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 I

適應變動與具恢復性的即時群體串流系統 

 

研究生：范姜智為                指導教授：蕭旭峯 

國立交通大學網路工程研究所 

摘要 

如何選擇路由路徑在 peer-to-peer(P2P)的網路或是應用層的多重傳播可以當

做是選擇父節點的行為。過去的演算法中大多使用單一的評定方法來選擇該節點

的父節點群。本篇論文提出一個創新的方法，結合一個節點剩餘存活時間與其他

衡量因素，來動態的選擇父節點。另外在資料傳輸部份，資料產生端使用 rateless 

code 與時間區段分割架構，如此一來接受者在網狀結構中，即便擁有多個資料

來源，也不需要額外的協調控制機置。我們的父節點選擇演算法除了決定路由的

路徑並且有減少浪費的頻寬以及降低端點到端點間的延遲的優點，能夠達到近乎

即時的串流系統。模擬的結果可以說明我們所提出的方法有效而且有組織的使所

有的用戶可以享受即時的串流節目。 
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Dynamic and Resilient Peer-to-Peer Architecture for Live 

Streaming  

Student：Chih-Wei Fan-Chiang                Advisor：Hsu-Feng Hsiao 

Department of Computer Science 

National Chiao Tung University 

Abstract 

Routing in peer-to-peer networks or application-layer multicast can be regarded 

as the process of parent locating and selecting. Many algorithms in the literature adopt 

some monotonic criterion to choose parents. In this paper, we propose a novel 

approach that utilizes the residual lifetime of peers, among other factors, to make the 

decision of time-dependent parent-selection dynamically. Moreover, the source is 

encoded in the fashion of digital fountain coding and proper segment scheme is 

included so that a peer makes as little effort as possible to coordinate the content 

distribution among its multiple parents for the live streaming applications. The parent 

selection algorithm also arranges the routing in the way of reducing the ineffective 

throughput and the viewing time difference known as synchronization property in a 

live streaming. The simulations show the robustness of the proposed method and good 

synchronization between peers for the live streaming scenario. 



 

 III

Acknowledgement 

首先要誠摯地感謝我的指導教授蕭旭峯博士，從研究所一入學開始，以自由

開明的風氣帶領我們，並且給予最大的研究創意空間，使我在這兩年研究生活中

獲益匪淺，從蕭教授身上學到的不僅僅是學術上的知識，更有做研究與待人處事

的行為與態度，萬分感謝蕭教授兩年對我的栽培。 

另外要感謝我的同窗，王聖舜、石新嘉、張玉書、楊采綾，在一同修課與做

研究的過程中互相砥礪幫忙，並透過討論和辯思，激盪出創新的想法才成就出我

的碩士論文。更要感謝我的女朋友，林妙珊小姐，在這兩年無怨無悔的陪伴，並

且在我遇到瓶頸或是心情低落的時候鼓勵我，讓我勇敢的面對挑戰與困難，非常

謝謝妳。 

最後，我要感謝我的父母從小的養育與教誨，給予我良好的學習環境與開放

的生活態度，讓我的求學生活無後顧之憂，並且能夠勇於挑戰自我，實現自我，

超越自我，以此論文獻給我摯愛的雙親，謝謝你們。 

 



 

 IV

Table of Contents 

Acknowledgement .......................................................................... III 

Table of Contents ........................................................................... IV 

List of Figures ................................................................................ VII 

List of Tables ................................................................................... IX 

Chapter 1 Introduction..................................................................... 1 

1.1 Preface ...................................................................................................... 1 

1.2 Motivation ................................................................................................ 1 

1.3 Research Objectives ................................................................................. 2 

1.4 Outline of the thesis ................................................................................. 3 

Chapter 2 Related Works ................................................................. 4 

2.1 Preface ...................................................................................................... 4 

2.1.1 Client-Server Architecture ............................................................ 4 

2.1.2 Peer-to-Peer Architecture .............................................................. 5 

2.1.3 Pros and Cons ............................................................................... 6 

2.2 Peer-to-Peer Structure Model ................................................................... 7 

2.2.1 Tree Based Model ......................................................................... 7 

2.2.2 Mesh Based model ........................................................................ 8 

2.2.3 Cluster Based Model ..................................................................... 9 



 

 V

2.2.4 Comparison ................................................................................. 11 

2.3 Peer Fluctuation ..................................................................................... 12 

2.4 Peer Synchronization ............................................................................. 14 

2.5 Peer-to-Peer Network Maintenance ....................................................... 15 

Chapter 3 Proposed Method .......................................................... 16 

3.1 Preface .................................................................................................... 16 

3.2 Proposed Protocol .................................................................................. 17 

3.2.1 Parent Selection .......................................................................... 17 

3.2.2 Join Protocol ............................................................................... 20 

3.2.3 Update Protocol .......................................................................... 21 

3.3 Data Management Model ....................................................................... 23 

3.3.1 Luby Transform (LT) Codes ....................................................... 23 

3.3.2 Luby Transform Codes Coding Scheme ..................................... 24 

3.3.3 Data Transfer Protocol ................................................................ 30 

3.3.4 Request Rate Allocation Function .............................................. 31 

3.3.5 Score Adjustment Mechanism .................................................... 32 

3.4 Peer Lifetime Distribution ..................................................................... 33 

3.4.1 Lifetime Distribution Research ................................................... 33 

3.4.2 Continuous to Discrete Lifetime Distribution ............................. 33 



 

 VI

3.4.3 Residual Lifetime Expectation .................................................... 36 

3.4.4 Summary ..................................................................................... 37 

3.5 Other Detail Design ............................................................................... 37 

3.5.1 Hot Spot Problem ........................................................................ 37 

3.5.2 Data Protocol Overhead .............................................................. 38 

3.6 Benefit of Our Peer-to-Peer System ...................................................... 39 

3.7 System Structure .................................................................................... 40 

Chapter 4 Simulation Result .......................................................... 42 

4.1 Simulation Surroundings ....................................................................... 42 

4.2 Parameter Setting ................................................................................... 43 

4.3 Different Weight Setting ........................................................................ 43 

4.4 Synchronization of Peers ....................................................................... 45 

4.5 High Churn Surroundings ...................................................................... 48 

4.6 Pull-Push Overhead Saving ................................................................... 50 

Chapter 5 Conclusions and Future Work..................................... 54 

5.1 Conclusions ............................................................................................ 54 

5.2 Future Work ........................................................................................... 55 

Chapter 6 Reference ....................................................................... 56 

 



 

 VII

List of Figures 

Figure 2-1: Network Architectures ................................................................ 4 

Figure 2-2: Basic tree based peer-to-peer architecture .................................. 8 

Figure 2-3: Basic mesh based peer-to-peer architecture ................................ 9 

Figure 2-4: Cluster based ............................................................................. 10 

Figure 3-1: Join Protocol ............................................................................. 21 

Figure 3-2: Update Protocol ......................................................................... 22 

Figure 3-3: LT codes flow ............................................................................ 25 

Figure 3-4: LT codes Encoder ...................................................................... 26 

Figure 3-5: LT codes Decoder ...................................................................... 27 

Figure 3-6(a)(b): LT Codes Decode Flow .................................................... 28 

Figure 3-7: Section Based LT Codes ........................................................... 29 

Figure 3-8: Data Transfer Protocol .............................................................. 31 

Figure 3-9: Data Protocol Overhead ............................................................ 39 

Figure 3-10 : System Structure .................................................................... 41 

Figure 4-1 : Network Topology ................................................................... 42 

Figure 4-2 : Weight Setting Reaching Process ............................................. 44 

Figure 4-3 : Our Proposed and rStream Average End-to-End Streaming 

Delay .................................................................................................... 46 



