from node 1 to node 6 and the other from node 3 to node 4. Each flow

generates packets every 0.002 second averagely.

• 7-node Chain Topology

As shown in Fig. 6.2, there are also two flows in this network. We set one from

node 1 to node 7 and the other from node 7 to node 1. Each flow generates

packets every 0.001 second averagely.

• 9-node Grid Topology

As shown in Fig. 6.3, this is a case of a lot of EHT problem occurrences as

we explained in Section 5.1. We set four flows in the this network, which are

1 → 6, 3 → 4, 9 → 4 and 7 → 6. Each flow generates packets every 0.001

second averagely.

• 25-node Grid Topology
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Figure 6.1: The two simple topologies

Figure 6.2: The 7-nodes chain topology

As shown in Fig. 6.4, this large topology contains 16 flows. Each flow generates

packets every 0.005 second averagely. The following eight pair of nodes are

acting the source node and destination node respectively: (2,14), (3,25), (4,24),

(5,23), (6,22), (7,21), (12,16) and (11,17).

6.4 Simulation Results

In this section, we present the simulation results under different cases.

6.4.1 Network Coding Throughput Improvement

In Fig. 6.5, Fig. 6.6, Fig. 6.11, Fig. 6.10 and Fig. 6.12, our network coding scheme up-

lifts the throughput under different network topologies. Our network coding scheme
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Figure 6.3: The 9-nodes grid topology

Figure 6.4: The 25-nodes grid topology
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Figure 6.5: The throughput of the Alice-and-Bob network

gains a 89% improvement as shown in Fig. 6.5 and 61% improvement as shown in

Fig. 6.6. These two simple topologies valid the two encoding rules as mentioned

in Section 4.3.1. In addition, in the more complicated cases, our network coding

scheme also increases the throughput from 24% to 57%. The results are depicted as

in Fig. 6.11, Fig. 6.10 and Fig. 6.12.

6.4.2 Under Different Fresh Clear Timers

As mentioned in Chapter 4, we clear the fresh packet queue periodically in order

to save the storage space. The timing to trigger the cleaning process is considered

as the fresh clear time. In the network coding scheme, we need the queued fresh

packets to decode a coded-packet. If the fresh clear time is too small, an useful

fresh packet may be regarded as an obsolete one and dropped. The performance

will decrease duo to the fail-decoded mixing packets. We show this situation by
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Figure 6.6: The throughput of the butterfly network

Table 6.1: Average end-to-end delay under different connection queue sizes in Alice-

and-Bob networks

original rule-based nc

connection queue AETED Sdv AETED Sdv

size (packets) (sec) (sec)

50 0.1169 0.0005 0.0470 0.0041

100 0.2196 0.0005 0.0504 0.0073

200 0.4235 0.0005 0.0504 0.0073

300 0.6257 0.0004 0.0504 0.0073

400 0.8262 0.0004 0.0504 0.0073

500 1.0249 0.0003 0.0504 0.0073

600 1.2220 0.0003 0.0504 0.0073

700 1.4175 0.0002 0.0504 0.0073

800 1.6114 0.0002 0.0504 0.0073

900 1.8037 0.0001 0.0504 0.0073

1000 1.9944 0.0001 0.0504 0.0073
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Table 6.2: Average end-to-end delay under different connection queue sizes in but-

terfly networks

original rule-based nc

connection queue AETED Sdv AETED Sdv

size (packets) (sec) (sec)

50 0.204 0.004 0.210 0.013

100 0.367 0.000 0.343 0.032

200 0.682 0.000 0.562 0.050

300 0.997 0.001 0.727 0.010

400 1.414 0.089 0.911 0.051

500 1.623 0.011 1.003 0.211

600 1.930 0.013 1.303 0.051

700 2.235 0.016 1.703 0.190

800 2.620 0.030 1.686 0.138

900 2.850 0.006 1.651 0.527

1000 3.157 0.011 1.802 0.678

three environments: the 6-node butterfly network, the 7-node chain network, and

the 9-node grid network.

Fig. 6.7, Fig. 6.8 and Fig. 6.9 reveal the AATFT under different fresh clear

timers. We can observe that when connection queue size increases, the AATFT with

small fresh clear time is decreasing. We explain the reason in the following. If the

connection queue is large, the incoming packets will be stored in connection queue

for a while. However, when it is finally encoded and drained out, the destination

node eliminates the remedy packets due to the small fresh clear time.

6.4.3 Under Four-Way Handshake Procedure

In Chapter 5, we elaborated the extended hidden terminal (EHT) problem and

proposed our solution: the four-way handshake procedure. In the following, we first

present the Reduced Ratio of Collisions (RRC) of three different topologies and show

the great reductions in our scheme. Second, we display the throughput results by

AATFT.