 

 VIII

Figure 4-4 : Average End-to-End Streaming Delay with Different Buffer 

Size ....................................................................................................... 47 

Figure 4-6 : Average Throughput under High Churn Scenario .................... 49 

Figure 4-8 : Continuous Index in High Churn Scenario .............................. 50 

Figure 4-9 : Pull-Push Overhead Saving ..................................................... 51 

Figure 4-10 : Effective Throughput with Pull-Push Data Protocol ............. 52 

Figure 4-11 : Continuous Index with Pull-Push Data Protocol ................... 52 

Figure 4-12 : Section Difference with Pull-Push Data Protocol .................. 53 

 



 

 IX

List of Tables 

Table 2-1: Comparison between Client-Server and P2P ................................ 6 

Table 2-2: Tree, Mesh, and Cluster Comparison ......................................... 11 

Table 4-1: Parameter Setup .......................................................................... 43 

 

 



 

 1

Chapter 1  Introduction 

1.1 Preface 

With the development of entertainments business, live digital multimedia 

services such as video on demand (VOD), IPTV, VOIP, and …etc, emerge rapidly in 

our life. Traditional Client-Server structure has problem fulfilling such services. This 

is because serving a huge crowd needs a relative enormous amount of network 

bandwidth.  

Therefore, researchers hope they could build a new network structure to utilize 

the network resource more effectively. Many popular peer-to-peer file sharing 

network structures were introduced to these kind services. Nowadays many famous 

live streaming services take advantage of the peer-to-peer network structure. For 

example: Cool Streaming [1] , PPStream [35], QQLive [36]…etc. 

1.2 Motivation 

Peer-to-peer structure first appeared in file sharing and then the structure has 

been extended to multimedia streaming with great popularity. However, there are still 

many open issues in a peer-to-peer streaming network to be addressed.  

Timing fluctuation of node’s participation and node’s limited available 

bandwidth are the main natural deficiencies of a peer-to-peer system. Both the natural 

drawbacks make design a good peer-to-peer network structure difficult. 

To overcome these natural drawbacks, some researches analyse peers’ behaviour 

in a peer-to-peer system. Through a long time observing, they concluded that a peer’s 
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lifetime follows heavy-tailed distribution. With this conclusion, we hope we could 

construct a peer-to-peer system which overcame the natural drawbacks of peer-to-peer 

structure. 

1.3 Research Objectives 

The objectives of our framework can be summarized as the following two parts: 

 Constructed a peer-to-peer structure to resist the natural drawbacks of a 

P2P system 

The lifetime of a peer could be modelled by some distribution [2] [3] [4]. And it 

has the characteristic that “the longer a node stays in the system, the less probability it 

will leave the system.”  

Besides the variation of peer lifetime, heterogeneous channel condition between 

peers further presents another challenge. Since a streaming system, especially live 

streaming, is delay sensitive, the time-dependent available bandwidth is more critical 

in a streaming system than in a file sharing application. 

Many of current peer-to-peer systems in the literature evaluate a peer’s ability 

according to only one observed parameter such as available bandwidth [5] [6] [7] [8], 

locality [9], or other factors [10] [11] [12] [13]. However, it is rather easy to attend to 

one parameter without losing track of the others. We propose to route the traffic 

through peers according to a weighted combination of several metrics. 

 Decrease the data reconciliation control overhead 

For a multi-parent streaming system, a peer needs to coordinate their parents for 

the desirable contents from different peers with the cost of a certain amount of control 
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traffic. For example, PROS [7] needs to keep gossip and PROMISE [6] divides a file 

into many chucks to be assigned to different peers. To counter this restriction, we 

adopt rateless code [14] into the proposed peer-to-peer streaming architecture to relax 

the need of content coordination and also serve as a error recovery tool. 

1.4 Outline of the thesis 

The remainder of this paper is organized as follows. In Chapter 2 we review the 

related works. The proposed application-layer routing scheme for the peer-to-peer 

streaming architecture and the rateless code based streaming architecture are 

presented in Chapter 3. In Chapter 4, we evaluate the performance of our proposed 

algorithm, followed by the conclusions in Chapter 5. 
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Chapter 2  Related Works 

2.1 Preface 

Nowadays, there are two main network architectures for one-to-many 

applications. One is client-server and the other is Peer-to-Peer (P2P) architecture. 

Different services suit for different network architecture. We introduce both below. 

(1) Client-Server Architecture (2) Peer-to-Peer Architecture
 

Figure 2-1: Network Architectures 

2.1.1 Client-Server Architecture 

In a client-server architecture, a client is the node that proposes a request and a 

server is the node to fulfill clients’ requests. Nowadays there are many services take 

advantage of this architecture such as HTTP, SMTP, Telnet, and DNS…etc. These 

services have common characteristics, including short service time, less bandwidth 

requirement and less time-dependent. Therefore, a small amount of servers can serve 

a huge client crowd. 
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Client-server architecture is not suitable for the services such as streaming and 

file-sharing. This kind of service has different requirements such as long term service 

time for each request, larger bandwidth consumption, and even high time-dependence. 

Under streaming-like service, client-server architecture will confront the problem 

caused by limited bandwidth of the network bottleneck. Multi-server solution is not 

the best resolution toward the service provider. This is because the above problems 

will appear again when user number increases or the streaming quality is upgraded. 

Even though client-server architecture can provide stable and reliable service, it isn’t 

appropriate to the streaming-like services. So how to serve large number of users 

under restricted available bandwidth becomes a huge issue.  

2.1.2 Peer-to-Peer Architecture 

A peer-to-peer architecture means that a node is server and also client at the same 

time. Peer-to-peer architecture is a distributed system. It relies on the cooperation of 

participating peers. The protocol defined in a peer-to-peer architecture should 

consider many views. How to construct peer-to-peer architecture? How to maintain 

existed architecture?  How to forward data content in a peer-to-peer network? 

A peer plays client and server roles simultaneously in a peer-to-peer architecture. 

This is said that a peer should receive service from peers and provide service to peers 

at the same time. Peers contribute their available bandwidth. The more peers 

participate in the system, the higher robustness peer enjoy the service. That’s the 

reason that peer-to-peer architecture can provide the services which need a long term 

service time and relative amount bandwidth. Although peer-to-peer architecture 

solved clearly the problem that client-server can’t handle, its natural drawbacks made 

it hard to put into practice. Peer unstable and heterogeneous channel conditions are 
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the two main natural drawbacks. Recent peer-to-peer researches aim for design a well 

peer-to-peer construction method. It contains the construction, maintenance, data 

transfer and other issues. 

2.1.3 Pros and Cons 

Summarize the advantages and disadvantages of client-server and peer-to-peer 

architecture. Table 2-1 shows the comparison between client-server and peer-to-peer 

architecture. 

Table 2-1: Comparison between Client-Server and P2P 

Client-server is more stable and reliable than peer-to-peer architecture. This is 

because data always store on single or multiple servers and service providers just keep 

server side working normal all time. To maintain small number of servers is much 

easy. That is why client-server architecture could provide stable and reliable service. 

However, peer’s natural high churn makes the stability and reliability rely on all 

participating peers’ effort. It’s hard to make stable and reliable compared with 

client-server architecture. But the issue still could be alleviated by the well designed 

peer-to-peer architecture protocol. 

Peer-to-peer architecture has overwhelming advantages in traffic, robust and 

available bandwidth aspects. Traffic in client-server structure usually is focus on the 

 Stable Reliable Traffic Robustness Available Bandwidth

Client-Server High High Focus Low Low 

Peer-to-Peer Low Low Distributed High High 
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path toward server but peer-to-peer architecture distributed the traffic on the network 

topology. This is said that traffic distributed on the path in whole participants.  

Robust in peer-to-peer structure is better than client–server structure because 

client-server architecture will end the service while the server is broken. Peer-to-peer 

architecture will stop the service while there are no participants in system.  

Finally the available bandwidth in client-server architecture will decrease with the 

increasing of participants. But, the available bandwidth will increase in peer-to-peer 

architecture while the participants contribute more than its download bandwidth. So 

each peer under the restricted bandwidth can provide service for infinite peers. 

Due to our objective, design a network structure fitted lived streaming, we 

choose peer-to-peer architecture as our network structure. Next section will introduce 

the related pee-to-peer researches. 

2.2 Peer-to-Peer Structure Model 

Peer-to-peer structure has three main models: tree, mesh and cluster. We will 

give each a brief introduction and compare three models. 

2.2.1 Tree Based Model 

Peers connect to each other and form a tree which means that a peer has only one 

parent and one or more children. Figure 2-2 shows the two basic tree based 

peer-to-peer architectures. Tall tree [15] [16] construction has least waste of available 

bandwidth but last few nodes will suffer from long delay. Each node in fat tree [17] 

has small delay but parents have relative heavy burden. However both of these 

methods can’t resist the transient behavior of peers. Moreover a tree based system 
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model needs a centralize mechanism to maintain peers’ position in a tree. A 

peer-to-peer system should get rid of the centralize mechanism because huge crowd of 

peers might crash the central server. 

 

2) Fat Tree

1) Tall Tree  

Figure 2-2: Basic tree based peer-to-peer architecture 

Maintaining tree based model needs less effort. However, it loses the distributed 

and robust advantages of a peer-to-peer system. It can’t solve the problem of high 

transient behavior. But it can deal with the heterogeneous channel conditions by 

optimally arranging peers in a tree. 

2.2.2 Mesh Based model 

Mesh based model is a fully distributed system. [1] [7] use mesh based 

construction method. Peers gossip to its neighbors and acquire the overlay 

information without centralize mechanism. Figure 2-3 is an overlay example of a 

possible peer-to-peer mesh network. 
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Figure 2-3: Basic mesh based peer-to-peer architecture 

However, mesh based architecture needs a complex protocol and a large number 

control messages. So, to maintain a mesh based network is not an easy job. Mesh 

based peer-to-peer network can’t immediately reflect the network situation to all 

participants. Peer might only get the information after few rounds of gossip. But the 

fully distributed characteristic can solve the heavy burden on servers or on few key 

peers in a tree based. This will enhance system robustness. 

2.2.3 Cluster Based Model 

A cluster based peer-to-peer architecture tries to combine the advantages in tree 

and mesh model. [18] [19] [20] use cluster method. In a cluster based peer-to-peer 

structure, peers will be divided into several groups by some factors. And then a cluster 

needs to pick up a leader. All group leaders form a tree based structure. Inside a 

cluster, peers form a mesh based structure. But the communication between peers in 
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different clusters must get through their leader (header). Figure 2-4 shows the 

simplest cluster peer-to-peer architecture. Header peer (Red) can cross layer 

communication and they construct like a tree. Normal peer just receives and transfers 

data in its group. 

 

Figure 2-4: Cluster based 

A cluster based peer-to-peer architecture is more robust than a tree based 

structure, and it has less complexity to construct the protocol than mesh based 

structure. But, forming a cluster still needs a centralize mechanism. Also we can’t 

promise the leader’s stability in a peer-to-peer system. So, cluster based structure 

didn’t solve the problem of transient behavior, it just leaves the problem to cluster 

leaders. 
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2.2.4 Comparison 

We summarize the advantages and disadvantages of these three construction 

models. Table 2-2 shows the comparison between tree based, mesh based and cluster 

based. 

 Centralize 

Mechanism 

Requirement

Protocol 

Complexity 

System 

Robustness 

Data Transfer 

Restriction 

Tree Based High Low Low High 

Mesh Based Low High High Low 

Cluster Based Medium Medium Medium Medium 

Table 2-2: Tree, Mesh, and Cluster Comparison 

Tree and cluster structures rely heavily on the centralize mechanism. The 

centralize machine needs to record whole overlay connection and each peer’s state. 

And then central machine uses the algorithm to calculate the best peer arrangement 

location on the overlay. Mesh based still needs a central mechanism. This is similar to 

the tracker file for a new join peer. The central machine just replies a random peer list 

to the new comer. Then peer starts protocol to find parents. Due to the algorithm runs 

on each peer, centralized mechanism is much lighter in mesh based than others.  

Tree based has lower protocol complexity. This is because central mechanism 

holds the overlay construction job. Peer seems to have an agent (central machine) 

which handles peer’s connection issue. Cluster based is more complex than tree based. 

This is because cluster leaders share the central machine’s burden. A cluster leader 
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manages its cluster works. The complexity of the mesh-based peer-to-peer 

architecture is the highest. In order to maintain the system, peer needs to gather parent, 

children, and data information. In a mesh based structure, fully distributed, peer 

should do those complexity jobs all the time. 

Tree and cluster based structure is less robust. This is because they rely on 

specific peers such as single parent or cluster leaders. It’s hard to prevent the system 

form crashing while facing a high churn situation. Mesh based could totally resist the 

high churn problem. A peer connects to parents on its own. Also all peers are equal 

essential. The high churn couldn’t influence the mesh based architecture.  

Data transfer shouldn’t be restricted by the overlay construction. Tree and cluster 

have the restriction due to their overlay construction. Mesh based structure can 

arbitrarily transfer data to each other. This is because a peer finds its parents on its 

own. Data transfer in mesh based structure is easier than in tree and cluster based. 

We think mesh based is the best peer-to-peer structure model. It preserves the 

distributed and robust advantages of peer-to-peer system. Although mesh based model 

require a complex protocol design, personal computer today can alleviate the problem. 

Other two construction models didn’t preserve peer-to-peer advantages, therefore they 

are not suitable for our objective service, live streaming. In next section we will 

introduce solutions to the natural drawbacks of peer-to-peer architecture in literature. 

2.3 Peer Fluctuation 

File sharing is the well known peer-to-peer application. The natural drawbacks of 

peer-to-peer didn’t stand out in file sharing. This is because file sharing always 

considers the completeness of data receiving. Huge crowd of peers could recover the 



 

 13

influence of transient peers. Therefore, file sharing service is much suitable for 

peer-to-peer architecture. However, the issue of transient peers in streaming service 

can’t be covered by huge crowd of peers. This is because streaming service is fully 

time-dependent. Also, all peers require a stable streaming bit rate. High transient of 

peers and heterogeneous available bandwidth make the stability and delay fluctuation 

in a streaming system. This is the fatal drawbacks of streaming service on 

peer-to-peer architecture.  

Fortunately, there are two ways to solve the peer fluctuation problem. One is the 

construction method of a peer-to-peer system, and the other is the streaming data 

protection. Error recover property existed in many coding techniques. For example, 

Forward Error-Correction coding (FEC) promises that receiving fix number of 

different encoded blocks can restore the original data content. Multiple Description 

Code (MDC) divide data into small groups. Receiver can restore low resolution of 

video content as long as it received one description. The more description it received, 

the higher resolution of video content it can watch. CoopNet [21] uses MDC to 

alleviate the damage of transient peers. On system construction side, CoopNet use 

multiple, diverse distribution trees transfer extra data to prevent the influence of 

overlay broken. However, without restriction of redundant data transferring will 

increase network burden. Also, there is a centralize tree construction mechanism. We 

think tree based peer-to-peer architecture can’t resist the high churn behaviors of 

peers. ROST [10] constructs an application multicast tree using the peer’s lifetime 

characteristic. The measurement of a peer’s ability in ROST is based on the product of 

bandwidth and lifetime (BTP). Because, they use the characteristic that peer who lives 

in system longer will have lower probability to leave the system. When a new comer 

in ROST, it will be placed at leaf. Then, it will exchange the position with its parent if 
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its BTP is bigger than its parent. Eventually, older peer will close to the root. The 

whole system will drive to stable because of the churn behaviors often appeared far 

from root. However, peer bandwidth and its lifetime have no relation. A new comer 

with huge bandwidth will close to root after a small period of time. This situation 

might make ROST unstable. Although ROST uses peer lifetime characteristic to 

achieve stability, tree based architecture isn’t fit into the scalability of peer-to-peer 

system. To make a peer-to-peer system robust, we shouldn’t rely on specific peers. 