Reduced Ratio of Collisions:
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Figure 6.7: The throughput of butterfly network under different fresh clear timers
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Figure 6.8: The throughput of 7-node chain network under different fresh clear

timers
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Figure 6.9: The throughput of 9-node grid network under different fresh clear timers
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Table 6.3: The average reduced ratio of collisions in the four-way handshake proce-

dure

Without Data Schedule With Data Schedule

Holdoff Algorithm Holdoff Algorithm

7-node chain network 29.86% 17.5%

9-node grid network 1.49% 0.02%

25-node grid network 1.82% 1.16%

The RRC denotes the ratio of collision preventions in our four-way handshake

procedure. We compare the four-way handshake procedure with and without the

data schedule holdoff algorithm proposed in Section 5.4. The results are shown in

Table 6.3. Obviously, our four-way handshake procedure highly reduces the collision

occurrences and the Data Schedule Holdoff Algorithm is more effective than the

original four-way handshake scheme.

Aggregate Average Traffic Flow Throughput:

After discussing the reduction of collision occurrences, we then show the through-

put results comparing with the original WiMAX, network coding scheme, four-way

handshake procedure and four-way handshake with data schedule holdoff. Fig. 6.10

shows the AATFT values versus connection queue size under different schemes in

the 7-node chain network. The original WiMAX throughputs are much lower than

the other network coding schemes. In addition, we have better results when using

four-way handshake scheme. This result indicates the collision damage is solved by

our design.

In Fig. 6.11, the EHT problem frequently occurs in such a network topology.

We can find out that the throughput with network coding is sometimes close to

the original WiMAX scheme. This result shows that the collision actually affects

the goodput generated by network coding scheme because the throughput highly

increases when using the four-way handshake procedure to prevent the collision

occurrences. The result in Fig. 6.12 also displays the improvements by using the
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Figure 6.10: The throughput of 7-node chain network

four-way handshake procedure. The coding opportunities in such a large network

may be less than the coding opportunities in a small network like a 9-node grid

network. That is, the EHT problem does not always occur in this case. Although the

improvements are not as great as in Fig. 6.11, we still prove our four-way handshake

procedure is also suitable for the large networks.

In conclusion, the results in Fig. 6.11, Fig. 6.10 and Fig. 6.12 show the network

coding performance gain can be elevated by reducing the collision occurrences. Our

design solves the EHT problem in both small and large networks.

Average End-to-end Delay:

We consider the delay issue in this section. The network coding scheme can

reduce the average end-to-end delay in a network because packets may be drained

out quickly through the encoding procedure. Table 6.1 and Table 6.2 show this

condition where the average end-to-end delays of our network coding scheme are
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Figure 6.11: The throughput of 9-node grid network
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Figure 6.12: The throughput of 25-node grid network
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Table 6.4: Average end-to-end delay under different connection queue sizes in 7-node

chain networks

original rule-based nc rule-based nc+4way rule-based nc+4way+algorithm

connection queue AETED Sdv AETED Sdv AETED Sdv AETED Sdv

size (packets) (sec) (sec) (sec) (sec)

50 0.317 0.004 0.202 0.015 0.233 0.008 0.223 0.004

100 0.550 0.007 0.374 0.001 0.427 0.004 0.409 0.008

200 1.171 0.091 0.679 0.015 0.784 0.028 0.813 0.004

300 1.908 0.166 1.007 0.036 1.203 0.098 1.057 0.096

400 2.598 0.188 1.309 0.129 1.413 0.098 1.354 0.133

500 3.228 0.249 1.401 0.186 1.916 0.233 1.596 0.001

600 3.867 0.306 1.800 0.019 2.064 0.272 2.217 0.005

700 4.248 0.022 2.019 0.128 2.342 0.125 2.587 0.060

800 4.632 0.092 1.961 0.237 2.508 0.121 2.965 0.092

900 5.031 0.200 2.383 0.314 2.921 0.246 3.300 0.079

1000 5.398 0.303 2.558 0.178 3.150 0.344 3.589 0.406

less than of original WiMAX scheme.

Another delay topic is related to the effects of the four-way handshake procedure

and the data schedule holdoff algorithm. The four-way handshake procedure will

cost some time to forward the extended confirm messages and lengthen the end-

to-end delays. Furthermore, the data schedule holdoff algorithm will postpone the

data schedule to prevent collision to occur. This behavior will also increase the

end-to-end delays. In Table 6.4, Table 6.5 and Table 6.6, we list the average end-to-

end delay and the standard deviation under different connection queue sizes. The

results correspond with our expectation explained above, the average end-to-end

delay under four-way handshake procedure is larger than under our network coding

scheme. Besides, the average end-to-end delay using data schedule holdoff algorithm

is larger than only using four-way handshake procedure.