2.4 Peer Synchronization  

Peer synchronization issue in peer-to-peer live streaming system is much 

important. We use popular peer-to-peer live streaming system [35] [36] which suffer 

from 30 to 300 seconds end-to-end delay. To decrease delay relies on peer-to-peer 

construction strategy. By constructing a short tree, [17] achieves the shortest path on 

an overlay. And this can enhance synchronization of all peers. [22] [23] make peer 

synchronize by considering the corresponding of physical network topology and 

overlay network. This consideration let transfer messages on overlay won’t have extra 

time consuming. However, to understand the network topology and routing are not an 

easy job. Except the observation method, rstream [24] uses mathematic induction to 

minimize the end-to-end streaming delay. 

rStream formulates the small delay and bit rate satisfaction as a linear 

optimization problem. According to each overlay link delay and capacity, rStream 

decides upstream peer’s rate allocation with minimal delay.  rStream on some 

aspects need central control mechanism. That is under a high churn situation peer will 

do update process at the same time. This burst throughput might be the miscalculating 

of rStream. 
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2.5 Peer-to-Peer Network Maintenance 

Peer-to-peer streaming protocol can generally classify into server driven, 

receiver driven, and data driven [25]. Server driven [26] [27] [28] is the tree based 

structure which root is data source. On the contrary, receiver driven is the tree based 

architecture which receiver is the root. Data-driven [1] [29] (gossip based) is that peer 

random selected its neighbors and peer exchanged information of others by many 

control messages (gossip). However, centralized algorithms usually need a power 

server to be root. This is hard to be a scalable streaming system. Therefore, many 

distributed algorithms try to solve this problem. ZIGZAG [19] minimize the 

transmission delay, and Splite-Stream [28] maintain multiple distributed tree to reach 

scalability. 

CoolStreaming [1] is a data driven method also a mesh based structure. Peer in 

CoolStreaming have many partners. It used membership management and partnership 

management to retrieve the information of partners. Data coordination in 

multi-parents is important. To avoid redundant data, peers exchange data chunk 

availability using buffer maps. To exchange frequently buffer map and requesting 

specific data chunks will increase the amount of control messages. This is the 

disadvantage of a mesh based structure. Rateless code can solve the data coordination 

problem. We will introduce in section 3-2.  

To maintain a peer-to-peer streaming system, tree based is simpler than mesh 

based. But, tree-based system always needs a power-server. It is not a scalable 

solution to a streaming service. We should use mesh based peer-to-peer system 

structure to make a scalable streaming service.  
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Chapter 3  Proposed Method 

3.1 Preface 

High fluctuation of node’s participation and limited bandwidth availability are 

the natural disadvantages of peer-to-peer network. As previous chapters describe, we 

know that to design a good lived streaming system should need a mesh based 

peer-to-peer network structure. rStream uses linear optimization model to design an 

efficient distributed optimal rate allocation algorithm and minimizes end-to-end 

delays. Moreover, rStream takes Luby Transform (LT) codes on data transformation. 

This code can reduce the amount of control messages for data reconciliation. However, 

rStream still has some drawbacks. 1) It still uses centralize mechanism when a joined 

peer does first optimal parent combination. 2) It takes passive measure while facing 

the transient of peer. When central mechanism finds many requests of rate 

recalculation, it sends broadcast messages asking all peers to rearrange its rate. 3) It 

takes advantage of pull-push data transfer scheme but they don’t consider the 

round-trip-time overhead of this scheme. 4) They have restriction of data transfer. A 

peer only can transfer the decoded data section. 

Our proposed method makes peer exchange messages with others. Then, peer 

joins into the streaming system. We promise the stability of sufficient streaming data 

bit rate. In high churn surroundings, peer can calculate the lost probability of their 

parents. Thus, a peer will not be affected by the transient behavior of peers. Besides, 

we use effective throughput prediction to reduce the overdue data of pull-push data 

transform scheme. 
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Sub-chapters below are the details of our propose streaming system. It contains 

our proposed protocol, data transfer scheme, lifetime distribution, and other small 

issues of design this system. 

3.2 Proposed Protocol 

How to pick up a group of parents is the main part of a peer-to-peer protocol. 

Our proposed protocol is aimed at recovering the natural drawbacks of peer-to-peer 

architecture.  

3.2.1 Parent Selection 

Our parent selection algorithm uses lifetime distribution of peers and weighted 

factors to evaluate the ability of peers.  

There exists a phenomenon in a peer-to-peer system. That is “the longer a peer 

lives in the system, the less probability it will leave later.” Also, this peer lifetime 

distribution can be modeled by heavy-tailed distribution [2] [4] [10]. (Most of 

researches use Shifted Pareto Distribution [30]) We use this distribution precisely 

point out the peer, i, reliable level Li(t) with its lifetime t.  

We use three factors to measure a peer’s ability. These parameters use weighted 

adjustment. The three factors are PABW (Path Available Bandwidth), FL (Fresh 

Level), and ER (Effective Ratio). PABW is the probably upload bandwidth of a peer. 

FL represents the data latency of a node owning. ER shows the data usability of a 

node owning.  

A. Path Available Bandwidth (PABW)： 

Each peer stores the PABW information from their parents. When a peer 
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calculates the PABW value itself, it sums up the PABW values multiply the 

reliable level L(t) of each parent of itself. (1). SPABW(i) represents the total 

bandwidth that a peer, i, will receive from its parents in the future. Later, a peer, i, 

compares this value (SPABW(i)) with its available bandwidth multiply its leaving 

probability D(t). Choose the minimum one as its PABW value (2). 

Therefore, PABW factor represents the minimum supply bandwidth of a peer 

in the future. PABW factor on source is equal to the supply bandwidth of the 

child. 

B. Fresh Level (FL)： 

Fresh level (FL) represents the delay relative to the source node of a peer. 

The source must give a time stamp on the data packet. When a peer received data 

from its parent, it can realize the delay relative to the source. The fresh level value 

of a parent can be calculated by using the time stamp from source. The detail of 

fresh level calculation is that peer records all fresh level parameters of its parents. 

The peer chooses the maximal one from its parents as its fresh level parameter.  

Fresh level parameter also shows data new/old level of a peer. If delay on 

leaf peers were as close as those peers who connected with source in a real time 

streaming system, peer-to-peer system can work more effective. 

C. Effective Ratio(ER)： 

Effective ratio is trying to show the data usability of a peer transmission. It is 

the ratio of the effective data bit rate from a parent to the request bit rate toward 

∑
∈

×=
sParentij

jj tLjPABWiSPABW
'

))()(()(  (1) 

))()(),(min()( ii tDiABWiSPABWiPABW ×= (2) 
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the parent. Above two factors predict the ability of a peer. This parameter can 

reflect the real contribution of a parent. Multi-parent scheme cannot avoid the 

waste of data generation and transmission. Besides reflecting the contribution of a 

parent, this parameter can restrain some parents from transferring redundant or 

overdue data. To compute this factor, a peer needs to receive a period of time data. 

The factor could be counted while the peer is already my parent. We will 

introduce the way to calculate this factor later (In 3.3.3). It has to combine with 

our data management model. 

The evaluation score (ES) of a parent candidate Pi can be expressed as: 

)(*)()()( 321 iERwiPABWwiFLwiES +∗+∗=  )3(

 where w1, w2, and w3, are weighting factors. 

The weightings of evaluation processes are set according to the factors leverage. 

Path available bandwidth factor can reflect a peer’s stability on data supply. Fresh 

level factor can reflect a peer owning data latency and closing to the source. Effective 

ratio shows the healthy level of data supply of a peer. All peers in a live streaming 

system hope to receive streaming data smoothly before leaving. We will enhance the 

weighting on PABW to keep receiving stable streaming data. ER still needs to 

consider, because it can reflect the streaming data usability. Also, we can’t ignore the 

latency of data, because in a live time streaming system overdue data is useless. 

Finally, the new comer chooses the parents according to their evaluation scores. 

The number of selected parents depends on the summation of the evaluation scores of 

selected parents. 
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3.2.2 Join Protocol 

We use four-way join protocol: 

1) Peer X joins into the streaming system. Peer X asks a random peer list from a 
patch server. This server records partial active peers in the streaming system. 
When the server receives a request from a peer, it just replies randomly a list 
of peers. 

2) Peer X sends out join message to all the peers who are on the list. Also, it 
asks them to reply another peer list which they connected with and the 
evaluation factors. 

3) Peer X acquires information of other peers in a period of time. Then, it does 
the evaluation score process which we introduce above. Finally, it ranks the 
score and decides candidate peers. It sends out the join handshake message to 
those candidate peers. 

4) Peer X receives accept/refuse message from candidate peers. When the 
summation of evaluation values of parents is exceed the threshold, peer X 
stops sending out join handshake message and it finishes the join process.  
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Figure 3-1: Join Protocol 

3.2.3 Update Protocol 

Parents of a peer will leave the system arbitrarily. Peers should do update 

procedure to keep the stability. A peer checks the statuses of its parents in a fixed 

period of time. If parents are less stable or supply lower quality of data, a peer will do 

the update process. This represents that some of parents does not fit into the 

requirement of the peer. Thus, they should be replaced. 

Update protocol: 

1) Peer X updates its parent list. Peer X asks a random peer list from a patch 
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server.  

2) Peer X sends out update messages to peers who are on the returning peer list 
or connected with peer X. It asks these peers to return a peer list they 
connected with and the evaluation factors. 

3) Peer X acquires information after a period of time. Then, peer X does the 
evaluation score process which we introduce above. Finally, it ranks the score 
and decides candidate peers. It sends out the update handshake message to 
candidate peers.  

4) Peer X receives accept/refuse message from candidate peers. When the 
summation of evaluation values of parents is exceed the threshold, peer X 
stops sending out update handshake message and it finishes the update 
process. 
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Figure 3-2: Update Protocol 
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 Through peer periodically does update process, our peer-to-peer system won’t be 

affected by the fluctuation of node’s participation.  

3.3 Data Management Model 

This sub chapter introduces our proposed data management model. It contains 

the data encoder, data decoder, data transfer protocol, score adjustment mechanism, 

and request rate allocation function. 

How to construct a peer-to-peer system efficiently is a huge issue. Then, how to 

control data transferring between peers especially in multi-parents structure is also an 

important part. This is because peer exchanging data status can reduce to receive 

repeated or overdue data. Moreover, peer-to-peer system can reach the optimal 

utilization. However, too many data control messages are the redundancy. We use 

Luby transform codes [14] to reduce the data control messages between peers and the 

system performance can keep well. 

3.3.1 Luby Transform (LT) Codes 

Luby Transform Codes is one of rateless fountain codes. Rateless fountain codes 

includes LT codes [14], Raptor codes [31], and On Line code [32]. Rateless code is 

much suitable for peer-to-peer streaming data. The spirit of rateless code is that it can 

generate infinite coded data by finite messages. When receiver gets (1+ε)× N coded 

data (blocks), it can restore the original messages in a high probability. (N: number of 

original data, ε: a constant close to zero) 
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3.3.2 Luby Transform Codes Coding Scheme 

The coding scheme of LT codes in our streaming system contains four parts. We 

will give an overview of coded flow of LT codes. Then, we will show the encoder and 

decoder of LT codes. And, following is the section based LT codes. The last is 

recoding benefit. 

 Overview 

LT codes uses XOR○+  operation to generate infinite coded data. First, it divides 

the transferred file into message blocks (N) with fix size. When generating an 

encoded block, LT codes uses a degree distribution to decide the degree (D) of this 

encoded block. Degree (D) means that to pick up number of D message blocks does 

XOR operation. Next, this encoded block picks up number of D message blocks 

randomly. This is the formation of an encoded block. Figure 3-3 shows the flow of LT 

codes. The second encoded block (blue) whose D is equal to 2 chooses randomly two 

message blocks (green) to do XOR operation. 

Therefore, if we wanted to restore an encoded block, we should have the same 

degree distribution and random number generation system. Fortunately, this is easily 

fulfilled in present computer system. 
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Figure 3-3: LT codes flow 

 Luby Transform Encoder 

Luby transform encoder encodes files to infinite encoded blocks. It divides a file 

into fixed size message blocks (N). Numbers of message blocks (N) will influence the 

total amount of encoded blocks (4). Large of N will generate nearly infinite encoded 

blocks. 

∑
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N
mCkEncodeBloc

0
#
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where N is number of message blocks. 

The key of generating encoded blocks is the degree distribution. There are Ideal 

Soliton distribution and Robust Soliton distribution mentioned in Luby Transform 

literature. The probability degree distribution decides the degree D of an encoding 

block. It selects randomly D non-repeated message blocks to form an encoded block. 

Figure 3-4 is the process of generating encoded blocks. Each  represents an XOR 

operation. For example, the first encoded block is the first and the forth message 
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blocks do XOR operation. 

 

Figure 3-4: LT codes Encoder 

 Luby Transform Decoder 

In theory, receiver just receives (1+ε)× N different encoded blocks, it can recover 

origin data with high probability. In order to decode LT coded blocks we have to 

construct the same relationship between encoded and message blocks in encoder. 

When sender transfers an encoded block, it has to attach the information about 

how to generate this encoded block. Because the same random number generator and 

degree distribution are on every node, sender just attaches the random seed as the 

relative information. Decoder side can get the same relationship between message and 

encoded blocks. Figure 3-4 and 3-5. 
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Figure 3-5: LT codes Decoder 

Decoding procedure keeps finding the degree one encoded blocks. Because 

encoded block with degree one is generated by one message block. In other words, the 

message block is equal to the encoded block Figure 3-6(a). The message block with 

degree one has been restored. While doing above procedure repeatedly, we can find 

some degree two blocks restorable. Because of one of message blocks which it 

connected with has been restored. After XOR operation, this encoded block with 

degree two decreases its degree to one. So another message block can be restored 

Figure 3-6 (b). In the end, we can restore all message blocks. 
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(a) 

  

(b) 

Figure 3-6(a)(b): LT Codes Decode Flow 



 

 29

 Section Based LT codes 

LT codes uses in file transport originally. But our objective is streaming, we have 

to do some modification on the data segmentation of LT codes. Figure 3-7 shows the 

transformation of LT codes from file application to streaming. We consider the 

streaming data as the target bit rate multiply a fix period of time. The production is 

equal to a small file. Therefore, we can use the benefit of LT codes without huge scale 

change. 

LT decoders are independent on different time section, because each time section 

can view as a small file. Streaming application by using LT codes means many small 

files transfer with time restriction. 