6.5 System Resources Discussion

In the following, we discuss some system issues in the real-world and display the

practicability of our network coding scheme.
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Table 6.5: Average end-to-end delay under different connection queue sizes in 9-node

grid networks

original rule-based nc rule-based nc+4way rule-based nc+4way+algorithm

connection queue AETED Sdv AETED Sdv AETED Sdv AETED Sdv

size (packets) (sec) (sec) (sec) (sec)

50 0.394 0.008 0.388 0.019 0.430 0.023 0.419 0.010

100 0.757 0.074 0.739 0.034 0.828 0.057 0.792 0.019

200 1.450 0.089 1.293 0.181 1.553 0.079 1.379 0.067

300 2.096 0.112 1.698 0.159 2.036 0.069 2.288 0.294

400 2.758 0.311 2.050 0.173 2.556 0.258 2.445 0.216

500 3.406 0.248 3.031 0.149 2.908 0.109 3.086 0.425

600 3.908 0.254 3.564 0.399 4.210 0.326 3.494 0.295

700 4.430 0.305 3.575 0.440 4.319 0.451 4.215 0.253

800 4.908 0.370 3.429 0.586 3.959 0.406 5.898 0.458

900 5.580 0.949 3.402 0.902 4.225 0.456 6.487 0.714

1000 6.088 0.609 4.793 0.809 5.708 0.466 7.073 0.483

Table 6.6: Average end-to-end delay under different connection queue sizes in 25-

node grid networks

original rule-based nc rule-based nc+4way rule-based nc+4way+algorithm

connection queue AETED Sdv AETED Sdv AETED Sdv AETED Sdv

size (packets) (sec) (sec) (sec) (sec)

50 1.063 0.233 0.813 0.225 0.903 0.197 0.878 0.188

100 1.965 0.406 1.366 0.272 1.624 0.374 1.584 0.343

200 3.482 0.614 2.458 0.498 2.990 0.602 2.825 0.529

300 4.957 0.971 3.661 0.940 4.199 0.997 4.098 0.787

400 6.199 1.237 4.355 0.899 5.208 1.162 5.373 1.075

500 7.816 1.550 5.581 1.313 6.237 1.287 6.197 1.116

600 9.133 1.804 6.625 1.547 7.797 1.640 7.358 1.541

700 10.894 2.202 7.514 1.520 8.010 1.571 8.165 1.657

800 11.998 2.843 8.268 1.784 9.378 1.679 9.308 2.164

900 12.989 3.360 8.936 2.023 9.857 2.171 9.784 2.519

1000 14.018 3.452 9.040 2.353 10.548 2.650 10.044 1.974

65



• Memory

In our proposed network coding scheme, the devices in the network should

overhear and store packets which are not sending for themselves. We clean

the queuing data periodically to prevent the memory ran out. In addition,

there is no need to store a packet which is already used for decoding or is

already arrived at the destination. Hence, we will only need to store the

packets in flight in a round-trip-time (RTT).

• Power

Our network coding scheme is based on the IEEE 802.16(d) mesh networks.

In this standard, the WiMAX mesh nodes are all fixed and without moving.

Therefore, we can assume that the power issue is not a problem where a fixed

node should have a stable power supply.
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Chapter 7

Future Work

• The Data Schedule Holdoff Algorithm in Four-way Handshake Pro-

cedure

Recalled in Section 5.4, in order to insure the extended confirm messages will

arrive before the data schedule starting, we look up the next control message

transmitting time of all corresponding nodes, and delay the data schedule

starting time if it needed. This procedure reduce the collisions successfully as

shown in Table 6.3. However, the performance may be reduced by unneces-

sary protections due to the long back-off of data schedules. If a collision never

affects the network coding scheme, it can be ignored without any protection.

But it is hard to distinguish a packet whether it needs protection or not.

• The Election Algorithm when Schedules Overlap in Four-Way Hand-

shake Procedure

As mentioned in Section 5.3, the extended confirm handling procedure needs

to decide which node can transmit data when a extended confirm schedule is

overlapped with existing data schedules. In this thesis, we use a simple method

to make the decisions as explained in Section 5.3. However, this method may

cause unfair conditions. That is, some nodes always win the election and some

nodes are forced to yield the transmission opportunities. The new algorithm

must be designed to deal with the fairness issue.
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Chapter 8

Conclusion

In this thesis, we propose an easy-to-implemented and easy-to-deployed inter-session

network coding scheme that is based on the opportunistic approach. Our proposed

scheme need not employ an additional protocol to find coding opportunities or coding

structures instead of other researches. Oppositely, our proposed scheme exploits

only routing and MAC-layer information to find coding opportunities and coding

structures. Using this advantage, it is easier to be realized in a real-life network.

In addition, in this thesis, we point out a new “extended hidden terminal prob-

lem,” which can frequently occur in a wireless network using network coding. The

“extended hidden terminal problem” can result in the failure of network-coded

packet decoding, thus significantly decreasing the performance of a network-coded

wireless network. We explain why the “extended hidden terminal problem” cannot

be solved by the currently-existing wireless network standards, such as the IEEE

802.11(b) and the IEEE 802.16(d) specifications. Moreover, we also propose a band-

width reservation mechanism that is extended from the IEEE 802.16(d) mesh-mode

three-way handshake procedure to prevent the “extended hidden terminal problem”

from occurring.

Although our mechanism proposed in this paper is specific to the IEEE 802.16

mesh network, it can be used as an example protocol design to eliminate the “ex-

tended hidden terminal problem” for other network-coded wireless networks.
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Finally, the simulation results show that the throughput performance of a net-

work using our proposed scheme is better than that of a network using the traditional

routing. In addition, the performance of our proposed four-way handshake design

is worthy of being further study.
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