 

Figure 3-7: Section Based LT Codes 

 Benefit of LT Codes 

The reason we use LT codes is that it can reduce the data control messages. The 

natural characteristic of LT codes can totally solve the data control message overhead 

problem. Because any peer can generate infinity encoded blocks after decoding the 

streaming section data. Not only the source but all participants who decoded the 

streaming section have the ability generating different encoded block of this section. 

Peer-to-peer system especially in multi-parents scheme needs a data 



 

 30

reconciliation mechanism. With the help of LT codes characteristic, we can reduce the 

data control messages between parents and children. Also, it can simplify the data 

transfer protocol design. 

3.3.3 Data Transfer Protocol 

We use LT codes to simplify the data transfer protocol design. Also, we use 

section based data transfer scheme. A peer decides the start section after join or update 

procedure. The policy is that a peer picks up the start section which is all its parents 

receiving at most now. After a parent gets the message of section request, it transfers 

the section data to this child until receiving the next section request. Figure 3-8 is the 

data transfer protocol. 

The measurement of effective ratio (ER) starts after decoding a data section. 

(Effective ratio mentioned in 3.2.1.) When a peer receives an encoded data packet 

from its parent, it can check this packet is useful or redundant. After decoding a 

section, a peer can easily count out the effective rate of their parents during last 

streaming section. This is said that peers can understand the contribution of each 

parent. The effective ratio of parents could be calculated by the ratio of the 

contribution to the data request rate of the parent. 

Data receiving buffer is important for any streaming system especially 

peer-to-peer streaming system. It can relieve the damage of fluctuation of peers and 

different network conditions. A peer can receive a range of streaming sections, 

typically from the next section of playback to a small number of future sections. Also, 

peers need to transfer streaming data in a peer-to-peer system. They should have data 

sending buffer. Data sending buffer should not be too large in a real time streaming 
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system because of the time limitation. Our purposed streaming system uses small (two) 

sending and receiving section buffers. 

Parent BParent AChild

Request Section i

Section i data
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Section i data

Section i data

Section i data

Section i data

Decoded 
Section i Request Section i+1

Section i+1 data

Section i+1 data

Section i+1 data

.

.

.

.

.

.

.

.

.

Star Section 
Selection

Section i data

Request Section i

Request Section i+1

ER 
calculation

 

Figure 3-8: Data Transfer Protocol 

3.3.4 Request Rate Allocation Function 

Request rate allocation function works after deciding the receiving section id. 



 

 32

This function allocates the request rate to each parent. The request rate RequestRate(i) 

to a selected parent, i, is according to the parent’s evaluation score as shown in (5). 

RateMAXRequest
jES

iESieRequestRat

Parentsj

×=
∑
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)()(

 
)5(

We request higher rate to those peers with higher evaluation value, because the 

evaluation score of a peer represents its ability. We restrain the transfer rate of parents 

with low score and enhance the others. This adjustment of request rate will make our 

system more robust to different network surroundings. 

3.3.5 Score Adjustment Mechanism 

A parent might not be able to fulfill the request rate from its children due to the 

constrained upload bandwidth of the parent. Our rate allocation function depends on 

parent’s evaluation score. Therefore, the evaluation score of a parent needs to update 

frequently. Then, it can rapidly reflect the statuses of parents. We call this mechanism 

score adjustment.  

Score adjustment is triggered after effective ratio calculation. We use the moving 

average αi of effective ratio to adjust the score of peer, i, as shown in (6) and (7). As 

a result, the evaluation score of the parent who suffers from insufficient upload 

bandwidth will decrease, as well as the importance of this parent to the peer. 

)(8.02.0 iERii ×+×= αα  
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3.4 Peer Lifetime Distribution 

3.4.1 Lifetime Distribution Research 

Peer lifetime distribution is a possible solution for the fluctuation behavior of 

peers. Many researches analyze possible behavior of peers by observing a 

peer-to-peer system over a long period time. Most of the results show that peer 

lifetime distribution can use heavy-tailed distribution to approximate. Besides, the 

characteristic is “the elder peer has smaller probability to leave system than younger 

peer.” Some researches take advantage of this characteristic on their parent selection 

algorithms. Pareto distribution is one of the heavy-tailed distributions. In [30] [33] use 

shifted Pareto distribution (8) to model lifetime duration of a peer. 
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3.4.2 Continuous to Discrete Lifetime Distribution 

We use shifted Pareto distribution to model the lifetime of a peer. But, shifted 

Pareto distribution is a continuous probability distribution. We have to modify it to fit 

into our system. This is because a digital system cannot use continuous function. 

Sampling is the way to change a continuous distribution into a discrete one. After 

sampling shifted Pareto distribution, we should make sure that it still has heavy-tailed 

property.  

We suppose the sampling rate is s. P(x) is integrated the shifted Pareto 
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distribution every s seconds as shown in (9). 
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(9)

Next, we need to verify P(x) is a probability distribution. 

1) Probability value shouldn’t be negative. (10) 
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2) Summation all probability values are equal to one.(11) 
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So we have verified P(x) is a probability distribution. Now, we will make sure 

P(x) still has the heavy-tailed property. A distribution is said to be heavy-tailed if: 

,0,][ >≈> − xcxxXP α  

where 0 < α < 2 and c > 0 are constants. We prove the heavy-tailed property on 

discrete shifted Pareto distribution as shown in (12). 
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(12) 

We sampled the shifted Pareto distribution. P(x) is a discrete probability 
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distribution and a peer lifetime distribution. Then, we can calculate the leaving 

probability D(t) of a participant after it survived time period t.  

Our parent selection algorithm can calculate more precise reliable level of a peer 

with this information. We argue that parent selection algorithm combined with peer 

lifetime distribution could effectively control the fluctuation of peers. 

3.4.3 Residual Lifetime Expectation 

To count the reliable level of a peer needs the residual lifetime expectation of a 

peer. First, we introduce the residual lifetime expectation. Residual lifetime 

expectation R(x|x>t) means how long a peer will survive after it lived t seconds as 

shown in (13).  
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:where E(x|x>t) is the conditional expectation of t and μ is mean of P(x). 

So, we define the reliable level L(t) of a peer is that the probability of a peer who 

will keep survive until I (peer) leave the system as shown in (14). 
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:where B is the residual lifetime expectation of a peer itself and t is the peer already 

survive time.  

L(t) represents the probability that a peer who already survived time t and will 
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keep survive until I leave the system (B+t). Thus, we can measure the reliability of a 

peer. 

3.4.4 Summary 

We use discrete shifted Pareto distribution to model peer lifetime. Then, we are 

able to measure the reliability of a peer by calculating residual lifetime expectation of 

the peer. Reliable level L(t) represents the probability that a peer who already 

survived time t and it will keep in system until I leave. We combine this information 

to our parent selection algorithm. We make the path available bandwidth (PABW) 

evaluation factor more precise. This is said that we can measure the possible 

bandwidth that a parent will give to me in the future. Therefore, our parent selection 

algorithm could effectively control the fluctuation behavior of peers. 

3.5 Other Detail Design 

Except above main system structure description, some small issues will influence 

the whole system performance. These small issues are hot spot problem and data 

protocol overhead. 

3.5.1 Hot Spot Problem 

We say peer-to-peer system is high robust because all peers are equal essentials. 

If we rely on some specific peers, system performance will be unstable when those 

peers fail or leave. Tree based peer-to-peer construction is the best example. Our 

proposed method can distribute the importance of each peer by our multi-factors 

evaluation algorithm. Besides the evaluation algorithm, we design an active detect 
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mechanism to enhance the distribution of essentials of peers. This mechanism can 

achieve better system performance. According to our data protocol, we use section 

based data transportation. We adjust the scores of parents by its contribution after a 

peer decoded a section. Then, the new request bit rate of each parent is calculated 

according to the new evaluation score of the parent. We suppose a parent who can 

satisfy the request rate of a peer this section. The parent might satisfy more request 

rate next section. Therefore, a peer divides its parents into two groups before it 

request new bit rate. The policy of classification is the parent satisfied data request 

rate last section or not. If the parent cannot satisfy my data require bit rate last section, 

its next section request data bit rate will be limited in the require bit rate of last 

section.  

Through this method, child can decrease the require bit rate from hot parent. We 

could make all participants more equal essentials, therefore our peer-to-peer system 

will be more robust. 

3.5.2 Data Protocol Overhead 

Our data transfer protocol might have some overdue data transmission. This 

situation happened during peer sends out next section request until it receives next 

section data. Figure 3-9 shows the overdue data transmission. The best way to solve 

this problem is that a peer sends next section request message in advance of a round 

trip time. This is because some of data blocks are in the network pipe. We can predict 

a round trip time effective data throughput by calculating the effective contribution of 

a parent from this section start to now. This small algorithm can reduce the overdue of 

our data transmission. We have simulation in chapter 4.6. 
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Figure 3-9: Data Protocol Overhead 

3.6 Benefit of Our Peer-to-Peer System 

One of the most important objectives of a peer-to-peer streaming system is to 

make peers receive stable streaming data. The characteristic of stable and reliable data 

receiving can make a peer catch up with the source playback rate faster and thus it 

helps to reduce the end-to-end streaming delay. 
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The proposed parent selection algorithm takes the upload bandwidth of a peer, 

among other factors, into consideration and we enhance this metric by combining 

with lifetime distribution of a peer. A peer can choose parents who are able to supply 

stable streaming data better over other peers.  

The restriction of data transfer in rStream is that a peer can only send the data 

which it already decodes. The purpose of this restriction is to try to decrease data 

packets with high correlation between peers. This restriction will make the delay 

accumulate fast. The proposed data transfer protocol in this dissertation removes such 

restriction. A peer can start to serve its child peers once a section contains some coded 

blocks so as to reduce the difference of decoded sections between peers which will in 

turn enrich the list of parent candidates when a peer joins the system or performs the 

process of parent update. From the simulation results shown in Section 4, the 

proposed algorithm shows almost half of the end-to-end streaming delay reported in 

rStream [24]. To sum up, the proposed peer-to-peer streaming system consider 

multiple factors, including peer lifetime distribution and LT codes, besides the 

well-designed data transfer protocol. It can achieve small end-to-end streaming delay. 

3.7 System Structure 

Our system contain join, update protocol module, data management module, and 

peer list maintenance module. Figure 3-10 shows the system module details and the 

relation between each module. Peer list maintenance module contains parent selection 

module, evaluation score function, lifetime distribution, and peer list monitor. Data 

management module contains transfer rate allocation, request rate allocation section 

selection function, score adjustment module, parent contribution recording, data 

buffer, and LT encoder/decoder. 
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Figure 3-10 : System Structure 
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Chapter 4  Simulation Result 

4.1 Simulation Surroundings 

In this chapter, we present results from experiments in simulated peer-to-peer 

streaming environments, based on our implementation of proposed system with the 

C++ programming language. The simulation platform is NS-2 2.29 and network 

topology is random generated with BRITE topology generator. Figure 4-1 is one of 

the topologies. We put our peers on the leaf and the middle nodes (core network) are 

generated by BRITE. 

 

Figure 4-1 : Network Topology 
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4.2 Parameter Setting 

Pareto Sampling (s) 2 seconds 

Peer upload/download capacity 1024 Kbps 

Source upload capacity 10 Mbps 

Join/Update Probing Time 1 second 

Score Threshold 8 

Update time period 5 seconds 

LT block size 1024 Bytes 

LT section size 128 K Bytes 

Target bit rate 512 Kbps 

Buffer size 2 sections 

Simulation Time 1500 seconds 

Table 4-1: Parameter Setup 

4.3 Different Weight Setting 

According to formula (3), we have to decide a better combination of weights.  

Due to the summation of three weights, we narrow the searching range on the plane of 

the equation w1+w2+w3=1. Then, we use the gravity of triangle to reach the better 

solution. Figure 4-2 is the gravity of triangle and the reaching process. 
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Red:Level-1
Blue:Level-2

(Fresh Level ,Path Available Bandwidth, Effective Ratio)

 

Figure 4-2 : Weight Setting Reaching Process 

Each point is the gravity of each triangle and the weights from left to right is 

fresh level, path available bandwidth and effective ratio. Red points are the level-1 

combination of weights. After the level-1 process, we run level-2 process from the 

best solution in level-1. In the end, we will find the best combination of weights.  

We use three metrics to measure a combination of weights. They are the averages 

of effective throughput, the average of source section difference and the average of 

continuous index. The effective throughput of a peer is calculated by none repeated 

and in time Luby Transform data packets (encoded blocks) every two seconds. The 
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average of source section difference is the average of the section difference of all 

peers from source every 10 seconds. Finally, the continuous index is the playback 

smooth level. The way to calculate continuous index is the ratio of successful 

playback sections to whole sections in the lifetime of a peer. 

Due to the time restriction, we only run to level-3. We get the better result under 

the combination of weights (1/6, 2/3, 1/6). The path available bandwidth is the most 

important factor. This is reasonable because when a peer did not have sufficient data 

bit rate, it cannot enjoy the streaming content even owning the latest data content. The 

other two factors: fresh level and effective ratio, we cannot distinguish the importance 

level under above combination of weights because they are the same. However, we 

can realize the different importance level while we observe the whole level-3 results. 

In our results, left level-3 point has better performance than right point. The fresh 

level is a little higher important than effective ratio. We believe that we can find the 

best combination of weights by using this gravity of triangle method, and the 

importance level of three weights is path available bandwidth > fresh level > effective 

ratio. 

The weight setting in later simulation is (1/6, 2/3, 1/6) if no other explanation. 

4.4 Synchronization of Peers 

This experiment shows the average end-to-end streaming delay under different 

number of peers in system simultaneously. The media streaming bit rate is 300 Kbps 

and source has 10 Mbps upload capacity. We consider two classes of receivers: 

asymmetric digital subscriber (ADSL) and Ethernet peers. The ratio of two classes is 

7 to 3. The download capacities of ADSL group are in the range of 512 Kbps ~ 3 
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Mbps and upload capacities are in the range of 200 ~ 800 Kbps. Ethernet group 

download and upload capacities are 3 ~ 8 Mbps. This is the same setting with rStream. 

Figure 4-3 is our simulation result and rStream.  

 

Figure 4-3 : Our Proposed and rStream Average End-to-End Streaming Delay [24] 

We have two delay measurements. DD stands for decoded average end-to-end 

streaming delay and PD is playback average end-to-end streaming delay. The length 

of decoding buffer is 2 sections (for both forward and backward directions) and the 

initial distance between playback timer and decoding timer is 2 sections as well. 

Figure 4-3 shows our average end-to-end decoding delay is below 6 seconds in 500 

peers. And the average end-to-end playback delay is below 10 seconds in 500 peers. 

This is said that our peer-to-peer system can achieve smaller delay than rStream. 

The x-axis is number of peers in system. The point, 50, on x-axis represents 0-50 

peers in system. The y-axis is the average end-to-end streaming delay per peer. 

Although there are 500 peers on line, the playback average end-to-end delay is less 
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than 10 seconds. Also, in less than 100 peers on line scenario, the playback average 

end-to-end streaming delay is less than 5 seconds. We can say that it is a nearly real 

time streaming system.  

Our proposed method has relative low end-to-end latency. This is because a peer 

in rStream starts to transfer next section data to its children only after a peer decoded 

completely the transferring section. This restriction might increase the end-to-end 

streaming delay, but rStream could promise that there are not repeated encoded blocks 

on the network. Our proposed method would not have the restriction of data transfer. 

Besides, our parent selection method combining with multiple factors and peer 

lifetime distribution can make a peer receive stable throughput. Stable throughput can 

make a peer catch up the delay with the source. This is another reason our purposed 

peer-to-peer system achieves low delay. 

 

Figure 4-4 : Average End-to-End Streaming Delay with Different Buffer Size 

To prove the restriction of data transfer in rStream is a stumbling block of delay 
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decreasing. Figure 4-4 is the average end-to-end streaming delay under different 

buffer size. Our parameter setting is k =100, l = 1KB, and 8N edges. (where k is 

number of message blocks in a section, l is the size of each message block, and N is 

number of peers in network.) A peer can start to transfer a section data according to 

the number of receiving coded blocks of the section. (where 50 means after receiving 

N*50% number of coded blocks of a section can transfer coded blocks of the section.) 

The length of decoding buffer is enlarged (4 sections) due to the fact that a peer might 

need to wait longer before it can forward data to its children and the initial distance 

between playback timer and decoding timer is adjusted accordingly as well. We can 

figure out the average end-to-end streaming delay increases with the increasing of the 

portion of coded blocks receiving. The delay is increasing fast while a peer can start 

to transfer the section data after receives above number of N coded blocks of a section 

(100% and 150%). This is said that the restriction of data transfer is the obstruction of 

end-to-end delay decreasing.  

4.5 High Churn Surroundings 

In order to simulate our purpose system is robust. We simulate in a 200-peer 

dynamic network and change lifetime duration of peers into an exponential 

distribution with expectation equal to 30 seconds. Also, the media streaming bit rate is 

300 Kbps and source has 10 Mbps upload capacity. We consider two classes of 

receivers: asymmetric digital subscriber (ADSL) and Ethernet peers. The ratio of two 

classes is 7 to 3. The download capacities of ADSL group are in the range of 512 

Kbps ~ 3 Mbps and upload capacities are in the range of 200 ~ 800 Kbps. Ethernet 

group download and upload capacities are 3 ~ 8 Mbps. This is the same setting with 

rStream.  
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Figure 4-6 is the simulation result and average throughput of rStream under the 

same scenario. There are 6-7 peer joins/departures every second in a 200-peer 

dynamic network. Because the target bit rate is 300 Kbps, Luby Transform codes 

overhead is 26%. The minimum require bit rate is 376 Kbps. Our purposed streaming 

system has above 400 Kbps throughput. 

 

Figure 4-5 : Average Throughput under High Churn Scenario [24] 

Our parameter setting is similar with k=100, l=1KB. But, our LT codes decoder 

in k=100 has higher overhead. The (1+epsilon) is 1.3. The goodput in figure 4-7 

means the aggregate rate of deriving the original data content. In other words, it is the 

decoding steaming bit rate. The throughput is the aggregate rate of receiving coded 

media bit streams. Thus, the overhead of LT codes is nearly 40%. This is because a 

peer in a high churn surrounding might leave the system arbitrarily and quickly 

without decoding the received section fully so that part of the total throughput of the 
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last section is useless. To compare with rStream our purposed streaming system has 

higher throughput than rStream under the same peer upload/download bandwidth 

setting. Thus, we have more stable decoding streaming rate in a high churn scenario. 

Figure 4-8 shows the continuous index of our purpose system and it is closed to 1.  

 

Figure 4-6 : Continuous Index in High Churn Scenario 

Our proposed streaming system can keep well performance even in high churn 

surroundings. Although the lifetime distribution is not Pareto, our system can still 

work smoothly. We achieve more stable decoding rate and high continuity of each 

peer. 

4.6 Pull-Push Overhead Saving 

This simulation is about the overhead in pull-push data protocol which we 

mentioned in chapter 3.5. rStream does not find out this overhead. We think this is 

because their target bit rate is low. The 300 Kbps of target bit rate is hard to notice the 
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redundant overdue data. Figure 4-9 shows the out of time data throughput. The x-axis 

is the simulation time and the y-axis is the overhead throughput (kbps).  

 

Figure 4-7 : Pull-Push Overhead Saving 

We compare the overdue data under use/non-use our proposed overhead saving 

algorithm. Our target bit-rate is 512 Kbps and there exists 14% overhead without 

overhead saving algorithm. And, there are only 10% overhead with overhead saving 

algorithm. We can reduce a little out of time data in pull-push data protocol.  
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Figure 4-8 : Effective Throughput with Pull-Push Data Protocol 

Figure 4-10, 4-11 and 4-12 show the system performance of use/non-use 

overhead saving algorithm.  

The effective throughput and decoding rate are close in using/non-using 

overhead saving algorithm. Early switching section cannot affect the stable data 

receiving of a peer. 

 

Figure 4-9 : Continuous Index with Pull-Push Data Protocol 

The average of continuous index of using/non-using overhead saving algorithm 

can keep approximately 0.99. The variation of continuous index of using overhead 

saving algorithm is more stable than non-using. 
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Figure 4-10 : Section Difference with Pull-Push Data Protocol 

The average of end-to-end streaming delay in using overhead saving algorithm is 

lower than without using overhead saving. This is because our proposed algorithm 

predicts the future data transferring. A peer changes their section in advance. Thus, the 

average of section difference from source can reduce 1 to 2 seconds. 

Due to our proposed overhead saving algorithm prediction, we can reduce 4% 

overdue data transmission. Also we can reduce the average of section difference from 

source and keep the well continuous index and stable effective throughput.  
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Chapter 5   

Conclusions and Future Work 

5.1 Conclusions 

How to construct overlay in peer-to-peer system is a huge issue. Our proposed 

parent selection algorithm can choose reliable parents by using peer lifetime 

distribution. Also, we use LT codes, one of rateless codes, to reduce data coordinate 

message efficiently. When peer’s lifetime follows the lifetime distribution, 61% of 

peers can continuously watch the streaming content during its lifetime and 87% of 

peers have above 0.99 continuous index. Also, our proposed streaming system keeps 

stable in high churn surroundings. Above 95% of peers can continuous watching the 

streaming content during its lifetime. The average of continuous index is 0.989. We 

can conclude that our proposed peer-to-peer streaming system is much robust. 

We also have good synchronization between peers and source. The end-to-end 

streaming delay is much lower than rStream. When number of peers is below 100, we 

have almost live streaming. And, when number of peers is below 500, we have less 

than 10 seconds playback delay.  

Our purposed peer-to-peer system has high robust and good synchronization. We 

have three factors to measure a peer. The path available bandwidth factor combining 

with peer’s lifetime distribution can promise the aggregate data bit rate of receivers. 

The fresh level factor makes peers select latest data and the effective ratio restrains 

the repeated or overdue data. Our multiple factors of parent selection algorithm can 

achieve smooth and real time streaming. Besides, future research should take peer 
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lifetime into consideration while fighting with the natural drawbacks of peer-to-peer 

system. 

5.2 Future Work 

There are many researches about peer lifetime distribution. Some researches 

propose different opinion on peer lifetime distribution. [34] proposes that peer 

lifetime distribution in a streaming application has high relation with the streaming 

data content. Although our proposed method is based on shifted Pareto distribution, 

we can change easily into different lifetime distribution by switching the lifetime 

distribution module. We believed that this research is a mile stone in the design of 

peer-to-peer lived streaming system. Because the design of our system is based on 

peer’s characteristic, it can resist effectively the natural drawbacks of peer-to-peer 

system. 
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